
Miroslav Nemecek

Guide
to the World of Peter Rabbit

Gemtree Software

Guide to the World of Peter Rabbit

Reference book for users of the Peter application

Copyright © 1999-2012 Miroslav Nemecek, Gemtree Software, s.r.o.

December 2000, updated September 2012

petr.hostuju.cz
www.gemtree.com

This text was originally designated for users of licensed version of the Peter application, so some
its parts may be invalid with current version (e.g. installation does not require installation CD and
license diskette).

Some of the names and terms that appear in the text can be trademarks or registered trademarks of their
owners.

Peter and Gemtree are registered trademarks or trademarks of Gemtree Software, s.r.o. in the Czech
Republic, United States and other countries.

Microsoft and Windows are registered trademarks or trademarks of Microsoft Corporation in the United
States and in other countries.

2

http://www.gemtree.com/
http://petr.hostuju.cz/

Contents:
1 Setup .. 4
2 The Program Window .. 7
3 How Does It Work? .. 9
4 First Steps .. 12
5 Peter’s Garden ... 16
6 The Garden with Repetitions ... 18
7 The Garden with a Condition ... 21
8 Peter Walks on Marks .. 23
9 Peter in a Maze .. 27
10 Keyboard Control ... 30
11 Plenty of Monsters ... 37
12 Feeding the Snake ... 44
13 Beginning with Graphics .. 62
14 Mishmash Drawing .. 63
15 Fill Your Own Colors .. 70
16 Dialogs ... 89

3

1 Setup

Installing Peter on Your Computer
Our work with Peter begins by installing the program. You will need the setup CD and
the license floppy disk, computer with a Pentium processor (or at least 486), floppy disk
drive and CD-ROM drive, and with Windows 95, 98, NT or 2000. There should be
about 500 MB of available hard disk space, but as few as 10 MB will be enough for
minimal setup.

First, insert the CD into your CD-ROM drive. After a while, you will see the setup
program window. If this window does not appear, the CD AutoPlay feature is probably
disabled, and you will have to start the setup program manually: Click Start / Run /
Browse, locate the SETUP.EXE program on your CD, and click OK.

The setup program window contains four choices. The first choice installs the Peter
application, the second one adds or removes installed components, the third one
uninstalls the Peter application, and the last choice quits the setup program without
applying any changes.

Click the first choice, Install. The setup program prompts you to insert the license
floppy disk. Insert your license floppy disk into the drive, and then click the Next button.
Wait a little while the setup program reads all the necessary data from the disk. After
that, the License Agreement window appears. Read this agreement carefully, and then
accept its conditions by clicking the I Agree button.

When you accept the License Agreement, a window containing the installation choices
will be displayed. Your license data are displayed in the upper right corner. Make sure
that these data are correct and complete. The upper left pane contains check boxes
that specify the components of the Peter application you want to install. To the right of
the check boxes, the size of the components is displayed. Select the appropriate check
boxes for the components you want to install.

The most important check box is the first one, which represents the Peter application
main program. This check box should always be selected. The second check box
installs the sample programs created in Peter. The sample programs are a good
beginning for creating your own programs, and so it is recommended to keep it
selected as well. The remaining check boxes install libraries containing images,
sounds, sprites, and other elements. These libraries are not required for the operation
of the Peter application itself. You can select them as you wish, depending for example
on the amount of available hard disk space.

The amount of free space required on the target disk is displayed in the middle right
part of the window. The bottom part shows the name of the target folder, into which
Peter will be installed. You can change the folder by clicking the Browse button. When
you are ready, click Finish to start the setup process.

4

Multi-user Environment
The Peter application may be used by several independent users. Multi-user
environment is achieved by separating the Peter application folder from the individual
users’ data folders. Each user has their own working space, in which they can change
both sample and their own programs and libraries, without any effect on the other
users’ programs and libraries.

On the Windows desktop, right-click Peter’s icon, and then click Properties. The
properties dialog shows two paths. The first path is labeled Target, and it represents
the path to the main program of the Peter application. Typically, this will be
"C:\Program Files\Peter\Peter.exe". This path will be the same for all users. The
second path is called Start In, and it represents the path to the user’s working folder.
This is usually C:\My Documents\Peter (according to Windows settings). Each user
has his or her separate working folder.

If you want to create a Peter startup icon for a new user, you should first create the
user’s working folder by using e.g. Windows Explorer. Browse to the users’ common
working folder (typically C:\My Documents), and create a new folder by choosing File /
New / Folder. Then, right-click the Peter application icon, drag it on the desktop, and
click Copy Here to create its copy. Right-click the new icon and display its properties.
Modify the Start In path to represent the path to the new user’s working folder. You can
also (using the right mouse button again) rename the new icon, and everything is ready
for the new user.

Network Installation
When installing into a networking environment (e.g. in a school class), install Peter on
the network server by the same procedure as with a standalone computer. The folder
with the Peter application may be set as Read-only after setup, as no additional write
operations will be performed in it.

When Peter is installed, create Peter’s working folder for saving user files on the
system administrator’s workstation (e.g. H:\My Documents\Peter). Prepare a startup
icon whose Target path will refer to the Peter application’s main program (Peter.exe),
and whose Start In path will refer to Peter’s working folder. Create working folders for
the remaining workstations in the network, and copy the startup icon on their desktops.

Peter, just like other 32-bit applications, supports long file names with extended
characters. In Novell networks, you can enable long file names by using the following
commands:

1. On the server, type “load os2”,
2. On the server, type “add name space os2 to volume1”, where volume1 is the name

of the volume where you install long file names support,
3. Add the “load os2” command into STARTUP.NCF.

5

In some versions of Novell networks, it is impossible to run programs with extended
characters in their names (not only from Peter, but also from Explorer), although all the
remaining file operations work fine. In such cases, you will have to avoid using
extended characters in program names, or upgrade the network software.

Reinstalling
When there is not enough disk space, you may install only some of Peter’s
components. You can add or remove the individual components that will be installed by
clicking Add/Remove in the setup program. After you insert the license disk and the
license data are loaded, the same selection window appears as when you perform
installation, but now you cannot change the target folder. Blue check boxes indicate the
components already installed. You can change what components will be installed by
selecting and unselecting the appropriate check boxes. Click Finish to begin
reinstallation.

Changes to the Sample Library
You can add or remove files from the sample library as needed. When you uninstall a
library, the setup program removes only the original, unchanged files. When you add
files, they will overwrite files with the same name, regardless of the date, time and size
of the files.

When you run Peter from the Windows Start menu, you can make direct changes to
the sample library. In such cases, the sample folders become working folders at the
same time. You may also use the Peter with Sample Library Modification command
in the Peter x.xx menu.

Uninstalling
You can uninstall Peter by running the setup program from the setup CD-ROM and
clicking Uninstall. Another possibility is launching the uninstaller through Windows
Add/Remove Programs control panel or by clicking Start / Peter x.xx / Uninstall.

Uninstalling deletes all unchanged sample programs and libraries and Peter’s program
files. Uninstalling does not delete users’ working folders. If needed, you can delete
these folders manually, e.g. in Windows Explorer.

6

2 The Program Window

After Peter starts, you will notice the color icons displayed in the program window.
These represent the sample programs created in Peter, and they are plentiful. The
sample programs are a good starting point for creating your own programs. They can
be both an inspiration and an answer to the question “How to do it?” It is very easy to
take a prepared program and modify it to create a new one.

How do we begin with Peter? By playing. Take a good look at the sample programs,
try their functions, and play with them. You will find out what to expect from Peter, and
learn the rules and conventions of controlling programs. You will probably also come
with many ideas about what could be done in a better way.

Don’t be afraid of playing, as any creative work is a play, in fact. Treat your work with
enthusiasm and playfulness — this is the way for acquiring the best results.

Let us take a closer look at the program window. Try the way of starting programs.
Double-click a program’s icon. Alternatively, click an icon once, and then press Enter.

There are several ways to close programs. You can close most programs by pressing
Esc, some of them even by pressing any key. Programs are also closed when you click
the little button in the upper right corner of the program window. If none of these
ways suits you, press the Alt+F4 combination on your keyboard (hold down Alt and
press F4). This way you can also close full-screen programs without the button.

7

Let us take one more look at a running program’s window. Most programs have two
more buttons besides the closing button in the upper right corner. The middle button
with one or two rectangles switches the window size to maximal () or to adjustable
size (). The left button enables you to collapse the program window into a small
button on Windows taskbar. You can expand the program to its previous size by
clicking that button again.

You may have noticed that when you move the mouse pointer over the border of the
window, it changes into a double arrow . This indicates that you can move the
window’s border. If you do so, you will see the window changing its size, and its
contents change their size accordingly. This is not typical for standard Windows
applications, but it is a common feature of graphical programs created in Peter. It
enables you to stretch your favorite game over the whole screen, or to shrink it into a
very small window.

Another interesting feature of the programs created in Peter is the possibility to pause
the program by pressing Pause. You can then resume the program by pressing any
key, for example Pause again.

The last, but not least interesting feature of Peter’s programs can be invoked by
pressing Alt+Enter (hold down Alt and then press Enter). This combination switches
the program into full-screen mode or back into normal mode. In full-screen mode, the
border of the window disappears, and your monitor switches into the mode that suits
the program’s requirements best. You must have a DirectX driver installed to switch
into the full-screen mode. In Windows 98 and Windows 2000, the DirectX driver is
included in the system.

Let us return into Peter’s window. Like with Peter’s programs, you can close the Peter
application itself by clicking the button in the upper right corner or by pressing
Alt+F4. You can also minimize the application’s window by clicking , maximize it by
clicking , or change its size by dragging the border with the pointer.

Take one more look at the program window picture on the previous page. In the upper
left part of the window, there are several special icons. They represent folders. Folders
contain programs or other folders. They organize programs into groups, so that it is not
necessary to have all programs “stacked in one pile”.

The icon labeled New Folder is important. You can get inside a folder by
double-clicking its icon (similarly to starting programs). If you want to get out of the
folder, double click the icon.

8

3 How Does It Work?

If you have played enough with the prepared programs, you surely wonder what it looks
like inside Peter’s programs.

We will look at one program. For example, we will take the Train game. It is located in
the Puzzles folder. Click the program icon. It will become enclosed in a frame and
highlighted. The frame is called selection cursor, highlighting indicates a selected
program.

Notice the bar with color icons in the upper part of the window. This is a toolbar, and it
contains buttons for invoking actions quickly. The second button from the left is called
Open . This opens the program and allows its contents to be edited. Click this
button.

After you click the button, the program expands into many color icons. You have
entered into the program editor. This opens up the great world of Peter the rabbit. If the
icons seem unfamiliar to you, there is no need to worry. You will soon be working with
them with the ease of a professional.

As you can see, the editor is divided into five parts — five windows. The middle window
is the one that interests us most. On the picture, you see that it is labeled as editing
field. This window is most important. It is used for assembling programs. The word
“assembling” is used on purpose, as the programs are really assembled from
predefined components. Each component — an icon — represents one command, one

9

program element. All of the elements make up a working program, for example the
Train game.

It is a distinguishing feature of Peter that the program elements, represented by the
graphical icons, are put together using tree structures. The structures are like a tree
with branches and leaves. Or do the colors and shapes of the icons look more like
gems to you? (Why do we mention this? Guess what inspired the company name,
Gemtree.)

One of the most useful features of the tree representation is the possibility to collapse
its individual branches into icons. Only the part of the program that you are interested in
can be left open. This feature of Peter’s editor enables a radical improvement in the
programs readability.

Before we start to rearrange a program, we have to learn how to control the editor. To
the left of several icons, you may notice gray squares with a “+” or “-” sign:

These squares tell us that the program element contains a branch with other elements.
If you click a square with the “+” sign, the branch expands. If you click a square with
the “-” sign, the branch collapses.

Look at the upper left window. Its title reads Global Variables and Functions. Each
data element used in a program, e.g. a numeric variable containing a number, or a
graphical variable containing a picture, must be created first in the Global Variables
and Functions window (or in the Local Variables and Functions window, but this will
be discussed later). The act of creating a data element is called declaration in
programming languages, but as we work in a purely graphical environment, we do not
have to pay much attention to such terms.

10

Each data element contains something during the creation of a program. A numeric
variable contains a number, a graphical variable contains a picture, an item variable
contains an item (which is basically a picture whose size is 32x32 points). You can view
and change the contents of the data elements by double-clicking their icons. The
contents of the elements appear in the editing window, and the menu and the toolbar
change accordingly to the type of the element.

When viewing the contents of the elements, you will come across two special types of
them. The first one contains commands, and it is referred to as a function .
Function is not a data element, and so its contents cannot be changed or passed
during the program’s run-time. It is used in the program as a regular command. The
second element, group , does not contain anything, and is used only for grouping
elements for the sake of the program’s readability.

Notice the Zoom In and Zoom Out buttons on the toolbar. These change the
size of the active (selected) window view. They are used most commonly in the
graphical editor for increasing or decreasing the size of pictures. They are also used in
windows with tree structures, for example the Global Variables and Functions
window. Select the window by clicking it. The selected window is indicated by
highlighting its title bar (usually dark blue color). Then you can use these button to
switch the view of the icons in the window to half and normal size.

If you still want to play with the sample programs, you can modify the pictures in them.
The modified program starts when you click the Start button (the first button from
the left on the toolbar). If you want to take the changes back, click the Undo button
(fourth from the left). You don’t have to be afraid of damaging the sample programs. If
needed, you can simply delete the program. Only the modified version will be deleted,
and the original sample program appears in its place again. When you finish modifying
the sample programs, close the program editor by clicking the Close button (the
second button from the left), and you may finally start creating.

A useful tip: If you want to learn something about an element, select it by clicking its
icon, and press the F1 key. This displays a comprehensive help for that element.

