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1.  Introduction 
 
Constraints are essentially restrictions on the freedom of movement of objects. They may be artificial, such 
as restricting an entity to have a velocity given by some complex function of the system, or may result from 
the inclusion of a connecting joint, such as a hinge, between several entities.  Whatever the type of 
constraint, it is very difficult to create dynamic physical environments without these elements.     

 
The following sections describe the different types of constraint that are supported by Havok.  The creation 
of constraints and the tweaking of their strengths and limits is discussed.  Finally, some guidelines are 
provided for the use and limitations of constraints. 
 
 

2. Constraints and Dashpots 
 
Constraints and dashpots restrict the movement of objects. They may restrict the position/orientation of a 
single body in world space or they may restrict the relative position/orientation of pairs of bodies: 

 

Example of a ball socket constraint (red) 
constraining to boxes (yellow) 
(another name is point to point constraint ) 

 

Havok Hardcore provides support for constraints of varying degrees of complexity and accuracy: 

   Constraints: Constraints are solved in groups, each managed by a FastConstraintSolver. 
The FastConstraintSolver calculates the forces needed to satisfy all its 
constraints. Based on the objects masses and the simulation frequency the 
FastConstraintSolver calculates the maximum allowed forces automatically. 
As a result constraints are relatively stable and pretty stiff, however 
constraints get slightly softer with lower simulation frequency or low object 
masses. 

   Dashpots:  Dashpots are a simpler version of constraints. The user has to specify the 
final forces and parameters initially. As a result, the stability of a dashpot is 
really sensitive to the simulation frequency and user parameters. Dashpots 
are standalone actions, resulting in a relatively springy behavior. 

Types of constraints: 

In rigid body dynamics each body has 6 degrees of freedom: 

• 3 translation axis 

• 3 rotation axis 

As a consequence each constraints can limit one or more degrees of freedom. Depending on the number 
and type of these degrees of freedoms removed, we get different basic types of constraint like point-to-
point constraint or rag doll constraint. 
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2.1. Notes on Dashpots 
A Dashpot is like a heavily damped spring. It applies forces to objects when the velocities of their attached 
points begin to differ. Dashpots can be made much stiffer than regular springs because velocities are taken 
into account. Dashpots have two parameters that you can set:  

Strength  The strength of the restoring force between the two points. A good initial 
range is 0.5 - 1 of the mass of the attached objects. 

Damping  Low values create spring-like behavior, while high create a smoother 
behavior. A good initial value is 0.1 of the strength. 

Strong forces (such as a Mouse Spring) or impulses may momentarily break this constraint, but the bodies 
will automatically snap back to reinstate it. 

 

2.2. Notes on Constraint 
 
Constraints differ from dashpots (in terms of simulation) in one important respect. They are treated as 
components of entire constraint systems that must be solved simultaneously. This means that they are far 
more accurately maintained. While dashpots above may be stretched quite freely, constraints are relatively 
stiff. 

Tau  Large impulses or forces can stretch all constraints. The speed of recovery in 
physical time step is determined by the constraint’s tau value. Higher values 
recover the constraint more quickly. Therefore the tau value influences the 
strength of the restoring force between the two points. Values range from 0.0f 
to 1.0f. 
A good choice is 1/sqrt(numberOfConstraintsInSystem) 

Damping (Strength)  A factor how strong the velocities of the objects is taken into account. 
Normally a value of 1.0 is perfect, only when very many objects are constraint 
together, this parameter might be set to slightly lower values to archive higher 
stability. 

 Note: In the Havok SDK 1.6 the Damping parameter is actually named 
“Strength”. This inconsistency between documentation and SDK will be 
fixed till the next release. 

Creating constraints between two bodies, one of which is fixed in space, 
effectively constrains the unfixed body to a point.  
 

To use the above constraints you must first create a constraint solver to which you will 
add the constraints individually as you create them. For example: 

 FastConstraintSolver* solver = new FastConstraintSolver(); 
 
 toolkit->m_defaultRigidCollection->addAction(solver); 

 

Now we can add constraints to this solver using the method addConstraint() and during 
simulation they will be maintained by this solver. 

