JUNIOR HIGH SCHOOL SERIES

INTRODUCTION TO MATHEMAMICS

SHORTANDELSON
D.C HIEATH \& COMPANX

Copyight No.
COPYRIGIT DEPOSIT.

JUNIOR HIGH SCHOOL SERIES

INTRODUCTION TO

MATHEMATICS

BY

ROBERT L. ${ }^{\text {SHORT }}$

PRINCIPAL OF WEST TECHNICAL HIGH SCHOOL CLEVELAND, OHIO

AND

WILLIAM H. ELSON

FORMER SUPERINTENDENT OF SCHOOLS CLEVELAND, OHIO

$$
\begin{array}{r}
2.39 \\
566
\end{array}
$$

Copyright, init, By D. C. Heath \& Co.

$$
\text { I H } 6
$$

AUG 291916

INTRODUCTION

This book is intended as an aid in the movement to vitalize mathematics, adapting it to the needs and the understanding of pupils. It employs the increasingly popular correlated method, combining related portions of arithmetic, algebra, and geometry. It treats these branches of mathematics more with reference to their unities and less as isolated entities (sciences). It seeks to give pupils usable knowledge of the principles underlying mathematics and ready control of them.

The combined arrangement not only increases interest and motivates the work, but it also gives greater power of analysis on the part of the learner and greater accuracy in results. The early study of geometry brings analysis into play at every step and stage; consequently written problems to be stated have no terrors for those who are taught in this way.

Growing discontent with mathematics as traditionally taught, in view of the large number of failing pupils, has led mathematical associations to urge teachers to select and stress those portions of mathematics that are vitally useful. For example, these associations have for several years recommended that all work should be based upon the equation. In accordance with this view we have made the demonstrations in this book largely algebraic, thus making the demonstration essentially a study in simultaneous equations.

In this method of treatment, we have found it advantageous not to hurry the work. Pupils gain power, not in solving a great many problems, but in analyzing and thoroughly understanding the principles of a few.

In general, the book covers straight line geometry to proportion and algebra through fractional equations; it is intended for one year's work.

We are indebted to many who have offered suggestions and practical problems, and especially to Carlotta Greer, of East Technical High School, Cleveland, Ohio, Professor Kenneth G. Smith, of the Iowa State College, John W. Thalman, B. C. Smith, and H. E. Garner, of West Technical High School, Cleveland, Ohio, and also to those who so kindly read the proof sheets.

TABLE OF CONTENTS

BOOK I

CHAPTER PAGE
I. The Number SYsTEM 1
Addition 3
Prime Factors 5
Oral Control of Number 8
II. Equations 10
Problems 13
III. Positive and Negative Numbers 17
The Four Fundamental Operations 18-29
Supplemental Applied Mathematics 29
IV. Polynomials, Multiplication 36
Polynomials, Division 41
Review 46
Supplemental Applied Mathematics 48
V. Inequalities 54
Simultaneous Equations 56
Problems 64
Supplemental Applied Mathematics 66
VI. Lines, Angles, Triangles 69
Supplemental Applied Mathematics 99
VII. Graphs, the Algebra of Lines. Parallels and their Uses 103
Quadrilaterals 120
Polygons 127
Supplemental Applied Mathematics 130
Cilapter PAGE
VIII. Products and Factors 133
$(a+b)(a-b)$ 133
$(a+b)^{2}$ 135
$x^{2}+k x+c$ 137
Common Factors 138
$a x^{2}+b x+c$ 140
$a^{3} \pm b^{3}$ 142
$x^{4}+b x^{2}+c^{2}$ 144
Solutions by Factoring 148
Supplemental Applied Mathematics 151
IX. Fractions 155
Multiples 159
Addition 160
Multiplication 166
Division 168
Equations 170
Supplemental Applied Mathematics 181
X. Proportion 188
List of Constructions. 193
List of Theorems 194
Index 198

FOR THE TEACHER

Reviews in mathematics are always necessary. This is especially true in this text, which combines different branches of mathematics.

In teaching the text keep in mind that in geometry as well as in algebra problems are solved by means of equations. The equation is the principal tool used. To use the equation method successfully, the Hilbert notation, a small letter for angle values and for line values is essential.

In lettering a figure, begin at the lower left-hand corner and read counter-clockwise. This gives pupils an idea of directed lines, and makes possible the correct drawing of the figure from description.

Theorems I and II should be assumed as true until after Theorem IX. If they are then proved, the student will not be so apt to attempt to prove every theorem and problem by superposition.

Note that many demonstrations have been put into the form of a set of simultaneous equations, the solution of which produces the desired equation.

Emphasize the manipulation of quantities by means of factors and the use of methods of indication until there is no longer hope that the factors may disappear through division (see p. 178).

Do a large amount of the work orally, and do it so often that the pupil knows what he is doing, and why he is doing it. No pupil should use pencil and paper to find prime factors of $(24)^{2},(12)^{6}, 9 \cdot 27$, or to find the product of $18 \cdot 17$.

Insist that pupils study all illustrative work, rules, and instructions before beginning the examples of an exercise.

Teach pupils to use the Index, also the groups of theorems and constructions found on pages 193-197.

INTRODUCTION TO MATHEMATICS

CHAPTER I

The Number System

1. Our number system is a decimal one. Ten units of one order make one of the next higher. One tenth of any digit makes a digit of the next lower order. The digits are 1, 2, $3,4,5,6,7,8,9$. All numbers are made up of these digits and their position is often indicated by the introduction of one other symbol, 0 , known as nought, cipher, or zero; e.g., 16 is equal to ten 1's added to six 1 's. That is, $16=10+6$, the position of the 1 being indicated by the 0 .
The numbers expressed by these digits themselves are often the multiples of other digits. For example, $4=$ two 2 's, or $2 \cdot 2$, where the \cdot indicates multiplication.

$$
6=3 \cdot 2, \quad 9=3 \cdot 3 .
$$

The numbers $1,2,3,5,7$ are the prime digits. A prime number is a number whose only integral factors are itself and unity.

EXERCISE 1

Write the following numbers in such a way that their decimal composition will appear:

1. 145.
1. 511.

$145=100+40+5$.
2. 223 .
4. 987.
6. 227 .
9. 101.
3. 448.
5. 999.
7. 863 .
10. 10016.
2. In the product of two or more numbers, any one of them or the product of any number of them is a factor of the given product. $2 \cdot 3 \cdot 5=30$. Then, 2 is a factor of $30.2 \cdot 3$ or 6 is also a factor of 30.*
3. A term is a number whose parts are not separated by the plus (+) or minus (-) sign.

In the expression,
$\quad 10+6$
10 is a term. $\quad 6$ is also a term.
$10+6$ is composed of two terms.
4. A binomial is an expression of two terms.

A trinomial is an expression of three terms.
A quadrinomial is an expression of four terms.
An expression of two or more terms is also called a polynomial.

$$
100+60+3 \text { is a trinomial. }
$$

5. It is often necessary to represent a number by a letter or a combination of letters. Such letters may represent either unknown numbers or those supposed to be known numbers. This kind of notation is used in general arithmetic or algebra.
E.g., n may represent any number, likewise any letter or combination of letters and figures may be considered a number.
$a+b+c$ is a trinomial number ($\S 4$), or the sum of three numbers a, b, and c. In arithmetic it is possible to express such a sum as a single number.

$$
\text { Thus, } 2+5+8=15 \text {. }
$$

In algebra, this is not possible unless the terms of the expression are alike or similar.
6. Similar Terms are terms which differ in their coefficients only, e.g., $5 \cdot x, 6 \cdot x, a \cdot x, b \cdot x$.

[^0]7. Any factor (§2) of a number is the coefficient of the remaining factors.

Thus, in $a \cdot x, a$ is the coefficient of x.
in $2 \cdot 3,2$ is the coefficient of 3 .
in $2.3,3$ is the coefficient of 2 .
in $2 \cdot a \cdot b, 2 \cdot b$ is the coefficient of a.
in $2 \cdot a \cdot b, a$ is the coefficient of $2 \cdot b$.
in $2 \cdot a \cdot b, 2$ is the numerical coefficient of $a \cdot b$.
in $a x, a$ is the literal coefficient of x.
When the product of a number of figures and letters is to be written, the multiplication sign is usually omitted.

Thus, $2 \cdot a \cdot b$ is written $2 a b$.
8. $2 a+3 a+7 a$ is a trinomial consisting of similar terms (§6). These terms may be united into one term by finding the sum of the coefficients.

Hence, $\quad 2 a+3 a+7 a=(2+3+7) a=12 a$.
This.is the same operation as that in arithmetic when one finds the value of

$$
2 \mathrm{ft} .+3 \mathrm{ft} .+7 \mathrm{ft} .=12 \mathrm{ft} .
$$

and is brought still closer to arithmetic when one remembers that only like numbers can be added.

Similarly, $\quad 15 a b-3 a b+7 a b$
means that $3 a b$ is to be subtracted from $15 a b$, and $7 a b$ added to this difference.

Hence, $\quad 15 a b-3 a b+7 a b=19 a b$.
Ex. 1. Find the sum of $20 x y+4 x y-7 d$.
$20 x y+4 x y-7 d=(20 x y+4 x y)-7 d=24 x y-7 d$.
Ex. 2. Add $5 a^{2}+3 a b+4 b^{2}$ and $-4 a^{2}-2 a b-4 b^{2}$.

$$
\begin{array}{r}
5 a^{2}+3 a b+4 b^{2} \\
-4 a^{2}-2 a b-4 b^{2} \\
\hline a^{2}+a b
\end{array}
$$

EXERCISE 2

Find the sum of the following.

1. $21 x+9 x-4 x+3 x-8 x$.

$$
\begin{aligned}
& 21 x+9 x=30 x \\
& 30 x-4 x=26 x \\
& 26 x+3 x=29 x \\
& 29 x-8 x=21 x
\end{aligned}
$$

This work is all to be done mentally, only results of each addition being given.
2. $5 m-4 m+6 m-2 m$.
3. $8 x y+3 x y-2 d$.
4. $8 a+4 b, 4 a-2 b$.
5. $16 a^{2}+8 a b+5 b^{2}, 5 a^{2}-3 a b+2 b^{2}$.
6. $21 x^{2}+22 x y+17 y^{2},-8 x^{2}+2 x y-9 y^{2}$, and $7 x^{2}-11 x y-7 y^{2}$.
7. $24 a^{2}+48 a b+24 b^{2},-23 a^{2}-47 a b+23 b^{2}$,

$$
\text { and } a^{2}+2 a b-b^{2}
$$

8. $14 c^{2}+21 c d+10 d^{2},-9 c^{2}-12 c d-d^{2}$,

$$
\text { and }-5 c^{2}-9 c d-9 d^{2}
$$

9. $3 \cdot 19+2 \cdot 19+5 \cdot 19$.
10. $3 \cdot 27+2 \cdot 27-4 \cdot 27$.
11. $14 \cdot 18+25 \cdot 18-16 \cdot 18-12 \cdot 18$.
12. $41 \cdot 63-27 \cdot 63-12 \cdot 63$.
13. Express 27 as a binomial.
14. If x is the digit in tens' place and y in units' place, express the number as a binomial.
15. Express 47 as a binomial.
16. Express 648 as a trinomial.
17. If hundreds' digit is x, tens' digit y, units' digit z, express the number as a trinomial.
18. If the digits of example 17 are reversed, express the number.
19. We have considered the decimal phase of our number system ; the prime factors are of equal importance.

The prime factors of 15 are 3 and 5 .
$45=3 \cdot 3 \cdot 5$ or $3^{2} \cdot 5$, where the ${ }^{2}$ indicates the number of times 3 occurs as a factor.

EXERCISE 3

1. Learn the following squares:
$1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, \ldots 30^{2}$.
2. Learn the following cubes: $1^{3}, 2^{3}, 3^{3}, 4^{3}, 5^{3}, 6^{3}, 7^{3}, 8^{3}, 9^{3}, 10^{3}, 11^{3}, 12^{3}$.
3. Literal monomials may be separated into factors.

Thus,

$$
\begin{aligned}
a^{3} & =a \cdot a \cdot a . \\
a^{2} b & =a \cdot a \cdot b . \\
(a b)(a b)(a b)=(a b)^{3} & =a^{3} b^{3} .
\end{aligned}
$$

Similarly, $(2 \cdot 3)(2.3)(2 \cdot 3)=(2 \cdot 3)^{3}=2^{3} \cdot 3^{3}=6^{3}$.
Ex. Find the prime factors of 225 .

$$
225=(15)^{2}=(3 \cdot 5)^{2}=3^{2} \cdot 5^{2}
$$

EXERCISE 4

Find the prime factors of the following :

1. $18,27,24$.
2. $(60)^{2}$.
3. $(18)^{2},(22)^{2}$.
4. 361,520 .
5. $(36)^{2}$.
6. $9^{3},(27)^{2}, 729$.
7. 625.
1. $(12)^{2},(12)^{3}$.
2. $225 \cdot 72$.
3. An expression that is a factor of each of two or more expressions is said to be a common factor of them.

Thus,

$$
\begin{aligned}
& 15 a^{2} b=3 \cdot 5 \cdot a \cdot a \cdot b . \\
& 25 a^{2} b=5^{2} \cdot a \cdot a \cdot b . \\
& 10 a^{3} c=2 \cdot 5 \cdot a \cdot a \cdot a \cdot c .
\end{aligned}
$$

$5, a$, and a are the factors common to each of the numbers $15 a^{2} b$, $25 a^{2} b, 10 a^{3} c$.

EXERCISE 5

Find the factors common to the following:

1. 144,729 .
2. $225,5^{4}$.
3. $(2 a)^{3}, 24 a^{2} c$.
4. $75 x^{2} y, 45 x y^{2}$.
5. $361 a^{4} b^{2}, 38 a^{2} b, 114 a^{3} b^{3}$.
6. $84 z^{3}, 54 z^{5} x, 9$.
7. $3125 a^{5}, 625 a^{4}, 125 a^{3}$.
8. $243 a^{5} b^{10}, 162 a^{4} b, 135 b^{3}$.
9. $a^{4} b^{3} c^{2} z, a^{3} b^{4} c z^{4}, a b^{5} c x^{7}$.
10. $75 c^{2} d, 125 c d^{3}, 224 a d$.
11. What does $x^{2} y$ mean? How many factors are there in the expression? In $x^{2} y$, let $x=3, y=5$. What is the result?

EXERCISE 6

In the following expressions substitute $x=1, y=0, z=5$, $a=3, b=4$, and compute the value of the result:

1. $3 a^{2} b^{3}=3 \cdot 3^{2} \cdot 4^{3}=3 \cdot 9 \cdot 64=1728$.
2. $2 x y+4 y^{2}+7 x^{2} z=2 \cdot 1 \cdot 0+4 \cdot 0^{2}+7 \cdot 1^{2} \cdot 5$

$$
\begin{aligned}
& =0 \\
& =35
\end{aligned}
$$

3. $a x^{2} z$.
4. $35 x+3 y-6 z$.
5. $10834 x y z$.
6. $(5 a+2 b) x$.
7. $2 a(3 b+4 z)$.
8. $7 z(2 x+5 y)$.
9. $\frac{y}{z}$.
10. $\frac{y+5 x}{z}$.
11. $(y+5 x)(y+5 x)$.
12. $(b-a) x$.
13. $(b-a+y) x$.
14. $\frac{b-a}{x}$.
15. $(3 a+2 b+2 z)^{2}$.
16. $(15 a-3 b-6 z)^{3}$.
17. The parenthesis as used in these examples denotes that the quantities inclosed are each subject to the same operation.

Thus, $(x+y) z$ means that the sum of x and y is to be multiplied by z, or that both x and y are to be multiplied by z and the sum of the products taken.
$(2+3)^{2}$ indicates that the sum of 2 and 3 is to be "squared," i.e., used twice as a factor.
$(a+b)+(c+d)$ is read: the sum of c and d is to be added to the sum of a and b, or the sum of a and b plus the sum of c and d.

Likewise, $(a+b)-(c+d)$ indicates that the sum of c and d is to be subtracted from the sum of a and b.

The forms of parenthesis are (), the brace \{ \}, the bracket [], and the vinculum -. The vinculum is seldom used.

EXERCISE 7

1. What does $12 x^{2}$ mean?
2. What does $(12 x)^{2}$ mean?
3. What does $12(x)^{2}$ mean?

Perform the indicated operations:
4. $(18 a+12 \alpha)+(5 a+2 a)$. 9. $5(a+3 a)-2(a+2 \alpha)$.
5. $(21 a+2 a)-(6 a+3 a)$. 10. $4[5(a+6 a)]$.
6. $(21 a-2 a)+(6 a-3 a)$. 11. $6[2(5 x-3 x)]-2[4(2 x-x)]$.
7. $(21 a-2 a)-(6 a-3 a)$. 12. $(5 x+18 y)-(2 y+3 y)$.
8. $3(6 x-2)+4(2 x-1)$. 13. $(8 x+12 y+15 z)-(x+2 y)$.

Oral Review

The area of a rectangle equals the product of the base and altitude (length and breadth). Find the areas of the following rectangles:

	Lengetir	Breadth		Length	Breadth
	* 17 "	$6^{\prime \prime}$	10.	19^{\prime}	15^{\prime}
	$6=$	$7) 6=60+42$	11.	21^{\prime}	24^{\prime}
	$=1$		12.	17^{\prime}	18^{\prime}
2.	18^{\prime}	6^{\prime}	13.	15^{\prime}	13^{\prime}
3.	$18^{\prime \prime}$	$7{ }^{\prime \prime}$	14.	$12^{\prime \prime}$	$24^{\prime \prime}$
4.	19^{\prime}	$7{ }^{\prime}$	15.	$32^{\prime \prime}$	$21^{\prime \prime}$
5.	20^{\prime}	9^{\prime}	16.	19^{\prime}	28^{\prime}
6.	22^{\prime}	8'	17.	31^{\prime}	22^{\prime}
7.	$15^{\prime \prime}$	$12^{\prime \prime}$	18.	$106^{\prime \prime}$	$12^{\prime \prime}$
15.1	$=15$	-2) $=150+30$	19.	$115^{\prime \prime}$	$12^{\prime \prime}$
	$=18$		20.	106^{\prime}	21^{\prime}
8.	16^{\prime}	12^{\prime}	21.	112^{\prime}	15^{\prime}
9.	$18^{\prime \prime}$	$12^{\prime \prime}$	22.	$1024{ }^{\prime}$	4^{\prime}

The area of a triangle is equal to one half the product of the base by the altitude. Find the areas of the following triangles:

Base Altitude

1. $16 \quad 10$
2. 147
3. 24

8
4. 32

10
5. 2412
10. $21 \quad 15$
10. $21 \quad 15$

Base Altitude
6. 3618
7. 4422
8. 4633
9. 4824

Base Altitude
11. 37

19
12. 1825
13. 2516
14. 3216
15. 1721

The area of a circle is equal to 3.1416 (Abbreviation is π, pronounced pī) times the square of the radius.

Indicate the areas of the following circles:
(D represents diameter; R, radius; A, area.)
16. $D=12, A=\pi \cdot 6^{2}=36 \pi$.
22. $R=27, A=$
17. $R=18, A=\pi \cdot 18^{2}=324 \pi$.
23. $D=28, A=$
18. $R=20, A=$
24. $D=56, A=$
19. $D=38, A=$
25. $D=58, A=$
20. $D=46, A=$
26. $R=26, A=$
21. $R=17, A=$
27. $R=16, A=$

Find the side of a square whose area is:
28. 729
30. 900
31. 441
32. 361
33. 529

Find the edge of a cube whose volume is:
34. 729
35. 512
36. 64
37. 1331
38. 343
39. 216

The area of a trapezoid is equal to the product of one half the sum of the lower base (B), and the upper base (b), by the altitude (a).

Find the areas of the following trapezoids:
40. $\begin{array}{rrrr}B & b & a & \frac{(10+5) 6}{2}=(10+5) 3=45\end{array}$.
$B \quad b \quad a$
41. $18 \quad 10 \quad 4$
42. $22 \quad 16 \quad 8$
43. $24 \quad 12 \quad 15$
44. 131316
45. $14 \quad 14 \quad 5$
46. $9 \quad 18 \quad 8$
$B \quad b \quad a$
47. $18 \quad 8 \quad 8$
48. $16 \quad 14 \quad 9$
49. $15 \quad 13 \quad 14$
50. $24 \quad 15 \quad 6$
51. $22 \quad 11 \quad 8$
52. $15 \quad 17 \quad 17$

Is there anything unusual about the trapezoids in examples 44 and 45 ?

CHAPTER II

Equations

14. An equation is a statement that two quantities are equal. The sign of equality is $=$.
Thus, $x+3=5$ is read x plus 3 is equal to 5 .
15. To solve an equation is to find the value or values of some letter involved in the equation which will satisfy the given equation.
16. When a number substituted for some letter in an equation makes the sides of the equation identical, the equation is said to be satisfied.

A number which satisfies an equation is called a root of the equation. The number is also said to be a solution of the equation.

Ex. $\quad x+3=5$.
Substitute $x=2$ in the equation.
Then,

$$
\begin{equation*}
2+3=5 \tag{1}
\end{equation*}
$$

The two sides or members of the equation are the same or identical.
The number on the left of the sign of equality is called the first member or side. The number on the right is the second member or side. Thus, in $x+3=5, x+3$ is the first member, and 5 is the second member.
17. The kinds of equations that concern us at present are:

The equation of condition.
The identical equation or identity.
The geometric equation.
18. An equation of condition is an equation that is satisfied only by a definite set of values.
E.g., in $x+3=5, x=2$ is the only value which can be found for x, which is a root of the equation. $x+3=5$ is therefore an equation of condition, the condition being that x must equal 2 .
19. An identity is an equation which is always true for any specified values of the letters involved in it.
$E . g$., $2 a=a+\alpha$ is true for any finite value of a.
20. The geometric equation is an equation of two geometric figures. In general, the algebraic equation $(\$ \S 18,19)$ is assumed to be true, and if its roots satisfy it the statement of equality is verified. The geometric equation must usually be proved to be true (§70).
21. The operations used in equations are largely those of addition, subtraction, multiplication, and division.
22. The laws governing the use of these operations are a set of statements assumed to be true, and known as axioms.

23.

The Axioms

1. If the same number, or equal numbers, be added to equal n:umbers, the resulting numbers will be equal.
2. If the same number, or equal numbers, be subtracted from equal numbers, the resulting numbers will be equal.
3. If equal numbers be multiplied by the same number, or equal numbers, the resulting numbers will be equal.
4. If equal numbers be divided by the same number, or equal numbers, the resulting numleis will be equal. It is not allowable to divide by 0 .
5. Any number equals itself.
6. Any number equals the sum of all its parts.
7. Any number is greater than any of its parts.
8. Two numbers which are equal to the same number, or to equal numbers, are equal.

The Use of Axioms

24. Ex. 1. Solve $2 x+3=9$.

Subtract 3 from each member of the equation (Ax. 2).

or

$$
\begin{aligned}
& 2 x=9-3 . \\
& 2 x=6 .
\end{aligned}
$$

Divide each member by 2 (the coefficient of x) (Ax. 4).
Then,

$$
x=3 .
$$

To verify this root, substitute 3 for x in the given equation.

$$
2 \cdot 3+3=9
$$

The equation is satisfied, hence 3 is a root.
Ex. 2.

$$
\text { Solve } \quad y+\frac{11}{6}=\frac{2 y}{3}+\frac{5}{2}
$$

Multiply both members of the equation by 6, the L. C. M. of the denominators (Ax. 3).
or

$$
\begin{gathered}
6\left(y+\frac{11}{6}=\frac{2 y}{3}+\frac{5}{2}\right) \\
6 y+11=4 y+15
\end{gathered}
$$

Subtract $4 y$ from each side (Ax. 2).
Then,

$$
2 y+11=15
$$

Subtract 11 from each side (Ax. 2).
Then,

$$
2 y=4
$$

Divide both sides by 2 (Ax. 4).
And,

$$
y=2
$$

Verify by substituting $y=2$ in the given equation.

$$
2+\frac{11}{6}=\frac{4}{3}+\frac{5}{2} .
$$

Simplify each member.

$$
\frac{12+11}{6}=\frac{8+15}{6} .
$$

Hence, 2 is a root of the equation.

EXERCISE 8

Solve the following equations and verify each root:

1. $2 y+7 y+3=12$.
2. $5 x+7=3 x+17$.
3. $\frac{5 x}{6}-\frac{1 x}{4}=3-2 \frac{5}{12}$.
4. $4 x+2=6$.
(Ax.)
5. $6 x+\frac{1}{4}=2 x+\frac{5}{4}$.
6. $8 z+2-3 z=4 z+4$.
7. $6 u+4=3 u+16$.
8. $\frac{5 x}{2}+\frac{3 x}{4}=\frac{13}{2}$.
9. $y+\frac{3 y}{5}+\frac{1}{4}=\frac{2 y}{3}+\frac{61}{20}$.
10. $\frac{6 x}{9}+\frac{7 x}{3}+4=11$.
11. $\frac{7 a}{4}-\frac{5 a}{10}=\frac{3 a}{4}+2$.
12. $\frac{6 a}{10}+\frac{8 a}{5}+\frac{6}{5}=\frac{5 a}{4}+5 \frac{19}{20}$.
13. $\frac{2 m+9}{3}+\frac{5 m}{2}=\frac{3 m}{2}+13$.
14. $\frac{4 R}{7}-\frac{6 R}{21}+\frac{8 R}{14}=\frac{3 R}{7}+3$.
15. $\frac{x}{3}+\frac{x}{2}-\frac{x}{4}+\frac{1}{6}=\frac{x}{3}+3 \frac{1}{6}$.
16. $\frac{x}{8}+\frac{5 x}{4}-\frac{x}{2}-\frac{3 x}{4}=4 \frac{2}{3}+\frac{3 x}{12}$.
17. $\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=13$.
18. $\frac{x}{7}+\frac{x}{14}=\frac{21}{7}$.
19. $\frac{2 x}{3}+\frac{3 x}{2}+7=x+14$.
20. $\frac{3 x}{4}+\frac{x}{2}-\frac{3 x}{8}=3 \frac{1}{2}$.
21. The sum of two numbers is 9 , and one is twice the other. Find the numbers.

Let	$x=$ the smaller number
and	$2 x=$ the greater number.
	$2 x+x=$ the sum of the numbers.
Then,	$2 x+x=9(\mathrm{Ax} .8)$
	$3 x=9$. $x=3$, the smaller numb
	$2 x=6$, the greater number.

22. The difference between two numbers is 24 , and the greater is four times the lesser. Find the numbers.
23. The sum of two numbers is 48 , and the greater is four more than the lesser. Find the numbers.
24. A number is composed of two digits. The tens' digit is four times as great as units' digit, and the sum of the digits is 10. Find the number. (Exercise 2, Ex. 14.)
25. A number is composed of two digits. The tens' digit is three times the units' digit, and the number is 54 more than the sum of the digits. Find the number.
26. The distance around a rectangle is 120°. The length of the rectangle is 10^{\prime} more than the breadth. Find the dimensions.

27. Two rectangles each have an altitude of 8^{\prime}, the sum of their areas is 256 , and the difference of their lengths is 12^{\prime}. Find length of each.
28. In a triangle $A B C$ the area is 24 , the altitude (a) is 8 . Find the base (b).
29. Each of two rectangles has an altitude of 12^{\prime}. One base is 10^{\prime} more than the other, and the sum of the bases is 25^{\prime}. Find area of each.
30. The sum of the bases of two triangles of equal altitude is 28^{\prime}. One base is 9^{\prime} more than the other. The area of the smaller is 60 square feet. Find area of larger.
31. In a trapezoid $A C D E$, the area is 120 ; the lower base B is four times the upper base b; the altitude is 8 . Find the bases.
32. The sum of the angles of a triangle is equal to 180°. The angle at A is 20° more than the angle at B, and 50° more than the angle at C. Find the angles.

33. In the triangle $A B C, \angle A$ is twice $\angle B$, and $\angle C$ is equal to the sum of $\angle A$ and $\angle B$. Find the angles.
34. The sum of two numbers is 48 and one number is four times the other. Find the numbers. (Solve mentally.)
35. If one half of a number, plus one third of the number, plus one twelfth of the number equals eleven, what is the number?
36. Three fifths of a number, plus five thirds of the number, minus six fifths of the number equals $4 \frac{4}{15}$. What is the number?
37. A father has a certain amount of money and he gives half of it to his son. Later he gives him half of what he has left and then takes back half of all he has given him, leaving the boy $\$ 1.87 \frac{1}{2}$. How much money did the father have at first?

In the following examples determine whether they are identities or conditional equations, by substituting values for x. If you find more than two values that satisfy the equation, it is an identity.
38. $x^{2}-6 x+9=(x-3)(x-3)$.
39. $x^{2}+12 x=x(x+12)$.
40. $x^{2}-9=(x+3)(x-3)$.
41. $x^{2}-10 x+25=x^{2}+8 x+16$.
42. $(x+7)(x-3)=x(x+4)-21$.
43. $x^{2}-8 x-20=x(x-8)-20$.
44. $x(x-8)-20=(x-10)(x+2)$.
45. $4 x^{2}-9 x+7=3 x^{2}-x-8$.
46. $4 x^{2}-12 x+9=(2 x-3)(2 x-3)$.
47. $6 x^{2}-2 x+4=2 x^{2}+10 x-5$.
48. $5 x^{2}+6 x+4=(5 x-2)(x+4)$.
49. $x^{2}-12 x+36=(x-6)^{2}$.
50. $x^{2}+36 x+81=(x+9)(x+9)$.

CHAPTER III

Positive and Negative Numbers. The Four Fundamental Operations

25. Positive and Negative Numbers. In addition to the numbers thus far used in computation, it is necessary in algebra to extend the idea of number somewhat farther. In many problems the numbers involved seem to have an opposite sense. For example: If a man has $\$ 500$ and owes $\$ 300$, the $\$ 300$ opposes the $\$ 500$. If a man is walking east, the opposite direction to that in which he is going is west. North and south are opposites. Temperatures above and below zero are opposites. To express this sense of opposition, positive $(+)$ and negative (-) signs are used in mathematics. E.g., if toward the right is + , then toward the left is - . If north is considered positive, south is negative. If assets are + , liabilities are -.

EXERCISE 9

 units to the left of 0 , how far is it from C to D ? Does that mean to you the difference between the positions of point C and point D ? If A is -3 units from 0 , and B is +5 units from 0 , what is the distance from A to B ?
2. A man has $\$ 600$ and owes $\$ 300$. How much is he worth?
3. A man has $\$ 500$ and owes $\$ 700$. How much is he worth?
4. A man has $\$ 500$ and owes $\$ 500$. How much is he worth?
5. Where on the Cleveland-Wooster railway line is a place -10 miles north of Cleveland?
6. A man goes 5 miles north of Cleveland, then 9 miles south. How many miles north of Cleveland is he? How many miles has he traveled? Draw a diagram showing his route and his last position.
7. If to the right is positive, measure $+6^{\prime \prime}$ from a point A. Call this point B. Measure $-9^{\prime \prime}$ from B. Call this point D. Where is D with respect to A ?
8. Translate into English $\left(a^{2}-b^{2}\right)^{3}$.

Write in symbols: The square of the result of the quotient of the sum of (a) and (b) by 2 .
9. The temperature at 6.00 А.м. is $+14^{\circ}$ and during the morning it grows colder at the rate of 4° an hour. Required the temperatures at 9 A.м., at 10 A.м., and at noon.
10. Find the numerical value of the following, when $a=3$, $b=5, c=2, d=4: \quad \frac{a^{3} b}{2 c^{2}}-\frac{a b^{3}}{4 d^{2}}$.
11. Translate into English $\left(\frac{a+b}{2}\right)^{2}$.

Write in symbols: the cube of the result of subtracting the square of b from the square of a.
12. Find the numerical value of the following, when $x=\frac{1}{2}$, $y=\frac{2}{3}, z=\frac{1}{4}: \quad 4 x^{2}+(3 y-2 z)^{2}$.

Addition

26. In $\S 8$, we found the sums of similar terms, but in each instance the sum was positive. A negative sum may arise from the addition of a positive and a negative number. For instance, in example 6 , exercise 9 , we are adding -9 miles to +5 miles. The result is -4 miles. That is, the addition of a negaiive number to a positive mumber tends to lessen the numerical ralue
of the sum, annul it, or change it from positive to negative. If a man has $\$ 400$ and owes $\$ 400$, the sum of his assets and liabilities is 0 . If he has $\$ 400$ and owes $\$ 700$, the sum of his assets and liabilities is $-\$ 300$. That is, he owes $\$ 300$ more than he has assets. The sum of two negative numbers is negative. It is seen in these results that when the sum of a positive and a negative number is found, the result takes the sign of the greater absolute value.

27 . The absolute value of a number is its value regardless of sign. For example, the absolute value of -6 is 6 .
28. If no sign is placed before a number it is regarded as positive. A negative sign must never be omitted.

EXERCISE 10

Find the sums of the following:

1. +5
2. +5
-3
3. -5
$+3$
4. -5
-3
5. $3 a^{2}$ and $-4 a^{2}$.
6. $7 a b,-5 a b$.
7. $-8 x,-5 x$.
8. $9 a^{2},-6 a^{2},-3 a^{2},-12 a^{2},-5 a^{2}$.
9. $3 a,-5 a,+6 a,-4 a$.
*10. $7 a^{2}, 4 x,+3 a^{2},+2 x,+x$.
10. $12 x^{2} y, 6 x y^{2}, 4 x^{2} y,-2 x^{2} y,+11 x y^{2}$.
11. $15 x^{3},-15 x^{2},+15 x,+5 x^{2},-5 x,-9 x^{3},-9 x^{2},-9 x$.
12. $4 x+3 y-z,-2 x+y+4 z,-x-3 y-2 z$.
13. $5(a+b),-2(a+b), 6(a+b),-9(a+b)$.

* Write similar terms ($\S 6$) in the same column. Make as many columns as you have different kinds of terms, forming the whole into one problem, by using + aud - signs. (See example 2, § 8.)

15. $4(x+y)-3(x-2 y),-3(x+y)+2(x-2 y)$, $2(x+y)+(x-2 y)$.
16. $2(a+b)^{2}-6(a+b)+1,-5(a+b)^{2}+3(a+b)-6$, $(a+b)^{2}-(a+b)+2$.
17. $\frac{2}{3} x-\frac{3}{5} y+\frac{1}{2} z, \frac{3}{4} x+\frac{2}{3} y-\frac{1}{4} z,-\frac{1}{2} x+\frac{3}{10} y-\frac{1}{2} z$.
18. $\frac{7}{8} a-\frac{5}{4} b+\frac{2}{3} c, \frac{1}{16} a-\frac{1}{8} b-\frac{2}{5} c,-\frac{5}{8} a+\frac{7}{8} b-\frac{7}{10} c$.

Find the value of the following sums when $x=\frac{1}{2}, y=+\frac{1}{4}$, $z=\frac{1}{3}, a=-2, c=\frac{1}{5}, b=2$:
19. $\frac{1}{2} a+\frac{1}{2} b-c,+a-\frac{1}{4} b-\frac{2}{3} c, 5 a-\frac{2}{5} b+2 c$.
20. $2(a+b)^{2}-3(b-c)^{2}+(a-b),-500(a+b)^{2}+5(b-c)^{2}$ $+(a-b)$.
21. $5 x y-5 x^{2} y-5 x y^{2}, \frac{1}{2} x y+\frac{8}{3} x^{2} y$.
22. $7(x+2 y)-7(x-2 y),-31(x+2 y)+\frac{3}{7}(x-2 y)$.
23. $12 y z-8 x y+\frac{1}{4} a+\frac{5}{2} b c$.
24. $\frac{2}{3} a-\frac{3}{4} b+\frac{5}{2} c,+\frac{3}{2} a-\frac{1}{2} b+25 c$.

In each of the following examples, add corresponding members of the two equations to find x :
25. $x+y=8$,
$x-y=4$. When x is found, can you find y ?
26. $2 x+3 y=8$,
$x-3 y=-5 . \quad$ Find y also.
27. $4 x-2 y=2$,
$3 x+2 y=12$. Find y also.
28. Verify your results in examples $25-27$ by substituting the values found for x and y in the given equations.

Subtraction

29. (a) What number added to 9 gives 7 ?
(b) What number added to 9 gives 11 ?
(c) What number added to 9 gives 0 ?
(d) What number added to 9 gives -12 ?

In each of the above examples we have the sum of two numbers and one of the numbers given to find the other number.

The Minuend is the sum of two numbers.
The Subtrahend is a given number.
The Difference is a required number when the minuend and subtrahend are known.

Subtraction is the process of finding what number added to the subtrahend produces the minuend.

In example (a), 7 is the minuend, 9 is the subtrahend, -2 the difference. In subtraction, the sum of the subtrahend and the difference must equal the minuend. This fact enables us to check our result.

EXERCISE 11

1. Subtract -3 from 5 .

Here 5 is the sum of the numbers. - 3 is one of the numbers. Our problem is: What number added to -3 gives 5 . This number is evidently 8 . That is, the difference is 8 .

