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THRESHOLDS OF SCIENCE

GENERAL FOREWORD

THERE are many men and women who, from lack of

opportunity or some other reason, have grown up in

ignorance of the elementary laws of science. They feel

themselves continually handicapped by this ignorance.
Their critical faculty is eager to submit, alike old estab-

lished beliefs and revolutionary doctrines, to the test of

science. But they lack the necessary knowledge.

Equally serious is the fact that another generation is

at this moment growing up to a similar ignorance. The

child, between the ages of six and twelve, lives in a wonder-

land of discovery ; he is for ever asking questions, seeking

explanations of natural phenomena. It is because many
parents have resorted to sentimental evasion in their

replies to these questionings, and because children are

often allowed either to blunder on natural truths for

themselves or to remain unenlightened, that there

exists the body of men and women already described.

On all sides intelligent people are demanding something
more concrete than theory ; on all sides they are turning
to science for proof and guidance.
To meet this double need the need of the man who

would teach himself the elements of science, and the

need of the child who shows himself every day eager to

have them taught him is the aim of the " Thresholds of

Science" series.

This series consists of short, simply written monographs
by competent authorities, dealing with every branch of

science mathematics, zoology, chemistry and the like.

They are well illustrated, and issued at the cheapest
possible price. When they were first published in France

they met with immediate success, showing that science

t
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is not necessarily dull or fenced off by a barrier of

technical jargon. Of course, specialisation in this as in

other subjects is not for everyone, but the publication of

this se.-ies of books enables any man or we man to learn,

any child to be taught, to pass with understanding and

safety the " Thresholds of Science."
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MATHEMATICS
1. Strokes.

ONE of the first faculties which we should develop in

the child, from the age when his cerebral activity wakens,
is that of drawing. Nearly always, he has the instinctive

taste for it, and we must encourage him in it, long before

undertaking to teach him writing or reading.
With this object, we should put a slate or a sheet of

squared paper in his hands as a beginning, and place a

pencil (when he is cleverer, a pen) between his little

fingers and make him trace strokes at first ; not the

classical sloping strokes, preparatory to sloping writing,
but little lines following the direction of the lines on the

squared paper, and very regularly spaced.

Drawing these lines first from top to bottom, then after

some time from left to right, the pupil will thus make
vertical strokes (Fig. 1) and horizontal strokes (Fig. 2).

FIG. 1. Vertical strokes.

I I I I

FIG. 2. Horizontal strokes.

M.
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Gradually we will teach him to draw long or short

strokes, to put them between the lines of the squared

paper, to draw new ones from them which are oblique,
in every possible direction. Then we will make him form

figures composed of groups of long or short strokes.

We will say something about that below.

Later, we will make him draw figures or begin curves,
either with instruments (ruler, set square, compass) or

freehand. These exercises, which develop skill of hand
and straightness of eye, should never be left off while

the educative period lasts. We only speak of them here

in so far as they are indispensable for what will come
after : but, even from this point of view, we must insist

on the fact that they should be suggested and never forced.

If they cease to be a game, the object will be lost. Let

the child scribble on his slate and spoil some sheets of

paper ; help him with your advice, which he will never

fail to ask ; but when he has had enough, let him do

something else. That is a condition which is absolutely

necessary to develop the spirit of initiative in him, to keep

up his natural curiosity and to avoid fatigue and boredom.

It would need a whole book to deal with this first

teaching of drawing, on which I have been obliged to

say a few words ; others would be needed on writing and
on reading, which should only come afterwards and are

outside my subject. But all these teachings, applied to

childhood, should always be inspired by the same funda-

mental principle, that is, to keep the appearance of games,
to respect the child's liberty and to give him the illusion

(if it is one) that he himself discovers the truths put before

his eyes. As to the age at which this first mathematical

initiation should commence, starting with that of drawing,
and then running parallel with it, there is no absolute

rule to be laid down. But we can say that as a rule it is

very rare if a child of three and a half to four years old

does not already show a taste for handling a pencil : and
I assert that at ten or eleven, it should be easy to have
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taught him all the matters explained in what follows,

if his brain is normally organised.
More than one may find pleasure, after some years,

in taking up this little book which is not meant for him

now. His mind, perfected by further studies and ready
at conscious reasoning, will certainly find in it matter for

useful reflection.

To finish with these generalities and not to repeat my-
self unnecessarily, I must point out to families and teachers

who are to be my readers the greatest snare to be avoided

in the first teaching of childhood : this is the abuse of

exercise of the memory, still so general in actual practice,

and so pernicious. By teaching words to a child and mak-

ing him repeat them, we deform his brain, we kill his

natural gifts, and bring up generations of beings without

initiative, without curiosity and without will, enfeebled,

depressed, and stuffed up with formulae which are not

understood.

If you love your children, if you love those confided

to you, if you wish them to become good and strong,

go back to the principles of the great minds and hearts

who were named La Chalotais,
1 Frocbel 2 and Pestalozzi.3

If the earth was peopled with reasonable beings, these

benefactors of humanity would have their statues in every

country of the world, and their names would be graven in

letters of gold in every school.

1 La Chalotais, French magistrate, born at Rennes (1701 1785),
author of

"
Essay on National Education."

2 Frcebel, German pedagogue, born at Oberweissbach (1782 1852),
founder of the

"
Kindergartens."

8
Pestalozzi, Swiss educator, born at Zurich (1746 1827) ; his

method served as a basis for Fichte, as a means of raising Germany.

B 2
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2. One to Ten.

Once the habit has begun of drawing strokes regularly
and quickly enough he will learn to count them as he

makes them, pronouncing the names, one, two, three,

four, five, six, seven, eight, nine, ten, successively.

Then he will make groups of strokes, separating them
from one another by spaces, and he will have (Figs. 3 and

4) diagrams which he will read :

FIG. 3.

I II III I I I I I I I I I

one two three four five

eight

ten

FIG. 4.

one two three four five six seven eight nine ten

One, two, ... ten vertical strokes, for Fig. 3 ;

One, two, . . . ten horizontal strokes, for Fig. 4.
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Then he will put down groups of beans, of grains of

corn, of counters, and of any other things, and they are

to be counted :

One, two, . . . ten beans, grains of corn, etc.

We will now suppose that these objects are replaced

by sheep, dogs, men, etc., and after these exercises are

repeated often enough and are familiar to the child, we
can tell him that the expressions he uses, for instance,

three strokes, six grains of corn, eight sheep, are called

concrete numbers.

Having considered a group of five strokes, another of

five beans, another of five counters, having imagined
another of five dogs or five trees, we will tell him that in

these different cases he is always saying the same word

five; we will tell that this word, without anything else,

represents what is called an abstract number, and that he

can use it to denote any other group of five things ;

donkeys, horses, houses, etc.

It will not be long before the child can count without any
hesitation from one to ten in any things at all. It will

be well also to accustom him as soon as possible to grasp
at a glance the number of things shown to him quickly,
without having to count them one by one : to do this,

he must start with very small numbers and go on

gradually.

3. Matches or Sticks; Bundles and Faggots.

Beyond the different things just mentioned, to help the

child to understand the idea of concrete numbers, which
can be infinitely varied, there are others which we can

hardly recommend too highly, whose use is, in our opinion,

indispensable. These are little wooden sticks, exactly
like ordinary wood matches except that they have no
inflammable chemical preparation. We will sometimes
call them matches, because of this resemblance, and these
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matches which do not strike can be considered models

of the strokes drawn on the slate or in the copy-book.

They should all be the same length.

Having a heap of these sticks before him, and knowing
quite well how to count up to ten, the child will put aside

ten, one after the other, and will put them together in a

very regular little bundle, and surround them with one

of those little rubber bands which are so convenient and
so widely used.

We will show him then that this bundle containing ten

sticks can be called a
"
ten

"
of sticks.

Then he will make up a fair number of similar bundles.

We will see that he has not made a mistake : if he has we
will make him put it right.

Then showing him two bundles, we will tell him that

in these two bundles taken together, the number of sticks

which we will show him by untying the bundles and tying
them up again is called twenty, and that thus :

One bundle is ten sticks,

Two bundles are twenty sticks.

Then taking three, four, . . . nine bundles, and doing
the same thing, we will show him that

Three bundles are thirty sticks

Four forty

Five fifty

Six sixty
Seven seventy

Eight eighty
Nine ninety

Having learnt all this, to conclude we will take ten

bundles, and we will put them together by a larger rubber

band, which will give us a faggot. We will then explain
that a faggot is a hundred sticks, that the number of sticks

in a faggot is called a hundred : he will verify that as ten

bundles make a faggot, ten tens are a hundred.
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4. One to a Hundred.

Taking a handful of sticks at random (less than a

hundred) we will tell the child that we are going to count

them with him. To do this, he must make bundles, as

many as possible ; he will come to a point at which he

will not have enough sticks left to make a bundle. Then,

putting all the made-up bundles at his left, and the sticks

left over at his right, we will make him say the two
numbers separately ; then, putting them together, he

will have named the number of sticks we gave him.

For example, if he has made three bundles, and eight

sticks are left over, he will say, looking to the left,
"
thirty

"
; looking to the right,

"
eight

"
; then, without

a stop,
"
thirty-eight."

Having repeated this exercise very often, with groups
of sticks taken at chance, we will take a faggot to pieces,

and propose to count the sticks successively one by one.

We will begin by counting one, two, three, ... to

ten. Then, having a bundle, we will place it on the left

(without even needing to tie it) and go on, saying :

One-ten ; two-ten l
; thirteen ; fourteen ; fifteen;

Sixteen; seventeen; eighteen; nineteen.

At last a fresh stick finishes a second bundle, which

we put on the left, by the side of the first, saying twenty ;

we go on in the same way to the ninth bundle, then to

the ninth stick left, which we touch saying ninety-nine ;

finally we remove the last, finishing the tenth bundle,
which we put on the left, by the side of the nine, saying
the word hundred.

There is nothing to prevent us telling the young pupil
then that we have just taught him numeration from one

1 Here we must not say
"
eleven, twelve." These names can be learnt

without any trouble at the right moment. It is useless to load the

memory with them now. Even if the child in his logic says
"
three-

ten, four-ten," etc., there is no need to correct him yet.
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to a hundred ; we can even tell him that when he says
"
seventy-three

" matches or sticks, he is performing spoken
numeration, and that, when he puts seven bundles to the

left and three sticks to the right, he is performing
numeration by figures. He will be all the more flattered

to feel himself so wise since he does not yet know how to

write a letter or a figure, or to read, b, a, ba. But he

draws strokes, he has eyes, he uses them to see, and

begins to understand what he sees and what he is doing.
So now we know how to count sticks from one to a

hundred. We must accustom ourselves to count any
other things in the same way, and then to count them in

our heads at once without having them before our eyes.

That is the beginning of mental calculation, so important
in practice and so easy to make children practise from

the earliest age, if we begin with very simple things and

go on gradually.
This is not yet all ; starting from one, we must become

accustomed to count by twos :

One, three, ... to ninety-nine,

and explain that all these numbers are odd numbers.

We must do the same, starting from two :

Two, four, six, ... to a hundred,

and we will have the even numbers. We will then become
accustomed to count by threes, by fours, starting at first

from one, and then from any number.

All these exercises are to be done first with things

preferably sticks then mentally.
In short, this manipulation of numbers, from one to a

hundred, can be varied indefinitely, for we must not fear

prolonging it as long as it does not become tedious and

as Jong as it interests the child. It will be well to come
back to it from time to time, even when he has penetrated
a little further in his introduction to science.
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5. The Addition Table.

Let us arrange on a table, from left to right, one,

two, ... to nine sticks, separating these nine groups
from one another. Below the single stick, let us put two

and make a column, starting two, three, to ten. A second

column made in the same way will contain three, four, . . .

one-ten sticks ; and going on in the same way we will

have nine columns ; the last group of the ninth column

will be of eighteen sticks.

Now is the moment to come back and use our skill in

drawing and our great aptitude in tracing strokes. Only,
as it is troublesome to draw
the ten strokes representing
the sticks in a bundle, we
will make a picture of a

bundle by a thick stroke,

stronger than the others,

made of two parts, H, with

a little bar to recall the

presence of the rubber band.

Thus we have now begun
to know how to write num-
bers with strokes, and
in this way copying the

figure as we are going to

explain, we will have Fig. 5, at least partly. To finish

it, we will put one, two, . . . nine strokes on the left

of the two, three, . . . ten of the first column; finally,

we will separate this new column by a vertical line from

the rest of the figure, and we will also separate the first

row by a horizontal line.

The figure we have thus obtained is an addition table ;

we will soon see why it is so called.

It lends itself to several interesting remarks which

the maker will partly find out. First, all the numbers
in the same slanting line, rising from left to right, are the

Kin

FIG. 5.
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same ; further, all the numbers, read from left to right

in a horizontal line, or from top to bottom in a column,
are the numbers counted one by one ; finally, the numbers

in the same slanting line going down from left to right, if

read downwards, are the numbers counted two by two.

These are sometimes even, sometimes odd.

Nothing stops us from reading all these numbers in

the reverse order, which will teach us to say the numbers

fluently, one by one, or two by two, in the direction

opposite to the natural order. There is still a very

important exercise of which we have not yet spoken, and

which we will now begin with small numbers ; this will not

present any serious difficulty.

6. Sums.

Let us take two heaps of beans (or other things) and

count them both. If we put them all into one heap,
how many shall we have ? For this, we have only to count

again the heap made by mixing the other two. But
this would be lengthy and wearisome, and it would be

time lost.

We will explain that there is a quicker way of getting
the result, that we will do it by an operation called

addition, and that the number of things in the big heap,
which we want to find, is called the sum or total.

Taking numbers smaller than ten, and looking again
at Fig. 5, we notice that it gives all the sums of two heaps,
and we will invite the child to try and find this out. We
will do this, repeating these exercises as often as possible

and making him count the sum itself when he does not

find it.

Even before this addition table is completely fixed in

the memory, we will take any two numbers chosen so

that their sum is less than a hundred and we will count

them both separately. We will then represent them by
sticks ; suppose they are thirty-four and twenty-three.
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The first number is made up of three bundles and four

sticks ; the other, of two bundles and three sticks, is

placed below bundles under bundles, on the left, sticks

under sticks, on the right.

We will then ask the child to say how many are made by
four and three sticks ; he will answer "

seven," helping him-

self if necessary by the addition table, and he will place
seven sticks a little lower down. So, how many do three

and two bundles make ? Five bundles, which we will

place below the bundles. We have thus the total, five

bundles, seven sticks, or fifty-seven sticks.

We will begin again with other numbers, taking those

where there are only bundles and no sticks, like sixty,

twenty, eighty ; others where there are no bundles,

numbers less than ten ; but so that each sum of bundles

or sticks is always less than ten.

When we have reached this point, we will take other

numbers where this is not so ; for instance, forty-nine
and twenty-five.

The operation is performed thus :

Four bundles Nine sticks

Two bundles Five sticks

We have then nine and five, or fourteen sticks ; this

gives us a bundle which we put under the bundles and
four sticks. Then counting the bundles, beginning with

that we have just made, we have one and four, five ;

five and two bundles, seven. The total is thus seven

bundles and four sticks, or seventy-four.
This exercise should be repeated, renewed with different

examples, so that it will interest the child without boring
him.

Then, coming to additions of several numbers, we will

proceed in the same way (always arranging that the total

is less than a hundred), and we will see that thus we find
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the number formed by joining several heaps, when we
know the number in each heap.

1

Repeat these exercises on a crowd of examples as long
as they do not cause fatigue or boredom. If the child

seerns to be at all troublesome, the punishment should

consist in a threat carried out for several days not to

go gn showing him the game of sticks, counters, etc.,

which he has begun to learn. Let this device be used

with some skill and we will see that it is not hard to lead

the offenders back to their studies by their own wishes^

Only, do not pronounce in their ears the unfortunate

word "
study," which might frighten them.

7. Subtraction.

I have a big heap of counters, eighty-seven let us say ;

I pick up or take away a few which I count : I find there

are twenty-five. How many are left ? To find that is to

do a subtraction ; the result is the remainder or difference ;

we notice that if we put back the remainder to the number
from which we have taken it we make once more the

big heap, by which I mean the number from which I

subtract. To find the difference, first let us write the

larger number, eighty-seven, with little sticks :

Eight bundles Seven little sticks,

and, underneath, the smaller one, twenty-five :

Two bundles Five little sticks,

taking great care to put the bundles to the left, the little

sticks to the right, and to put the little sticks under each

other and the bundles under each other. From the

larger number I take away five little sticks ; I shall have

1 These exercises will oblige the child to learn, beyond the addition

table, how to add quickly a number less than ten to a number less than
a hundred ; for instance, sixty-eight and five, seventy-three. With
a little patience this result will be obtained by practice quickly enough.
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two left. I take away two bundles, and six will remain.

Then the remainder will be

Six bundles Two little sticks,

or sixty-two little sticks.

Now we are able to subtract (only doing it with

numbers less than ten), since we have taken away five

from seven, and two from eight. But it isn't always so

easy ! For instance, the big heap may count up to fifty-

two, and what we wish to take away may be eighteen,
which is certainly less. Arranging them as. before we
have

Five bundles Two little sticks ;

One bundle Eight little sticks.

We cannot take away eight sticks from two. So from

among the five bundles we take one which we put to the

right with the two sticks. Whether we undo it or not

we can see very well that now we have ten-two sticks to

the right, and only four bundles to the left instead of

five. Now from the ten-two little sticks at the right we
shall take away eight. We shall have four left j from
the four bundles at the left we take away one : there

are three left. The remainder then is

Three bundles Four little sticks,

or thirty-four.

We must know how to subtract a number less than ten

from a number larger than ten, but which will be always
less than twenty. By multiplying these exercises many
times, and by varying them as much as possible, this sub-

traction (which has to be learnt) will be remembered by the

pupil ; but above all, do not cause them to be learnt by
heart and recited. Do them all the time instead : this

is much more effective. We must take care always to

take for the larger number one less than a hundred,
because at present we cannot count beyond that.
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8. Thousands and Millions.

Up to now we know how to count up to one hundred. It

is a big number if we consider the age of a person in years ;

a man aged one hundred is very old, and centenarians are

very rare. But it is a very little number if we count grains
of corn ; a heap of a hundred grains of corn is not at all

big, and would not be sufficient to feed a child for a day,
so that it is impossible to stop there, and we shall be obliged
to climb still further up the ladder, which will not, however,
be difficult.

We have got up to one hundred by grouping the little

sticks in bundles of ten, and grouping ten bundles of those

in a faggot, which contains one hundred little sticks.

Let us put together ten faggots in a box, then with ten such

boxes let us form a bale, ten bales can be put together in

a basket, with ten baskets we will make a case, with ten

such cases we will make a wagon-load, with ten wagon-
loads a car-load, and with ten car-loads a train.

Going all over this, we are going to give the names of

the numbers that we obtain in this manner.

A match or a stick is what we will call a simple unit.

In a bundle we have ten matches, or one set of ten.

In a faggot of ten bundles, one hundred matches, or a
set of one hundred.

In a box of ten faggots, a thousand matches.

In a bale of ten boxes, ten thousand matches or one ten

of thousands.

In a basket of ten bales, one hundred thousand or one
hundred of thousands.

In a case of ten baskets, a million.

In a wagon-load of ten cases, ten millions, or one ten

of millions.

In a car-load of ten wagon-loads, one hundred millions,

or a hundred of millions.

In a train of ten car-loads, one thousand millions.

We might go on as long as we liked, but the number
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a thousand millions at which we have arrived, is large

enough for ordinary use. We should have an idea of its

size if we placed ordinary wooden matches, one after

another, to the number of one thousand millions ; the total

length would be considerably more than the circumference

of the earth.

Trying to count a thousand million matches one by one,

supposing that we took a second for each, and occupying in

this counting ten hours a day, we would take more than

seventy-six years. This would perhaps be rather long,

not very amusing, and only slightly instructive.

No, if we want to count a big heap of little sticks, we
will make bundles of them, and we will put to the right
the little sticks that are left over ; once the bundles are

made, perhaps there may be three little sticks. We will

now make faggots with our bundles, making them up in

tens ; suppose there remain eight bundles, we will place
them to the left of the three little sticks ; we will count

our faggots in tens to make boxes of them. Five faggots
are left, we place them to the left of the eight bundles

and counting our boxes we find six of them. We put
them to the left of the five faggots and we have thus

the number of little sticks : six boxes, five faggots,

eight bundles, three little sticks ; or six thousand five

hundred and eighty-three little sticks. With nothing
but bundles and faggots we shall be able to count up to a

thousand, and form all the numbers up to that, never for-

getting that faggot, bundle, single little stick mean

respectively
a hundred, ten, one, little sticks.

If in the number that we wish to unite there are no

single little sticks, or no bundles, that will not make any
difference. For instance,

Eight faggots, six bundles,

Will contain eight hundred and sixty little sticks, and
Five faggots, three little sticks

Will contain five hundred and three.
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It will be necessary to have numbers under a thousand
formed like this, and to have performed many additions

and subtractions, exactly as it has been shown before, but

extending the method of procedure as far as faggots
instead of keeping to bundles.

It is advisable to notice that we often meet the same

numbers, ten and hundred, or tens and hundreds. Thus :

Little stick
|

( one
Bundle I mean

-j

one ten

Faggot j I one, hundred

Box
|

f one thousand
Bale ! one ten of thousands

Basket { one hundred of thousands

Case
1

f one million

Wagon-load
-j

one ten of millions

Car-load [ one hundred of millions

A number of thousands or of millions will be reckoned

then as if we were counting simple little sticks from one

to a thousand. Thus :

Three car-loads Two wagon-loads Seven cases

One basket (no bales) Nine boxes

Four faggots Five bundles

will be a number of little sticks which will express

Three hundred and twenty-seven millions"! ,. ,

One hundred and nine thousand . ,

Four hundred and fifty

We could have some of them counted like that, but

without insisting upon the large numbers for the moment,
and applying ourselves particularly to the bundles, and

faggots, going no further than the boxes at the very most.

Always, in what has gone before, we have taken care

to place the little sticks single ones to the right, the

bundles tens to the left ; the faggots hundreds to

the left of the bundles, and so on. Strictly speaking, we
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ought to notice that this is unnecessary, but it is most

convenient, and it is a good thing to keep to this arrange-
ment always, because the calculation is done in order.

A little later, the child, having been accustomed to this

habit, will find it natural ; this will be valuable, as it will

be indispensable when calculating. To form effectively,

with little sticks, all the numbers of which we have just

spoken, and of which it is a good thing to speak to settle

the child's mind, we must find something rather heavy,
and very easy to place on a table, or on a sheet of

paper, even before making it up into car-loads. We are

going to see now how we can simplify things, and show
the young mathematician who cannot either read or

write fluently that it is perfectly easy to manage with

his fingers the enormous numbers with which he has to

deal.

9. Coloured Counters.

It is very disagreeable to be so encumbered, as soon

as we want to count a thousand matches, by our bundles

and faggots. As we know already that numbers can

be represented by any means, let us replace our matches

by white counters. That does not alter our calculations

nor the manner of doing them. Now, let us change our

bundles for red counters ; they will be really more con-

venient to manage, and we can always replace a red by ten

white ones if it is necessary. To carry it still further,

instead of faggots we will put orange counters ; instead

of boxes, yellow counters ; instead of bales, green counters;

instead of baskets, blue counters ; instead of cases,

indigo counters ; instead of wagon-loads, violet counters ;

instead of car-loads, black counters ; and finally, instead

of trains, long counters white ones.

The objects and the numbers correspond in this manner :

(Trains,

car-loads, wagon-loads, cases,

baskets, bales, boxes, faggots, bundles

and matches.