Note: Once added to a solver, if any parameters of the constraint are updated during 
simulation (by direct access to the constraint’s member variables) a call to 
Constraint::applyChanges() is necessary to effect this update properly. 
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2.3. Point to point constraints 
A point-to-point constraint (another name: ball-socket constraints) forces objects to try to share a common 
point in space. The objects can move freely about this space, but always have this point in common. This 
point is called pivot point: 

 
 

Object A 

Object A 

Pivot Point 

A Space 

B Space 

Object A 

Pivot Point defined 
in object A space 

A Space 

Object B 

Pivot Point defined 
in object B space 

B Space 

6WDWLF�FRQVWUDLQW�GHILQLWLRQ�

'\QDPLF�VLPXODWLRQ�

 

 

At creation of the constraint, the pivot point has to be defined in the object space of each object involved. 
During runtime the constraint tries to apply forces to the object, so that the two pivot points defined by the 
two objects match. 

For convenience, some constraints allow you to define the pivot point in world space. In this case the 
constraint transforms this position to the local space of both objects. Note: Setting this pivot point using 
world space only works if both objects are placed at a position where the constraint is already satisfied. 

 

The following examples shows how to add two bodies to a scene and how to create different types of 
constraints connecting the top right corner of body1 to the bottom left corner of body2.  
When the simulation is run the bodies spring together in order to try and share this common point in space, 
and try and maintain this common point throughout simulation.  
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2.3.1. Linear Dashpot 
 

#include <hkdynamics/action/dashpot.h> 
 
RigidBody* body1 = … // get my body at position Vector3(1,2,3) 
RigidBody* body2 = … // get my body at position Vector3(4,5,6) 
 
Dashpot *d = new Dashpot( 
             body1, 
             Vector3(.6,.6,.6),      // pivot point defined in body 1 space 
             body2, 
             Vector3(-.6,-.6,-.6));  // pivot point defined in body 2 space 
 
toolkit->m_defaultRigidCollection->addAction(d); 
 

 

2.3.2. StrongJoint 
The strong joint is an old implementation of a point-to-point dashpot. 

#include <hkdynamics/action/strongjoint.h> 
 
RigidBody* body1 = … // get my body at position Vector3(1,2,3) 
RigidBody* body2 = … // get my body at position Vector3(4,5,6) 
 
StrongJoint *d = new StrongJoint( 
             body1, 
             Vector3(.6,.6,.6), // pivot point defined in body 1 space 
             body2, 
             Vector3(-.6,-.6,-.6));  // pivot point define in body 2 space 
 
toolkit->m_defaultRigidCollection->addAction(d); 
 

 

2.3.3. PointToPointConstraint 
 

#include <hkdynamics/action/pointtopointconstraint.h> 
 
FastConstraintSolver* solver = new FastConstraintSolver (); 
toolkit->m_defaultRigidCollection->addAction(solver); 
 
 
RigidBody* body1 = … // get my body at position Vector3(0,0,0) 
RigidBody* body2 = … // get my body at position Vector3(2,2,2) 
 
 // Ignore collisions for now 
toolkit->m_defaultCollisionDetector->disableCollision(body1, body2); 
 
 // Create constraint 
PointToPointConstraint* c = new PointToPointConstraint(body1, body2); 
 
if (1) 
{   // use world space helper function 
c->setPivotWorldSpace(Vector3(1, 1 ,1)); 
} 
else 
{   // use low level parameters 
 c-> m_points_os[0] = Vector3(  1, 1, 1 ); // pivot point in body1 space 
 c-> m_points_os[1] = Vector3( -1,-1,-1 ); // pivot point in body2 space 
} 
solver->addConstraint(c); 
 

 

Note: You can use a series of such constraints between adjacent bodies to form a chain. 
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2.4. StiffSpring 
The stiff spring constraint is similar to the point-to-point constraint except for one important detail: It holds 
the constrained bodies apart at a specified distance. As with the point-to-point constraint, the stiff spring 
operates from a point within each body. The bodies are free to move and rotate around the point, but the 
points are fixed at a constant relative distance to each other. 

So chains of objects can easily created using stiff springs:  

 

 

Sphere 1 

Sphere 2 

Sphere 3 

Stiff spring 3 

Stiff spring 2 

Stiff spring 1 

 

 

In the following example, we constrain two bodies to have a “stiff-spring” joining their centers. The 
constraint is fully specified by a point in the body space of each of two bodies, and a constant distance by 
which these two points must be kept separated. The default body space point is the origin, which we use 
below, and since these points are 4 units apart initially, we set the length of the StiffSpring to be 4 as well. 

 

Note: do not use stiff springs with small lengths use point-to-point constraints instead. 