Check:

$$
\begin{aligned}
8+(-3) & =\text { sum of the numbers. } \\
5 & =\text { sum of the numbers. }
\end{aligned}
$$

The written work stands :

$$
\begin{array}{r}
5 \\
-3 \\
\hline 8
\end{array}
$$

2. From $-8 a$ take $5 a$:

$$
\begin{array}{r}
-8 a \\
+\quad 5 a \\
\hline-13 a
\end{array}
$$

Perform the following subtractions:
3. $7 x^{2} y$
4. $25 x$
5. $13 x$
6. $-25 x$
7. $+25 x$
$-3 x^{2} y$
$13 x$
$\underline{25 x}$
6.
$-13 x$
8. From $-13 a b$ take $24 a b$.
9. From $a+b+c$ take $a-b-2 c$.
(Note that there are three subtraction examples in this example, one for each column.)
10. Subtract $8 x-2 y+z$ from $10 x-y-3 z$.
11. Subtract $2 a^{2}-3 a+1$ from $5 a^{2}-3 a-1$.
12. Subtract $10 a^{2}+5 a b-9 b^{2}$ from $2 a^{2}-10 a b+8 b^{2}$.
13. From $x^{3}+3 x^{2}+3 x+1$ take $x^{3}+2 x^{2}+2 x+1$.
14. From $x^{3}+3 x^{2}+3 x+1$ take $x^{3}-3 x^{2}+3 x-1$.
15. From $a^{2}+2 a b+b^{2}$ take $a^{2}-2 a b+b^{2}$.
16. From $5 x^{2}$ take $5 y^{2}$.
17. From $6 x^{2}-5 x+4$ take $12 x^{2}-9$.
18. From $3 x^{2}$ take $-4 x^{3}+3 x^{2}-2 x+1$.
19. Subtract a from 0 .
20. Subtract $9 x^{2}+9 y+9$ from 0 .

Note that in each of the above examples the difference is the same as if we had changed the sign of the subtrahend and added the result to the minuend.

We may then use the following rule for subtraction. Change the sign of each term of the subtrahend and proceed as in addition. (The change of sign must be made mentally.)

EXERCISE 12

1. What must be added to $9 x^{2}+9 y+9$ to give 0 ?
2. Froin $x^{2}+4 x+4$ take $x^{2}-4 x+4$.
3. From the sum of $a^{2}+2 a b+b^{2}$ and $a^{2}-2 a b+b^{2}$ take the difference between $a^{2}+2 a b+b^{2}$ and $a^{2}-2 a b+b^{2}$.*

[^1]4. Subtract $2 a^{3}+a^{2} b+a b^{2}+2 b^{3}$ from the sum of $a^{3}+3 a^{2} b$ $+3 a b^{2}+b^{3}$ and $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$.
5. Subtract $x^{2}+3 x-4$ from x^{3}.
6. Subtract $b+c$ from a.
7. Subtract $4 x^{2}-7 x-9$ from 0 .
8. What shall we add to $7 x^{2}-12 x+5$ to produce 0 ?
9. $\left[5 x^{3}-(3 x+2)\right]-\left[6 x^{3}+(4 x-11)\right]$.

In examples of this type perform the indicated operations one at a time, beginning with the inner parenthesis. First subtract $3 x+2$ from $5 x^{3}$, then add $4 x-11$ to $6 x^{3}$. This gives

$$
\left[5 x^{3}-3 x-2\right]-\left[6 x^{3}+4 x-11\right] .
$$

Subtracting the second trinomial from the first, we have

$$
-x^{3}-7 x+9
$$

Translate each example into English before solving :
10. $\{5 a-[2 a+(4 a+1)]\}$.
11. $\left[12 x^{2}-\left\{-7 x^{2}-\left(5 x^{2}+6 x-3\right)\right\}\right]$.
12. $[6(5 a+3)+5(2 a+7)]-(6 a+53)$.
13. $[25 m-(2 m+3)]-[-10 m-(6 m-7)]$.
14. $\left[x^{3}-\left(3 x^{2} y-3 x y^{2}-y^{3}\right)\right]-\left[x^{3}+\left(-3 x^{2} y+3 x y^{2}-y^{3}\right)\right]$.
15. $(12 a+3 b+2 c)-(5 \dot{a}-2 b+6 c)-(10 a-b-6 c)$.
16. $4(x+y)-[6(x-y)]+(x-2 y)$.
17. There are two numbers, x and y, whose sum is 17 and whose difference is $1, x$ being the greater number. Find the numbers.

By the conditions,

$$
\begin{array}{r}
x+y=17 \\
x-y=1 \tag{2}\\
\hline 2 x=18 \\
x=9 .
\end{array}
$$

Adding (1) and (2),
Subtracting (2) from (1), $\quad 2 y=16$.

$$
y=8
$$

18. Given two numbers, x and y, such that the second number added to twice the first is equal to 12 , and the difference between twice the first number and the second number is 8 . Find the numbers.
19. $5 x+2 y=19$,

$$
\begin{equation*}
5 x-2 y=11 \tag{1}
\end{equation*}
$$

(2) Find x and y.
20. $x+3 y=16$,

$$
\begin{equation*}
x-3 y=-14 \tag{1}
\end{equation*}
$$

21. $2 x+3 y=17$,

$$
\begin{equation*}
x-3 y=-14 \tag{1}
\end{equation*}
$$

(2) After x is found, obtain the value for y by substituting the value of x in equation (1).
22. Find the value of the difference between $5 x^{3}+3 x^{2} y-5 a^{2}$ and $2 x^{3}-3 x^{2} y-2 a^{2}$, when $x=5, y=\frac{1}{6}, a=3$.

Multiplication

30. In addition we learned that

$$
5+5+5+5=5 \cdot 4=20
$$

Also that

$$
(-5)+(-5)+(-5)+(-5)=(-5)(4)=-20
$$

This last shows that the product of a negative number by a positive number is negative.

In arithmetic, it does not matter in what order the factors are used, e.g., $5 \cdot 3=3 \cdot 5$.

We shall assume that this law holds true in algebra.

$$
\text { Then, }(-5)(4)=(4)(-5)=-20
$$

That is, the product of a positive number by a negative number is negative. It seems then that multiplication by a negative number gives to the product a sign opposite to that of the multiplicand.

$$
\text { Ex. } \quad(-S) \cdot(-5)=+40
$$

31. These rules for signs follow:

The product of two numbers of like sign is positive.
The product of two numbers of unlike sign is negative.
32. Since division is the inverse of multiplication, the same sign rules hold ; namely,

When the terms have like signs, the quotient is positive; when unlike, the quotient is negative.

Division may be regarded as an application of the method of subtraction.

Ex. Divide 28 by 7 .
This is equivalent to successively subtracting 7 until no remainder or a remainder less than 7 remains.

$$
28-7=21, \quad 21-7=14 ; \quad 14-7=7, \quad 7-7=0
$$

Which shows that 7 is contained in 28 four times without a remainder, or that 7 is an integral factor of 28.

Regarding division as the inverse of multiplication is the more general method. With this understanding we have the following definitions.
33. Division is the process of finding one of two factors when their product and one of the factors are given.

The Dividend is the product of the factors.
The Divisor is the given factor.
The Quotient is the required factor.
It is evident from these definitions that the product of the divisor by the quotient is equal to the dividend. By the use of this principle the accuracy of the result of the division may be verified.

Give sign rules for addition, subtraction, multiplication, and division.

EXERCISE 13

Find the product of the following (first determine the sign of the product):

1. $(4)(-3)$.
2. $(-9)(4)$.
3. $(-9)(-8)$.
4. $(+10)(+10)$.
5. $(-10)(-10)$.
6. $(-7)(+9)$.

Find the following quotients:
7. $(+12) \div(+4)$.
8. $(-12) \div(-3)$.
9. $(-15) \div(+5)$.
10. $(-20) \div(-4)$.
11. $(-112) \div(16)$.
12. $(144) \div(-18)$.
13. The area of a rectangle is 212 , the base is 17 . Find the altitude.
14. The area of a triangle is 180 , the base is 20 . Find the altitude. Can you construct the triangle? Why?
15. The area of a rectangle is 24 , the altitude is -4 . What is the base? How do you account for these negative results? Draw this rectangle. (§25.)
34. In multiplication it is convenient to show the number of times a quantity is used as a factor by means of a symbol placed at the right and above a quantity.

This symbol showing to what power the number is to be raised is the exponent of the number.

$$
\text { Ex. 1. } \quad x \cdot x \cdot x=x^{3} . \quad(2 x)(2 x)(2 x)(2 x)=(2 x)^{4}=16 x^{4} \text {. }
$$

Similarly, $x \cdot x \cdot x \cdots n$ factors $=x^{n}$.

$$
\begin{aligned}
& \text { Ex. 2. } \quad x^{2} \cdot x^{4}=x \cdot x \cdot x \cdot x \cdot x \cdot x=x^{6} \text {. } \\
& \text { And } x^{n} \cdot x^{m}=(x \cdot x \cdot x \cdots n \text { factors })(x \cdot x \cdot x \cdots m \text { factors }) \\
& =x \cdot x \cdot x \cdots m+n \text { factors }=x^{m+n} . *
\end{aligned}
$$

Then in multiplying two like letters give to their product an exponent equal to the sum of their exponents in multiplicand and multiplier.

* ... is read, " and so on to."

We see that multiplication is simply combining the factors of the multiplicand and multiplier into one product ; e.g., $12 \cdot 18$ means $\left(2^{2} \cdot 3\right)\left(3^{2} \cdot 2\right)$ or $2^{3} \cdot 3^{3}$, the product containing all the factors of both multiplicand and multiplier. Similarly, $24 a^{2} b \cdot 15 a^{3}$

$$
=2^{3} \cdot 3 \cdot a^{2} \cdot b \cdot 3 \cdot 5 \cdot a^{3}=2^{3} \cdot 3^{2} \cdot 5 \cdot a^{5} \cdot b=360 a^{5} b
$$

35. Since division is the inverse of multiplication, the exponent rule for division is the reverse of that in multiplication.

In dividing a letter by the same letter having the same or a different exponent, give to the quotient an exponent equal to the exponent of the dividend minus the exponent of the divisor.

Ex. 1. Divide x^{3} by x^{2}.

$$
\begin{aligned}
x^{3} & =x \cdot x \cdot x, \\
x^{2} & =x \cdot x .
\end{aligned}
$$

Then, $(x \cdot x \cdot x) \div(x \cdot x)=x$,
or

$$
x^{3} \div x^{2}=x^{3-2}=x^{1} .
$$

When the exponent is 1 , it is not expressed.
Thus, $x^{3} \div x^{2}=x$.
Ex. 2. Divide a^{15} by a^{12}.

$$
a^{15} \div a^{12}=a^{15-12}=a^{3} .
$$

EXERCISE 14

Find the following indicated products:
(Translate each example into English before solving.)

1. $x^{5} \cdot x^{3}$.
2. $15 x^{2} \cdot 5 x^{3}$.
3. $8 m \cdot 18 m^{4}$.
4. $(15 a)^{3}(2 a)$.
5. $(x+y)^{2}(x+y)^{3}$.
6. $12(a+b) \cdot 3(a+b)$.
7. $-19(a-b)^{4} \cdot 15(a-b)^{0}$.
8. $\left(12 c^{3}\right) \cdot\left(-4 c^{5}\right)$.
9. $a^{3} b \cdot a^{4} b^{2}$.
10. $-15 a^{2} b^{2} \cdot 21 a^{3} b^{5}$.
11. $\left(-13 a^{2} b^{6} c\right)(-13)$.
12. $\left(18 c^{3} d\right)\left(-19 c^{4} d^{2}\right)$.
13. $\left(27 a b^{2} x y\right)\left(-14 a^{5} b c\right)$.
14. $\left(-21 x^{2} y z\right)\left(-21 x^{3} y^{3} z^{5}\right)$.
15. $12(a+b)$ by $12(a+b)^{2}$ by $12(a+b)^{3}$. What power of 2 is in your product? What power of 3? What power of $(a+b)$? What then are the prime factors of your product?
Indicate the prime factors of these products:
16. $\left(18 a^{3} b^{4}\right)\left(18 a b^{2}\right)$.
17. $\left(-24 p^{2} g^{4} r\right)\left(-24 p^{2} g^{4} r\right)$.
18. $32(a+x)^{5}$ by $64(a+x)^{6}$.
19. $27(c+d)^{3}$ by $9(c+d)^{2}$.
20. $125(x-y)^{3}$ by $25(x-y)^{2}$.

Find these quotients and verify your results:
21. $x^{8} \div x^{5}$.
22. $x^{4} \div x$.
23. $72 x^{6} \div 9 x^{2}$.
24. $441 a^{\epsilon} \div 21 a^{3}$.
25. $\left(-24 x^{3}\right) \div\left(-3 x^{2}\right)$.
26. $\left(576 a^{7} b^{4}\right) \div\left(-24 a^{5} b^{2}\right)$.

Are examples 30 and 31 similar?
32. Divide $5^{4} \cdot 3^{5} \cdot 2^{4} a^{7} b^{6} y^{4}$ by $5^{3} \cdot 2^{4} a^{7} b^{6} y^{2}$.

Factor the dividend and divisor. Then divide as in example 32 :
33. $162 x^{4} y \div 54 x y$. 34. $-135 c^{7} x^{5} \div 15 c x^{5}$.

$$
\text { 35. }-210 x^{4} y^{3} z^{2} \div-14 x^{4} y^{3} \text {. }
$$

36. The area of a rectangle is $128(x+y)(c+d)$, its altitude is $8(c+d)$. What is its base? What are its dimensions if $x=1, y=2, d=4, c=-3$?
37. The area of a rectangle is $384 x^{5} y c^{2}$, its altitude is $16 x^{2} c$. Find its base. What are its dimensions if $x=-2, y=-1$, $c=-2$? Also if $x=2, y=1, c=2$? Draw these rectangles, measuring from the same starting point for each.
38. The base of a triangle is $27 a^{3} c^{4}$, the area is $243 a^{4} c^{5}$. Find the altitude. What are the dimensions when $a=-3$, $c=\frac{1}{3}$?
39. Give the sign rules for addition, subtraction, multiplication, division.

Give the exponent rules for multiplication and division.

Supplemental Applied Mathematics

A decimal fraction is a fraction whose denominator is a power of 10 . This denominator may be written, or simply expressed by the relative position of the decimal point. The factors of 10 are 2 and 5 . The factors of 100 are two 2 's and two 5 's, that is, $100=2^{2} \cdot 5^{2}$. Likewise $1000=2^{3} \cdot 5^{3}$. Every power of 10 is made up of an equal number of 2 's and 5 's used as factors. Therefore, to reduce a common fraction to a pure decimal one must multiply both numerator and denominator by such number as will produce an equal number of 2 and 5 factors only in the denominator.

Ex. 1. Reduce $\frac{3}{4}$ to a decimal.

$$
\begin{aligned}
& \frac{3}{4}=\frac{3}{2^{2}} \quad \begin{array}{l}
\text { Two } 5 \text { 's are lacking. Multiplying both numerator and } \\
\text { denominator by } 5^{2} \text { or } 25 \text {, we have } \frac{75}{100} \text {, or, expressed decimally, } \\
.75 .
\end{array} \text {, }
\end{aligned}
$$

Ex. 2. Reduce to .1875 a common fraction:

$$
.1875=\frac{1875}{2^{4} \cdot 5^{4}}=\frac{3 \cdot 5^{4}}{2^{4 .} 55^{4}}=\frac{3}{16} .
$$

3. Reduce to decimals : $\frac{1}{2}, \frac{3}{5}, \frac{7}{20}, \frac{17}{40}, \frac{7}{8}, \frac{19}{50}$.
4. A machinist has a set of drills marked $.1250 ; .9375$; $.0625 ; .03125 ; .3125 ; .8750$. He does not recognize them as readily as if they were in 8 ths, 16 ths, $32 \mathrm{ds}, 64$ ths. Reduce them to such notation.
5. Reduce the following sizes of drills to their decimal equivalents: $1-8,3-32,3-16,5-16,7-16,9-16,11-16,13-16$, 19-16.

In all computation in science and shop practice the decimal plays an important part.

Whether multiplication and division is carried on directly or by means of tables, the computer must know at a glance where the decimal point is to be placed.

Multiplication of Decimals

Decimals are multiplied as simple numbers if one remembers the decimal composition of our system and the part the position of the digit plays in the formation of a number. In 145, § 1 and exercise 1 , the 1 has 100 times the value it would have if written in units' column where the 5 now is. The 4 has ten times the value it would have if in units' column. Then, multiplication by a digit in hundreds' column has 100 times the effect of multiplication by the same number in units' column. A similar statement holds for digits in tenths' and hundredths' columns, each move to the right decreasing the value of a digit ten times.

In multiplication we begin at the left.
Ex. 6. Multiply 24 by 36.

24
36
720
144
864

We multiply first by 3 . Since this figure is in tens' column, it has ten times the value of a figure in units' column, and our product moves one place to the left. That is, we are really multiplying by 30 units. The units' column, not the decimal point, is the dividing line.

Ex. 7. Multiply 23.2 by 2.4.

Always keep the decimal points in the same vertical column. When multiplying by 4 , the multiplier was one place to the right of units, and the product $\frac{1}{10}$ as large as the product by the same figure if in units' place. This shifted our product, 9.28, one place to the right.

Always begin multiplication at the left.
Find the following products:
8. $17 \cdot 26$.
17. $(2.7)^{2}$.
26. . 6425 (. 0125).
9. $324 \cdot 14$.
18. $(.27)^{2}$.
10. $324 \cdot 324$.
19. $(.09)^{3}$.
11. $216 \cdot 36$.
20. 24.21 (.32).
12. 9^{2}. (3.1416).
21. $1.875 \cdot 16.2$.
13. 16^{2}. (3.1416).
22. $1.875 \cdot 1.62$.
14. $24 \cdot 62.5 \cdot(.92)$.
23. 1.875 (.162).
15. $(.8)^{3}$.
24. 18.75 (1.62).
16. $(1.2)^{3}$.
25. 1.112 (.99).
How much multiplying is necessary in example 27 , if the result is correct to three decimal places?
27. 4.261 (.7854).
28. 32.15 (.625).

Division of Decimals

Here we must reverse our work of multiplication. The first figure of the divisor and its distance from units' column determine the position of the decimal point with respect to the first figure of the quotient. If the first figure of the divisor is in tens' column, the quotient will be ten times as small (or one tenth as inuch) as if the divisor were units. The first figure of the quotient therefore moves one place to the right of the first figure of the dividend.

Ex. 29. Divide 144. by 72.

$$
\text { 72. } \begin{gathered}
144 . \\
\\
\hline
\end{gathered}
$$

Note that 7 is not contained in 1 , the first figure of the quotient; therefore a zero is written for the first figure of the quotient. Since this zero
is to the left of an integer, it has no value and may be disregarded. Until the beginner has the placing of the first figure of the quotient well in mind, this zero should be employed.

Ex. 30. Divide 324 . by 18.

$$
\text { 18. } \begin{array}{|l}
18 . \\
\hline \begin{array}{l}
324 . \\
18 . \\
\hline 144 . \\
144 . \\
\hline
\end{array} \\
\hline
\end{array}
$$

Ex. 31. Divide 2.446 by 3.2.

$$
\begin{array}{l|l}
& \begin{array}{l}
0.76+ \\
3.2 \\
\begin{array}{l}
2.446 \\
2.24 \\
\hline
\end{array} \\
\hline
\end{array} \begin{array}{l}
.206 \\
\\
\\
\hline .192 \\
\hline .014
\end{array}
\end{array}
$$

Ex. 32. Divide 2.446 by . 32 .

$$
\begin{array}{l|l}
.32 & \begin{array}{l}
07.6+ \\
\hline
\end{array} \\
\cline { 1 - 3 } \\
\hline 2.446 \\
2.24 \\
\hline
\end{array}
$$

Ex. 33. Divide 2.446 by 32 .

$$
\text { 32. } \begin{aligned}
& \text {. } 076+ \\
& \begin{array}{l}
2.446 \\
2.24
\end{array} \\
& \hline .206 \\
& \hline .192 \\
& \hline .014
\end{aligned}
$$

Note that the position of the first figure of the divisor alone controls the position of the first figure of the quotient.
Find the following quotients. (Use three decimal places if the quotient is not exact.)
34. $31.5 \div 24.6$.
35. $6.4 \div 1.6$.
36. $6.4 \div 16$.
37. $6.4 \div .016$.
38. $6.4 \div 16$.
39. $.225 \div 15$.
40. . $225 \div 1.5$.
41. . $225 \div .15$.
42. $109.624 \div 3.86$.
43. $125.664 \div 3.1416$.
44. $251.328 \div 3.1416$.
45. $442 \div .09$.
46. $2.24 \div 22.4$.
47. $361 . \div 19$.
48. $5.29 \div .23$.
49. $7.29 \div 2.7$.
50. $7.29 \div .27$.
51. . $0289 \div 1.7$.
52. . $0289 \div .17$.
53. . $0289 \div 17$.

Locate by inspection the first figure in each of the following quotients. (Remember that the number of places in the quotient does not in any way depend upon the number of figures in the divisor.) The position of the first figure in the divisor is all that one needs consider.

For example, in dividing 8.432694 by .3419768321 , the first figure 2 takes the same position as if we were dividing by .3 , namely, in tens' column.

$$
. 3 4 1 9 7 6 8 3 2 1 \longdiv { 2 . } \begin{array} { l }
{ 8 . 4 3 2 6 9 4 }
\end{array}
$$

54. $48.36579 \div 4.6293251$.
55. $4.836579 \div 4.6293251764$.
56. $4.836 \div 4.6293251764847$.
57. . $2793 \div .217398$.
58. . $2793 \div .0217398$.
59. $31.84 \div 309.7$.
60. $34.76 \div 38$.
61. . $026947321 \div .41976384$.
62. $.178643791 \div 2.9$.
63. . $243 \div .0986432791$.
64. $2.43 \div .986432791$.
65. . $0243 \div 9.864327915$.
66. Multiply 16346.2^{\prime} by .00019 , and show that the product is in miles.
67. Divide 3 cubic feet by .00058 , and show that the quotient is cubic inches.
68. Rolled oats requires $1 \frac{3}{4}$ hours cooking on a range. If a fireless cooker is used, 15 minutes cooking on the range is sufficient. How much fuel is saved by using the fireless cooker, if $8.6 \mathrm{cu} . \mathrm{ft}$. of gas per hour are consumed by a gas burner, gas costing 76ϕ per thousand cubic feet?
69. Wheatena, or cream of wheat, requires $\frac{3}{4}$ hours cooking on a range, or 15 minutes cooking on a range for a fireless cooker. How much fuel is saved by using the fireless cooker, gas burner and price same as in Ex. 68 ?
70. Corn meal mush should be cooked for three hours on a range, or for 15 minutes if a fireless cooker is used. How much fuel is saved by using a fireless cooker?
71. Uncooked rice contains 79 \% carbohydrates, while boiled rice contains 24.4%. How much carbohydrate is lost from one pound of rice by boiling?
72. Rice boils in 20 minutes, using a gas burner consuming 8.6 cubic feet per hour. Steamed rice is cooked on the same burner for 5 minutes, and on the simmering burner for 45 minutes, the latter consuming 3.6 cubic feet per hour. What is the difference in the cost of cooking?
73. Rice swells $3 \frac{7}{8}$ times by boiling. If a recipe for pudding calls for one quart boiled rice, how much uncooked rice should be used?

In the following equations solve for x and verify the root found:
74. $2 x-4=7 x+16$.
75. $5 x-8+2 x=x-32$.
76. $2 x-a=5 a$.
77. $2 x-a=b$.
78. $3 x-2 b+x-a=a+2 x$.
79. $\frac{x}{2}-5+\frac{1}{2}=-2 x+5 \frac{1}{2}$.
80. $4 x-3 \frac{1}{2}+\frac{2 x}{3}-\frac{1}{3}=x-2$.
81. $\frac{x}{5}-10-2 \frac{1}{3} x=\frac{4 x}{5}-14 \frac{1}{1} \frac{4}{5}+2 x$.
82. The length of a room is one and one half times its width. If three feet is taken from the length and three feet is added to the width, the room will be square. Find its dimensions.
83. The sum of one third, one fourth, and one fifth of a number is 17 more than one half the number. Find the number.
84. The distance around a rectangle is $22 \frac{4}{9}$ yards. The length is $2 \frac{1}{3}$ yards more than the width. Find the square yards in the rectangle.

CHAPTER IV

Polynomials. Multiplication of Polynomials

37. Polynomial by Monomial. Review multiplication of monomials, §§ 31-34. Give sign rule for multiplication. Give exponent rule for multiplication. Give sign rule for addition. Illustrate each.
38. In § 34 , we found the product of a monomial by a monomial. We shall now extend multiplication to cover any number of terms.

A polynomial is simply a sum of monomial terms.
Hence, to multiply a polynomial by a number is to multiply each of its terms by that number, and find the sum of these products.

Ex. Multiply $5 a^{2}+3 a x-x^{2}$ by $2 a$.

$$
5 a^{2} \cdot 2 a=10 a^{3}, 3 a x \cdot 2 a=6 a^{2} x,-x^{2} \cdot 2 a=-2 a x^{2} .
$$

Then, $\quad\left(5 a^{2}+3 a x-x^{2}\right) \cdot(2 a)=10 a^{3}+6 a^{2} x-2 a x^{2}$.
The work should be written in the following form :

$$
\begin{aligned}
& 5 a^{2}+3 a x-x^{2} \\
& \frac{2 a}{10 a^{3}+6 a^{2} x-2 a x^{2}}
\end{aligned}
$$

Begin multiplication at the left.

EXERCISE 15

Find the following products. (Perform the numerical multiplication mentally, writing results only.)

1. $7 a^{2}+3 a b+2 b^{2}$ $5 a$
2. $5 m^{2}-3 \mathrm{~cm}+y$ $\underline{2 c^{3} y}$
3. $-4 x^{2}+2 x z-5 z^{2}$
$-6 x$
4. $-14 a d^{2}+15 a^{2} d+17 d^{2}$ $-13 a$
5. $18 x^{2}-17 x y-24 y^{2}$ $12 x^{4}$
6. In example 5 , substitute $x=1, y=2$ in your multiplicand, multiplier, and product. Is the result what you might expect?

Any example in multiplication may be checked by substituting some numerical value for each letter as suggested in example 6.
7. Check each of the first five examples.

Multiply :

8. $32 x^{3} z-14 x z^{3}$ by $16 x z$.
9. $115 x y^{2}-112 x^{3} y$ by -12 .
10. $1024 a^{2}+612 a b-306 b^{2}$ by $4 a b^{2}$.
11. $(x+y)^{2}+6(x+y)+9$ by $(x+y)$.
12. $(x+y)^{3}+3(x+y)-4$ by $16(x+y)^{2}$.
13. $-24(x-y)^{3}+14(a+b)^{2}-21$ by 16 .
14. $3(x+y)^{2}+12(x+y)+18$ by $4(x+y)$.
15. Check example 14.
16. Polynomial by Polynomial. To multiply a polynomial by a polynomial is to multiply the multiplicand by each term of the multiplier, and add the partial products.

Ex. 1. Find the product of $2 a+3 b$ by $3 a-5 b$.

$$
\begin{align*}
(2 a+3 b) 3 a & =6 a^{2}+9 a b \\
(2 a+3 b)(-5 b) & =-10 a b-15 b^{2} .
\end{align*}
$$

Adding these partial products
we have

$$
\begin{aligned}
& 6 a^{2}+9 a b \\
& \frac{-10 a b-15 b^{2}}{6 a^{2}-a b-15 b^{2}}
\end{aligned}
$$

The work should be written as follows :

$$
\begin{aligned}
& 2 a+3 b \\
& \frac{3 a-5 b}{6 a^{2}+9 a b} \\
& \frac{-10 a b-15 b^{2}}{6 a^{2}-a b-15 b^{2}}
\end{aligned}
$$

The procedure is the same for any number of terms. The pupil will find the work more simple if both multiplicand and multiplier are arranged according to either the descending or ascending powers of some letter.

Ex. 2. Multiply $5 x-6 x^{2}+x^{3}-4$ by $-3 x+x^{2}-1$.
Rearranging according to the descending powers of x,

$$
\begin{aligned}
& x^{3}-6 x^{2}+5 x-4 \\
& \frac{x^{2}-3 x-1}{x^{5}-6 x^{4}+5 x^{3}-4 x^{2}} \\
& \quad-3 x^{4}+18 x^{3}-15 x^{2}+12 x \\
& \quad-x^{3}+6 x^{2}-5 x+4 \\
& \hline x^{5}-9 x^{4}+22 x^{3}-13 x^{2}+7 x+4
\end{aligned}
$$

EXERCISE 16

Find the following products. Check each result:

1. $(5 a+3 b)(2 a+4 b)$.
2. $(6 x+2 y)(5 x-3 y)$.
3. $(7 c+2 d)(7 c-3 d)$.
4. $(7 c+2 d)(7 c-2 d)$.
5. $\left(x^{3}+x^{2}+1\right)(x-1)$.
6. $\left(5 x^{3}-4 x^{2}+3 x-2\right)(2 x-7)$.
7. $\left(x^{2}+x+2\right)\left(x^{2}-x+2\right)$.
8. $\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$.
9. $\left(a^{2}+2 a b+b^{2}\right)(a+b)$.
10. $\left(a^{2}-2 a b+b^{2}\right)(a-b)$.

Are the products in 9 and 10 alike?
11. Multiply $a^{2}+2 a+4$ by $a-2$.
12. Multiply $5 x^{2}-30 x+45$ by $5 x-15$.
13. $(a+b)(a+b)$.
14. $(a+2 b)(a+2 b)$.
15. $(x-2 y)^{2}$.
16. $(x-y)(x-y)$.

Note the form of these results in examples $13-16$. They will be useful later.
17. $(a+b)(a-b)$.
19. $(4 x+y)(4 x-y)$.
18. $(a+2 b)(a-2 b)$.
20. $(4 x+3 y)(4 x-3 y)$.
21. $(16 c+15 d)(16 c-15 d)$.

Note the form of the results in examples 17-21.
Write the following products by inspection :
22. $(c+2 d)(c-2 d)$.
23. $(5 x+y)(5 x-y)$.
24. $(5 x+y)(5 x+y)$.
25. $(3 x+2 y)(3 x+2 y)$.
26. $(2 a+3 c)(2 a+3 c)$.
27. $(5 m+4 k)(5 m+4 k)$.

Solve examples 28-32 mentally :
28. The side of a square is $a+b$. Find the area.
29. The side of a square is $2 a-b$. Find the area.
30. The side of a square is $4 x+3 y$. Find the area.
31. The side of a square is $6 c-4 d$. Find the area.
32. The side of a square is $5 x-2 a$. Find the area.
33. In examples $28-32$ find the dimensions and the area if. $a=2, b=1, c=-1, d=3, x=4, y=-1$.

Find the areas of the following \mathbb{S} where $b=$ base and $a=$ altitude:

	b	a
34.	$6 x+3 y$,	$5 x+7 y$.
35.	$a+b$,	$a-b$.
36. $x+8$,	$x-2$.	
37. $x+9 y$,	$x+2 y$.	
38. $x+15 a$,	$x-3 a$.	

39. Compute the areas in examples $34-38$ when $a=3, b=1$, $x=7, y=-6$.
40. $16 x^{4}+\left(8 x^{2}-3 x+14\right)\left(5 x-2 x^{2}+24\right)-336=$?
41. $\left[\left(x^{2}+3 x-4\right)+\left(x^{2}-3 x+4\right)\right]\left(9 x^{2}-6 x+1\right)=$?
42. $(2 x+3)(2 x+3)^{2}=$?
43. The edge of a cube is $4 a+b$; find its volume.
44. The edge of a cube is $2 x-5 y$; find its volume.
45. The edge of a cube is $5 x-14 b$; find its volume.
46. Find the volumes in examples $43-45$ if the letters have the same values as in example 33.

Find the areas of the following trapezoids: (B represents the lower base, b the upper base, and a the altitude).

B

47. $x+y$,
48. $3 x+2 y$,
49. $5 x+2 y$,
50. $3 x+5 y$,
51. $7 c+3 d$,
52. $4 c-8 d$,
53. $x+9 y$,
54. $x+18$,
55. $c+8$,
56. Find the upper base, lower base, altitude, and area in examples $49-55$, if $x=3, y=2, c=4, d=-5$. How do you account for your negative areas?
57. If 10^{\prime} be subtracted from the length of a rectangle, and the same amount is added to the breadth, the area will be increased by 100 square feet, but if 10^{\prime} be subtracted from the breadth and 10^{\prime} added to the length, the area will be diminished
by 300 square feet. Make a diagram of each rectangle, using a scale of $\frac{1}{16}{ }^{\prime \prime}=1$ foot.

Division of Polynomials

40. Polynomial by Monomial. Review division of monomials, $\S \S 32-35$. Give sign rule for division. Give exponent rule for division. Give rule for subtraction of monomials.
41. Since a polynomial is a sum of monomial terms, to divide a polynomial by a monomial, divide each term of the polynomial by the monomial and add the quotients thus found.

Ex. 1. Divide $81 a^{4}-27 a^{2}+18 a$ by $9 a$.

$$
81 a^{4} \div 9 a=9 a^{3},-27 a^{2} \div 9 a=-3 a, 18 a \div 9 a=2
$$

Then $\left(81 a^{4}-27 a^{2}+18 a\right) \div 9 a=9 a^{3}-3 a+2$.
The work should be written as follows:

$$
\frac{9 a \lcm{81 a^{4}-27 a^{2}+18 a}}{9 a^{3}-3 a+2}
$$

Ex. 2. Divide $21 x^{4}-18 x^{3}+5 x^{2}-9 x$ by $-3 x$.

$$
\frac{-3 x) 21 x^{4}-18 x^{3}+5 x^{2}-9 x}{-7 x^{3}+6 x^{2}-\frac{5}{3} x+3}
$$

Ex. 3. Divide $4 a^{2}(2 m+3)-9 a(2 m+3)+2 m+3$ by $2 m+3$.

$$
2 m+3 \lcm{4 a^{2}(2 m+3)-9 a(2 m+3)+2 m+3} 4 a^{2}-9 a \quad+1
$$

Note that in dividing one number by another, we are simply removing from the dividend the factors found in the divisor.

Ex. 4. $45 \div 3$.

$$
\begin{gathered}
45=3^{2} \cdot 5 . \\
\frac{3 \lcm{3^{2} \cdot 5}}{3 \cdot 5}
\end{gathered}
$$

After removing the 3 of the divisor 3.5 are left for the quotient.

Ex. 5. $45 x^{3} y \div 9 x^{2}$.

$$
\begin{aligned}
45 x^{3} y & =3^{2} \cdot 5 \cdot x \cdot x \cdot x \cdot y \\
9 x^{2} & =3^{2} \cdot x \cdot x \\
\left.3^{2} \cdot x \cdot x\right) & \frac{3^{2} \cdot 5 \cdot x \cdot x \cdot x \cdot y}{5 \cdot x \cdot y=5 x y}
\end{aligned}
$$

If one carries this principle in mind no rule for division by a monomial is necessary.

EXERCISE 17

1. $72 x^{7} y \div 24 x^{5} y$.
2. $4(a+b)^{5} \div 4(a+b)^{3}$.
3. $\left(128 x^{6}-80 x^{4}+32\right) \div 16$.
4. $128 x^{6}-\left(80 x^{4}+32\right) \div 16$.
5. $128 x^{6}-80 x^{4}+32 \div 16$.
6. $\left(128 x^{6}-80 x^{4}\right)+32 \div 16$.
7. $\left[7 x^{4}(2 a+b)^{3}-12 x^{2}(2 a+b)^{2}+15 x(2 a+b)\right] \div-(2 a+b)$.
8. Divide $14 a(x-y)+7 a^{2}(x-y)^{2}-49 a^{3}(x-y)^{3}$ by $-7 a(x-y)$.
9. Divide $(a+b) a^{2}+(a+b) 2 a b+b^{2}(a+b)$ by $a+b$.
10. Divide $144 x^{4} y^{2} z-729 x^{2} y^{3} z^{4}+162 x y^{2} z^{5}$ by $-3 x^{2} y^{2} z$.

42. Polynomial by polynomial.

The product of $x^{2}+x+2$ by $2 x+3$ is found by

$$
\begin{align*}
& x^{2}(2 x+3)+x(2 x+3)+2(2 x+3) \tag{1}\\
& =2 x^{3}+3 x^{2}+2 x^{2}+3 x+4 x+6 \tag{2}\\
& =2 x^{3}+5 x^{2}+7 x+6 \tag{3}
\end{align*}
$$

Ex. 1. Required to divide $2 x^{3}+5 x^{2}+7 x+6$ by $2 x+3$.
This means that $2 x^{3}+5 x^{2}+7 x+6$ is the product of two factors or sets of factors, one of which is $2 x+3$. The problem is to find the other factor.

If $2 x^{3}+5 x^{2}+7 x+6$ is written in form (1), division can be performed as in example $3, \S 41$, but if the multiplication has been completed and the partial products added as in form (3), the factor required is not so readily seen.

It is evident from (1) that (3) is made up of partial products. If $2 x+3$ is the divisor, $x^{2}+x+2$ is the quotient.