One more tip: Sometimes when you save or start a program, the editor may display an
error message stating that the program is probably running. A running program is the
most common cause of problems. If you don’t quit a program and switch into Peter’s
editor, e.g. by clicking on Peter’s window, the program hides under this window. It is not
possible to save changes to a running program. You must close the program first. For
this reason, you should always close the program first, and only then start modifying it.

11

4 First Steps

Let us start to create our own program. First, we have to create a new, empty program.
In the program window (the window that appears after Peter starts), click the third
button from the left . If you rest the mouse pointer over the button before clicking it, a
small window with the word New appears, and the quick help in the bottom part of the
window says Creates a new program. After clicking the button, you will be prompted
to enter the new program name. Type Test and press Enter.

Peter creates a new, empty program called Test, and opens it for editing. You will see
the program editor, as we described it in the previous chapter, only the editing window
will be empty.

12

In the Global Variables and Functions window (upper left), a group called basic
variables and functions is prepared. This group contains several basic elements. You
can change them, but cannot delete them. We will describe the elements one after
another.

The first element is called main program function. It contains the program as
such, and is empty when new program is created. The text besides the icon is the main
function name.

Notice the arrow to the left of the main function icon: . The arrow identifies the
element that is currently being edited, that is, the element displayed in the editing
window. You can edit an element by double-clicking its icon.

The main program function has two interesting properties: (1.) Its icon is also the main
icon of the program. You see this icon in Peter’s program window, as well as in (e.g.)
Windows Explorer. (2.) The main function name will be displayed in the title bar of the
program. In new programs, the main function name is preset to the program name
(Test in our example).

You can change the main function icon (or any other icon) by clicking the Icon
button. The name of the main function or any other element can be changed by clicking
the Description button. Before you edit an element, select it by clicking its icon. You
can also modify the descriptive text by pressing Alt+Enter, or by clicking the text
beside the selected element. A little frame with a blinking cursor appears. After you
change the text, press Enter. The Esc key returns the text to its original state. When
you are changing the text for more elements in a row, you can move the editing frame
with the up and down arrow keys, and only press Enter on the last element.

The element under the main program function is called sheet . If you double-click its
icon, a green sheet separated by blue lines opens in the editing window. The grid of the
blue lines serves only for your orientation on the sheet, and you can turn it off by
clicking the Raster button. The sheet separated into green squares remains
displayed. The sheet in the basic variables and functions group represents (unlike
other sheets) also the running program’s window sheet, and it is called main sheet.

The contents of the squares are called items. Items are pictures with the size of 32x32
points. Changing the items on the main sheet squares also changes the contents
displayed on the sheet. This way, you can create various animations.

Under the main sheet, there is an empty square element. This item fills every new
sheet. Double click the empty square to edit it. Draw something into the square, and
switch to the main sheet editing. Notice that all the squares on the sheet have changed.

13

The last two elements are labeled Peter and Lucy . Double-click Peter’s icon.
Several pictures of Peter in different positions and directions appear. To be precise,
there are four rows, each containing five pictures. Such an element is called a sprite.
A sprite is a moving animated object, such as the rabbit, which we can move around
the window sheet. Later, we will learn how to change Peter’s and Lucy’s appearance by
changing the sprite.

Now, let us look at the upper right window. It is called Basic Elements, Trash, and it
contains all of the Peter development environment commands and features necessary
for creating programs. The trash is a supplementary feature of this window. Here you
can move all the elements that you don’t need.

Now we can start “writing” our first program command. Start editing the main program
function by double-clicking its icon (the icon labeled Test). In Basic Elements, expand
the first icon from top with the Peter picture. You will see commands used for
controlling the Peter character.

Click the step element, and drag it into the editing window. This means: Click the
left mouse button on the element’s icon, and while holding the button, move the mouse
over the editing window. Notice that under the pointer, there is a transparent picture of
the element you are dragging and its text. On the bottom edge of the pointer, there are
two white overlaying rectangles. These indicate that the element will be copied, i.e. the
original element will remain in its location, and a copy of the element will appear in the
new location. Try to move the mouse behind the editing window. A black struck circle
appears on the bottom edge of the pointer, indicating that you cannot drop the element
here. Return to the editing window and release the mouse button. The element appears
in the upper left corner of the window.

This way, we created the first command. Nevertheless, this will not be enough for us,
and we will create four such commands. It is not necessary to drag them again from the
Basic Elements; we can duplicate three times the command that is already in the
window. We will drag the elements similarly to dragging from the Basic Elements, but
this time, we will use the right mouse button, and we will drop the elements one under
another. The right mouse button always copies the elements. The left mouse button
moves the elements into a new place. Between the editor windows, you can only copy
the elements, no matter which button you use.

When there are four step elements, one under another, our first program is ready.
Now we just have to run it. This is done using the Start button. It is the first button
from the left on the toolbar. When you click the button, a program window filled with a
green sheet appears. Peter the rabbit is in the bottom left corner. He makes a few
steps to the right, and the program closes. It is a great program, isn’t it?

14

We only don’t like one detail. It is the fact that the program closes immediately. For this
reason, we will add a command that will wait for a key to be pressed. It can be found in
the controls group, the keyboard subgroup, and it is labeled key input (waits
to be pressed) . Add this element behind all of the commands. The whole program
will look like this:

Run the program. The rabbit goes to the right again, and waits there. The program will
close when you press any key.

Our first program is done. It cannot do much, but it is our own program. Moreover, what
is most interesting — it is a fully 32-bit Windows multitasking application. What does
it mean? You can run the program as many times as you want to, and all of the
programs will run at the same time. Advanced users can use Windows Explorer to look
into Peter’s programs working folder (usually C:\My Documents\Peter\Program). Here
you can find the Test.exe program, which you can share with your friends, or create an
icon for it on the Windows desktop. The program is not dependent on the Peter
environment in any way, and you can use it just like any other Windows program.

After our first successful steps, in fact, Peter’s steps (“That’s one small step for a rabbit,
one giant leap for mankind” — does that ring a bell?), we can enthusiastically go on
experimenting.

Besides the step command, you have probably noticed other commands for controlling
Peter, such as turning to the left, right, and back. Try to modify the program, so that
Peter makes a small circle and returns to his original place. The result should look like
this:

Does it work? Congratulations, you have just become a programmer.

15

5 Peter’s Garden

After the first steps, we will teach Peter how to plant his own garden. We will continue
editing the Test program. We will add a picture of a flower, and tell Peter to plant the
flower during his walk.

First, we will prepare the picture of the flower. We will use an empty square, into which
we will draw the flower. Look at the Global Variables and Functions window. In the
basic variables and functions group, there is an empty square icon. Using the
right mouse button, drag the icon under all of the elements in the group.

This creates a copy of the element with the name of empty square 2. Click the icon to
select the element (it will be marked by a rectangle). Click the text beside the icon. The
text will be framed, and there will be a blinking cursor. Type Flower as the new element
name, and then press Enter. This creates (declares) a new item called Flower.

Now we will draw the picture of the flower. Double-click the Flower icon. An enlarged
picture of the empty square appears in the editing window. You can draw the flower
using the following steps.

On the toolbar, there is a drop-down list of the graphical editor functions. Another
drop-down list enables you to select line thickness. Choose the Sphere drawing
function. At the bottom of the editing window, there is a color pick-list. Click the red
color (the topmost one). At the top of the picture, approximately in the middle, click and
hold the left mouse button, and drag the mouse towards the middle of the picture.
Release the button. The red sphere will be the bloom. Pick a dark green color (the
second from the bottom) with the left mouse button, and in the functions list, choose
Line . Draw one line downwards from the sphere and then two lines on the sides.
These will represent the leaves. The result could look like this (maybe a dahlia?):

When you finish drawing, return to editing the main program function by double-clicking
its icon (it should still be called Test). If you want to get back to the elements that you
edited before, you can use the Previous Edit and Next Edit buttons that enable
you to scroll through the history of the edited elements.

Let us assemble the new program. In the previous chapter, we have left it in a state, in
which Peter took one step, turned to the left, repeated both of the commands for three
more times, stopped, and waited for a key to be pressed.

Take one more look into the group with commands for Peter. You can find it in the
upper right window called Basic Elements, Trash, and it is called Peter. The sixth
element from the top is item in front of Peter . Drag this element in the uppermost
place in the program, in front of the first command. When you drop this element, an

16

equals sign appears in front of it. By this, the editor informs you that the element
requires a parameter. This parameter will be the flower we have created.

In the Global Variables and Functions window, drag the Flower item towards the
item in front of Peter element, so that the upper left corner of the element you
drag gets over the bottom right corner of the destination element. During dragging, you
may notice that when you are close to the item in front of Peter element, a selection
rectangle appears around its text. The destination element signals in this way that you
can drop the element there. It is a basic feature of the elements that you can only
create combinations that make sense. You cannot assemble nonsense (automatic
syntax).

When you connect the flower item, the equals sign disappears. The item in front of
Peter element has its parameter, and is satisfied now. We have created a small branch
consisting of two elements, whose meaning is laying the flower in front of Peter. Copy
the branch three times before the remaining step commands (by dragging the item in
front of Peter element with the right mouse button). As a result, you should have this
program:

Start the program. Peter plants four flowers and stops on his original position. One
must admit that he steps on the flowers, but we should forgive him. He is just learning
how to take care of his garden.

17

6 The Garden with Repetitions

Imagine Peter wanting to plant a garden that would be 15 squares wide and high. We
could make more copies of the commands from the previous chapter, but this would
make any programmer feel ashamed .

For this reason, we will learn how to use a cycle. A cycle ensures repeated execution
of commands. We will use a cycle with a set number of repetitions. It is labeled
command repeating with specified run number , and you can find it in the Basic
Elements, Trash window, in the program control group. Drag it to the very
beginning of the program from the previous chapter (in front of all of the commands).

When you drop the cycle element, notice that two more elements came with it. These
two elements are a natural part of the cycle, and cannot be deleted, nor moved
somewhere else. The first element is labeled for number of repetitions , and it
specifies the number of times that the cycle commands will be executed. The second
element is called repeat commands . Here you put the cycle commands that you
want to repeat. It is called a cycle body.

In the beginning, we specify the commands that will be executed in the cycle. From the
previous chapter, we have a step command, and a command that lays a flower in front
of Peter. Drag these two commands into the cycle body, that is, into the repeat
commands element. Just to remind you — the command for laying the flower in
front of Peter had been created from two elements, the item in front of Peter
element and the connected element called Flower .

Now we specify the number of repetitions, for which the commands in the cycle will be
executed. For this, we need the numeric constant element from the calculations

 group. Drag this element into the for number of repetitions element. If you
expand the numeric constant element in the Basic Elements window, you will find
elements for the 0 to 9 digits in it. Drag the digits into the numeric constant in the
program to create a number of repetitions. The number that you create is read from the
top. As the number of repetition, we will choose a number that is smaller by one than
the garden width. That is, we will set the number to 14 — the constant will contain the
digit 1 and the digit 4 under it.

There is also another way of specifying numbers. If the numeric constant does not
contain any digit element, the number in the descriptive text of the numeric constant is
used. There may be any notes behind the number. In our example, we could only type
the text 14 — number of steps as the element’s description. Anyway, the previous
way is more illustrative.

Now you can throw all of the remaining elements outside the cycle into trash (the upper
right window), with the exception of one command for turning left, and the command
that waits for a key to be pressed. You can move elements into trash with your mouse,
but you can do it more quickly with your keyboard. Click to select the icon of the first
element you want to delete, and then press the Delete key, until all of the unnecessary

18

elements are deleted. Be careful not to press the key for too many times, otherwise you
would have to use the Undo button.

After the modifications, the program should look like this:

Notice that thanks to the elements’ descriptions, the program can be read in quite a
natural way: “For number of repetitions 14, repeat commands: lay down a Flower item
in front of Peter, then make a step.”

Run the program. Peter will go towards the right border, laying down flowers on his
way. When he plants them along almost the entire bottom border of the window, he
turns up and waits. He forgot to plant a flower at the beginning of the line (on the left),
but his next attempt will surely be better.

Now we could copy the cycle for three times, as we need four sides. However, being
good programmers, we will use a cycle again. Cycle is, in fact, a normal command, and
so we can nest it inside another cycle.

From the Basic Elements window, we will drag another command repeating with
specified run number element, and insert it in the very beginning of the program.
As a number of repetitions, we will specify the number 4. For numeric constants with
one digit, we can use the digits alone. We will find them by the numeric constant
element. This means that we will drag the 4 digit element into the for number of
repetitions cycle parameter.

Into the repeat commands cycle body, we will drag the cycle for planting one side
of the garden, which we have created before, and under it, a command for turning to
the left. The command for waiting for a key to be pressed will be left in the very end of
the program. A good programmer also adds comments to his work, so that the function
of the program is clear to him or her even after a time; and not only to him or her, but
also to everybody else who ever sees the program.

19

Here is the result of our hard work:

Run the program. Peter will go around his new garden, planting flowers on his way.
This time he plants them all, and does not forget anything. Do you like his garden?

If you increase the number of steps in the inner cycle to e.g. 44, you will see that Peter
plants the flowers around really the whole of the garden now, and that he does not
even mind that in the end of his way, he always hits his head against the wall. If he
cannot perform an operation, he simply does not perform it, and nothing happens.

If you want to do some more experimenting, try to increase the number of repetitions in
the main (outer) cycle. Peter will keep on walking around the border of the window. If
the number of repetitions is too high, you might not want to wait until the end of the
program. In such a case, quit the program by clicking the button (in the upper right
corner of the window), or by pressing Alt+F4.