 

 
#include <hkdynamics/action/stiffspringconstraint.h> 
 
// Create two bars 
RigidBody* box1 = … // get a box at position (-2,0,0) and size (4,1,1) 
RigidBody* box2 = … // get a box at position ( 2,0,0) and size (4,1,1 
 
// Ignore collisions for now 
toolkit->m_defaultCollisionDetector->disableCollision(box1, box2); 
 
// Create constraint 
StiffSpringConstraint* c = new StiffSpringConstraint(box1, box2); 
c->setLength(4); 
 
// Add to constraint solver 
solver->addConstraint(c); 

 

 

Note: Stiff springs can be used to replace normal springs: Just set tau to very low values (0.001 to 0.5) to 
archive the desired spring constant and the dampening accordingly (rule: damping ~ [0.5 * tau … 1.0]. Stiff 
springs are more stable than real springs, especially when used with the Euler integrator. 
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2.5. Constraint Limits and Constraint Friction 
 
 
For each non-restricted axis of some constraints, you can use: 

 

Limits  to limit the movement to be in a certain range 
Here is an example of an angular limit: 

 

 

Body 1 

Body 2 

Pivot point 

Angular limits  

 

  

And another example of a linear limit: 

 

 Linear limits 

The pivot point can freely move 
along this line until it hits the 
linear limits. 

 

 

Friction  to simulate friction. The forces/torques a constraint can apply without sliding 
are defined in [N] / [N/m]. 

 

Motor  to create a motor like behavior. Just specify the angular velocity and the 
maximum force/torque. (The implementation of the motor is using the friction 
algorithm with a small modification: the resting position of the constraints 
simply gets a velocity). 

 
Note: only use the motor for small angular velocities, not for fast vehicles. 
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2.6. Angular Constraints Introduction 
 
 
An angular constraint restricts the relative angular movement of two objects. 

Similar to the pivot point for point-to-point constraints, you have to define one to three axes per object in 
the corresponding object space: 

 

 

World space  

Body space 

Rigid body 

Constraint axes = 
Constraint space 

 

 

Hinge example: 

The hinge constraint tries to force two objects to share a common pivot point and an axis in world space: 

 

Body2 Body1 

Axis defined in 
body 1 space 

Pivot point defined 
in body 1 space 

Axis defined in 
body 2 space 

Pivot point defined 
in body 2 space 

6WDWLF�GHILQLWLRQ�
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2.7. Constraint Matrix: m_transform_os_ks 
 
 

For some constraints three axes and the pivot point are required. Three axes and a point actually do define a 
coordinate system, the constraint space (ks). You can store them in 4x4 transformation matrix by storing 
the first three axis as the first three columns and the pivot point as the forth column. Doing this, you get a 
matrix which transforms points from constraint space to object space (m_transform_os_ks). 

 

 

World space  

Body space 

Rigid body 

Constraint axes = 
Constraint space 

x 

y 

z 

x’ 
z‘ 

y’ 

The constraint axis x points in the negative y 
direction in object space and therefore has the 
coordinates (0,-1,0) in object space  

Pivot pont 

Constraint axis X’ in object space:  Vector3( 0, -1, 0) 
Constraint axis Y’ in object space:  Vector3( 0, 0, 1) 
Constraint axis Z’ in object space:  Vector3( 1, 0, 0) 
Pivot point in object space:              Vector3( 1,1,1) 

m_transform_os_ks 
 

0000

1010

1001

1100

−
 

Constraint axis 
become columns in 
the constraint space 
transform 

 

 

Given the constraint axes in world space (m_transform_ws_ks) and the body transform 
(m_transform_ws_os), you can calculate the local constraint matrix by: 

 

Transform m_transform_os_ws = m_transform_ws_os.getInverse(); 
Transform m_transform_os_ks = m_transform_os_ws * m_transform_ws_ks; 
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2.8. Angular Dashpots 
 
An Angular Dashpot is the rotational equivalent of a linear dashpot. An angular dashpot tries to align two 
objects so that they have the same orientation (with an optional offset). 

 

#include <hkdynamics/action/angulardashpot.h> 
 
RigidBody* box1 = … // get a box at position ( 1,2,3)  
RigidBody* box2 = … // get a box at position ( 4,5,6)  
 
//optional angular offset can be passed into as parameter 3 here 
AngularDashpot* d = new AngularDashpot(box1, box2); 
 
toolkit->m_defaultRigidCollection->addAction(d); 
 

 

The optional angular offset is a quaternion defining the relative orientation of the second body relative to 
the first. 