M. C
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Counters

Numbers

jLong, black, violet, indigo, blue, green,
( yellow, orange, red, white.

f Thousands of millions, hundreds of

millions, tens of millions, millions,

j

hundreds of thousands, tens of thou-

( sands, thousands, hundreds, tens, units.

Nothing hinders us then from writing all the numbers that

we require up to a thousand millions, and even further

than that, with our little counters, without being compelled
to use cases, car-loads, and even trains ; and it is equally
in our power, if that will interest us, to add and subtract.

It will be necessary, though, always to remember that a

red counter is equal to ten white, an orange counter to

ten red, and so on to the end.

It might seem that for white counters, we might

put cents, then replace the red counters by dimes,
and continue like that ; but that would become awkward
and cumbersome, and we would be obliged to have

a nice little fortune ; because then, to represent
thousands of millions, we would have to use coins

each worth ten million dollars. Money of that value

is not coined, it would be difficult to handle, and
it will be decidedly better to continue to use long white

counters to represent thousands of millions. It will also

be more economical ! Always, as we go higher, we will

put our counters carefully in order, beginning at the

right.

be
a
o
h5
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Simply by looking at each place we know what colour

ought to go there according to its place, starting from

the right.

10. Figures.

We know now how to write all the numbers, at least

as far as thousands of millions and it would be easy to

go on much further with our round counters of various

colours, and the long white counters. To do that, we
must put in each of the places where we see the white

or red counters, etc., or units, and tens, etc., a number of

counters which is always less than ten.

If by any means we could avoid reckoning these

counters every time, it would be much more convenient.

By this time the pupil has commenced to write a little,

and we can exercise him in tracing the characters which

will represent the first nine numbers, which we shall

need characters which are called "figures." These are :

One two three four five six seven eight nine1234567 8 9

Whether with a pencil or with a pen, he will become
accustomed to form them correctly without any flourish-

ing, with a single stroke, except perhaps the figures four

and five, which require two, making use of ruled slates

or ruled paper at first, so that the figures may be all

the same height. This is of the highest importance for

the future practice of calculations. Here is the type to

which we must keep :

12,34-5(3789
Just for curiosity we may notice here that all the

figures, according to some old authors, owe their origin
c2
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to the figure ^ (see below) ; but this is not well

authenticated.

12)345678 9

The important point is to make the pupil change the

numbers from little sticks into counters, and from counters

into figures, not taking very large numbers, especially to

begin with. We will notice that there is no necessity
to make our figures of different colours, because the place
which they occupy tells us quite easily whether they

represent simple units, tens, hundreds, etc., or counters

coloured white, red, orange, etc., or, again, little sticks,

bundles, faggots, etc.

But now comes an important observation. If there are

no counters at all of a certain colour, we don't put any-

thing there. There is only the place in the row to distin-

guish the figures ; if we put nothing there it would mix

everything up, because we ought to leave a space always
the same size, that of a figure, and we are not clever

enough to write always so regularly. Besides, if the

space happened to be in the unit place, how could we
know the meaning of the last figure to the right ? To

escape all these difficulties, we put, in empty spaces, a

round character, 0, that we call,
"
zero

' 51 which has no

value but fills up the place. Zero is a good modest

servant who guards the house, and who says to you :

" There is nobody here. As for me, I do not count,

I am nothing, but I hinder anybody from coming
in."

From now onward we can teach the pupil to write

quantities of numbers often using zero or
"
nought,"

and varying exercises of this kind. If there are several

pupils, one might exercise them together, rousing

1 The inventor of the zero is not known, but this clever idea seems to

be of Hindoo origin.
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their emulation a little, leading them on, more and

more, to read and write quickly and correctly, and

tell them at the end of the calculation that they now
understand written numeration.

Having arrived at this stage, it is a good thing to go
back again to the examples of addition and subtrac-

tion that we have been able to express with little sticks,

or counters, making use now of figures. But there will

be various very useful observations to make which formerly
would not have been of any service. One of them, in

doing addition, consists in accustoming the pupil to speak
as little as possible, never to say, for instance, "I put
down such and such a figure, and I carry such and such a

number." It will be sufficient to make oneself understood

to give the example of addition shown here :

3087

6944

560

208

29

2004

12832

Which ought to be translated then in spoken language :

" The figures 7 and 4 = one-ten, and 8 = nine-ten, and
9 = twenty-eight, and 4 = thirty-two

"
(we write 2

without saying anything) ; then we add,
" I carry 3, and

8 = one-ten, and 4 = five-ten, and 6 = twenty-one, and
2 = twenty-three" (we write 3); "I carry 2, and 9 =

one-ten, and 5 = six-ten, and 2 = eight-ten
"

(we write

8) ; "I carry 1, and 3 = 4, and 6 = ten, and 2 = two-ten
"

(we write 2, then 1 to the left of that); and we read

the total, "two-ten thousand, eight hundred and

thirty-two."
A second remark applies to the practice of
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subtraction, when there is in the greater number, in a
certain row, a figure less than the one below. Let us

go back to the example in section 7 ; from 52 we have to

take 18.

52 4 12

18 1 8

34 3 4

What we have done with our little sticks is shown
above. But we must not write anything else than 52 and 18

before the result of the operation, and it might very easily

happen that we forget that we have taken away a ten from
the top, and there only remain four tens instead of five.

For the future we proceed in another way, noticing that

to take 1 from 4 is the same thing as taking 2 from 5.

And we would say, "8, from two-ten, equals 4. I carry

1, 1 and 1 make 2, 2 from 5 equals 3." Then instead of

saying "1 from 4," I say "2 from 5," which leaves 3;
so we get into the habit of carrying one each time that we
have previously added a 10 to the figure from above.

Many exercises in addition and subtraction ought to

be carried out like this. The child will interest himself in

them, but do not try to prove anything to him. If he

seems at times puzzled, take him back to his sticks or to his

counters ; and try only to give him practice in calculation

and not to make him learn words that he does not under-

stand. If any observations come into his mind, and he

tells you of them, listen to him with great attention.

Do not be afraid of going back from time to time, in order

to accustom him to compare his numbers written in

figures with collections of little sticks, counters, or any
other objects. And, above all, do not make the lesson

too long ; do not let his interest flag or fatigue to overcome

him ; this is the teacher's deadliest scourge.

If you think it convenient, you can, from this time,
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though there is no hurry about it, initiate the pupil into

the ordinary names for the numbers 11 and 12.

11. Sticks End to End.

Let us make use once more of the little sticks that we
have already employed ; we will imagine that we have,

say, three heaps in which there are 5, 3 and 4 little

sticks. If we put all the little sticks one after another in

the same direction, the length of this row will be twelve

little sticks, that is to say, it will give the sum of the

numbers represented by the three heaps.
We should arrive at the same result if we replaced the

little sticks belonging to the first heap by a straw equal
in length to the five little sticks ; those from the second

heap by one as long as the three little sticks ; and those

from the third heap by a straw measuring the length of

the four little sticks.

If, instead of these very little numbers we took larger

ones, and if, instead of three numbers we took as many as

we liked, all that we have just said would repeat itself.

The straws would be longer; there would be more than
three straws ; that is all the difference.

We prove in this manner that any number whatever can

be represented by a straw of suitable length, and that to

find the sum of several numbers we have nothing to do
but lay end to end, one after the other, the straws which

represent these numbers. The length of the line of

straws thus obtained will be the desired sum.

12. The Straight Line.

The straws of which we have just been speaking in

the foregoing operations ought always to be placed in a

straight line immediately after each other. But what is

a straight line ? We have an idea of it by the stroke
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which a very fine-pointed pencil makes moving along

against a ruler held horizontally, or by an extremely
fine thread, a hair, for instance, held between two supports.
This general idea is sufficient for us ; we know quite
well that if the ruler were longer, the sheet of paper

wider, we would be able to draw our straight line further,

either to one end or to the other : and as there is no need

ever to stop, we under-
-

-^ stand that the straight

line is, so to speak, an

,- c indefinite figure. We will
* IG- 6-

i t - Lnever make use of it any
further than the limit that we require ; but this limit

can be as distant as we wish.

If we take a straight line (Fig. 6) and mark off a point

A, and another point B, the portion of the straight line

AB comprised between these two points is what we call

a segment of a straigh line. The straws which we made
use of just now can be laid on the segments of the straight

line, and the length of these straws is the same as the

segments upon which they are laid.

Thus (Fig. 7), to return to the example (section 11), let

us take a straight line upon which we mark a point O,

no matter where : starting from this point, let us take

a segment OA, which is of

the same length as our first
o

' ' '"'

A '"""a"
'"*''"

Q
straw, five little sticks ; __

starting from A, let us take
'

f
'_ ;._

a segment AB, having its _

length the same as that of

the second straw, three little sticks ; then starting from B,

another, BC, of which the length equals that of the third

straw, four little sticks. The segment OC will be the

length of twelve little sticks ; the sum of 5, 3 and 4.

Whether we say that we add numbers, straws, segments of

a straight line, it is always the same thing, the addition

is made by laying the straws, or the segments end to end,
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one after another. This operation must necessarily be

done, if with segments, always in the same direction ; we
will suppose it be invariably from left to right.

In Fig. 7 we can thus go on adding as far as we like

to the right of O, but never to the left.

13. Subtraction with Little Sticks.

It is not any more difficult to subtract than to add,

by the aid of little sticks. Suppose, for example, that we
want to take 4 from 11. We will lay 11 sticks end to

end in a straight line ; then, beginning at the end to the

right of this row, we take away 4 little sticks ; a row of

7 little sticks remains ; 7 is the difference between 11

and 4.

If we begin by putting a straw as long as 11 little sticks,

it would seem as though we were obliged to cut off an
end of it equal in length to the

four to make the difference.
,

. .

a

But there is another way *

which we will understand at FIG. 8.

once, using segments instead

of straws. Let us lay out on a straight line, beginning
from the point O, a segment OB the length of 11 little

sticks. Starting from B, let us take a segment the length
of 4, but instead of supposing it traced from left to right,

let us take it, on the contrary, from right to left. The

segment OC will represent by its length the difference 7.

We go over this a few times, saying that to add several

segments we must lay them end to end in the same
direction ; and to subtract one segment from another

we must lay them end to end in the same manner, but in

the opposite direction.

These things, besides being easy, are perfectly under-

standable ; it suffices to vary the examples a little from

time to time to interest the pupil ; we must not be afraid
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of making him manipulate little sticks (very simple to

procure) as much as possible, and reproduce his exercises

on a slate or a paper.
We are now going to enter the regions of higher arith-

metic. If he tends to be puffed up, repress this display
of pride, hinting to him, first, that Algebra is one of the

easiest parts of Mathematics, and second, that he does

not know anything and is not learning anything now,

except games which will be useful to him later, when
he remembers them.

14. We begin Algebra.

Up to now we have learned to add, giving the sums, and
to subtract, giving the difference. For example, the sum
of 8, 5, and 14 is 27. We have imagined a sign or symbol

(+ )
which represents addition, and which expresses phis,

and also a symbol (
=

)
which expresses equal to. So that in

this manner the result which we have just recalled might
equally be written

8 + 5 + 14 = 27

and would read 8 plus 5 plus 14 equals 27.

Similarly, for subtraction, we make use of a symbol ( )

which expresses minus, and if we write 7 5 = 2, that

would read, 7 minus 5 equals 2, which means that in

subtracting 5 from 7, we obtain 2 as the difference.

All operations of this nature can be worked by means
of straws, or segments, as we have seen before. Thus,

looking at Fig. 7 we see that it denotes

5 + 3 + 4 = 12

and that it can be written just as easily

OA + AB + BC = OC

Fig. 8 denote?

11 4 = 7.
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We can amuse ourselves by doing this in whatever manner
we like, and in expressing our working under these

different forms.

We understand that in the place of 8, 5, 14, or of 5,

3, 4, in the preceding examples we could put any other

numbers we like ; if we call them A, B, C, writing A + B
+ C = S, we will always express the sum of three

numbers ; this sum would be 27 in the first example,
12 in the second.

In the same manner A B = R shows that the differ-

ence obtained in subtracting B from A is equal to R.
For instance, in Fig. 8, A = 11, B = 4, and R = 7.

It is often very convenient to show our work by signs,

and to replace numbers by letters. It is well to accustom
ourselves to this early, because it will be most useful in

the future, and save much trouble. We must also know
what it means when we put something between brackets

thus

( ) + ( )or( )-( )

This simply means that we should replace each bracketed

term by the result which it gives. For instance,

(A - B) - (C
- D) + (E - F)

if A, B, C, D, E, F,

are replaced by 10, 2, 9, 6, 7, 5,

would express (10
-

2) (9 6) + (7 5),

or 83 + 2, that is to say 7.

All these ways of expression are sometimes called

algebraical. But the words themselves are of little

importance, it is their meaning which counts.

What follows will show us something fresh. When we
are adding numbers we can go on indefinitely, for instance,

with several heaps of beans we can always make them
into a single heap. In other words, it is always possible

to add, and we can express the addition in figures, in
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counters, in matches, in little sticks, in straws, in segments
of a straight line, just as we please.

It is not the same with subtraction. If I have a heap
of seven counters, for instance, from which I wish to

take away 10, the thing, as we have already remarked,
is manifestly impossible.

However, if we return to what has been previously

said, as shown in Fig. 8, we shall be obliged, to subtract

by means of straws, or of seg-

ments of a straight line, to lay
out (Fig. 9) on a straight line

a segment OB equal in length
to 7 matches, then from B lay in the contrary direc-

tion, that is from right to left, a segment whose

length is the number to subtract ; now this is always

possible ; and Fig. 9 demonstrates it, supposing, as

we have made it, that the number to subtract is 10 ;

we obtain thus, the length BC being 10, a point C, and we
have for remainder the segment OC ; only, the point C
is no longer to the right of the point O ;

it is to the left ;

the segment OC is directed from right to left, and its

length is equal to 3.

Such a number is said to be negative ; we write it

. 3, we call it
" minus 3

"
; and it would be correct to say

7 - 10 = - 8.

This creation of negative numbers makes all the subtrac-

tions possible which were not so with ordinary numbers,
which we call by contrast positive numbers.

In Fig. 10 all the part to the right of point O represents
the domain of positive numbers (first arrow) ; all the part
to the left (second arrow), represents the domain of the

negative numbers ; and the total of the two arrows,

comprising the straight line in its entirety, in the two

directions, represents the domain of Algebra.
It will be necessary now, when we wish to express

numbers by straws, or segments, to pay attention to the

direction of these segments, or to the sign of the number ;
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thus (Fig. 9) OB will be a positive segment, representing
the number 7 ; OC will be a negative segment representing
the number 3, itself also negative.

This compels us to consider, for fear of making an error,

which of the two ends of a segment we will call the

beginning, and which the

end ; and the direction Negative numbers^!
L Positive numbers

of the segment will be

always that which starts Fl(J - 10-

from the beginning to go towards the end. When
we write the segment AB, that will always mean
that A is the beginning and B is the end. We shall

be obliged to change slightly the appearance of our little

sticks. It will be quite easy to blacken them slightly
at one end by dipping them in Indian ink, a harmless

dye ; the black part will then always represent the end.

So that, placing three matches in a row, the black end
towards the right, we shall express the number + 3 ;

placing two of them in a row, the black end to the left,

the number 2 is shown, and so on.

It will always be correct to add one number to another

by laying end to end, in the proper direction, the segments
which express them. For instance, to add 11 and 4,

we will take a segment OB of the length of 11, directed

from left to right, and afterwards a segment BC the

length of 4 directed from right to left. Now Fig. 8 is

just what we have done to obtain the difference 11 4^

We can, therefore, write 11 + ( 4) = 11 4 = 7;
and subtractions thus take us back to additions.

Exercises on the negative numbers can be varied as

much as we like, and will be quite easy to do with sticks

blackened at one end. We can also make straws as long
as several sticks, and blacken them in the same manner,
to show which is the end. It is easy to get accustomed to

this simple and necessary idea of the sign or the direction

of number.

Besides, if the negative numbers seem puzzling at
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first, a little reflection will find an altogether natural

explanation. At the first blush it seems as if there could

not be any number less than nothing, that is zero.

However, in ordinary speech we say every day that the

thermometer registers so many degrees below zero.

When we wish to show the height above sea-level of any
point, we understand that if this point were at the bottom
of the sea, it would be below zero.

If starting from home I want to calculate the distance

that I shall go in one direction, and if I walk in exactly
the opposite direction, I know perfectly well that I

cannot use the same number to express two opposite

things.
A man without any fortune, but who owes nothing, is

not rich ; but, if he has no fortune and has debts, we can

say that he has less than nothing ; his fortune is negative.
A cork has a certain weight ; if we throw it in the air,

it falls ; plunge it into water, and let it go, it rises ; its

weight has become negative, in appearance at least.

Briefly, negative numbers, far from being mysterious
in their character, adapt themselves, in the most natural

fashion, to all quantities, and there are some which, from

their nature, can be measured in two ways opposed to each

other, such as hot and cold, high and low, credit and debit,

future and past, etc. By means of concrete examples,
we can make these simple ideas sink into the mind of

very young children, for everything we have said is

extremely simple and easy of comprehension.
The pupils will be interested if we continually accom-

pany our explanations with examples carried out by means
of sticks and straws, and that will be more profitable for

the formation of their minds than the monotonous
recitation of non-understandable rules, or of incompre-
hensible definitions.

They have, so far, only practised, by means of games,
the two first rules of arithmetic ; it is only a short time

since they were learning to write figures, or to form various
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letters, and now behold them plunged headlong, and you
with them, right in the midst of Algebra. If you mention

this formidable word before them, do not fail to tell them
that this science which is so useful and so wonderful,

is comparatively speaking modern, and that it is FranQois
Viete l to whom the honour belongs of having been its

inventor.

15. Calculations ; Measures ; Proportions.

We have seen from the beginning that what we are

constantly doing is to calculate and to measure. If we
have before us a heap of grains of corn, and if we find

upon counting them, that there are 157, this number,
as we have previously noticed, would be useful in

representing to us a collection of counters, of matches, of

trees, of sheep, or in short anything. If to determine

length we have put sticks that are all alike one after

another, and if we find 157 will measure this length, we

say that it is the same length as 157 sticks. In all these

various cases we should never be able to value anything
if we had not before us the idea of a grain of corn, a

counter, a tree, a sheep, or a stick.

Number has no significance except by the comparison
that it brings about with the single object (grain of

corn, counter, etc.), without which it would be impossible
to make it, and this single object is called "unity." This

comparison is what we term a proportion, and this idea

of proportion leads us on to say that a number is simply a

proportion of the number to unity.
It is all the more necessary to fix this firmly in the mind

of the pupil, because unity is not always the same.
For instance, having formed bundles of sticks, let us take

a heap and count them ; we find there are 7 ; seven is

1
Victe, French mathematician, born at Fontenay-le-Compte (1540

1603).
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the proportion of our collection of sticks to one bundle,

which is unity. Now, let us scatter our sticks by
unfastening the bundles, and let us count ; it is the stick

which now becomes unity, and we can count seventy of

them ; this number will be the proportion of the collection

tc one stick.

Similarly, let us take three faggots of sticks ; if we count

by bundles, we shall find thirty bundles ; but if by sticks,

three hundred.

Three will be the proportion of the whole heap of sticks

to a faggot ; thirty the proportion of the same heap to

a bundle ; three hundred the proportion to one stick.

We might give innumerable instances of such examples,

varying them indefinitely, in such a manner as to make
this idea of proportion perfectly familiar to the pupil.

This is the root of all calculation and all measurement,

but, by some strange hallucination, in academical teach-

ing it is put at the end of arithmetic. It is not

possible to count two beans without having this idea

of the proportion of two to one ; nor to measure a length
of three yards without comparing the length with that

of one yard (proportion of three to one), and so on.

At this stage it will be desirable to show the pupil,

without any theoretical explanation, without any defini-

tion, without any appeal to his memory, the commonest

measures, weights and coins which we find ready to our

hand, yards, quarts, ounces, cents, etc.

We will give him exercises in making use of them,

accustoming himself to them to measure and to count,

and the idea of proportion will insensibly grow in his

mind, will associate itself indissolubly with that of number,
which is essential for the day in the future when he will

pass from play to work. And this work can become not

only interesting but amusing, instead of being a wearisome

task, if not a torture.
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16. The Multiplication Table.

We are now going to learn how to make a little table

which will be most useful to us because of what follows,

and will be a very good exercise, even for its own sake.

Under the form as represented below, this table is generally
called the table of Pythagoras,

1 which may have been

invented by this wonderful man, although it is not by any
means certain ; however, even its reputed origin proves
to us that it is not anything new.

To form the multiplication table we begin by writing
on a sheet of squared paper the first nine numbers in the

nine squares which follow each other :

123456789.
Then, taking the first figure, 1, we add it to itself, which

makes 2, which we write below; then 1 to 2, which makes 3;

and so on, which gives the first column of Fig. 11.

We will do the same to fill

the other columns, but the

important thing is to write the

results only and nothing else.

For example, for the column
which begins with 7, we would

say, "7 and 7, 14 ; and 7, 21 ;

and 7, 28 ; and 7, 35 ; and 7,

42 ; and 7, 49 ; and 7, 56 ;

and 7, 63." And we write in

succession 14, 21, 28, ... 63

in the column beginning with 7. FIG. 11.

It will be sufficient, we can see, for the pupil who knows
his addition table, to be able to form this table very

quickly. When he has completed it, we see that the rows

and the columns are all alike. Thus the row which begins
with 3 contains, like the column beginning with 3, the

numbers 3, 6, 9, ... 27.

1
Pythagoras, Greek philosopher, born at Samoa, 6th century B.C.

M. D

1
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It is absolutely necessary to plant this table firmly in

our minds. But the proper way to arrive at this is not

to attempt to learn it. This is accomplished by making
it, verifying it, by carefully examining it, making use of

it as we will show later on. If it does not come readily
to the mind, the child must re-construct it not a very

FIG. 12. .

long business ; and then he will finish by seeing it with

his eyes shut.

We could make out the table beyond 9, but this is not

advisable ; because if we go on, for instance, up to 20 or

25, it will take much longer to do, and it is not necessary
for the child to remember the table written out so far,

although, of course, it would be useful.

He will notice certain peculiarities about this table.

Thus in the column (or the row) beginning with 5, the
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figures of the units are alternately 5 and ; in the column

(or the row) beginning with 9, the figures of the units

8, 7, 6, ... always diminish by 1, and those of the tens

1, 2, 3, . . . increase by 1. The explanation of this will

not be difficult to find.

It is worthy of notice that we can make a multiplication

table without using a single figure ; to do this, it is only

necessary to have a squared paper in sufficiently small

divisions (Fig. 12). The table shown in this figure is

made out as far as 10. We proceed as follows : mark
divisions out successively, on a horizontal line, 1, 2, 3,

... 10, and mark the points of division. Then, on a

vertical line, taking the same starting point, do the

same thing ; mark off the points of division by means

of strong lines, and we obtain large divisions ; and each

of these divisions contains a number of little ones which

will be precisely the same as is contained in our table of

figures. The explanation of this is quite simple ; for

our table in Fig. 12 only represents by means of a series

of lines what in Fig. 11 is done by calculation.

17. Products.

If I take a heap of 7 sticks, and I form three such heaps,
I can ask myself,

" How many sticks will there be in ah1

?
"

That is called multiplying 7 by 3. The result obtained

by such multiplication is the product of the two numbers

7 and 3; 7 is the multiplicand, and 3 the multiplicator.

If, instead of heaping up the sticks, we leave the three

heaps separate, we see that (taking one heap as repre-

senting a unit) the number showing the product will be

3 ; or that the proportion of the product will be 3 ; which

number also gives us the proportion of 3 to 1.