An examination of (1) shows that the first term of each partial product is the product of the first term of the divisor by the corresponding term of the quotient. Therefore we may form this rule:

1. Arrange both dividend and divisor according to the ascending or descending powers of the same letter.
2. Divide the first term of the dividend by the first term of the divisor.
3. Multiply each term of the divisor by the quotient found in 2.
4. Subtract the product found in 3 from the dividend, arranging the difference found in the same order as the dividend.
5. Divide the first term of the difference by the first term of the divisor. This gives a second term of the quotient.
6. Proceed in this manner, considering each difference as a new dividend until the first term of the difference is of lower degree than the first term of the divisor.
7. If there is a remainder, make it the numerator of a fraction whose denominator is the divisor, and annex with proper sign to the quotient.

		vidend	Divisor
1st partial product,	$x^{2}(2 x+3)=\underline{2 x^{3}+5 x^{2}+7 x+6}$		$\underline{2 x+3}$
		$2 x^{2}+7 x+6$	Quotient
2d partial product,	$x(2 x+3)=$	$\frac{2 x^{2}+3 x}{4 x}+6$	
3d partial product,	$2(2 x+3)=$	$\underline{4 x+6}$	

Ex. 2. Divide $x^{3}+3 x-2$ by $x-4$.

$$
\begin{aligned}
& \left.\frac{x^{3}+3 x-2}{\frac{x^{3}-4 x^{2}}{4 x^{2}}+3 x-2} \right\rvert\, \frac{x-4}{x^{2}+4 x+19+} \frac{74}{x-4} \\
& \frac{4 x^{2}-16 x}{19 x-2} \\
& \frac{19 x-76}{\frac{74}{x-4}}
\end{aligned}
$$

EXERCISE 18

Verify each result:

1. Divide $x^{2}(2 x+3)+8 x(2 x+3)+15(2 x+3)$ by $2 x+3$.
2. Divide $a^{2}(a+b)+2 a b(a+b)+(a+b)^{2}$ by $a+b$.
3. The area of a rectangle is $x^{2}+8 x+15$. The length is $x+5$. What is the breadth? What is the breadth if $x=2$?
4. Divide $y^{2}-2 y-15$ by $y+3$.
5. Divide $y^{2}+2 y-15$ by $y+3$.
6. Divide $y^{2}+2 y-15$ by $y-3$.
7. Divide $y^{2}-8 y+15$ by $y-3$.
8. $\left(5 x^{3}-20 x^{2}+15 x-30\right) \div-5$.
9. $5 x^{3}-\left(20 x^{2}+15 x-30\right) \div-5$.
10. $5 x^{3}-20 x^{2}+(15 x-30) \div-5$.
11. $5 x^{3}-20 x^{2}+15 x-30 \div 5+3(2 x-8) \div 2$.
12. $4(a+b)^{2} \div 2(a+b)+4(a+b)^{2} \div-2(a+b)$.
13. The radius of a circle is $x+3$. Find the area.
14. The area of a trapezoid is $2 x^{2}+12 x+18$; the sum of the bases is $4 x+12$. Find the altitude. If the upper base is $x+7$, what is the lower base? If $x=3$, what are the dimensions? Can you draw the trapezoid if it is isosceles?
15. Divide $x^{3}+3 x^{2}+3 x+1$ by $x^{2}+2 x+1$.
16. Divide $x^{3}+3 x^{2}+3 x+1$ by $x+1$. Divide the quotient by $x+1$. Compare results in examples 15 and 16 .
17. Divide $x^{3}+27$ by $x+3$. 18. Divide $a^{3}+1$ by $a+1$.
18. Divide $8 a^{3}-27 b^{3}$ by $2 a-3 b$.
19. Divide $x^{5}-32$ by $x-2$.
20. Divide $x^{4}-81$ by $x-3$.
21. Divide $x^{4}+81$ by $x+3$.
22. Divide $x^{2}-x-72$ by $x-9$.
23. The area of a trapezoid is $15 x^{2}-34 x+16$; the altitude is $5 x-8$; one base is $2 x+3$. Find the other base.
24. The area of an isosceles triangle is $12 x^{2}+32 x-35$; the base is $6 x-5$. Find the altitude, then construct the triangle when $x=2$. Construct the triangle when $x=-2$.
25. The area of a rectangle is $4 x^{2}+12 x+9$; the base is $2 x+3$. Find the altitude. Construct the rectangle. Compare the base and altitude of your drawing. What kind of a rectangle is it?
26. Divide the sum of $x^{3}+7 x^{2}+35 x+19$ and $x^{3}+8 x^{2}-13 x-34$ by the difference between $5 x^{2}+2 x-7$ and $3 x^{2}-3 x-4$.
27. Perform the following operation: $\frac{(3 x+7)\left(x^{2}-x-12\right)}{x-4}$.
28. $x^{2}\left(2 x^{3}+9 x^{2}-71 x-120\right) \div\left(x^{2}+3 x-40\right)$.
29. $x^{2}\left(2 x^{3}+9 x^{2}-71 x-120\right) \div x^{2}+3 x-40$.
30. Divide $a^{2}+2 a b+b^{2}$ by $a+b$. Is $a^{2}+2 a b+b^{2}$ a square or a rectangle? Define a square.
31. $\left(100 x^{4}-229 x^{2}+9\right) \div(5 x-1)$.
32. Divide $100 x^{4}-229 x^{2}+9$ by $4 x^{2}-9$.
33. Divide $100 x^{4}-229 x^{2}+9$ by $25 x^{2}-1$.
34. Divide $100 x^{4}-229 x^{2}+9$ by $5 x+1$.
35. Divide $100 x^{4}-229 x^{2}+9$ by $2 x+3$.
36. Divide $100 x^{4}-229 x^{2}+9$ by $2 x-3$.
37. What are the factors of $100 x^{4}-229 x^{2}+9$? of $4 x^{2}-9$? of $25 x^{2}-1$?
38. Divide $x^{3}+6 x^{2}-x-30$ by $x-2$.
39. Divide $x^{3}+6 x^{2}-x-30$ by $x+3$.
40. Divide $x^{3}+6 x^{2}-x-30$ by $x+5$.
41. What are the factors of $x^{3}+6 x^{2}-x-30$? What does the product of these factors equal?
42. The length, breadth, and thickness of a rectangular solid are $x+5, x+3$, and $x-2$, respectively. Find its volume. What are its dimensions when $x=3 ? x=2 ? x=1$? $x=0$? $x=-1$?
43. Divide $x^{2}-64$ by $x-8$.
44. Divide $x^{2}-64$ by $x+8$.
45. What are the factors of $x^{2}-64$?
46. The volume of a circular cylinder is $\left(16 x^{3}-84 x^{2}+120 x-25\right) \pi$. The radius of the base is $2 x-5$. Find the altitude. Find the dimensions when $x=3 ; 4 ; 5$.
47. The various symbols of algebra enable us to express many operations by using these symbols in place of words. In other words, the symbols are the shorthand, the stenography, of mathematics.

For example: If we wish to indicate the subtraction of $2 x-1$ from $4 x+7$, we may write:
(a) from $4 x+7$ take $2 x-1$; or we may write:
(b) $(4 x+7)-(2 x-1)$;
the two expressions being identical, and read in the same way. In the next exercise be sure you translate the algebraic language into the English before attempting to solve the problems.

REVIEW

1. $(2 x+3)(2 x-7)+(3 x-1)(2 x+5)$.
2. $(2 x+3)(3 x+2)-(4 x+15)$.
3. $(4 x-1)(x+4)-(x-4)(4 x+1)$.
4. $x^{3}-\left[3 x^{2}+(3 x-1)\right]-\left[x^{3}+3 x^{2}-(3 x-1)\right]$.
5. $4(x-5)(x-2)-4$.
6. $7+3 \div 3-4$.
7. $2+(8 \div 4) \cdot 5-8$.
8. $6-90 \div(3 \cdot 10)+2-8$.
9. $(2 x-7) x-(3 x+4) x$.
10. Two right triangles are equal if two legs of the one are equal respectively to two legs of the other. Prove.
11. In a rectangle the opposite sides are equal. Prove that the diagonal divides a rectangle into two equal triangles.
12. The bisectors of the base angles of an isosceles triangle are equal. Prove.
13. $\left[(a+b)^{5}+6 b(a+b)^{4}-12(a+b)^{3}\right] \div(a+b)^{2}$.
14. $\left(4 a^{2}-b^{2}\right)-(2 a+b)(2 a-b)$.
15. $\left(64 c^{2}-2 \tilde{5} d^{2}\right)-(8 c+5 d)(8 c-5 d)$.
16. $(5 x+2 y)^{2}-(5 x-2 y)(5 x-2 y)$.
17. $(5 x+2 y)(5 x-2 y)-\left(25 x^{2}-4 y^{2}\right)$.
18. $(7 x-3 z)^{2}-(7 x+3 z)^{2}$.
19. $(x+5)(x-2)-(x-5)(x+2)-(x-5)(x-2)$ $-(x+5)(x+2)$
20. $(a+b)^{3}$.
21. $(c+7)^{3}$.
22. $\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)$.
23. $\left(a^{2}+a b+b^{2}\right)\left(a^{2}+a b+b^{2}\right)$.
24. Find the area of a trapezoid whose upper base, lower base, and altitude are $x+7,2 x+8,3 x+2$ respectively. If $x=1$ and the trapezoid is isosceles, construct the trapezoid.
25. Find the prime factors of $(25)^{2},(24)^{2},(72)^{2}$.
26. What are the prime factors of $(12)^{6}$? $(144)^{5}$?
27. What are the prime factors of 1728 ? of $(39)^{3}$?
28. Factor $(81)^{4},(8)^{5},(16)^{10}$.
29. Factor $27 \cdot 81 \cdot 729$.
30. Factor $72 \cdot 64 \cdot 36$.
31. Factor $45 z^{3} y^{2}$. How many prime factors in this number?
32. Factor $81(a+b)^{5}$.
33. Factor $27(2 x-y)^{3}$. If $x=3$ and $y=1$, what are the prime factors of this product? How do they differ from the prime factors of $(15)^{3}$?

Supplemental Applied Mathematics

1. One egg weighs 2 ounces. 57% of the egg is white, 32% yoke, 11% shell. Find the weights of the whites, yolks, and shells of one dozen eggs.
2. One egg weighs 2 ounces. The shells of 2 eggs weigh one ounce. What per cent of the whole egg is the edible portion?
3. The edible portion of 2 eggs measures $\frac{3}{8}$ of a cup. It takes 9 whites of eggs to measure 1 cup. How many yolks of eggs does it take to make 1 cup?
4. Beaten whites of 4 eggs measure $2 \frac{7}{8}$ cups. What is the per cent of increase in quantity of beaten over unbeaten whites?
5. Beaten yolks of 3 eggs measure $\frac{1}{3}$ cup. What is the per cent of increase in quantity of beaten over unbeaten yolks?
6. One egg, yolk and white beaten together, measures 4 tablespoonfuls. How much greater is the increase in quantity when yolks and whites of 4 eggs are beaten separately?
7. According to Hutchison, experiments as to the difference in time of digesting eggs cooked in various ways show that 2 soft "boiled" eggs leave the stomach in $1 \frac{3}{4}$ hours, and 2 hard "boiled" eggs leave the stomach in 3 hours. If 2 eggs are eaten on each of 4 days a week, how many more hour's' work a month will the stomach have in digesting hard than soft "boiled" eggs?
8. An egg was boiled for 3 minutes. After artificially digesting for 5 hours in a pepsin solution, it contained 8.3% undigested protein. An egg was cooked in water at $180^{\circ} \mathrm{F}$. for 5 minutes. It was entirely digested after 5 hours in a pepsin solution. The edible portion of eggs contains 13.4% protein. Find the weight of undigested protein from 1 dozen eggs if they are soft "boiled " rather than soft "cooked."
9. Steel is 7.83 times as heavy as water. Find the weight of one cubic inch of steel.
10. A gas range has four burners, each of which burns .65 cubic feet per minute and two oven burners, each burning 1.032 cubic feet per minute. Find the cost per hour of running the stove when all burners are on full, gas at 65ϕ per thousand.
11. A house is heated by a gas furnace containing four burners and two pilot lights. Each burner consumes one cubic foot in two minutes; each pilot one cubic foot in eight minutes. Find gas bill for February at 30ϕ per thousand cubic feet. The pilots burned all the time. Two burners burned from 6 А.м. to 10 p.м. and four burners were running two hours in the morning and two hours in the evening each day.
12. According to one authority, a family of five living on $\$ 2000$ to $\$ 4000$ per year should spend 25% of that sum for food; 20% for rent; 15% for operating expenses, such as fuel, wages, etc., 15% for clothing; and 25% for higher life, i.e. books, travel, charity, saving, and insurance. What amount should be used for each item if a family has an annual income of $\$ 3000$?
13. A family living on $\$ 1000$ to $\$ 2000$ per year requires 25% for food; 20% for rent; 15% for operating expenses; 20% for clothing; and 20% for higher life. If a family lives on $\$ 1500$ per year, what amount should be spent for each item?
14. From a family income of $\$ 800$ to $\$ 1000$ per year, 30% should be spent for food; 20% for rent; 10% for operating expenses; 10% for clothing; and 20% for higher life.

How much can be spent for each item when the income is $\$ 900$?
15. A family living on $\$ 500$ to $\$ 800$ per year should spend 45% for food; 15% for rent; 10% for operating expenses; 10% for clothing, and 10% for higher life. If a family's annual income is $\$ 650$, how much should be spent for each item?
16. From an annual income of less than $\$ 500,60 \%$ should be spent for food; 15% for rent; 5% for operating expenses; 10% for clothing; and 10% for higher life. If the income of a family is $\$ 425$ per year, how much can be spent for each item per year and month?
17. The grocery bill of a family living on $\$ 3000$ per year should be 25% of that sum; of a family living on $\$ 700 \mathrm{a}$ year, 45% of that sum. Find the difference in the monthly grocery bill of each?
18. 20% of a twelve-hundred-dollar income should be spent for clothing, and 15% of a nine-hundred-dollar income. Find the difference in the amounts spent for these items by two families having these incomes.
19. There are 49 lb . flour in a fourth barrel, or an ordinary sack of flour. 1 lb . flour measures 4 cups. If a family uses 5 loaves bread per week, and it takes $3 \frac{1}{2}$ cups of flour to make one loaf, how many months will a sack of flour last?
20. Find the cost of 4 loaves of bread, requiring 1 hour for baking and containing the following: $3 \frac{1}{2} q$ t. flour, 1 yeast cake, 2 tb. lard, 4 t. salt, 4 t . sugar. Flour costs $\$ 2.00$ per one-fourth barrel; yeast 2ϕ per cake; lard 15ϕ per pound (2 c. in a pound), the sugar and salt $\$.0024$; gas 70ϕ per 1000 ft ., the oven burner burning 39 cu . ft. per hour.
($\mathrm{Tb} .=$ tablespoon, $\mathrm{t} .=$ teaspoon, $\mathrm{c} .=$ cup.)
21. I buy 28 -inch material for handkerchiefs. How many yards would I have to buy to make 9 dozen handkerchiefs, cut 14 inches square?
22. What is the size of the finished handkerchief if a $\frac{1}{4}$-inch hem is made on four sides?
23. If I paid 2 cents a yard for stitching, how much would the work on 6 dozen handkerchiefs cost?
24. How much lace would it take to sew around 9 dozen handkerchiefs if you allowed 4 inches extra on each handkerchief for fullness?
25. If the material cost 60 cents a yard, and lace 15 cents a yard, how much would the handkerchiefs in problem 24 cost, including 5 spools thread at 5 cents a spool and 2 cents a yard for stitching?

REVIEW

Divide:

1. $2 x^{3}-5 x^{2}+8 x-3$ by $2 x-1$.
2. $x^{3}-4 x^{2}+5 x-2$ by $x-1$.
3. $2 a^{3}-9 a^{2}+8 a+3$ by $a-3$.
4. $b^{3}-3 b^{2} c+3 b c^{2}-c^{3}$ by $b-c$.
5. $c^{3}+2 c^{2}+2 c+1$ by $c+1$.
6. $x^{3}+2 x^{2} y+2 x y^{2}+y^{3}$ by $x+y$.
7. $a^{2}+4 a-21$ by $a-3$.
8. $a^{2}+4 a-21$ by $a-7$.
9. $a^{2}+4 a-21$ by $a+3$.
10. $a^{2}+4 a-21$ by $a+7$.
11. $x^{3}+3 x^{2}+3 x+1$ by $x^{2}+2 x+1$.
12. $x^{5}+3 x^{2}+x-1$ by $x^{2}+2 x+1$.
13. $a^{4}+6 a^{5}+35 a^{2}-8-5 a^{3}+19 a$ by $3 a-1+2 a^{2}$.
14. $x^{4}-2 x^{3} y-y^{4}+2 x y^{2}$ by $x^{2}-y^{2}$.
15. $x^{4}-2 x^{2} y^{2}+y^{4}$ by $x^{2}-2 x y+y^{2}$.
16. $6 y^{5}-4 y^{4}+20 y^{3}-13 y^{2}+6 y-3$ by $y^{2}+3$.
17. $6 m^{4}+13 m^{3}-70 m^{2}+71 m+40$ by $3 m^{2}-7 m+4$.
18. $z^{6}-2 z^{5}+z^{4}+z^{3}-z^{2}-2 z-1$ by $z^{2}-z-1$.
19. $x^{6}-7 x^{4}+6 x^{3}-35 x^{2}-60 x-50$ by $x^{2}-10$.
20. $\left[(x-1)(2 x+3)\left(4 x^{2}-9\right)\right]$ by $2 x^{2}+x-3$.
21. $[(3 x-1)(3 x+1)(4 x+5)]$ by $12 x^{2}+11 x-5$.
22. $\left[\left(125 x^{3}-1\right)(x+7)(2 x+1)\right]$ by $10 x^{2}+3 x-1$.
23. $\left[\left(a^{2}-1\right)\left(a^{2}-2 a-15\right)\right]$ by $a^{2}+2 a-3$.
24. $\left[(a+1)(2 a+3)\left(4 a^{2}-9\right)\right]$ by $2 a^{2}-a-3$.
25. $[(2 x-3)(5 x+7)(4 x-3)(3 x-7)]$ by $6 x^{2}-23 x+21$.
26. $\left[\left(18 x^{2}+3 x-1\right)\left(10 x^{2}+13 x-3\right)\right]$ by $6 x^{2}+11 x+3$.
27. $2 x^{4}+3 x^{3}-5 x^{2}-8 x-9$ by $2 x^{2}+7-5 x$.
28. $x^{3}+y^{3}+z^{3}-3 x y z$ by $x+y+z$.
29. $2 x^{4}+x^{3}-6 x^{2}-4 x-8$ by $x-2$.
30. $125 x^{6}-512$ by $5 x^{2}-8$.
31. $b^{4}-4 y^{4}$ by $b-y$.
32. $52 x^{5}+38 x^{4} y-208 x^{3} y^{2}-143 x^{2} y^{3}+91 x y^{4}+35 y^{4}$ by $2 x^{2}-7 y^{2}$.
33. $1-a^{6}$ by $1-2 a-2 a^{2}-a^{3}$.
34. $6 x^{4}-13 x^{3} y+13 x^{2} y^{2}-13 x y^{3}-5 y^{4}$ by $3 x^{2}-2 x y+5 y^{2}$.
35. $2 x^{5}-3 x^{4}-13 x^{3}+14 x^{2}-2 x-12$
by $2 x^{4}+3 x^{3}-4 x^{2}+2 x+4$.
36. $16 x^{4}+36 x^{2}+81$ by $4 x^{2}-6 x+9$.
37. $10 m^{6}+11 m^{5}-53 m^{4}-30 m^{3}+7 m^{2}+97 m-14$ by $2 m^{2}+3 m-7$.
38. $12 x^{5}-11 x^{3}-6 x^{2}-15 x+10$ by $3 x^{2}-5$.
39. $10 y^{5}-9 y^{4}-13 y^{3}+8 y^{2}-y-3$ by $2 y^{2}-y-3$.
40. $21 x^{5}-6 x^{4}-22 x^{3}+26 x^{2}+5 x-8$ by $3 x^{2}-1$.
41. A man died leaving an estate, worth $36 x^{4}-109 x^{2}+25$ dollars, to his $6 x^{2}+13 x+5$ heirs. If they receive equal amounts, find each one's share.
42. A train went at the rate of $5 x^{2}+32 x-21$ miles per hour for $x^{2}+6 x-7$ hours. How far did it go in $2 x^{2}-5 x+3$ hours?
43. The area of a rectangle is $2 x^{4}+15 x^{3}+4 x^{2}-37 x-24$ square rods. If the altitude is $2 x+3$ rods, find the base.
44. A and B both worked the same number of days. A received $3 x^{4}-2 x^{3}-5 x^{2}+6 x-5$ per day while B received $2 x^{4}-2 x^{3}+7 x^{2}-9 x+4$ per day. At the end of the time they both received $10 x^{6}-13 x^{5}+3 x^{4}-4 x^{3}-x^{2}+4 x+1$. How many days did they work?
45. The area of a triangle is $20 x^{5}-2 x^{4}-4 x^{3}-40 x^{2}-46 x$ -12 square feet. If the base is $4 x^{2}+2 x+6$ feet, find altitude.
46. $x^{2}-5 x+6$ teachers receive together $2 x^{6}-19 x^{5}+50 x^{4}$ $-13 x^{3}-73 x^{2}+41 x-6$ dollars. What is their average salary? What is their average salary if x is -2 ? How many teachers if x is -2 ?
47. $\left[\left(2 x^{6}-14 x^{5}+13 x^{4}+33 x^{3}-17 x^{2}-23 x-4\right)-\right.$ $\left.\left(x^{5}-6 x^{4}+5 x^{3}+49 x^{2}-98 x+23\right)\right] \div\left(x^{3}-6 x^{2}+3 x+4\right)=?$
48. Divide the sum of $21 x^{2}+20 x y-7 x-30 y^{2}-1$ and $9 x^{2}-3 x y+17 y-5 y^{2}-1$ by $6 x-5 y+1$.
49. Divide the difference between $9 x^{3}-36 x^{2}+21 x-45$ and $3 x^{3}-57 x^{2}+55 x$ by the difference between $4 x^{2}-7 x+12$ and $3 x^{2}+12 x-7$.
50. Divide the sum of $3 x^{3}+3 x^{2}-6 x-14$ and $2 x^{3}-7 x^{2}$ $+9 x+11$ by the sum of $3 x+4$ and $5 x^{2}-2 x$.
51. $\left[\left(7 a^{3}-32 a^{2}-13 a+29\right)+\left(8 a^{3}+6 a^{2}+6 a-9\right)\right]$

$$
\div\left[\left(7 a^{2}+13 a+1\right)-\left(2 a^{2}+15 a+6\right)\right]
$$

52. $\left[\left(21 a^{3} x+4 a+27 a x^{2}\right)+\left(4 x-21 a^{2} x^{3}-27 a x\right)\right]$

$$
\div\left[\left(15 a^{2} x^{2}-20 a x+3\right)+\left(6 a^{2} x^{2}-7 a x+4\right)\right]
$$

53. The area of a rectangle is $a^{6}+3 a^{4}-6 a^{2}-18$. Its altitude is $a^{2}+3$. Find its base.
54. The area of a triangle is $12 a^{4}-12 a^{3}+8 a^{2}-4 a-4$. Its base is $6 a^{3}+4 a+2$. Find its altitude. What are its dimensions when $a=5$.
55. The area of a triangle is $2 a^{4}-a^{3}-6 a^{2}+7 a-2$. Its altitude is $2 a^{2}+3 a-2$. Find its base. What are its dimensions when $a=4$?

CHAPTER V

Inequalities. Simultaneous Equations

44. The sign of inequality is $>$ or $<$, the opening being toward the greater number.

Thus $9>5$ is read, " 9 is greater than 5 ." $4<7$ is read, " 4 is less than 7."
$-5>-9$ is read, " -5 is greater than -9 ."
45. Two inequalities are in the same sense when the first member of each is greater or less, respectively, than the second member.
46. If equal numbers be added to or subtracted from both sides of an inequality, the resulting inequality is said to continue in the same sense. That is, the inequality sign is not reversed.

Ex. $9>5$. Subtract 3 from each side. Then

$$
\begin{gathered}
9-3>5-3 \\
6>2 .
\end{gathered}
$$

47. If all of the signs of an inequality are changed, the inequality does not continue in the same sense.

That is, if all the signs of inequality are changed, the sign of inequality must be reversed.
48. An inequality continues in the same sense after being multiplied or divided by a positive number.

Ex. 1. $2 x>10$.
Dividing both sides by 2 , we have

$$
x>5 .
$$

Ex. 2.

$$
\begin{array}{r}
2 x+y>8 \\
y=2 \tag{2}\\
\hline
\end{array}
$$

Subtract (2) from (1),
Divide (3) by 2 ,
$2 x>6$ (3)
That is, to satisfy the above conditions, x must be greater than 3 .

Transposition

49. In § 24 we solved an equation,

$$
2 x+3=9
$$

by subtracting 3 from each side, by Axiom 2, then dividing both sides of the resulting equation by the coefficient of the unknown number.

By a method called transposition, it is possible to simplify the first operation.

Ex. 1. Solve for $x, m x+c=b$.
Subtracting c from each side, $m x=b-c$.
Note that the equation (2) is the same as if we had removed $+c$ from the first member of the equation (1) and placed it in the second member with its sign changed.

Such change is called transposition.
This rule follows: A term may be transposed from one mem. ber of an equation to the other if its sign is changed.

Then, in solving, $m x+c=b$.
Transposing $c, \quad m x=b-c$, and dividing both members of the equation by m, the coefficient of x,

$$
\begin{equation*}
x=\frac{b-c}{m} . \tag{1}
\end{equation*}
$$

Ex. 2. $a x+7=13-2 a x$.
Transposing the unknown term $-2 a x$ to the first side, and +7 to the
second side, we have

$$
\begin{align*}
a x+2 a x & =13-7, \tag{2}\\
3 a x & =6, \tag{3}\\
x & =\frac{6}{3 a}=\frac{2}{a} . \tag{4}
\end{align*}
$$

To verify this value of x, substitute the value of x in (1).

$$
a\left(\frac{2}{a}\right)+7=13-2 a\left(\frac{2}{a}\right)
$$

or
$2+7=13-4$.
$9=9 . \quad \therefore$ is the abbreviation for hence.

Simultaneous Equations

50. In examples of exercise 8 and the last ones of exercise 10 , we note that in the former exercise one unknown number is involved in the equation, while in the latter the values of two unknowns must be found.

The method for the solution of equations in two unknowns is to find some way of combining the two equations into one equation containing one unknown, and solving this resulting equation.

Such process is called elimination.
Two equations in two unknowns are necessary because one equation in two unknowns has no definite solution, but has an indefinite number of solutions.
E.g., in
$x+y=6$, if $x=0, y=6 ; x=1, y=5 ; x=2, y=4 ; x=3, y=3$; etc., any number of pairs of values satisfying the given equation.
51. Note that in this equation y changes value when x changes. This is because x and y are so related that their sum must always be 6 . Such values must be given x and y that the equation must be kept in balance; that is, must be kept an equation.

The unknown numbers which are subject to change of value in an equation are often called variables.
52. The usual methods of elimination are addition or subtraction, substitution, and comparison.
53. First Method. Addition or Subtraction. In this method one or both equations are multiplied in such a manner that the
coefficients of the same unknown in both equations become identical. One unknown number may then be eliminated by addition or subtraction of the corresponding sides of the equation.

Ex. 1.

$$
\begin{align*}
& 2 x+y=9 \tag{1}\\
& 3 x-2 y=10 \tag{2}
\end{align*}
$$

Multiply (1) by 2.
$4 x+2 y=18$
Add (2) and (3),
Whence,
$3 x-2 y=10$
$7 x=28$
$x=4$.
and

$$
\begin{equation*}
8+y=9 \tag{4}
\end{equation*}
$$

Substitute $x=4$ in (1),
Transposing (§ 49)
or,

$$
\begin{equation*}
+8 \text { in }(5), \text { we have, } \tag{5}
\end{equation*}
$$

$$
y=9-8
$$

$$
y=1
$$

Check these values in (2),

$$
\begin{array}{r}
3 \cdot 4-2 \cdot 1=10 \\
12-\quad 2=10 .
\end{array}
$$

Ex. 2.

$$
\begin{align*}
8 x-5 y & =31 \tag{1}\\
12 x+13 y & =-15 \tag{2}
\end{align*}
$$

Multiply (1) by 3 , and (2) by 2 ,

$$
\begin{align*}
& 24 x-15 y=93 \tag{3}\\
& 24 x+26 y=-30 \tag{4}\\
& \hline-41 y=123 . \tag{5}\\
& \text { fficiont of } y \tag{6}\\
& y=-3 .
\end{align*}
$$

Divide (5) by -41 , the coefficient of y.
Whence,
Substitute value of y in (1),

$$
\begin{align*}
8 x-5(-3) & =31 \\
8 x+15 & =31 . \tag{7}\\
8 x & =31-15 . \\
8 x & =16 . \tag{8}\\
x & =2 .
\end{align*}
$$

Transposing (§49)
Whence,
Check in (2),

$$
\begin{aligned}
12 \cdot 2+13(-3) & =-15 \\
24-39 & =-15
\end{aligned}
$$

EXERCISE 19

Solve the following equations and verify results:

1. $3 x-4 y=1$,
2. $5 t+7 u=29$,
$4 x+3 y=18$.
$5 t-7 u=1$.
3. $\begin{aligned} 3 v-5 z & =12, \\ 8 v+10 z & =-38 .\end{aligned}$
4. $7 y+8 x=-31$, $12 x-3 y=-3$.
5. $4 x+5 y=29$,
$6 x+7 y=41$.
6. $\frac{1}{3} x-\frac{1}{2} y=1$, $\frac{1}{3} x+\frac{1}{2} y=5$.
7. $\frac{1}{4} x+\frac{3}{2} y=\frac{15}{2}$, $\frac{3}{8} x-\frac{3}{4} y=-\frac{3}{4}$.
8. $\frac{1}{2} x+\frac{1}{5} y=6$, $\frac{1}{8} x+\frac{4}{5} y=\frac{21}{4}$.
9. $28 x-45 y=-17$, $35 x-27 y=8$.
10. $36 x+25 y=11$, $\underline{24 x+55 y=-31}$.

54. Second Method. Substitution.

Ex. Solve

$$
\begin{align*}
& 2 x+y=9, \tag{1}\\
& 3 x-2 y=10 . \tag{2}
\end{align*}
$$

Solve (1) for y,

$$
\begin{equation*}
y=9-2 x \tag{3}
\end{equation*}
$$

Show that this is transposition.
Substitute the value of y in (3) in (2).

$$
\begin{equation*}
3 x-2(9-2 x)=10 \tag{4}
\end{equation*}
$$

Then,

$$
3 x-18+4 x=10
$$

(How do you account for the signs of 18 and $4 x$?)
Transposing and collecting, $7 x=28$.

$$
x=4
$$

Substituting (5) in (3), $\quad y=9-2 \cdot 4$, or,

$$
y=1
$$

Check:
$2 \cdot 4+1=9$.

EXERCISE 20

Solve by method of substitution (verify results):

1. $\begin{aligned} 4 x+y & =6, \\ 3 x+4 y & =11 .\end{aligned}$
2. $12 m-7 v=-2$, $11 m-12 v=-13$.
3. $15 y-8 z=11$, $35 y+6 z=-32$.
4. $4 R-6 S=-1$, $8 R+3 S=3$.
5. $10 t-8 u=7$,
$\underline{6 t+16 u=-1}$.

55. Third Method. Comparison.

Solve each equation for the same variable and equate the values thus found.

Ex. 1.

$$
\begin{align*}
& 2 x+y=9 \tag{1}\\
& 3 x-2 y=10 \tag{2}\\
& \hline
\end{align*}
$$

Solve (1) for y,
$y=9-2 x$.
Solve (2) for y,

$$
\begin{equation*}
y=\frac{3 x-10}{2} \tag{3}
\end{equation*}
$$

Equate the values of y found in (3) and (4) (Ax. 8).

$$
\begin{equation*}
9-2 x=\frac{3 x-10}{2} \tag{5}
\end{equation*}
$$

Multiply (5) by $2, \quad 2\left(9-2 x=\frac{3 x-10}{2}\right)$,
or,
Solving (6),

$$
\begin{aligned}
18-4 x & =3 x-10 \\
x & =4 \\
y & =9-8 \\
& =1
\end{aligned}
$$

Substitute in (3),
Check as before.
Ex. 2.

$$
\begin{align*}
8 x-5 y & =31 \tag{1}\\
\underline{12 x+13 y} & =-15 . \tag{2}
\end{align*}
$$

Solve (1) for x,

$$
\begin{align*}
8 x & =5 y+31 \\
x & =\frac{5 y+31}{8} \tag{3}
\end{align*}
$$

Solve (2) for x,

$$
\begin{align*}
12 x & =-13 y-15 \\
x & =\frac{-13 y-15}{12} \tag{4}
\end{align*}
$$

Equate the values of x in (3) and (4) (Ax. 8).

$$
\begin{equation*}
\frac{5 y+31}{8}=\frac{-13 y-15}{12} \tag{5}
\end{equation*}
$$

Multiply (5) by 24, a multiple of the denominators (Ax. 3). Then,

$$
\begin{equation*}
15 y+93=-26 y-30 \tag{6}
\end{equation*}
$$

(See §53, and note that the terms of (6) are the same as those that compose equation (5), example 2 , before they were combined into two terms.)

Transposing the unknown term to the first member, the known to the second member, and solving,

$$
\begin{align*}
41 y & =-123, \\
y & =-3 . \tag{7}\\
x & =\frac{-15+31}{8} \\
& =2 .
\end{align*}
$$

Substitute in (3),

Check as before.

EXERCISE 21

Solve by comparison, verifying each result:

1. $3 x+6 y=7$, $\underline{4 x-2 y=1}$.
2. $15 x-17 y=16$, $13 x+11 y=1$.
3. $5 y+4 x=6$,

$$
2 y-\quad x=1
$$

5. $6 x+3 y=\frac{3}{2}$,
$5 x-3 y=4$.
6. $8 x+15 y=-8$, $43 y-12 x=12$.
7. $3 x+3 y=2$,
$9 x-15 y=-2$.
8. In stating written problems it is often convenient to use two or more unknown numbers rather than form a single equation in one unknown as was done in exercise 8 . Care must be taken to form as many equations as there are unknown numbers.

Ex. A number is composed of two digits. One half the number is equal to twice the sum of the digits, and if 18 is added to the number the digits of the resulting number will be those of the original number written in reverse order. Find the number.

$$
\begin{align*}
& \text { Let } \quad t=\text { the digit in tens' place, } \\
& \text { and } \quad u=\text { the digit in units' place. } \\
& \text { Then, } 10 t+u=\text { the number. (Exercise 2, example 14.) } \\
& \text { By the conditions, } \quad \frac{10 t+u}{2}=2(t+u) \text {, } \tag{1}\\
& \text { or } \\
& 10 t+u+18=10 u+t, \\
& 9 t-9 u=-18, \\
& t-u=-2 \text {. } \tag{2}
\end{align*}
$$

From (1)
or
Subtracting (2) from (3) $\quad t=2$.
Substituting the value of t found in (4) in (2)

$$
\begin{gather*}
6 t-3 u=0 \\
2 t-u=0 \\
t=2 \\
t \text { found in }(4) \text { in } \tag{3}\\
2-u=-2 \tag{4}\\
u=4
\end{gather*}
$$

and
Whence, $10 t+u=24$, the required number.

EXERCISE 22

1. Find two numbers such that the sum of 3 times the first and 5 times the second is 24 , and the sum of $\frac{1}{3}$ of the first and $\frac{1}{2}$ of the second is 2 .
2. The altitude of a trapezoid is 8^{\prime} and its area 48 square feet. If the lower base is increased 4^{\prime}, its area will be increased 16 square feet. Find its upper and lower bases. (Any trouble here?)
3. A cubic foot of steel and a cubic foot of water together weigh $552 \frac{1}{2}$ pounds. The difference between their weights is $427 \frac{1}{2}$ pounds. How many times heavier than water is steel? This quotient is called the specific gravity of steel. (Remember these results.)
4. The perimeter of a rectangular field is 240 rods, and its length is 40 rods more than its breadth. Find its area.
5. A field of wheat is 80 rods longer than it is wide. The farmer uses a combined harvester and thresher that cuts an 11foot swath. After making 15 rounds, the indicator shows that $27 \frac{1}{2}$ acres have been cut and have yielded 660 bushels. Find the yield per acre and the dimensions of the field.
6. Find two numbers such that n times the first added to k times the second is c, and k times the first minus n times the second is b.
7. The difference between the bases of a trapezoid is 6 , the area 120 , and the sum of the bases 30 . Find the dimensions. Can you construct the trapezoid?
8. When a problem involves three variables the method of solution is similar to that in two variables. Care must be taken to eliminate the sume unknown in each equation.

In solving simultaneous equations it is necessary that there be as many equations as there are variables in the problem.

Ex.

$$
\begin{align*}
2 x-y+5 z & =15 \tag{1}\\
3 x+2 y-3 z & =-2 \tag{2}\\
4 x-2 y+7 z & =21 \tag{3}
\end{align*}
$$

Multiply (1) by 2 and add the result to (2),

$$
\begin{equation*}
7 x+7 z=28 . \tag{4}
\end{equation*}
$$

Add (2) to (3),

$$
\begin{equation*}
7 x+4 z=19 \tag{5}
\end{equation*}
$$

We now have two equations in x and z.
Subtract (5) from (4), $3 z=9$,

$$
\begin{equation*}
z=3 . \tag{6}
\end{equation*}
$$

Substitute value of z in (5),

$$
\begin{align*}
7 x+12 & =19 \\
x & =1 . \tag{7}
\end{align*}
$$

or
Substitute (7) and (6) in (1),

$$
\begin{align*}
2-y+15 & =15 \tag{1}\\
y & =2 .
\end{align*}
$$

or
Check as before, substituting these values in (2) and (3).