 

2.9. HingeConstraint 
 
This constraint allows you to simulate a hinge-like action between two bodies. You specify a line segment 
in body space for each body, with a position and a direction. The two lines then attempt to match position 
and direction, thereby creating an axis around which the two bodies can rotate. Hinges also have limit and 
friction parameters. Limits specify the maximum angle to which hinged bodies can rotate, which is useful 
for preventing interpenetration. Friction allows you to specify the velocity toward which the rotating bodies 
tend. Usually, friction has a value of zero, however specifying a non-zero value allows you to build cogs or 
similarly styled motors using the hinge constraint: 

 

 

 

In the following example, we constrain two slabs to be hinged around their end points. We specify both the 
common axis of rotation (here aligned with the Z-axis), and a point through which this.  

 

#include <hkdynamics/action/hingeconstraint.h> 
 
RigidBody* box1 = … // get a box at position (-2, 0, 0)  size (4,1,2) 
RigidBody* box2 = … // get a box at position ( 2, 0, 0)  size (4,1,2) 
 
// Ignore collisions for now 
toolkit->m_defaultCollisionDetector->disableCollision(box1, box2); 
 
// Create constraint 
HingeConstraint* c = new HingeConstraint(box1, box2); 
Vector3 midpoint = 0.5f * (box1->getPosition()+box2->getPosition()); 
 
// Specify rotation allowed through common point at ends and around Z-axis 
c->setAxisWorldSpace(midpoint, Vector3(0,0,1)); 
solver->addConstraint(c); 
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The constructor of the hinge constraint creates the m_transform_os_ks transforms the following way: 

1st column  is set to the hinge axis. 

2nd  column  is set perpendicular to the hinge axis in world space and then transformed to 
both object spaces. 

3rd  column  is set perpendicular to the hinge axis and the 2nd axis. 

That means that after construction, the angle used for the limits between the two objects is zero. 

 

2.10. WheelConstraint 
 

The car wheel is in essence a hinge with one extra free translation/suspension axis. This joint allows you to 
attach a wheel to a car. The rotation axis provides the axle of the wheel, allowing it to spin freely without 
limits. For convenience, you can also specify motor parameters from turning the wheel. The suspension 
axis works relative to the body of the car and allows vertical suspension movement. You can define limits 
and friction for the suspension part: 

 

Rotation (or hinge) axis 

Suspension (or translation) axis 

Steering axis 

 

For convenience the car wheel constraints allows for dynamic positioning of the rotation axis to allow for 
steering using the setSteeringAngle() function. To do this, the car constraint needs an additional steering 
axis. In most cases, the suspension and the steering axis will be the same axis. 

 

Note: See Vehicle SDK for an alternate method of creating vehicles. 

 

Note: At construction of the car, the wheel constraint assumes a steering angle of 0.0. 
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A simple example of how it might be used to build a car using a chassis and four wheels follows: 

 

#include <hkdynamics/action/Wheelconstraint.h> 
 
 
// Create chassis 
RigidBody* chassis = … // get a box position (0,1,0)  size (4,.5,1.5) mass 10 
 
Vector3 wheel_pos[4]; 
wheel_pos[0].set(1,1,1); 
wheel_pos[1].set(1,1,-1); 
wheel_pos[2].set(-1,1,1); 
wheel_pos[3].set(-1,1,-1); 
 
for(int i=0; i<4; ++i) 
{ 
 // Create a (square!) wheel 

RigidBody* wheel  = … // get a box pos wheel_pos[i]  size (1,1,1) mass 1 
 
 // Turn off collision detection 
 toolkit->m_defaultCollisionDetector->disableCollision(chassis, wheel); 
 
 WheelConstraint* c = new WheelConstraint(chassis, wheel); 
 
  // Specify where the wheel center should be, 
           // its spin axis and its suspension axis 
 
 c->attachWheel( 
        wheel_pos[i],     // the position in world space 
        Vector3(0,0,1),   // spin_axis in world space 
        Vector3(0,1,0) ); // suspension and steering axes in world space 
 
  // Set limits of vertical wheel movement 
           // (along suspension direction) 
 c->m_suspension_limit.setLimits(-.1f,.1f); 
 
 // Let’s add a motor as well 
    c->setWheelMotor(2,20);  // 
 
    solver->addConstraint(c); 
} 

 

During runtime you just have to: 

 

Real angle = joystick->getX(); 
WheelConstraint->setSteeringAngle(angle); 
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2.11. Spin Dashpots 
 

A spin dashpot is an old constraint, which was used to build cars. It is not recommended to use them, use 
the wheel constraints, or even better the vehicle SDK instead. 