So we can say equally well that to multiply 7 by 3 is

to repeat 7, 3 times ; or to find a number of which the

proportion to 7 will be the same as that of 3 to 1.

To multiply a number (the multiplicand) by another

D2
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(the multiplicator) is to find another number (the product),
which may be formed by repeating the multiplicand as

many times as there are units in the multiplicator ; this

product, in short, bears the same proportion to the

multiplicand which the multiplicator does to unity.
These are not formulae which the child must learn ;

they are ideas which he must insensibly assimilate by
our aid ; for the former present an appearance of difficulty,

while the latter can be easily grasped by the pupil,

especially if we take the trouble of expressing them by
means of grains of corn, of sticks, or of divisions on

squared paper.
It is quite certain that the child will jump immediately

to the idea that, to find a product, he has nothing to do
but make an addition, that the product of 7 by 3 is

7 + 7 + 7 in the same way that 3 is 1 + 1 + 1. And
as the table (Fig. 11) has been made in this way, it gives
us the desired product by taking the column that begins
with 7, the line which begins with 3 and looking for the

meeting point, where we read 21.

Explain at this point that the multiplication sign is X ,

and that therefore the phrase
"
the product of 7 multiplied

by 3 is 21
"

is expressed thus : 7 x 3 = 21.

7 X 3 is often written 7.3 ; instead of these two
we can have any two numbers whatever represented

by the letters a, b. Their product can be expressed by
a x b, or a.b, or simply db ; when we write ab = p, we
mean that a multiplied by b is p.

It is well to know also that we can consider products
such as a x b x c x d, or simply abed, for instance ; this

means that we multiply a by b, then the resulting product

by c, then the new product by d ; a, b, c, d, are called the

factors of the product abed ; we can thus have the product
of any number of factors.

As regards the practice of multiplication, we must
first notice that the table gives us the answers when the

multiplicand and the multiplicator are each less than ten.
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It will be easy afterwards to show how we can multiply
a number by 10, 100, 1,000.

The employment of numerous examples conforming to

all the rules given in all the arithmetic books might be

useful, provided that it is not accompanied by any theory.
I cannot sufficiently impress upon you the importance
of giving preference to the Mohammedan method, which

is almost as quick, much easier to understand and carry

out, and not sufficiently known in teaching although

approved by several writers.

We are going to take the very simple instance of

9,347 x 258. The multiplicand has 4 figures, and the

multiplicator has 3 ; let us mark
out on squared paper 3 rows

of 4 divisions each ; on top of

this figure let us write the

figures of the multiplicand 9,

3, 4, 7, from left to right ; at the

left and working from the bottom

to the top, those of the multi-

plicator 2, 5, 8 ; having traced

the dotted lines of the figure,

let us now put in each division the product of the two

corresponding numbers, as though we were making a

multiplication table, but always placing the figure of the

tens of the product below, and that of the units above

the dotted line ; finally, we add up, taking for the

direction of the columns the dotted lines ; thus we find

the product 2,411,526. The great advantage of this

method is that it does not necessitate any partial

multiplication nor the observance of any special order.

As all the divisions are filled we are certain to forget

nothing.
With the same example, and the same method, we

indicate a slightly different arrangement which does not

compel us to add up obliquety, and which in this sense

is perhaps most convenient (Fig. 14).

K



38 MATHEMATICS

As regards the justification of the Mohammedan method,
it is sufficiently evident to everyone acquainted with the

theory of multiplication, although at present unnecessary
for the child. If he is of an

enquiring disposition he will

probably discover it for himself.

What is of real importance is

that he shall be able to calculate

correctly, and that he will be

interested in doing so. From the

moment when fatigue or bore-

2 4-" 1 1 526 dom overtakes him it is absolutely

necessary to go on to something
A* I0r. 14. 1

else.

However, we will not abandon what relates to multipli-
cation without recalling that a product

a x a x a x ... x a,

of which all the factors are equal, is called a power of a ;

that such a product is written a", n being the number of

the factors, and that we call it the nth

power of a ; that

the second power is called square, and the 3rd cube

(we shall soon see the reason for this). The number n
is called the index.

2 x 2 x 2 x 2 = 24 = 16 ; the index is 4.

The cube of 5 is

5x5x5 = 53 = 125 ; the index is 3.

The square of 7 is

7 x 7 = 72 = 49 ; the index is 2.

18. Curious Operations.

There are a number of results from operations which

strike us because of their peculiarities. Their great merit

consists in arousing the child's curiosity, and thus giving
him a taste for calculation.
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Subjoined are various examples which will be sufficient

for our purpose.
I. Ask the child, after giving him a sealed envelope,

to write a number of 3 figures ; let him choose one to

suit his own fancy. Suppose he writes 713 ; then write

it the reverse way, which makes it 317 ; next, subtract

one from the other, which gives the result 396 l
; reverse

this number, which then reads 693 ; finally add these last

two, which will be 1089. At this point ask him to open
the envelope ; he will find in it a paper on which you have

written beforehand 1089. It is remarkable that any other

number of 3 figures would have led to the same result,

provided that the first and third figures are different.-'

II. If the child works out 12 x 9 + 3, 123 x 9 + 4,

and so on, as far as 123456789 x 9 + 10, each result will

contain no other figure than 1 written a varying number
of times, 12 x 9 + 3 giving us as result 111, and 123 x 9

+ 4 equalling 1111, and so on.

On the contrary, working out 9 x 9 + 7, 98 X 9 + 6,

and so on till we reach 9876543 x 9 + 1, we shall have

results which will contain no figure but 8.

III. The product of 123456789 X 9 will be a number
made up of 1's. Taking the same multiplicand and

multiplying it by

18
(
= 9 X 2), 27

(
= 9 x 3) ... to 81 (= 9 X 9),

we shall find some curious products, all made up of the

same figure repeated.
IV. Take the number 142857 ; if we multiply it

successively by 2, 3, 4, 5, 6 our products will be

285714, 428571, 571428, 714285, 857142.

It will be seen that each product contains the same figures

as the multiplicand.

1 This difference ought always to have three figures. If there are

only two, we must put a nought in the hundreds place. For example,
716 and 617 will give us for difference 099; according to this rule,

adding 099 and 990 we make 1089.



40 MATHEMATICS

Multiplying it by 7, we have 999999, and if we cut it in

two, making 142 and 857, the sum of these numbers will

be 999. The same result is obtained by cutting in two

any of the five products written above.

V. Complete these examples by showing the easy
method of multiplying by 9, by 99, 999. This should always
be done by multiplying by 10, 100, 1000, etc., and then

subtracting the multiplicand. If the numbers are not

too big this can quite soon be done mentally.

19. Prime Numbers.

Running our eyes over a multiplication table, we notice

that it includes certain numbers up to the limit to which

it extends, but not all these numbers. In other words,
there are numbers which are products, and others which

are not ; the latter are called the prime numbers, the

others are called composite numbers.

For instance, 2, 3, 5, 7, 29, 71 are prime numbers ;

4, 6, 9, 87, 91, are composite numbers, because 4 = 2x2,
6 = 2 X 3, 9 = 3 x 3, 87 = 3 x 29, 91 = 7 X 13. How-
ever far we advance in the series of numbers we always
meet these prime and composite numbers. This distinc-

tion is fundamental ; and yet, despite the labours of our

most learned men, we know very little about prime
numbers. We are incapable, if the number under con-

sideration is rather large, of saying whether it is prime
or not, unless we give ourselves up to a groping or tentative

method which requires very long and laborious calcula-

tions. This shows us how very little progress science

has made on these questions which appear quite simple,
and how modest we ought to be when we compare the

slight extent of our knowledge with the immensity of

the things about which we are ignorant.

Still, from antiquity we have possessed a method of

finding the prime numbers to a limit as distant as we
wish. This method consists in writing out the complete
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list of these numbers, then cancelling those which are

products of 2, of 3, of 5, etc. We intend applying it here

to the first 150 numbers. Write them, suppressing 1,

which is useless.

3 -V 5 Jf 7 -8" #" -tff II -tt 13

-W !7 -W i9 -W -frf -W 23 -r -

-38- 29 -dO- 31 -32- -*3- -34* -#T .30- 37

41 -W 43 -4#--4S~>W 47

2- 53 -* -^r -^e^^r -s*r 59

67 -&tf-.-#r-Kr 7i j?i- 73

79 -mr-sr-sr 83 ^r -et

89 -^r^r -^r -^3- -wr -tf -flfr- 97

.m- 103 -f^r-twr^^Hr 107 4wr 109

r 113 44^
127 .** 4-*ir-4^(T 131

-
1:17

149

Starting from 2, and going on by 2's, according to t he-

list, we find the products of 2, which are 4, 6, . . ., that is

to say, even numbers ; they are not, therefore, prime
numbers, and we cancel them at one blow as far as 150.

Let us begin this time with 3 and continue by 3's,

cancelling the numbers which we find to be products of

multiplication by 3, unless they have been cancelled

already.
The first number uncancelled after 3 is 5 ; starting

therefore from 5, and moving on by 5's, we proceed in

the same way. Doing the same with 7 and 11, we find

that only the following numbers remain uncancelled :

2 3 5 7 11 13 17 19 23 29 31 37
41 43 47 53 59 61 67 71 73 79 83 89

97 101 103 107 109 113 127 131 137 139 149

which gives us the list of prime numbers up to 150.
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This ingenious process is known as the sieve of

Eratosthenes 1 from the name of the inventor.

20. Quotients.

Some small heaps of counters, each containing 7, have
been formed into one large one, which contains 56. We
want to find out how many little heaps we have used to

make the large one.

What we are now going to do to discover this is called

a division. We can also say that, knowing the product of

two factors, 56, and one of the factors, 7, we wish to find

the other.

The product given, i.e., 56, is called the dividend ; the

factor given, i.e., 7, is called the divisor, and the result

we are seeking is the quotient.

We really could find the quotient by subtraction, that

is to say, by taking the divisor from the dividend, then

the divisor from the remainder obtained, and so on,

until there is nothing left, being careful to count how many
subtractions we have made. Thus, successively taking

away 7 from 56, we have the numbers 49, 42, 35, 28, 21,

14, 7, and we see that we have needed to subtract 8 times

to exhaust our dividend 56. The quotient we want is

thus 8 ; naturally, our knowledge of the multiplication
table would show us this immediately.
The method of successive subtractions would be

impracticable with rather large numbers, because of its

length. The classical rule that is adopted in doing
division is nothing else than a means of counting very
much faster subtractions done all at once.

To accustom children to be able to divide with ease, we
must begin by always making them form into a little

table the products of the divisor by 2, 3, ... 9. This

does away with the hesitation that so hampers the

beginner in all his work.

1
Eratosthenes, Alexandrian scholar, born at Cyrene (276 193 B.C.).
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We will show him how this is done by the example
given below of the division of 643734 by 273. The

products of 273 are

1 X 273 = 273 6 X 273 = 1638

2 =546 7 = 1911

3 =819 8 = 2184

4 = 1092 9 = 2457

5 = 1365

Let us work out the problem in the ordinary way:
643734 (273

546 2358

977

819

1583

1365

2184

2184

In the dividend there are 643 thousand ; as our

little table shows us, 643 contains the divisor (273)

twice; therefore, taking away 546 thousand from the

dividend, we make 2 thousand subtractions at once.

We have left 97734, which contains 977 hundreds ; 977

contains the divisor 3 times, so taking away 819 hundreds

we have made 300 subtractions at once. Now our

remainder is 15834, containing 1583 tens
; 1583 contains

the divisor 5 times, and taking away 1365 tens, we make
this time 50 subtractions. Finally, there remains 2184,
which contains the divisor exactly 8 times ; therefore,

by subtracting 8 times more we shall have taken

everything from the dividend, and the quotient will be

2358, the total number of subtractions.

The child should form the habit of dividing in this way
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without it being necessary to explain in great detail what
we have just expressed at length.

The above division could be done because the divisor

and dividend had been picked, but if we take two numbers
at random, it is hardly likely such division will be

possible. We will not be able to take away the divisor

a certain number of times, so that nothing is left.

However, if we work on precisely the same lines, taking
the divisor from the dividend as many times as we can,

we shall come at last to a point when the dividend will

be smaller than the divisor. This number is termed

the remainder of the division.

As a very simple example, let us suppose that we are

going to divide 220 by 12. We shall discover this to be

impossible, for when 12 "has been taken 18 times from

220, 4 will remain ; it follows that 220 4, or 216, would

be divisible by 12, and the quotient would be 18. These

impossible divisions, when we get a remainder, can easily

be turned into divisions which are possible, by simply

replacing the dividend by tliis dividend with the remainder

taken from it.

Do not, however, lay much stress on this operation of

division, except from the point of view of the practice of

calculation. Theories are interesting, but will be more
useful at a later period. They are hardly suitable for

the introductory period.
It is useful to know that division is shown by a sign

56
-r- or -

1 Thus 56 4- 7 or y expresses the quotient

56
of 56 by 7. We can write 56 -r- 7 = = 8. In general,

r- = q means that the quotient of the division of a by

b is the number q.

1 As the minus sign and the division sign (2nd method) are similar,

it \vould be well to point out that the minus sign is placed between
two numbers, one following the other, whereas the division sign is

placed between two numbers, one placed above the other. [TB.]
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21. The Divided Cake; Fractions.

Suppose five people wish to share a round cake equally.
It will have to be cut into five perfectly equal pieces

(Fig. 15) by incisions starting from the middle, and one
of these pieces, as AOB, will be the share of each one of

the five. This part is called a fifth of the cake, and

AOB will be represented by of a cake.

Of the five people, two may be absent, but their shares

are to be reserved for them, so the parts AOB, BOC,
both exactly alike, are put on one side

for them. These two pieces taken

together are called two-fifths of a cake,

and they are shown by the figures

2 2
=. All these numbers, such as ^, are
5 5

called fractions; 2 and 5 are the two
terms ; 2, which is above the line, is the

numerator, indicating the number of

pieces; 5, which is below, is the denominator, showing
into how many equal pieces we have divided the cake.

5
If we had taken - of the cake, we can see that would

have been the whole cake ;
and if the cake had been

divided into any number whatever of equal parts, by
taking afterwards the same number of parts the cake

would be again entire, so that the fraction of which

the numerator and denominator are alike is always equal
to 1.

But suppose 10 people, and not five, wanted to divide

the cake ; then we should have had to divide the cake

into 10 equal parts, and the tenths could be obtained

by taking fifths, such as AOB, and cutting each of them
2 1

into two equal parts. Then TQ
=

5 J and it is no harder
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to see that two fractions are equal if we can pass from one

to another by multiplying the two terms by the same
number. This fundamental principle of the whole

theory of fractions is proved in this manner by a sort of

intuitive evidence, by means of concrete objects, and we
need ask for no demonstration.

Suppose now, there are 17 cakes, all alike, and that 5

people want to divide them equally. There are two ways
of doing this. We can divide each cake into fifths, and

17
each person can take a fifth of each cake, in ah1

-z-, or,

secondly, we can give each one an equal number of cakes,

which of course, for five people will be 3, as 5 is contained

in 17 three times. Then we shah1

be left with 2 cakes

to divide. Dividing them into fifths, each of the five

2 17
persons will take -= ; by this means we see that

-jr
= 3

2
+

5'

It is easy by this means to initiate the child into all

the ordinary fractional calculations, on which it seems

unnecessary to dilate longer. But we can only succeed

by always using concrete objects, such as cakes, apples,

oranges, divided lengths, etc. Then he will seize the idea

wonderfully well, that these new arithmetical expressions
arc numbers, and that they express proportions.
We ought at this stage to make it clear that these

numbers can only be used in relation to those things

which, by their very nature, are divisible, such as those

we have indicated above ; if, for example, a question

involving the consideration of a certain number of persons

was placed before us, the application of fractional numbers

would be absurd, and, as the result would show, impossible.

It is to be regretted that this is not more frequently
mentioned to the pupil.

In other words, calculations adapt themselves to

suitable things, which are very numerous, but not
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universal. And this further maxim must always be borne

in mind by the child, that in arithmetic there is a necessity
for the exercise of his own reflection and common sense,

without which a mere dexterity in computation will be

useless.

For instance, here is a problem, particularly mentioned

by Edward Lucas,
1 which will serve as a useful exercise

on this maxim. A tailor has a piece of stuff 16 metres

in length, from which he cuts off 2 metres each day ;

in how many days will he have cut up the whole piece ?

A want of thought, joined to the habit of mechanical

calculation, leads to the answer 8, instead of the number

7, which an exercise of common sense would indicate.

Questions involving fractions should be varied, not

too complicated, and borrowed from effective concrete

subjects. It would be wise to complete them by drawing
attention to decimal fractions, to the manner in which

they may be written, and to the methods of calculation

connected with them.

Many good treatises on arithmetic will furnish the

necessary instances in this respect. I content myself
with insisting on the usefulness, above all, of measures

of length, and instances taken from the counting of

money.
Finally, we must notice that if the sign of division and

notation of fractions are alike, it is not by chance, and
15

does not give rise to confusion ; -~ , for instance, expresses

not only the quotient of the division of 15 by 3 but the

15
fraction

-^.
This can be seen with concrete objects, and

we only need mention it.

The properties and calculation of fractions can also be

1 Edward Lucas, French mathematician, born at Amiens (1842 1891).
He was, perhaps, the man who, in his day, understood better than any
other the science of numbers. His merit has been singularly unrecog-
nised, and this contributed to his premature death.
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showr *n a very simple fashion, by making use of squared

paper.

Judgment can be passed upon it by the remarks which

follow. They only presented themselves to my mind
after the publication of the second edition. I will endeav-

our to explain them now, as briefly as is consistent with

a sufficient clearness of expression. I addv- s myself
to teachers, and, provided they have understood what
I have said, they will have no trouble in using the means

proposed, under whatever form seems good to them
that is, of course, if they agree with the principle of my
point of view.

Suppose, then, we represent a concrete unit of any kind

FIG. 16. FIG. 17.

(provided that, by its nature, it is divisible) by means
of a rectangle (Figs. 16, 17).

If we divide the length of this rectangle into 5 equal

parts, we can cut it into 5 portions, into 5 vertical bands
all alike. Each of them will be a fifth of the unit (Fig. 16).

If we divide the height of the ectangle into 5 equal

parts, we can also cut it into 5 1 jrizontal bands, each

being alike, and each of them, also, a fifth of thi unit

(Fig. 17).

Again, divide the length (Fig. 18) into 3 equal parts,
and the height into 4 such parts, the unit can be cut by
lines passing through the points of division into 12, or

3x4 little rectangles, all alike, and each being a twelfth
of the unit.

Taking any number whatever of these bands or rect-
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angles, we have what is called a fraction. If the number
of bands or little rectangles is less than those which make
up the unit we have a fraction properly so called, or a

proper fraction. If greater, we have a fractional expres-
sion or an improper fraction. Therefore a proper fraction

is less than 1, and an improper fraction is greater than 1.

If, by taking just the same number of bands or rectangles
as there was in the unit, we re-form the unit, such a

fraction, consequently, is equal to 1.

When we use the word "
fraction

"
the word means,

as a general rule, a proper fraction. By means of shading,
we can express any fraction whatever, leaving white those

FIG. 18. FIG. 19.

parts which we take from the unit, and making dark

the bands or rectangles which are left. Thus in Fig. 16,

we see the fraction three-fifths ; in Fig. 17, four-fifths ;

in Fig. 1 8, seven-twelfths.

The number of white rectangles (3, 4, 7 in the three

examples) is called the numerator ; the whole number of

rectangles into which the unit is divided (5, 5, 12) is

called the denominator ; and the three fractions are

347
written thus -=, ~ . If we need to represent an improperO O 14

fraction, we should have no rectangles shaded, and the

symbol would be greater than the unit, the numerator

larger than the denominator. If the numerator is the

same as the denominator, we have the unit itself.

Fundamental Principle. The value of a fraction is in

li,
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no way changed by multiplying the numerator and denom-
inator by the same number.

o

Let us take the fraction -
(Fig. 19). I wish to show

TO

.... 15 3 x 5 _, 3
that it is equal to

^Q
or

4 x The fraction 7 was

represented by vertical bands. I divide the height into

5 equal parts and I picture the rectangular unit cut up
by horizontal lines passing through the points of division.

It is thus divided into little rectangles all alike ; and we
shall see that we have now 4 x 5 or 20 ; then take the

o
fraction 7 ; it contains 3 x 5 or 15 little rectangles ; it

has not changed ; its denominator and its numerator
3 3x5

have each been multiplied by 5 : therefore T = -. ^
4 4x5

15
=

20'

Two fractions can be reduced graphically to the same

denominator, either by working on the above principle,

or dealing directly with the figure.

1 2
We will take, for example, -r and =, the first fraction

represented by a vertical band, and the other by two

horizontal bands (Fig. 20).

Dividing the first rectangle into three horizontal bands

exactly similar, the second into four vertical bands, we
3 8

see that our two fractions read 75 and ^.
i ii i

Addition and subtraction will then be readily explained,

taking for illustration these concrete expressions.

For multiplication, the definition itself tells us that,23 32
to multiply -= by 7, we must take j of -z.

2
Take (Fig. 21) the fraction v represented in ABCD by

two vertical bands. Dividing the height AD into four
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equal parts, and drawing horizontal lines, we have

2
divided ^

into four equal parts ; take three of these,

and let us darken the remainder by horizontal shading.

FIG. 20.

(3

2\
j of -

)
; it contains 2x3

4 O/

or 6 little rectangles ; and the unit contains 5 X 4, or 20.

Therefore
2 3 _ 2x3 ^
5

X 4~5X4~20'
It is easy by such means to formulate in the child's

mind the idea of proportion (the proportion of a to &

being the number which gives the measure of a when we
take b for the unit), to show the

identity of this proportion with

the fraction T, to establish that

a + m . .

r approximates indefinitely

to 1 when we give to m increasing

integral values, to make it under-

stood that a fraction is the

quotient of the numerator by the denominator, to explain

clearly the fundamental principles of proportions, etc.

Whether with squared paper, or with little squares or

rectangles of wood, white on one side and black on the

opposite one, all these operations can be carried out in

the pupil's sight. When using materials such as have

E2

FIG. 21.
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been mentioned, the work is at once amusing and instruc-

tive; it rivets the child's attention, it fixes in his mind

the essential truths, without which he may be obliged to

force his memory ; he sees these truths, he makes them,

as it were, with his own hands ; they are no longer for him

obscure phrases repeated without any meaning attached

to them, but tangible realities. Experience has shown

that these methods are most efficacious from a scholastic

point of view ; it is most desirable that their use should be

more and more extended.

22. We Start Geometry.

We have already seen what is a straight line. It is

the most simple of all the geometrical figures. We can

try and extend our knowledge a little in this respect.
Let us begin, for instance, by

ft
.

ft forming an idea of a plane

by looking at the surface of

C D a smooth piece of water, that

of a good looking
-
glass, of

a ceiling, a floor, or a door.

A slate, a sheet of paper stretched on a polished board,

give us also the idea of a flat surface, and we feel that,

fike the straight line, the plane may, in thought, be

prolonged as far as we like, indefinitely. On a flat

surface we can lay a ruler in any direction. On a sheet

of paper we can draw as

many lines as we wish. A ^^^
If we draw two only,

they can be (Fig. 22)

parallel, as AB, CD. On
ruled paper it can be

plainly seen that the
lines on it are all parallel, and that two parallel lines

never meet. If, on the contrary (Fig. 23), the two

straight lines AB, CD, meet at the point O, the figures
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AOC, COB, BOD, DOA are angles. Two angles are equal

when we can place one over the other. The angles AOC,
BOD, for example, are equal ; it is the same with

COB, DOA.
WT

hen two straight lines (Fig. 24) cut each other in such

a way that the angles DOA, AOC are equal, the four angles

round O are all equal ; we call them then right angles,

and the figure formed by the
A

two lines is that of a cross.