EXERCISE 23

Solve the following :

1. $2 x+3 y-4 z=12$,

$$
\begin{aligned}
& x-2 y+5 z=-6 \\
& 3 x+2 y-6 z=13 \\
& \hline
\end{aligned}
$$

2. $5 y-3 x+2 z=5$,
$5 z-3 y+2 x=-9$,
$5 x-3 z+2 y=12$.
3. $\frac{1}{2} x-\frac{1}{4} y+\frac{3}{2} z=\frac{25}{4}$,

$$
\begin{aligned}
& \frac{1}{5} x+\frac{2}{5} y-\frac{3}{5} z=0 \\
& \frac{2}{3} x-\frac{2}{3} y+\frac{1}{3} z=-\frac{5}{3}
\end{aligned}
$$

3. $3 x-2 y=5$,
$3 y-2 z=25$,
$3 z-2 x=-25$.
4. $\frac{1}{4} x+\frac{1}{3} y+\frac{1}{2} z=\frac{13}{12}$,

$$
\frac{1}{3} x+\frac{1}{2} y+\frac{1}{4} z=\frac{13}{12}
$$

$$
\frac{1}{2} x+\frac{1}{4} y+\frac{1}{3} z=\frac{13}{12}
$$

6. An examination contained 15 problems. Each pupil received 7 credits for a problem solved, and 3 demerits for a problem missed. One boy had 45 marks more to his credit than he had against him. How many problems did he miss?
7. Find 3 numbers such that if 3 times the first be added to one half the sum of the second and third, the sum will be 137. If half the sum of the second and third be subtracted from the first, the difference will be 23 , the sum of the three numbers being 74 .
8. If the order of the digits of a certain three-place number be inverted, the sum of this number and the original number is 444 , and their difference is 198 . The first digit is equal to the sum of the other two. Find the number.
9. A merchant buys lemons, some at 4 for 5 cents, others at 3 for 4 cents, spending $\$ 2.80$. Again he buys as many of the first kind as he had bought of the second kind, and as many of the second kind as he had bought of the first, this time spending $\$ 2.78$. How many of each kind were purchased?
10. There are two terms such that the sum of seven times the first and fourteen times the second is $22 \frac{1}{6}$, while the sum of three times the first and five times the second is 9 . What are the terms?
11. One fifth of the length of a rectangular lot is 40^{\prime} less than its width. Its perimeter is 320^{\prime}. If willow trees, ten feet apart, are to be set out as a wind-break, how many will be needed on the longer side? (The first tree is to be planted in the corner of the lot.)
12. There are two numbers such that if the first be increased by 6 and the second diminished by 10, the numbers will be equal. But if the first be diminished by 10 and the second increased by 6 , the first will then be $\frac{1}{2}$ the second. What are the numbers?
13. One boy raised 14 bushels of potatoes more per acre than another boy. The first boy had 10 acres and the second
had 12 acres. Together they raised 1790 bushels. How many bushels per acre did each raise?
14. The perimeter of a triangle is 572^{\prime}. Two sides are equal. The third side is 20^{\prime} shorter than the sum of the other two. What is the length of each side?
15. The sum of $2 x$ and $4 y$ is 4 less than the sum of $5 x$ and $7 y$. Half the sum of x and y is equal to $7 x$. Find the values of x and y.
16. There are two numbers such that the sum of $\frac{1}{12}$ of the first and $\frac{5}{16}$ of the second is 12 . The sum of $\frac{4}{5}$ of the first and $\frac{1}{2}$ of the second is 24 . What are the numbers?
17. A croquet ground is 18^{\prime} longer than it is wide. If its width be multiplied by 3 , it will then be 13^{\prime} more than its length. What are the dimensions?
18. What are the dimensions of a basket ball floor whose perimeter is 245^{\prime}, if, when the floor is used for two games each half fails to be a square by 5^{\prime} ?

Solution of Inequalities

58. In solving inequalities the rules for solving equations hold except in some instances where change of sign takes place (§§ 44-48).

EXERCISE 24

If x be positive, which fraction has the greater value?

1. $\frac{x+5}{4}$ or $\frac{x+7}{6}$.
2. $\frac{2 x+9}{6}$ or $\frac{2 x+5}{2}$
(Test 1 and 2 by substituting values for x.)
Find the limits of x for which these are true, and show that your results are correct.
3. $3 x+5<x+2$.*
4. $5 x-2>2 x+7$.
5. $6 x-4<0$.
6. $\frac{7 x+14}{9}>0$.
[^2]Find the limits of the values of x which satisfy the following inequalities simultaneously (verify your results):

$$
\text { 7. } \quad \begin{align*}
2 x+6>0 . \tag{1}\\
-x+5>0 .
\end{align*}
$$

From (1), $\quad x>-3$.
From (2), $x-5<0$ (§47),
and $\quad x<5$.
Then, to satisfy the conditions of (1) and (2), x must lie between - 3 and +5 .
8. $24-3 x>0$, $16+2 x>0$.
10. $4 x-7<0$, $6 x-2 x>0$.
9. $5 x+10>0$, $3 x-9<0$.
11. $5 x+2>0$,
$2 x-5 x>0$.

What values of x and y satisfy the following (§48):
12. $2 x+3 y>10$, $3 x-2 y=8$.
13. Seven times the number of boys in the algebra class less 45 is greater than five times their number added to 13 , and six times the number of boys less 22 is less than four times the number of boys added to 40 . How many boys in the class?
14. Find the digit such that twice the digit increased by 3 is greater than one fifth the digit increased by 11.
15. Find a multiple of 18 such that five times the number decreased by 220 is greater than three times the number decreased by 42 . Is there more than one such multiple?
16. Find a multiple of 16 such that one half of it decreased by 28 is less than one third of it increased by 16. Does more than one multiple satisfy this condition?
17. Find a line containing an integral number of inches such that five times the length of it decreased by 165 is greater than three times its length increased by 14 . Is there more than one such line?

Supplemental Applied Mathematics

1. The 20 th Century Limited of the Lake Shore Railroad runs 54.5 miles per hour. Find the speed in feet per second.
2. There are 24 gas stoves in the domestic science kitchen. If each stove burns 2.32 cubic inches of gas per second, find the cost of gas for one class of pupils during a period of 80 minutes. Allow 15 minutes waste time (when stoves are not in use). (Gas at 75ϕ per thousand cubic feet.)
3. The power of running a motor in the pattern shop is .044 Kilowatt per hour. During a period of 80 minutes, 24 motors are running on an average of 60 minutes. Find the amount of power used. Find the cost at $\$ 0.0635$ per Kilowatt hour.
4. The Southern Talc Company is able to ship freight in carload lots, by the long ton, and charge its customers the cost price per ton F. O. B. North Carolina, and base its charges on the shọt ton. Find the Talc Company's profit on 10 cars of 34 tons each, shipped from North Carolina to Chicago. Freight rate $\$ 3.50$ per ton.
5. To find the weight of timber in the rough: multiply length in feet by breadth in feet by thickness in inches and multiply that product by one of the following factors. For Oak, 4.04 ; Elm, 3.05; Yellow Pine, 3.44; White Pine, 2.97. The result is in pounds. Measure six pieces of lumber in the shops and find the weight of each piece. Make accurate drawings of each piece.
6. The weight of a grindstone is found by multiplying the square of the diameter in inches by thickness in inches and this product by .06363 .
$(\text { Diameter })^{2}($ Thickness $)(.06363)=$ weight in pounds. (Remember this formula.) Find weight of grindstone in your shop. Make diagram.
7. The weight of one cubic foot of water is $62 \frac{1}{2}$ pounds. Find the weight of one gallon.
8. Stock must be ordered for making 10,000 steel pins, each $\frac{1}{2}{ }^{\prime \prime}$ diameter by $2^{\prime \prime}$ long. The rods for making these pins are $\frac{1}{2}{ }^{\prime \prime}$ in diameter and $12^{\prime}-0^{\prime \prime}$ long. Allow $\frac{1}{16}{ }^{\prime \prime}$ waste in cutting each pin. How many rods will be needed? What will they weigh?
9. For flavoring, 1 ounce of chocolate is equivalent to 2 tablespoonfuls of cocoa. Chocolate costs 22 cents a cake (8 ounces), while cocoa costs 25 cents per box ($\frac{1}{2}$ pound). There are 2 cups of cocoa in one box. Which is cheaper to use?
10. Chocolate contains 48.7% fat, and cocoa, 28.9%. If cocoa were used in place of 2 ounces of chocolate, how many tablespoonfuls of butter would need to be added to make the same quantity of fat as in chocolate, butter containing 85% fat, and one tablespoonful weighing $\frac{1}{2}$ ounce?
11. Butter contains 85% fat, cream 18.5% fat, milk 4% fat. Calculate the quantity of butter necessary to use with 2 cups of milk to produce the same quantity of fat as 2 tablespoonfuls of butter and 2 cups of cream, one pint of cream weighing one pound, and one pint of milk one pound and one ounce.
12. Potatoes pared and then boiled lose 2.7% starch; potatoes boiled with the skins on lose $.2 \%$ starch. Find difference in quantity of starch lost by cooking 6 potatoes, one potato weighing $4 \frac{1}{4}$ ounces.
13. Boiled Irish potatoes contain 20.9% carbohydrates. Cooked sweet potatoes contain 42% carbohydrates. An Irish potato weighs $4 \frac{1}{4}$ ounces, and a sweet potato 6 ounces. Find difference in quantity of carbohydrates in six of each kind of potatoes.
14. Find the reciprocal of 5280 . Would you rather divide a number by 5280 or multiply the same number by its reciprocal? Which would give the larger result? Why?
15. Multiply 18649 cubic inches by the reciprocal of 1728 . Is the result cubic feet?
16. Find the weight of a grindstone $36^{\prime \prime}$ in diameter and $4 \frac{1}{2}^{\prime \prime}$ thick. What will it weigh after it has been worn down $21_{\ddagger}^{\prime \prime \prime}$?
17. A class of 15 girls wish materials and thread for cooking aprons. Each apron requires $2 \frac{1}{2}$ yards muslin at 12ϕ per yard, and a spool of thread at 5ϕ. How much material and thread for the class?
18. How much money was spent in making the purchases in example 17? How much does each girl pay for her share?
19. If a girl earned $22 \frac{1}{2} \phi$ a piece making these aprons, how many would she have to make to earn $\$ \check{5} .50$ a week?
20. If these aprons sold at 85ϕ each, what would be the profit per apron?

CHAPTER VI

Lines, Angles, Triangles

59. A portion of space is called a geometric solid. The boundary between the solid and the remaining space is called the surface of the solid. Fort example, if the sides, bottom, and top of a box were considered to have no thickness, they might be called the surface of the solid.
60. If two surfaces intersect, their intersection is called a line. Thus, if
 surfaces $A B$ and $D O$ intersect in $X C O$, their intersection, $X C O$, is called a line.
61. An intersection of two lines is called a point. Thus, F, the intersection of lines $A B$ and $C D$, is a point.
62. A line may also be regarded as the path of a moving point.

63. The line is said to be straight when it does not change its direction at any point.

A line has no limit in its length. When a part of it is indicated, we speak of it as a segment or sect of the line. Thus, A $B, A B$ indicates a straight line passing through points A and B. The part of the line between A and B is a segment or sect of the line. A line may also be indicated by a small letter placed somewhere on the line.

64. A curved line changes its direction at every point. E.g., the curve $A B C$.
65. A broken line is composed of segments of successive
 straight lines which have different directions and which, pair by pair, have a point in common. E.g., $A B C D E F G$ is a broken line.
66. The word line, unmodified, usually means a straight line.
67. A plane is a surface such that if any two of its points
 be joined by a straight line, the line will lie entirely in the surface.

Thus, in plane $M N$, if any two points, A and B, are joined by a line, the line will lie entirely within the surface.
68. Plane Geometry treats of combinations of points and lines all lying in the same plane.
69. A circle is a portion of a plane bounded by a curved
 line every point of which is equidistant from a point within called the center.
The curved line is the circumference.
The distance from the center to any point in the circumference is the radius, as $C D$.
An arc is any part of the circumference, as $A B$.

Constructions

To draw a circle, select a point on your paper and mark it C. Open your dividers to the distance required for the radius of the circle and place the metal point in the point C. With the pencil draw a curved line around the point C. The curved line is the circumference of the circle and the point C is the center (Fig. 1).

Fig. 1.

Fig. 2.

Fig. 3.

1. Draw a circle having a radius of one inch.
2. Draw a circle having a radius of two inches. Draw two additional circumferences from the same center (Fig. 2).

Circles that have the same center are called concentric circles.
3. Draw a straight line $A B$. With A as a center and one half of $A B$ as a radius, draw a circle. With B as a center and the same radius, draw a circle (Fig. 3).

At how many points do these two circles cut each other?
To draw the diameter of a circle, draw a straight line through the circle and its center. Mark the points at which this line touches the circumference A and B, respectively. The line $A B$ is the diameter of the circle (Fig. 4).

The diameter divides the circumference into two equal arcs and the circle into two equal parts called semicircles.
4. Draw the diameter of a circle having a radius of one and one-half inches.
5. Draw the diameter of a circle having a radius of two inches.

To divide a circle into four equal parts, draw a circle and its diameter (Fig. 4). Then, with A as a center and a radius a little longer than one half the diameter, draw a short are directly above the middle of the upper arc of the circle.

Fig. 4.

Fig. 5.

With B as a center and the same radius, draw another short arc crossing the first and mark the point of intersection O. Place the edge of your ruler in line with the point O and the center of the circle and draw another diameter of the circle. Mark this diameter $E D$ (Fig. 5).

The two diameters divide the circle into four equal sectors and the circumference into four equal arcs. Each sector and each arc is called a quadrant. The two diameters make four equal angles at the center, called right angles, and are, therefore, said to be perpendicular to each other. They cut each other into two equal parts and are, therefore, said to bisect each other.
6. Draw a circle having a radius of one inch and divide it into four equal parts.
7. Draw a circle having a radius of two inches and divide it into two equal parts ; into four equal parts.

To measure angles, arcs, and sectors the circumference of a circle is divided into 360 equal parts called degrees. How many degrees in a semicircle? In a quadrant? In a right angle?

To bisect a straight line, as the line $A B$, draw short ares above and below the middle of the line, with A as a center and a radius a little longer than one half the line. Then, with B as a center and the same radius, draw short ares crossing the first two. Mark the points of intersection C and D, respectively, and draw a straight line through these points. The line $C D$ bisects the line $A B$. Mark the point where the two straight lines cut each other O (Fig. 6).

Fig. 6.
8. Draw Fig. 6. Then select the proper center and draw the circumference of a circle to show that $A B$ is the diameter of a circle. Show also that $C D$ is a diameter of the circle and that the four angles at the point of intersection of $A B$ and $C D$ are at the center of the circle. Show that the four angles are right angles.
9. Draw a straight line, $A B$, two inches long and bisect it. Select a point on this line as a center and draw a circle to show that the line $A B$ is the diameter of a circle. Then, with A as a center and the same radius draw another circle. At how many points do these two circles cut each other? Mark these points M and N, respectively. Draw lines connecting the point M with the centers of the two circles.

What kind of figure do these lines form with the line joining the centers of the circles?

Measure the relative lengths of the lines of the figure thus formed. Can you give a reason for your answer?

To inscribe a square in a circle, draw the circumference of a circle. Draw two diameters, $A B$ and $C D$, cutting each other at right angles (Fig. 5). Draw straight lines connecting A with D, D with B, B with C, and C with A. The figure $A D B C$ is a square. The points of the square where the sides meet lie within the circumference of the circle. The square is, therefore, said to be inscribed in the circle (Fig. 7).

Fig. 7.

Fig. 8.
10. Draw a circle having a radius of one inch and inscribe a square in it.
11. Draw a circle having a radius of two inches and inscribe a square in it. Bisect the sides of the square and draw diameters dividing the inscribed square into four small squares.

It is often necessary to draw one line parallel to another. When two lines have the same direction they are said to be parallel.

To draw a line parallel to a given line $A B$, Fig. 8, take any point C not on the line $A B$. Lay the longest side of your drawing triangle on the line $A B$. Lay a ruler against the shortest side of your triangle. Now slide your ruler and triangle along the line $A B$ until the point C touches the ruler on the side next to your triangle. Hold your ruler fixed and slide your triangle along the ruler until the point C touches the longest side of your triangle. Draw $C S$ along this longest side. $C S$ is the required parallel.
12. Draw Fig. 7. Then draw a line parallel to any one of the four sides of the inscribed square.

Problem

70. To draw a straight line equal to a given straight line.

Given a line $M N$.
To draw a straight line equal to $M N$.

1. Draw any line $A B$ longer than $M N$.
2. With A as a center and $M N$ as a radius, describe an arc cutting $A B$ at D.
3. $A D$ is the required line.
4. An angle is the figure formed by two lines drawn from a point.

The point is called the vertex.
The above angle is read $A B C$, the letter at the vertex always
 being between the other two. The angle may also be designated by a small letter placed between the sides of the angle, as the angle x. This may be written $\angle x$.* The size of an angle does not depend upon the length of the sides, but upon the difference in the direction of the sides.

72. Two angles are said to be adjacent when they have a common vertex and a common side between them.
Thus $\angle a$ and $\angle b$ are adjacent.
73. Two angles are equal when one can be so applied to the other that they will coincide throughout.

[^3]
Problem

74. To construct an angle equal to a given angle.

Given $\angle A B C$.

To construct an angle equal to it.

1. Draw any line $M N$.
2. Take any point D on $M N$ for the vertex of the angle.
3. With B as center and any radius $B L$, describe an arc cutting $A B$ and $B C$ at L and K, respectively.
4. With $B L$ as radius and D as center, describe an arc cutting $D N$ at 0.
5. With O as center and distance $L K$ as radius, describe an arc cutting
 the former arc at E.
6. Draw DEF.
7. Then $N D F$ is the required angle.
8. A theorem is a truth requiring proof.

In proving theorems the following axioms, in addition to those in § 23, are useful:
Ax. 9. But one straight line can be drawn between two points.
Ax.10. A straight line is the shortest distance between two points.
76. A triangle is a portion of a plane bounded by three straight lines. The lines are called the sides of the triangle. The points where the sides meet are the vertices.

Three-sided figures play an important part in the study of geometry and in its applications to many problems in mathematics. Much of the work in measurement, in surveying, and in other kinds of engineering depends upon the triangle.

Theorem I

77. Two triangles are equal when two sides and the included angle of one are equal, respectively, to two sides and the included angle of the other.

Draw a $\triangle A B C$.*
On any line $D E$ take $D N$ equal to $A B(\S 70)$.

At D construct $\angle D=\angle A$
 (§ 74).

On $D F$ take $D M=A C$ and draw $M N$.

In the above theorem, we have three equations given. (This given part is called the hypothesis.)

The given equations are:

$$
\left.\begin{array}{l}
A C=D M \\
A B=D N \\
\angle A=\angle D
\end{array}\right\} \begin{aligned}
& \text { (Don't forget that what is } \\
& \text { given, the parts that are given } \\
& \text { are the tools you have to work } \\
& \text { with.) }
\end{aligned}
$$

To prove the geometric equation,

$$
\triangle A B C=\triangle D N M . \text { (This is called the conclusion.) }
$$

Proof. 1. Place $\triangle D N M$ on $\triangle A B C$ in such a manner that $D N$ will coincide with its equal $A B, D$ falling on A.
2. $D M$ will take the direction $A C$ because $\angle D=\angle A$.
3. Point M will fall on point C since $D M=A C$.
4. Hence line $M N$ will coincide with line $C B$ (Ax. 9).
5. Then $\triangle A B C=\triangle D N M$, since they coincide throughout.

[^4]
Theorem II

78. Two triangles are equal when a side and two adjacent angles of the one are equal, respectively, to a side and two adjacent angles of the other.

What is the hypothesis? What is the conclusion?
Draw a $\triangle A B C$.
Draw a line $D N$ equal to $A B$.
At D construct an angle equal to $\angle A$.
At N construct an angle equal to $\angle B$.
Extend the sides of these angles to meet at M. We have Given in the $\triangle A B C$ and $D N M$

$$
\begin{aligned}
& D N=A B, \\
& \angle D=\angle A, \\
& \angle N=\angle B .
\end{aligned}
$$

To prove $\triangle A B C=\triangle D N M$.
Proof. 1. Place $\triangle D N M$ upon $\triangle A B C$ in such a way that $D N$ will coincide with its equal $A B$, point D falling on A.
2. Since $\angle D=\angle A$, side $D M$ will take the direction $A C$ and M will fall somewhere on $A C$.
3. Since $\angle N=\angle B$, side $N M$ will take the direction $B C$ and M will fall somewhere on $B C$.
4. Since M falls on both $A C$ and $B C$, it must fall at C, their point of intersection.
5. Hence $\triangle A B C$ and $D N M$ coincide throughout and are equal.

Problem
79. To bisect a given angle.

1. Draw an angle $D C E$.
2. With C as center and any radius $C M$, describe an are cutting $C E$ and $C D$ at M and N, respectively.
3. With M and N as centers and a radius greater than one half $M N$, describe arcs intersecting at O.
4. Draw $C O$.
5. Then $C O$ is the bisector of $\angle D C E$.
6. The right angle. If one straight line meets another straight line in such a manner that the adjacent angles (§ 65) formed are equal, the angles are called right angles and the lines are perpendicular to each other.

Thus, if $A B$ is a straight line and $\angle x=\angle y, x$ and y are each right angles, and $M P$ is perpendicular to $A B$.
(\perp is the abbreviation for "perpendicular to.")

81. If one straight line meets another straight line, adjacent angles are formed. If these angles are not right angles, the one greater than a right angle is called obtuse. The one less than a right angle is called acute. Either angle is said to be oblique.
82. If a line $C D$ meets another line $A B$, two adjacent angles x and y, are formed. Suppose y less than x. If $C D$ is made to rotate toward A, about D as a
 pivot, $\angle x$ diminishes and $\angle y$ increases. It is evident that at some position $D K$ of $D C, \angle x$ will equal $\angle y$. There can be only one such position. Then, one and only one perpendicular can be erected to a given line at a given point in the line.
83. It follows from § 82 that:
(a) Two right angles are equal.
(b) If one straight line meets another straight line, the sum of the adjacent angles formed is equal to two right angles. That is, in the figure of $\S 82$.

$$
\angle x+\angle y=\angle A D K+\angle K D B=2 \mathrm{rt} . \angle \mathrm{s} .
$$

(c) The sum of all the angles on the same side of a straight line at a given point is equal to two right angles.
(d) The sum of all the angles about any point in a plane is equal to four right angles.

$$
a+b+c+d+e+f=4 \mathrm{rt.} \text { s. }
$$

(e) If the sum of two adjacent angles is two right angles, their exterior sides lie in
 the same straight line.

Let $a+b=2 \mathrm{rt} . \measuredangle$.
Extend $P M$ to E. If $A M$ and $M B$ were not in a straight line, the sum of c and d would not be two right angles, and this is contrary to (d).

84. Species of triangles.

The right triangle is a triangle one of whose angles is 90°
or a right angle. The side opposite the right angle is called the hypotenuse. The other two sides are called the legs.

All triangles except right triangles are oblique triangles.
If an oblique triangle contains one obtuse angle, it is called an obtuse angled triangle.

An acute angled triangle has each angle less than a right angle.

Triangles are also named according to their lengths of sides.

A scalene triangle has no two sides equal. An isosceles triangle has two sides equal. An equilateral triangle has three sides equal.

Theorem III

85. In an isosceles triangle the angles opposite the equal sides are equal.

Draw line $A B$. With A and B as centers and the same radius greater than $\frac{1}{2} A B$, describe arcs intersecting at P. Draw $P A$ and $P B$. We now have the isosceles triangle $A B P$, with $b=a$.

What is given?
To prove $\angle B=\angle A$.
Proof. 1. Draw line $P M$ bisecting $A P B$ (§ 79).
2. In $₫ A M P$ and $M B P$,

$$
b=a ; h=h ; \angle z=\angle y
$$

3. Hence, $\triangle A M P=\triangle M B P$
 (§ 77).
4. Then $\angle B=\angle A$, being like parts of equal figures.
5. In equal figures, corresponding lines or angles are called homologous. It follows that in equal figures homologous parts are equal.

Note. In equal triangles equal sides lie opposite equal angles. Thus, in equal $\mathbb{A} A M P$ and $M B P, \S 85$, side $\alpha=$ side b, then $\angle A$ is homologous to $\angle B$.

Problem

87. To construct a triangle when three sides are given.

Let the given sides be a, b, c.

1. Draw an indefinite line $A K$.
2. On $A K$ take $A B=c$.
3. With A as center and b as radius, describe an arc.
4. With B as center and a as radius, describe an arc

 intersecting with the former are at C.
5. Draw $A C$ and $C B$.
6. Then $A B C$ is the required triangle.

Theorem IV

88. Two triangles are equal when three sides of one are equal, respectively, to three sides of the other.

Draw a triangle $A B C$.
Construct a second triangle $D E F$ whose sides are equal to x, b, c, respectively (§ 87). Namely, $d=a, e=b, f=c$.
What is given?
To prove $\triangle D E F=\triangle A B C$.
Proof. 1. Apply $\triangle D E F$ to $\triangle A B C$ in such a way that f will coincide with its equal c, and F will fall opposite C.
2. Draw $C F$.
3. In $\triangle A F C, b=e$. (By Hypothesis.)
4. Then $\angle x=\angle y$ (§ 85).
(In an isosceles triangle the angles opposite the equal sides are equal.)

5. Similarly, $\triangle F B C$ is isosceles and $\angle n=\angle m$.
6. Adding the equations in steps 4 and 5 ,

$$
\angle x+\angle n=\angle y+\angle m
$$

7. Then, in $\triangle A B C$ and $A F B$,

$$
\begin{aligned}
& b=e \\
& a=f
\end{aligned}
$$

$$
\angle A C B, \text { or } \angle x+\angle n=\angle A F B \text { or } \angle y+\angle m
$$

8. Hence, $\triangle A C B=\triangle A F B(\S 77)$.
(Two triangles are equal when two sides and the included angle of the one are equal, respectively, to two sides and the included angle of the other.)
> 9. But $\triangle A F B$ is the same as $\triangle D E F$.
> 10. Hence, $\triangle D E F=\triangle A B C$.

Note. The base of a triangle is the side on which it is supposed to rest. Any side may be considered the base. The altitude is a perpendicular (§80) from any vertex to the opposite side. Theorems are truths to be used. Remember each one. Notice that theorems I and III are both used in proving theorem IV.

EXERCISE 25

1. Construct a triangle each of whose sides is $8^{\prime \prime}$.
2. The sides of a triangle are $3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$, respectively. Construct the triangle.
3. The sides of a triangle are $13^{\prime}, 15^{\prime}, 16^{\prime}$, respectively. Draw this triangle to a scale, using $\frac{1}{2}^{\prime \prime}=1^{\prime}-0^{\prime \prime}$.
4. Draw three altitudes of the triangle constructed in example 3.
5. Construct it triangle whose sides are $15^{\prime}, 16^{\prime}, 28^{\prime}$. Draw the three altitudes.
6. Measure the three altitudes of the triangle constructed in example 1. How do they compare? Is this comparison the same in altitudes of other triangles of this exercise?

7. In the figure $A B C D$, in $\mathbb{S} A B D$ and $C D B, x=y$ and $o=z$. Compare the triangles. Give reasons for your conclusion.
8. In the figure $A B C D$, in triangles $A B C$ and $C D A, x$ is equal to y, o is equal to $z, \angle D$ is equal to $\angle B$. Compare the triangles. Give reason for your conclusion.

9. In triangles $A B D$ and $C D B$, $\angle x=\angle z$, and $\angle y=\angle o$. Compare the triangles. Why?
10. If in triangle $A B C, b=a$, and $C D$ is so drawn that $A D=D B$, compare triangle $A D C$ with triangle $C D B$.
11. On a six-inch base construct a triangle whose remaining sides are each $14^{\prime \prime}$. What do
 you know about this triangle?
12. The sum of two numbers is 24 . One number is four more than the other. What are the numbers? (See example 10, exercise 8.)
13. The difference of two numbers is 8 , and their product is 160 more than the square of the less number. Find the numbers.
14. The sides of a right triangle (§ 84) are as 4 to 3.* The square of the hypotenuse is equal to the sum of the squares of the other two sides. The hypotenuse is 25 . Find the sides and the area.
15. In a lever $A M, P=$ power ; $F=$ fulcrum, on which the lever rests; $W=$ weight. Note that if the lever is pressed downward at P, W tends to rise. It has been found that: power
 times the distance, from where the power is applied, to the fulcrum is equal to the weight times the distance from the weight to the fulcrum, or

$$
P \cdot A F=W \cdot M F
$$

$A F$ is called the power or force arm, $M F$, the weight arm.
If the power arm is $6^{\prime}-0^{\prime \prime}$, the weight arm $2^{\prime}-0^{\prime \prime}$, and the weight 200 pounds, what power is necessary to lift the weight?

Note. In these problems, the weight of the lever is neglected.
16. With a $4^{\prime \prime} \times 4^{\prime \prime}$, 14 feet long, used as a lever, a 100 pound boy on the end of the power arm is just able to lift a weight W, when the fulcrum is $2^{\prime}-0^{\prime \prime}$ from the weight. What weight does he lift?

[^5]
17. A crowhar is $5^{\prime}-0^{\prime \prime}$ long. The fulcrum is $3^{\prime \prime}$ from one end. A force of 20 pounds at the other end of the bar is required to pull a railroad spike from a tie. With what force does the spike hold?
18. With the crowbar and fulcrum as in example 17 , two boys weighing 100 lb . and 115 lb. , respectively, were able to move a freight car standing on a siding. What force was necessary to start the car?

19. The length and breadth of a rectangular tank are as 4 to 3. The water in the tank is frozen to a depth equal to one fourth the width of the tank. The area of the bottom of the tank is 48 square feet. Find the weight of the ice. (Ice weighs $57 \frac{1}{2}$ pounds per cubic foot.) Which is heavier, water or ice? Why is this necessary? See exercise 22 , example 3.

20. Five lines are drawn from a point forming angles a, b, c, d, e. The sum of a and b is $90^{\circ} ; d$ is equal to 12° more than $a ; c$ is equal to $b ; c$ is equal to twice d. Find the angles. (See $\S 83, d$.) Is the drawing correct?
21. Divide 48 into three parts, such that the first part shall be twice the second, and the third 8 more than the first.
22. A rectangle and a square have the same altitude. The base of the rectangle is 8^{\prime} more than the base of the square. The areas differ by 64 square feet. Find the dimensions of each.
89. An acute angle is an angle that is less than a right angle. Ex. Angle a.

An obtuse angle is an angle that is greater than a right angle and less than two right angles. Ex. Angle b.
90. When two straight lines intersect, the opposite angles
 formed are called vertical angles.

Thus, a and c are vertical angles, also b and d.
91. An angle is measured by comparing it with another angle considered as the unit of measure.
The most general unit of measure is $\frac{1}{90}$ of a right angle, and is called a degree.

The degree is divided into 60 equal parts called minutes, and the minute into 60 equal parts called seconds.

The abbreviations for degrees, minutes, seconds, are ${ }^{\circ},^{\prime},{ }^{\prime \prime}$, respectively.
92. The right angle ($\$ 80$) is measured by one fourth of the circumference of a circle, or 90°.

93. If the sum of two angles is a right angle, each is a complement of the other, and the angles are said to be complementary.

Thus, if $A B C$ is $90^{\circ}, a$ is the complement of b, their sum being 90°.
94. If the sum of two angles is 180° or two right angles, each is the supplement of the other, and the angles are said to be supplementary.

Thus, if the sum of angles c and d is $180^{\circ}, c$ and d are supplementary and each is the supplement of the other.
95. It follows from § 94, that if two supplementary angles, as c and d in the figure, are adjacent ($\$ 72$), their exterior sides lie in the same straight line.

Then c and d are supplementary adjacent angles.

EXERCISE 26

1. Find the complement of 38°; the supplement of 38°.
2. Are $36^{\circ} 30^{\prime}$ and $53^{\circ} 30^{\prime}$ complementary ? Why?
3. Are $130^{\circ} 19^{\prime \prime}$ and $49^{\circ} 41^{\prime}$ supplementary? Why?
4. Find the complement of each of these angles : $24^{\circ} ; 36^{\circ}$; $72^{\circ} ; 60^{\circ} ; 30^{\circ} ; 45^{\circ} ; 30^{\circ} 15^{\prime} ; 24^{\circ} 15^{\prime} 20^{\prime \prime} ; 47^{\circ} 10.5^{\prime} ; b^{\circ}$.
5. Find the supplement of each of these angles : $22^{\circ} ; 96^{\circ}$; $120^{\circ} ; 150^{\circ} ; 24^{\circ} 8^{\prime} ; 27^{\circ} 19^{\prime} 36^{\prime \prime} ; 45^{\circ} 4.4^{\prime} ; 90^{\circ} ; b^{\circ}$.
6. Find the complement of the supplement of : $120^{\circ} ; 130^{\circ}$; $135^{\circ} ; c^{\circ}$. Does this last result give a simple formula?
7. Find the supplement of the complement of: $3^{\circ} ; 24^{\circ}$; $28^{\circ} 5^{\prime} 30^{\prime \prime} ; 45^{\circ} ; 90^{\circ} ; c^{\circ}$. Does this last result afford a means of simplifying other parts of this example? Illustrate.
8. Angle at $A=36^{\circ}, \angle B=74^{\circ}$. Find the supplement of their sum.
9. Angle at $A=29^{\circ}, \angle B=31^{\circ}$. Find the complement of their sum.
10. Angle at $A=75^{\circ}, \angle B=15^{\circ}$. Find the complement of their difference.

Theorem V

96. Any side of a triangle is greater than the difference of the other two sides.

Draw any triangle $A B C$, the sides opposite A, B, C, being a, b, c, respectively.

We have
Given a any side of $\triangle A B C$, and $c>b$.
To prove

$$
\begin{aligned}
& a>c-b . \\
& a+b>c .
\end{aligned}
$$

Proof. 1.
A straight line is the shortest distance between two points. ($875, \mathrm{Ax} .10$).
2. $a>c-b$. (Transposing b, § 49.)
3. Hence, any side, a, is orreater than the difference of the other two sides.

Theorem VI

97. The sum of two sides of a triangle is greater than the sum of two lines drawn from any point within the triangle to the extremities of the third side of the triangle.

Draw* any triangle $A B C$.
From any point P, within the triangle draw $P B$ and $P C$.
Call side $A B, c ; A C, b ; P B, e ; P C, d$.
We now have:
Given $\triangle A B C$, with lines d and e drawn from any point P within the triangle.

To prove

$$
c+b>d+e .
$$

Proof. 1. Produce $B P$ to $E . \dagger$
Call PE, o ; AE, x; EC, y.
2. $c+x>e+o$.

A straight line is the shortest distance between two points (§ 75, Ax. 10).
3. $o+y>d(\S 75, \mathrm{Ax} .10)$.
4. Add 2 and 3 ,

$$
c+x+o+y>d+o+e
$$

5. Subtract o from each side of this inequality,

$$
c+x+y>d+e(\S 46) .
$$

6. But $x+y=b$ (§ 23, Ax. 6).
7. Whence, substituting for $x+y$ its equal b,

$$
c+b>d+e
$$

* This description of the drawing is not a part of the demonstration. Your demonstration depends solely on the three paragraphs: Given, To prove, Proof. Be sure you know what you have given you to work with and what you wish to prove.
\dagger Remember that any additional lines you draw in a figure must be dotted lines.

Theorem VII

98. If two straight lines intersect, the vertical angles are equal.

Draw two intersecting lines, $M N$ and $X Y$, forming the angles a, b, c, d. We then have

Given two intersecting lines, $M N$ and $X Y$, and
 vertical angles a, c, and b, d.

To prove $\quad a=c$ and $b=d$.
Proof. 1. $a+b=2$ rt. $\llcorner s(\S 95)$.
2. $b+c=2 \mathrm{rt}$. $\angle \mathrm{s}$ (§ 95).
3. Subtract 2 from 1 (§ 23, Ax. 2),
or

$$
\begin{array}{r}
a-c=0 \\
a=c .
\end{array}
$$

4. The pupil may prove $b=d$.

What is the hypothesis in the above theorem? What is the conclusion?

Problem

99. To draw a perpendicular bisector of a straight line.

Draw line $A B$.
To draw a perpendicular bisector of $A B$,

1. With A as center and any radius greater than one half $A B$, describe arcs on each side of line $A B$.
2. With B as center and the same radius, describe arcs intersecting the arcs already drawn at C and at D.
3. Draw CD.
4. Then $C D$ is the perpendicular bisector of $A B$.

The reason for this construction will be given in $\S 102$. F, the point of intersection of $C D$ and $A B$, is called the foot of the perpendicular.

Note that C and D are each equally distant from A and B.

Problem

100. To draw a perpendicular to a line at any point in the line.
101. Draw a line $A B$.
102. Take any point P in the line $A B$.
103. To erect a perpendicular to line $A B$ at P.
104. With P as center and any radius, describe arcs intersecting $A B$, or $A B$ produced, at C and E.
105. With C and E as centers and radius greater than one half $C E$, describe arcs intersecting on one side of $A B$.
106. The pupil may show that the perpendicular may now be drawn and that this problem is an application of $\S 99$.

Why must the radius be greater than one half $C E$?

EXERCISE 27

1. How many points determine a line? What do you mean by determine as used in this sense?
2. How many conditions can be imposed on a line? What properties besides length has a straight line?

Theorem VIII

101. If a perpendicular is erected at the middle point of a line,
I. Any point in the perpendicular is equidistant from the extremities of the line.
II. Any point not in the perpendicular is unequally distant from the extremities of the line.
Draw line $K F \perp$ line $A B$ at its middle point F.
From P, any point in $K F$, draw lines $P A$ and $P B$.
We then have,
I. Given two lines $P A(x)$ and $P B(y)$ drawn from any point P in the perpendicular to $A B$ at its middle point.

To prove

$$
x=y .
$$

Proof. 1. In triangles $A F P$ and $P F B$, call $A F=o, F B=b$.

$$
\begin{aligned}
& \quad o=b \text { (Constr.) } \\
& h=h \\
& \text { (Identical) } \\
& \angle A F P=\angle B F P . \\
& \text { (All rt. } \angle \text { s are equal.) }
\end{aligned}
$$

2. Then,

$$
\triangle A F P=\triangle P F B
$$

(Two triangles are equal when two sides, etc., §77.)
3. Then,

$$
x=y
$$

(In equal figures corresponding parts are equal.)
Does this remind you of Theorem III?
II. Given P^{\prime} any point not in $K F$.