Basically a spin dashpot is an angular constraint, which tries to keep directions defined by two objects 
being parallel. 

 

2.12. Suspension Dashpots 
 

Suspension dashpots are an old constraint, which was used to build cars. It is not recommended to use 
them, use the wheel constraints, or even better the vehicle SDK instead. 

Basically a suspension dashpot restricts the movement of the pivot point of a second object to move only 
on a ray defined in a reference object space. 

 

2.13. LimitedPointToPointConstraint 
 

The application for the limited point-to-point constraint is when two objects should maintain a fixed 
relative position and orientation, with some small degree of freedom in the orientation part. While the 
point-to-point constraint allows its constrained bodies to rotate freely about their contact point, the limited 
point-to-point constraint uses an oriented coordinate system on each body to adjust the orientations and 
positions of the constrained bodies. 

     

LimitedPointToPoint constraints 

You specify three axes and a pivot point (= forming the m_transform_os_ks  transform) for each body, 
expressed in body space coordinates. In addition, you must specify three angular limits (one for each axis), 
which represent the maximum degree of flexibility in rotation and twist between these two coordinate 
systems. The constraint then holds both bodies within angles you have specified in relation to the offset.  

Note: The constraint finds the current angle for one axis by trying to map the other two perpendicular 
constraint axis of the two bodies. 

Important note: The LimitedPointToPointConstraint only works if all angular limits are set, and the 
angular range is within [–pi/2 … pi/2]. For higher ranges the constraint might get unstable. If some angles 
do exceed pi/2 use the RagdollConstraint instead. 
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In the following example, we constrain two bar-like bodies to be joined together at their ends. In addition, 
we specify restrictions on the relative orientation of the bodies at this join. Since the offset Transforms are 
initially aligned (we specified no rotational component using setRotation(), hence internally they both 
default to  the identity), the three rotational limits corresponding to the difference in the two coordinate 
systems are aligned with the X, Y and Z axes respectively. 

Thus, setting m_angular_limits[0] corresponds to restricting the amount of “twist”. This is the rotation 
around the first axis of the constraint (in our example the X axes). Remember this is the first column in the 
m_transform_os_ks transform, transforming from constraint space into object space). 

Setting m_angular_limits[2] corresponds to restricting the amount of “bend” around the third axis (in our 
example the Z-axis). 

The second axis (in our example the Y-axis) has default limits of [0,0], hence permits no rotation.  

 

#include <hkdynamics/action/limitedpointtopointconstraint.h> 
 
RigidBody* box1 = … // get a box position (-2,0,0)  size (4,1,1) 
RigidBody* box2 = … // get a box position ( 2,0,0)  size (4,1,1) 
 
 // Ignore collisions for now 
toolkit->m_defaultCollisionDetector->disableCollision(box1, box2); 
 
 // Create constraint 
LimitedPointToPointConstraint* c =  
                           new LimitedPointToPointConstraint(box1, box2); 
 
 // Move the constrained points to the ends of the bars 
c->m_transform_os_ks[0].setTranslation(-2,0,0); // pivot point in box1 space 
c->m_transform_os_ks[1].setTranslation(2,0,0);  // pivot point in box2 space 
 
 // Expand angle limit around X to create a (restricted) twist  
c->m_angular_limits[0].set(-.7f,.7f); 
 
 // Expand angle limit around Z to create a (restricted) hinge  
c->m_angular_limits[2].set(-.7f,.7f); 
 
 
solver->addConstraint(c); 
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2.14. RagDollConstraint 
Location: <hkdynamics/action/ragdollconstraint.h> 

 

This is a rather sophisticated joint, which restricts the angular motion of an attached object (body 2) relative 
to a reference object (body 1), useful for the construction of limb joints for articulated figures such as 
people and animals: 

  

Ragdoll Constraint with Pivot Point in World Space 

 

In principle the rag doll constraint is a modified LimitedPointToPoint-Constraint. The 
main difference is that it allows for high ranges of angular limits. However, to achieve this 
stable constraint, certain algorithms are used, which uses the three coordinate axes in a 
non-symmetrical way. 

 

To restrict angular movements, the constraint solver:  

 

• Takes each object’s three axes, which defines the constraint space, 

• Transforms them into world space, 

• Compares them to calculate some angles 

• Uses these angles to restrict the angular movements. 