On squared paper, we can

see right angles everywhere
where two lines meet. When Q
two straight lines form right

angles in this way we say that

they are perpendicular to one B

another.
FI(J ^

An angle less than a right

angle, like AOC, in Fig. 23, is called an acute angle ; if

greater than a right angle, like COB, it is an obtuse

angle. A plumb-line shows a straight line which is

called vertical. A straight line perpendicular to a vertical

line is called horizontal. All straight lines drawn on the

surface of smooth water

A B would be horizontal straight

^

rv lines, and this surface is in
^ ~"

itself a plane, which we call

F horizontal. On a piece of

FlG 2
- ruled paper laid before us,

the lines which run from left

to right are called horizontal, and the others vertical,

because we suppose that the paper is lifted up and laid

against a wall.

Let us imagine that on a sheet of paper we have drawn
three straight lines. These may be considered in several

ways. The three straight lines (Fig. 25) can be parallel.
In the second place (Fig. 26) two, AB, CD, might be

parallel, and the third, EF, might intersect them at E, F.
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This third line is called a secant. In this figure all the

angles marked 1 are equal to each other; the angles
marked 2 are also equal to each other ; and the sum of an

angle 1 and of an angle 2 is equal to two right angles.

It might happen (Fig. 27) that our three straight lines

A m a

c
~7i

FIG. 26. FIG. 27,

passed through the same point O ;
we would say then

that they were concurrent.

Finally (Fig. 28), f none of the preceding circumstances

occur, the three straight lines will cross each other twice at

the three points A, B, C, and will limit a portion of the plane

ABC, which we can consider apart (Fig. 29), and which

is called a triangle. The points A, B, C are called the

apexes, and the segments, AB, BC, CA the sides, of the

triangle. We say that the angles A, B, C marked on

the figure are the angles
of the triangle.

One of the angles of

the triangle can be a

right angle ; we say then

/"x. that the triangle is right-^
angled. It may also

(Fig. 31) have an obtuse

angle ; we say then that

the triangle is obtuse-angled.
If a triangle like those of Fig. 32 has two sides AB, AC

which are equal, the triangle is termed an isosceles triangle.

The angles B and C are then equal.
If a triangle has its three sides equal, it is equilateral.

Its three angles are then equal (Fig. 33).
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In a triangle ABC (Fig. 34), we can choose any side,

BC, and call it the base. If we then draw from the

point A a straight line perpendicular to BC, and which

B C A 8

FIG. 29. FIG. 30.

meets BC at A', we say that AA' is the height or altitude

of the triangle.

This simple figure, the triangle, has innumerable

B

FIG. 31.

properties ; we will examine some of them later. At
the moment we must not deceive ourselves : we are

learning nothing at all; we are simply looking at the

FIG. 32.

figures and getting to know their names. That is

something useful, at any rate.

When a part of a plane (Fig. 35) is limited by several

straight lines, or rather by several segments of straight

lines, this figure is called a polygon. The segments AB,
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BC, . . . HA are the sides, the points A, B, . . . H, the

corners or apexes, the angles marked A, B, . . . H the

angles of the polygon.
A polygon like that of Fig. 36 is said to have re-entering

B A'

FIG. 33. FIG. 34.

B
H

angles. When there is no re-entering angle, as in Fig. 35,

the polygon is convex. Generally speaking, we shall only

deal witn convex polygons. A straight line like AD
(Fig. 35), which joins two corners of a polygon, and which

is not a side, is called a

diagonal.
In a polygon, the number of

the corners, the sides, and the

angles are the same. Special
names have been given to
different polygons, according
to the number of sides which

they possess. To begin with,
E as we have already said, a

FIG. 35. polygon with three sides is a

triangle. Then

A polygon of 4 sides is a quadrilateral
5 pentagon

hexagon

heptagon

octagon

decagon

6

'

10

12 dodecagon. Fio. 36.
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Thus, Fig. 35 represents a convex octagon, and Fig. 36

is a heptagon with re-entering angles. In a quadri-

lateral, the two sides AB, CD can be parallel (Fig. 37),

the two others not being so; such quadrilaterals are

A B

Fro. 37.

called trapeziums. The sides AB, CD are the bases of

the trapezium.
If (Fig. 38) the sides AB, CD are parallel, and if the sides

BC, AD are also parallel, the quadrilateral is a parallelo-

gram. Then the sides AB and CD are equal, and so are

the sides BC and AD. Also, the angles A, C are equal,
and equally so the angles B, D.

If in a parallelogram the four sides are equal, it is a

rhombus (Fig. 39).

If (Fig. 40) one of the angles is a right-angle, the three

OH C

Fia. 38.

others are right-angles also, and the parallelogram is a

rectangle.

If, finally (Fig. 41), a rectangle has all its sides equal, it

is called a square.
In every quadrilateral there are two diagonals ; in

every parallelogram (Figs. 38, 39, 40, 41) these two
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FIG. 40.

diagonals AC, BD cut each other at a point O, which is

the middle of each of them. In a rhombus (Fig. 39)
the two diagonals are perpendicular to one another.

T> In a rectangle (Fig. 40) the two
diagonals are equal. In a square

(Fig. 41) the two diagonals are both

equal and perpendicular. It will be

C noticed that a square is both a rhom-

bus and a rectangle.

If in the parallelogram (Fig. 38)
we take a side CD, which we call the base, and if we
have a straight line AH perpendicular to CD (and also

perpendicular to AB), this straight line, or

rather this segment AH, is termed the

height of the parallelogram.
On squared paper, by following the

squared lines, we can form as many
rectangles and squares as we like. The
various figures of which we have spoken,
and others which we can imagine, should

be constructed time after time by the

pupil, with the help of a pencil, a ruler, a set square,
and a measure to measure the lengths. Every line should

be drawn with the greatest

possible care. Afterwards

he must accustom himself

to draw them correctly
without the help of any
instrument. For this pur-

pose it will be well for

him, after having drawn his

figure in pencil with his

instruments, to draw it

freehand afterwards in ink.

We are not saying any-

thing yet about the use of the compass, and the pro-

tractor ; we shall touch briefly upon this later on.
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FIG. 43.

Moreover, do not let us lose sight of the fact that the

child must never have left off drawing since he began to

trace his first strokes.

When (Fig. 42) we have a polygon, ABCDE, on a hori-

zontal plane, for instance, if we draw the straight lines

AA', BB', CC', DD', EE', all

parallel and equal to one another,

outside the plane, the extremi-

ties, A', B', C', D', E', are the

corners of another polygon like the

first. The quadrilaterals AA', BB'

. . . are then parallelograms; the

space which would be limited

by all these parallelograms and

by the two polygons is called a

prism ; the two polygons are the

bases; the parallelograms are the

faces ; the distance between the planes of the two bases

is called the lieight. The straight lines AA', BB' . . .

are the edges.

If the edges are vertical (supposing the bases to be

horizontal) the prism is right-angled.

If the bases are parallelograms,
the prism is called a parallelo-

piped.

If, finally, the base is a square,
and if the parallelepiped, being right-

angled, has for its height the side of

the base, the parallelepiped then

takes the form of one of a set of

dice, and is called a cube (Fig. 43).

When (Fig. 44) we have a polygon,
ABCDE, if we join all the corners with a point S outside

the plane, the space which would be limited by the

polygon and the triangles SAB, SBC, . . . SEA, is called

a pyramid; ABCDE is the base; the triangles SAB
. . . are thefaces ; SA, SB, . . . are edges ; S is the apex ;

FIG. 44.
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the distance from the apex to the plane of the base,

which would be vertical if the base was horizontal, is

the height of the pyramid.
With some small sticks and bits of wire it is easy to

learn to construct little models giving a sufficiently exact

idea of the figures we have just mentioned. We can also

cut them with a knife out of a carrot, or a potato
Notice that the Figs. 42 and 44, in perspective, are

made assuming all the edges to be visible (figures in

little sticks), whilst in the cube of Fig. 43 we find three

unseen edges AD, DC, DD' (indicated by dotted lines),

which takes place if the cube is a solid body.

23. Areas.

The word "
geometry

"
signifies, by its etymology, the

measurement of the earth. That hardly answers to

geometrical science such as we know it to-day, but it

throws a light upon the origin of this science, which has

arisen, like others, from the needs of the human race.

From quite early times men have recognised the need

for estimating the extent of pieces of land, and have sought
the best means of arriving at it. These pieces of land

being pretty nearly flat on the whole and more often than

not limited by straight lines, it follows that, to acquaint
ourselves with the extent of land, we must determine

and estimate the extent of the various polygons described

in the preceding chapter.
But to measure anything, no matter what, we must

have a unit. We know how to measure lengths, taking
for a unit a metre, or a match, or the side of a division

of squared paper. To measure length we must have a

unit of length. To measure a flat expanse, wliich is

called an area, we must start with a unit which is in itself

an area.
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FIG. 45.

Invariably, the unit of length having been chosen,

the area unit will be the area of the square having for

its side this unit of length.

If, to measure a length, it suffices to lay out the chosen

unit end to end, and to count the number of times that

we have thus laid it out, it is easy to understand that such

a proceeding is practically impossible when dealing with
an area ; the squared unit must
be laid out so that the area will

be covered, which cannot be done.

On the other hand, for the

figures described further back,
there are very simple ways of

determining their areas.

To begin with, let us take a

square. We will take squared

paper, of which we suppose that

each division is the unit of length.

Consequently each square will be the area unit.

On this squared paper we will draw (Fig. 45) a square
whose side will contain 7 divisions, so that the length
of this side has 7 for its measure. The squares contained
in this figure are made up of 7 rows, each containing 7

squares ; their total number then is 7 times 7, or 7 x 7 =
72 = 49. And using a to indi-

cate the number of divisions

on the side of a square (whether
this number be 7 or any other

number), the area of the square
would be a x a = a2

; that is to
say, the number which measures the area of the square
is the 2nd power of the number which the side measures.
It is for this reason that the square of a number is

called its 2nd power.
We will take now (Fig. 46) a rectangle whose sides are

8 and 3 ; the number of squares, that is to say, the number
which will measure its area, will be 8 x 3 ; if, instead

'

FIG. 46.
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of 8 and 3, we have a and b, the area of the rectangle will

be measured by the product ab.

Now imagine (Fig. 47) a parallelogram ABCD, and take

its height CH. If, having formed this parallelogram in

cardboard, for instance, we cut off, by a line along CH,
the triangle CHB which is shaded on the figure, and if

we set down this triangle on the left, laying CB on DA, we
form the rectangle CDKH, whose area will be the same as

that of the parallelogram, since it is made up of the same

pieces. This rectangle has for its sides the base CD of

the parallelogram, and its height CH. Then the area of

a parallelogram has for its measure the product of the

numbers which measure its base and its height.

H
B

B

FIG. 47. FIG. 48.

A parallelogram (Fig. 48) being cut in two by a line

along the diagonal AC, the two triangles CBA, ADC will

lie exactly one upon the other. Then the parallelogram has

an area double that of the triangle ADC, and the latter

has an area half of that of the parallelogram. Making
the product of the base DC, by the height AH, and taking
the half of this product, we shall have the number measur-

ing the area of the triangle.

A trapezium (Fig. 49) can be split up in the same way
into two triangles. We deduce from this that to obtain the

number which measures its area, it is necessary to multiply
the height AH by the half of the sum of its bases AB, DC.
We can also (Fig. 50, A) transform a trapezium into a

rectangle of the same area, It is only necessary to draw
the heights HK, IJ through the centres L, M, of the sides

AD, BC. The triangular shaded portions LDH, MCI,
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can be laid exactly on LAK and MBJ, and thus form the

rectangle. This shows us that HJ, or LM, is equal to half

of the sum of the bases AB, CD.

Finally (Fig. 50, B), if we

prolong the side AB by a

Irngth BF, equal to DC, and
the side DC by a length CG,

equal to AB, the figure AFGD
is a parallelogram; and cutting
it along BC we have two

DH

FIG. 49.

trapeziums, which will fit over one another ; each of

them is then the half of the parallelogram, which gives

R A B A

D H 100
(A) (B)

FIG. 50.

us yet again the area of a trapezium by a new means,

merely by a simple cut of the scissors across the card-

board parallelogram.
We can summarise what has gone before in the following

formulae :

Square Side A
Rectangle Sides A, B
Parallelogram Base A ; height H

Base A, height H

Area A2

Area AB
Area AH

AH
Triangle Base A, height H Area

Trapezium Bases A, B, height H Area (A + B) H

Moreover, as soon as the pupil can measure the area of

a triangle, he can determine that of any polygon whatever,
ABCDEF (Fig. 51), since by the diagonals AC, AD, AE,
starting from a corner, he can cut the polygon into the

triangles ABC, ACD, ADE, and AEF-
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To determine in this manner exact areas, such as those

of a door, a window, a table, the floor or the ceiling of a

room, a playground, etc., much practice will be necessary.
A tape measure will be sufficient to use for this purpose.

According to the object, he will take

for the unit of length the yard, the

foot, the inch, the metre, the deci-

/^ \ metre and the centimetre ; without

X^^^^ "/ having up to this point any idea

N^J^^o of theory, in this manner he will

g familiarise himself with the most

simple applications of our weights
FIG. 51. an(j measures and of the metric

system ; he will grasp them intuitively ; he will have an

exact idea of the employment of the various units ; and
this acquisition, already useful hi itself, will become later

a very considerable help when he really begins his studies.

24. The Asses' Bridge.

There is in geometry a proposition at once celebrated

and important, but which has been the despair of many
generations of scholars, because the academical demonstra-

tion that is usually given of it is hardly natural, and
difficult to remember. It is known under different

names ; it is called
"
the square of the hypotenuse,"

"
the theorem of Pythagoras

"
(although it was known

many centuries before Pythagoras), lastly
"
the asses'

bridge," undoubtedly because ordinary scholars stumble

at it and have some trouble in getting over it.

We already know what a rectangular triangle is. The

greatest side BC (Fig. 52), that which is opposed to the'

right angle, is called the hypotenuse. If three squares be

formed, BDEC, CFGA, AHIB, having for their sides the

hypotenuse and the two other sides, the area of the first

will be equal to the sum of the areas of the two others.

This is the opening statement of the famous asses' bridge.
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H

Now, there is a very simple method of verifying this

proposition, a method which was invented in India in

the very earliest times and can be used for a most exact

demonstration when the study
of geometry has been begun

though as yet we have not

entered on it.

Let us take a square (Fig.

53 (1) )
whose side is AB.

Marking a point C between A
and B, we will construct,
either in wood or cardboard,

rectangular triangles having
AC and CB for their sides

which contain the right angle.

Four will be sufficient. Arrange

them, numbering them 1, 2,

3, 4, as they are shown in
FIG. 52.

Fig. 53 (1), where the shaded parts represent these

little triangles. We see that they form a pattern
which allows a square to be seen in the interior,

which has for its side exactly the hypotenuse. This

square is then what remains when a part of the large

f2)

B B

FIG. 53.

square has been covered with the four triangles. Now,
let us slip our four triangles into the position indicated

by Fig. 53 (2). What now remains is two squares, the

two squares constructed on the sides of the right angle.
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Then both of them have the same area as the square of

the hypotenuse in Fig. 53 (1). It is just a very simple

game of patience ; the child who has practised it once or

twice will never forget it in his whole life, and will never

be dismayed nor confused when he approaches the asses'

bridge. The greatest blunder of all is to complicate

simple things and to make difficult anything which is

easy.

25. Yarious Puzzles ; Mathematical Medley.

On a segment ABC (Fig. 54) let us construct a square
ACIG ; then taking CF - BC, let us draw FED parallel

to AC ; also draw BEH parallel to CI. The large square
will be cut into four parts by the lines BH and FD ; this

can be done by two snips of the scissors. These four

pieces are :

1st BCFE, square having for its side BC.

2nd EHGD, square having for its side DE which is

equal to AB.
3rd EFIH, rectangle having its sides equal to AB,

BC.

4th ABED, rectangle like the preceding one.

We have just verified this theorem of geometry :

" The square constructed upon
6 H I the sum of two lines is equal to

the square constructed upon the

first, plus the square constructed

upon the second, plus twice the

rectangle constructed with these

two lines as sides."

If we have drawn the figure

on squared paper, by estimating
the areas of all these figures, that

is to say, counting the divisions,

D
E

A a

FTG. 54.

we have the proposition of arithmetic :

" The square of the sum of two numbers is equal to
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the sum of the squares of these two numbers, plus twice

their product."
If we indicate AB by a, BC by b, we have finally this

formula in Algebra :

(a + 6)
2 = a2 + 2ab + 62.

These are three truths which are loaded on the memory
of the unprepared child three

times, while in reality they are

all one thing which jumps to the

eye. Its appearance, its dress,

is different, but it is itself the

same in each case. Knowing this

beforehand, he will be spared
loss of time and vain efforts,

and, more than all, will know
that these classifications are

G fl t J

D E

A B

FIG. 55.

H I J

F G

necessary, but often artificial by the force of things ;

and will accustom himself early to recognise the analogies
he will encounter.

We are going to mention others. Let us form (Fig. 55)
on the segment ABC a square having for one of its sides

AB, which square will be ABFE,
and a square ACJH, having a
side AC. Produce BF to I,

and on EH construct the square
EHGD.
For the square ABFE, we

must take away from the whole

figure the rectangles BCH,
FIGD ; the whole figure is made

by the reunion of two squares
whose sides are equal to AC and BC ; the two rectangles
are similar, and their sides are equal to AC and BC ;

finally AB is the difference of AC and BC. Then :

Geometry. The square constructed on the difference

of two segments is equal to the sum of the squares con-

F2

FIG. 56.
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structed on these two segments, less twice the rectangle
constructed with the two segments as sides.

Arithmetic. The square of the difference of two numbers
is equal to the sum of the squares of these numbers, less

twice their product.

Algebra. This formula will be (a
-

6)
2 = a2 - 2ab + 62.

One more example (Fig. 56) ; ABJH is a square, ACGD
a rectangle ; FG, FJ, DE are equal to BC, DEIH is a

square.
The rectangle ACGD has thus for sides AB + BC and

AB - BC ; as the two rectangles BCGF, FJIE are

identical, by taking away the first and putting it in the

place of the second we shall have ABJIED, which is

the difference of the squares ABJH, DEIH constructed

on AB and DE = BC. Therefore :

Geometry. The rectangle having as sides the sum and
the difference of two segments is equal to the difference

of the squares having these two segments as sides.

Arithmetic. The product of the sum of two numbers

by their difference is equal to the difference of their

squares.

Algebra. This formula will be (a + b) (a b)
= a? b2

.

And to verify so many propositions, concerning so

many sciences, it will only be necessary to cut some

shapes of cardboard into pieces, after having made the

figures with great care.

These games of cutting up cardboard have sometimes

been called brain puzzles. This is very unjust, because

used in the manner we have just indicated they prevent
on the contrary much puzzling of the brain in the future

by dint of teaching by means of the eye.

26. The Cube in Eight Pieces.

Let us take (Fig. 57) a wooden cube, and starting
from one of the corners O, let us lay out, on the three

edges which end there, three lengths equal to each other,
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OA, OB, OC. Suppose that we saw through along AAA,
BBB, CCC, at each of the three points thus obtained.

By this means the cube is cut

into eight pieces. To make the A

explanation easier, by means of

looking at the object itself, let us

call (Fig. 57) the length DA a,
D

and the length AO b, constructing
thus Fig. 58. The two parts of

which it is composed represent
what we see after the cuts along
AAA, and BBB, when we look

at the cube from above. As well

as this, the letters (a) (b) between

brackets show the thickness after the cut along CCC.

The left figure shows what is underneath CCC, and that

on the right what is above.

/ /
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The edge of the cube which we have cut into eight

pieces was a + b.

We verify thus that the cube constructed upon the sum
of two segments a, b is made up :

First, of the sum of the cubes constructed upon each

of the segments ;

Second, of three times a parallelepiped, having for its

base a square with the side a, and for its height b ;

Third, of three times a parallelepiped, having for its base

a square with a side b, and for its height a.

This is Geometry.
The same figure shows us that in Arithmetic the

cube of the sum of two numbers is equal to the sum of

the cubes of these two numbers, plus three times the

product of the first by the square of the second, plus
three times the product of the second by the square of

the first.

Finally (Algebra) this gives the formula :

(a + by = a3 + 3a 26 + 3a62 + 63
.

This is quite analogous to what we have done for the

square of a sum in the preceding section.

With a sufficient number of little wooden cubes, the

constructions which we have indicated may be made,
and also many more. These are games which, directed

with a little method, help the child very much to see the

figures in space, and engage his attention.

If necessary, the cutting up of the cube might be done

by means of a piece of soap taken from a bar, cutting
it carefully with a wire instead of using a saw. But the

wooden cube is much to be preferred, and is certainly

neither difficult nor expensive to procure.

27. Triangular Numbers. The Flight of the Cranes.

Edward Lucas attributes the origin of the numbers
which have been called triangular to the observation of

the flight of certain birds. At the head there flies a
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FIG. 59.

single bird ; behind him, on a second line, there are two ;

on a third line behind them, there are three, and so on ;

so that the general disposition of the flying column

presents the appearance of a

triangle.

It is easy to give ourselves a

precise idea of these numbers

and to represent them on a

squared pattern ; looking at Fig. 59,

for example, and considering, to

begin with, the part A only,

which shows us, on the top, one

division, then two divisions in

a second row, then 3, 4, 5, 6, 7

divisions in the following rows, up to the seventh.

We have then the 7th triangular number

1+2 + 3 + 4 + 5 + 6 + 7;

to find its value, we can add up, which will give us 28.

But that would teach us nothing about any other tri-

angular number. If we wanted to have the 1 000th, for

instance, we would have to add from 1 to 1,000, which

would be long and very wearisome. Instead of that,

let us now look at the whole of Fig. 59 ; the part B, if

we look at it from the bottom to the top, or if we turn

it upside down, shows us still, by the number of its

squares, the same triangular number. The entire figure

then represents twice the triangular number in question ;

and as it is composed of seven rows, each having eight

divisions, the total number of divisions is 7 x 8, and the

required number will be the half of this product, that

is to say, 28.

We shall have, in other terms,

1+2 + 3 + 4 + 5 + 6 + 7= = 28.

If we wanted to get the 1,000th triangular number,

supposing that we did it the same way, we should have
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1 + 2 + 3 + . . + 1,000 =
1)0

:
1>001 = 500,500.

31

This is shorter than adding.
And as, instead of 1,000, we might have any whole

number n, we have also

... ,

which expression will allow us to find the nth triangular

number, which we can call TB .

The total number of divisions in Fig. 59 is 2 Tn . If

we take away the last column, a square of seven lines

will remain, each containing 7 divisions. We see, there-

fore, that the new figure is formed of the combination

of the triangular numbers T
6
and T

7
. We have therefore

2 T
7
- 7 = 7 2 = T

7 -f T6 .

If we add below a new row of eight divisions, we see

that we have
2 T7 + 8 = 8 2 = T8 + T

7,

just by looking at the figure.

And as, in place of 7, we might have taken any other

number n
2 Tn

- n = n- = Tn + Tn _ :

2 Tn + n + 1 = (n + I)
2 = Tn+1 + Tn.

These formulae, which appear very learned, do not,

however, require even the least calculation, since the

pupil can read them from figures, since he can see them,
since he can make them with his hands by means of

little wooden squares, or even with simple counters by
placing one in each division.