20

7 The Garden with a Condition

The item in front of Peter element can be used not only for laying an item in front
of Peter, but also for detecting what item lies in front of Peter. We will use such testing
in another method of planting the garden, based on a cycle with a condition.

In the Basic Elements, Trash window, find the conditional repeating of commands
 element in the program control group. Drag it to the beginning of the program

from the last chapter (in front of all commands). Move the commands for making a step
and laying down a flower in front of Peter into the repeat commands cycle body.
Leave the commands for turning left and waiting for a key to be pressed after the cycle.
You can discard the rest of the commands.

The while is valid cycle element tests a condition, which specifies how long should
the commands in the cycle be repeated. Into the condition, we will put a test detecting
whether there is an empty square in front of Peter. To assemble the condition, we will
use the item identity element. It is in the Basic Elements, Trash window, in the
sheet group. Drag this element into the while is valid cycle element. Into the
item identity element, we will insert two elements that will be compared. The first one
is item in front of Peter ; the second is empty square (from the Global
Variables and Functions window). Here is the result:

Try to run the program. Peter plants flowers to the right border of the window, and then
he turns up and waits for a key to be pressed. If the function of the program is not clear
to you, we can take a closer look at it.

How does conditional repeating work? The cycle elements descriptions tell us: “while is
valid (something), repeat commands (something)”. At a closer look, it means the
following: In the beginning, the cycle detects, whether the condition is true. If it is, the
commands in the cycle body are performed. Everything is repeated from the beginning
then. The condition is evaluated again, and if it is true, the commands are performed
again. If the condition is not valid, nothing is performed, the cycle ends, and the
program continues by performing the commands after the cycle.

21

The program could be described in this way: In the beginning, the cycle asks the
testing function that evaluates the condition: “Is the condition true?” The testing function
here is the function for comparing items. It detects: “Is there an empty square in front of
Peter?” If there is, it replies to the cycle: “Yes, the condition is true.” In that case, the
cycle performs the commands in its body — Peter lays a flower and makes a step. This
is repeated until Peter reaches the border of the sheet. The testing function detects that
there is not an empty square in front of Peter now, and tells so to the cycle. The cycle
does not continue. After that, Peter turns left, and the program pauses and waits for a
key to be pressed.

After laying flowers in one row, Peter stays turned left, heading another row. We will
test, whether there is an empty square in front of him, and if there is, we will tell him to
plant another row. When he gets back to his original position, there will not be an empty
square in front of him, but a flower that he has planted, and so he will stop.

This means that now we will take another conditional repeating of commands
cycle. We will put it to the beginning of the program, and into its body, we will move
(using the left mouse button) the previously created cycle and the command for turning
left. The command for waiting for a key to be pressed stays at the end of the program.
Into the outer cycle condition, copy (using the right mouse button) the condition testing
an empty square in front of Peter (you do this by dragging the item identity
element). Here is the result:

The program is ready; all that remains is to test it.

22

8 Peter Walks on Marks

In another program, we will learn how to use conditional performing of commands. We
will let Peter walk around the sheet, onto which we will put various marks. According to
the marks, Peter will choose his direction.

First, we will create a new program. As you sure remember from chapter 4, a new
program is created by clicking the New button in the program window. The new
program will be called Marks.

In the program, we will need two items that will be used as marks. In the Global
Variables and Functions window, copy (with the right mouse button) the empty
square element into two new elements. Name them Left and Right. To remind you:
You can assign a name by, for example, selecting the element by clicking its icon, and
pressing Alt+Enter to edit the name.

Put the new items into editing mode by double-clicking their icons. Into the Left
element, draw an arrow turned to the left; into the Right element, draw an arrow turned
to the right, e.g. like this: and .

We will prepare the sheet. Double-click the sheet element. In the editing window,
the program sheet appears. We will create a path for Peter. Put the Left and Right
elements on the sheet in such a way that Peter can follow them in a closed track.
Remember that Peter starts from the bottom left corner to the right. To put the items on
the sheet, drag both of them from the Global Variables and Functions window to a
place on the sheet first, and drop them there. Then you can move the items with the left
mouse button, or copy them with the right mouse button. An item that is not necessary
can be deleted by moving it out of the sheet. The sheet may look like this (Peter’s path
is indicated by the dashed line with arrows):

23

When the program sheet is prepared, we can start to assemble our program. This time
we will begin with the main cycle. Peter has to keep moving along the marks, which
means that the program will be based on a never-ending cycle. For this reason, we will
prepare the conditional repeating of commands element. Actually, the cycle will
not be never-ending; it will be possible to end it by pressing the Esc key. However, we
will learn a few facts about the keyboard first.

When a key on the keyboard is pressed, it sends its numeric code to the computer,
which is something like a serial number of the key on the keyboard. The computer
converts this code into a character, which can be passed to a program, e.g. as a letter
or a number. In our program, not only the characters, but also the numeric codes of the
keys are available. The function for character input is used for typing texts from the
keyboard, as we know it from common writing of texts (e.g. holding Shift generates
capitals). The function for key input serves for controlling programs and games (even
control keys, like Ctrl, generate key codes, although they do not generate characters).

When a key is pressed, its character or code is stored in a stack. The reason is that
when the key is pressed, the program might not be ready to accept it. When the
program is ready, it accepts the key from the stack. The key is deleted from the stack
then. When you use keyboard input functions, you have to remember that when you
load the character or the code from the keyboard, it is discarded, and the next loading
returns something else.

Characters and keys have separate stacks, which are independent of each other. They
are as separate data flows. One channel is used for characters, the other for key
codes.

Now we can prepare the condition for quitting the main program cycle with the Esc key.
We will use a function for the input of the key code from the keyboard. We know that it
returns a numeric code, and so we will need a function for comparing numbers. Such
functions are located in the calculations group under comparisons . We will
use the is not equal to function. Drag it into the while is valid cycle condition.

The first element to be compared is key input (does not wait for press) . We will
drag it to the comparative function from the controls group, keyboard sub-
group. We have already used a similar element (waiting for a key to be pressed) in the
previous chapters. The difference between these two elements is that this element
does not wait for a key to be pressed. If no key code is ready, it returns the code of a
situation where no key is pressed (it is the number 0, but we do not have to know the
value, as we have a no key pressed symbolic code).

The second element to compare is the Esc key. It is into the same group as the key
input function, but it is nested deeper, under keys and control keys . This
element is a numeric constant with the value of the Esc key code, which means that we
do not have to know the code. Put this element under the key input function element in
the comparative function.

24

What does the cycle do now? Read the notes besides the elements: “While it is valid
that key input is not equal to Esc key, repeat commands (something).” This sounds
rather complicated, but the meaning is clear, perhaps. The cycle will be repeated, until
the Esc key is pressed on the keyboard.

Let us fill in the repeat commands cycle body. During his walk, Peter will decide
his direction accordingly to the square in front of him. The decision will be made using a
new element, conditional executing of commands . It is in the program control

 group. Drag it into the repeat commands cycle body.

When you insert the element for conditional execution of commands, you may notice
that it contains another three elements. The first one is if valid . It is a test of a
condition. We already used a similar element in the conditional cycle. The element
tests a condition, and if it is true, the commands in the then do elements will be
executed. If the condition is not true, the commands in the else do element will be
performed.

In the condition’s test, we will detect if there is an item for turning left in front of Peter.
We know a similar test from the previous chapter, and so it is clear that we will use the
following elements: item identity , item in front of Peter and Left .

Into the first branch (then do), we will put two commands, step and left . The
conditional command construction has this meaning now: “If there is an item for turning
to the left in front of Peter, Peter will make a step and turn left, in other cases, he will do
something else.”

Now we will create that “something else”. Using the right button, copy the whole
construction of the conditional command to a lower place. Drag the newly created
conditional command with the left mouse button, and drop it in the second branch of
the first conditional command (the else do branch). This is a quick way to prepare
the part of the program for the second case, turning to the right.

In the new conditional command, replace Left with Right . In a similar way,
replace left with right . Now you probably know what Peter will do if there is not
an item for turning left in front of him. He will detect, whether there is an item telling him
to turn right. If there is, he will make a step and turn to the right. If not... What should he
in fact do otherwise? We do not want anything more; it is enough if he makes a step

. Copy the element for a step with the right mouse button from the second branch of
the condition.

Did it look complicated? Don’t worry — the program is ready (its picture follows). Run
the program. If everything is all right, Peter will run along the marks and turn to the left
or right on them. Do you want to make Peter go faster? Double-click the Peter
element to edit Peter’s sprite. Click the Properties button. A window for setting the
sprite properties appears. Into the Phases per Step field, type 4, and then press Enter.
Run the program again. Peter will run like crazy now, but he will not gasp for his breath.

25

Try to prepare a more complicated track for Peter. Here is one example:

26

9 Peter in a Maze

Peter has wandered into a large maze. He cannot find his way out, and we have to help
him.

We will start by creating a new program. In the program window, click the New
button. Type Way as the program name.

In the Global Variables and Functions window, we will prepare two items for the
maze — a wall and a door. We could draw them, but we may use the items that are
already prepared in the item library. The library is in the bottom right window called
Library of Variables and Functions. There are data elements like number, item, or
picture in it. Expand the item element, and in the [examples] groups, Cottage
subgroup, find the elements labeled Door and Wall . Drag them into the Global
Variables and Functions window. This is a quick and easy way to create new items,
which have already been named and drawn.

Now we will create the maze sheet. Double-click the sheet element. We will make
the sheet smaller, so that the maze does not have to be too big. Click the Dimensions

 button. A window for specifying sheet dimensions appears. Type 12 as the width
and 10 as the height.

Use the Door and Wall elements to create the following maze:

27

The program will be based on a conditional repeating of commands . We want
Peter to repeat his steps around the maze until he finds the door. In the cycle condition,
we will use the item on Peter's position element. It is similar to the item in front
of Peter element, but it applies to the square, on which Peter is standing. It can be
found in the Peter - extension group.

The cycle condition could be expressed like this: “If it is not true that the item on Peter’s
position is the door, repeat…” The word not tells us that we need the opposite of the
item identity test. For this, we have an element called is not valid that . The
element is called logical negation, and its function is to invert the result of the
comparison from true to false, and from false to true. It is located in the calculations

 group, logic operations subgroup.

First, we will place the is not valid that element into the while is valid cycle
condition. We will attach the item identity element, and insert the item on Peter's
position and Door elements into it.

In the cycle body, we will ensure that when walking around the maze, Peter will stick to
the border on his right. In the beginning of the cycle, we will tell Peter to turn right by
using the right command. The following command will be a conditional repeating
of commands cycle. This will tell Peter to turn to the left, until he will find a square
onto which he can go. For this, we will use the left command.

In the second (inner) cycle, we will test if there is a blocked square in front of Peter, i.e.
if he should turn further to the left. The first blocked square is the Wall . Peter also
cannot go through the border of the sheet. This can be tested by a special element
called sheet border (located in the sheet group). It is special by the fact that it
is not a data variable, but a constant, and so you cannot edit it. Its value can be kept in
variables and tested, but it cannot be viewed by putting it on the sheet.

We have two tests of items in front of Peter, and we need to express this: “As long as
there is a wall or a sheet border in front of Peter, repeat left.” The word or is a logical
element again — or , and it is called logical sum. It is located in the calculations

 group, logic operations subgroup. We will insert the or element into the cycle
condition and add two comparisons of items in front of Peter, with the wall and the
border.

Peter is facing an empty square now, so we have to add one last element into the main
cycle — step . This tells Peter to go to the empty square.

Finally, we will tell Peter that when he finds the door, he should turn towards us and
wait until we press a key. Behind the main cycle, add the left and key input (waits
to be pressed) elements. The resulting program is shown on the following page.

28

Run the program. Peter walks around the maze, until he finds the exit. It is just behind
the corner on the left side, but he does not know it and tries to find the exit from the
right, so it takes some time.

Let us replace the left and right elements. This changes Peter’s search method,
so that he will stick to the wall on his left. In our maze, he finds the exit much sooner.

29

10Keyboard Control

Let us stay with the Way program from the last chapter. We will edit it, so that we can
control Peter in the maze with our keyboard. We will try several methods of control, and
we will keep all of them in the program for the sake of comparisons. We will also keep
the method, in which Peter searches for his way himself.

From the program control group, drag the group element into the main
program cycle. Move all of the elements that are in the main cycle now (the element for
turning right, the cycle for finding a free square, and the step command) into this group.
Collapse the group and add a note to it saying Peter Walks Himself. This hides the
automatic search method, so that it will not be mixed with other methods that we will
create. Try to run the program for testing purposes. It should run just as before the
modification.

Click the new group icon to select it. On the toolbar, click the Turn Off button. The
group and all of the elements in it become gray. This function enables you to turn off
parts of a program when you don’t need them. When you run the program, you see that
Peter stands in the bottom left corner and nothing happens. The program behaves as if
the group and its commands were not in it at all.

We will assemble a new part of our program inside the main program cycle, right after
the previous group. We will use a new element — multibranch control structure
(sometimes also called “rake” among programmers). It is in the program control
group. Drag it into the main cycle under the Peter Walks Himself group.

The multibranch element branches programs into several parts, depending on a
variable or expression value. Usually, branching is based on numeric values. Later we
will also use it for other types of data, such as texts.

This element contains another four elements. The first element, for value of
expression , contains a variable or an expression, which is the basis for branching.
We will put the key input (waits to be pressed) element here. It will pass a
numeric code of the key pressed to the branching structure.

Two connected elements follow — execute commands in case of and
expression is equal to . This is one branch of the construction. Into expression is
equal to, you place a value, for which the commands in the branch will be executed.
There can be any number of branches, as well as any number of values tested in a
branch. Copy the whole of the execute commands in case of branch for three
more times.