 

The most important axis for the rag doll constraint is called the twist axis. As this 
constraint allows some angular freedom, there are actually two twist axes, one defined per 
object.  
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2.15. The fast track to building rag doll constraints. 
As detailed earlier, you can define a coordinate system using a point and three axes. In order to build the 
constraint space coordinate system for a rag doll constraint, take the point to be the pivot point between the 
reference and attached bodies. The columns of the transform matrix, i.e. the axes of the constraint space, 
for this constraint are first twist, then cone, and finally plane. We now define the axes, beginning with the 
twist axis. Consider a n outstretched human arm; looking at it from the front: 

 

twist axis 

plane axis 

pivot point 

 
 

2.15.1. What is the twist axis? 
Consider the twist axis to be the “main” axis of the rag doll constraint. It is typically aligned with the 
“longest” axis of the body; a more rigorous interpretation of “longest” is to consider the twist axis to be 
aligned, either exactly or very closely, to the axis around which the rotational inertia is lowest. The stock 
example we use is an outstretched arm (as depicted diagrammatically, above). The twist axis runs the 
length of the arm. The angular limitations around the twist axis should be set between [-pi … pi]; 
diagrammatically, you should consider it as follows: 

 Upper limit 

Lower limit 
 

With the twist axis pointing up, and out of the page. 
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2.15.2. What is the plane axis? 
We now skip forward to the third axis, the plane axis. To decide which axis this is, search for the smaller 
range of angular freedom of the other two axes. Now, even though this limit restricts movement of the twist 
axis to lie between two planes, the limits on this axis are actually angular limits, as shown below. The 
planes are offset by a distance of  

d1 = cos(plane angle 1)  

and 

d2 = cos(plane angle 2)  

from the twist axis, with the direction of the offset being along the plane axis. 

 

 

twist axis 

plane axis 

plane angle 2 

plane angle 1 

d1 

d2 

 

The plane angles should be in the range [ -0.4 * pi … 0.4*pi ]. 
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2.15.3. What is the cone axis? 
The second axis restricts the twist axis axis to movement within a cone. We are now looking top down at 
the arm along the plane axis, rather than at its front: 

 

cone axis 

twist axis 

 

The distance of the cone plane, d, below, is calculated as  

d = 1.0 – cos(cone angle) 

The cone angle can also be greater than pi / 2, as shown below. 

 
cone axis 

twist axis 

cone angle 

d 

 

As the cone plane only restricts the angular movement of the bodies, the cones angular limits must be 
symmetric;  

However, for convenience, you can specify angular limits that are not symmetric, and the constraint will 
rotate the twist axis of the first body around the plane axis so that the cone limits are symmetric. 
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2.15.4. Some restrictions 
• The difference between the cone limits should be at least 0.1 * pi 

• The sum of both cone limits should be in the range [-pi / 2 .. pi / 2]. The closer the 
sum is to zero, the better. 

2.15.5. What it should look like! 
 
The twist axis is constrained to lie within a clipped cone defined by two cone angles and clipping planes: 

 

Ragdoll Constraint Cone with Clipping Planes 

2.15.6. Easy steps to setup a RagdollConstraint 
 
With all that in mind, here’s a quick list of all of the things you need to be aware of when setting up a 
ragdoll constraint: if you just follow some easy steps, it’s not as difficult as it might appear. 

• Place all objects of the rag doll in your world in a reasonable state (E.g. a human 
figure rag doll with limbs outstretched). 

• For each joint, the heavier or more central object will be object 1, the other object 2. 

• Set the twist axis parallel to the longest extends of the thinner object. 

• Set the twist limits as you wish. 

• Search for the smaller range of angular freedom of the other two axes. This axis will 
become the plane axis. Set the angular plane limits accordingly. 
 
Note: the plane axis is perpendicular to the rotation axis you want to limit. 

• Set the remaining cone axis to twistAxis.cross(planeAxis). Set the angular cone 
limits accordingly. 
 
Note: the cone axis is perpendicular to the rotation axis you want to limit.  
If you do not want to limit the movement using the cone limits, just set the limits to 
(-10 * pi, 10 * pi). 
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2.15.7. Ragdoll Source code example 
Outstretch your left arm in such a way that if you turn your head 90 degrees to the left, you are looking 
straight along it with the palm facing downwards (assuming, of course, you are looking straight ahead at 
this document!). Imagine a pivot point at your elbow. How would you model the freedom that this joint has 
to move using a rag doll constraint? 
 