28. Square Numbers.

Take (Fig. 60) a square, composed of 7 rows, of 7

divisions each, in all 7.7= 72 = 49 divisions. On
this figure, by means of traced lines, we see the successive

squares, 1, 22
, 32

, 42
,
52

,
62 divisions.
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The first square, of 1 division, is represented by the

division at the top left-hand side. To pass from this

square to that of 22 or 4

divisions, we notice that it

is necessary to add 3 divi-

sions, so that 1 + 3 = 22
;

to pass to the following

square, of 9 divisions, we
must add two from the right,

two underneath, and one

from the right below, which

makes 5 ; and by continuing
in the same manner, we see

that

72 = 1+3 + 5+7+9
ri - CO.

11 +13.
Which means that the square of 7 is equal to the sum

of the first 7 uneven numbers.

Instead of 7, let us take any whole number we like, n.

The first uneven numbers are 1, 3, 5 , , . and the nth



71 MATHEMATICS

We thus see that there is another way by which we
can represent square numbers ; it is shown in Fig. 61,

where we see the squares of 1, of 2, of 3, and 4. With
little wooden squares it will be easy to make and also

change these various figures.

Without any trouble, we are now going to solve a very
much more difficult problem, that of finding the sum of

the squares of 1, 2, 3, 4, for instance. By making use of

Fig. 60, and by laying the squares of 1, 2, 3, 4 from

bottom to top, we have at once Fig. 62, which needs

FIG. 62. FIG. 63. FIG. 64.

no explanation. Making use of the various elements of

Fig. 61, we see that there are

4 rows of 1 division

3 3 divisions

S M O ,,

which, placed each under the other, give Fig. 63.

Let us bring together Fig. 64, Fig. 62, the same
turned over, and also Fig. 63. We obtain a rectangle
which will contain three times the required number
of divisions.

The number of rows in this rectangle is

1 + 2 + 8 + 4, or -;
- = 10.
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The number of divisions contained in each row is, as

we can see on the first line,

4 + 1 + 4, or 2.4 + 1 = 9.

The total number of divisions then is 10.9 = 90, and
the required number will be the third of 90, that is to

say, 30. We thus verify that

I 2 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30.

But if, instead of 4, we had taken any number whatever,

n, and if we had done exactly the same thing, the rectangle
of Fig. 64 would have

n(n + 1)..
l + 2 + 3+...-}-w, or

v L
lines,

m

and 2n + 1 columns.

The total number of its divisions would be then

n(n + 1) (2n+ 1)

2 '

and to have the required number we must take the third

of it, which shows us that

This is a formula which candidates at the Polytechnic
School cannot always prove, giving themselves an infinite

amount of trouble and endless calculation, whilst we
establish it by amusing ourselves with little wooden squares
like those we have already seen.

This determination of the sum of the squares of the

first n numbers had formerly an important practical

application in artillery, when spherical projectiles were

in use (cannon-balls or shells). Indeed, these were

often arranged in arsenals, by forming a square on the

ground, then, above, another smaller square, and so on

up to the top, which was made of a single ball or shell.

This was called a pile of balls with a square base. Then,
in order to count the balls contained in a pile, it suffices

to count the number n of the balls on one side of the base
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and to apply the above formula. For example, if n

equals 17, the required sum is

17.18.35

6
or 1785.

The child could amuse himself by forming piles of

oranges in the same way, provided that they are about

the same size, or, more simply perhaps, by using billiard

balls, laying them on a light bed of sand to keep them from

rolling and so spoiling the erection.

29. The Sum of Cubes.

To represent a number raised to the cube, such as

23 = 2.2.2, 33 = 3.3.3, etc., it would be convenient

to have a large number of little wooden cubes, rather larger
than dice, which would serve both to make the figures

of which we have spoken above, and also to perform the

various operations which are to follow.

We need not be quite so strict, however, for we can

dispense with the cubes, and replace each unit by a small

flat square, of wood or card-

board, or even by a simple
counter. It is this last supposi-
tion that we shall adopt. Later,
when we have seen how easy the

constructions are, they will be

made all the more readily, by means of squares or cubes ;

he who can do the most can certainly do the least.

Begin by seeing how, with our counters, we can represent
successive cubes. The cube of 1 is 1 ; a single counter

will represent it.

The cube of 2 is 2 x 2 x 2, or 8 ; therefore it will be

composed (Fig. 65) of 2 squares of 4 counters each, the

squares placed side by side, in the first part of the figure.

But, as in the second part, these 8 counters may be

arranged in another manner, by keeping the first three

o I o
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columns, and by placing the fourth, which has become
horizontal, on top.

Let us proceed to the cube of 3, which is 3 x 3 x 3,
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(Fig. 67) the first 10 columns of the first part and placing
above them the last six, horizontally, to obtain the second

part of the figure.

If we now put together (Fig. 68) the second parts of

Figs. 65, 66, 67, by adding a counter to the left at the

top, which will represent the

cube of 1, we shall have the

sum of the cubes of 1, 2, 3,

4 in the form of a square, in

which the number of the

counters in a row or a column

is 1 + 2 + 3 + 4, or 10. The
sum of these cubes is then

100.

It will be interesting to

take counters of different

colours to represent each of

the cubes. The figure will

J
O
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30. The Powers of 11.

If we take the number 11, and wish to form the square
of it, the multiplication will be very easy

11

11

11

11

121 II 2 = 121.

To obtain the cube we shall have

121

11

121

121

1331 II 3 = 1331.

The fourth power would need the multiplication as

below
1331

11

1331

1331

14641 II 4 = 14641

Let us fix our attention upon these figures

1, 2, 1 ; 1, 3, 3, 1 ; 1, 4, 6, 4, 1,

which are employed to write the powers.
We would have been able to have them, with less writing,

without putting down the multiplications, if we notice

first that we begin and end with 1 ; and also that we
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have only to add two figures which follow each other

to get a figure of the following power.

Thus from 11 we get 121, because 1 + 1=2;
From 121 we get 1331, because 1+2 = 3, 2 + 1=3;
From 1331 we get 14641, because 1+3 =

4, 3 + 3 = 6,

3 + 1=4.
These remarks have led to a means of obtaining these

figures (and many other numbers) very easily, as we are

going to see in the following section.

It is all the more useful because the numbers of which

it treats are of great importance in algebra, where the

pupil will have to deal with them later, however little

he may study mathematics.

31. The Arithmetical Triangle and Square.

Let us write (Fig. 69) the figure 1 as many times as we
like each under the other. Suppose that at the right of the

first one, on top, there are noughts, which it is not neces-

sary to write. We form the second

line adding 1 and 0, which makes 1,

and writing this 1 to the right of

that which is already put down. Let

us pass on to the third line ; we read

in the second, 1 and 1 making 2, which

we write ; then 1 and 0, 1, which we

place to the right of the 2 ;

similarly, starting from the 3rd line

we form the 4th, 1 and 2, 3 ; 2 and
r IG. 69. , ,

1, 3 ; 1 and 0, 1. And so on as

far as we like. The first rows of the figure give us the

numbers that we have already found to be the powers of 11.

This figure is called, from the name of its illustrious

inventor, the arithmetical triangle of Pascal, 1

1 Blaise Pascal, French scholar and man of letters, born at Clermont-
Ferrand (16231662).

1



1
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32. Different Ways of Counting.

When we began (Section 3) to make numbers by
means of little sticks, then bundles, faggots, etc., which
leads to numeration, we could equally well take any
other number than 10 little sticks to make a bundle.

For example, we might have arranged that 8 little

sticks would make a bundle, 8 bundles a faggot, and so on.

The result would have been that the figures necessary
to write any number (Section 10) would have only been

1, 2, 3, 4, 5, 6, 7, to which, of course, the nought would

have to be added.

Such a method of writing numbers is what is called

a system of numeration, and the number chosen is called

the base of this system.
Thus the system of which we have so far made

use, which is universal, is called the decimal system,
and has for its base 10. The one which we have just

indicated would have 8 for its base, and might be called

the octesimal system.

Supposing that 12 were taken as the base of a system,
it would be called the duodecimal system, and it would

take 12 little sticks to make a bundle, 12 bundles to make
a faggot, and so on. There would have to be then,

excluding the nought, eleven figures, that is to say, the

9 of the decimal numeration, and two others to represent
10 and 11.

When a numeration system has for its base a number

B, it always requires B 1 figures, without counting the

nought, and the number B is invariably written as 10.

It is useful to know how to put down a figure in one

system of numeration when it is given to you written in

another, and really it is perfectly easy.

For instance, take 374, written in the system with a

base 8. We will try to write it in the decimal system.
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If we think of our little sticks we can see that the number
in question contains

4 little sticks . . . . . . . . 4

7 bundles of 8 little sticks . . . . 56

3 faggots of 8 x 8 little sticks. . . . 192

252

In practice we would arrive at the same result more

quickly by starting from the left and saying : 3 faggots
of 8 bundles, plus 7 bundles, gives 31 bundles ; 31 bundles

of 8 little sticks makes 248, which, with 4 added, makes
252.

If, on the contrary, the number 598 is written in the

decimal system, and we wish to have it expressed in the

system with 8 for base, there will be nothing easier than

to take away 8 as many times as we can, and the remainder

will be the last figure to the right. So we divide 598 by
8, and take the remainder, 6 ; this operation gives us the

number of bundles of 8, which is 74
; dividing by 8 we

have the number of faggots, 9, and for remainder, 2

bundles ; 2 is the 2nd figure. Dividing 9 by 8 we see

finally that we have for remainder 1 bundle (1 is the 3rd

figure) and that we have 1 box (1 is the 4th figure).

This will be expressed thus :

598
|

8

38 74
|

8

6 29
(
8

1 1

and 1126 is the required number, written in the system
of base 8.

If it was necessary to write this number with a 12 base,

we should have
598

[

12

118 49
|

12

10 1 4

and the result would be 41(10), representing by (10) the

figure 10 of the duodecimal system.
G2
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We have just seen that 374 (system 8) is expressed as

252 (decimal system). In the system base 12 it would
be written 190.

We go from one system to another at will, using the

decimal system as an intermediary.
With use, the pupil can calculate in any system what-

ever, only the essential point is this, never to let him

forget that carrying is no longer done by tens, but by
groups of B, if B is the base ; this naturally calls for some

practice.
We give below the number 1000 in the decimal numera-

tion, written in the numeration systems with various

bases 3, 4, 5, ... up to 12.

B = 3 . . . . 1101001

4 . . . . 33220

5 .. .. 13000

6 .. .. 4344

7 .. .. 2626

8 .. .. 1750

9 .. .. 1331

10 1000

11 .. .. 82(10)
12 .. .. 6(11)4

It is worthy of notice that, using the numeration system
with base 3, and employing negative figures, the numbers
reduce themselves then to 0, + 1 ! This fact

is rendered more interesting when we learn that it can be

put to practical use in certain questions relative to

hydraulic lifts. 1

M. Marcel Deprez (membre de 1'Institut), to whom we
owe the transport of energy by electricity, has been good

enough to tell me of a curious way of weighing by means
of a balance. Let us suppose that we place weights in

both scales. Given these conditions, the problem pro-

1 This application, in a previous French edition, was placed at the

end of the book, under the title Note on a question of weighing,
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posed is to determine a system of weights (a single weight
of each kind) starting from 1 gramme, let us say, in

such a manner that it will be possible to balance bodies

weighing 1, 2, 3 . . . grammes up to a determined limit.

We see that with the 2 weights 1 gramme and 3 grammes
we can weigh up to 4 grammes, since 2 = 3 1, and
4 = 3 + 1.

By taking the 3 weights, 1, 3, 9 grammes, we can weigh

up to 13 grammes.
In general, if we have taken the n weights 1, 3 . . . ,

Q 1

3""1

grammes, we can weigh up to - -
grammes.

For instance, with the 7 weights, 1, 3, 9, 27, 81, 243, 729

grammes, we can weigh from 1 up to 1093 grammes.
This question, as we might note, leads back to the

writing of successive numbers in the system of base 3

by utilising negative figures. Then, instead of the figures

1, 2, we use 1, T; and 1 shows that the corresponding

weight ought to be placed in the second pan of the balance.

[1 is another way of writing 1.]

For instance, 59 is written in this system 11111, for

59 = 81 - 27 + 9 - 3 - 1. To weigh 59 grammes
we will put the weights 81 and 9 in a scale, and 27, 3, 1 in

the opposite scale ; adding to this last a body weighing
59 grammes, the balance will be in equilibrium.

It may be interesting to add here some observations

on Roman numeration. It is now no longer used except
for the purpose of marking the hours on the dials of

watches or clocks. The child will be able also to decipher
the dates on old inscriptions if he understands it, but that

is all, so that the actual mathematical interest is of a very
moderate kind. It is quite different from the teaching

point of view. I must content myself with only a

summary of the observations which M. Godard (the
then director of the school, 'Ecole Monge) brought to

my notice many years ago.
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If sticks are laid in order on a black table, for instance,

taking care to space them equally, and we suddenly ask

anyone, without any warning, how many sticks there

are in a certain group, the answer will be given immediately
if the group contains two, three, or four

; beyond that,
for five and upwards, there would have to be a preliminary

rapid operation of the mind, a mental decomposition of

the number, so that the answer would no longer be the

result of visual impression. This is a well-assured fact,

which is verified by many experiments.
On the other hand, the number five plays an important

part in Roman numeration.

We are inclined to ask if it has not originated from the

physiological fact that we have just pointed out, and its

symbols of expression from the anatomical disposition
of the human hand.

The numbers one, two, three, four would be represented

by one, two, three, four fingers raised :

i, ii, in, mi.
We can make a tolerably good imitation of the shape

of the letter V by means of the whole hand held up, the

thumb stretched away from the four fingers.

Ten can be shown by the joining of two hands, one

upwards, V, the other downwr

ards, \, which gives the

letter X.

Only the first principles of Roman numeration have

been mentioned, and we refrain from any comment on

the other symbols L, C, M. . . . It is, however, useful

to notice that the consecutive repetition of the same sign

more than four times is to be avoided.

To obtain the numbers between five and ten the neces-

sary units follow the sign V :

VI, VII, VIII.

Similarly, for numbers above ten, we have

XI, XII, XIII.

It is probable that as a later, but still very early

improvement, the idea was carried out of showing sub
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traction by placing the unit (or other symbol) to the left

of a fixed sign, while transferred to the right the same

figure would signify addition. Thus the expressions

IV, IX, XL, . . .

give us five less one, or four ; ten less one, or nine ; fifty

less ten, or forty ; there are others of a similar kind. It

is remarkable to notice here, in however embryonic a

form, this first attempt at graphic translation of the

sign by the sense.

These observations seemed to me sufficiently curious

to deserve mention. They seem to result in the idea

that Roman numeration was one with a base 5, but

incomplete, since in it different symbols were not used

to indicate the first four numbers, and, above all, because

that central pivot of all rational numeration that nothing
which is everything in arithmetic that invaluable resource,

the nought, is lacking.

33. Binary Numeration.

We have seen, in the last section, that if B is the base

of a system of numeration, this system requires B 1

figures, without the nought. If 2 is the base, only one

figure \vill be required, the figure 1.

The idea of this numeration, in which all numbers are

written by means of only two characters, 1 and 0. seems

to belong to Leibnitz,
1

although it is said that the Chinese

made use of it in ancient times.

For ordinary use in calculations this system would
be inconvenient because of the length of its expressions.
Thus the number 1,000 in the decimal numeration

would be represented in the binary system by the figures

1111101000, ten in all. But in certain scientific appli-
cations the employment of the binary system is at once

useful and interesting. As well as this, we find in it

the explanation of various games, such as
"
the ring

1 Leibnitz, German philosopher and mathematician, bom at Leipzig
(16461716).
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puzzle
" and Hanoi To.vcr, and also a little drawing-room

game which depends upon the use of binary numeration,
and of which Edward Lucas gives us a description in

his
"
Arithmetique amusante " under the name of

" The

Mysterious Fan"
To make this clear, suppose that we have written the

31 first numbers in binary enumeration :

1 1
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On a second piece of cardboard, B, we write down also

the numbers whose 2nd figure, starting from the right, is

a 1 in binary numeration ; then the same (cardboard

slips C, D, E) for the 3rd, 4th, and 5th figures.

If you give these five slips to anyone, and ask him to

think of a number thereon, and to hand you the slips

on which his number is written, but only those that will

tell you the numbers which enable it to be written in

binary numeration. It is quite easy to verify that,

in order to find the number selected, we have only to

add the first numbers written on each slip. Suppose
we take 25 as the number chosen ; the slips you will

receive will be A, D, E, beginning with the figures 1, 8, 16
;

1 + 8 + 16 = 25.

The game may be played with the number 63 instead

of 31, using 6 slips instead of 5, and with 127 also (this

latter requiring 7 slips). The apparent divination may be

rendered still more mysterious by the use of proper
names. It is only necessary to make a list, giving a

number to each name, and writing the names on the

slips, remembering that the various slips begin with

1, 2, 4, 8, 16, 32, 64.

Anyone can make this group of slips of cardboard,
as far as 7 for instance, and even if the performer does

not gain a reputation as a sorcerer, at least there will be

the solid satisfaction of having plenty of practice in

rapid and accurate mental addition. Naturally, without

both quickness and accuracy, the aforesaid reputation
can never be maintained.

34. Arithmetical Progressions.

Take a series of numbers,

4 7 10 13

for example, such that the difference between two con-

secutive ones is always the same :

7 - 4 = 10 - 7 = 13 - 10 = 3.
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Such a series is called a progression by difference or

an arithmetical progression.
The difference, being constant, 3 in this example, is

called the common difference of the progression.
The numbers 4, 7, 10, 13 are the terms of the progression.

Here we have only written four, but we could have as

many as we liked.

It may be pointed out that the series of integral numbers

1, 2, 3 ... forms an arithmetical progression with

common difference 1, and the series of the odd numbers

1, 3, 5 ... forms an arithmetical progression with the

common difference 2.

We will try and represent graphically (Fig. 72) the

progression 4, 7, 10, 13, the example mentioned above.

On squared paper, counting 4 divisions on the first line
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n is the number of the terms, this sum is expressed by
(a + b)n
~2 '

If a =
1, and if the common difference is 1, then b = n,

n(n -f 1)and we have -
-.

31

If fl = 1, and if the common difference is 2, then

6 = 2n I and we have n2
. We thus find the results

already met with above.

Notice the analogy which exists between the formula

2 above, and that of the area of a trapezium.

If r is the common difference of an arithmetic progres-

sion, this progression can always be represented by

a a + r a + 2r . . . a + (n l)r.

35. Geometric Progressions.

If a series of numbers

2 6 18 54 162

for instance, is such that, on dividing each of them by the

preceding one, the same quotient results, these numbers
form a geometric progression or progression by quotient.

The constant quotient is the common ratio of the pro-

gression. It may be said that, in a geometric progression,
the relation of one term to the preceding one is constant,
and is called the common ratio. In the example given
above, the ratio is 3, the first term is 2, and the number
of terms is 5.

The numbers 1, 10, 100, 1,000, ... in the decimal

system, form a geometric progression with common
ratio 10. The same numbers written in a numeration

system with the base B form a geometric progression
whose common ratio is B.

The common ratio can be a fraction, as well as a whole

number. If it is greater than 1, the terms go on increasing
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without end ; the progression is then called increasing.

If the ratio is less than 1, the progression is a decreasing

one, and its terms go on diminishing more and more.

It is interesting to be able to find the sum of the terms

of a geometric progression. Let us go back to the

example given above

2 6 18 54 162.

If we multiply any term by the common ratio 3,

we have the following term. If it is multiplied by
3 1 or 2, then we shall have the difference of two

consecutive terms :

2 (3
-

1)
= 6 -

2, 6 (3
-

1)
= 18 -

6,

18 (3
-

1) = 54 -
18, 54 (3

-
1) = 162 - 54,

162 (3 1) = 486 - 162.

Adding all these, if the sum is s, we shall have then

s (3 1) = 486 2, since all the other numbers cancel ;

so that s = ~ = 242.
o 1

In general, when
abc ......... k

is the progression with common ratio q, of which we wish

to find the sum s ; if we take it a term further I = kq,

we shall have

a (q 1) = b a, b (q 1) = c b, . . .

k(q 1) = I - k,

and s (q I) = I a; s _ ..

If the progression is a decreasing one, we have

, which comes to the same thing.1 ~~ f
Geometric progressions play an important part in

calculation ; they have numerous applications.

Even if the common ratio is not much greater than 1,

if the number of the terms becomes rather high, the pro-

gressions lead to numbers of an enormous size ; these
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results amaze us to begin with unless we are forewarned.

We will quote several instances in the following sections.

It is useful to notice if a is the first term of a geometric

progression, q the common ratio, and n the number of

the terms, the progression may be written thus

a aq aq
2

... aq
n~l

.

36. The Grains of Corn on the Chessboard.

The inventor of the game of chess is not exactly known ;

but there exists on this subject an old Hindoo legend
which deserves to be remembered.

Enchanted by the new diversion, the monarch, accord-

ing to this legend, caused the inventor to be brought
before him, and invited him to fix for himself the reward

which he desired.
" Let your Highness simply deign," responded the man

"
to order your servants to give me a grain of corn, to be

placed in the first division of my chess-board ; 2 on the

2nd, 4 on the 3rd, and continue thus, always doubling, to

the 64th division."

The modesty of such a request struck the monarch with

astonishment, so we are told, and he gave orders that the

request should be satisfied without delay. But he was
still more amazed when later he was made aware of the

absolute impossibility of fulfilling his commands. In

order to have produced the necessary quantity of corn

the product of eight harvests would have had to be

gathered, always supposing that the whole of the soil

of his kingdom had been sown with seed.

The number of the grains of corn required is the sum
of the terms of the progression

1 2 23
. . . 263

,

which gives 2s4 1. Here is the number written in

the decimal system :

18446744073709551615.

There are twenty figures in this, as we see. We will
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not attempt to read it. The words which we would utter

would not convey much meaning to our mind. However
we shall presently find others much larger.

37. A very Cheap House.

One of our friends, probably knowing the chess-board

story, had a little two-storied house built for him. A
flight of 7 steps led from basement to first floor, and the

staircase which led to the second floor had 19 steps.

At the end of several years he decided it was time to

put his little place on the market, as it was in good
order, and had a veiy pleasant aspect. To the first

would-be purchaser Smith made the following pro-

position :

"
I am not at all unreasonable, and, moreover, I really

wish to sell ; suppose I offer you the house if you will put
a cent on the first of the small flight of steps, 2 on the

2nd, 4 on the 3rd, doubling thus on every step till the end
of the staircase is reached. It is really nothing, there are

only 26 steps in all."
" Done ! there's my hand upon it," cried Jones, the

would-be possessor, beside himself with joy at such a stroke

of good luck.

And the next day Jones, having first entertained Smith
to a sumptuous meal, set out for the house to count out

the required coins on the 26 steps, i.e. 226 1 cents.

Up to the top of the first flight of steps all went well,

and the first few steps of the staircase presented no

insuperable difficulty ; but soon his purse emptied much
more quickly than he had imagined it possible.

The vendor very obligingly offered to tell Jones the total

amount of his debt, so that he would have no need to

go up further.
"
My dear Jones," he cried,

"
you owe

me $671,088.63, but from an old friend like you, I will

not expect the .63, I shall be pleased to meet you that

far."

Poor Jones' face lengthened remarkably at this
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announcement, and ever since he has insisted that each

of his children should be taught what a progression means.

He himself is perfectly acquainted with its nature,

but his knowledge was rather expensive.

38. The Investment of a Centime.

One of the most important practical applications of

progressions is that which concerns compound interest.