Now we have four branches of the construction. Into the tested value in the first
branch, put the Up key code from the controls , keyboard , keys , control
keys group. This branch will be executed when you press the up arrow key. Insert a
step as the branch command . We will ensure that Peter does not walk through a

30

wall. It is not necessary to check the sheet border; Peter cannot run away from the
sheet. Instead of a simple step, we will use a conditional command. In the test, we will
compare items to see whether there is a wall in front of Peter. If there is, nothing will
happen. If there isn’t, Peter will make a step.

Into the following three branches, insert the Left , Right , and Down keys as
the tested values, and left , right , and turn about as the commands.

The last element in the branching construction is else execute commands . As its
name suggests, the commands here will be executed, if the tested value is not found in
any branch. In our case, this element will be empty.

Run the program. Peter stands in the bottom left corner. If you try the cursor keys
(arrows), you will see that Peter turns to the left, right, and back, and that he makes a

31

step forward. You can lead Peter around the maze. When you get to the door, Peter
turns to you, and the program ends after the next key is pressed.

This method of control is typical for cars. It is used when we need to turn an object
exactly to a direction we want, and when the speed of movement around the sheet is
not that important.

If you need to move quickly and easily, you can use the following method of control. It
does not control the turns of the character, but walking in the direction of the arrow.

Using the right mouse button, copy the previous branching construction once more to
the bottom. Disable the original construction by using the Turn Off button. Label the
new construction Controlling Peter by Directions. Delete the commands for turning to
the right, left, and back from the branches.

We will edit the first branch of the construction (for the up arrow) to make Peter turn up
and make a step. The step is already prepared. Inside it, there is a test of a wall in front
of Peter. The direction into which Peter turns can be set by the direction element. It
is located in Peter’s extensions. As a parameter, add the up (1/2 pi, that is 90
degrees) element from the calculations group, angle, direction subgroup.

Create the direction setting commands in the remaining branches as well, changing the
directions accordingly to the arrows. The command for the cautious step might be
copied from the first branch, but we will use a function instead.

What is a function? Function is an element that contains a part of a program. Instead of
several occurrences of the same part of a program, we will use a function to perform
the part of the program several times. The program will be easier to read and modify.

To create a new function, drag the function element from the Library of Variables
and Functions window into the Global Variables and Functions window. Label the
function Cautious Step Forward. When you double-click the function icon, an empty
editing window appears, as the function does not contain any command yet.

We could create the step command in the function, but there is an easier way, as it is
already prepared in the program. Switch back to the main program function (using the
Previous Edit button), and find the conditional command with the wall test and the
step forward (it is in the branch for the up arrow). Click the conditional command to
highlight it. Click the Copy button (or press Ctrl+C on the keyboard). The
highlighted part will be saved in the clipboard for data transfer.

Return to the Cautious Step Forward function (by clicking the Next Edit button).
Click the Paste button (or press Ctrl+V). The transferred part of the program
appears in the window.

32

Now we can delete the conditional command from the branch for the up arrow, and
replace it with the function for the careful step. We will also add it into the remaining
branches behind the direction setting commands.

You can run and test the command. You will see Peter walking in the direction of the
arrow pressed.

33

We will try one more method of control, which can be used for more complicated and
complex games. You may have noticed that if you hold a key for a while in the previous
method, Peter walks on even after you release the key. This is because the codes of
the keys pressed are generated more quickly than Peter walks, and so they are kept in
the key stack. This can be solved by the flush out of key buffer command, which
clears the keys out of the stack. We will use it in the beginning of the actions for every
valid keyboard character, before Peter’s steps.

Another thing that can be problematic in the previous two methods of control takes
effect if you control quick actions or need to control graphics sharply. In the Peter
sprite’s settings, try to change the Phases per Step value to 1 (after the test, return it
back to 8). Peter will jump the squares quickly. If you hold the key on a longer free
path, Peter jumps one square, waits a little while, and then jumps to other squares
quickly. This is caused by the way that the keyboard generates codes — there is a
pause after the first code, and then there are quick repetitions. This is useful when you
write text, but may be a bit of a trouble when playing games.

Our request is that Peter should move when we hold a key, without the initial pause,
and without the inertia after the key is released. This can be done by using the there is
pressed key function from the keyboard group. The function tests if the
appropriate key is pressed, and returns a yes/no flag.

First, click the Turn Off button to turn off the previous method again. Under the
method, prepare a conditional executing of commands element; you can call it
Controlling Peter by Holding Keys. Into the if valid condition test, insert the there
is pressed key element, and attach the Up key as its parameter. Into the then
do branch, insert the commands for making a step upwards, as in the previous
control method. The construction now reads: “If the Up key is pressed, then turn up and
make a cautious step, else test other keys.”

In the else do branch, create the same construction, this time for going to the left.
In its invalidity branch, create a construction for going to the right, and finally, create a
similar construction for going down. Into the invalidity branch of the going down
construction, insert the wait (default = 0.05 s) command, which can be found in the
program control group. The small equals sign in front of the icon indicates
that there is an optional parameter of this command, which means that it is not
necessary to add one.

Why a wait command? Windows is a multitasking operating system, which means that
several programs can run at once. Each program should ensure that it does not
consume an unnecessary amount of the computer’s performance. A good programmer
can be distinguished by a considerate behavior of his or her programs in their
environment. Advanced users can run the System Monitor program and monitor the
load on the processor. An inconsiderate program consumes almost all of the
computer’s performance, and causes the computer to be hard to control.

34

The picture shows the complete method of controlling Peter. The constructions for
steps are collapsed, as we already know them from the previous method.

A disadvantage of such a long chain of conditions is that it can be hard to orientate in.
We will try another possibility of building a similar construction.

Click Turn Off to disable the last method. Copy the Controlling Peter by
Directions method and rename it to Controlling by Holding Keys 2. The conditional
construction worked in such way that just one of the branches was executed,
depending on the key pressed. Delete the keyboard input function from the for value
of expression element, and replace it with the yes element (from calculations

, logic operations).

In the tested values of the individual branches, replace key codes with combinations of
a key code and the there is pressed key element. Do the following: Click the key
code icon to select the key code element. Click the Cut button (or press Ctrl+X) to

35

move the key code element into the clipboard. Insert the there is pressed key
element instead of the key code element. Click the Paste button (or press Ctrl+V) to
attach the key code element to the pressed key test. Finally, insert the wait (default =
0.05 s) element into the else execute commands branch, so that the program
does not overload the computer in moments of inactivity.

The resulting construction is on the following picture. How does it work? In the
beginning, the program detects that there will be a test of a logical value of validity in its
branches. It goes through the individual branches and searches for a matching value,
that is, for a valid condition. It performs the commands in the branch it finds, and
continues behind the end of multibranch structure (not paying attention to other
conditions that might be valid, nor to other branches). In another words, the first (and
only) branch with a valid condition (a key pressed) is performed, else the very last
command is performed — wait.

36

11 Plenty of Monsters

We will try to make a little game. You would not believe what has happened. Peter has
found monsters in the maze. However, do not worry, we will arm him, and he will
handle them. We will continue with the Way program from the previous chapter, in
which the last method of control is turned on — Controlling by Holding Keys 2. The
other possibility is to open the Monsters program, which is prepared as a sample
program.

First, we will prepare the monster. In the Global Variables and Functions window,
make a copy of the empty square element. Rename it to Monster and draw a
monster into it, e.g. like this:

Monsters will be generated randomly. Add the conditional executing of commands
 element into the main program loop. Into the if valid condition test, insert the is

less than comparative function (from the calculations group, comparisons
subgroup). The first parameter for comparison will be the random number (0 <= x < 1)

 function (from the calculations group, functions subgroup). The second
parameter will be a numeric constant set to 0.2 (either as the element text or using
the digits and decimal point elements). In a while, we will add the monster creation
construction.

What will the random function do? The elements texts tell us: “If it is valid that a
random number is less than 0.2, create a monster.” The random number is a decimal
number with a random value between zero and one. 0.2 is one fifth of one. The random
number is less than 0.2 in every fifth case. This means that the monster will be
generated in one fifth of cases.

To create the monster, we will use Peter’s friend — Lucy. First, we will specify a
random place where the monster will be created. Into the condition validity branch, drag
the horizontal position and vertical position elements (from the Lucy
group, Lucy - extension subgroup). Add the integer part function to both
elements (from the calculations group, functions subgroup), as the squares’
coordinates are integers. Add the random number (0 <= x < 1) function to the
integer elements. The random number can have a parameter specifying its range. For
example, if you add 10, the random number is generated in the range from 0 to 10. We
will add the width of sheet element to the random number for the horizontal
position, and the height of sheet element for the vertical position (both elements
are from the sheet group).

37

Let us take a closer look at the calculation of the horizontal random position. The
referential element in the horizontal direction is the width of sheet . This element
returns a number indicating the width of the sheet as a number of steps (squares). In
our case, it will be 12, which is the width of sheet that we had set before. This number
is passed to the random number (0 <= x < 1) function, which generates a number
in the range from zero to the width of sheet (without the border value), that is, a number
between 0 and 11.99999999. The random number is passed to the integer part
function, which truncates the part of the number behind the decimal point and returns
only its integer. This creates a number between 0 and 11, which are the coordinates of
the first and last square in the horizontal direction. You may have noticed that the
squares are numbered from the bottom left square, starting with zero.

Now we have Lucy on a random position on the sheet. We could lay the monster item
onto the sheet now, but first we have to verify that the square is not occupied, e.g. by a
wall. If the square is not free, nothing will be performed and no monster will be created.
Here is the result; try to run the program:

38

Now we will improve the routines for controlling Peter’s steps. In the Global Variables
and Functions window, use the right mouse button to copy the Cautious Step
Forward function. A new function called Cautious Step Forward 2 is created.
Rename it to Cautious Step in the Specified Direction.

Double-click the new function to edit it, and look at the bottom left window. It is called
Local Variables and Functions. We don’t have to worry about the function of this
window; we will only use the input variables element. From the Library of
Variables and Functions window, drag a new numeric variable number into this
element, and call the variable requested direction.

Switch back into the main program function. In the Controlling by Holding Keys 2
construction, find the first branch (for the Up arrow). Insert the new function called
Cautious Step in the Specified Direction here. When you drop the function, you can
see that the numeric variable called requested direction is connected to it. It is the
one that we have just created. It will pass the requested direction of the step to the
function. From the direction setting command, drag the up element to the function
parameter. You can discard the remaining commands from the branch (the direction
setting and the Cautious Step Forward function). Adjust the branches for the
remaining directions in a similar way. This will be the construction for the step upwards:

Now we will prepare the contents of the Cautious Step in the Specified Direction
function. Switch into it. First, for testing purposes, try to add the command for setting
Peter’s direction, and add the requested direction variable as the parameter. This
restores the original functionality of the program, and we can verify that we did not
make any mistake. Run the program and test it, it should work as before. If everything
is all right, you can delete the direction setting command.

If we used the original control method for shooting, it would be unpleasant that we
would not be able to turn to the target without making a step towards it. For this reason,
we will improve the control. If Peter is not turned in the requested direction, he will turn
first, and only after that, he will go. By pressing the key once, we will turn Peter around,
and by holding the key, we will tell him to go. Edit the function accordingly to the
following picture.

39

The function begins by comparing Peter’s actual direction with the requested direction,
which is passed as the function parameter. This way, we will check if Peter is already
turned to the requested direction.

If Peter is turned in the appropriate direction, he can make a step forward. However, he
will do so cautiously. First, he tests if there is a wall in front of him. If there is not, he
can make a step. If there is, he will stay on his place, and the wait command will be
executed. The main program loop has to last for at least one wait interval, so that new
monsters can be generated evenly. One wait interval is performed in the main loop, if
no key for movement is pressed. The waiting when a key is pressed is handled in the
movement function. The program does not wait after the step command, the step
ensures the waiting internally.

If Peter is not turned to the requested direction, he turns, and the program waits for a
while. The waiting ensures that Peter does not start to go when a key is pressed
shortly.

Run the program and test its control. Pay special attention to testing Peter’s turning on
his place and changing directions during walking.

Now we will handle the shooting at the monsters. Once again, we will use Peter’s friend
Lucy. Lucy will be the shot. She will surely not mind and will be glad to do this for Peter.

40

Double-click the Lucy sprite in the Global Variables and Functions window to edit
it (note — sprite is a moving animated object). You will see a sheet with 4 x 5 pictures
of Lucy. Click the Properties button. A window for setting the sprite properties
appears. Change the Phases per Step (0 = Immediately) setting from 8 to 2 (the shot
will fly quickly), and change the Moving Phases settings from 4 to 0 (the shot does not
have to change its appearance during the flight). Press Enter (or click OK). The
pictures of the sprite have changed, so that Lucy is only in one column now.

Drag the first picture of Lucy with the left mouse button, and drop it outside the pictures
sheet. The picture disappears; we have deleted it from the sprite. Double-click the freed
empty square. The sprite picture editor appears. Draw a picture of the shot — for
example, a small gray ball (use the sphere tool and white color):

Keep the original violet color as the background. It is a transparent color, through which
the original contents of the square around the shot can be seen. In the color picker of
the editor, it is the color in the upper left corner.

Click Previous Edit to switch back to editing the Lucy sprite. Drag the first modified
picture with the right mouse button to copy it into the remaining sprite squares. Later
you can move the pictures, so that the shots will fly exactly from the barrel of the gun.

Test the modified sprite now. Click the Test button. A window with a green sheet
appears, with the sprite of the shot in the middle. Click somewhere into the sheet, and
the shot moves to the specified location. You can quit the test by clicking Cancel.