First of all, you need to find the twist axis. This is easy in this case, as it is the axis running the length of 
your arm. If you stood facing forward at the origin of a coordinate system, it would extend along the x-axis. 
Hence, the twist axis is the x-axis. There is very little play in this joint for twisting, hence we’ll set a tight 
limit of –0.1 .. 0.1 rads (it’s debatable whether you can actually twist about it at all; maybe I just have 
strange arms!). 
 
Now, you can rotate your forearm around the y-axis at your elbow in a clockwise direction almost a full 
half circle (it is stopped by your upper arm) in one direction, and not at all in the other. One of the features 
of the rag doll constraint is that the cone limits can be greater than PI/2 rads (unlike a limited point to point 
constraint). Hence we would like to allow the cone limits to restrict movement around the y-axis; and 
because the twist axis is the x-axis, this means that the cone axis will be the z-axis. Note also that the limits 
specified for this axis in the example below are not symmetric (see 2.4); the constraint self-orients to 
compensate for this. We restrict it to -3.0 .. 0.0 rads (almost a half circle, specified anticlockwise) This 
leaves the y-axis for the plane axis, which we will fully restrict. 
 
We now construct this joint using a rag doll constraint. 
 

#include <hkdynamics/action/ragdollconstraint.h> 
 
RigidBody* box1 = .. // get a box position (-2,0,0) size (4,1,1) 
RigidBody* box2 = .. // get a box position ( 2,0,0) size (4,1,1) 
 
// Ignore collisions for now 
toolkit->m_defaultCollisionDetector->disableCollision(box1, box2); 
 
// Create constraint 
RagdollConstraint* c = new RagdollConstraint(box1, box2); 
 
// We want twist (0) around the x-axis, plane (2) deviated from the y-axis 
// and cone (1) deviated from the z-axis. So the transforms look like this: 
// (transforms are column major, so the columns read axis-axis-axis-trans, 
// and the two objects are aligned along the twist axis in world space, so 
// the constraint transforms are the same for both) 
 
c->m_transform_os_ks[0].setCol(0, 1.0f, 0.0f, 0.0f); 
c->m_transform_os_ks[0].setCol(1, 0.0f, 0.0f, 1.0f); 
c->m_transform_os_ks[0].setCol(2, 0.0f, 1.0f, 0.0f); 
 
c->m_transform_os_ks[1].setCol(0, 1.0f, 0.0f, 0.0f); 
c->m_transform_os_ks[1].setCol(1, 0.0f, 0.0f, 1.0f); 
c->m_transform_os_ks[1].setCol(2, 0.0f, 1.0f, 0.0f); 
 
// Move the constrained points to the ends of the bars (pp – pivot point) 
c->m_transform_os_ks[0].setTranslation(-2.0f, 0.0f, 0.0f); // pp in box1 space 
c->m_transform_os_ks[1].setTranslation( 2.0f, 0.0f, 0.0f); // pp in box2 space 
 
// Restrict limit around X (angular limit of twist axis) 
// Allow only a small amount of rotation around the twist 
// axis 
c->m_limits[0].setLimits(-0.1f, 0.1f); 
 
// Expand limit around Y (angular limit of cone axis) 
// Note angular limit greater then PI/2 (feature of the 
// ragdoll constraint as against limited point to point) 
c->m_limits[1].setLimits(-3.0f, 0.0f); 
 
// Restrict limit around z (angular limit of plane axis) 
c->m_limits[2].setLimits( 0.0f, 0.0f); 
 
solver->addConstraint(c); 
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3. Behind the Curtain of Constraints 

3.1. Constraint Solvers 
To use constraints in a system, you need two things: 

• One or more constraints, supplied with all its parameters. The constraint classes store 
the data required for the corresponding constraint type. Each inherits from the class 
Constraint. 

• A constraint solver, which ensures that the constraints are met. Each inherits from 
the ConstraintSolver class. 

A constraint solver simultaneously solves and maintains a set of constraints for a set of rigid bodies. It is 
important that all constraints involving these bodies are solved at the same time, so they should all be added 
to the same solver.  

You can use several solvers for one multi body system, however some constraint might get partially 
overridden by the second solver and therefore get very springy: 

 

  

FastConstraintSolver 2 

FastConstraintSolver 1 

Springy constraint 
(Gets overridden by 
solver 2) 

 

For example, if constraints are used to create hinge joints for an articulated character, then they should all 
be added to the same solver. If in addition you then constrain the character to the ground using another 
constraint, you must also add this to the same solver.  