To prove
or

$$
\begin{aligned}
& P^{\prime} A \neq P^{\prime} B,^{*} \\
& x+c \neq m .
\end{aligned}
$$

Proof. 1. If P^{\prime} is not in $K F, P^{\prime} A$ or $P^{\prime} B$ must intersect $K F$.

Suppose $P^{\prime} A$ intersects $K F$ at P.

Draw $P B(y)$.
2. Then,
3. But

$$
\begin{aligned}
& y+c \neq m(\S 75, \text { Ax. 10 }) . \\
& y=x \quad(\S 101, \mathrm{I})
\end{aligned}
$$

4. Then, substituting x for its equal y in 2 ,

$$
x+c \neq m
$$

102. From the result of $\S 101$, we may conclude that:
I. A point equally distant from the extremities of a line lies in the perpendicular at the middle point of the line.
II. Two points each equally distant from the extremities of a line determine the perpendicular at the middle point of the line.
III. Two lines drawn from a point in the perpendicular to a line and cutting off equal distances from the foot of the perpendicular make equal angles with the perpendicular, and are equal. (The proof of III is left to the pupil.)

$$
\text { * } \neq \text { is read "does not equal." }
$$

Problem

103. To draw a perpendicular to a line from a given point without the line.

Given line $A B$ and point P without $A B$.
To draw $P F \perp A B$. Construction:

1. With P as center and a radius greater than the distance from P to line $A B$, describe an arc intersecting $A B$ at E and D.
2. With E and D as centers and the same radius greater than one half $E D$, describe arcs intersecting at K.
3. Draw PK.
4. $P K$ is the required perpendicular.

Note that P and K are each equally distant from E and D. Compare $E F$ and $F D$ (§ 101).

Theorem IX

104. From a point without a line but one perpendicular can be drawn to the line.

Draw line $A B$ and $P F \perp A B$, also $P H$ any other line meeting $A B$ at H. We have

Given $P F \perp A B$, and $P H$ any other line from P to $A B$.
To prove $P H$ not perpendicular to $A B$.
Proof. 1. Produce $P F$ to P^{\prime} making $F P^{\prime}=P F$.
2. Draw $H P^{\prime}$.
3. Represent $\measuredangle P H F$ and $P^{\prime} H F$ by x and y, respectively.
4. Then, $\angle x=\angle y$ (§ 102, III).
5. $P F P^{\prime}$ is a straight line (by construction).
6. Then, $P H P^{\prime}$ is not a straight line.
(But one straight line can be drawn between two points, Ax. 9.)
7. Then, $x+y \neq 180$.
8. Whence, $2 x \neq 180$, and $x \neq 90$.
9. Hence, $P H$ is not perpendicular to $A B$. And since $P H$ is any line except $P F, P F$ is the only perpendicular that can be drawn from P to line $A B$.

EXERCISE 28

1. The base of an isosceles triangle is $8^{\prime \prime}$, the altitude $6^{\prime \prime}$. Construct the triangle.
2. The altitude of an isosceles triangle is $8^{\prime \prime}$, one leg is $10^{\prime \prime}$. Construct the triangle.
3. The sides of a triangle are $5^{\prime \prime}, 12^{\prime \prime}, 13^{\prime \prime}$, respectively. Construct the triangle.
4. The base of a triangle is $13^{\prime \prime}$, the base angles each 45°. Construct the triangle. Measure the angle at the vertex.*
5. The sides of a triangle are $4^{\prime \prime}, 10^{\prime \prime}, 6^{\prime \prime}$, respectively. Construct the triangle. Explain your result.
6. Two sides and the included angle of a triangle are $S^{\prime \prime}$, $12^{\prime \prime}, 45^{\circ}$, respectively. Construct the triangle.
7. Draw two acute angles, a and b. At a given point on a line $A B$, construct an angle equal to the sum of these two angles.
8. Draw a triangle $A B C$, and at a given point P, on a line $D E$, construct an angle equal to the sum of the angles at A, B, and C.

Theorem X

105. Two right triangles are equal when the hypotenuse and an acute angle of the one are equal, respectively, to the hypotenuse and acute angle of the other.

Draw right $\triangle A B C$, and side $A^{\prime} B^{\prime}\left(c^{\prime}\right)=$ side $A B(c)$.

[^6]At B^{\prime} construct $\angle B^{\prime}=\angle B$, and draw $A^{\prime} C^{\prime} \perp B^{\prime} E$. Represent $B C, B^{\prime} C^{\prime}$ by a and a^{\prime}, respectively, also $A C, A^{\prime} C^{\prime}$ by b and b^{\prime}, respectively.

We then have
Given rt. $\triangle A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with $c=c^{\prime}$, and $\angle B=\angle B^{\prime}$.
To prove $\triangle A B C=\triangle A^{\prime} \cdot B^{\prime} C^{\prime \prime}$.
Proof. 1. Place $\triangle A B C$ on $\triangle A^{\prime} B^{\prime} C^{\prime}$ in such a manner that c will coincide with its equal c^{\prime}.
2. Since $\angle B=\angle B^{\prime}$, a will fall on a^{\prime}.
3. A falls on A^{\prime}, then side b will coincide with side b^{\prime}. (But one \perp can be drawn from a point to a line from a point without the line, § 104.)
4. Hence, the triangles are equal, since they coincide throughout.

Theorem XI

106. Two right triangles are equal when the hypotenuse and a leg of the one are equal, respectively, to the hypotenuse and a leg of the other.

Draw rt. $\triangle A B C$. On line $D H$, at G, erect $E G \perp$ $D H$ and equal to b. With E as center and c as radius, describe an arc intersecting $D H$ at F. We then have

Given two right triangles, $A B C$ and $E F G$, with $c=g$, and $b=f$.

To prove $\triangle A B C=\triangle E F G$.
Proof. 1. Apply $\triangle E F G$ to $\triangle A B C$ in such a manner that f will coincide with its equal b, vertex F falling at $F .^{\prime}$
2. Since $₫ A C B$ and $A C F^{\prime \prime}$ are right angles, $B C F^{\prime \prime}$ is a straight line (§ 83).

3. Since $c=g \triangle B A F^{\prime}$ is isosceles, and $\angle B=\angle F^{\prime \prime}$ (§85).
4. Then, $\triangle A B C=\triangle A C F^{\prime \prime}$ (§ 105).
5. Then, $\triangle A B C=\triangle E F G$. Why?

Theorem XII

107. If two unequal oblique lines drawn from a point in a perpendicular to a line, cut off unequal distances from the foot of the perpendicular, the more remote is the greater.

Draw line $A B$, and $P F \perp A B$ at F, also lines $P D$ and $P C$, $D F$ being greater than $C F$.

To prove $P D>P C$.
Extend $P F$ to P^{\prime}, making $F P^{\prime}=P F$.
Draw $D P^{\prime}$ and $C P^{\prime}$.
The proof is left to the student ($\$ 97$).

Theorem XIII

108. If oblique lines are drawn from a point to a straight line and a perpendicular is drawn from the point to the line,
I. Two equal oblique lines cut off equal distances from the foot of the perpendicular.
II. The greater of two unequal oblique lines cuts off the greater distance from the foot of the perpendicular.
I. Call $A B$ the given line, P the given point, $P F$ the perpendicular to $A B, P E$ and $P C$ the equal oblique lines.

The proof is left to the student.
(Prove $\triangle P F E=\triangle P F C$.)
II. Draw $P F \perp A B$, also lines $P C(x)$ and $P D(y)$, with $x>y$. We then have
Given $P F \perp A B$, and line $x>$ line y.
To prove $C F>D F$.
Proof. 1. If $C F=D F, x=y$ (§ 102, III). But this is contrary to hypothesis.
2. If $C F<D F, x<y(\S 107)$. This is also contrary to hypothesis.
3. Hence, if $C F$ is not equal to or less than $D F$, it must be greater than $D F$.

This manner of proving is called "The Indirect Method." What is the hypothesis? What the conclusion? Compare § 102, III. What is the relation between the hypothesis of $\S 102$, III, and the conclusion of $\S 108$, I? When the conclusion of one theorem is the hypothesis of the other, and the hypothesis of the one is the conclusion of the other, each theorem is the converse of the other

EXERCISE 29

1. The line joining the vertex of an isosceles triangle to the middle point of the base bisects the vertical angle.
2. Two isosceles triangles have a common base but unequal altitudes. Show that the line connecting their vertices is perpendicular to the base and bisects the base.
3. If the altitude of a triangle bisects the base, the triangle is isosceles.
4. Two isosceles triangles are equal if a leg and the vertical angle of one are equal, respectively, to a leg and the vertical angle of the other.
5. The hypotenuse of each of two right triangles is $81^{\prime}-6^{\prime \prime}$. Each has an angle of $31^{\circ} 41^{\prime}$. Compare the triangles.
6. The hypotenuse and one leg of a triangle are 3 yards, 1 foot, and 1 yard, 2 feet, and 6 inches, respectively. The hypotenuse and one leg of another triangle are $10^{\prime}-0^{\prime \prime}$ and $5^{\prime}-6^{\prime \prime}$, respectively. Compare the triangles.

ORAL REVIEW

Give the results of the following : -

1. $19 \cdot 17$.
2. $16 \cdot 15$.
3. $18 \cdot 16$.
4. $18 \cdot 5-6 \cdot 17$.
5. $24 \cdot 6+3 \cdot 17$.
6. $4 \cdot 18-3 \cdot 16$.
7. $24 \cdot 5+3 \cdot 17$.
8. $6 \cdot 11-7 \cdot 11$.
9. $9 \cdot 15+6 \cdot 15$.
10. $8 \cdot 17+7 \cdot 17$.
11. $8 \cdot 16+8 \cdot 16$.
12. $27 \cdot 3-4 \cdot 28$.
13. $10 \cdot 34-5 \cdot 17$.
14. $12 \cdot 8+12 \cdot 8$.

WRITTEN REVIEW*

1. Two lines $A B$ and $C D$ intersect in such a way that they bisect each other. If the extremities of these lines are joined in order, prove that the opposite sides of the quadrilateral thus formed are equal.

[^7]2. The bisectors of the three angles of an equilateral triangle meet in a point, thus forming three small ©. Prove these \mathbb{S} equal.
3. In an isosceles triangle a perpendicular is dropped from the vertex angle to the base. Prove that the perpendicular bisects the base.
4. The opposite sides of a quadrilateral are equal. Prove the diagonal divides quadrilateral into two equal ©. Also prove opposite \measuredangle of quadrilateral are equal.
5. Two straight lines intersect in such a way that the difference between two adjacent angles is 42°. Find number of degrees in each of the four angles formed.
6. Two lines, a and b, intersect at D forming two acute \triangle x and y, and two obtuse $\measuredangle s z$ and w. At D, a \perp is erected to b, dividing $\angle z$ into two parts v and t, so that $\angle t$ is $24^{\circ} 30^{\prime}$. Find number of degrees in $\measuredangle x, y, z$, w.
7. The middle point of the base of an isosceles Δ is joined, by lines, to the middle points of the legs. Prove the \mathbb{A} formed are equal.
8. The vertex angle of an isosceles triangle is bisected. Prove the bisector of the angle bisects the base at right angles.
9. From the middle point of the base of an isosceles triangle perpendiculars are drawn to the legs. Prove the perpendiculars are equal.
10. Two lines, $A B$ and $C D$ intersect in such a way that $A B$ is bisected. From extremities A and B, perpendiculars are drawn to line $C D$. Prove these perpendiculars are equal.
11. From the vertex of an isosceles triangle a perpendicular is drawn to the base. Prove triangles formed are equal.

Supplemental Applied Mathematics

1. A grown person needs 3000 cu . ft. of air per hour that the functions of the body may be active. If a room 20 ft . by

15 ft . by 10 ft . were occupied by one person, how often would the air have to be completely changed to obtain pure air?
2. How often would the air in a room 12 ft . by 11 ft . by $8 \frac{1}{2}$ ft. have to be completely changed to obtain pure air for two persons?
3. If there were 500 people in a lecture hall, how often would the air have to be completely changed to insure good ventilation? Nine square feet of floor space is allowed to each person, and the hall is 11 feet high.
4. For good ventilation the air in a room containing one person needs to be changed every 45 minutes. What is the approximate size of the room?
5. It has been found by experiment that the air in a room cannot be changed more than three times per hour without danger of drafts. What are the dimensions of a room that is just large enough to meet this ventilating requirement, when one person occupies the room?
6. It has been found by experiment that one gas jet, when burning, uses as much air as two persons. By changing the air in a room occupied by one person once an hour during the daytime, good ventilation is secured. How many times per hour does it need to be changed in the evening when one gas jet is burning?
7. When two persons occupy a room, good ventilation is secured in daytime by changing the air once each half hour. How often should the air be changed when 3 gas jets are lighted?
8. The air in a room occupied by one person needs to be changed once every hour in the daytime and three times every hour during the evening. How many gas jets are burning?
9. A kerosene lamp requires as much air as 4 persons. When 2 persons occupy a room, the air needs to be changed once every 2 hours. When a lamp burns in the room, how often does the air need to be changed?
10. In the daytime the air of a room containing 2 persons needs to be changed once every 45 minutes, and in the evening once every 15 minutes. The room is lighted by kerosene lamps: How many kerosene lamps are burning in the room?
11. The quantity of carbon dioxide given off by candles is about twice as much as that given off by gas. If the air in a room needs to be changed once every $1 \frac{1}{2}$ hours when illuminated by gas, how often will it need to be changed when illuminated by candles?
12. For practical purposes architects figure 30 cubic feet of air per minute for each person. A classroom has a ventilating system. The room is $28^{\prime} \times 23^{\prime} \times 15^{\prime}$ and contains 30 pupils. To insure good ventilation, how much air must be driven into the room and how many times per hour must the air be changed?
13. In hospitals it is customary to allow 50 cubic feet of air per minute per person. In a hospital ward $56^{\prime} \times 9^{\prime} \times 12^{\prime}$ are 8 patients, a nurse, and 2 gas jets. How much air must be supplied per hour? How many times must it be changed per hour?
14. A train running 40 miles an hour strikes two torpedoes 400 feet apart. Sound travels 1090 feet per second. What time elapses between their reports at a station which the train is nearing?
15. According to some engineers, the sectional area of the cold-air box of a furnace should be equal to the combined areas of all the registers. There are 6 registers in a house, each 8 in . by 10 in . How large should the cold-air box be?
16. The cross section of a cold-air box is 2 ft .3 in . by 1 ft . 8 in. There are 6 equal registers in the house. What is the area of each register?
17. The sectional area of a cold-air box is 495 sq. in. Each register measures 9 in. by 11 in. How many registers are there in the house?
18. According to other engineers, the sectional area of a coldair box should be equal to the combined areas of all the registers minus one sixth. There are 8 registers in a house, each 8 in . by 10 in . How large should the cold-air box be?
19. The sectional area of a cold-air box is 600 sq. in.; each register measures 8 in . by 10 in . How many registers are there in the house?
20. The cross section of a cold-air box measures 20 in . by 20 in. There are 6 equal registers in the house. What is the area of each?
21. It is said that the minimum dimensions of an ideal dining room are 11 ft . by $13 \frac{1}{2} \mathrm{ft}$. How many square feet are contained in such a room?
22. An ideal dining room of maximum size measures 17 ft . by 22 ft . How many square feet are contained in such a room?
23. A kitchen, according to one authority, should measure 10 ft . by 12 ft . If the range measures 2 ft . by 3 ft .14 in ., the sink 1 ft .6 in . by 3 ft .15 in ., two cupboards each 1 ft .8 in . by 6 ft .4 in ., and the work table 4 ft . by 5 ft .7 in ., how many square feet are allowed for "walking" space?
24. It is said that stairs are well proportioned when 2 times the height of the riser, added to the tread, equals 24 in . The riser of such stairs is 7 in . What is the tread?
25. Measure the stairs in your home. How near do they come to the ideal measurements?
26. How large a piece of material must I have to make a bag $10^{\prime \prime} \times 14^{\prime \prime}$ when finished, if I allow $2^{\prime \prime}$ for a heading and $\frac{1}{2}^{\prime \prime}$ on three sides for hems? Use the width of the material for the depth of the bag.

CHAPTER VII

Graphs, the Algebra of Lines. Parallels and their Uses

109. In $\S \S 50-56$ we studied and solved simultaneous equations. We will now study these equations from a geometric standpoint.

In § 25 we determined that if toward the right were positive, toward the left should be negative. Suppose we measure our positive and nega-
 tive values from two lines intersecting at right angles. Suppose further, that horizontal measurements shall be x-measurements and vertical measurements be y-measurements, upward being positive and downward being negative.

Ex. 1. Find the point where $x=2, y=3$.
Measuring $O M=2$ and $M P=3$, we have the point P satisfying the required condition.

EXERCISE 30

In the same manner locate the following points:

1. $x=4, y=2$.
2. $x=3, y=5$.
3. $x=2, y=-3$.
4. $x=-1, y=4$.
5. $x=-1, y=-4$.
6. $x=-1, y=2$.
7. $x=5, y=-1$.
8. $x=0, y=2$.
9. $x=2, y=0$.
10. $x=0, y=-3$.
11. $x=-2, y=0$.
12. Are these points on the same circumference?

$$
\begin{array}{ll}
x=3, y=4 ; & x=4, y=3 ; \quad x=-3, y=4 \\
x=4, y=-3 ; & x=-4, y=3 ; x=3, y=-4 \\
x=-3, y=-4 ; & x=-4, y=-3
\end{array}
$$

(Take your center at 0 .)
110. In the equation $x+y=4, x$ and y are so related that their sum must always equal $4 . x$ and y then may take any values whose sum is 4 . To find such pairs of values, solve $x+y=4$ for either x or y. We will solve for y.

$$
y=4-x
$$

Give x a set of values, say $0,1,2,3$, etc., and find the corresponding values of y. If $x=0, y=4$; if $x=1, y=3$, etc.

It is convenient to write these values in two columns headed x and y. See below.

x	y
0	4 (A)
1	3 (B)
2	2 (C)
3	1 (D)
4	0 (E)
5	$-1(F)$
-1	5 etc.

Now plot these values on the same pair of axes, just as we did in exercise 16.

In this way we obtain the points A, B, C, D, etc.
If these points are connected by a smonth curve, any point on the curve will correspond to a point satisfying an x and a y of $x+y=4$.

The values of x and y which locate the position of a point are called coördinates of a point. The x-measurement, e.g., $O M$, is called the abscissa, the y-measurement, e.g., $M B$, is the ordinate. The point O is called the origin.

If each term of the equation is of the first degree, the curve $A B C D E F$ is a straight line and the equation is called linear.

This curve is called the graph or geometric picture of the equation.
111. The degree of a term is determined by the sum of the exponents of the letters in it. In an equation the term of highest degree determines the degree of the equation.
$x^{3} y+x y^{2}-x^{3}$ is an expression of the fourth degree in $x y$ and of the third degree in x.
$x^{3}-3 x^{2}=8$ is an equation of the third degree.
$2 x+a^{2}=b^{3}-c$ is an equation of the first degree in x.

EXERCISE 31

Find the graphs of the following equations:

1. $x+y=6$.
2. $2 x+y=8$.
3. $x-y=4$.
4. $4 x-3 y=12$.
5. $2 x-y=5$.
6. $3 x-2 y=5$.
7. $x+4 y=-3$.
8. $x+2 y=-4$.
9. If a pair of simultaneous equations (§50) are plotted on the same axes, their graphs will usually intersect. In this case the coördinates of the point of intersection are the same as the values that are found for x and y when the equations are solved.

This explains in a geometric way the name simultaneous equations. The x and y must at the same time have values which satisfy both equations.

Ex. Solve by graphs:

$$
\begin{gather*}
x-2 y=-5 \tag{1}\\
x+y=1 \tag{2}
\end{gather*}
$$

From (1) From (2)

x	y	x	$\frac{y}{2}$
0	$+\frac{5}{2}$	0	1
1	+3	1	0
2	$\frac{7}{2}$	2	-1
-1	2	-1	2

In the above problem the lines (1) and (2) intersect at $x=-1, y=2$. If the equations are solved by the principles of $\S \S 53-55$, the same results are obtained.
113. Note that in these equations x and y rary. Any change in one of these numbers causes a change in the other. For this reason x and y are the variables in the equation. (Compare §51.) Letters and numbers whose values do not change in an equation are called constants. The number which is independent of the variables is called the absolute term.

Sometimes the graphs of equations will not intersect. The equations are then said to be inconsistent.

Ex. Plot the equations $x+y=4$,

$$
x+y=2
$$

The graphs of these equations do not intersect. This is because the lines are parallel.
114. Parallel Lines. Two straight lines are said to be parallel when they have the same direction. It is evident that if they are drawn through two different points they are everywhere equally distant and can never meet.
115. Some of the graphs of equations do not intersect because they coincide.

Ex. Plot $2 x+3 y=3$,

$$
4 x+6 y=6
$$

These graphs coincide. Equations of this kind are said to be equivalent. See example 2, exercise 22.

Equivalent equations and inconsistent equations have no solution.

EXERCISE 32

Solve by means of graphs. In each case solve algebraically, also compare the result with the graphical solution. Note that if the roots are fractional, the graphical solution is only approximately correct.

1. $x+y=7$, $2 x-3 y=-6$.
2. $\frac{x}{2}-\frac{y}{4}=2$,
3. $4 x-7 y=18$,
$6 x+5 y=-4$.
4. $3 x+4 y=11$,
$4 x-3 y=-2$.
5. $x+2 y=13$,
$\underline{2 x-y=1}$
6. $5 x+8 y=13$,
$\underline{6 x-5 y=1}$
7. $9 x-4 y=1$, $6 x+2 y=3$.
8. $5 x-4 y=2$,
$\underline{4 x+5 y=-2 .}$
9. $x+2 y=5$, $\underline{2 x+} y=4$.

What angle is formed by the lines in examples $2,3,9$?
10. $2 x-5 y=3$,
12. $2 x+y=4$, $3 x-7 \frac{1}{2} y=4 \frac{1}{2}$.
$\underline{2 x+y=6}$.
14. $4 u-7 v=-3$,
$u+3 v=4$.
11. $8 x+2 y=1$,
13. $5 x-3 y=4$,
$\underline{4 x+y=\frac{1}{2}}$.
$5 x-3 y=5$.
What relations exist between the three lines:

$$
\text { 15. } \begin{aligned}
& 4 x+3 y=2 \\
& 3 x-4 y=5 \\
& 3 x-4 y=8
\end{aligned}
$$

$$
\begin{array}{lr}
\text { 16. } \begin{array}{ll}
5 t+u=11, & \text { 17. } 2 m+3 k=19, \\
3 t-2 u=4 . &
\end{array} \quad 3 m-4 k=3 .
\end{array}
$$

$$
\text { 18. } \begin{aligned}
6 v-8 w & =5, \\
4 v+5 w & =7 .
\end{aligned}
$$

Parallels and their Uses

116. Parallel lines (§ 114) are of great importance in geometry.
117. We assume that but one line can be drawn through a given point parallel to a given line.
118. Prove that in the same plane two perpendiculars to the same line are parallel.

Hint. Draw the line $x+y=-4$. At points $x=-4, y=0$, and $x=0, y=-4$, erect perpendiculars to this line. To prove that these perpendiculars are parallel, suppose that they meet if produced, then read Theorem IX. The method of proof you use here is called Indirect. (§ 108.)

Compare your given equation, $x-y=-4$, and $x-y=4$, with the three lines of your figure. Are similar relations found in exercise 32 ?

Problem

119. To draw a straight line parallel to a given straight line.
120. Draw an indefinite line $A B$.
121. Choose a point P without line $A B$ through which to draw the parallel.
122. Draw ΛP and extend it to some point K.
123. At P construct an angle equal to $\angle A$.
124. $P Z$, one side of $\angle Z P K$ is the required parallel.

Theorem XIV

120. Two lines parallel to the same line are parallel to each other.

Draw line a. Draw lines b and c parallel to a. We then have
Given two lines b and c parallel to line a.
To prove line $b \|$ line c.
Proof. 1. If b and c are not parallel they will, if produced, meet at some point P.
2. The rest of the proof is left to the pupil. (See § 117.)

Theorem XV

121. A line perpendicular to one of two parallels is perpendicular to the other.

Draw line $a \|$ line b. Draw line $c \perp$ line b, intersecting line α at K. We now have

Given lines a and b parallel, and line $c \perp$ line b.
To prove line $c \perp$ line a.
Proof. 1. Draw line m through K perpendicular to c.
2. Then, lines b and m are \perp to c, and b and m are $\|$. (§118.)
3. Then, m and a coincide. (§ 117.)
4. Hence, $c \perp a$.
122. The angle opposite the base of a triangle is the vertical angle. (Any side may be the base.)

The vertex of the vertical angle is the vertex of the triangle.
The altitude of a triangle is the perpendicular from the vertex to the base.

An exterior angle of a triangle is the angle formed by any side of a triangle and the adjacent side produced.

EXERCISE 33

1. In an isosceles triangle draw the exterior angle at the base: at the vertex.
2. Draw three altitudes of an isosceles triangle.
3. Draw three altitudes of an equilateral triangle.
4. Draw three altitudes of an obtuse angled triangle.
5. Draw three altitudes of a right triangle.
6. Draw the three bisectors of the angles of the triangles in examples 2 to 5 .
7. Do the three altitudes of these triangles ever meet in a point? Do they always meet in a point?
8. Do the altitudes and the bisectors ever coincide? If so, when?
9. Do the three bisectors ever meet in a point? Do they always meet in a point? Later in the course you will be called upon to prove your above conclusion.
10. If two lines $A B$ and $X Y$ are cut by a third line $M N$, $M N$ is said to be a transversal.

This transversal makes with the other two lines eight angles which have special names, names which refer to the position of the angles with respect to the lines. For example, a, b, o, s, are between lines $A B$ and $X Y$, and are called interior angles. The remaining four are exterior angles.
a and s being on opposite sides of the transversal are alternate-interior angles. Likewise o and b are alternate-interior angles.
c and s, on the same side of the transversal are exteriorinterior angles. Locate the other exterior-interior angles.
d and g are alternate-exterior angles. Find the other alter-nate-exterior angles.

Theorem XVI

124. If two parallel lines are cut by a transversal, the alternateinterior angles are equal.

Draw $A B \| X Y$, and $M N$ intersecting $A B$ and $X Y$ at O and K, respectively. Let $\angle K O A=c$, and $\angle Y K O=d$. We then have

Given $\|_{s} A B$ and $X Y$ cut by $M N$ forming alternate-interior angles c and d.

To prove $\angle c=\angle d$.
Proof. 1. Through Z, the middle point of $O K$, draw a \perp to $A B$, meeting $A B$ at F, and XY at E. Let $\angle F Z O=g$ and $\angle K Z E=i$.
2. $E F \perp \mathrm{X} Y$. (§ 121.)
3. In rt. $\triangle O F Z$ and $K E Z$,

$$
\begin{aligned}
g & =i . \quad(\S 98 .) \\
K Z & =Z O . \quad \text { (Constr.) }
\end{aligned}
$$

4. Hence, $\triangle O F Z=\triangle$ KEZ. (?)
5. Then, $\angle c=\angle d$. (§ 86.)

This is the fundamental proposition in parallel lines.

EXERCISE 34

1. If two parallels are cut by a transversal, the exteriorinterior angles are equal. (Use the equations derived from the Theorems XVI and VII.) Note: Remember in proving any geometric statement you must give authority (the why) for each step you take.
2. If two parallels are cut by a transversal, the sum of the interior angles on the same side of the transversal is equal to two right angles.
3. If two parallels are cut by a transversal, the alternateexterior angles are equal.
4. If two parallels are cut by a transversal, the sum of the exterior angles on the same side of the transversal is equal to two right angles.

Theorem XVII

125. If two lines are cut by a transversal, and the alternateinterior angles are equal, the lines are parallel.

Draw a line $A B$. Draw a line $M N$ intersecting $A B$ at O. Through any point K on $M N$, draw line $X Y$, making an angle $Y K O$ equal to $K O A$. Use same notation for angles as that in Theorem XVI. We have

Given two lines $A B$ and $X Y$ cut by $M N$ making $\angle c=\angle d$.
To prove $A B \| X Y$.
Proof. 1. Through K draw $G H \| A B$.
2. Then, $\angle O K H=\angle c$. (Theorem XVI.)
3. But $\angle d=\angle c$. (Ву Нур.)
4. Then, $\angle O K H=\angle d$. (Ax. 8.)
5. Hence, lines $G H$ and $X Y$ coincide.
6. Therefore, $X Y \| A B$.

This theorem is the converse of Theorem XVI. That is, the hypothesis and conclusion of the two theorems are interchanged. Theorems XVI and XVII are very important.

EXERCISE 35

1. If two lines are cut by a transversal and the exteriorinterior angles are equal, the lines are parallel.
2. If two lines are cut by a transversal, and the sum of the interior angles on the same side of the transversal is equal to two right angles, the lines are parallel.
3. If two lines are cut by a transversal, and the alternateexterior angles are equal, the lines are parallel.
4. If two lines are cut by a transversal, and the sum of the exterior angles on the same side of the transversal is 180°, the lines are parallel.
5. If two angles have their sides parallel, each to each, they are either equal or supplementary. (Hint. Produce one side of each angle, if necessary, until the lines intersect.)
6. If two angles have their sides perpendicular, each to each, they are either equal or supplementary.

Draw $\angle A B C$, also $\angle K O M$ whose sides are perpendicular, each to each, to the sides of
 $\angle A B C$. We have

Given $\triangle A B C$ and $K O M$ with side $A B \perp K O$, and $B C \perp O M$.

To prove $\angle B$ equal to or supplementary to $\angle K O M$.

Proof. 1. * Through O draw $D E \perp O M, D$ and E being on opposite sides of O; produce $K O$ to G, and draw $O H \perp G K$. Call $\angle G O E, d ; \angle H O E, i$; $\angle M O H, c ; \angle K O M, b ; \angle D O K, a$.
2. Then $D E \| B C$.
3. And $O H \| B A$.
4. Therefore $\angle i=\angle B$.
5.
5.
$i+c=90^{\circ}$.
6. $\quad b+c=90^{\circ}$.
7. Then $i=b$.
8. And $\angle B=\angle b$.
9. If $O K$ were drawn in the opposite direction, namely $O G$, $\angle M O G$ would be the supplement of $\angle B$.
7. Two triangles have their sides mutually perpendicular. Show that they are mutually equiangular.
8. Two triangles have their sides mutually parallel. Show that they are mutually equiangular. Are the triangles equal?

[^8]
Theorem XVIII

126. The sum of the angles of a triangle is equal to two right angles.

Given $\triangle A B C$.
To prove that $\angle A+\angle B+\angle A C B=2 \mathrm{rt}$. $\angle \mathrm{s}$.
Proof. 1. Produce side $B C$ to K. Draw $C M \| B A$, and on same side of $B C$ as $B A$.

Let $\angle A C B=x, \angle A C M=y, \angle M C K=z$.
2. $x+y+z=2$ rt. L. $\quad(\S 83, c$.
3. $\angle B=z$
4. $\angle A=y$
$5 . \quad x=x$
6. Add equations 3,4 , and 5 .
7. Compare equations 2 and 6.
8. Hence?

EXERCISE 36

1. Prove Theorem XVIII by drawing a line through the vertex, parallel to the base. (Do not draw any other lines.)
2. Prove two right triangles equal if a leg and an acute angle of the one are equal, respectively, to the leg and acute angle of the other.
3. Prove that the exterior angle (§122) of a triangle is equal to the sum of the two opposite interior angles. (You will need this theorem very often.)
4. Prove that the exterior angle of a triangle is greater than either of the opposite interior angles.
5. How many right angles can a triangle have?
6. How many obtuse angles can a triangle have?
7. One angle at the base of an isosceles triangle is 36°. Find the other angles.
8. The vertical angle of an isosceles triangle is 120°. The base angles are bisected. Find the angles formed by the bisectors.
9. The angle formed by the bisectors of the base angles of an isosceles triangle is 100°. Find the angles of the triangle.
10. One angle of a right triangle is 45°. Compare the legs of the triangle.
11. (a) Construct an equilateral triangle.
(b) Construct an angle of 30°.
12. Construct an angle of 45°.
13. An exterior angle at the base of an isosceles triangle formed by producing the base is 108°. Find the angles of the triangle.
14. Could the exterior angle in example 13 be 89° ? 90° ? 91° ? Why?
15. An exterior angle formed at the vertex of an isosceles triangle by producing one of the legs is 129°. Find the angles of the triangle.
16. Find the exterior angle at the base of an equilateral triangle.
17. Prove 6 of Exercise 35 by producing $M O$ to meet $B C$, and producing $B A$ to meet $O K$ produced.

12\%. Develop the following synopsis:
Two triangles are equal if (a)
(c)

Two right triangles are equal if (a)

Keep this synopsis always in your mind.

Theorem XIX

128. If two angles of a triangle are equal, the triangle is isosceles.

Draw a line $C D$. At C and D construct equal angles. Let the sides of these angles meet at P. Call $P C, d$, and $P D, c$. We then have

Given $\triangle C D P$ with $\angle C=\angle D$.
To prove $c=d$.
Proof. 1. Draw a perpendicular from P to the base.
2. Prove the formed are equal.

Theorem XX

129. If two sides of a triangle are unequal, the angles opposite are unequal, and the greater angle lies opposite the greater side.

Draw $\triangle D E F$ making $D E>D F$. Call $D E, f$, and $D F$, e. We now have

Given $\triangle D E F$ with $f>e$.
To prove $\angle E F D>\angle E$.
Proof. 1. On $D E$ take $D M=e$, and draw $F M$.
Call $\angle D M F$, x, and $\angle M F D, y$.
(Note in this construction that D is the angle not involved in the statement, and from D we measure the distance $D M$.)
2. $x=y$. (Theorem III.)
3. $\angle E F I)>y$. (Ax. 7.)
4. $\angle x>\angle E$. (Ex. 36, 4.)
5. $\therefore y>\angle E$.
6. $\therefore \angle E F D>\angle E$. (?)

EXERCISE 37

1. The perpendicular is the shortest line from a point to a line. (Draw the perpendicular and any other line from the given point to the given line.)
2. Two isosceles triangles are equal if the base and one base angle of one are equal, respectively, to the base and one base angle of the other.
3. The hypotenuse in a triangle is greater than either leg.
4. Find the sum of the angles of a quadrilateral. (Theorem XVIII.)
5. If the lines are drawn from a point within a triangle to the extremities of one side, the angle included by then is greater than the angle included by the other two sides. (Use the figure of Theorem VI, and apply Exercise 36, Example 4.)

Theorem XXI

130. Any point in the bisector of an angle is equidistant from the sides of the angle.

Draw $\angle D E F$. Bisect $\angle E$.
From P, or any point in the bisector, draw $P M$ and $P K \perp$ $E D$ and $E F$, respectively, meeting $E D$ at M and $E F$ at K.

Call $P M, d_{1}$ and $P K, d_{2}$. We now have
Given $\angle D E F$, and $P E$ bisecting $D E F$, also, d_{1} and d_{2} ss from any point, P, in the bisector, to sides $E D$ and $E F$, respectively.

To prove $d_{1}=d_{2}$.
Proof. Show that $\triangle E P K=\triangle E M P$.
131. This bisector is sometimes called the locus of points equidistant from the sides of the angle. A locus may be defined as a point or line which fulfills conditions imposed upon it, no
other point or line meeting these conditions. Thus, in § 130 no point not in the bisector will satisfy the conditions of the theorem. The center of a circle is the locus of all points in a plane equidistant from the circumference.

EXERCISE 38

1. Show that every point within an angle, and equally distant from the sides of the angle, lies in the bisector of the angle.
2. The bisectors of the base angles of an isosceles triangle form with the base an isosceles triangle.
3. The point of intersection of the bisectors of the base angles of a triangle lies in the bisector of the vertical angle.
4. Find the point in the base of a triangle which is equidistant from the other two sides of the triangle. Is this point ever the middle of the base?
5. Show that if lines are drawn from the middle point of the base of an isosceles triangle respectively perpendicular to the legs of the triangle, two equal triangles are formed.
6. If from any point in the base of an isosceles triangle, parallels to the legs are drawn, two isosceles triangles are formed. Are the triangles ever equal ?
7. Show that in a right triangle, if one angle is 30°, the hypotenuse is twice the shorter side. (Bisect the vertical angle of an equilateral triangle.)
8. Find a point which is equidistant from two intersecting lines.
9. If three lines intersect, but do not pass through the same point, find a point, if any such exists, which is equidistant from all three lines.
10. Bisect the exterior angles at the base of a triangle, and show that these bisectors meet in a point of the bisector of the angle at the vertex of the triangle.
11. Bisect the exterior angle at the vertex of an isosceles triangle. Show that this bisector is parallel to the base of the triangle.
12. Through the vertex of an isosceles triangle draw a parallel to the base. Show that this line bisects the exterior angle formed by extending one of the equal sides through the vertex.
13. Through the middle point of one leg of an isosceles triangle draw a parallel to the other leg. Through the vertex draw a parallel to the base. Show that two equal triangles are formed. How do you find the middle point of one leg?
14. Find a point equidistant from two parallel lines. Is there more than one such point?
15. If two lines intersect, the bisectors of two adjacent angles formed are mutually perpendicular.

Theorem XXII

132. If two triangles have two sides of one equal respectively to two sides of the other, and the included angle of the first greater than the included angle of the second, the third side of the first is greater than the third side of the second.