If we put out 100 dollars at interest for a year, at 5 per

cent., it brings in 5 dollars. If, instead of touching
the 5 dollars, we join them to the 100, that makes 105

which we can put out during a second year, and so on.

When the number of years becomes considerable, the

growth of capital by this operation of compound interest

is absolutely startling.

Suppose, for example, that at the beginning of the

Christian era a cent had been put at compound interest

at the rate of 5 per cent. ; it is calculated that toward

the end of the 19th century its acquired value would
be more than 200 millions of spheres of pure gold as big
as our earth.

We may say, in passing, that such a result shows

us the impossibility of an absolute application of com-

pound interest in practice. The enormousness of the

amount forbids any exact idea of such a sum.

It will be far better to put a question of this kind :

for what length of time must a dollar be put out at com-

pound interest at the rate of 5 per cent, so that the

acquired value may be a hundred million dollars?

The answer is 378 years, so that if one of our ancestors,

about 1527, in the time of Henry VIII., had conceived the

brilliant idea of placing 1 dollar to your credit, at 5 per
cent, compound interest, this would have grown to-day
to the enormous value of 100 million dollars.

If the same thing had been done in the year 59 of our

era, at the rate of only 1 per cent., the same result would
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have been obtained in 1907, that is to say, the dollar

thus placed would to-day be worth 100 million dollars

(always supposing no accidents occurred in the interval!).

39. The Ceremonious Dinner.

One evening twelve people had arranged to dine

together. Each of them attached great importance to

points of etiquette ; now the seating of the party had not

been arranged in advance, and a courteous discussion

arose at the moment of going to table which, however,
did not lead to any result. Some one, as a means of

solving the difficulty, proposed that all the possible ways
of attacking the problem should be tried ; there would
be nothing to do then but choose the one which seemed
the best. Accordingly this was done for some few

minutes, but they became so mixed up that it did not

seem to hold out any satisfactory prospect. Happily,

among the guests, there was one, a professor at the college

in the town, who was a mathematician. "
My good

friends," said he,
"
the soup is going cold. Let us seat

ourselves at random ; that will be quickest." This wise

counsel was followed and the repast was brought to a

close amid the greatest cordiality. At dessert, taking up
the subject once more,

" Do you know," said the

professor,
" how long it would have taken us to try all

the possible ways of seating ourselves round this table,

taking no more than just one second to move from one

seat to another ?
"

and, as each kept silence, he went

on to say,
"
Continuing this little game, day and night,

without stopping a single moment, we should have

been 15 years and 2 months, taking no notice of leap

years. You see that the meat would have dried up and

we ourselves should all have died of hunger, weariness,

and loss of sleep. By all means let us be ceremonious

if we wish, but not to excess."

This was absolutely correct ; the precise number of
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different ways in which 12 people can take their places
at a table laid with 12 covers is just 479,001,600 ; more
than 479 millions, as you see.

This result is amazing when we reflect that for 2 diners

2 seconds of time only would have been needed ; and
even for 4 the trials might have been made in less than

half-a-minute.

The enormous numbers we have just mentioned are

due to permutations, and the deduction is easy to make.
When several different objects are in question, which

can be arranged in various ways indicated beforehand,

any particular arrangement adopted is a permutation of

these objects.

If we deal with two objects a, b and with two different

places, the only two permutations possible are a b and b a.

To form the permutations of three objects, a, b, c, we
can take the permutation a b and join c to it at three

different places ; it can come after b, between a and b,

or before a.

The permutation b a will also give three by joining c

to it ; so that we shall have the table of permutations
of a, b, c by writing

ab c b a c

a c b b c a

cab c b a

and this gives 2x3 = 6 permutations.
If we take any one of these permutations, a b c for

instance, and add on to it a 4th letter, we shall have

then 4 permutations

abed abdc adbc dabc

and each permutation of 3 letters thus furnishing 4 of

4 letters, the number of permutations of 4 letters will

be 6 x 4, or 2 . 3 . 4 = 24.

Continuing thus, the number of permutations of 5

letters would be 2.3.4.5; and generally, that of the

3f H
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permutations of n letters will be 2 . 3 . 4 . . . n. This

is often represented by n / or
j^.

1

We can see below how rapidly these n ! numbers of

permutations grow when n increases.

n n!
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

10 3628800
11 39916800
12 479001600

Permutations play a most important part in mathe-

matics. They can be used, besides, in various games
and amusements, such as anagrams. Very many papers,

exceedingly learned ones, have been published on per-
mutations. We shall not deal with them here, but may
mention the happy idea of Ed. Lucas, of representing by
a drawing the permutations of several objects. He has

called it pictured permutations. To give the pupil a clear

understanding of this idea, suppose that we make on

squared paper a square of n columns, of n rows each ;

and, confining ourselves to permutations of 4 objects,

n shall equal 4. There will be a square of 16 divisions.

If we replace the 4 objects a, b, c, d by the 4 numbers

1, 2, 3, 4, the permutation, c b d a, for example, can be

written 3241, and so with the others. Taking, then, the

first column of the square, we mark the 3rd division,

and shade it, the same for the 2nd division of the 2nd

column, the 4th of the 3rd column, and the 1st of the

4th. The four divisions so shaded thus stand for the

permutation c b d a.

Fig. 73 shows us the 24 permutations of 4 objects.

/ is called
"
factorial n

"
because it is made up of factors.
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To make this easy to understand we give below the table

of permutations which corresponds to the figure, in the

same order.

abed
acbd
cabd
bacd
bead
chad

FIG. 73.

abdc adbc
acdb adcb
cadb cdab
bade bdac
bcda bdca

cbda cdba

dabc
dacb
dcab
dbac
dbca

dcba

H.2
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If we consider any one of the squares of Fig. 73 as a

chess-board, the shaded divisions represent the positions
of castles which cannot be taken by one another, and
that applies to all analogous squares. It follows, then,

that on an ordinary chess-board of 64 divisions we can

place, in 40,320 (8 !)
different ways, eight castles so that

they cannot take one another. On a board of 100 divisions,

ten castles could be placed, under the same conditions,

in 3,628,800 (10 !) different ways. We can consult the

table given on page 98 for these numbers. Questions of

this kind are not easy to answer without the help of

permutations. With their aid the solutions are perfectly

simple.
You can also ask yourself in how many different ways

we can place the cards in a game of piquet ; the answer is

32 !, or those in a game of whist, which will be 52 !, but I

do not advise you to try and write these numbers in the

decimal system. Try rather to find the time it will take

to carry out all these changes, taking a second to do each

one. This is a pleasure I am leaving to my readers,

or rather to their pupils. But let them not try to write

these numbers, even counting them in centuries, for such

an effort would hardly tend to the education of one's

mind.

40. A Huge Number.

We are raising ourselves, by progressions on the one

hand, and permutations on the other, to great heights
on the ladder of numbers.

In the hope of returning to more reasonable limits,

and thus escaping a feeling of giddiness, ask some one

to write down the largest number possible by using three

9's. Generally the answer will be

999,

quite a modest number, indeed, which does not make
one's brain whirl in the slightest.
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But if by chance you have happened upon a conscien-

tious mathematician, anxious to give you an absolutely

correct answer, you will read, by a slight change in the

position of the 9's,

This means that we must raise 9 to a power marked by

the number 9
9
. This last is easily found in a few minutes.

Your pupil will certainly give it to you without any
hesitation if you do not care about working it yourself.

It is

387,420,489,

and this result is very interesting, for you know, thanks

to the pupil's answer, that all you have to do to obtain

the required number in the decimal system is to make

387,420,488 multiplications.
These are very simple, having only 9 as multiplicator,

but their number rather inspires hesitation.

Decidedly, I cannot encourage you to undertake the

task. I will only tell you so that it can be repeated to

the pupil, who can verify it later that the number

9
9

9 , if written in decimal numeration would have

369,693,100 figures.

To write it on a single strip of paper, supposing that

each figure occupied a space of i-inch, the length of the

strip would need to be

1,166 miles, 1,690 yards, 1 foot, 8 inches,

which is farther than from New York to Chicago.

Under the same conditions, to write 1010 , we would

need a strip of paper long enough to encircle the earth. 1

1 This remark was made by M. Ch. Ed. Guillaume, in a very

interesting article in the Revue Gtn&rale dea Sciences (,30th Oct., 1906).
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The time that we should spend in writing down the
9

number 9
9

, taking a second for each figure, and working
ten hours per day, would be approximately 28 years
and 48 days, working continuously without stopping for

Sundays and holidays.
To add to your information, I can assure you that the

first figure of the number we are seeking is a 4, and that

the last is a 9. That leaves us just 369,693,098 figures to

find. Perhaps you may think this but a paltry assistance,

and I am of the same opinion. However, I hope you will

agree with me that the title I have chosen for this section,
" A Huge Number," is thoroughly justified.

I
1

2
2

It is worth noticing that 1 is simply 1, that 2 =16,
a

and that 3' is a number of 13 figures,

7,625,597,484,98r.
1

$1. The Compass and Protractor.

In the various drawing exercises, which the pupil

ought never to have been allowed to discontinue, circles

or fragments of such may have occurred which were

drawn almost freehand.

1 In spite of the explanations given, several readers have confused

3
the signification of 3 , and several have written to me saying that they
made the result 19683, and not a number of 13 figures. This arises

from a false interpretation of the symbol a
'

, which can be read

( a ) or a (
h

). This last interpretation is the only reasonable one ;

/
b
\e be

for ( ) = a . It would be illogical to employ the expression

,
c be 9 / 9\

a to represent the more simple one a . So 9 9 can only signify 9l 9

3

and 3
3
means 327 and not 273

.
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For drawings in which we need a certain amount of

precision, the time has come to accustom the pupil to the

use of the compass. He must practise by tracing arcs

of circles first, then whole circles, in pencil to begin with,

and in ink afterwards. He will be shown, following the

mode pointed out in all the classical treatises, how to draw

perpendiculars to straight lines, to construct angles, and
various other figures, etc.

These constructions, when they are required to be exact,

ought besides to admit of the use of the protractor, which

is as simple in its use as the compass, and is of rather

similar service in the diverse forms it assumes ; semi-

circular or rectangular, made of metal, horn, etc.

As to the method of division of the protractor, prefer-

ence must be given to that in grades, where the right angle
is divided into 100 grades, and the grade then into tenths

and hundredths, etc.

This method of measuring angles was instituted at the

same time as the metric system. Then it was abandoned
for the old system of degrees, minutes, etc.

In France they are now, and with good reason,

returning to the grade method, even in various official

lists ; and several important public offices constantly
make use of this division into grades. It is most

advisable, therefore, to make it, from the outset, quite
familiar to the pupils, and to show them the half of

a right angle under the name of 50 grades (rather than

45 degrees).

These constructions are to be made, and should be very

simple. Indeed, they may often be left to the initiative

of the pupil, remembering, however, that it is important
to make him execute the same construction by means
of different scales. He will conceive thus the notion

of figures having the same shape but different size,

that is to say, similar figures, without being taught any
definition.

The child will perceive very quickly that the scale
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chosen to make a construction will cause no change
in the angles ; but on the contrary, if a double or treble

scale be adopted, all the corresponding lengths will be-

come doubled or trebled. In short, without making any
geometrical study as far as the present is concerned, he

will acquire a knowledge, born of experience, of many
truths, whose proof will be so much the more easily

assimilated later.

There are certain other properties useful to know, and
certain names useful to retain hi the memory, for which

the pupil must provisionally take your word, and give you
credit. These form the subject of the following sections.

32. The Circle.

The circle is the round figure (Fig. 74) that is traced

with a compass, one of the points remaining fixed. The

point O which is fixed is the centre ; the

distance from the centre to any point M
of the circle is called the radius. Twice

the radius is the diameter; any straight

line, MM', passing through the centre,

is a diameter; the length of the segment
MM is double that of the radius. When

we take the two points A, B on a circle, that portion
of the circle limited to A and B, whether on one side or

the other, is called an arc of the circle. The straight line

AB is a chord which subtends the two arcs AB. The

space between the chord and the arc is called a segment

of a circle. When the point O is joined to two points

A, B of the circle, the angle AOB is called an angle at

the centre. The angle AMB, whose sides pass through
AB, and whose corner is at M on the circle, is an angle
inscribed in the segment AMB ; this angle is the half of

the angle AOB. When we join the centre to the middle
C of the arc AB, the straight line OC is perpendicular
to the chord AB, which is cut in half at D.
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If we take a point N on the circle, below the chord AB
on the figure, the sum of the two angles AMB, ANB is

equal to two right angles.
When we consider (Fig. 75) a

circle and a straight line, this last

may be (DJ outside the circle, or

(D 2 ) may cut it at two points ; this

is said to be a secant ; or, finally,

(D 8 ) may touch the circle at one

point only, in which case it is a

tangent to the circle. The distance FIG. 75.

from the centre to the straight line is

greater than the radius for an exterior straight line,

less a secant.

equal to a tangent.
The point common to the tangent and to the circle

is the point of contact. The tangent is perpendicular to

the radius which is drawn to the point of contact.

In any circle whatever there is the idea of length ; this

would be that of an extremely fine thread which would
surround the entire ring. Although this general idea

lacks precision, it presents a picture,

and conveys an impression to the

mind; it will take definite shape
later. The length of the circle of

which we have just spoken is

called its circumference.

If (Fig. 76) we consider any two circles, O, O', the

ratio of the circumferences is equal to the ratio of the

diameters. This means that the ratio of the length of

the circumference to that of the diameter is the same

in each of the two circles, and therefore in all circles.

This ratio of the circumference to the diameter, which

cannot be exactly expressed by any fractions whatever,

is greater than 3-14, but less than 3-1416; it is indi-

cated by the Greek letter IT. For many ordinary purposes
3-14 is sufficiently near, and 3-1416 will be found exact
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enough in almost every case when greater precision is

needed.

If C is the length of the circumference, and if D = 2R
C

is the diameter, R being the radius, the ratio ^ is then

TT. This means that C = irD = 27rR. In ordinary

practice, C = 3'14 x D = 6-28 x R.

This tells us easily the circumference of any circular

object, when we know the radius or the diameter, and
also how to find the diameter, for instance, of a round

tower, of the trunk of a tree, or of a column, when the

circumference can be measured with a narrow tape or

in any other way.
Direct the children's attention as far as possible to the

advisability of doing these exercises on real objects ; do
not neglect the opportunity of making them check the

approximate value of TT which they have used, when, at

one and the same time, the circumference and the diameter

can be measured.

43. The Area of the Circle.

Just as we acquire, by intuition, a knowledge of the

circumference of the circle, so also we feel that the portion
of space inside the line has a certain breadth, an area

which we should be able to measure. It is found that

this area can be obtained by multiplying the length of

the circumference by half the radius. And, as we have

seen that C = 27rR, it follows that the area S = irR2
,

or again that 8 = 7 D2
. ^ happens thus that the areas

~fc

of two circles have between them a relation which is the

same as that of the squares of the radii or of the diameters.

Here again, practical examples, as varied as possible,

will serve as subjects for exercises on these questions of

areas: circular masses of stone in a garden, fountains

in parks, the floor of a riding school which is to be covered
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B
FIG. 77.

with sand, the picture of a round table ; measuring rings
or halos by the difference between two circles, etc., etc.

H. Crescents and Roses.

In the greater number of the treatises on drawing,
models of figures made up of circular elementary forms

are frequently formed which can be traced with the help
of the compass and make interesting exercises.

Merely as specimens, we shall

show here a small number only of

these figures, of which some are

very well known.
If we draw (Fig. 77) a semi-

circle having for diameter BC, and
if we take a point A anywhere on
this line, the triangle ABC is always

right-angled, the angle A being a

right angle. Now, let us describe two other semicircles

on AB, and on AC as diameters. We shall thus have

two kinds of crescents (shaded
on the figure). What makes
this figure interesting is that

the sum of the areas of the two
crescents is exactly equal to

the area of the triangle ABC.
This property was known at

the time of the Grecian era, and
the construction that we have

just indicated has become
classical under the name of

the crescents of Hippocrates.
1

Another interesting construction is that shown in Fig. 78.

Let us divide the diameter AB of a circle into five equal

parts by the points C, D, E, F. On AC, AD, AE, AF
as diameters we draw semicircles above the line ; then

>

Hippocrates of Ohio, Greek geometrician, 5th century B.C.

FIG. 78.
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on CB, DB, EB, FB we draw semicircles below. By
means of these circular lines, the circle is divided into five

parts which have the same area. Instead

of five, any other number n could be

taken. It would be sufficient to divide

the diameter AB into n equal parts.

In a circle (Fig. 79) let us take two

diameters perpendicular to one another

AB, CD. Having formed the square

OBEC, let us trace from B to C a

quarter of the circle of which E is the

centre, tracing at the same time three

other quarter circles CA, AD, BD ;

and the whole (the shaded part) forms a sort of star with

four points. The area of this star is (4 ?r) R2
, or nearly

0-86 x R2
.

If (Fig. 80) we again take two
diameters perpendicular to one another,

AB, CD, and if we draw the semicircles

having for diameters BC, CA, AD, DB, A|
we obtain a rose with four leaves. The
area of this rose is (TT 2) R2

,
or nearly

1'14 x R2
, the radius being always repre-

sented by R.

Opening the compass to a length equal
to the radius, and marking out this length (Fig. 81)

successively on the circle at B, C, . . . we shall find that

it falls once more on
the^ point

A after

the 6th operation. If, with B, D, F as

centres, with the radius R, we describe

the arcs of the circles AC, CE, EA, which

all pass through the centre, a rose with

three leaves will be produced.

By tracing (Fig. 82) with the same

construction the six arcs of the circle

with the centres A, B, C, D, E, F we obtain a rose with

six leaves.

FIG. 81.
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We will limit ourselves simply to these few illustrations,

given only by way of example. In

practice, they should be constantly varied,

and we should impel the child to use

his own imagination to form fresh figures.

This will follow as a matter of course, for

as soon as ever he becomes at all familiar

with the use of the compass and other

elementary drawing instruments, he will

take a pride in forming various figures,

and will bestow his time and attention on it.

FIG. 82.

45. Some Volumes.

If it is important to determine the areas of surfaces,

it is just as necessary, in practice, to ascertain the volumes

of bodies. To do this, we must have a unit of volume,

just as for determining lengths we require a unit of

length, and for areas a unit of area. This unit of

volume is always the volume of a cube having for its side

the unit of length.

Starting from that point, the volumes

of a certain number of bodies of regular

shapes are found by very simple means.

We intend summarising these now, in

such a manner that there will then be no

difficulty in solving certain ordinary

Questions. First of all, let us recall to our

minds the bodies that we have already

defined, and also point out three others

which are frequently to be encountered

in ordinary practice.

We have seen what a cube is, also a parallelepiped,
a prism, and a pyramid.

In all these bodies, we only see straight lines and planes ;

generally we call them polyhedra. In the three others of

which we are now going to speak this is no longer the case.

FIG. 83.
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Let us imagine (Fig. 83) that a rectangle AGO'A'
turns round its side OO' ; it thus makes a body which is

called a rectangular cylinder. A hat or muff box, a

lamp-glass, the inside of a pint pot (sometimes), will

show the general form of a cylinder. The two sides OA,
O'A' describe two circles of equal radius OA = O'A',

which are called the bases of the cylinder; OO', which has

not moved, represents the distance apart of the planes
of the two bases : this is the height of the cylinder.

Let there be (Fig. 84) a rectangular triangle AOS, in

which O is a right angle, and let this triangle revolve on

SO ; this will form a body which is called an upright
cone. A sugar loaf, a funnel, a carrot

will give a good idea of a cone. The
side OA describes a circle which is called

the base of the cone. The point S, which

has not moved, is called the apex. The

length SO, the distance of S from the

plane of the base, is the height of the cone.

Finally, if a circle turns round on its

diameter, the body which this makes is

FIG. 84. called a sphere.

The form of the sphere is that of a

ball. The centre of the circle is the centre of the sphere,
and the radius of the circle is the radius of the sphere.

Any plane which passes through the centre cuts the

sphere in a circle, which has the same radius as itself;

this circle is called a great circle. Any straight line

which passes through the centre cuts the sphere in two

points equally distant from the centre, and the segment
limited by tnese two points is a diameter, ot which the

length is double that of the radius.

It is well to notice that a cylinder is defined when the

radius of its base and its height are given, the same for a

cone, and that a sphere is defined when we know its

radius.

That being established, we shall have the volume :
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of a cube, by multiplying twice by itself the length
of its side. If a measures this length, that gives us

a x a x a or a3
: formula, V = a3

;

of a parallelepiped, by multiplying the area of the base

by the height ; the area B of the base being itself a product
ab, if a is a side of the parallelogram of the base whose

height is 6, the product abh is formed on multiplying

by the height of the parallelepiped : formula, V = Eh =
abh ;

of a prism, of which the parallelepiped is only a

particular case, by multiplying the area of the base by
the height : formula, V = B& ;

of a pyramid, by taking a third of the product of

the area of the base by the height ; this determination

of the volume of the pyramid was given for the first time

by Archimedes1
: formula, V =

;

of a cylinder, by multiplying the area of the base by
the height. As the base is a circle, with radius r, if the

height is h, it follows that the formula is V = * r2 h.

of a cone, by taking the third of the product of the base

IT r2 h
by the height : formula, V =

;

of a sphere, by multiplying the cube of the radius by
4 4

the - of TT : formula, V =-^-ir r3.

o o

It is also established that the area of a sphere is equal
to four times that of a great circle or 4 IT r2

. We can

therefore say that the volume of a sphere is equal to its

area multiplied by the third of the radius.

Finally, the volume of a sphere can also be determined

by the formula V =
g

TT d3
,
and its area by ird?, if we

call d the diameter.

All these results will be obtained later. They are only

1 Archimedes, an illustrious geometrician, born at Syracuse (287
212 B.C.).
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actually communicated to the pupil in order to make
certain practical exercises possible. But do not ask him
to overload his memory with all these formulae.

Put them afresh before his eyes every time that he

needs them.

If by constant use they should become fixed in his

mind, so much the better. Otherwise, pay no heed to it.

46. Graphs; Algebra without Calculations.

In many of the reviews or journals of to-day we find

graphs, figures of which we can make great use for the

first mathematical education of children. We must
make them understand the signification of these figures,

and induce them afterwards to construct similar ones for

themselves.

For the most part, the graphs that we are discussing

represent variations of meteorological observations, for

instance barometric height, temperature, or those of the

market price on the Stock Exchange, over a certain length
of time. We must also remember that graphs are useful

in railway work, in the representation of the move-
ment of trains, and that it is the only practical way of

keeping count of them.

But it is above all necessary to notice that by the same
means we can represent the variation of any kind of

magnitude which is dependent on another magnitude,
whether this is time or anything else.

For example, when a weight is hung on an indiarubber

thread, this thread grows longer. It will be possible to

make a graph which would give us the length of the thread

if we know the weight. When we compress a gas its

volume diminishes ; a graph will tell us what is the volume
of the gas when we know the pressure. When we heat

the steam from water its pressure increases ; a graph will

give us the pressure if we know the temperature.
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In these various examples the length of the thread

depends upon the weight that is suspended; we say
it is a function of this weight ; the volume of gas

depends on the pressure ; it is a function of the

pressure ; the pressure of steam, dependent on the tem-

perature, is a function of the temperature. In the pre-

ceding examples the height of the barometer, the distance

traversed by a train, etc., depended on the period, that

is, on the time that has elapsed since a certain fixed

period. These were functions of time.

This idea of function is in itself quite natural, quite

simple, and a child will easily grasp it if care is exercised

in its mode of presentment,

by employing as many
examples as possible. When
a magnitude Y depends upon
a magnitude X, and when

they are both measurable,
the first is a function of the

second.