The shot is prepared, and now we have to handle its control. Return to the main
program function. Into the main loop, right behind the construction for generating
monsters, insert a new conditional executing of commands element, and call it
shot from the gun. As shooting will be activated by the spacebar, insert the there is
pressed key function with the spacebar element (from the keys group,
character keys subgroup) into the if valid condition test.

The whole construction that handles shooting is on the following picture. We set the
shot (Lucy) in the starting position, then the shot flies, and when it reaches a target, we
turn it off.

41

In the beginning of the shot’s flight, we set its position and direction accordingly to
those of Peter, and then we make it visible. We know the position and direction
elements, but what is a visibility element? All sprites (moving objects, including Peter
and Lucy) have two basic states — visible and invisible. When in the visible state, the
sprite is animated, and moves slowly. If it is invisible, it moves to a new position
immediately. Peter becomes a “Super Peter”, as quick as lightning.

Lucy’s visibility will be set by the visible command. As the sprite visibility
parameter, we usually use a logical constant yes or no ; this way, we switch
between the “Slowcoach” and “Superman” modes. The activation of the shot is on the
following picture. For the sake of readability, it is in a separate group.

Now we will handle the movement of the shot. Behind the group for preparation of the
starting position of the shot, add a command repeating with specified run number

 cycle and label it shot flight. As a number of repetitions, type 4. This is the
maximum distance that the shot can fly.

The flight will be interrupted, if the shot hits a wall. For this reason, in the beginning of
the cycle body, add a condition testing if there is a Wall item in front of Lucy. If there is,
the execution of the cycle will be interrupted by the break executing command
(from the program control group). After we check for the wall, we can add the step

 element for the shot’s movement.

42

When the shot moves one step, we will test if it has hit the target. We will use a
conditional command that will test, whether the item on Lucy’s position is a Monster. If
it is, the monster will be deleted by laying down an empty square item, and the cycle
of the shot’s flight will be interrupted. Some time in the future, you can add other
elements here, such as a hit counter or a monster’s moan.

The whole construction for the shot’s flight is on the following picture. Add an element
for turning off the visibility of Lucy behind it, and you can test the program.

If you want to make further improvements, you can equip Peter with a gun. You can
also add a sound of the shot by using the play sound element. From the bank of
sounds, drag e.g. [examples]\Weapon\Rifle and Pistol\Pistol sound into the Global
Variables and Functions window, and use it in the play sound feature. You can also
add a moan of the hit monster — e.g. the [examples]\Human\Shouts\Au 2 sound.

43

12Feeding the Snake

Our next program will be a game called Snake. You have probably already seen such
a game before. A snake moves around the sheet, eating food, and it gets one piece
longer with each gulp. We will improve the game. The snake will eat various kinds of
food, and its pieces will vary accordingly to what it has eaten.

Create a new program called Snake (or Snake 2, if a program with this name already
exists). An empty program opens. In a while, we will fill the program window with a fine
new game. If you want, you can open the Snake program, which is prepared among
Peter’s sample programs.

We will prepare the sheet by enclosing it with a wall. From the item library, drag the
Wall item (from the [examples]\Cottage group) into the Global Variables and
Functions window. Double-click the sheet element to invoke the main sheet editor.
Put the Wall item into the upper left corner.

We will look at a new sheet property. Each square contains, apart from an item picture,
five logical flags and three numeric values. A logical value can keep a yes/no state,
which can be tested. In our program, we will use the first flag to signalize that there is a
wall on the square. We won’t have to evaluate the item on the square, we will just ask
the flag: “Is there a wall on the square?” We can even use several variants of walls.

The sheet editor toolbar contains (on the right side) a drop-down box for types of
editing. Select the Flag 1 function here. The appearance of the sheet changes; a
little dark red square appears in the upper left corner of each square. The little
square is a state indicator for the first flag in the square. Now it is off (its state is “no”).
Click the Editing button on the toolbar. This activates the square contents editing
mode. Click the square in the upper left corner with the Wall item. The little square
changes to light red color and a check mark appears. Flag 1 on the square is now
on (its state is “yes”). Turn off the editing mode by clicking the Editing button again.

Now we want to raise a wall around the whole sheet. There is an easier way to do it
than repeated copying with the right mouse button. Click the Filling button on the
toolbar. Press and hold the left mouse button on the wall item in the upper right corner
of the sheet, and drag the mouse to the upper right corner of the sheet. Release the
mouse button there. The part of sheet that you have selected by this will be filled with
the starting item. Fill the remaining borders in a similar way. When you finish, click the
Filling button again to turn it off. You can also add walls inside the sheet, e.g. like
this:

44

Prepare food for the snake. Create five new items and draw different kinds of food into
them. For example:

We will create the pieces of the snake. You can copy the food items and modify them
like this:

In a similar way, create three items with pictures of poisons, and one piece of the snake
with a picture of a skull:

Our last graphical task is to create the snake’s head. We will use Peter for this. Double-
click the Peter element in the Global Variables and Functions window to edit it.
Click the Properties button to open the window with sprite properties. Change the
Delay Between Phases value from 55 to 165 (time between animation phases),
change Phases per Step (0 = immediately) from 8 to 0 (the sprite moves
immediately), and change Standstill Phases from 1 to 2 and Moving Phases from 4
to 0. Close the window by pressing Enter. The Peter sprite has four directions and two
standstill phases now.

Discard the first picture of Peter on the upper left. Double-click the picture to edit it, and
then draw a snakehead looking to the right. Click the Previous Edit button to return
into the sprite editor. Using the right mouse button, copy the first picture into the second
picture in the same row. Edit the head, so that the mouth is open. Copy both pictures
into the remaining rows for other directions. Turn the heads on the pictures accordingly
to the directions in the sprite rows. You can do this by using the Edit function.
Finally, test the sprite by clicking the Test button.

We have several food items in our program, and we might want to add more of them in
the future. With our present knowledge, we would have to handle each type of an item
separately, which would not be very elegant. For this reason, we will learn how to use a
new element — a list.

45

At first, we will prepare the list, although we don’t know its function yet. From the
program control group, drag the list element into the Global Variables and
Functions window. Call it food list. When you expand it, you will see three elements.
Rename the first one, number , to 5 — number of foods. The second element,
index , should be renamed to food index. The third one, index increment , will
be called food index increment. Add two new items in the list, and call them food and
food — snake.

Now we will explain what is a list. A list is something like a book. All pages in the book
look similar, for example each page contains one picture and one text, but all of the
pictures or texts are different from the rest. Our list will contain the items of food types
and snake pieces, and it will make the items easier to use. Each page in the list will
contain a different picture of food and a different picture of a snake piece. The first item
in the list identifies the number of pages. In our case, there are five types of food.
The second item is a number of the current page in the list — a list pointer (the
numbering starts with page 0). The third item specifies the number of pages that the
pointer automatically moves with each access to the data in the list.

We have to fill in the food list during the start of the program. It means that we have to
specify, what item will be on which page. The commands for filling in the list are shown
on the following page. Put them into the beginning of the main program function.

Before we start to fill in the food list, we will specify the initial page, from which we will
start filling in the list. We will set the food index element to 0. We will use automatic
increasing of page number, and so we will set the food index increment to 1.

First, we will fill in the food item on all pages of the list. Gradually fill the food elements
with individual food type items. The items are stored in the list, and after each item is
set, the page number automatically increases by one. After the last item is set, the
page pointer automatically moves to the beginning. We will start to fill in the food —
snake elements. The page number increases automatically again. When we finish, we
set the automatic increasing of page numbers to 0, as we won’t use automatic
increasing in the program anymore.

46

If the player fails, that is if the snake hits the wall or eats poison, the game begins
anew. For this, we will need to redraw the starting sheet of the program, without food
and poison. We could clean it programmatically, but there is an easier way. We will
save the main sheet into a variable of the sheet type, and simply restore the sheet in a
new game by using this variable.

Create a new sheet variable (copy the sheet element from the Library of Variables
and Functions window to the Global Variables and Functions window), and call it
saved sheet of the game. Put a command for saving the main sheet to the beginning
of the program:

47

The score will be displayed during the game. Create a numeric variable called
maximum score, and set it to zero.

Create a new function called new game. The function will run at start, and so we will
add it to the beginning of the program after the group for filling in the food list. It will be
assembled accordingly to the following picture.

Create a logical variable called snake movement flag, a numeric variable called
snake length, a numeric variable called next step counter and a function called
display the number of snake pieces. The snake movement flag logical variable will
be used to indicate the beginning of the snake’s movement (when the game is started,
the snake stays in its place, waiting for a key to be pressed). Set the variable in the
new game function to “off”. The snake length variable indicates the number of snake
pieces, and it increases during the game. In the beginning of a new game, it will be set
to 0. The next step counter counts 0.1-second time impulses, before the snake is
moved one square (it decreases from 5 to 0). In the beginning of a new game, the
counter will be set to 1, so that the first step is performed immediately after the first key
is pressed.

The following command in the new game recalls the saved sheet. Use the same
command as when saving the sheet, but reverse the order of the elements. The
following commands set the snake’s initial position. Turn off visibility for Peter, set his
coordinates to X=9 and Y=8, turn him to the right, and make him visible again. In the
end of the new game function, put the display the number of snake pieces function.

48

Now we will pay attention to the function that displays the number of snake pieces.
Many games need to tell something to the player, e.g. the score. If we don’t want to pay
too much attention to displaying information, we can quickly and simply write them into
the window title. We will inform the player about the length of the snake, and optionally
also about the highest score. While displaying the number of pieces, we will stick to
grammatical rules, and so we will distinguish between 1 piece and 2...3...4... pieces.
Here are the contents of the function:

The snake length of 0 will be set in the beginning of each game. In this moment, we
can display information about the author of the program, or later, about the maximum
score.

The picture contains a new element — window caption (from the controls
group, dialogs subgroup). The element is a text variable (it can be set or read)
representing the text in the window title bar. The merge of texts element serves for
connecting more texts into one. The connection is made from the top to the bottom.
Normal text can be specified by typing it besides the text constant element. The

49

conversion of number to text form element converts numbers to their textual
representations.

The branches for other lengths of the snake are assembled in a similar way. Note that
we can use one branch of the construction for more values of length.

A note on the window title usage: When a program starts, the name of its main function
appears in its window title. If you don’t need to change the window title during the
program run-time, it is enough if you edit the main function name. The main function
name in new programs is preset to the program name.

Now we will pay attention to the main program loop. Put the conditional repeating of
commands element to the end of the main function. Into the condition test, put the
yes element. This will create a never-ending cycle. The program closing will be
handled inside the procedure for keys as a reaction to the Esc key. In the beginning of
the main loop, we will create the procedure for keys, then we will handle the snake’s
movement, and finally we will handle the creation of new items (food and poison). The
last command in the loop will be a waiting procedure, which will take care of the
program timing. You can insert the wait command into the loop now, and gradually, we
will put in the remaining procedures.

50

We will start with the creation of new items. In front of the waiting, insert the
conditional executing of commands element, and call it creation of items. Its
contents are on the following picture.

New things will be generated randomly, with a certain probability. For this reason, we
will put a comparison of a random number with a constant into the condition test. By
setting the constant to 0.03, we will ensure that a new item will be created during 3 out
of 100 passes through the main loop. The probability of a creation of a new item is 3%.

We will create items on the sheet by using Lucy again. First, we will put her onto a
random square on the sheet. We will use the width of sheet element for her
horizontal position. This element will pass the value of 20, which is the width of the
program sheet. It is possible to specify the number directly, but it is better to work with
general numbers. This will save us from troubles if we change something in the
program in the future. We will pass the width of sheet to the random number
function, which will create a random number between 0 and 19.999999999. The
following function, integer part , will delete the decimal part of the number. This will
create a random integer between 0 and 19. These numbers represent the horizontal
coordinates of the first and last square on the sheet. You surely remember that the
squares are numbered from the bottom left corner to the top and right, starting with
zero. Similarly, we will create a random vertical position.

51

After we set a random position, we will use a conditional command, which will test if the
square is empty. If it is, the program will use another conditional command to decide
between creating food or poison. We will compare a random number with the value of
0.1, which will ensure that poison will be created in 1 of 10 cases. In other cases, food
will be created. All of this is on the following picture:

The following picture shows how a new poison item will be created. We will create
different types of poison with different probability. Most often, we want the toadstool,
and we want the box of poison in least cases. We will use a multibranch control
structure . The branching expression will be a random integer between 0 and 5,
created by using the integer part and random number elements, and the
number 6 .

The first branch will create a skull in 2 out of 6 cases (for the values of 0 and 1), which
means that there is a 33% chance that a skull will be created. The second branch will
give a smaller chance to the creation of the poison box — 1 of 6 cases (for the value of
2), so the chance is 17%. In the remaining 3 cases out of 6, a toadstool will be created
(for the values of 3, 4 and 5), which means the probability is 50% here.

The creation of the poison will be finished by turning Flag 2 on. As you remember,
we had used Flag 1 to indicate that there is a wall on the square. Flag 2 will be
used to indicate that there is a poison on the square. This will make our work easier
later, as we won’t have to test all of the types of poison used in the program.

52

Food will be created by a different method. As you can see on the next picture, it is
quite simple, because we can use the list of food types.

In the beginning, we will choose a random page in the list, and we will take the food
item from it. We will set the food index to a random value between 0 and 4. These are
the indices of the first and last page. Instead of specifying the range of random values
directly, we will use an element representing the number of pages in the list: . This
will enable us to add food types in the future without having to change the method for
their creation. We will keep the number of the food in the numeric value 1 (range 0 to
1023) element for later use. The following command will lay the food item on the
position of Lucy . The last command will turn Flag 3 on. Flag 3 will indicate that
there is a food on the square.

53

That is all for the creation of new items — you can test it now (be sure not to omit the
waiting in the end of the main loop). A snakehead opening its mouth should appear in
the middle of the sheet, and new items should be appearing around it. You can close
the program by clicking the button on the right side of the window title bar.