Draw \& $A B C$ and $K L M$, having sides $A C(b)$ and $C B(a)$ respectively equal to $M K(l)$ and $M L(k)$, and $\angle C>\angle M$. We now have

Given \& $A B C$ and $K L M$, with

$$
\begin{gathered}
b=l, a=k \\
\angle C>\angle M \\
A B(c)>K L(m)
\end{gathered}
$$

To Prove
Proof. 1. Apply $\triangle K L M$ to $\triangle A B C$ so that l will coincide with b, L falling at L^{\prime}. Draw $C O$, bisecting $\angle L^{\prime} C B$, meeting $A B$ at O. Draw $O L^{\prime}$
2.

$$
\begin{equation*}
A O+O L^{\prime}>A L^{\prime} \tag{?}
\end{equation*}
$$

3. In $\triangle C L^{\prime} O$ and $C O B$,

$$
\begin{align*}
C L^{\prime} & =C B . \tag{?}\\
C O & =C O . \\
\angle L^{\prime} C O & =\angle O C B . \tag{?}\\
\triangle C L^{\prime} O & =\triangle C O B, \tag{?}\\
O L^{\prime} & =O B . \tag{?}\\
A O+O L^{\prime} & =A O+O B . \tag{?}\\
A O+O B & >A L^{\prime}, \tag{?}\\
c & >m .
\end{align*}
$$

4. Hence,
5. Then,
6. Hence,
or
The converse of this theorem is also true. State the converse.

Four-sided Figures

133. A quadrilateral is a portion of a plane bounded by four lines.

If the opposite sides are parallel, the figure is a parallelogram. Draw the figure.

If two sides are parallel and the other two sides not parallel, the figure is a trapezoid. Draw a trapezoid. In an isosceles trapezoid the non-parallel sides are equal.

If no two sides are parallel, the figure is a trapezium.
A rhomboid is a parallelogram whose adjacent sides are not equal and whose angles are oblique. Illustrate.

A rhombus is an equilateral parallelogram whose angles are oblique.

A rectangle is a parallelogram whose angles are right angles.
A square is an equilateral rectangle.
The diagonal of a quadrilateral is a line drawn from one vertex to the opposite vertex.

Begin lettering a four-sided figure at the lower left-hand corner and read counter-clockwise.

Make a synopsis classifying quadrilaterals under three general heads.

Theorem XXIII

134. In a parallelogram the opposite sides are equal, and the opposite angles are equal.

Draw a parallelogram $A B C D$. Draw $B D$. Prove the two triangles formed are equal. Then use § 86.

This is the fundamental theorem in parallelograms.

EXERCISE 39

1. The diagonal of a parallelogram divides it into two equal triangles.
2. The diagonals of a parallelogram bisect each other.
3. Parallel lines included between parallel lines are equal.
4. From two opposite vertices of a parallelogram draw perpendiculars to the diagonal drawn between the other vertices. Show that two pairs of equal triangles are formed.
5. Show that the lines connecting the middle points of the opposite sides of a parallelogram bisect each other.
6. The diagonals of a rhombus bisect each other at right angles.
7. In a certain parallelogram the diagonals bisect its angles. One side of the parallelogram is 8^{\prime}. Find the other sides.
8. In an isosceles trapezoid draw perpendiculars from the extremities of the shorter base to the longer base. Show that two equal triangles are formed.
9. The diagonals of a rectangle are equal.
10. In an isosceles triangle $A B C$, the equal angles A and B are bisected. These bisectors form an angle of 120°. The leg of the triangle $A B C$ is how many times its base?

Theorem XXIV

135. Two parallelograms are equal if two sides and the included angle of one are respectively equal to two sides and the included angle of the other.

Given [s] $A B C D$ and $H E F G$ with $A D, A B$, and $\angle A$ respectively equal to $H G, H E$, and $\angle H$.

To prove $\square A B C D=\square H E F G$.
Proof. Draw diagonals $D B$ and $G E$.
Prove $\triangle A D B=\triangle H G E$.
Then use exercise 39,1 .

Theorem XXV

136. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.

Draw quadrilateral $A B C D$ having $A B=D C$ and $A D=B C$.
Draw $B D$ and prove the triangles formed are equal.
Then use § 125 .

EXERCISE 40

1. If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.
2. If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.
3. Two rectangles are equal when two adjacent sides of one are respectively equal to two adjacent sides of the other.
4. The diagonals of a square bisect its angles.
5. If the diagonals of a rectangle bisect its angles, the rectangle is equilateral.

Theorem XXVI

137. If a series of parallels intercept equal parts on one transversal, they intercept equal parts on every transversal.

Given $\|_{s} A B, C D$, and $E F$ intercepting equal parts on line $G H$.

To prove $A B, C D$, and $E F$ intercept equal parts on every transversal $X Y$.

Proof. 1. Let $H G$ cut $A B, C D$, and $E F$ at M, N, K, respectively, and $X Y$ cut these $\|_{s}$ at $M^{\prime}, N^{\prime}, K^{\prime}$, respectively. Draw $M^{\prime} O$ and $N^{\prime} R$ respectively $\|$ to $M K$.
2. $M N=M^{\prime} O=N K=N^{\prime} R$.
3. Now prove $\triangle M^{\prime} O N^{\prime}=\triangle N^{\prime} R K^{\prime}$.

EXERCISE 41

1. A line which bisects one side of a triangle and is parallel to another side bisects the third side. (In § 137, if $M^{\prime} K^{\prime}$ were drawn through M, we would have a triangle $M K K^{\prime}$ with N the middle point on one side.)
2. The line parallel to a base of a trapezoid, and bisecting one of the non-parallel sides, bisects the other non-parallel side. (In $\S 137 K K^{\prime} M^{\prime} M$ is a trapezoid.)

Theorem XXVII

138. The line joining the middle points of two sides of a triangle is parallel to the third side and equal to one half of it.

Draw $\triangle A B C$. Through M and M^{\prime}, middle points of $A B$ and $A C$, respectively, draw $M M^{\prime}$. We then have

Given $\triangle A B C$ with $M M^{\prime}$ connecting the middle points of the two sides.

To prove $M M^{\prime} \| B C$.
Proof. 1. Through M draw a line parallel to $B C$.
2. This line will bisect $A C$ and must therefore pass through M^{\prime}. Why ?
3. The parallel drawn will coincide with $M M^{\prime}$, therefore $M M^{\prime} \| B C$.
4. Draw $M^{\prime} X \| A B$ meeting $B C$ at X.
5. Prove $\triangle A M M^{\prime}=\triangle M^{\prime} X C$.
6. Then, $M M^{\prime}=X C=\frac{1}{2} B C$.

Theorem XXVIII

139. The line joining the middle points of the non-parallel sides of a trapezoid is parallel to the bases and equal to one half of their sum.

Draw trapezoid $A B C D, A B$ and $D C$ being the parallel sides. Draw $E F$ joining E and F, the middle points of $A D$ and $B C$, respectively. We then have

Given trapezoid $A B C D$, with $E F$ joining the middle points of the non-parallel sides.

To prove $E F \| A B$ and $D C$, also $E F=\frac{1}{2}(A B+D C)$.
Proof. 1. A line through $E \| A B$ will pass through F. (Exercise 41, 2.)
2. Then $E F \| A B$ and $D C$.
3. Draw $D B$, intersecting $E F$ at M.
4. In $\triangle A B D, E M$ is drawn through E the middle point of $A D$ and parallel to $A B$. (Use exercise 41, 1.)
5. Use $\triangle B C D$ in a similar manner.

Theorem XXIX

140. The bisectors of two of the angles of a triangle intersect on the bisector of the third angle.

Draw $\triangle A B C$, also $B M$ bisecting $\angle B$ and $C M$ bisecting $\angle C$. We now have

Given $\triangle A B C$, and $B M$ and $C M$ bisecting $\measuredangle B$ and C, respectively.

To prove that M lies in the bisector of $\angle A$.
Proof. 1. Draw $A M$.
2. Since $B M$ bisects $\angle B, M$ is equally distant from $A B$ and $B C$. (§ 130.)
3. Since $C M$ bisects $\angle C, M$ is equally distant from $B C$ and CA. (§ 130.)
4. Therefore M is equally distant from $A B$ and $A C$.

5 . Then M lies in the bisector of $\angle A$, and $A M$ is the bisector. (Exercise 38, 1.)
141. From theorem XXIX we may assume that the three bisectors of the angles of a triangle meet in a point, and the point of intersection is equally distant from the three sides.

EXERCISE 42

1. In a parallelogram $A B C D, M$, the middle point of $A B$, is joined to D, and M^{\prime}, the middle point of $D C$, is joined to B. Show that the diagonal ΛC is trisected.
2. Show that if the middle points of the sides of a quadrilateral are joined in order, the figure formed is a parallelogram.
3. If the middle points of the sides of a rectangle are joined in order, the figure formed in a rhombus.
4. The figure formed by joining the middle points of the sides of a square taken in order is a square.
5. Show that the two bisectors of the interior angles on the same side of the transversal of two parallel lines form a right angle.
6. What figure is formed by joining the middle points of the sides of an isosceles trapezoid taken in order?
7. Show that the opposite angles of an isosceles trapezoid are supplementary.

Theorem XXX

142. The perpendiculars erected at the middle points of two sides of a triangle meet in a point which lies in the perpendicular bisector of the third side.

Draw the perpendicular bisectors of two of the sides. Join their point of intersection to the middle point of the third side. Use § 101. Prove in a manner similar to that used in § 140.
143. We may conclude that the three perpendicular bisectors of the three sides of a triangle meet in a point equidistant from the three vertices.

Theorem XXXI

144. The three altitudes of a triangle meet in a common point.

Draw $\triangle A B C$, and its three altitudes x, y, z. We now have,
Given $\triangle A B C$ and the altitudes x, y, z.
To prove that x, y, and z have a common point.
Proof. 1. Through A draw $M K \| B C$; through B, draw $M H \| A C$; through C draw $H K \| B A$.
$2 \quad x \perp M K . \quad$ (§ 121.)
3. Since $M B C A$ and $A B C K$ are parallelograms, $B C=M A$ $=A K$.
4. Hence x is the perpendicular bisector of $M K$.
5. Similarly y is the perpendicular bisector of $H K$ and z of MH.
6. But the perpendicular bisectors of the sides of \triangle MHK meet in a point. (143.)
7. But x, y, z are also the altitudes of $\triangle A B C$.
8. Therefore the altitudes of a triangle meet in a common point.

Theorem XXXII

145. Two medians* of a triangle meet in a point of the third median.

Draw $\triangle A B C$, and medians $C M$ and $A K$ meeting at O. Also draw $B L$ through O, meeting $A C$ at L. We now have

Given $\triangle A B C$ with medians $A K$ and $C M$ meeting at O.
To prove that O is in the median drawn to the third side.
Proof. 1. Draw $C H$ parallel to $A K$ and meeting $B L$ produced at H. Draw $A H$.
2. In $\triangle H B C, O K \| H C$ and bisects $B C$. It therefore bisects BH. (?)
3. Since O is the middle point of $H B$, and M the middle point of $A B, M O \| A H$. (?)
4. Then $A O C H$ is a parallelogram, and L is the middle point of $A C$. Why?
$\check{5}$. Hence $B L$ is a median and O lies in the median.
146. In $\S 145$, since $H O=O B$ and $L O=\frac{1}{2} H O, O$ is $\frac{2}{3}$ the distance from B to L. Similarly we may show that O is $\frac{2}{3}$ the distance from C to M, and from A to X. Or the medians meet in a point $\frac{2}{3}$ the distance, along the median, from the vertex to the opposite side.

Polygons

147. A polygon is a portion of a plane bounded by three or more straight lines.

The bounding lines of a polygon are its sides.
Any two adjacent sides form an angle of the polygon.
A polygon is named with reference to its number of sides, or angles. Thus, triangle, quadrilateral, pentagon, hexagon, octagon, etc.

[^9]If the sides are equal, the polygon is equilateral.
If the angles are equal, the polygon is equiangular.
A regular polygon is both equiangular and equilateral.
148. Two polygons are mutually equilateral if their corresponding sides are equal.

Two polygons are mutually equiangular if their corresponding angles are equal, that is, if their angles taken in the same order are respectively equal.

Two polygons are equal if they are both mutually equilateral and mutually equiangular. They are also equal if they can be separated into the same number of triangles, equal each to each, and similarly placed.

Theorem XXXIII

149. The sum of the angles of any polygon is equal to twice as many right angles as the polygon has sides, less four right angles.

Draw polygon $A B C D E$, etc. We have
Given polygon $A B C D$, etc., having n sides.
To prove $\angle A+\angle B+\angle C+\angle D+\cdots$ etc., $=2 n \mathrm{rt} . \angle s-4 \mathrm{rt}$. $\angle \mathrm{s}$.
Proof. 1. From any point P within the polygon draw a line to each vertex.'
2. It is evident that n triangles are formed, one for each side of the polygon.
3. The sum of the angles of each triangle is two right angles, and the sum of the angles of all the triangles together is $2 n$ right angles.
4. The sum of the angles of all the triangles includes the sum of the angles of the polygon, and the angles around P which do not belong to the polygon.

5 . Subtracting the sum of the angles at P from the sum of the angles of the n triangles, we have $2 n \mathrm{rt}$. $\measuredangle-4 \mathrm{rt}$. \llcorner for the angles of the polygon. ($\$ 83, d$.

Theorem XXXIV

150. The sum of the exterior angles of a polygon formed by producing one side at each vertex of a polygon is equal to four right angles.

Given a polygon with exterior angles b, d, f, etc.
To prove that the sum of these angles is equal to 4 rt . Ls.
Proof. 1. Let a be the interior angle of the polygon adjacent to b.
2. Then $a+b=2 \mathrm{rt}$. \llcorner.
3. This same sum exists at each of the n vertices, therefore the sum of the interior and the exterior angles of the polygon is 2 nrt . \angle.
4. But the sum of the interior is $2 n \mathrm{rt} . ~ \angle s-4 \mathrm{rt} . \angle \mathrm{s}$.
5. Subtracting the sum of the interior angles from the sum of the interior and exterior angles, we have
or

$$
\begin{aligned}
2 n \mathrm{rt} . & \angle s-(2 n \mathrm{rt} . \\
4 \mathrm{rt} . & \angle \mathrm{s} .
\end{aligned}
$$

EXERCISE 43

1. Prove Theorem XXXIII by triangles formed by drawing all the diagonals from any one vertex of the polygon.
2. One angle of a regular polygon is $1 \frac{1}{2}$ right angles. How many sides has the polygon? How many degrees is the sum of its angles?
3. One angle of a regular polygon is 120°. What kind of a polygon is it?
4. An exterior angle of a regular polygon is 120°. How many sides has the polygon?
5. Each exterior angle of a polygon is 30°. Find the sum of the interior angles.
6. One angle of a regular polygon is $\frac{1}{5} \mathrm{rt} . \angle$. Find the number of sides. Any trouble heré? Why?
7. From one vertex of a regular polygon 5 diagonals can be drawn. Find the sum of the angles of the polygon.
8. What three lines belonging to any triangle meet in a point? Is there more than one answer to this question?
9. One exterior angle of a regular polygon is 180°. How many sides has the polygon? What is the greatest exterior angle a regular polygon can have? What is the least exterior angle possible?
10. Develop the following synopses:

Two lines are equal, if
Two angles are equal, if
Two lines are parallel, if
A quadrilateral is a parallelogram, if

Supplemental Applied Mathematics

1. A hexagonal water tank is $3^{\prime}-6^{\prime \prime}$ on a side. Find the area of the cover.
2. In nuts and heads of bolts, the distance across the flats (the distance between the parallel sides) is $\frac{3}{2}$ the diameter of the bolt plus $\frac{1}{8}$ ". The thickness of the head is $\frac{1}{2}$ the distance across the flats. Find the distance across the flats and the thickness of the head on a one-inch bolt having a square head.
3. A hexagonal head is $\frac{5}{8}^{\prime \prime}$ on a side. Find the distance across the flats and the thickness of the head.
4. A square head $\frac{5}{16}^{\prime \prime}$ thick is to be milled on a cylindrical blank. Find the diameter of the blank.
5. In example 3 , find the approximate diameter of the bolt.
6. A half-inch bolt has a square head. Find the distance across the flats, the thickness of the head and the diagonal of the head.
7. A one-inch steel bolt is $4^{\prime \prime}$ long under the head. The head is square. Find weight of these bolts per hundred.
8. A square head measures $\frac{55^{\prime \prime}}{4}$ across the flats. The bolt is $5^{\prime \prime}$ long under the head. Find weight per hundred.
9. The thickness of a hexagonal steel head is $\frac{5^{\prime \prime}}{8}$. Find weight of heads per hundred. What size bolt would you use with such head?
10. A hexagonal head is $\frac{3}{4}{ }^{\prime \prime}$ on a side. Find the diameter of the bolt.
11. A hole is $0.185^{\prime \prime}$. Could you use $\frac{3}{16}{ }^{\prime \prime}$ bolt in this hole ? Would a $\frac{1}{4}$ " bolt be too large ?
12. A hole is $1.284^{\prime \prime}$. The longest diagonal of the hexagonal head used is $2.74^{\prime \prime}$. Find size of bolt used, weight of nuts per hundred, number of nuts per hundred pounds. (Bolts only come in 4 ths, 8 ths, 16 ths, 32 ds , 64 ths).
13. Whites of eggs coagulate at $56.6^{\circ} \mathrm{C}$. Express this temperature in Fahrenheit scale. Yolks of eggs coagulate at 122° F. Express in Centigrade.
14. When eggs are made into omelets, 1 tablespoonful of milk and $\frac{1}{2}$ teaspoonful of butter are added to each egg. 7 eggs will make 5 portions for serving. Find difference in cost of 6 eggs and enough omelet to serve six persons, when eggs cost 30ϕ per dozen, milk 6ϕ per quart, butter 37ϕ per pound. One cup of milk measures 16 tablespoonfuls, and one half pound of butter 16 teaspoonfuls.
15. 87% of milk is water. 1 cup of milk weighs $8 \frac{7}{8}$ ounces. Find weight of water contained in one quart of milk.
16. 3.3% of milk is protein. $\frac{5}{6}$ of the protein is casein and $\frac{1}{6}$ albumen. What is the per cent of casein and albumen in milk ?
17. The edible portion of cooked eggs contains 13.2% protein. How much milk (liquid measure) does it take to contain as much protein as is in one dozen eggs ?
18. A can of condensed milk costing 5ϕ contains $\frac{2}{3}$ of a cup. Which is cheaper - fresh or condensed milk - if fresh milk costs 6ϕ per quart? (Dilute condensed milk one third.)
19. American cheese contains 28.8% protein. How many eggs contain as much protein as 1 pound of cheese? How much milk (liquid measure) in one pound of cheese? How much cheese contains as much protein as 2 eggs?
20. Find difference in cost of 1 dozen eggs and as much cheese as would contain the same amount of protein, cheese costing 20ϕ per pound and eggs $30 \notin$ per dozen.
21. One quart of sour milk makes 1 cup of cottage cheese which weighs 6 ounces. Find difference in cost of 1 pound cottage and 1 pound American cheese. (Prices same as above.)
22. Cottage cheese contains 20.9% protein. How much cottage cheese contains as much protein as 1 pound American cheese? How much sour milk will be required to make this quantity of cottage cheese?
23. $\frac{1}{2}$ pound macaroni or 1 cup rice can be used with cheese. 1 cup rice weighs $7 \frac{1}{2}$ ounces, and costs 10ϕ per pound. Macaroni costs 15ϕ per pound package. Find difference in cost.
24. Boiled rice contains 24.4% carbohydrates ; cooked macaroni contains 15.8% carbohydrates. How many quarts cooked macaroni will contain as much carbohydrates as 5 cups cooked rice ?
25. Uncooked macaroni contains 74.1% carbohydrates; cooked macaroni contains 15.8% carbohydrates. Find weight of loss in carbohydrates from cooking 1 pound macaroni.
26. I wish to make a dusting cap $18^{\prime \prime}$ in diameter. How much lace is needed to put around the edge, allowing one half extra for fullness?
27. Two inches in from the edge of the cap in Example 26 I sew beading. How much beading must I buy?

CHAPTER VIII

Products and Factors

152. In exercises 5 and 14 we found the factors of monomial products. We shall now extend factoring to include the products found in exercises 16 and 18.

The Difference of Two Squares

153. Type I. Multiply $a+b$ by $a-b$. (That is, multiply the sum of two numbers by the difference of the same two numbers.)

By actual multiplication:

$$
\begin{aligned}
& a+b \\
& \frac{a-b}{a^{2}+a b} \\
& \frac{-a b-b^{2}}{a^{2}-b^{2}}
\end{aligned}
$$

That is, $(a+b)(a-b)=a^{2}-b^{2}$.
Or, stated in words:
The product of the sum and difference of two numbers is equal to the difference of their squares.

Then to multiply the sum of two numbers, as $3 x+5$, by the difference of the same two numbers, $3 x-5$, one needs only to square the first number, $3 x$, and subtract the square of the second number, 5 , from it, giving for the product, $9 x^{2}-25$.

EXERCISE 44

Find by inspection:

1. $(x+y)(x-y)$.
2. $(x+3)(x-3)$.
3. $(m+x)(m-x)$.
4. $(x+4)(x-4)$.
5. $(2 x+1)(2 x-1)$.
6. $(2 x+3)(2 x-3)$.
7. $(5 x+7)(5 x-7)$.
8. $(14 y+15)(14 y-15)$.
9. $(17 a+19 b)(17 a-19 b)$.
10. $(16 c+25 d)(16 c-25 d)$.
11. $x^{2}-4$ is the product of what two numbers? Are these numbers binomials, trinomials, or monomials?
12. What are the factors of $x^{2}-25$.
13. Restate the rule in Type I, making it applicable for factoring such examples as example 12. Keep in mind that factoring is a process of division; division by inspection. The dividend is given. You must find the divisor and the quotient.

Factor the following :
14. $a^{2}-25$ 20. $16 y^{2} c^{2} z^{2}-25 x^{2} d^{2} a^{4}$.
15. $a^{2}-81$.
21. $x^{4}-225$.
16. $a^{2}-36$.
22. $289-x^{4}$.
17. $25 a^{2}-36$.
23. $361 x^{2}-529 y^{2}$.
18. $16 y^{2}-25$.
24. $441 y^{4}-729 a^{4}$.
19. $16 y^{2}-25 c^{2}$.
25. $64 a^{2}-196 b^{2}$.
26. $a^{4}-256 b^{4}=\left(a^{2}+16 b^{2}\right)\left(a^{2}-16 b^{2}\right)$

$$
=\left(a^{2}+16 b^{2}\right)(a+4 b)(a-4 b)
$$

27. $16 m^{4}-81 c^{4}$.
28. $(49)^{2}-(25)^{2}$.
29. $(561)^{2}-(559)^{2}$.
30. $(625)^{2}-(576)^{2}$.
31. $3^{8}-2^{8}$.
32. $(a+3)^{2}-(a-3)^{2}$.
33. $(x+7)^{2}-(x-7)^{2}$.
34. $(a+b)^{2}-(a-b)^{2}$. 35. $(y+21)^{2}-(y-21)^{2}$.
35. $(17 x+16 y)(17 x-16 y)=$?
36. $(21 a+23 b)(21 a-23 b)=$?
37. $(24 m+19 c)(24 m-19 c)=$?
38. $(25 x+18 c)(25 x-18 c)=?$
39. $(15 c+26 d)(15 c-26 d)=$?
40. $\frac{9}{16} a^{2}-\frac{25}{4} b^{2}$.
41. Can you factor $a^{2}+25$? Why?

The square of the sum of two numbers.
The square of the difference of two numbers.
154. Type II. Multiply $a+b$ by $a+b$. That is, multiply the sum of two numbers by the sum of the same two numbers.

$$
\begin{aligned}
& a+b \\
& \frac{a+b}{a^{2}+a b} \\
& \frac{+a b+b^{2}}{a^{2}+2 a b+b^{2}}
\end{aligned}
$$

That is, $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Or, stated in words : (a is the first number and b is the second number.)
The square of the sum of two numbers is equal to the square of the first number plus twice the product of the first and second, plus the square of the second.
Similarly, $(a-b)^{2}=a^{2}-2 a b+b^{2}$.
Or, The square of the difference between two numbers is equal to the square of the first, minus twice the product of the first and second, plus the square of the second.

EXERCISE 45

Find by inspection :

1. $(x+z)(x+z)$.
2. $(x+3)(x+3)$.
3. $(a+x)^{2}$.
4. $(a-x)^{2}$.
5. $(a+2 x)^{2}$.
6. $(a-2 x)^{2}$.
7. $(5 a+3)^{2}$.
8. $(5 a-3)^{2}$.
9. $(5 a+4 b)^{2}$.
10. $(6 y+5 c)^{2}$,
11. $(7 x-4 z)^{2}$.
12. $(8 c-7 d)^{2}$.
13. $(9 m+7 x)^{2}$.
14. $(18 a-15 b)^{2}$.
15. $(5 m-\alpha)^{2}$.
16. $(6 a-5 b)^{2}$.
17. $(5 b-6 a)^{2}$.
18. From what do you get this product: $x^{2}+6 x+9$?
19. From what factors do you get $a^{2}-S a+16$?
20. What are the factors of $x^{2}-10 x+25$?
21. How can you distinguish a trinomial square?

Find the factors of the following :
22. $a^{2}-6 a+9$.
26. $9 x^{2}+30 x+25$.
23. $a^{2}-4 a+4$.
27. $m^{2}+12 m+36$.
24. $4 a^{2}+4 a+1$.
28. $4 c^{2}+12 c+9$.
25. $9 x^{2}-6 x+1$.
29. $49 d^{2}-14 c d+c^{2}$.
30. $m^{2} k^{2}+4 m k c+4 c^{2}$.
31. $a^{4}-18 a^{2}+81=\left(a^{2}-9\right)\left(a^{2}-9\right)=(a+3)(a-3)(a+3)$ $(a-3)$ by Type I.
32. $x^{4}-8 x^{2}+16$.
33. $16 c^{4}-72 c^{2} d^{2}+81 d^{4}$.
34. The area of a square is $25 a^{2}+40 a b+16 b^{2}$; find one side of the square. Find the dimensions when $a=5, b=-3$.
35. One side of a square is $2 x+5 y$. What is the area? Find the area when $x=6, \mathrm{y}=1$.
36. Is $a^{2}+8 a+25$ a square? Why ?
37. Is $a^{2}+10 a+24$ a square? Why?
38. Is $a^{2}+10 a+25$ a square? Why?
39. Draw a square whose side is $a+b$ inches. Draw perpendiculars at the ends of a and b and show that this square is made up of the square on line a, plus two rectangles each of whose areas is $a b$, and a square on line b.
40. Factor $a^{4}-16$. Are your factors factorable?
41. Factor $x^{4}-81$. What type are you using?
42.

$$
\begin{aligned}
(81)^{2} & =(80+1)^{2} \\
& =6400+160+1 \\
& =6561
\end{aligned}
$$

Write the following squares by inspection:
43. $(41)^{2}$
44. $(39)^{2}$
45. $(79)^{2}$
46. $(132)^{2}$
47. $(145)^{2}$
48. $(153)^{2}$
49. $(162)^{2}$
50. $(169)^{2}$

Trinomials of the form $x^{2}+k x+c$. Binomial Factors having One Term Common.
155. Type III. Multiply $x+5$ by $x+3$.

$$
\begin{aligned}
& x+5 \\
& \frac{x+3}{x^{2}+5 x} \\
& \frac{+3 x+15}{x^{2}+8 x+15}
\end{aligned}
$$

Note that in this trinomial the first term is the square of the common term (x). The coefficient of x is the sum of the unlike terms, 5 and 3. The third term is the product of the unlike terms.

Ex. Find the product of $4 x+3$ and $4 x-9$.
By the rule: $(4 x+3)(4 x-9)=(4 x)^{2}+(3-9)(4 x)-27$.

$$
=16 x^{2}-24 x-27 .
$$

EXERCISE 46

Find by inspection:

1. $(a+3)(a+4)$ 11. $(b-14)(b+16)$.
2. $(c+5)(c+7)$.
3. $(2 x+5)(2 x+3)$.
4. $(a+4)(a-3)$.
5. $(a-4)(a+3)$.
6. $(5 a-4)(5 a-4)$.
7. $(m+18)(m-15)$.
8. $(k-18)(k+16)$.
9. $(3 k+11)(3 k-4)$.
10. $(c+21)(c+22)$.
11. $(c+115)(c-12)$.
12. $(d+15)(d+15)$.
13. $(2 x-14)(2 x+9)$.
14. $(2 x+14)(2 x+9)$.
15. $(2 x+14)(2 x-9)$.
16. $(y+5)(y-40)$.
17. $(z+27)(z-5)$.
18. $(k+28)(k-7)$.
19. $(a-17)(a-15)$.
20. From what factors do you get $x^{2}+7 x+12$?
21. Factor $x^{2}-x-12$.

To get the second terms of these binomials: factor the third term into two factors whose sum is the coefficient of the unknown in the second term.

Factor the following:
23. $x^{2}-2 x-8$.
24. $x^{2}+6 x+8$.
25. $x^{2}-6 x+8$.
26. $x^{2}+2 x-8$.
27. $a^{2}+9 a+20$.
28. $a^{2}-a-20$.
29. $z^{2}-z-72$.
30. $c^{2}+16 c+15$.
31. $m^{2}+8 m+16$.
32. $y^{2}-12 y+11$.
33. $y^{2}-9 y-36$.
34. $a^{2}-16 a+64$.
35. $4 a^{2}+16 a+15$.
($2 a$ is the term common to each binomial.)
36. $9 a^{2}-15 a-14$.
37. $25 x^{2}+50 x+21$.
38. $c^{4}-13 c^{2}+36$.
39. $m^{4}-29 m^{2}+100$.
40. $x^{2}+16 x+64$.
41. $x^{2}-10 x+25$.
42. $(a+3)(a-3)(a+5)(a-5)=$?
43. $a^{2}+3 a+2$.
45. $a^{2}+2 a+2$.
44. $a^{2}-3 a+2$.
46. $a^{2}-2 a+2$.

Polynomials having a Factor Common to Each Term

156. Type IV. Multiply $3 a+4 b+2 c$ by $5 x$.

$$
\begin{aligned}
& 3 a+4 b+2 c \\
& \frac{5 x}{15 a x+20 b x+10 c x}
\end{aligned}
$$

Each term of the product contains the common factor $5 x$. This is a very important type of factoring. The first step to take in all examples is to see if the example belongs to Type IV.

Ex. 1. Factor $4 a^{2} x-16 b^{2} x$.
Each term contains the factor $4 x$.

Divide by $4 x$.

$$
\frac{4 x) \pm a^{2} x-16 b^{2} x}{a^{2}-4 b^{2}}
$$

The divisor is one factor, the quotient the other factor, or

$$
4 a^{2} x-16 b^{2} x=4 x\left(a^{2}-4 b^{2}\right)
$$

But, $a^{2}-4 b^{2}$ can be factored by Type I.
Hence,

$$
4 a^{2} x-16 b^{2} x=4 x(a+2 b)(a-2 b)
$$

This is similar to factoring such a number as 105 .
We remove a factor 3 , then have
Factoring 35,

$$
105=3(35)
$$

$$
105=3 \cdot 5 \cdot 7 .
$$

Ex. 2. Factor $(2 a+b) x^{2}-(2 a+b) 8 x+(2 a+b) 15$.

$$
2 a+b) \frac{(2 a+b) x^{2}-(2 a+b) 8 x+(2 a+b) 15}{x^{2}-8 x+15}
$$

Use Type III on the quotient. Then,
$(2 a+b) x^{2}-(2 a+b) 8 x+(2 a+b) 15=(2 a+b)(x-3)(x-5)$.

EXERCISE 47

Factor the following:
(Be sure that you cannot still further factor your result. Check each answer.)

1. $3 x^{2}+27 x$.
2. $a^{2} b+a b^{2}$.
3. $5 a+25$.
4. $c^{2}(2 m+5)-c(2 m+5)-12(2 m+5)$.
5. $(2 c+7) 4 c^{2}+(2 c+7) 20 c+(2 c+7) 21$.
6. $x(x+3)+y(x+3)$.
7. $a x+b x+a y+b y$.

Factor the first two terms and the last two terms separately.

$$
x(a+b)+y(a+b)
$$

The example is now like example 9 .
11. $x^{3}-3 x^{2}-3 x+9 . \quad\left(x^{2}\right.$ is a factor of the first two terms and -3 a factor of the last two terms.)
12. Factor $(a+b) a^{2}+(a+b) 2 a b+(a+b) b^{2}$.

Compare example 9, exercise 16.
13. $x^{2}(2 x-1)-x(2 x-1)-12(2 x-1)$.

What Types did you use?
14. $a^{4}\left(a^{2}-b^{2}\right)-b^{4}\left(a^{2}-b^{2}\right)$.
15. $(2 m+5) m^{2}+(2 m+5) 8 m+(2 m+5) 16$.
16. $(2 m+5) m^{2}-(2 m+5) 17 m+(2 m+5) 16$.
17. $(2 m+5) m^{2}-(2 m+5) 15 m-(2 m+5) 16$.
18. $25 x^{2}(2 x+5)-20 x(2 x+5)+4(2 x+5)$.
19. $4 m^{3}+12 m^{2}+36 m$.
20. $4 m^{3}+24 m^{2}+36 m$.
21. Is $a^{2}+9 a+25$ a square? Why?
22. $x^{5}-12 x^{4}+36 x^{3}$.
23. $(2 x+1) 4 x^{2}+(2 x+1) 4 x+2 x+1$.
24. $\left(a^{2}-a-72\right)\left(2 a^{2}-18\right)$.
28. $x^{3}+3 x^{2}-6 x-18$.
25. $(x+3)^{2}-(x-3)^{2}$.
29. $8 x^{3}+12 x^{2}-10 x-15$.
26. $(x+3)^{2} x^{4}-(x+3)^{2} 81$.
30. $x^{3}+4 x^{2}-16 x-64$.
27. $x^{3}+3 x^{2}-9 x-27$.
31. $m^{3}-4 m+7 m^{2}-28$.
32. $12 a^{3}+8 a^{2} b-27 a b^{2}-18 b^{3}$.

Trinomials of the Form $a x^{2}+b x+c$

157. Type V. Find the product of $2 x+5$ and $3 x+7$.

$$
\begin{aligned}
& 2 x+5 \\
& 3 x+7 \\
\hline & 2 \cdot 3 \cdot x^{2}+3 \cdot 5 \cdot x+2 \cdot 7 \cdot x+5 \cdot 7 \\
= & 2 \cdot 3 \cdot x^{2}+(3 \cdot 5+2 \cdot 7) x+5 \cdot 7
\end{aligned}
$$

Notice that if the first and third terms of this trinominal are combined by multiplication, the product $2 \cdot 3 \cdot 5 \cdot 7 \cdot x^{2}$, comprises all the factors which make up the middle term of the product. Note also that the middle term, $29 x$, is the sum of the cross products, that is, the sum of $2 x \cdot 7$ and $3 x \cdot 5$.

Reversing this multiplication process we may factor trinominals of this type.

Ex. Factor $6 x^{2}+29 x+35$

1. Find the product of the first and third terms, or $210 x^{2}$.
2. Factor $210 x^{2}$ so that the sum of the factors is the middle term $29 x$; these factors are $14 x$ and $15 x$.
3. Write the trinominal in the form of a quadrinominal, using $14 x$ and $15 x$ for the middle terms:

$$
6 x^{2}+29 x+35=6 x^{2}+14 x+15 x+35
$$

4. Now use Type IV.

Hence,

$$
\begin{aligned}
2 x(3 x+7)+5(3 x+7) & =(3 x+7)(2 x+5) \\
6 x^{2}+29 x+35 & =(3 x+7)(2 x+5) .
\end{aligned}
$$

It does not matter whether $14 x$ or the $15 x$ is connected with $6 x^{2}$.

EXERCISE 48

Find by inspection :

1. $(2 x+7)(3 x+4)$.
2. $(5 x+2)(2 x+4)$.
3. $(6 x+5)(2 x-3)$.
4. $(5 x+3)(3 x-4)$.
5. $(2 x-7)(3 x-4)$.
6. $(2 x-7)(3 x+4)$.
7. $(2 x+7)(3 x-4)$.
8. $(5 x+2)(2 x-4)$.
9. $(7 x+3)(5 x-8)$.
10. $(10 x-18)(7 x+15)$.
11. $(8 x+17)(7 x-6)$.
12. $(4 x+15)(9 x-14)$.
13. $(6 x-21)(5 x+18)$.
14. $(7 x+15)(7 x+15)$.
15. $(13 x-1)(13 x+2)$.
16. $(14 x+13)(13 x+14)$ 。
17. $(14 x-8)(14 x+8)$.
18. $(3 x-75)(2 x-4)$.