The aim of the graph is to FIG. 85.

bring these functions before

the pupil's eyes by means of figures whose construc-

tion is always on the same principle. Let us go into

this matter.

We will take on squared paper (Fig. 85) two per-

pendicular lines OX, OY. To show a particular value

x of the variable quantity X, we will lay out on OX
a length OP, which may be measured by the same number
as x, by taking a certain unit of length. To the value x
there corresponds a certain value y of Y ; we represent
this by OQ on OY, taking whatever unit of length we
wish ; that done, we draw the straight lines PM, parallel
to OY, and QM, parallel to OX, which cut each other at

a point M ; this point represents at once the two cor-

responding values x, y. By thus constructing points,
like M, as many as we like, and joining them by means of

M. I
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a continuous line, the graph showing the variation of

the function Y is obtained.

If the quantity X has negative values, and x be one of

them, the point P, instead of being to the right of O, will

be to the left on OX.
If the quantity Y has negative values, and y be one of

these, the point Q, instead of being above O, will be

below, on OY.
For any two values whatever which correspond, that

is, represent both at once the two points P, Q, there

is always one point M and no more.

If the points M which we obtain are not very close

together, we can join them by segments of straight

lines ; we do not even try to picture by a curve the

function Y ; but the points which show this outline in

segments of straight lines will, all the same, give a general
idea of the manner in which this function varies.

In algebra as we shall see later we do very little but

study the functions which can be determined by calcula-

tion, and which are called, for this reason, algebraical

functions ; and the fundamental problem of algebra
consists in finding values of X, such that two functions

Y, Z, of X, become equal to one another. We see

(Fig. 85) that, if the two graphs (Y), (Z), of the functions

Y, Z were traced, these lines would cut each other at

the points MI, M2 ; by taking MjP^ M2P2 , parallel to

OY, as far as OX, the lengths OPl5 OP2 will then give,

with the unit adopted to measure the lengths on OX,
the two numbers #1} x.2 which it was required to find.

It is in this sense that we can see that graphs allow us

to work bv algebra without calculations, and even more
than that, since it has been possible to establish graphs
for functions which are not algebraical. We ought to

add that all the results thus obtained are not rigorously

exact. Howr

ever, in practice, in a great number of cases,

if the graphs are carefully made, this approximate result

will be all that is necessary. There are many questions



THE TWO WALKERS 115

to solve which these outlines may be applied with advan-

tage ; besides, they speak to the mind through the

intermediary of the eyes, and absolutely place a living

representation before the pupil. This is, in itself, a

valuable aid to the teacher.

In the following sections some examples will serve

still further to enlighten the child's mind as to the con-

struction and the employment of graphs. Their most
natural application seems to be in solving the type of

problem known under the name of travelling problems ;

thus we shall especially work with these in various forms.

47. The Two Walkers.

Here we give, under one of its most simple forms, an

example to show what the travelling problem is. A
pedestrian starts at a given hour, Y
from a given place, at a certain

known speed. Some time after-

wards, a second, going at a greater

speed, starts out in the same direc-

tion, following the same route.

When will he overtake the first, and
at what distance from his point
of departure ?

To solve this problem, and others of the same kind, we
must see how the graph of a pedestrian is made. To
do this, on a piece of squared paper (Fig. 86) let us take
our two perpendicular straight lines OT (on which we
shall mark the time) and OY (on which we shall mark
the distances). The point O corresponds to midday,
for instance ; let 2 divisions mark an hour, and mark
along OT, lh., 2h., 3h. Again on OY, starting from

O, let a division represent a mile, and mark 1m., 2m.,
3m. ... If a man starts at half-past two, with a speed of

3 miles an hour, it will be seen, to begin with, that the

graph will contain the point A on OT; then that at

12

5m
4m
3m
2m
1 m

lh 2hA

FIG. 86.
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half-past three he will have gone 3 miles, which gives the

point B ; finally, as the man goes on at 3 miles an hour

regularly, the straight line AB will be the required graph.
We see that at four o'clock he will be 4 miles from his

starting point, and that the simple outline of the straight
line AB shows us at what distance the man finds himself

at a pre-determined hour, and at what hour he has gone
over a given distance.

We will come back now to our question, and make it

more precise by saying that a child starts with a speed
of 2 miles an hour, and that a man starts 1 hour after him
at a speed of 3 miles an hour. Taking (Fig. 87) the same

units as just now, and counting
the time of starting from the

departure of the child, then the

straight line OBj is the graph of

the child, and A.2B2 is the graph

7m
6m
5m
4m
3m
2m
I m

of the man.
These lines cut each other

Ih 2h 3h *h T a^ M corresponding to 3 hours

F g7
and 6 miles. The meeting will

then take place at 6 miles from

the point of departure, and 3 hours after the start of the

child.

The problem can now be completed by complicating
it a little. At a place 7 miles from the starting point
a carriage is sent out, going before the two travellers

but in the opposite direction. The carriage starts half-

an-hour after the child, at the rate of 4 miles an hour.

Where will it meet each of the two, and at what time ?

A3B3 is the graph of the carriage. This straight line cuts

OB! at the point B3 , showing 1^ hours and 3 miles; that

gives the time and place of meeting with the child. The

meeting place with A2B 2 is at about Ij hours (rather less),

and at rather more than 2j miles.

Treating this question by ordinary calculation we would

arrive at 1 hour 43 minutes as the time, and 2} miles as the
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distance. It is easy to see, despite the small dimensions

of Fig. 87, that it places results before our eyes
almost exactly correct and perfectly satisfactory in

practice.

48. From Paris to Marseilles.

In the table of trains between Paris and Marseilles,

we have, from the beginning of the year 1905, chosen

the express train No. 1 from Paris to Marseilles and

Midday.

.) 1 If}*
II
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sent various places at various (vertical) distances from

either end. On these lines are marked both the time of

arrival and of departure. The two graphs cut at a point
which tells us when the two trains meet.

We give below the tables showing the hours at which

the different stations on the two journeys are reached,

in order that a comparison may be made between the

variations of the journey and the absolute facts and
this despite the limited dimensions of the figure.

TRAIN No. 1. TRAIN No. 16.

-
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at least by name. Little time will be lost if squared paper
is used and the outlines done in freehand. They will

then prove very useful exercises.

Single-gauge lines afford matter for most interesting

remarks on the outline of graphs, to show the crossing
of trains which are running in opposite directions.

There is opportunity to notice also how one train going
at a greater speed than another is able to pass it, the

slower one switching into a station, where it remains to

give the quicker train sufficient time to run in front.

There really can be no indication of the thousand inter-

esting details which the construction and observation of

these graphs suggest to us.

49. From Havre to New York.

A long time ago, during a scientific congress, a number
of well-known mathematicians of various nationalities

some being of world-wide reputation were dining to-

Havre 1 ? 3 * 5 6 78 9 10

BewYork

0123456789 10 U 12 13 14 IS 16 17

a

FIG. $'.).

gether. At the end of the meal Edward Lucas suddenly
announced that he was going to lay before them a most
difficult problem.
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"
Suppose," said he,

"
(it is unfortunately only a

supposition) that each day, at midday, a packet boat

starts from Havre to New York, and that at the same time

a similar boat, belonging to the same company, leaves

New York for Havre. The crossing is made in exactly
seven days, in either direction. How many of the boats

of the same company going in the opposite direction will

the packet boat starting from Havre to-day at midday
meet ?

"

Some of his distinguished hearers foolishly answered
"
seven." The greater number kept silence, appearing

surprised. Not one gave the exact solution which appears
with perfect clearness on Fig. 89.

This anecdote, which is absolutely true, instructs us

in two ways. To begin with, how patient and lenient we

ought to be with those children who cannot immediately
take in things which are entirely strange to them. Then,

again, the question asked by Lucas shows us the extreme

usefulness of graphs as the best method of solving similar

problems. Really, if the most ordinary of the mathe-

maticians had had this idea, Fig. 89 would have

arranged itself in his brain ; he would have seen it, as it

were, with his mind's eye, and would not have hesitated.

But they, on the contrary, only thought of the ships

about to start, and forgot those on the way reasoning
but not seeing.

It is certain that any boat of which the graph is AB
will meet at sea 13 other boats of the fleet, plus the one

entering Havre at the moment of departure, plus the one

leaving New York at the moment of arrival 15 in all. At
the same time, the graph shows the time of meeting to

be midday and midnight of each day.
To Lucas also we owe the problem to be found in his

Arithmetique Amusante under the name of
" The Ballad

of the Slipping Snail," formulated thus :

" A snail begins to climb up a tree one Sunday morning
at six o'clock ; during the day, up to six o'clock in the
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evening, he gets up 5 yards ; but during the night, he

falls back 2 yards. At what time will he have climbed up
9 yards ?

"

This is again a travelling problem (slow travelling this

time !). A bewildered child will answer,
"
Wednesday

morning," which is wrong. I leave to my readers and
their pupils the pleasure of discovering the answer by
tracing the graph of the

" scramble of the slipping snail."

50. What kind of Weather it is.

Here we give (Fig. 90) two graphs at once, one dealing
with barometric pressure, the other relating to tempera-
ture, during the last week of the year 1881. We are

borrowing these from a journal (" La Nature "), but taking

away, for simplicity's sake, several of the other things
shown therein.

Here, we only wish to show how variations of functions,

about which we have nothing to go upon but experience,
are suitably shown by the graph method.

It also seems interesting to indicate how two different

functions can be shown at once on one figure with perfect
clearness.

The line which indicates the variations of the barometer

is drawn heavily, while the thermometer variations are

shown by a dotted line.

To read the barometric pressures, look to the left

of the figure, while the figures to show variations of the

thermometer (in degrees Centigrade) are to be found on
the right.

No confusion is possible at all. These graphs have

rendered the greatest service in Meteorology, and have

largely contributed to spread a knowledge of this science,

so useful even now, which, although only in its in-

fancy, is progressing by leaps and bounds.



122 MATHEMATICS

Temperature.
^^
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51. Two Cyclists for One Machine.

Two cyclists having arranged a certain journey, one
of them unfortunately found himself obliged to wait

until some necessary repairs could be done to his cycle.

However, they decided not to delay their journey, so they
arranged it in the following way : that they should start

together, one on the cycle, the other on foot ; that at

a certain point the cyclist should deposit his machine
in a ditch at the side of the

road and continue his journey
on foot. His companion, on

arrival at the spot agreed upon,
should then mount the machine,
and rejoin the other, when the

same thing would be repeated.
The programme as arranged

was duly carried out, and the

last day found them with

20 miles yet to go. When
cycling, each traveller goes

7\ miles an hour; when walking, the speed of each is 2|
an hour.
At what point ought the bicycle to be put on one side

by the first traveller (no more changing taking place) so

that both may arrive at their journey's end at the same

time?
The answer is evident. As each has to go the same

distance on foot, as also by cycle, the last change, in

order to arrive at their destination at the same time,

should take place half-way, that is, 10 miles from the

starting point.

Fig. 91 gives us the graphs of the journeys of the

two travellers, the first shown by a continuous line, the

second by a dotted one. To make the explanation easier,

5h

FIG. 91.
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we will suppose that the departure takes place at midday.
The cyclist arrives half-way at 20 minutes past 1 ;

there he leaves the machine and goes forward on foot ;

he finishes his 10 miles, which, at 2| miles an hour, will

bring him to the end of his journey at 20 minutes past 5.

His friend, setting out on foot, does his first 10 miles

by 4 o'clock, then he mounts the cycle, and also arrives

at 20 minutes past 5.

In short, they have 5 hours and 20 minutes to do

20 miles, which averages 3| miles an hour. We can see

that this mode of locomotion adds sensibly to the speed
of a pedestrian ; it may be worth something as a hint to

two young men who may have just enough money to

buy one machine and can share the advantage of it in

this manner.

To make this arrangement workable in practice, the

changes would have to be made pretty frequently, so

that the cycle would not be left long without a rider

(unless, of course, the country through which the journey
was made was either very deserted, or the people of

exceptional honesty). On Fig. 91 we have indicated

this variation ; supposing that the machine is aban-

doned at 5 miles, then at 15 from the point of departure
OoaM would be the graph of one of the travellers,

and O66M would be that of the other. Here the friends

would join half-way, but the cyclist would go on, leaving

his companion walking. Graphs take into account all

these circumstances.

They would apply equally to two travellers not

possessing the same average speed, whether as pedestrians

or cyclists. We can thus work problems which lend

themselves to calculation without any great difficulty,

but which require a knowledge of Mathematics,

which we do not suppose the children possess even in

the smallest possible degree.
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52. The Carriage that was too Small.

Four travellers (Mr. and Mrs. Tompkins and Mr. and
Mrs. Wilkins) arrived one morning at the station of

X . . ., intending to go for the day to Y . . ., a little

village about 31-.\- miles distant, which they proposed
reaching in time for dinner. They had been told that

they would be able to hire a motor on arrival which woul< I

quickly take them to their hotel, or wherever they were

going to dine, along a

delightful road. The infor-

mation proved to be correct,

but unfortunately the only
available motor would only
hold two people and the

chauffeur. Its speed was
15 miles an hour.

My readers can picture
the situation. None of the

four prided themselves on
their powers as pedestrians ;

they were old and liked to

do their modest 2 miles per ^ 2 3 4 5h
hour, but no more.

However, it was settled

that the Tompkins should

start in the motor and that the Wilkins should, at the

same time, set out on foot. At a certain distance the

motor would put down the T.'s, who would proceed on

foot, go back to pick up the W.'s, and carry them to

their destination. How would this be managed so that

all of them would arrive at the same time, and how long
would it take to make the journey ?

These questions are not very puzzling, but it is a good
thing to be able to solve them.

FIG. 92.
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This problem, except for insignificant changes in the

data, has been given at some competitive examinations.

It bears a certain analogy to that of the last section,

but is slightly more complicated, owing to the fact that

the motor has to come back to pick up Mr. and

Mrs. Wilkins.

If we show by P the place on the route where the

Tompkins leave the vehicle, by Q the point where it

takes up the Wilkins, the four points X, Q, P, Y are

arranged in this order : the Tompkins go from X to P

by motor, from P to Y on foot ; the Wilkins go from

X to Q on foot, from Q to Y by motor. So that they

may all arrive together it follows that XP = QY and

XQ = PY, which comes to the same thing ; and con-

sequently, as just now, the graph of the journey of the

T.'s, and that of the W.'s will form a parallelogram

(Fig. 92). But whilst in Fig. 91 the diagonal of this

parallelogram was parallel to the axis on which time

is measured, the cycle remaining at rest in the ditch,

here it will be totally different. The diagonal CD will

be no other than the graph of the motor journey when
it comes back part way for the W's.

On Fig. 92, XCM shows the journey of the T.'s,

XDM that of the W.'s, and XCMD is a parallelogram.
These remarks furnish the means whereby the figure

can very easily be constructed. To begin with, it is

sufficient to draw the two straight lines XC and XD,
which is quite simple, since we have the speed of the

motor (15 miles an hour) and that of the pedestrians

(2 miles an hour). Taking then a point d, anywhere on
XC (suppose we say the one which agrees with 1 hour

and 15 miles), we draw CJ)], which represents the

graph of the return of the motor if it comes back again
to start from Ct ; this straight line cuts at Dj the straight
line XD. Let us take the middle O t

of CJX, and, joining
X and O 1} the straight line XO], produced to the point

M, which corresponds to a distance of 31 \ miles, will
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give us the extremity M of the two graphs : draw
MC parallel to XD, MD parallel to XC ; the parallelogram
will be completely drawn, and XCDM will represent the

graph of the motor. Then we see on the figure that D
corresponds to 3 hours and 6 miles, C to about If hours

and 25| miles, M to 4f hours, and, naturally, 31 1 miles.

Therefore the motor ought to put down the T.'s at

a distance of 25 J miles at about 1.45 ; then come back

to pick up the W.'s, finding them at 3 o'clock, 6 miles

from the starting point, and bring them on to meet the

T.'s at 4.45. An exact calculation would make the arrival

4.42 instead of 4.45, but this, in practice, is of very slight

importance.

Summing up the problem, the travellers ought to travel

25| miles by motor and 6 on foot, and the entire journey
is effected in 4 hours 42 minutes.

The average speed is about 6*7 miles an hour, meaning
that they arrive at their destination at the same time as

if all the journey had been made in a motor with a speed
of 6'7 miles an hour. The travellers both the T.'s and the

W.'s walking 3 hours, would have done 6 miles, and the

remainder by motor ; as for the motor, it would have
run in all 70| miles, as follows : 25| onward, 19| back-

ward, and again forward for 25 1 more.

This example, treated thus in detail, will serve as a

theme for numerous similar exercises, making use of

different data.

53. The Dog and the Two Travellers.

Two travellers are going along a road in the same
direction. The first, A, is 6 miles in front of the other,
and walks 3 miles an hour ; the second, B, walks 4| miles

an hour. One of the travellers has a greyhound, who,
at the exact moment of which we speak, runs to the other

at a speed of ll miles an hour, running immediately
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18

back to his master. Having rejoined him, he starts off

to do the same thing again, and continues this until the

men meet, zigzagging from one to the other. What is

wanted is the distance the dog will have travelled up
to the moment of meeting.

It appears that the question can be put in two ways,

according to which of the men is the dog's owner. In

Fig. 93 the time is counted from the moment the dog
is let loose. The graphs of the two travellers are OM
6M, and and the point M, which represents the meeting,

corresponds to 18 miles and
4 hours of walking. If the

dog belongs to the traveller

who is at the back, his graph
is Qaa . . ., a line taking a

zigzag course between the

journeys of the two men. If,

on the contrary, the animal

is the property of the man
in front, his graph is Qbb . . .,

a line of the same nature but

different from the first. In

any case, the dog has never

ceased running for 4 hours,

and as he goes at a speed of

11 \ miles, he will consequently have covered a distance of

45 miles. Whichever hypothesis we take, the result will

be the same.

We have taken exceptionally simple instances, to

make the explanations very easy. It will be useful to

vary them in the exercises which may be given on this

subject ; for instance, we might suppose that the men
start in opposite directions, advancing till they meet.

54. The Falling Stone.

In the travelling graphs that we have seen up to the

present time, whether we deal with pedestrians, carriages,

3

Vk.

234
FIG. 93.

5 h
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railways, or dogs, the distance passed over in a given

time, in a second, say, was always the same, and it

followed that the graph was a straight line. That is

explained by saying that the speed was constant, or that

the movement was uniform.

It is not at all the same for a stone that is thrown to

a certain height and then is allowed to drop. Experience
teaches us, if we do not take into account the resistance

of the air, that, at the end of a second, the stone will have

fallen nearly 16 feet. At the end of 2 seconds it will

have fallen 64 feet, and at the end of the third 144 feet.

This shows us that the graph of this movement (Fig. 94)
will take the form of a curve, and no longer that of a

straight line. This curve will

be pretty nearly the one in-

dicated by the figure. It is a

fragment of a line about which

we shall speak further in a

little while, and is called a

parabola.

Writing the formula y =
16 2

, we have the distance y
travelled by the stone in its

fall when it has fallen during
a certain time f, provided that,

FlG - 94>

in measuring the time, we take the second as the unit ;

then the number y which will be obtained will be a

number of feet.

For example, in -j^th of a second the stone only falls

2 inches, and, as we have just said, at the end of a

second, it has fallen 16 feet. In 10 seconds it will have
travelled 1,600 feet. Thus we see that it falls quicker
and quicker ; in other words, its movement becomes
accelerated.

To fall from a height of .900 feet would take a
stone about 1\ seconds, always supposing that we do
not take into account the resistance of the air. In

M. K

64-

144

Y
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practice this is only very little when we are consider-

ing little distances, but it becomes very appreciable
when great heights are in question, and it is a mistake

to think that our graph will then be a correct representa-
tion.

55. The Ball Tossed Up.

If we toss a leaden ball into the air it will rise to a

certain height, then fall down. Following the object
with a certain amount of attention, it is not difficult

to prove that the movement becomes slower and slower

during the ascent, while during the descent, on the

contrary, the motion becomes quicker. In the first

period the movement is slackened, in the second it is

accelerated.

Instead of using the hand, let us suppose that we

employ a gun, the barrel of which is placed vertically;

the same effect would be noticed ; only we must remember
that the greater the speed at which the ball is launched

the more it will rise, and the more time will elapse before

it falls to earth.

It is interesting to find out various details about

the movement, to know, especially, to what height the

ball will rise ; how long it will take to get to this height ;

how lon^ it will take in its descent.

When we know the speed a at which the ball has been

thrown, and which is known as the initial velocity, all

the answers to these questions are given by the formula

y = at - IGt2
.

To comprehend its meaning, and to make use of it

when necessary, we must know :

1. That the height y is measured in feet ;

2. That the initial velocity a is measured in feet

per second ; that is to say, that the ball is thrown in

such a manner that if nothing caused a slackening of
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speed, it would go on indefinitely travelling a feet each

second ;

3. That the time / is measured in seconds.

However simple the calculations may be to which this

formula leads, we can follow the movement more easily

by means of a graph (Fig. 95).

It has been constructed on the supposition that a = 64,

that is to say, that the ball is thrown in such a way that

it would travel 64 feet per second if nothing happened
to oppose its movement. If we construct the straight

line OA, which would be the graph of this uniform move-
ment of 64 feet a second, there is a very simple means of

obtaining what we wish ; going back to Fig. 94, we set

out exactly the same heights for 1 second, 2 seconds,

3 seconds, etc., but below OA (Fig. 95) instead of being
below OT (Fig. 94).

Another method is to make
use of the formula above,

at -- IGt2
,

in order to have

each value of y.

By using any of these, we
shall see, on the hypothesis
that a = 64, that the ball will

rise for 2 seconds, that it will

reach a height of 64 feet, and that it will take 2 seconds

to come down. The line obtained has again the form of

a parabola.
In a general way it is found that the time taken up by

the descent will be always the same as that of the ascent,

and that the height to which the ball will reach is always
a-

'

expressed in feet.

Here, as in the preceding section, it is quite understood

that no account is taken of the resistance of the air,

which, however, for big initial speeds, would have a
sensible effect, in both going up and coming down.

K 2
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56. Underground Trains.

Underground, or tube, railway systems show special

working conditions, made necessary by the needs of

travelling service in a big city.

To begin with, the stations are very close together ;

often only some hundred yards lie between them. Besides

that, the trains follow each other at short intervals, so

that the stop at each station has to take as little time as

possible.
Under such conditions a good part of the time needed

for the journey from one station to another is employed,
on leaving one stopping

place, in quickening
M the speed ; then, on

approaching the next,

in slackening it off ; this

latter is done by means
of brakes, for if the

train were brought to a

standstill suddenly, an

20 30 40 50 60s T accident might happen.

jrIG> 96. Our readers might say
that this holds for all

railway trains, which is partly true ; but as the distances

between two stations are sufficiently long, the periods of

setting the train in motion and applying the brake count

for very little in the whole. This is why, without depart-

ing from practical exactitude, we can represent by a

straight line the graph showing the journey of a train

between two stations.

This journey is, then, interesting, because of these

peculiarities, and also of the corresponding graph, which

is shown in Fig. 96.

To draw this graph we have supposed two stations

distant 400 yards one from the other, a speed through
the entire journey of 36,000 yards (about 20 miles) an

300

200

100
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hour, which means 10 yards a second ; finally it must be

admitted that it takes 20 seconds, starting from the

halt, to get up full speed ; and equally, of course, 20

seconds to slacken off before the next stopping place.