We will continue by handling the snake control. In the beginning of the main loop (in
front of the procedures for creating items), put a multibranch control structure
element and rename it to snake control. The method is on the following picture.

54

This means that as the branching value, we will use the key input (does not wait for
press) function. The Left key will turn Peter (i.e. the snakehead) to the left and turn
on the snake movement flag. The other directions will be similar. In the end, we will
handle the Esc key — it will use the function termination command (from the
program control group) to quit the function. As it is the main program function, it
will quit the whole program.

Test the program. You can use the cursor keys (arrows) to turn the snakehead, and the
Esc key to quit the program.

Our next task is to put the snake into movement. We will choose approximately 2 steps
per second as the snake speed. For the sake of handling keyboard input and items
generation, the main program loop works a little faster (18 passes per second). For this
reason, we will use a counter for the next step, which will move the snake during every
ninth pass.

The structure for snake movement is on the following picture. Put it behind the structure
of snake control, but before the generation of new items. In the beginning of the
structure, you can see a test, which checks if the snake is moving (this is because in
the beginning of the game, the snake stays in one place until the first direction key is
pressed). When the snake moves, the counter for the next step decrements (decreases
by one). When the counter reaches zero, the snake can move one step. First, we will
set the next step counter again. We have chosen the number 9, which represents 2
steps per second (the basic time unit of the computer is 55 milliseconds, which equals
to 18 units per second).

55

Before the snake moves, we will test whether there is an obstacle in front of it, which it
cannot pass. Such an obstacle is a wall, but also the snake itself (that is, one of its
pieces). We will use Lucy for this test. We will put her onto Peter’s position, turn her in
his direction, and make a step forward.

You surely remember that we have indicated walls by Flag 1 . For the sake of
simplicity, we will assign this flag also to the squares with the snake pieces. If the flag is
turned on, it means that there is a wall or a snake piece in front of the snake, and the
snake passes away. We will play a sound of a hit and animate the snake’s death. We
will pay attention to this later. In other cases, the snake can move forward.

56

In the snake movement, we will begin with Peter — the snakehead. In approximately
the middle of the structure of the movement, you see Peter making a step forward. The
following branching structure stores a number, representing the direction of the last
square, on the new square. Later, this number will help us find the way to the end of
the snake.

We will keep the number representing the direction to the previous square as numeric
value 2 . When the previous square is to the right, we will use the number 0, when it
is up, we will use number 1, number 2 will represent the left direction, and when the
square is to the bottom, we will use the number 3. The structure for the previous square
on the left is shown on the picture, the remaining directions are similar.

Let us return to the beginning of the structure for moving the snake one step forward.
We have left Lucy on the next square, where she tested the state of flag 1. Now we will
turn her back and move her one step, which will get her to the same position as the
snakehead. We can add a sound for the snake’s step.

What follows is a cycle that moves the snake’s pieces, as you see on the following
picture. The number of the passes of the cycle is given by the snake’s length. In the
beginning, Lucy is on the position of the head. Each square with the head or a piece of
the snake keeps a number representing the direction to the previous square. The
number is a number of quadrants (i.e. quarters of a turnaround) that Lucy must turn
counter-clockwise from the zero angle (zero angle equals the direction to the right).

First, Lucy turns to the previous square. Using the following command, she carries the
item from the previous square to the square she stands on. This way, she moves a
snake piece one step forward. The next command turns on Flag 1 . As we know,
this flag indicates a wall or a snake piece. The last command makes Lucy go one step
forward, i.e. to the following square towards the end of the snake.

57

After all of the passes through the cycle, Lucy remains on the square behind the new
end of the snake. This is valid even if the snake length is 0, when no pass through the
cycle is performed. What follows is moving the snakehead one step forward and saving
the direction to the previous field, which has already been described. We will replace
the contents of the square behind the snake with an empty square (which will be
performed by Lucy), and turn off the flag indicating that there is a piece of the snake on
the square. If a food or a poison is found, we will add a new snake piece later.

58

The snake is moved. Now we will pay attention to the contents of the square on the
new position of the snakehead. First, we will test, if there is food on it. Food is indicated
by flag 3, so we will test Flag 3 . The structure for food is on the previous picture.

If there is food on the square, we will delete it by laying down an empty square, and
turn off Flag 3. The numeric variable 1 of the square stores the number of the food
from the food list. We will take numeric value 1 of the square and use it as the food
index to get the appropriate snake piece for the type of food. That means that we will
take the appropriate snake piece from the list and lay it down on Lucy’s position. As we
know, Lucy was left at the square behind the end of the snake, where we had put an
empty square for a while. This creates a new snake piece with a food inside. We will
turn on Flag 1 to indicate a snake piece, and increase the length of the snake.
Finally, we can play a gulping sound and show the new snake length.

The structure for poison is similar, as you see on the following picture. Poison is
indicated by Flag 2. If we find it on, we will clear the square and turn this flag off. We
will perform similar steps to the structure for food. We will always use the same new
piece, without respect to the type of poison. We will also turn on flag 1 on Lucy’s
position, increase the snake length, play a gulping sound, and display the new length.
Only this time, this will be finished by the death of the snake.

59

Our last task is to create the function for the snake’s death. Its contents are on the next
picture.

First, the length of the snake is stored as the new maximum score. After a short pause,
there is a wheezy sound. The death will be indicated by redrawing all of the snake
pieces to pieces with a skull. After the redrawing and a short pause, we will clear the
pieces of the snake (this will indicate the process of dying). There is a short pause
again, and then a new game starts.

After the beginning of a new game, it is important to add a command for flushing the
key buffer out. Players who get absorbed in the game often still press keys when the
game is being ended. This could cause an accidental start of a new game.

60

The following pictures show the redrawing of the snake pieces to death and the
clearing of the pieces. Again, we use the directions to the previous squares stored in
numeric value 2 of the squares. During that, we animate the snakehead to turn around
(the snake is dizzy). In the first case, the snake turns clockwise; in the other, it turns
counter-clockwise.

Now you can start the program and test it. Have fun with your first real game.

61

13Beginning with Graphics

Our programs have only used items and sprites so far. Now we will get into a more
interesting area — graphics.

Graphics bring unlimited capabilities, where item animation is not enough. We can
draw graphical elements, such as dots, lines, and circles; what is most important, yet, is
that we can also render pictures. We can use pictures to display photographs, move
objects, write texts, or draw buttons for special controls.

The first things we need to know is where and how are graphics rendered. Look at the
following picture.

The picture shows the display layers of a program window in Peter. The basis is at the
item layer. We have already used it in previous chapters. It is the layer where we put
items, and it is called the main sheet of a program. Above this layer, there are sprites
with a positive altitude (height level). These include Peter and Lucy (unless we change
their altitude to a negative number). Under the item layer, there are sprites with a
negative altitude. At the very bottom, there is a graphical layer. All graphical elements
are rendered here.

You may imagine the layers as a sea. The item layer is the surface. Ships (sprites with
an altitude of 0) move on the surface. Birds (sprites with a positive altitude, e.g. 100) fly
above it. Fish (sprites with a negative altitude, e.g. -100) swim under it. The seabed in
the very bottom is the graphical layer that may be used for drawing.

When we look at a program window, it is as if we have watched the sea from above.
We see items on the sheet and sprites moving above it (Peter, Lucy), but don’t see
sprites with a negative altitude, and neither do we see the graphical layer. To see
these, we have to make items transparent. We will learn how in the following chapter.

62

14Mishmash Drawing

If you don’t like the word “mishmash” in the chapter title, you can replace it with
anything else, but it is probably the best designation for what we are going to do.

First, we will try the basic graphical commands for drawing. Create a new program
called Graphic or open the sample program.

We won’t need Peter in our program, and so we will turn his visibility off by the visible
 command with the no parameter in the beginning of our program. The program

will be based on a conditional repeating of commands cycle that can be ended
by pressing the Esc key. Put this command behind the one that turns Peter’s
visibility off, and add a wait command into it.

Another very important task is making the squares in the item layer transparent. Edit
the empty square item. In the color picker, choose the top left color (purple). It is a
transparent color, which will enable us to see through the square with an item.
Choose filled box as the drawing tool, and redraw the whole item with the
transparent color.

If you will run the program now, you won’t see anything but a black sheet. You see the
graphic layer, which will be the basis for our next programs. Later, we will use both
items and graphics together. After you try the first graphical command, you can draw
something into the empty square item. You will see the graphic and a net of empty
square pictures over it.

In the Basic Elements group, find the graphic group, drawing subgroup. It
contains commands for drawing graphical elements. Drag the point command into
the main program loop. It contains another four elements that specify the parameters of
the point rendered.

The first parameter, pen color , specifies the color of the point. Color is a number,
which can be kept in a numeric variable. We are not interested in its value so far, as we
can use special functions to specify color. In a new command, the pen color
element contains a color element. This is a color constant, which passes the

63

selected color to the command. You can select a new color by double-clicking the color
constant element. The color selection window appears. The selected color is indicated
by the elevation of its field. Clicking selects a different color. The color will also appear
in the color constant element.

In our program, we will render points with a random color. For this reason, we will
discard the color constant element, and use the compound color components to
color element (from the graphic group) instead of it. This component contains
another three elements, red component (0 to 1) , green component (0 to 1)
and blue component (0 to 1) . The components specify the level of individual colors
in the resulting color. The closer is the value to 1, the brighter the component is. For
example, yellow has the values of 1/1/0. A random color can be created by inserting
random number (0 <= x < 1) components into the color components (the range for
a random number is 0 to 1 as well).

Another parameter for the point command is the pen width element. It is a numeric
value, which specifies how many graphical points wide will the point be. The point size
will be generated randomly, and so we will insert a random number with the parameter
of 9 here, which will create random points with the size of 1 to 9 graphical points (we
don’t have to care about zero, the point command modifies it to 1).

The last two elements of the command, horizontal X coordinate of point and
vertical Y coordinate of point , specify the position, where the point will appear.
The previous picture shows how graphical coordinates are numbered. It is the same as
the numbering of squares, as we know it from previous chapters. The basic unit of
Peter’s coordinates is a unitary step. The length of the step is the same as a square

64

width. The beginning of the coordinates is in the bottom left corner. As the coordinates
are expressed by decimal numbers, we can specify the coordinates for squares,
graphics and sprites in the same way, without any conversions.

The coordinates for the point will be specified randomly, as we know it from previous
chapters, by using random numbers with the parameters of the width and height

 of the sheet. The resulting command for the random point will look like this:

Run the program. Color points of different sizes start appearing on the sheet. The
rendering is not very quick. After each point in the loop, the program waits a little
moment (55 ms), which means that the speed of rendering is 18 points per second.

This is a good time for discussing the program timing. As we already said, the wait
command has, besides the waiting function, also a function for cooperation with other
programs (and with the core of Windows). An advanced user can use the System
Monitor program to verify that the Graphic program is a minimum load for the
computer, and that the program speed is independent of the computer speed. To be
accurate — the wait command does not represent an actual pause of a given length; it
represents synchronization with the inner clock of the computer. For this reason, the
program speed does not depend on the speed at which the commands between two
wait commands are executed.

Try to fill a value of 0 into the wait command. The program will now produce very many
points. It does not wait for the interval now; it runs at maximum speed. Yet, it ensures
that the window sheet is rendered on the display at each pass through the loop. This is
another function of the wait command — it ensures rendering. The program does not
know when all graphical operations are finished, and so when it is a good time to

65

render the window on the display. If the program rendered the window itself, the
background of a game could appear, but not the characters in it. As a result, the
background would show through the characters. For this reason, rendering is
performed during the waiting, when all graphical operations are probably finished.

A tip for program optimization: The program redraws a rectangular part of the window,
where changes were made. If you want to increase the program speed, render only the
changed area of the graphic. On the other hand, this could lead to rendering many
small parts of the graphic, which could be more demanding than rendering the whole
window at a time.

Timing with the value of 0 is useful in situations, when you need higher program
performance, or when the timing after 0.055 seconds is too rough. It ensures fluent
redrawing of the window, maximum program speed, and sufficient cooperation with
Windows. The program speed is dependent on the computer speed now. We could use
System Monitor to see that the program consumes most of the computer
performance, even if it seems to be in a relatively quiet state.

You can also try to disable timing completely by using the Turn Off button. If you
run the program now, you see a noise of colors instead of points. Now, the program
really runs at maximum speed, without any pauses. You may notice that the color noise
is not fluent; the image is a bit choppy. It is so because the program ensures at least a
minimum redrawing of the window to the display. If there is no wait command for about
0.2 seconds, the program redraws the window itself.

Let us get back to graphical commands. Add other graphical commands to the main
program loop — line , box , filled box , circle , filled circle , sphere
, triangle — and try to render them randomly. Use a random radius of 2 with circle,
filled circle and sphere. Skip Filling , as it would not have much effect here.

The text display command is also interesting. It has more parameters than you
may be used to, but don’t worry. You don’t have to set the parameters that don’t
interest you. Their default values will be used then. It is probably clear what the text to
be displayed , pen color , horizontal X coordinate of text and vertical Y
coordinate of text parameters mean.

A new element is the angle orientation of text . It is the angle, at which the text is
turned around the bottom left corner. It is specified in radians, just like other angles in
Peter. We can use the direction constants that we know from setting the directions of
Peter and Lucy. If not specified, a direction of 0 is used (horizontally from left to right).

The height of characters element specifies the height of the characters in the text.
It is specified in unitary steps. If not specified, the height of 0.5 will be used (half of the
square height).