Factor the following: 19. $6 x^{2}+23 x+20$.

$$
\begin{aligned}
& 6 x^{2} \cdot 20=120 x^{2} \\
& 120 x^{2}=15 x \cdot 8 x \\
& 15 x+8 x=23 x
\end{aligned}
$$

Then, $\quad 6 x^{2}+23 x+20=6 x^{2}+15 x+8 x+20$.

$$
\begin{aligned}
& =3 x(2 x+5)+4(2 x+5) \\
& =(2 x+5)(3 x+4)
\end{aligned}
$$

20. $6 x^{2}+22 x+20$.
21. $8 x^{2}+22 x+15$.
22. $10 x^{2}+19 x+6$.
23. $12 x^{2}-23 x+10$.
24. $8 x^{2}+2 x-15$.
25. $15 x^{2}+23 x-28$.
26. $15 x^{2}+47 x+88$.
27. $56 x^{2}-17 x-3$.
28. $4 d^{2}+12 d+9$.
29. $4 x^{2}-14 x-98$.
30. $x^{2}+18 x+81$.
31. $36 x^{2}+60 x+25$.
32. $15 x^{2}+14 x-16$.
33. $15 b^{2}-14 b-16$.
34. $15 x^{2}+34 x-16$.
35. $10 x^{2}-x-24$.
36. $10 x^{2}-29 x+10$.
37. $14 x^{2}+53 x+14$.
38. $(2 x-3) 8 x^{2}+(2 x-3) 22 x+(2 x-3) 15$.
39. $8 x^{4}+2 x^{3}-15 x^{2}$. 40. $60 x^{3}-115 x^{2}+50 x$.
40. $\left(a^{2}-9\right) 4 a^{2}-\left(a^{2}-9\right) 4 a+a^{2}-9$.
41. $4 m^{2}(2 m+5)+12 m(2 m+5)+9(2 m+5)$.
42. $2 y^{2}+y-28$.
43. $5 c^{3}-11 c^{2}-36 c$.
44. $24 m^{3}+14 m^{2}-3 m$.

Binomials having Both Terms Raised to the Same Power

158. Type VI. Such types arise from the following products: By actual multiplication

$$
\begin{gathered}
\left(a^{2}+a b+b^{2}\right)(a-b)=a^{3}-b^{3} . \\
a^{2}+a b+b^{2} \\
\frac{a-b}{a^{3}+a^{2} b+a b^{2}} \\
\frac{-a^{2} b-a b^{2}-b^{3}}{a^{3}}-b^{3} \\
\frac{a^{3}-b^{3}}{a-b}=a^{2}+a b+b^{2}
\end{gathered}
$$

Note the form of the quotient: we shall speak of a as the leading letter and b as the following letter.

1. The first term of the quotient contains the leading letter raised to a power one less than its power in the dividend.
2. The power of the leading letter becomes less by one in each succeeding term of the quotient.
3. The following letter appears in the second term of the quotient and its power increases by one in each succeeding term.
4. The signs of the quotient are all + .

Similarly,

$$
\frac{a^{4}-b^{4}}{a-b}=a^{3}+a^{2} b+a b^{2}+b^{3}
$$

and

$$
\frac{a^{5}-b^{5}}{a-b}=a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}
$$

Ex. 1.

$$
\begin{aligned}
\frac{x^{3}-64}{x-4} & =x^{2}+x \cdot 4+(4)^{2} \\
& =x^{2}+4 x+16
\end{aligned}
$$

Here,
and

Likewise,
and
b is 4 .

$$
\frac{a^{3}+b^{3}}{a+b}=a^{2}-a b+b^{2}
$$

$$
\frac{a^{5}+b^{5}}{a+b}=a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}
$$

Note that when the binomial divisior is all positive, the terms of the quotient are alternately + and -. Do not divide the sum of the same even powers by the sum of the roots.

EXERCISE 49

Factor the following:

1. $x^{3}-y^{3}$.
2. $x^{3}+y^{3}$.
3. $x^{3}-8$.
4. $x^{3}+8$.
5. $x^{3}-27$.
6. $x^{3}+27$.
7. $8 x^{3}+27$. Here $a=2 x$ and $b=3$.
8. $8 x^{3}-27$.
9. $125 a^{3}+i$.
10. $125 a^{3}-8$.
11. $64 m^{3}+27$.
12. $64 m^{3}-y^{3}$.
13. $64 m^{3}+27 y^{3}$.
14. $8 c^{3}-216 d^{3}$.
15. $x^{5}-32$.
16. $x^{5}+32$.
17. $a^{5}+243$.
18. $m^{3}-216$.
19. $b^{3}+512 c^{3}$.
20. $125 y^{3}-729 d^{3}$.
21. $x^{6}+27$ (Regard x^{6} as a cube.)
22. $x^{6}+64$.
23. $a^{6}+216$.

Trinomials which may be referred to Type I by the addition and subtraction of some number.
159. Type VII. $x^{4}+b x^{2}+c^{2}$. Usually in this type one term is a fourth power, one is a square, and one is the product of a square and some number.

Ex. Factor $x^{4}+2 x^{2}+9$.
If the middle term were $6 x^{2}$, this trinomial would belong to Type II. Adding and subtracting $4 x^{2}$, we have.

By Type I,

$$
\begin{aligned}
x^{4}+2 x^{2}+9 & =x^{4}+6 x^{2}+9-4 x^{2} . \\
& =\left(x^{2}+3\right)^{2}-(2 x)^{2} . \\
& =\left(x^{2}+3+2 x\right)\left(x^{2}+3-2 x\right) .
\end{aligned}
$$

EXERCISE 50

Factor the following:

1. $x^{4}+x^{2}+25$.
2. $9 x^{4}+8 x^{2}+4$.
3. $x^{4}+5 x^{2}+49$.
4. $x^{4}+10 x^{2}+49$.
5. $x^{4}-23 x^{2}+49$.
6. $a^{4}-39 a^{2} b^{2}+49 b^{4}$.
7. $a^{4}+4$.
8. $4 y^{4}-37 y^{2}+9$.
9. $4 y^{4}+8 y^{2}+9$.
10. $25 x^{4}-65 x^{2}+16$.

Fill in the term which will make each of the following a trinomial square:
11. $a^{2}+4 a+$?
12. $4 m^{2}+28 m+$?
13. $x^{2}-24 x$.
14. $c^{2}+4$.
15. $?+6 x+9$.
16. $x^{2}+8 x+$?
17. $x^{2}+5 x+$?
18. $c^{2}-9 c+$?
19. $c^{4}+16$.
20. $9 m^{2}-18 m$.
21. $25 a^{2}-30 a b$.
22. $25 a^{2}-25 a b$.
23. $25 a^{2}-20 a b$.
24. $25 a^{2}-18 a b$.
160. The seven types of factorable expressions should be committed to memory. Before attempting to factor any expression, select the type to which it belongs.

Hints on Factoring

1. For all expressions:

First try Type IV.
2. Test binomials by Types I, IV, VI.
3. Test trinomials by Types II, III, V, VII.
4. Be sure that each factor will admit of no further factoring.
5. Several types may be needed to completely factor an expression, e.g., example 13, exercise 47.

Types

I. $a^{2}-b^{2}=(a+b)(a-b)$.
II. $(a+b)(a+b)=a^{2}+2 a b+b^{2}$. $(a-b)(a-b)=a^{2}-2 a b+b^{2}$.
III. $(x+a)(x+b)=x^{2}+(a+b) x+a b$.
IV. $a d+b d+c d=d(a+b+c)$.
V. $a x^{2}+b x+c$.
VI. $a^{n}-b^{n}$.
$a^{n}+b^{n}$.
VII. $x^{4}+b x^{2}+c^{2}$.

EXERCISE 51

Factor the following:

1. $y^{2}-2 y+1$.
2. $y^{2}-1$.
3. $y^{2}-2 y-8$.
4. $y^{2}+2 y-8$.
5. $50 x^{3}+45 x^{2}-45 x$.
6. $10 x^{2}(2 x-3)+45 x(2 x-3)-45(2 x-3)$.
7. $(341)^{2}-(339)^{2}$.
8. One side of a square is 585^{\prime}. This square is surrounded by a concrete walk of uniform width, whose outside perimeter is 2388^{\prime}. Find the cost of the walk at $14 \not \subset$ per square foot.
9. One square is so placed within another that a space of uniform width is between the sides of the outer and the inner squares. The sides of the squares are $76^{\prime \prime}$ and $69^{\prime \prime}$, respectively. How many square feet in the difference between the areas of these squares?
10. The area of a square is $36 x^{2}+84 x+49$. Find one side. How large is the square when $x=-4$? If x were -9 , would the area still be positive? Could you substitute a value of x that would make the area negative? Why?
11. The area of a square is $49 a^{2}-28 a+4$. Find one edge when $a=\frac{1}{7}$.
12. Is $\alpha^{2}+10 \alpha+16$ a trinomial square? Why?
13. The area of a triangle is $\frac{3 x^{2}+17 x-28}{2}$. Find the
base and altitude. If x is 2 and the triangle is isosceles, construct the triangle. Is more than one such triangle possible? Why?
14. The area of a right triangle is $5 x^{2}+4 x-12$. Construct the triangle when $x=2$.
15. Find by inspection $(2 x+3)(2 x-3)(x+4)(x-4)$.
16. Factor $x^{4}-25 x^{2}+144$.
17. $a^{4}-29 a^{2}+100=$?
18. $a^{4}-81=$?
19. $(2 m+3)^{2}-36=$?
20. $(2 m-5)^{2}-25 m^{2}=$?
21. $(2 m-5)^{2}-(2 m+5)^{2}=$?
22. $\left(4 x+\frac{1}{4}\right)^{2}=$?
23. Factor $4 x^{2}+x+\frac{1}{4}$.
24. $\left(\frac{2 x+1}{4}+\frac{4}{2 x+1}\right)^{2}=$?
25. $\left(\frac{x+1}{5}+\frac{5}{x+1}\right)^{2}=$?
26. The area of a rectangle is $x^{2}+7 x+12$. Find its dimensions when $x=4^{\prime \prime}$.
27. Find the dimensions of a rectangle whose area is $4 x^{2}-169 y^{2}$.
28. Find the dimensions of a rectangle whose area is $225 a^{2}-289 b^{2}$.
29. Find the dimensions of a rectangle whose area is

$$
x^{2}+(3 m+4 a) x+12 m a .
$$

What are its dimensions when $x=4^{\prime \prime}, m=1^{\prime \prime}, a=1^{\prime \prime}$? How does this rectangle compare with that in example 27 ?
31. Compare the adjacent sides in a rectangle whose area is

$$
25 x^{2}-40 x y+16 y^{2}
$$

32. Factor $9 x^{2}+42 x c d+49 c^{2} d^{2}$.
33. Factor $4 c^{2}-256 c^{4} d^{2} m^{2}$.
34. $15 x^{2}+29 x-14$.

In working examples under Type V, it is not necessary to carry out all the steps indicated in $\S 157$.

$$
\begin{aligned}
\left(15 x^{2}\right)(-14) & =-210 x^{2} \\
-210 x^{2} & =(35 x)(-6 x)
\end{aligned}
$$

Connect either of these factors with $15 x^{2}$; for example,

$$
15 x^{2}+35 x
$$

Factor this expression, $5 x(3 x+7)$.
Then, $(3 x+7)$ is one factor of $15 x^{2}+29 x-14,5 x$ is the first term of the other factor. The second term of the second factor is formed by dividing -14 by +7 .

The written work would appear as follows:
Factor $15 x^{2}+29 x-14$.

$$
\begin{aligned}
\left(15 x^{2}\right)(-14) & =-210 x^{2}, \\
-210 x^{2} & =(35 x)(-6 x), \\
15 x^{2}+35 x & =(3 x+7)(5 x), \\
15 x^{2}+29 x-14 & =(3 x+7)(5 x-2) .
\end{aligned}
$$

Factor :
35. $6 y^{2}+14 y-12$.
36. $10 m^{2}+m-21$.
37. $40 c^{2}+7 c-3=0$.
38. $6 x^{2}+x-126=0$.
39. $10 x^{2}+51 c x+56 c^{2}$.
40. $36 x^{2}-181 x+225=0$.
41. $30 x^{2}-27 x-21$.
42. $96 y^{2}-24 y-12$.
43. $36 x^{2}-12 x-120$.
44. $48 z^{2}+50 z+2$.
45. $31 a^{2}-151 a-20$.
46. $48 a^{2}+128 a-48$.
47. $25 a^{2}+95 a-20$.
48. $64 m^{2}-40 m+4$.

Solutions by Factoring

161. If the product of two or more finite numbers is zero, at least one of the numbers is zero.

That is, if $(x-3)(x-4)=0$, either $x-3$ or $x-4$ must be zero. If $x-3=0, x=3$. If $x-4=0, x=4$.

Such conditions give a method for solving equations which are higher than the first degree.

Ex. Solve $x^{2}-4 x=21$.
Transposing so that the second member of the equation is 0 , we have,

$$
x^{2}-4 x-21=0
$$

Factoring by Type III,

$$
(x-7)(x+3)=0 .
$$

Placing the first factor equal to zero, we have,

$$
x=7 .
$$

Placing the second factor equal to zero,

$$
x=-3 .
$$

These should be the roots of the original equation.
Checking for $x=7$,

$$
\begin{aligned}
7^{2}-4 \cdot 7-21 & =0 \\
49-28-21 & =0 . \\
(-3)^{2}-4(-3)-21 & =0 . \\
9 & +12-21=0 .
\end{aligned}
$$

For $x=-3$,
Both roots satisfy the equation.

EXERCISE 52

Find value:

1. $24(x+5)(x-3)(x+1)$, when $x=0$.
2. $16(x-1)(x+2)(x+8)$, when $x=1$.
3. $1625(x+3)(x+5)(x-16)$, when $x=-5$.

Solve by factoring. (Check each root.)
4. $x^{2}-7 x+12=0$.
11. $v^{2}-8 v=-16$.
5. $y^{2}+5 y+6=0$.
12. $x^{2}-x=12$.
6. $y^{2}+7 y+6=0$.
13. $m^{2}-4 m=0$.
7. $x^{2}-81=0$.
14. $48 x^{2}-12 x=0$.
8. $x^{3}-9 x^{2}-9 x+81=0$.
15. $y^{2}-11 y-102=0$.
9. $4 x^{2}+12 x=-9$.
16. $9 z^{2}-30 z+25=0$.
10. $y^{3}-y^{2}-9 y+9=0$.
17. $16 x^{2}+42 x=-5$.
18. $(2 a+7) a^{2}-(2 a+7) 4 a+(2 a+7) 4=0$.
19. $\left(x^{2}-16\right) 4 x^{2}-\left(x^{2}-16\right) 28 x+\left(x^{2}-16\right) 49=0$.
20. $\left(25 z^{2}-225\right)\left(49 z^{2}-289\right)=0$.
21. How many roots to a first degree equation? second degree? third degree? nth degree?

REVIEW

Factor:

1. $x^{4}-25$.
2. $x^{2}-11 x+30$.
3. $27 x^{6}-a^{3} x^{3}$.
4. $b^{4}+49 a^{2}+14 a b^{2}$.
5. $4 a^{2}-7 c a^{2}-4 d^{2}+7 c d$.
6. $x^{2}-17 x+72$.
7. $x^{2}+16 c^{2}-8 c x$.
8. $2 m a-m b+6 a-3 b$.
9. $c a+2 c h-5 b a-10 b h$.
10. $5 b x-10 b+4 d x-8 d$.
11. $24 b^{2}+37 b-72$.
12. $a^{4}+15 a^{2}-100$.
13. $16 x^{2} b^{2}+24 x b+36 b^{3}$.
14. $64+8$. Treat as a binomial.
15. $9 x^{2}+9 x+2$.
16. $121 y^{4}-81 x^{2}$.
17. $6 \alpha^{2}-\alpha-2$.
18. $b^{2}+3 b-154$.
19. $k^{2}+26 k+133$.
20. $5 m^{2}-26 m-24$.
21. $a^{2}-19 a+78$.
22. $5 a^{4}+9 a^{2}-18$.
23. $1-125 m^{3}$.
24. $x^{2}+y^{2}-2 x y-4$.
25. $5 x y-3 x^{2} y+4 x^{3} y$.
26. $x^{4}-30 x^{2} y+225 y^{2}$.
27. $4 x^{2}+16 x+15$.
28. $9-\left(x^{2}-2 x y+y^{2}\right)$.
29. $28 x^{2}+17 x-3$.
30. $125 a^{6}+b^{9}$.
31. $8 a^{2}+20 a b+4 a c$.
32. $9 a^{8}+30 a^{4}+25$.
33. $a^{2}-17 a+42$.
34. $2 a^{2}+21 a+55$.
35. $8 x^{2}-10 x-33$.
36. $36+12+1$. Treat as a trinomial.
37. $12 b^{2}-47 b-65$.
38. $49 x^{2}-21 x-10$.
39. $9 z^{2}+48 z+64$.
40. $84 y^{6}+4 y^{3} z-42 y^{3} z^{2}-2 z^{3}$.
41. $729 v^{2}-529 u^{4}$.
42. $625 z^{4}-216 w^{4}$.
43. $x^{2}-2 x-255$.
44. $x^{2}-2 x-143$.
45. $8 x^{3}-12 x^{2}-10 x+15$.
46. $121 a^{4}-132 a^{2} b+36 b^{2}$.
47. $10 x^{2}+49 x-33$.
48. $729 a^{8}-841$.
49. $2 a x^{4}+4 a x^{3}-70 a x^{2}$.
50. $169 a^{2}+390 a b+225 b^{2}$.
51. $y^{6}-64$.
52. $6 x^{4}+162 x$.
53. $4 x^{2}+30 x+50$.
54. $2 x^{2}-5 x-25$.
55. $49 x^{4}+45 x^{2} y^{2}+25 y^{4}$.
56. $x^{2}+6 x-247$.
57. $70 x y-98 y^{2}-140 y z$.
58. $x^{3}-x^{2}+x-1$.
59. $9 a^{2}+30 a+25$.
60. $2 a n-4 n^{2}$.
61. $4 a^{3}-6$.
62. $x^{2}+x-6$.
63. $x^{2}-x-6$.
64. $x^{2}-7 x+6$.
65. $x^{2} z^{2}+12 x z-13$.
66. $18 x^{2}-3 x y-45 y^{2}$.
67. $a^{4}-b^{4}$.
68. $6 x^{2}-41 x-56$.
69. $75 a^{2} b^{2}-108 c^{2} d^{4}$.
70. $x^{2}-2 x y+y^{2}-z^{2}$.
71. $x^{3}-x^{2}-9 x+9$.
72. $30 a^{2}-89 a+35$.
73. $40+2 b-2 b^{2}$.
74. $5 a^{4} x^{2}-4 a^{2} x z-96 z^{2}$.
75. $4 x^{2}-x y-3 y^{2}$.

Supplemental Applied Mathematics

1. A 10 -inch steel pipe is $10.19^{\prime \prime}$ inside diameter, $10.75^{\prime \prime}$ outside diameter. Find weight per lineal foot.
2. A 9 -inch pipe is $8.937^{\prime \prime}$ inside diameter and $9.625^{\prime \prime}$ outside diameter. Find weight per lineal foot.
3. A steam pipe is $12.750^{\prime \prime}$ outside diameter and is made of steel $\frac{3}{8}{ }^{\prime \prime}$ thick. Find. the inside diameter.
4. The inside diameter of a 2-inch pipe is $2.067^{\prime \prime}$. If water is forced through this pipe at the rate of 10^{\prime} per second, how many gallons can the pipe deliver per hour?
5. A 6 -inch main, inside diameter $6.065^{\prime \prime}$, in the same system as the 2 -inch main above would deliver how many gallons per hour? Could you use the result obtained in example 4 in solving this problem, and have a fairly accurate result?
6. A pump delivers 23.5 gallons of water per stroke and is set for 16 strokes per minute. What weight of water is delivered per hour? (Water weighs $62 \frac{1}{2}$ pounds per cubic foot.)
7. A single cylinder pump $3 \frac{1}{2}^{\prime \prime}$ in diameter and 6 " stroke makes 22 strokes per minute. What is the discharge in gallons per hour?
8. A technical school needs 75,000 sheets of paper $8 \frac{1_{4}^{\prime \prime}}{} \times 10 \frac{1^{\prime \prime}}{}$. The stock is $17^{\prime \prime} \times 22^{\prime \prime}, 16$ pounds to the ream of 500 sheets, and costs $6 \frac{3}{4} \phi$ per pound. How many reams must be ordered and what is the cost? (This is a problem in mental arithmetic.)
9. 30,000 cards $5^{\prime \prime} \times 4^{\prime \prime}$ are to be cut from stock $17^{\prime \prime} \times 20 \frac{1^{\prime \prime}}{}$. Weight 30 pounds to ream, price 12ϕ per pound. How much stock was bought? What did it cost? Does it make any difference which way the stock is cut?
10. In a fuel test 100 pounds of coke was found to contain 6.01 pounds of ash and .583 pound of sulphur. The balance was carbon. What per cent of carbon was there?
11. Air is .001276 times as heavy as water. What is the weight of the air in your classroom?
12. If a body falls freely in space, the distance fallen is equal to $\frac{1}{2} g$ times the square of the time in seconds, where g is the force of gravity (32.15 feet).

The equation for this law is usually written

$$
s=\frac{1}{2} g t^{2} \text {, where } s \text { is the distance in feet. }
$$

A stone dropped into a cañon is seen to strike the water at the bottom of the cañon in 8 seconds. How deep is the cañon?
13. A stone dropped over a precipice fell for 10 seconds before striking the ground. How far did it fall ?
14. An aëroplane was sailing 1000 feet above the ground when one of the officers dropped a 120 lb . bomb overboard. How long did it take the bomb to reach the ground?
15. 56 hurdles 5 feet long just reach across a field. How many hurdles 4 feet long would be needed ?
16. For bronze bearings the Pennsylvania Railroad uses the following alloy, 77% copper, 8% tin, 15% lead. How many pounds of copper, tin and lead are used in making 900 pounds of bearings?
17. In one lot of 402 castings, 24 were spoiled, in a second lot of 500 castings, 38 were spoiled, in a third lot of 321,22 were spoiled. In which lot was the largest percentage of loss due to spoiled castings ?
18. In testing our shop drive, 9.24 horse-power went to the lathes and .75 horse-power went to the grindstone. The motor delivered 11.2 horse-power. What per cent of the power went to the belting and shafts?
19. My competitor and I handle hardware. For the same set of articles my competitors' prices are $\$ 3, \$ 3.30, \$ 3.55$ and $\$ 3.70$. His trade discounts are $25 \%, 7 \frac{1}{2}, 5$ and 2. My list prices for the same set are $\$ 6.10, \$ 6.70, \$ 7.20$ and $\$ 7.50$ and my trade discount is $60 \%, 7 \frac{1}{2}, 7 \frac{1}{2}, 5$ and 2 . In making a bid how do the net prices compare?
20. Three men can set up a line shaft in 8 days. How many men can set up the same shaft in 3 days?
21. Fourteen men are at work installing the machinery in a shop. They work for 8 days and finish half the work. The work must be completed in 5 more days. How many men must be added?
22. 200 men were completing the work on the Technical High School. The job had to be completed Oct. 5. On Oct. 1, the contractor found that there were still 500 days' work to be done. How many men could he lay off and finish the job on time?
23. One cup ground coffee makes 6 cups boiled. $\frac{3}{4}$ cup boiled coffee serves 1 person. How many level tablespoonfuls of ground coffee should be used for each person?
24. If coffee costs 35ϕ per pound and there are $4 \frac{1}{3}$ cups per pound, find cost of enough beverage for one person.
25. For filtered coffee $\frac{2}{3}$ cup is used with 5 cups water. Find difference in cost of enough boiled and filtered coffee to serve 6 portions.
26. To clear 1 quart coffee, $\frac{1}{3}$ white of egg or several egg shells may be used. It takes 11 yolks or 9 whites of eggs to measure 1 cup. Assuming the yolks can be used for other purposes, eggs selling at $30 \not \subset$ per dozen, and 1 quart coffee used daily, how much can be saved in a month by using egg shells to clear the coffee?
27. Tea made from Ceylon tea leaves contained 8.6% tannic acid after five minutes' infusion; 10.88% tannic acid after thirty minutes' infusion. Find the difference in the quantity of tannic acid extracted from tea leaves steeped for 5 and 10 minutes during a month, if $\frac{1}{2}$ pint tea is used daily and 1 pint of the beverage weighs 1 pound.
28. A tea contained 6.8% tannic acid after five minutes' infusion and 16.3% tannic acid after forty minutes' infusion. Find the difference in the quantity of tannic acid extracted from the tea leaves after steeping 5 and 40 minutes during a month if $\frac{3}{8}$ pint tea is used daily.
29. Green tea leaves contain 10.64% tannic acid ; black tea leaves contain 4.89% tannic acid; 1 cup tea leaves weighs 2 ounces. If 1 teaspoonful tea leaves is used in making a cup of tea each day, find the difference in the quantities of tannic acid extracted from black and green tea during a month. One cup tea leaves measures 48 teaspoonfuls.
30. A house-boat is 26^{\prime} long, 12^{\prime} wide, 10^{\prime} high, and weighs 6 tons. To what depth will it sink in the water, that is, how much water does it draw?

CHAPTER IX

Fractions

162. A fraction is an indicated division. It is written in the form $\frac{a}{b}$, the number above the line being the numerator or dividend, the number below the line being the denominator or divisor.

A fraction may be positive or negative (see Chapter III), the sign + indicating that the quotient is to be added, the sign indicating that the quotient is to be subtracted.

Thus, $-\frac{-4}{2}$ means that the quotient arising from $-4 \div 2$ must be subtracted, the result is +2 .

We see that three signs are involved in every fraction. The sign of the numerator, the sign of the denominator, and the sign of the fraction. Any two of these signs may be changed without changing the value of the fraction.

Thus,

$$
+\frac{4}{2}=-\frac{-4}{2}=\frac{-4}{-2}=-\frac{4}{-2}
$$

And

$$
\frac{a-3}{a+6}=-\frac{a-3}{-a-6}=\frac{-a+3}{-a-6}=-\frac{-a+3}{a+6}=-\frac{3-a}{a+6} .
$$

Such changes often simplify operations with fractions.

Principles of Fractions

163. The following principles govern operations in fractions:
164. Multiplying the numerator of a fraction by a number multiplies the fraction.

This depends on axiom $3, \S 23$,

$$
\frac{D}{d}=Q
$$

Multiply both sides of the equation by some number, 5 , we have,
or

$$
\begin{gathered}
5\left(\frac{D}{d}\right)=5 Q \\
\frac{5 D}{d}=5 Q
\end{gathered}
$$

2. Multiplying the denominator of a fraction by a number divides the fraction.

The pupil may show that this principle depends on axiom 3.
3. Multiplying both numerator and denominator of a fraction by the same number does not change its value. Why? Axioms?
4. Dividing the numerator of a fraction by a number divides the fraction.

$$
\frac{D}{d}=Q . \quad \text { Then } \frac{\frac{D}{5}}{d}=\frac{Q}{5} . \quad \text { The pupil may explain use of axioms. }
$$

5. Dividing the denominator multiplies the fraction.

The pupil may illustrate.
6. Dividing both numerator and denominator by the same number does not change the value of the fraction. Explain.

Reduction

164. Principles 3 and 6 are involved in the reduction of fractions, 3 in reduction to higher terms, 6 in reduction to lower terms.

Ex. 1. Reduce $\frac{5}{6}$ to higher terms.

$$
\frac{5}{6} \cdot \frac{4}{4}=\frac{20}{24} .
$$

Ex. 2. Reduce $\frac{5}{6}$ to 48 ths.

$$
\begin{aligned}
& 6=2 \cdot 3 ; 48=2^{4} \cdot 3 \\
& 2 \cdot 3 \lcm{2^{4} \cdot 3} \\
& 2^{3}
\end{aligned}
$$

Hence, multiplying both numerator and denominator by 2^{3} or 8 , we have,

$$
\frac{5}{6} \cdot \frac{8}{8}=\frac{40}{48} .
$$

Ex. 3. Reduce $\frac{a-3}{a+6}$ to a fraction whose denominator is $a^{2}-a-42$.

$$
\begin{gathered}
a^{2}-a-42=(a+6)(a-7) . \\
a+6)(a+6)(a-7) \\
a-7
\end{gathered}
$$

Hence, multiplying both numerator and denominator by $a-7$, we have,

$$
\frac{a-3}{a+6}=\frac{(a-3)(a-7)}{(a+6)(a-7)}=\frac{a^{2}-10 a+21}{a^{2}-a-42} .
$$

EXERCISE 53

1. Reduce to 144 ths : $\frac{5}{18}, \frac{1}{6}, \frac{7}{3}, \frac{9}{12}$.
2. Reduce to 512 ths : $\frac{3}{16}, \frac{5}{32}, \frac{1}{64}$.
3. Reduce to 19 ths : $\frac{1}{6}, \frac{1}{5}, \frac{1}{4}$.
4. Reduce to fractions whose denominator is $a^{2}-a-12$.

$$
\frac{a+4}{a+3}, \quad \frac{a-7}{a-4}
$$

5. Reduce to $\left(4 x^{2}+12 x+9\right)$ ths $: \frac{2 x-3}{2 x+3}$.
6. Reduce to $\left(4 x^{2}-12 x+9\right)$ ths $: \frac{2 x+3}{2 x-3}$.
7. Reduce to $(x-5)(x+5)(x+1)$ ths :

$$
\frac{2}{x^{2}-25} ; \frac{4 x-1}{x^{2}+6 x+5} ; \frac{2 x+7}{x^{2}-4 x-5} ; \frac{1}{x+1} .
$$

8. Reduce to $(4 x-1)(2 x+5)(3 x-1)$ ths :
$\frac{-4}{8 x^{2}+18 x-5} ; \frac{3 x+2}{12 x^{2}-7 x+1} ;-\frac{8 x+5}{6 x^{2}+13 x-5} ;-\frac{-(x+2)}{12 x^{2}-7 x+1}$.
9. Reduce to $\left(4 x^{2}-9\right)$ ths:

$$
\begin{equation*}
-\frac{5 x+2}{2 x+3} ; \frac{2 x+4}{2 x+3} ; \frac{5 x+2}{-2 x+3} . \tag{§162.}
\end{equation*}
$$

10. Reduce to $14\left(x^{2}-x-72\right)$ ths:

$$
\frac{8 x-1}{7(x-9)} ; \frac{-5}{2(x+8)} ; \frac{11}{14}
$$

165. Reduction to lower terms.

Ex. 1. Reduce $\frac{36}{5} \frac{6}{4}$ to lower terms.

$$
\frac{36}{54}=\frac{2^{2} \cdot 3^{2}}{2 \cdot 3^{3}} .
$$

By inspection we see that 2.3^{2} are factors common to both numerator and denominator. Dividing both numerator and denominator by $2 \cdot 3^{2}$ (principle 6), we have

$$
\frac{36}{54}=2 \cdot 3^{2} \left\lvert\, \frac{2^{2} \cdot 3^{2}}{2 \cdot 3^{3}}=\frac{2}{3} .^{*}\right.
$$

Ex. 2. Reduce $\frac{a^{2}-a-12}{a^{2}-9 a+20}$ to lower terms.

$$
\frac{a^{2}-a-12}{a^{2}-9 a+20}=\frac{(a-4)(a+3)}{(a-4)(a-5)}
$$

Dividing both numerator and denominator by the common factor $a-4$, we have

$$
\frac{a^{2}-a-12}{a^{2}-9 a+20}=(a-4) \left\lvert\, \frac{(a-4)(a+3)}{(a-4)(a-5)}=\frac{a+3}{a-5} .\right.
$$

EXERCISE 54

Reduce to lower terms:

1. $\frac{38}{361}$.
2. $\frac{54}{289}$.
3. $\frac{80}{144}$.
4. $\frac{64}{512}$.
5. $\frac{36}{216}$.
6. $\frac{72}{256}$.
7. $\frac{34}{102}$.
8. $\frac{85}{119}$.
9. $\frac{95}{133}$.
10. $\frac{54}{324}$.
11. $\frac{a^{2}-9}{a^{2}-6 a+9}$.
12. $\frac{m+1}{m^{2}+1}$.
13. $\frac{z^{2}+3 z-10}{2 z^{2}+3 z-14}$.
14. $\frac{m^{2}+2 m+1}{m^{2}-1}$.
15. $\frac{m^{4}-64}{m^{4}-16 m^{2}+64}$.
16. $\frac{8 c^{3}-27 d^{3}}{4 c^{2}-9 d^{2}}$.
17. $\frac{4 c^{2}+4 c d-15 d^{2}}{8 c^{3}-27 d^{3}}$.
18. $\frac{8 c^{3}-27 d^{3}}{12 c^{3}+18 c^{2} d+27 c d^{2}}$.

* The bar | as here used indicates division of both numerator and denominator of the fraction.

19. $\frac{12 c^{3}+12 c^{2} d-45 c d^{2}}{12 c^{3}+48 c^{2} d+45 c d^{2}}$. 20. $\frac{9 y^{2}+18 y z-16 z^{2}}{18 y^{3}+36 y^{2} z-32 y z^{2}}$.
20. $\frac{9 y^{2}-12 y z+4 z^{2}}{9 y^{2}-4 z^{2}}$.
21.

$$
\frac{27 y^{3}-8 z^{3}}{\left(18 y^{2}-12 y z\right)\left(9 y^{2} z+6 y z^{2}+4 z^{3}\right)}
$$

23.

$$
\frac{6 y^{2}-13 y z+6 z^{2}}{3 y^{2}+19 y z-14 z^{2}}
$$

$$
\frac{(y+7 z) 9 y^{2}-(y+7 z) 12 y z+(y+7 z) 4 z^{2}}{3 y^{2}+19 y z-14 z^{2}}
$$

25. $\frac{(3 y-2 z) 9 y^{2}+18 y z(3 y-2 z)-(3 y-2 z) 16 z^{2}}{\left(27 y^{4}-8 y z^{3}\right)(3 y-2 z)^{2}}$.

Multiples

166. A common multiple of two or more numbers is a multiple of each of them, e.g., 48 is a common multiple of 12 and 16. A common multiple must contain all the factors of the numbers involved.

Ex. 1. Find a common multiple of 18 and 24.

$$
\begin{aligned}
& 18=2 \cdot 3^{2} . \\
& 24=2^{3} \cdot 3 .
\end{aligned}
$$

The different factors concerned are 2 and 3 .
The common multiple of these numbers must be made up of the product of 2 at least three times as a factor and 3 at least twice as a factor. That is, a number cannot contain 18 an integral number of times unless it has as factors $2 \cdot 3^{2}$. It cannot contain 24 an integral number of times unless it has as factors $2^{3} .3$. To contain both 18 and 24 it must at least have the factors $2^{3} \cdot 3^{2}$. The common multiples of 18 and 24 are, therefore,
or $72, \quad 144, \quad 216, \quad 312, \quad 360$, etc.
167. The lowest common multiple contains all the factors of the numbers involved the least number of times.

To find the l. c. m., form a product of all the different factors of the given numbers, and give to each factor the highest exponent found in any of the numbers.

Ex. 1. Find the l. c. m. of $45,48,54$.

$$
\begin{aligned}
& 45=3^{2} \cdot 5 . \\
& 54=2 \cdot 3^{3} \\
& 48=2^{4} \cdot 3 .
\end{aligned}
$$

The l. c. m. is, therefore,

$$
2^{4} \cdot 3^{2} \cdot 5
$$

Ex. 2. Find the l.c.m. of $a^{2}-9, a^{2}-6 a+9, a^{2}+3 a-18$.

$$
\begin{aligned}
a^{2}-9 & =(a+3)(a-3) . \\
a^{2}-6 a+9 & =(a-3)^{2} . \\
a^{2}+3 a-18 & =(a-3)(a+6) .
\end{aligned}
$$

The l.c.m. is

$$
(a-3)^{2}(a+3)(a+6)
$$

How many times will this l. c. m. contain $a^{2}+3 a-18$?
Ex. 3. Find the l. c. m. of $x-1, x^{2}+9, x-5$.
These numbers are all prime, their l. c.m. is their product, or

$$
(x-1)\left(x^{2}+9\right)(x-5)
$$

EXERCISE 55

Find l.c.m. :

1. $n^{3}+2 n^{2}, n^{3}-4 n$.
2. $a^{2}-9, a^{2}-a-12$.
3. $72,48,27$.
4. $120,18,30$.
5. $20, x^{2}-16,3 x^{2}-6 x-24$.
6. $15,3 x^{2}-13 x-10, x^{2}-25,12$.
7. $4 x^{2}-1,12 x^{2}+12 x+3,4 x^{2}-4 x+1$.
8. $z^{3}-27, z^{2}+3 z+9, z^{2}-9$.
9. $m^{2}+3 m-10,2 m^{2}+7 m-15,2 m^{2}-7 m+6$.
10. $x+3, x-3, x^{2}-6$.

Addition

168. Fractions, like other numbers, must be of the same denomination before they can be added. To reduce fractions to
the same denomination, the lowest common multiple of their denominators must be found, and principle 3 (§ 163) employed.