The set of all constraints that affect a set of associated rigid bodies is referred to as a constraint system. 
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3.2. Reasons for Instability of Constraints 
Simulating constraints is difficult and a hard simulation problem to solve. For practical reasons a constraint 
solver has certain stability limitations: 

I. The forces involved in solving a constraint system are two high and lead to frequency 
of object movements higher than the simulation frequency. E.g. imagine simulating a 
swinging short rope, which gets pulled harder and harder. In real life you will hear a 
higher and higher pitched sound, in a physical simulation with 30 physical steps per 
second pulling the simulated rope leads to strange artefacts like instability or soft 
constraints:  

 

Swinging exploding rope (with three balls) 
 

II. The constraint solver solves a set of linear equation. In the physical simulation 
however, angular movement leads to non-linear behaviour. So if the time step is 
relatively big compared to the angular velocities of your object, the error introduced 
may lead to instability.  

 
 

Linear projected 
movement 

Real movement 

Pendulum 

Simulation 
error 
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3.3. Getting stable constraints 
 
If you want to make your constraints more stable just follow the next simple rules (start with the top rule 
and only if you do not get your expected results, try the next): 

• Use constraints instead of dashpots, because 
constraints automatically calculate the maximum allowed forces (see Reasons for 
Instability of Constraints I). 

• Use Euler integrator. All constraints are optimised for Euler integration; other 
integrators need more CPU with less good results. 

• If you use dashpots, decrease the strength and dampening values. 

• Avoid low rotation inertia (!!!!) because 
low inertia means high angular velocity, which leads to high simulation errors (See 
Reasons for Instability of Constraints II). 
Note: Long and thin objects have one axis with a very low inertia. Try to artificially 
increase the inertia around this axis: 
Rule:  

o In a multi body system, the minimum rotation inertia of one object should 
not be less then 1/10th of the maximum rotation inertia of the same object. 

o If a thin objects is constraint between two other big objects, the minimum 
rotation inertia of one object should not be less then 1/4th of the maximum 
rotation inertia of the same object 

• If your constraints appear to be very soft, try to avoid constraining light objects 
between two heavy objects. Just make the light object at least as heavy as a 1/10th of 
the mass of the heavier objects. 

• If you use create a big constraint system with many objects constraint together, 
decrease the tau value of all constraints involved: 
Rule: tau ~ 1.0/sqrt(number of constraints in a system). 

• Increase rotation inertia. 

• Decrease the dampening of the constraints slightly (to 0.6f). 

• Increase simulation frequency by increasing the number of substeps. 

• Contact havok 

 

Note: these rules are rather strict. If you care more about physical accuracy, than you can either experiment 
with your system to find the real limits or if possible just increase the number of substeps. 
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Example of a chain of objects with some hints to get a very stable solution: 

 

How to get a very stable chain of objects 

 

 

3.4. CPU requirements 
All dashpots and constraints in Havok are O(n) constraints. That means that 100 constraints do need 10 
times more CPU than 10 constraints. As a result, there is no worse case CPU behaviour if many objects are 
constraint together. There are simple rules about the CPU costs of constraints: 

• In principle, the more degrees of freedom a constraint restricts, the more expensive it 
gets. A hinge with one degree of freedom restricts the remaining 5 degrees and is 
about as twice as expensive as point-to-point constraint. 

• Using limits and friction instead of a fixed axis is slightly more expensive. So using 
a rag doll constraint to simulate a hinge leads to an about 25% slower solution. 

• If only one constraint is added to a FastConstraintSolver, this solver can actually 
perform some shortcuts and gets about twice as fast compared to solving a set of 
constraints. 

• Dashpots are about 4 times faster than constraints. 

3.5. Constraint Limitations 
 
The number of constraints in one FastConstraintSolver is limited. 

In general, the vehicle SDK is a better way to construct four wheeled vehicles, especially racing or fast 
moving vehicles.   Take a look at the Vehicle SDK User Guide document for more information. 

 

 

 

  

Increase minimum rotation inertia to be about 
1/2th of the max. rotation inerta. 
Set mass to 10 

Box 1 (mass 3) 

Box 2 (mass 50) 

Box 3 (mass 1) 

Box 4 (mass 3) 

Ok 

Increase rotation inertia by factor 1.5 

Increase minimum rotation inertia to be about 
1/5th of the max. rotation inerta. 

Set the constraint tau to 0.5 and dampening to 1.0f 