The relative width of characters (1 = usual) element represents a relative number
indicating the width of the characters when compared to the normal width. A value of
1 is the normal width. Numbers higher than 1 specify wider characters, smaller
numbers specify narrower characters. A special value is the number 0. This sets the

66

recommended width for the type of characters used. It is similar to the normal width,
but may differ slightly. If not specified, the default value of 0 is used (the recommended
width).

The bold , italic , underline and strike out elements are logical switches
that turn on special effects for the text. By default, all of these are turned off. The serifs

 switch turns on serif characters. By default, it is also turned off. The typewriter
switch turns on characters with the same spacing and width. When it is turned off,
characters have different widths (I is narrower than M). Unless specified otherwise, this
switch is off as well.

The whole command for a random text is on the previous picture. It is quite long, and
so the picture is separated into two parts. Test the program after you create the
command.

67

One of the most powerful aspects of graphics are pictures. You can use pictures for
anything that is not predefined in Peter. You can create moving characters, a window
with animated buttons, a moving background for a game, or snapshots.

The commands and functions for pictures are in the graphic group, pictures
subgroup. The basic command is draw picture . Besides obvious parameters, such
as the picture to be rendered and its coordinates, the command also has more
parameters that make it possible to draw only a specific part of the picture.

In our test program, we will try to render a picture randomly. Before you start drawing,
you can look at the Library of Variables and Functions. With Peter, you also get
many pictures. Open the [examples]\Drawing group. You will surely find a picture that
you will like. When browsing, click to select the first picture in the group, and then scroll
the selection cursor up and down by using the arrow keys. The editing window will
show previews of the pictures.

68

Drag the selected picture into the Global Variables and Functions window. If the
picture has a one-color background, you can fill the background with the transparent
color (by using the Filler function) to display the picture without any background.

The command for random drawing of the picture is shown above. If you want to draw a
picture with a random size, you can use the change picture size function. The new
picture width will be random, and will be based on the original size shrunk to
approximately one half. It is not necessary to specify a new height; it will be adjusted to
the new width automatically.

Note: It is better to use a larger picture and a higher level of reduction. This ensures a
higher quality of the resulting picture than using a smaller picture.

69

15Fill Your Own Colors

Our next task in the world of Peter the rabbit is to create a graphical editor enabling the
user to fill colors into prepared pictures. During that, we will learn how to work with the
mouse and with files. The program should work like this: It will find all pictures (BMP
files) in its folder. The user can browse through the pictures, and add colors by filling
areas. Black will be reserved for the outlines of the pictures.

Let us say a few words about files and folders. A file is a separated piece of data
stored in the computer. It can be a picture, a letter, a spreadsheet, or a program. User
data files are often called documents. A folder is a “pack of files”. Folders are similar
to groups in Peter. If we want to express the location of a file or a folder on the
disk, we use a notation called path. A path is a list of folders (sometimes also with the
disk) through which we have to go to get to the file (folder). They are separated by
backslashes “\”. For example: C:\Program Files\Peter\Peter.exe. Notice that the disk
is labeled by a letter and a colon. At the end of the path, you can see a program name.
This notation is called full file name. It contains the disk, the folders, the file name, and
the extension of the file name. The file name extension is the part behind the dot, and
it specifies the file type. For example, the EXE extension labels programs.

First, create a new program called Filler , or use the sample program prepared in
Peter.

We will adjust the size of the sheet. We will edit pictures with a standard size of 20 x 15
squares (640 x 480 graphical points). To select colors and pictures, we need a bar with
the height of one square in the bottom of the window. For this reason, set the size of
the program main sheet to 20 x 16 squares. It is still a good size for the screen mode of

70

800 x 600 points. This screen mode (video mode), but preferably higher, is also the
recommended minimum for the users of our programs.

Create two new items — left arrow and right arrow . Into them, paint the
pictures of control buttons for browsing to the left and right. The background will be
gray. Lay the items into the bottom right corner of the sheet, as on the previous picture.

Create the main program loop — a never-ending conditional repeating (the cycle
condition will contain a yes element). The cycle body will contain one wait
command.

In front of the main program loop, prepare a group called program initialization. It will
contain the preparatory operations required to run the program.

The first command will set the help text into the status bar in the bottom of the window.
If the status bar does not contain any text, it is turned off. If you want to use the status
bar, it is recommended to turn it on in the beginning of the program. It does not look
well when the program window appears first and the status bar only a few moments
later.

Tip: If you want to use an empty status bar, display the space character.

The second command will fill the program window with white color. In the filled box
command, use just one parameter — the white color. If we skip the remaining
parameters, we will fill the whole window. This command ensures that black
background does not show through during the loading of the list of pictures and before
displaying the first picture. It is used for purely aesthetical reason, but in general, the
transitory states of programs should not be neglected. Small negative impressions can
build the users’ attitudes to programs. If something wrong can be seen, the user does
not trust the program. The same thing happens when the program does not react to
user actions quickly enough, or when the user does not know how to control it. Even

71

worse effects arise when an intuitive command leads to unexpected and undesired
results.

The third command is a prepare service of color selection function. It will define the
colors for drawing and displays the color fields. For the time being, prepare an empty
function.

What follows is a wait command with the parameter of 0. Why is it here? As you know,
the wait command ensures that the window is displayed. When the program starts, the
window is not turned on right away. The program waits for the first wait command.
When it comes, the program assumes that the window content is already prepared.
Without this behavior, transitory effects could be seen during the program startup. The
wait command with the parameter of 0 ensures that the window is turned on
immediately after startup. Without it, the window would be turned on a little while later,
after all files would have been found. This is not a mistake, but if the window does not
appear soon enough, the user may doubt whether the program is starting at all and try
to run it again.

The load picture list function finds all BMP files with pictures. The load picture
function loads the current picture into the program and displays it. So far, only prepare
empty functions. The last four commands redefine the cursor appearance. We will talk
about them later.

If you run the program now, you see a white sheet, two buttons in the bottom right
corner, and texts in the window title and the status bar. It is nothing special, but it is just
the beginning.

In the Global Variables and Functions window, create a new list called color list. Set
the size of the list to 36. This will be the number of colors used in the editor. Rename
the pointer in the list to color index and the automatic increment to color index
increment. Add one numeric data element called color into the list.

We will create the contents of the prepare service of color selection function. Switch
into it by double-clicking its icon. The whole function is shown on the following picture.
On the right side, there is the cycle that creates the color fields.

First, we will fill the list of colors. Set the color index to 0 and the color index increment
to 1. This ensures that the colors will be stored in the list from the beginning and that
the pointer will automatically be increased by 1 when each color is set. The color
setting commands follow. Choose 36 colors (not black — that will be used for picture
outlines). Why 36? For the choice of color, we will have 18 squares, and each square
will contain 2 colors.

72

The color choice fields will be displayed using items. Items are more suitable than
graphical rendering here, because when we would fill areas, the color could also get
into the color fields. Instead of drawing items by hand, we will create them
programmatically. It is easier than editing 36 fields and it will be easier to keep matches
between the fields and the actual colors, should we change the colors in the program
later.

In the Global Variables and Functions window, create a picture (not an item) called
color selection box with the size of 1x1 square. Into it, draw fields for the choice of
two colors, like this:

To create items, we will render the picture into the program window, fill it with colors,
cut it out of the window as an item, and lay it on the sheet. We will use Lucy to lay the
items on the sheet. We will set her to the first field (with the horizontal coordinate of 0)
and turn her to the right. A cycle for all color items (half of the number of colors) follows.

73

The first command in the cycle will draw the picture of the color selection box. It will
have just one parameter — the picture to be drawn. If the rest of the parameters are
skipped, the picture will be drawn in the bottom left corner of the window.

The second command will fill the left field with a color from the list. The coordinate will
refer to the center of the field. In a similar way, we will fill the second field with the
second color. Remember that the color index moves automatically.

Cut the created picture from the window by using the retain cutout from sheet as
item function, and lay it onto Lucy’s position. Lucy will then go to the next square.

When all color fields are created, change the color index increment to 0. From now on,
we won’t use automatic increments in the program.

Do you think that we perform too many operations in the window and that they must be
visible? These preparatory drawing operations are actually very fast and we have time
enough before the contents of the window will be rendered on the screen with the first
wait command. The picture we drew will remain hidden under the first color selection
item, and so we don’t even have to clear it.

You can run the program now. If everything is OK, a bar with the color selection fields
will appear in the bottom of the window.

In the Global Variables and Functions window, prepare a list that will keep the names
of all files that will be found (like on the following picture). Label it picture names list.

Set the list size to 1000. It may be a relatively huge redundancy, but it is not very
important from the point of view of memory consumption. Generally, each variable in a
list takes up 4 bytes; only numeric variables take up 8 bytes and logical variables
1 byte. Our list will use 4000 bytes. We can count on millions of bytes of free memory.

Call the list pointer picture index and rename the automatic pointer increment to
picture index increment. Add a new textual variable called picture name into the list.

Besides the picture list, we will also create a numeric variable called number of
pictures. We will probably not fill the whole list, and this variable will keep the actual
number of the pictures in the list.

74

Now we will prepare the load picture list function. If you opened the Filler sample
program, you can see a function that is a bit more difficult in it. The sample program
supports multi-user environment, and so it loads files also from the program’s home
folder. We will use a simple variant, which will only load picture files from the current
folder.

We will prepare the local variables of the function. The names of the files that will be
found will be stored in a text variable called list of names of pictures found. We will
sort the list alphabetically, and for this purpose, we will prepare another two textual
variables — one picture name and one picture name 2.

The next picture shows the function contents. The function will load the names of
picture files from the current folder, add the names to a list, and sort the list
alphabetically.

To find files in the folder, we will use the file list function. As the function
parameter, we will use a textual specification of the files to find. The specification uses
wildcard characters (a question mark “?” represents any character, an asterisk “*”
represents any group of characters). You can specify more entries. The individual
entries will be separated by a semicolon “;”. To find e.g. all BMP picture files, we will

75

type *.bmp; to find all BMP and JPG (another format supported by Peter) files, we will
specify these two entries: *.bmp;*.jpg.

The file list function returns a multi-line text, in which each line contains the name of
one file found, including its extension (but not its path). When searching for BMP files,
we could get for example this text:

Bull.bmp
Car.bmp
House.bmp
Kite.bmp
Ram.bmp

We will add the names of the individual files into the picture names list. Initially, we will
set the picture index to 0 and the picture index increment to 1 (we will use automatic
increments of the index of the list). As the line number, we can use the picture index.
The index will be automatically increased after the name is saved.

After saving all file names into the list, we will use the final state of the picture index to
set the number of pictures variable, and we will set the picture index increment to
zero.

After this, we will sort the list of picture names alphabetically. We will go from the
beginning of the list to the end, and each time, we will compare two neighboring
names. If we find an unsorted pair, we will replace the positions of the names and go
back to the previous pair to ensure that the alphabetically first name will be moved as
far to the beginning of the list as appropriate.

The sorting will be performed in a conditional cycle. In the cycle condition, we will test if
there is still another pair of names. In the beginning of the cycle, we will store the first
name into a textual variable called one picture name. We will increase the pointer to
the following name in the list, and test if the first name is alphabetically further (higher)
than the second name. If it is, we will switch the names’ positions.

When replacing the names, we will store the second name (to which the pointer is set
now) into the one picture name 2 variable. We will save the first name into the second
name’s position. We will decrease the pointer back to the first name, and save the

76

name that used to be second into the first name’s position. The positions are switched
now.

Finally, we will decrease the pointer in the list to be able to move the first name towards
the beginning of the list (if it is not in the appropriate position yet).

Look at the sorting method and make sure that you understand how it works. It is not
the fastest method, but it is simple and good enough.

The last command in the load picture list function sets the picture list pointer to the
value of 0. That will be the default picture to display.

77

We will create the contents of the load picture function. It is quite simple, as you see
bellow. We need a couple of elements for working with files from the files group.
First, we will set the active file/folder for reading accordingly to the picture name
from the list. Then, we will put the picture element (data subgroup) in the draw
picture command. That’s it.

You may wonder what will happen if no picture file is found. In that case, the picture
name will contain an empty text, and the functions for loading or saving a picture will
not be performed. In the sample program, this is supplemented by displaying a text,
which informs the user that no picture was found.

Now, we should prepare a few pictures, or at least one picture. We can use Peter’s
graphical editor for this. Set the picture size to 20x15 steps (i.e. 640x480 points). Draw
the outlines with black color. Make sure that the outlines contain closed-up areas.
Otherwise, the color will leak. After the picture is drawn, save it in the Library of
Variables and Functions and use Windows Explorer to move it (typically from the
C:\My Documents\Peter\Picture folder) into the folder containing the Filler program.
You can also use Peter’s sample pictures in the [examples]\Drawing group.

When you have at least one picture in the same folder as the Filler program, you can
test the program. The alphabetically first picture should appear.

In the program, we will use Peter as the indicator of the selected color. Double-click the
Peter icon in the Global Variables and Functions to edit the sprite. Change the sprite
parameters (by clicking the Properties button) to the following values: Delay
Between Phases = 110, Phases per Step = 0, Standstill Phases = 4, Moving Phases =
0, Directions = 1, Picture Width = 0.5. Delete the pictures of Peter from the sprite and
double-click the first picture to edit it. Draw a frame into the picture using a white-gray-
black-gray color sequence. Copy the picture to the remaining fields of the sprite. Each
time, move the points by 1 point clockwise. When you test the sprite, you will see the
frame “flowing” around the border.

78

Lucy will be used to indicate the color under the mouse pointer. Start editing the sprite
of Lucy and set the following parameters: Phases per Step = 0, Moving Phases = 0,
Directions = 1, Picture Width = 0.5. Redraw the picture in the sprite to create an
impression of an elevated color picker field. Leave the central part transparent.