With these data to hand, corresponding to the working
of the journeys we see that a train starting to the

next station moves at a rising speed, like a ball which falls

faster and faster ; it runs over 100 yards in 20 seconds ;

it rolls along then at full speed, at 10 yards a second for

20 seconds, and thus goes 200 yards ; then the brakes

are applied, the speed is slackened, the train goes
100 yards in 20 seconds, and stops. It has then arrived

at the next station, and it has travelled the distance in

1 minute, or 60 seconds.

The graph (Fig. 96) takes all these circumstances into

account; from to A is the period of getting up speed

(100 yards in 20 seconds) ; from A to B, the period of

full speed (200 yards in 20 seconds) ; and from B to M
the period of slackening speed until finally the train is

brought to a halt (100 yards in 20 seconds).

It is sufficient to look at the figure to realise the import-
ance of the increasing and the slackening of speed over

such small distances. If two stations were distant

from each other 200 yards instead of 400 yards, the period
of full speed would completely disappear, and it would

take 40 seconds for the train to travel 200 yards.

57. Analytical Geometry.

The general idea which underlies the construction of

graphs has been shown in section 46, and applied under

various forms in the pages following. It consists, as we

may remember, after tracing two perpendicular straight

lines OX, OY, in setting out on OX a length x = OP,
on 'OY a length y = OQ, and determining a point M
by drawing through P and Q the parallels to OY and

OX which cut each other in this point M.
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If y is the value of a function of x which we wish to

represent, the line obtained by joining all the points M
that have been constructed will represent the variations

of the function y.

By means of some new illustrations, we are going to

find in them everything which is at the base of an impor-
tant and very useful science, analytical geometry,
which we owe to the genius of Descartes. 1

And it is as well to add that without analytical geometry
we never could have imagined graphs.
The two straight lines OX, OY (Fig. 97) are called the

co-ordinate axes ; OX is the axis of the x's, or the axis

of the abscissas, OY the axis

of the ?/'s, or the axis of the

ordinates.

M OP = x and OQ = y are the

co-ordinates of the point M ;

OP is the abscissa of M, and
P X OQ its ordinate.

A negative abscissa would
be set out in the direction

F 97 OX', a negative ordinate in

the direction OY'.

It results from this that if a point, as seen on the

figure, is in the angle XOY, its x and its y are positive ;

if it is in the angle YOX', its x is negative, its y is positive.

X OY', its x and its y are negative ; Y'OX, its x is

positive, its y negative.
If a point is marked on the plane of the figure, we then

know its two co-ordinates. If any two co-ordinates are

given, we know the position of the corresponding point.

If the two co-ordinates a
, y are not simply any numbers,

but are linked by an algebraical relation, that is to say,

that one of the co-ordinates being known the other may
be deduced from it by a series of perfectly definite calcu-

1 Rene Descartes, a celebrated philosopher and man of letters, bora
at la Have, in Touraine (15961650).
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lations, the positions of M will lie on a line. The alge-
braical relation in question is the equation of the line.

The great general problems with which analytical

geometry deals are :

1. To construct a line, and find out its properties,

knowing its equation ;

2. To find the equation of a line, when it has been

defined in a precise manner by any means.

Our readers need not be ambitious to learn what

analytical geometry really is. But in constructing our

various graphs we have done a little of this branch of

geometry without even knowing the name of the science ;

so it was desirable to profit by the occasion given us to

salute in passing the memory of one of the greatest

geniuses of whom the world has reason to be proud.
It is since the invention of Analytical Geometry that

the study of curved lines has made immense progress,
thanks to the fresh resources which this science has brought
to bear upon them.

Three of these curved lines, however (and some others

also), had been studied in antiquity by Greek geometri-
cians by the help of Geometry alone. The mind is

absolutely amazed when we consider what power of

intellect, what prodigious efforts of the brain have been

necessary for these learned men, of perhaps more than

twenty centuries ago, to arrive at the discoveries by which

we are now profiting.

The three lines of which we are going to speak are

to-day in continual use, even in practice. For this

reason we have resolved to say something about them in

the sections which follow, not to study them, be it under-

stood, but simply to know what they are, so that the pupil

may have an idea of the pleasure and profit he will have

when, later on, he will begin to take them seriously.
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68. The Parabola.

We have already met this curve, in the graphs of the

falling stone, of the ball tossed up in the air, and in a

portion of the graph of the underground trains.

The precise definition of the parabola is (Fig. 98) in

that each of its points M is equidistant from a given point
F and from a given straight line

(D), so that MF == MP. The
curve then takes the form shown

by the figure ; if from F, which is

called the focus of the parabola,
a perpendicular line is lowered

on the straight line (D) called

the directrix, this straight line

FY is the axis of the curve,

form on each side of this axis.

FIG. 98.

which has the same
Tlie axis cuts the curve at A, half-way between the focus

F and the directrix. The point A is the apex of the

parabola.
If AY be taken for the axis of the ordinates, and a

perpendicularAX for the axis of the abscissae, the equation
of the parabola would be y kx*.

59. The Ellipse.

Many of the arches of a bridge take the form of a half-

ellipse. When a carrot is cut obliquely with a knife

somewhat regularly, the section is an ellipse. If a flat

round object such as a coin is held up against a lamp, and
the shadow thrown on a piece of white paper, this shadow

may also be an ellipse.

Astronomy teaches us that all the planets, arid ours in

particular, turn round the sun, and in so doing describe

ellipses.

The ellipse is determined by this peculiar quality'
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that the sum of the distances of any of its points from

two given points F, F' is constant ; F, F' are the foci of

the ellipse. Let us suppose we wish to trace an ellipse

on a sandy soil. This can be done by fixing two pegs
at F, F' and attaching thereto a cord (of which the length
has been given) by its two ends ; this cord is held out by
means of an iron spike M ; if this spike is carried over

the ground, always keeping the cord stretched out tightly,

it will trace the ellipse ; this method is known by the name
of

"
the gardeners' mark."

We see (Fig. 99) that the ellipse is a closed curve ;

the straight line AA' is called the focal or major axis ;

the middle O of FF' is the

cenlre.\ the perpendicular BB
to FF' is the minor axis ; the

curve has a form exactly
similar above and below the

major axis, to right and left of

the minor axis.

The major axis cuts the curve

in the two points A, A' ; the

minor in B, B ; the 4 points

A, A', B, B' are the apexes
of the ellipse. It is easy to see that the constant

length MF + MF' is equal to A 'A, or twice OA ; this

is called the length of the major axis ; the length of the

minor axis is BB', or twice OB.
If the two points F, F' were to become one alone, in O,

then the ellipse would become a circle, having OA = OB.

Taking OA and OB for axes of the #'s and the ?/'s,

the equation of the ellipse would be, calling a the length
OA and b the length OB,

FIG. 99.

The equation of the circle, if b becomes equal to a, is

l =y =
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60. The Hyperbola.

Although this curve is also very important, it is not

quite so easy to pick out ordinary examples of it as in

the case of the two preceding ones. However, if a

circular lamp-shade is arranged on a lamp, and then

is placed in such a way that the light is below, if we
look at the shadow which is cast on a vertical wall by
the lower edge of the lamp-shade, we shall see a fragment
of a hyperbola.
The hyperbola can be determined by the following

peculiar quality : that the difference of the distances from

any one of its points to two fixed

points F, F', which are called

foci, is constant.

As we have seen just now for

the ellipse, the straight line

FF' (Fig. 100) and the perpen-
dicular OY raised upon the

middle of FF are the axes oJ

the curve. This is of the same
form both above and below

FF', to right and left of OY.
the curve in two points A, A',

FF' is called a transverse axis ;

the axis OY does not meet the curve. The segment A'A
has a length equal to the constant difference of the

distances from a point of the curve to F and to F'.

What we find new here is that the curve, beside being

capable of being extended as far as we like, is made up
of two parts, of two branches as one may say, completely

separated one from the other.

We must note the existence of two straight lines OC,
OC', which are called the asymptotes, and are such that,

by prolonging them, and also prolonging the curve, we
shall see the curve and the straight line approach each

other, indefinitely, without ever quite running into

FIG. 100.

The axis FF' cuts

which are the apexes ;
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one. We can easily construct the asymptotes, knowing
that the point C is such that CA is perpendicular to FF' ,

and that OC = OF. If OA =
a, OC =

c, it follows that

AC2 = c2 a- ; supposing that AB =
b, and taking

OA, OY for axes of the #'s and the ?/'s, the equation of

the hyperbola would be

?! _ _ i

a2 W ~

What we must specially retain in our minds about these

very condensed remarks on the three very important
curves about which we have just been speaking is that

by their aid many and various constructions may be

made, and also that they contribute to the acquisition of

that manual dexterity which is so necessary in tracing all

sorts of geometrical curves. For this purpose the pupil
should be encouraged to use, successively or alternatively,

squared paper, the usual drawing apparatus, and also

outlines in freehand.

61. The Divided Segment.

Let AB be a segment of a straight line ; let it be sup-

posed that it is produced in two directions (Fig. 101) and
that M be a moveable point on the straight line AB.
If the point M is placed, for example, between A and B, it

divides AB into two segments AM, MB, and it is the ratio

AM
y = =-=fi of these two segments that we wish to study.

It varies evidently according to the position of M.

We will place, to begin with, M at A ; the ratio is

nothing, since MA is nothing ; if M is moved from A toward

B, the ratio becomes greater ; when M is in the middle

of AB the ratio y is equal to 1 ; when M is brought closer

to B, y has values which become greater and greater,

and it is said that when M arrives at B, the ratio is infinite ;

or in other words, it is so enormously large that it cannot

be expressed in figures.
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If, however, M passes a little beyond the point

B, AM will be always positive, MB negative, and very
AM

small ; then y, that is to say, n, will be negative and

very large ;
the further M is removed from B (although

the ratio will remain negative) the more its size will

t

R*
T~

FIG. 101.

diminish, remaining always greater than 1, but approach-

ing more and more nearly to 1.

If now, beginning with the point M at A, we make it

AM
move towards the left, the ratio & becomes once more

negative ; its size is less than 1, and it approaches
more and more nearly to 1 in proportion as M becomes

distant from A.

Representing, for each position of the point M, the

value of the ratio y by an ordinate drawn perpendicular
to the straight line AB, we obtain, as a graph showing
the variations of this ratio, the curve seen on Fig. 101 ;

this curve is a hyperbola, of which the asymptotes are

BY, perpendicular to AB, and OX, parallel to AB, at a

distance marked by the unit, and below, that is to say,

in the negative direction.

The shape of the figure shows that there are not

AM
two points M for which the ratios rU can be the same.
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As soon as the value y of this ratio is given, with its

sign, the precise position of M is determined on the

straight line AB.

62. Doh, me, soh ; Geometrical Harmonies.

We have said (Fig. 101) that there cannot exist two
AM

such different points M that the ratio is the same.

But a point M being given, we can find another M' from
AM AM'

it, and only one, such that the two ratios
JTJTT>

*-r^f> may

have the same size. Since, then, the signs are contrary,

MA AM
we have

When four points M', A, M, B are such that, on a

straight line, they may exist thus, we say that they form

a harmonic division.

The word may appear strange. Before explaining it

.. M'A AM
we are going to write the proportion ^TO

=
jrjg

rather

differently ; let us call the segments M'A, M'M, M'B,
a, m, b. Then AM = m a, MB = b m, and the

relation becomes

a m a . m a b m
b
=
b~^n> r

>
aSam >"V b~~ ;

m m (I IN 1.12__ I = I _
F;

W ^ +
_J

=2; _ + _ = _.

On the other hand, when we begin the study of sound,

we learn that the lengths of a vibrating chord giving
the three notes doh, me, soh, which make the perfect

major chord, are proportional to

I ^II
5' 3'
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Then the inverse lengths are proportional to

A
4' 2'

or 4, 5, 6 ;

and, as 4 + 6 = 2 x 5, our three lengths of chords a, m,
b will comply with the relation

- + - - -
a, b nr*

written above.

It is this comparison which has led to the name
"
harmonic division."

More generally, when we have an arithmetic progression
of any kind whatever,

a b c ...

and 1 is divided by each of the terms, the result

111
a b c

thus obtained is called a harmonic progression.
One of the most remarkable properties of harmonic

division, and one which plays an

important part in geometry, is the

following :

Let M'AMB (Fig. 102) be a

harmonic division ; if we join the

four points which compose it to

any point P, and if we cut the

four straight lines PM', PA,PM, PB
by any straight line whatever, we
shall still have a harmonic division.

Thus on the figure, M'^MjBi, M' 2A2M2B2 are harmonic

divisions. The system of 4 straight lines PM', PA, PM,
PB is called a harmonic sheaf of lines.

FIG. 102.
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63. A Paradox : 65 = 65.

In mathematics we often meet with paradoxes, that

is to say, we obtain results which we think we have

worked out correctly, which are, however, obviously

wrong.

Any paradox unexplained is dangerous, because it

throws the pupil's mind into a state of doubt and
confusion.

When a paradox is explained, on the contrary, it is

instructive, because it draws attention to a snare, and
shows the illusions of which one may be the victim.

Sometimes it is incorrect reasoning, sometimes it is a

construction too loosely made, which leads to a flagrant

absurdity.
But if paradoxes, properly explained, have thus their

place in the teaching of Geometry, it is wise to adopt

prudent reserve in this matter in elementary instruction

on the subject. With this last, of course, there is no

question of going deeply into things, and they are only

indicated, and the pupil just touches them, as it were,

with the tip of his finger.

It is this which has decided me to refrain up to now from

presenting any question of this kind. Having, however,
arrived almost at the end, I see nothing unwise, indeed

rather the contrary, in making just one exception which

is very well known at the present time. This we might
leave the pupil to seek himself. It is hardly likely he

will hit upon the best way, and it will be best to come to

his assistance without allowing him to become dispirited.

We will take (Fig. 103) a square of 64 divisions on a

piece of squared paper and gum this on cardboard. This

done, the lines marked on the figure should be traced,

and the square will be found to be split up into two

rectangles having 8 sides of divisions for base, and

heights of 5 and 3 sides ; then the large rectangle will
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be split up into two trapeziums, and the small one into

two triangles.

Cut up the cardboard with a penknife or a pair of

scissors, by following the three traced lines, which will

then give us the four pieces, A, B (trapeziums) and C, D
(triangles).

The four pieces must be arranged as is shown in the

second part of the figure. We have

a rectangle which shows 5 columns

of 13 divisions each ; we see then

5 X 13, or 65 divisions, with this

second arrangement ; in the square
there will be only 8 x 8 or 64

divisions. These two different results

have been obtained with the same

pieces of cardboard. This is enough
to make us imagine that our heads

have become bewildered, seeing that

64 = 65.

The explanation is not very com-

plicated once it is put plainly before

the pupil, but it needs some reflec-

tion. Looking at the long diagonal
of the rectangle, in the second part
of the figure, we ask ourselves if it is

really a straight line. It is made up
of two parts : the hypotenuse of

the rectangular triangle C, and the

side of the trapezium A. According to the outline, the
Q

slope of the hypotenuse on the large side is
^ ; that of

2
the side of the trapezium is -z. If these two fractions

were exactly equal, we should have a straight line. But

they are 77; and ^ ; the first is a little less than the

second, and what appears to be a straight line is really a

i

FIG. 103.
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quadrilateral, very thin and very much drawn out, which

corresponds to the area of the added division. The
union seems exact, but really it is not quite perfect.

If we took a square of 21 x 21 = 441 divisions,

dividing the side into 13 and 8, we would apparently
have, by a similar construction, 441 = 442.

In that case the two fractions whose equality would
o

be necessary to make a perfect match would be
^i

and

5 1

=-^, they would differ only by ^oj so that practically the

agreement would be perfect.

6*. Magic Squares.

If the numbers 1 to 9 are written in the divisions of a

square in the following manner,

492
357
816

we can prove that, on adding the numbers contained in

a line, in a column, or in either of the two diagonals,
the result is always the same : 4 +9+2=3+5+
7 = 8 + 1+6 = 4+3 + 8=9 + 5 + 1=2 + 7 +
6 = 4 + 5 + 6 = 2 + 5 + 8 = 15.

Such a figure is what is called a magic square of 3 ;

the sum 15 is the constant magic sum ; if we take 1 away
from each figure, which then reads

381
246
705

there would still be a magic square, but the constant would
be 12 instead of 15.

Taking the numbers 0, 1, 2, ... 24, which would fill

a square of 25 divisions we would find a magic square of

5 ; the constant would be 60.

M. L
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The following is an example by means of which it can
be proved that all the requisite conditions have been

properly fulfilled :

19 8 22 11

23 12 1 15 9

16 5 24 13 2

14 3 17 6 20

7 21 10 4 18

and, moreover, if the square is cut by a vertical straight
line between any two of the columns, and if the two pieces
are interchanged, we still have a magic square. Sup-

posing that the square be cut in two by a horizontal

straight line, and the two pieces interchanged, still again
we find a magic square.

Ed. Lucas has given the name "
diabolical." to squares

which possess this property.

Magic squares have furnished food for much reflection.

Although they appear to be just a simple game, they give
rise to questions which present great difficulties, and even

the most illustrious mathematicians, Fermat amongst
others, have not disd lined to occupy themselves with

them. 1

We can hardly ignore the existence of these figures

so have pointed them out by way of curiosity.

65. Final Remarks.

If I had to initiate children into the knowledge of

things mathematically essential, such as we have dis

cussed, this is about what I would say to them at the end
oi' our course :

' You are going to begin your instruction in mathe-
matical matters. According to your natural dispositions,

1 One of the most remarkable works published on this question in

our time is that of M. G. Arnoux : Arithm tique graphique ; Les Espacea
arithmdiques hypermagiques ; Paris, Gauthier-Villars, 1894.
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according to the direction which you will be called upon
to follow later in life, this instruction will be more or less

of an extended nature ; but, within certain limits, it will

be necessary for each one of you.
"
Up to the present you have studied nothing, but you

have learnt a certain number of useful things, by way of

amusement. If you have made any effort, it has been

purely a voluntary one on your part, nothing has been

required from you, and, particularly, nothing from your

memory.
" Before knowing how to read or write, you have been

able to make up numbers with the aid of various objects,
and to do several simple problems. When it has been

possible to employ figures, the practice of calculation has

become more easy for you. Thanks to the custom of

carrying you back to the objects themselves, and of not

only considering the figures which translate them, you
have very early arrived at the idea of negative numbers,
and become quite familiar with it. Some notions of

geometry, found out, but not demonstrated, have been
sufficient to begin to make you see the close bond which
unites the science of numbers to that of space.
"You have not made a study of fractions more than

any other study, but you know what a fraction is, and

you have a fair grasp of the calculations which belong
to it.

"
By progressions, first in simple form, then somewhat

more generalised, you have been led to the idea of

enormous numbers. Other large numbers appeared
before your eyes when you saw what a permutation
meant.

" With some practical notions of geometry and drawing
at the same time you have succeeded in grasping the

construction and the use of graphs, and applying your
knowledge especially to questions of movement. You
have thus arrived, as it were, at the door of analytical

geometry; you have, at least, perceived the form of the

L2
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three principal curves that analytical geometry permits
us to study more deeply, but which the ancients already
knew.

" Whether of all these ideas much or little remains in

your memory, you are certain to have retained something.
You have at the same time acquired, without any doubt,
certain habits of mind which are now going to prove of the

utmost value to you.
" Henceforward you have not to do with play but with

work. You ought to subject yourself to intellectual

efforts, perhaps also to some efforts of memory. They
will be the less formidable because up to now your forces

have been husbanded, and you know many more things
than other children of your age who have been subjected
to a sort of torture, that of forcing them to retain words hi

their minds without understanding anything about them.
" In the majority of the objects of your studies in the

future you will find things cropping up that you knew of

old ; any trouble which novelty brings to you will be

soon wiped out. Do not think, however, that you will

never meet any difficulties ; you will find them, but know-

ing that they are only in the nature of things, that it is

necessary to surmount them in order to arrive at interesting
and useful results, you will find that you possess the neces-

sary courage. In play you have acquired ideas, and your
studies in future will thereby be facilitated. In your work
henceforward you are going to make the most of what you
know; you will exercise your reason; you will augment
the extent of your knowledge. But this work, even if it

is no longer play, will not prove to be a burden ! You
will find a pleasure in it, knowing it to be useful ; little

by little it will become a necessity of your life ; it will not

only be easy, but necessary.
" In case of doubt, besides, you will have teachers who

will be guides to you ; but do not ask anything more from

them. Personal, untrammelled effort can alone give good
results. You have unconsciously acquired the habit ID
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the games of your childhood. Now it is for you to make
the most of it by bringing to the task of acquiring know-

ledge all the patience, the energy, the determination that

you have held in reserve !

: '

Such is about the substance of what ought to be said

to the child at the end of these introductory occupations,
on the eve of undertaking his studies. To make him

grasp these ideas you must not deliver a lecture, but you
must explain it, if necessary, in ten or twenty talks. The
teacher will have to draw from them the material to light

the pupil along the new path that he is called upon to

follow.

The introductory process, to my mind, ought to be

specially carried out in the home. But even when, from

any reason whatever, personal or social, this cannot be, the

father and mother ought to remember that their first duty
is to associate themselves with the evolution of the child's

brain, and to be at any rate a help to the teacher, even if,

from any cause, they themselves have been unable to nil

the post.
And as, once the introductory stage passed, that of

instruction begins, the duty of the parents becomes more

important still (if that is possible) ; their responsibility is

heavy, for, whether for good or evil, the whole destiny of

their child may be influenced, according to the decision

of the father and mother.

It is to these that I turn my attention for the moment,
to give a few words of advice in my opinion, at least,

good advice of which each can take any portion that is

likely to be useful.

To begin with, we all agree on one point that an
introduction to the science of mathematics is indispensable
to any child, without distinction of fortune, of social

position, or of sex ; but I also maintain that, without any
distinction or reserve, mathematical instruction is equally

indispensable.
Women have need of it just as much as men ; every-day
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life, domestic economy, no less than the manufactures
and arts whose applications have to do with our existence,

require from us all a knowledge of the science of size

and space.
Here an objection presents itself which I have refuted

a hundred times already, but will discuss once more
with my readers. Parents say to me,

" Has my
child any gift for mathematical study ? If he is not so

gifted, is it not losing his time to direct his studies in

that particular channel ? We do not intend to make him
into a mathematician."

This is all very well. But when you taught the same
child reading and writing, did you ask yourself whether
he had any gift for these branches of study ? When you
inculcated the first principles of drawing, did you think

he was intended to become a great painter ? No one

doubts the necessity that exists for each man and woman
to learn how to express his or her ideas correctly in the

mother tongue ; and when that is achieved, surely we
do not imagine that each of them is destined to become
a Shakespeare or a Milton.

No more in mathematics than in other subjects does

instruction make learned men ; there is no question
of making them ; but there exists in everything a general

groundwork of useful knowledge, which is necessary and
at the same time easy for everybody to acquire whose
brain is not in any way defective.

The whole of this knowledge on various subjects can

be acquired, thanks to the preliminary introduction, in

much less time than is given up to it in the ordinary
course of teaching.

This literary knowledge, as far as our subject is con-

cerned, is pretty nearly represented by elementary
mathematics. Any child, whether gifted or not in any
special manner, can assimilate the whole of this knowledge,

just as he can learn to read and write correctly, if not

elegantly. If he has an inborn taste for mathematics,
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he will continue his studies in that direction ; if he is

literary by temperament, he will write. Teaching has

never made learned men or artists, its aim should be the

preparation of men's minds.

Then let there be no hesitation on this point. Your
child ought to acquire the fundamental notions of mathe-
matics necessary for everybody.
We should always bear in mind the apt and suggestive

remark of M. Emile Borel :

''A mathematical education at once theoretical and

practical can exercise the happiest influence over the

formation of the m'.nd."

I am content to leave you under this impression.
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