In the main program loop (before the wait command), prepare a group called detect
and test validity of the color under cursor. Here, we will continually test the color
under the mouse pointer, which will enable us to indicate the appropriate color. The
detected color will also be used in other structures in the program as well.

In the Global Variables window, prepare two numeric variables: color under mouse
cursor and index of color under cursor. In the beginning of the group, set both of
these variables to -1, to indicate there is no valid color under the pointer. What follows
is a conditional command that tests if the mouse pointer is above the picture. The test
will begin with a mouse test in the region element (controls group, mouse
subgroup), with parameters set accordingly to the picture in the window. If the pointer is
above the picture, we will get the color under it by using the get color of pixel
function (graphic group). We will store the color in the color under mouse cursor
variable. The coordinates of the point from which to get the color will be the same as
those of the mouse: mouse position in horizontal direction and mouse position
in vertical direction . In Peter’s programs, information about the mouse (and other
devices) doesn’t change until the next wait command.

79

After reading from the point, we will try to find the color in the color table. The cycle for
this is on the picture on the right. The cycle goes through the whole color table,
comparing each color with the one under the pointer. If it finds the matching color, it
stores its index into the index of color under cursor variable, sets Lucy (as the
indicator of the color under the pointer) over the field of that color, and switches Lucy’s
visibility on.

Look closely at the cycle we have used. The color index in the color list identifies the
color selected by the user. The cycle goes through the whole color list, and after the
cycle is finished, the color index will have exactly the same value as before the cycle
began. We have used an automatic return of the pointer to the beginning of the list after
the end is reached.

Let us look at Lucy. Throughout the program, her vertical coordinate keeps the default
value of 0. Her horizontal coordinate is set to the half of the index of the color under the
pointer, as the color fields are half a square wide. If you wonder whether Lucy can also
stand between squares, then the answer is yes. When we set the coordinates of Lucy,
we can use any value, including values outside the window, as Lucy is a normal sprite.
Only when being moved by a step command, Lucy is limited to the window sheet, and
her target coordinate is truncated to the nearest square. The same applies to Peter.

80

Behind the conditional command that gets the color, there is a conditional command
that switches the color indicator off when there is no valid color under the pointer. This
can happen if the pointer is not above the picture, or if there is black (or unknown) color
under it.

Run and test the program. The indication of the color under the pointer should work
now. If you rest the mouse pointer over a color in the picture, the field with the
appropriate color should be elevated over the window surface.

We will start working on the program control. We will begin with keyboard control. After
the structure that detects the color, insert a multibranch control structure called
keyboard service. As the tested value, use the key input (does not wait for press)

 function.

The first branch of the structure will handle the Esc key. Here, the break executing
 command will be used, which will quit the main program loop.

The second branch will take care of the Left key. Create an empty function called
previous picture and insert it in the branch. Behind it, put a flush out of key buffer

 command. The loading of a picture takes a while. If the user holds the key, the key
codes are coming too fast for the program to switch pictures. For this reason, the
program would move through pictures even after the key would be released. The
control would be subject to inertia, which is not pleasant.

The branch for the Right key will be similar, only this time, we will use a next
picture function. You can also add branches for other direction keys, e.g. Home to
jump to the first picture, End to jump to the last picture, and Ctrl+Left/Right to move 10
pictures in the desired direction.

The last key will be Back Space . The user can use it to reset the picture to the
original state (as it was before editing). This will be handled by the load picture
function, which will read the picture from the file anew. After this, another flush out of
key buffer command follows.

81

The pictures below show the contents of the previous picture (on the left) and next
picture (right) functions. In the beginning of the functions, the current picture is saved
(if it has been changed). So far, you may just create an empty save picture function.

82

In the previous picture function, we will check if we’re not working with the first
picture. If we’re not, we can move the picture pointer to the previous picture, and load
and display the new picture. If we work with the first picture, nothing will be performed,
but we could set the pointer to the last picture (which is number of pictures - 1) and
move around the pictures in circles.

In the next picture function, we will check if we don’t have the last picture in a similar
way. The number for the last picture is the number of pictures decreased by 1. If we
don’t have the last picture, we will increase the pointer to the next picture and load the
new picture. In the case of the last picture, we could move to the first picture to ensure
cyclic browsing.

Test the program. You can move among the pictures by using the Left/Right keys, or
press Esc to quit the program.

We will not create the function for saving the picture so far. Otherwise, we could
overwrite a picture by an accident. First, we will create the structure for mouse control.
In the main program loop, insert a conditional command called click by left mouse
button behind the structure for keyboard service.

Insert a click by left mouse button flag into the condition test. It is a logical flag,
and it is set each time that the user left-clicks in the program window. The flag is turned
off when it has been read, e.g. by being used in a condition. If you want to test the
left-click flag more times, store it into a logic variable .

If the condition test detects that the user has clicked the left mouse button, we will use
another conditional command to distinguish (by the vertical coordinate of the mouse)
whether the user has clicked into the picture or into the bar with colors and buttons.
The border point here is the value of 1, as the bar is 1 square high.

83

For the choice of color, we will create a new function called color selection. Into the
input variables of the function, we will insert a mouse cursor X position variable. It will
pass the horizontal coordinate of the mouse in the color selection bar to the function.

In the function, we will take the value of the input variable, multiply it by 2 to convert the
coordinate to the number of a color, use the integer part function to delete the
unnecessary decimal part, and use the result to set a new color index. We will set the
horizontal coordinate of Peter to the half of the color index value, which corresponds to
the position of the color field. Peter is used in the program as the indicator of the
selected color. His vertical coordinate remains set to 0 permanently, and so we don’t
have to pay attention to it.

If the vertical coordinate of the mouse tells us that the user has clicked into the bar with
buttons and colors, we will use the horizontal coordinate to distinguish, if they have
clicked into a color field or on a button. If the horizontal coordinate is less than 18, then
the user selects a color. We will invoke the color selection function and use the
coordinate as its parameter. In other cases, the user has clicked a button to move
among pictures. A horizontal coordinate below 19 indicates the left button, and so we
will invoke the previous picture function. In the remaining cases, we will invoke the
next picture function. The whole structure for the color choice fields and direction
buttons is on the following picture.

You can test the program. You can use the left mouse button to switch pictures, or to
change the selected color in the color selection bar.

Now we will handle the cases when the user left-clicks into the picture. The structure
will be based on a fill picture with color conditional command (see the bottom of next
page). The condition test will check if there is black color under the mouse pointer.
Black is used for outlines, and cannot be used for filling. The color under the pointer
has been saved to a variable in the beginning of the program main loop.

Then we can fill the picture with a Filler command. The color is set by the color
variable from the color list. The coordinates for the filling will be those of the mouse.
Finally, we will set a picture change flag, which we will prepare in the Global
Variables and Functions windows. The flag indicates that the picture can be saved.

84

Run the program, try to fill the picture with a selected color, and verify that you cannot
fill the picture with black color.

85

The structure for the right mouse button will be similar, and so we can copy the whole
structure for the left button. In the condition test, we will replace the element that tests
the left button with an element for the right button . The structure for buttons and
color selection remains unchanged. The filling structure will be deleted and replaced by
a pick color under mouse cursor structure. Here, we will test the index of color
under cursor variable to check if there is a valid color under the pointer (to make sure
that it is not black or a non-standard color). If the pointer is above a valid color, we will
set it as the new selected color, recalculating the color to the X coordinate.

Run the program and test if you can control the choice of colors and pictures with the
right mouse button in the same way as with the left one. By right-clicking into the
picture, you can pick the color under the pointer and set it as the selected color.

Finally, we can pay attention to the save picture function. Its contents are on the
following picture. First, we will test if the picture has been changed and needs to be
saved. If it does, we will use the picture name (from the list of picture names) as the
active file/folder for writing . Then we will set size of file to 0 to make sure that
no old data can remain in the file behind the picture. To save the picture, we will cut the
picture from the window with the retain cutout from sheet as picture function, and
then we will write the picture into a file by passing it to a picture element. Finally,
we will turn off the picture change flag.

By adding the save picture function behind the main program loop, we will ensure that
the picture will be saved upon quitting the program with the Esc key. The program has
all the functionality now and you can test it. Verify that the changes in the pictures are
saved upon both switching to another picture and quitting the program with the Esc
key.

86

We can make further improvements to our program. For example, we can display the
picture name, picture number and total number of pictures in the window title. We will
put the structure for this into the beginning of the load picture function, as illustrated
on the picture on the following page. This will result in a text like e.g. this one: “Filler —
House (picture 4 of 50)”. You cannot see it on the picture, but don’t forget about
spaces in the appropriate places in the text (behind the dash in “Filler — ” and on both
sides of “ (picture ” and “ of ”). We will display the picture name without the extension,
and so we truncate the last four characters (the period and the BMP extension).

Another improvement will redefine the pointer appearance. In the Global Variables
and Functions window, prepare four items with pointer pictures — two arrows, a
pipette and a filling.

The pictures have black outlines, the surroundings are transparent, and the insides are
white. On the tips of the pipette and the filling pointer, add a yellow dot as the
positioning indicator (with color inversion). In the arrows, the positioning indicator stays
in the center, which is the default setting.

87

In the program initialization group, we will use setting shape of mouse cursor
commands to specify the appearance of the pointer in the individual parts of the
window. We will define the pipette for the color choice fields, the arrows for the
movement buttons, and the filling pointer for the picture area.

To understand the function of the command that defines the pointer appearance, you
can think of the areas for definitions of the appearance as of rectangles, which (when
added) overwrite the old definitions. The topmost definitions are always in effect. If we
don’t specify any pointer picture, then the standard appearance of a mouse in a window
will be used. If colored pointer is defined in Windows, then the program will use this
colored pointer. If we don’t specify an area, then the mouse pointer is defined for the
whole window. All definitions can be cancelled by inserting this command without any
parameters.

88

16Dialogs

After successful experiments with graphics, we will look at another area — dialogs.
This is not talking to friends, as some might think. A dialog is a window used for
communication with the user. Through it, the user decides on the next actions of the
program, passes information to the program, and gets information from it as well.

Create a new program called Dialogs. The elements for working with dialogs are in the
controls group, dialogs subgroup. We will begin by creating a simple button.

In the Global Variables and Functions window, create a numeric variable called ID of
Exit button, and in the main function, create the program as illustrated bellow.

When you run this program, you will see a gray surface with a button saying Exit in the
middle. By clicking the button, you can close the program. What is happening inside it?

Let’s start with the numeric variable. The ID of Exit button means “The identification
code of the Exit button”. Each element in a window has its ID, which we can use to
refer to the element. The identification number is assigned to each element
automatically when the element is created. We don’t have to care about the ID value;
we will just store it and use it to refer to the element.

The first command in the program creates a normal button. The function creating the
window element returns an identification code, which we will store for later use.

When we create the first window element, the program switches into dialog mode. The
graphical sheet of the program disappears, and a one-color sheet (usually gray)
appears. From this moment on, user input is carried through the window control
elements. The graphical mode will be restored only when the last window element
disappears.

89

When working with dialogs, the commands and functions are performed on the
selected dialog element. The selected element is specified by the element number
element, into which we pass the element ID. Don’t confuse the selected element and
the element with user input focus (e.g. an active text box, into which the user can type
text). The selected element is just an internal pointer of the program and it specifies the
element with which the program will manipulate. When a new element is created, it is
automatically set as selected, and so we don’t have to set the selected element in our
program so far.

The second command in the program sets the Exit text into the button. For this, we will
use the text element. In buttons, the text displays in the center as the button
description. Other elements can have text as well — e.g. a radio button name, a group
box title, an editing field text, a selected line in a list, or a window title.

The third command, visible , makes the element visible. All elements (even
windows) are invisible when they are created. This allows us to set the necessary
properties of the elements, without the elements “traveling” around the window, which
would not look well. For this reason, don’t forget to turn visibility on after you set the
elements properties.

As we have said, the control over the program is passed to the window elements now.
This will change the appearance of the program main loop. We will use conditional
repeating again, with the condition is not valid that button press or element
change . The button press or element change element indicates that an action
was performed with the element. The type of action depends on the element. With
buttons, it is pressing, with radio buttons, it is switching, with editing boxes, it is a
change of the text in it. The flag is turned off after it is tested. The window has its
change flag as well, which indicates that the change flag of one of its elements was set.

If you don’t like the position of the button in the middle of the window, insert a vertical
coordinate element with a numeric parameter of 1 after the button creation, but
before it is turned visible. This moves the button towards the bottom of the window.

When using dialog elements, you will encounter a limitation of the number of colors. In
the 256-color screen mode, the number of colors for the dialog elements is limited to
20 basic colors. Programs running in this video mode have to share the 256 possible
colors. Dialogs usually don’t require more colors, and so they are limited to Windows
basic colors. In spite of this, you can use more colors even in dialogs by using the
create picture element. The picture element uses the full range of colors, just like
in the graphical mode of a program.

You can get most experience with programming by experimenting. If you don’t
understand the function of any element, highlight it with the mouse and press F1. This
displays a comprehensive help for that element. The sample programs are also a good
source of information. After you open a sample program, highlight the appropriate
element in the Basic Elements, Trash window. The bottom right corner of Peter’s
window displays the number of times the element is used in the program. By clicking
the Previous Use and Next Use buttons, you can move through the
appearances of the element in the program.

90

	1 Setup
	2 The Program Window
	3 How Does It Work?
	4 First Steps
	5 Peter’s Garden
	6 The Garden with Repetitions
	7 The Garden with a Condition
	8 Peter Walks on Marks
	9 Peter in a Maze
	10 Keyboard Control
	11 Plenty of Monsters
	12 Feeding the Snake
	13 Beginning with Graphics
	14 Mishmash Drawing
	15 Fill Your Own Colors
	16 Dialogs