Ex. 1. Add $\frac{7}{24}, \frac{5}{18}, \frac{3}{16}$.
By $\S 167$, the l. c. m. of $24,18,16$ is $2^{4} .3^{2}$.
In such work as reducing to l. c. d., always divide by factors.

$$
2^{4} \cdot 3^{2} \div 24=2 \cdot 3
$$

Multiplying 7 and 24 by $2 \cdot 3$, we have

Similarly,

$$
\frac{7}{24}=\frac{7 \cdot 2 \cdot 3}{24 \cdot 2 \cdot 3}=\frac{42}{144}
$$

$$
\frac{5}{18}=\frac{5 \cdot 2^{3}}{18 \cdot 2^{3}}=\frac{40}{144},
$$

and

$$
\frac{3}{16}=\frac{3 \cdot 3^{2}}{16 \cdot 3^{2}}=\frac{27}{144} .
$$

Then,

$$
\frac{7}{24}+\frac{5}{18}+\frac{3}{16}=\frac{42}{144}+\frac{40}{144}+\frac{27}{144}=\frac{109}{144} .
$$

Ex. 2. Find the sum of

$$
\begin{aligned}
& \frac{a+2}{a^{2}-25}+\frac{a}{a^{2}-10 a+25}-\frac{2 a-1}{3\left(a^{2}-2 a-15\right)} . \\
& a^{2}-25=(a+5)(a-5) . \\
& a^{2}-10 a+25=(a-5)^{2} . \\
& 3\left(a^{2}-2 a-15\right)=3(a-5)(a+3) . \\
& 1 . c . m .=3(a+5)(a+3)(a-5)^{2} . \\
& 3(a+5)(a+3)(a-5)^{2} \div\left(a^{2}-25\right)=3(a+3)(a-5) . \\
& \text { Then, } \begin{aligned}
& a+2 \\
& a^{2}-25=\frac{3(a+2)(a+3)(a-5)}{3(a+5)(a+3)(a-5)^{2}} . \\
& 3(a+5)(a+3)(a-5)^{2} \div\left(a^{2}-10 a\right.+25)=3(a+5)(a+3), \\
& \text { and } \frac{a}{a^{2}-10 a+25}
\end{aligned}=\frac{3 a(a+5)(a+3)}{3(a+5)(a+3)(a-5)^{2}}, \\
& \text { and } \frac{2 a-1}{3\left(a^{2}-2 a-15\right)}
\end{aligned}=\frac{(2 a-1)(a+5)(a-5)}{3(a+5)(a+3)(a-5)^{2}} .
$$

Hence, $\quad \frac{a+2}{a^{2}-25}+\frac{a}{a^{2}-10 a+25}-\frac{2 a-1}{3\left(a^{2}-2 a-15\right)}$

$$
\begin{aligned}
& =\frac{3(a+2)(a+3)(a-5)}{3(a+5)(a+3)(a-5)^{2}}+\frac{3 a(a+5)(a+3)}{3(a+5)(a+3)(a-5)^{2}} \\
& -\frac{(2 a-1)(a+5)(a-5)}{3(a+5)(a+3)(a-5)^{2}} \\
& =\frac{3 a^{3}-57 a-90+3 a^{3}+24 a^{2}+45 a-2 a^{3}+a^{2}+50 a-25}{3(a+5)(a+3)(a-5)^{2}} .
\end{aligned}
$$

(Note the change of sign in the last numerator. Why? Always watcib for such negative numerators).

$$
=\frac{4 a^{3}+25 a^{2}+38 a-115}{3(a+5)(a+3)(a-5)^{2}} .
$$

Ex. 3. Find the sum of $\frac{1}{x-2}-\frac{2}{x-3}+\frac{3}{x-4}$.

1. c. $\mathrm{m} .=(x-2)(x-3)(x-4)$.

Then, $\frac{1}{x-2}-\frac{2}{x-3}+\frac{3}{x-4}$

$$
\begin{aligned}
& =\frac{1(x-3)(x-4)-2(x-2)(x-4)+3(x-2)}{(x-2)(x-3)(x-4)}(x-3) \\
& =\frac{x^{2}-7 x+12-2 x^{2}+12 x-16+3 x^{2}-15 x+6}{(x-2)(x-3)(x-4)} \\
& =\frac{2 x^{2}-10 x+2}{(x-2)(x-3)(x-4)} .
\end{aligned}
$$

EXERCISE 56

Find the following sums:

1. $\frac{1}{x+2}+\frac{1}{x+5}$.
2. $\frac{a}{a+b}+\frac{b}{a-b}$.
3. $\frac{1}{x+2}-\frac{1}{x+5}$.
4. $\frac{c+1}{c-4}-\frac{c-1}{c+4}$.
5. $\frac{x-1}{x^{2}-4}+\frac{x+1}{x+2}$.
6. $\frac{9}{c^{2}-25}+\frac{8}{c^{2}+5 c}$.
7. $\frac{x+2}{x^{2}-9}+\frac{x+3}{x^{2}-6 x+9}$.
8. $\frac{m}{m+1}+\frac{m}{m-1}+m$.
9. $\frac{5}{x^{2}-x-12}+\frac{5}{x^{2}-16}-\frac{5}{x^{2}+7 x+12}$.
10. $\frac{5}{4 x-4}-\frac{7}{6 x+6}$.
11. $\frac{2 x-1}{x-2}-\frac{2 x-5}{x-4}$.
12.

$\frac{y}{x-y}-\frac{x}{x+y}+\frac{x y}{x^{2}+y^{2}}$
13.

$$
\frac{x}{1+x}+\frac{x}{1-x}+\frac{x^{2}}{x^{2}-1}
$$

14. $\frac{a}{a-b}+\frac{-b}{b+a}-1$.
15.

$$
\frac{2 a}{a^{2}-b^{2}}-\frac{1}{a+b}-\frac{1}{b-a}
$$

16.

$$
\frac{x}{1+x}+\frac{3 x}{x-1}-\frac{6 x^{2}}{1-x^{2}}
$$

17.

$$
\frac{x}{1+x}+\frac{3 x}{x-1}-\frac{6 x^{2}}{1-x^{2}} .
$$

18. $\frac{3+2 y}{2-y}+\frac{16 y-y^{2}}{y^{2}-4}-\frac{2-3 y}{2+y}$.
19. $-\frac{a+b}{b-a}-\frac{a-b}{a+b}$. 20. $1+\frac{(a-b)^{2}}{(a+b)^{2}}$.
20. $1-\frac{(a-b)^{2}}{(a+b)^{2}}$. 22. $\frac{a+b}{a-b}-\frac{a-b}{a+b}$.
21. $\frac{5(x+y)}{x^{2}+4 x y+3 y^{2}}-\frac{5(x-y)}{x^{2}+2 x y-3 y^{2}}$.
22. $\frac{1}{2 a+3}-\frac{1}{2 a-3}+\frac{6}{4 a^{2}+9}$.
23. $\frac{2 x+1}{2 x-1}-\frac{4+5 x}{1-2 x}$.
24.

$$
\frac{2 x+1}{2 x-1}-\frac{4+x}{1-4 x^{2}}+3
$$

27. $\frac{x^{2}+1}{x^{2}-1}+\frac{4 x}{x+3}=\frac{x^{3}+3 x^{2}+x+3+4 x^{2}-4 x}{\left(x^{2}-1\right)(x+3)}$

$$
=\frac{x^{3}+7 x^{2}-3 x+3}{x^{3}+3 x^{2}-x-3} .
$$

If the degree of the numerator is equal to or greater than that of the denominator, the fraction is improper, and may be reduced, as in arithmetic, by dividing the numerator by the denominator. Then

$$
\frac{x^{3}+7 x^{2}-3 x+3}{x^{3}+3 x^{2}-x-3}=1+\frac{4 x^{2}-2 x+6}{x^{3}+3 x^{2}-x-3} .
$$

Always reduce the result to its simplest form
28. $1+\frac{3}{x-1}+\frac{4}{x^{2}-1}$.
29. $\frac{a^{2}+1}{a^{2}+5}+\frac{a-3}{a+2}$.
30. $\frac{a+b}{a-b}+\frac{a-b}{a+b}$.
31. $\frac{5 y-3 c}{25 y^{2}-9}+\frac{5 y+3 c}{5 y-3}$.
32. $\frac{5 y-3 c}{25 y^{2}-9 c^{2}}+\frac{5 y+3 c}{5 y-3 c}$.
33. $\frac{2 c^{2}+7 c-4}{2 c^{2}+11 c-6}-\frac{4 c^{2}+8 c-5}{2 c^{2}+5 c-3}$.
34. $\frac{3 m^{2}+13 m-10}{3 m^{2}+17 m+10}+\frac{3 m^{2}+17 m+10}{3 m^{2}+13 m-10}$
35. $\frac{a^{2}-a-56}{a^{2}+14 a+49}-\frac{a^{2}-25}{a^{2}-2 a-35}$.
36. $\frac{2 a+2 b}{a-b}+\frac{2 a-2 b}{a+b}+\frac{8 a b}{a^{2}-b^{2}}$.
37. $\frac{a+b}{a-b}-\frac{a-b}{a+b}-\frac{4 a b}{a^{2}-b^{2}}$.
38. $\frac{3 c+5}{3 c-5}-\frac{9 c^{2}+25}{9 c^{2}-25}$.
39. $\frac{x-2}{x+2}+\frac{x+2}{x-2}-\frac{x^{2}-4}{x^{2}+4}$.
40. $\frac{x-3}{x^{2}-2 x-35}-\frac{x+5}{x^{2}-10 x+21}+\frac{x-7}{x^{2}+2 x-15}$.
41. $\frac{1}{c-2}-\frac{c}{c^{2}-4}+\frac{c^{2}}{c^{3}-8}$.

Express as a single fraction :
42. $4+\frac{x-5}{x+5}$.
43. $\frac{2 a^{2}-9}{a^{2}+9}+2$.
44. $\frac{a^{2}+9}{a^{2}-9}-1$.
45. $2+\frac{2}{x^{2}-25}+\frac{2}{5 x^{2}-125}$.
46. $\frac{11}{288}+\frac{17}{36}-\frac{85}{48}$.
47. $\frac{41}{204}-\frac{3}{125}+\frac{1}{51}$.
48. $\frac{1}{75}-\frac{1}{81}+\frac{a}{x}$.
49. $\frac{5 x}{76}+\frac{14 x}{95}-x$.
169. To reduce a fraction to a whole or mixed number principle 6 must be employed. We choose the denominator of the fraction as the number by which the numerator and denominator must be divided.

Ex. Reduce $\frac{5 x^{3}-x^{2}+4 x-6}{2 x^{2}-3 x+7}$ to a whole or mixed number.
Dividing both numerator and denominator by $2 x^{2}-3 x+7$,
we have

$$
\frac{5}{2} x+\frac{13}{4}-\frac{15 x+115}{4\left(2 x^{2}-3 x+7\right)} .
$$

This result is a mixed number, and the first two terms are integral.
170. An algebraic expression is integral if its denominator is numerical. That is, if its denominator is $1,2,3,4$, etc.

In the result of the example in $\S 169, \frac{5}{2} x$ and $\frac{13}{4}$ are integral algebraic expressions, though not integral arithmetic expressions.

EXERCISE 57

Reduce to whole or mixed numbers:

1. $\frac{4 x+1}{4 x-1}$.
2. $\frac{x^{2}+5 x+6}{x+2}$.
3. $\frac{x^{2}+5 x+6}{x-3}$.
4. $\frac{7 x^{2}-5 x+12}{3 x+1}$.
5. $\frac{x^{3}+5 x^{2}-7 x+9}{x^{2}+3 x-2}$.
6. $\frac{8 x^{3}+64 y^{3}}{2 x+4 y}$.
7. $\frac{x^{4}+81}{x+3}$.
8. $\frac{x+1}{x+2}+\frac{x+2}{x+3}+\frac{x+3}{x+4}$.
9. $\frac{x^{3}+3 x^{2}+3 x+1}{x^{2}+2 x+1}$.
(Reduce each fraction separately, then add the results.)
10. $\frac{x-1}{x-2}-\frac{x-2}{x-3}$.
(Reduce to mixed numbers, then combine.)
$11 \frac{x+4}{x+5}-\frac{x+5}{x+6}$.
11. $\frac{x+2}{x+3}+\frac{x+3}{x+4}-\frac{2 x+5}{x+2}$.

Multiplication

171. Multiplication of fractions involves principles 1 and 6,

Ex. 1. Multiply $\frac{18}{2} \frac{8}{5}$ by 5 .

$$
\begin{aligned}
& \frac{18}{25} \cdot 5=\frac{18 \cdot 5}{25} . \quad \text { (Never use cancellation.) } \\
& \frac{18 \cdot 5}{25}=5 \left\lvert\, \frac{18 \cdot 5}{25}=\frac{18}{5} .\right.
\end{aligned}
$$

Ex. 2. Multiply $\frac{18}{25}$ by 3 .

$$
\frac{18}{25} \cdot 3=\frac{18 \cdot 3}{25}=\frac{54}{25} .
$$

Ex. 3. Multiply $\frac{a+2}{a^{2}-a-12}$ by $a+4$.

$$
\frac{a+2}{(a-4)(a+3)} \cdot(a+4)=\frac{(a+2)(a+4)}{(a-4)(a+3)}=\frac{a^{2}+6 a+8}{a^{2}-a-12}
$$

Ex. 4. Multiply $\frac{a+2}{a^{2}-a-12}$ by $a-4$.

$$
\frac{a+2}{a^{2}-a-12} \cdot(a-4)=\frac{(a+2)(a-4)}{(a-4)(a+3)}=\frac{a+2}{a+3} . \quad \text { (Principle 6.) }
$$

Ex. 5. Multiply $\frac{5}{8}$ by $\frac{4}{15}$.

$$
\frac{5}{8} \cdot 4=\frac{5 \cdot 4}{8} .
$$

But our multiplier is $\frac{1}{15}$ of 4. Hence our product is

$$
\frac{5 \cdot 4}{8} \div 15 \text { or } \frac{5 \cdot 4}{8 \cdot 15}=\frac{1}{6} . \quad(\text { Principles } 2 \text { and } 6 .)
$$

EXERCISE 58

Simplify, using factoring :

1. $\frac{17}{196} \cdot 28$.
2. $\frac{35}{289} \cdot 51$.
3. $\frac{33}{361} \cdot 76$.
4. $\frac{x-1}{x^{2}-4} \cdot(x-2)$.
5. $\frac{a^{2}-5 a+6}{a^{2}-9} \cdot\left(a^{2}-9\right)$.
6. $\frac{m^{2}+6 m+8}{m^{2}+7 m+10} \cdot\left(m^{2}+5 m\right)$.
7. $\frac{15}{28} \cdot \frac{4}{2} \frac{2}{5}$.
8. $\frac{b^{2}+8 b}{4 b-1} \cdot \frac{16 b^{2}-8 b+1}{3 b+24}$.
9. $\frac{(a-2)^{2}}{(a+2)^{2}} \cdot \frac{\left(a^{2}+5 a+6\right)}{\left(a^{2}-5 a+6\right)}$.
10. $\frac{18 a^{2} b}{27 a b^{2}} \cdot \frac{12 a^{3} b^{2}}{25 b c^{2}} \cdot \frac{15 a c}{16 b}$.
11. $\frac{c+5}{c-8} \cdot \frac{c^{2}-10 c+16}{c^{2}-25}$.
12. $\frac{5 a^{3}}{7 b c} \cdot \frac{98 b^{3}}{125 a c} \cdot \frac{75 c^{3}}{28 a b}$.
13. $\frac{m^{2}+5 m+6}{m+5} \cdot \frac{m^{2}+7 m+10}{m^{2}+4 m+4} \cdot \frac{m+1}{m^{2}+4 m+3}$.
14. $\frac{10 c^{2}-21 c-10}{12 c^{2}+13 c+3} \cdot \frac{3 c^{2}-8 c-3}{2 c^{2}-c-10} \cdot \frac{4 c^{2}+11 c+6}{5 c^{2}-13 c-6}$.
15. $\left(\frac{c^{2}+7 c+6}{c^{2}-3 c-10}\right)\left(1-\frac{12 c+17}{c^{2}+8 c+12}\right)$.
16. $\left(\frac{a^{2}-b^{2}}{a^{2}+a b-2 b^{2}}\right)\left(1+\frac{4 a b}{a^{2}-2 a b+b^{2}}\right)$. 17. $\left(\frac{5}{7}\right)\left(1+\frac{7}{2}\right)$.
17. $\frac{x^{2}+x y+y^{2}}{x^{2}-81 y^{2}} \cdot \frac{x+9 y}{(x-y)\left(x^{2}+x y+y^{2}\right)}$.
18. $\left(1+\frac{x^{2}+x+1}{x}\right)\left(x+\frac{x}{x^{2}+2 x+1}\right)$.
19. $\left(\frac{x+3}{x+5}+\frac{x+5}{x+3}\right)\left(1+\frac{x^{2}+8 x+15}{x^{2}+6 x+9}\right)$.
20. $\frac{x+5}{x+3}+\frac{x+3}{x+5}\left(1+\frac{x^{2}+8 x+15}{x^{2}+6 x+9}\right)$.

Division

172. Division depends on principles 2 and 6.

Ex. 1. $\frac{9}{5} \div 3$.

$$
\frac{9}{5} \div 3=\frac{9}{5 \cdot 3}=\frac{3^{2}}{5 \cdot 3}=\frac{3}{5} .
$$

Ex. 2. Divide $\frac{x^{2}-1}{x^{2}-4}$ by $x-1$.

$$
\frac{x^{2}-1}{x^{2}-4} \div(x-1)=\frac{(x+1)(x-1)}{(x+2)(x-2)(x-1)}=\frac{x+1}{x^{2}-4}
$$

Ex. 3. Divide $\frac{7}{8}$ by $\frac{21}{12}$.

$$
\frac{7}{8} \div 21=\frac{7}{8 \cdot 21}
$$

But our divisor is $\frac{1}{12}$ th of 21 , hence our quotient is 12 times as large as though the divisor were 21. Hence,

$$
\frac{7}{8} \div \frac{21}{12}=\left(\frac{7}{8 \cdot 21}\right) 12 \text { or } \frac{7 \cdot 12}{8 \cdot 21}=\frac{7 \cdot 2^{2} \cdot 3}{2^{3} \cdot 3 \cdot 7}=\frac{1}{2} .
$$

What divisor was used to produce $\frac{1}{2}$ from $\frac{7 \cdot 2^{2} \cdot 3}{2^{3} \cdot 3 \cdot 7}$?
Therefore, to divide a fraction by a fraction invert the terms of the divisor and proceed as in multiplication.

EXERCISE 59

Simplify the following :

1. $\frac{14}{15} \div 7$.
2. $\frac{102}{105} \div(-17)$.
3. $-\frac{102}{105} \div\left(\frac{-17}{30}\right)$.
4. $\frac{-288\left(a-b^{2}\right)}{289\left(a^{2}-b\right)} \div \frac{36\left(a-b^{2}\right)^{2}}{51\left(a^{2}-b\right)^{2}}$.
5. $\frac{a^{2}-25}{a^{2}-9} \div \frac{a^{2}-8 a+15}{a^{2}-6 a+9}$.
6. $\frac{a^{2}-17 a+16}{a^{2}-5} \div 2(a-16)$.
7. $\frac{50 a^{2} b}{33 c^{3}} \div \frac{15 a b^{2}}{44 c^{4}}$.
8. $\frac{a-b}{a+b} \div \frac{a+b}{a-b}$.
9. $\frac{169(x+y)^{2}}{144(x-y)^{3}} \div \frac{13(x+y)}{18(x-y)^{4}}$.
10. $\frac{z^{3}-27}{z^{2}+9} \div \frac{z^{3}+3 z+9}{3 z^{3}+27 z}$.
11. $\frac{10 c^{2}+17 c+3}{2 c^{2}+13 c-7} \div \frac{2 c^{2}+17 c+21}{10 c^{2}-3 c-1}$.
12. $\frac{\frac{x^{2}+2 x-24}{x^{2}+10 x+21}}{\frac{x^{2}+12 x+36}{x^{2}+3 x-28}}$.
13. $\frac{1+\frac{x^{2}-4 a x+4 a^{2}}{8 a x}}{\frac{\left(x+2 a^{2}\right)}{4 a x}}$.
14. $\left(\frac{a^{2}+2 a b+b^{2}}{4 a b}-1\right) \div(a-b)$.
15.

$\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}$
16.

$$
\begin{aligned}
& \text { 16. } \frac{\frac{1}{x+y}-\frac{1}{x-y}}{\frac{1}{x+y}+\frac{1}{x-y}} \\
& \text { 18. } \\
& \frac{1+\frac{b}{c}}{1-\frac{b}{c}} \div \frac{b+c}{b-c}
\end{aligned}
$$

19. Divide $b-c$ by $c-b$.
20. $\frac{-x^{2}-y^{2}}{x^{2}+y^{2}} \div \frac{x+2 y}{x-2 y}$.

* Division written in this form is called a complex fraction.

$$
\begin{aligned}
& \text { 21. } \frac{1 i^{3}(x-y)^{3}}{(115)^{2}(x+y)^{2}} \div \frac{17^{2}(x-y)^{2}}{(115)^{2}\left(x^{2}+2 x y+y^{2}\right)} . \\
& \text { 22. } \frac{\frac{a^{2}}{b^{2}}+2+\frac{b^{2}}{a^{2}}}{\frac{b}{a}-\frac{a}{b}} \div \frac{\frac{a}{b}+\frac{b}{a}}{\frac{b^{2}}{a^{2}}-2+\frac{a^{2}}{b^{2}}} \text {. }
\end{aligned}
$$

23. Transform

$$
\frac{a-b}{a+b} \text { into } \frac{1-\frac{b}{a}}{1+\frac{b}{a}}
$$

24. Transform

$$
\frac{2 c+x}{2 c-x} \text { into } \frac{\frac{2 c}{x}+1}{\frac{2 c}{x}-1}
$$

Fractional Equations

173. Equations involving fractions are solved by first reducing to integral equations by means of principles of $\S 167$, and Axiom 3, then solving as in exercise 8.

Ex. 1. Solve $\frac{2 x+7}{x}=5-\frac{2}{x}$.
The l. c. m. is x (§ 167).
Multiplying both sides of the equation by x (Ax. 3),

$$
x\left(\frac{2 x+7}{x}\right)=x\left(5-\frac{2}{x}\right) .
$$

We have,

$$
\begin{aligned}
2 x+7 & =5 x-2 \\
-3 x & =-9 \\
x & =3 . \quad(\text { Ax. } 4 .)
\end{aligned}
$$

Check this root by substituting in the given or original equation.

$$
\frac{2 \cdot 3+7}{3}=5-\frac{2}{3}, \quad \text { or } \frac{13}{3}=5-1 .
$$

Ex. 2. Solve

$$
\frac{x-1}{x-2}=\frac{x-2}{x-3}-\frac{1}{2}
$$

l. c. $m .=(x-2)(x-3) 2$.

Multiplying by l. c. m.

$$
2 x^{2}-8 x+6=2 x^{2}-8 x+8-x^{2}+5 x-6 .
$$

Transposing,

$$
x^{2}-5 x+4=0 .
$$

Factoring by Type III, $(x-4)(x-1)=0$.
Solving by § 161,

$$
x=4 \text { or } 1 .
$$

Check for $x=4$.

$$
\frac{4-1}{4-2}=\frac{4-2}{4-3}-\frac{1}{2}
$$

or

$$
\frac{3}{2}=\frac{2}{1}-\frac{1}{2} .
$$

For $x=1$,

$$
\frac{1-1}{1-2}=\frac{1-2}{1-3}-\frac{1}{2}
$$

or

$$
0=\frac{-1}{-2}-\frac{1}{2} .
$$

$$
\begin{aligned}
& \frac{1}{x-5}+\frac{1}{x+4}=\frac{3 x-6}{x^{2}-x-20} \\
& \text { 1. c. m. }=(x-5)(x+4)
\end{aligned}
$$

Multiplying by l. c. m.

$$
\begin{aligned}
x+4+x-5 & =3 x-6 . \\
-x & =-5 . \\
x & =5 .
\end{aligned}
$$

Transposing,

Check:

$$
\begin{aligned}
\frac{1}{5-5}+\frac{1}{5+4} & =\frac{3 \cdot 5-6}{5^{2}-5-20} \\
\frac{1}{0}+\frac{1}{9} & =\frac{9}{0} .
\end{aligned}
$$

But it is not allowable to divide by zero.
Hence 5 is not a root. The equation has no solution. It is not an equation of condition. It is simply a statement that two numbers are equal, $\S 14$, but the statement is not true.

EXERCISE 60

Solve and verify the following:

1. $\frac{2 x}{3}=8$.
2. $\quad \frac{5 x}{2}+1=3 x+\frac{1}{2}$.
3. $\frac{3}{2 x}=8$.
4. $\frac{1}{x-1}+\frac{1}{x-2}=\frac{3 x+2}{x^{2}-3 x+2}$.
5. $5=\frac{15}{x}$.
6. $\frac{1}{x-1}+\frac{1}{x-2}=\frac{5 x-9}{x^{2}-3 x+2}$.
7. $\frac{2 x}{5}+\frac{3 x+4}{2 x-1}=\frac{6 x-15}{15}$.
8. $6=\frac{11}{x}$.
(Unite the first and third fractions before clearing the equation of fractions.)
9. $\frac{18}{7}+\frac{10 x}{21}-\frac{6 x-3}{5}+\frac{5 x}{3}=2 x$.
10. $\frac{x+5}{4}-1=\frac{2 x+4}{9}$.
11. $\frac{5 x-12}{6}-\frac{4}{11}(2 x-7)=\frac{1}{3}$.
12. $\frac{5 x}{6}-\frac{1}{2}-\frac{3}{8}\left(x-\frac{5}{3}\right)+\frac{7}{32}=0$.
13. $\frac{3 x}{2}-\frac{x+1}{3}=\frac{2 x-1}{3}+\frac{1}{4}$.
14. $\frac{1}{2 x}-\frac{13}{24}=\frac{8}{3 x}$.
15. $\frac{2 x+4}{3}-3 \frac{1}{3}=\frac{x-3}{4}+\frac{x+2}{3}$ 。
16. $\frac{x}{2}-\frac{x+3}{5}=\frac{10-x}{4}-2$.
17. $\frac{x+3}{2}-\frac{x-2}{3}-\frac{1}{4}=\frac{3 x-5}{12}$.
18. $\frac{4 x-2}{11}+4-\frac{3 x-5}{13}=5$.
19. $\frac{5-3 x}{4}+\frac{3-5 x}{3}=\frac{3}{2}-\frac{5 x}{3}$.
20. $\frac{3+4 x}{4}+3 x+2 \frac{1}{2}=0$.
21. $\frac{n}{4}+4 n-\frac{5 n}{3}=\frac{3 n}{2}+26$.
22. $4 n-\frac{3 n+2}{3}=\frac{3 n+9}{4}+5$.
23. $\frac{3 x-1}{3}+3=\frac{x-4}{6}+\frac{3 x+5}{4}-2 \frac{1}{2}$ 。
24. $3-\frac{5-2 x}{5}=4-\frac{4-7 x}{10}+\frac{x+2}{2}$.
25. $\frac{17 a-5}{3}-\frac{10 a+2}{4}=\frac{5 a+7}{2}-5$.
26. $\frac{5 x+3}{2}+\frac{5(2 x+10)}{5}=2 x+24$.
27. $\frac{5(2 x+10)}{5}=2 x+24-\frac{5 x+3}{2}$.
28. $\frac{n}{2}+\frac{n}{3}+\frac{n}{4}+\frac{n}{10}=82$.
29. $13 b+7-\frac{9 b+8}{7}=\frac{2 b+9}{5}+38$.
30. $\frac{5 a+7}{2}-\frac{-2 a-4}{3}=\frac{3 a+9}{4}+5$.
31. $\frac{x-1}{2}-\frac{11-13 x}{12}=-\frac{x-2}{3}$.
32. $\frac{7}{10}-\frac{1}{4 y}=\frac{3}{5 y}-1$.
33. $13 x-\frac{8 x}{9}+\frac{7 x}{2}=15 x+22$.
34. $\frac{2 c}{5}-\frac{3 c}{2}=\frac{c}{2}-32$.
35. $\frac{y}{5}+\frac{3 y}{7}-\frac{y}{2}=9$.
36. $\frac{2 x}{5}+\frac{3 x+4}{2 x-1}=\frac{6 x+5}{15}$.
37. $\frac{x}{2}+\frac{5 a}{3}=4 x-2 a$. Solve for x.
38. $\frac{1}{x}+\frac{1}{a}=\frac{5}{x}+\frac{2}{a}$. Solve for x.
39. $\frac{4 y-1}{6}-\frac{2 y+7}{4 y-8}=\frac{8 y+7}{12}$.
40. $\frac{t+a}{t-a}=\frac{3}{4}$. Solve for t.
41. $\frac{t+a}{t-a}-\frac{t-a}{t+a}=\frac{t-3 a}{t^{2}-a^{2}}$.
42. $\frac{6 x^{2}+14 x+8}{3}=\frac{4(3 x-5)(x+4)}{6}+x$.
43. $\frac{x}{a+b}-\frac{x}{a-b}=\frac{a-b}{(a+b)^{2}}$.
44. $\frac{15 z^{2}+5}{9 z^{2}-25}=\frac{2 z}{5+3 z}-\frac{3 z}{5-3 z}$.
45. $\frac{3 m^{2}-2 m+1}{m+3}-\frac{3 m^{2}+m-2}{m-3}=\frac{-19 m^{2}+3 m+1}{m^{2}-9}$.
46. $\frac{m+a}{m-a}+\frac{2 m-a}{2 m+a}=2$. Solve for m.
47. $\frac{4 z+1}{3}-\frac{2 z+3}{5}-\frac{3 z-5}{10}=\frac{12 z-4}{15}$.
48. $\frac{3 k+a}{2 a}-\frac{5 k-a}{4 a}+\frac{2 k+3 a}{6 a}=\frac{7 k+2 a}{10 a}$. Solve for k.
49. $\frac{5 z+2 d^{2}}{7 d^{2}}-\frac{2 z+8 d^{2}}{z+9 d^{2}}=\frac{15 z-d^{2}}{21 d^{2}}$. Solve for z.
50. $\frac{1}{y-5}+\frac{1}{y-6}=\frac{5 y-26}{y^{2}-11 y+30}$.
51. $\frac{1}{m-5}+\frac{1}{m-6}=\frac{5 m-23}{m^{2}-11 m+30}$.
52. $\frac{6 k}{k+5}-\frac{2 k}{2-k}=\frac{8\left(k^{2}-4\right)}{k^{2}+3 k-10}$.
53. $\frac{1}{z-2}-\frac{1}{z-4}=\frac{1}{z-3}-\frac{1}{z-5}$.
(Combine the first two fractions, then the second two fractions before clearing the equation of fractions.)
54. $\frac{c y+m y}{c}-y=\frac{1}{c-m}+\frac{1}{m}$.
55. $\frac{d-3}{d-4}-\frac{d-4}{d-5}=\frac{d-1}{d-2}-\frac{d-2}{d-3}$.
56.

$\frac{x+1}{x+3}+\frac{x-2}{x-4}=\frac{2 x+8}{x+4}$.
57. There is a number such that one fifth of it is greater by 3 than one sixth of it. What is the number?
58. The denominator of a fraction is 5 more than the numerator. If 9 is added to the numerator and 7 subtracted from the denominator, the result is $1 \frac{11}{2}$. Find the fraction.
59. Find three consecutive numbers which will satisfy these conditions : if the smallest is multiplied by six and three subtracted from the product, this product divided by the greatest number will give a quotient of five.
60. I have two proper fractions. The denominator of each is one more than its numerator, the numerator of the first, the numerator of the second, and the denominator of the second are consecutive numbers, and when the greater fraction is subtracted from the lesser the quotient is $-\frac{1}{42}$. Find the fractions.
61. Divide 48 into two parts, such that the fraction formed by these parts is $\frac{5}{7}$.
62. Two Ohio cities are 120 miles apart. Two trains running between these cities have a difference in rate of 5 miles per hour, and the difference in time it takes them to make the run is 20 minutes. Find the rate of each train.
63. Divide 48 into two such parts that $\frac{1}{2}$ the first part plus $\frac{1}{3}$ the second is 20 .
64. From a tank one half full of crude oil 1000 gallons are drawn out and 75 gallons are lost by evaporation and leakage. The tank is then one third full. How much does the tank hold when full?
65. A machinist and his helper receive together $\$ 42.80$ for a certain piece of work. If the machinist is worth $2 \frac{1}{2}$ times as much as his helper, how much does each receive?
66. The width of a rectangle is $\frac{4}{5}$ of its length. The perimeter is 216 feet. Find the area of the rectangle.
67. One fourth of a certain number plus one twelfth of that number equals 16 . Find the number.
68. If 42 is the sum of two numbers, and $\frac{1}{6}$ of their difference is $\frac{1}{3}$, what are the numbers?
69. The sum of the angles of a triangle is 180°. Find the angles of a triangle if the first is 25° more than the second, and the third is three times the first.
70. Find the angles of a triangle if the first angle is double the second, and the third is 9° less than three times the first.
71. A boy spent one fourth of his money, and then received $\$ 2$. He spent one half of what he then had, and found he had $\$ 7$ remaining. How much had he at first?
72. Three sons were left a legacy, of which the eldest received $\frac{2}{3}$, the second $\frac{1}{5}$, and the third the remainder, which was $\$ 200$. How much did each receive?
73. A, B and C own 10,000 head of cattle. B owns three times as many as A, and C owns $\frac{1}{4}$ as many as are owned by A and B together. How many does each own?
74. If you were earning a salary, and spent $\frac{1}{3}$ of it for board, and $\frac{1}{3}$ of the rest for other expenses, and saved annually, $\$ 280$, how much were your earnings?
75. The sum of the angles of a triangle is 180°. Find each angle if the second angle is twice the first and the third angle is 30° more than the second.
76. A local train loses six of its passengers at the first stop, one third of the remainder at the second stop, one half of the remainder at the third stop, and the 30 who then remain ride to the end of the line. How many passengers on the train when it started?
77. In example 74 , the first station is $\frac{1}{3}$ as far out as the second, the third is 36 miles beyond the second, the fourth 49 miles beyond the third, and the length of the run is 117 miles. At 2ϕ per mile per passenger, how much did the railway company receive?
78. A number exceeds the sum of its one third, one fourth, and one fifth by $13 . \quad$ What is the number?
79. An oil tank can be filled by one pump in 8 hours, and by a second pump in 14 hours. How long does it take to fill the tank when both pumps are working?

Let $x=$ the time when both pumps are working.
Then $\frac{1}{x}$ is the amount of work both pumps do in 1 hour.
$\frac{1}{8}$ is the amount of work the first pump does in 1 hour, and
$\frac{1}{14}$ is the amount the second pump does in 1 hour.
Then $\frac{1}{8}+\frac{1}{14}=\frac{1}{x} . \quad$ Solve.
80. An oil tank 20^{\prime} in diameter can be filled by one pump in $177 \frac{1}{3}$ hours, and by a second pump in 64 hours. How long does it take to fill the tank when both pumps are working?

- 81. In example 78, the cylinder of the larger pump is $10^{\prime \prime}$ in diameter, the stroke of the piston is $12^{\prime \prime}$, and there are 15 strokes of the pump per minute. What is the capacity of the tank in cubic feet? In gallons?

82. Separate 45 into two such parts that one part divided by the other will give a quotient of 2 and a remainder of 9 .
83. Separate 45 into two such parts that one part divided by the other will give a quotient of 5 and a remainder of 37 .
84. Separate 45 into two such parts that one part divided by the other will give a quotient of 5 and a remainder of 48 .
85. Two men, 58 miles apart, start at the same time to travel toward each other. The first travels 7 miles in 2 hours, the second travels 15 miles in 4 hours. How far does the first one travel before they meet?
86. The denominator of a fraction is 5 less than the numerator. If 5 is added to the numerator, the value of the fraction is then $\frac{7}{2}$. Find the fraction.
87. Two men, A and $B, 58$ miles apart, start at the same time to travel toward each other. A travels 7 miles in 2 hours and B travels 15 miles in 4 hours. A meets with an accident and is delayed 20 minutes. How far does B travel before they meet?
88. Separate a into two parts such that one part divided by the other will give a quotient of g and a remainder of c.
89. Separate 42 into three parts such that the second shall be four times the first and the third 4 times the second.
90. Separate c into three parts such that the second shall be m times the first and the third m times the second.
91. A has $\$ 1200$ out at interest, part of 6% and the balance at 5%. The part at 6% brings as much interest in 4 years as the part at 5% brings in 6 years. What is his total amount of interest per year?
92. $\frac{4(58-x)}{15}=\frac{2 x}{7}$.

Multiplying by 105 ,

$$
\begin{aligned}
28 \cdot 58-28 x & =30 x . \\
58 x & =28 \cdot 58 . \\
x & =28 .
\end{aligned}
$$

(Indicate such products and save computation.)
93. $\frac{24-x}{16}=9+\frac{5 x}{48} . \quad$ 94. $\frac{5 x-2}{6}+\frac{7 x-6}{5 x+13}=\frac{15 x-5}{18}$.

REVIEW

In solving the following equations, use two unknown quan. tities wherever possible, §50:

1. A father's age now is 4 times as great as that of his son; and 4 years ago it was six times as great. What are their ages?
2. $\$ 6$ is changed into 51 coins. If each coin is either a quarter or a dime, how many of each are there?
3. A train leaves a station and travels at the rate of 40 miles an hour. Two hours later a second train leaves the station and travels in the same direction at the rate of 55 miles an hour. Where will the second train pass the first?
4. A room is 2 feet longer than it is wide, and if its length were increased by 4 feet and width diminished by 3 feet, its area would remain the same. What are the dimensions?
5. A could dig a trench in 15 days, and B could dig it in 20 days. How many days would it take both to dig it?
6. John has 14ϕ less than Henry ; together they have 60ϕ. How much money has each?
7. The sum of two numbers is 63 , and the larger is 17 more than the smaller. What are the numbers?
8. Divide $\$ 2200$ among A, B, and C, in such a way that B shall have twice as much as A, and C shall have $\$ 200$ more than B.
9. I take a trip of 90 miles, partly by train and partly by trolley. If I go 42 miles farther by train than by trolley, how far do I go by each?
10. Three boys together have 140 marbles. If the second has twice as many as the first, but only half as many as the third, how many marbles has each boy?
11. The difference between the squares of two consecutive integers is 19. Find the integers.
12. The length and breadth of a rectangular floor differ by 5 feet; the perimeter is 60 feet. Find dimensions and area.
13. Five boys agreed to buy a boat, but one of them withdrew, when it was found that each of the remaining boys had to pay $\$ 200$ more. Find cost of the boat.
14. Divide $\$ 351$ among three persons in such a way that for every dime the first receives, the second shall receive a quarter and the third a dollar.
15. A ball nine has played 64 games and won 12 more than it lost. How many games has it won?
16. John solved a certain number of examples, and William did 12 less than twice as many. Together they solved 96. How many did each solve?
17. A farmer paid $\$ 94$ for a horse and a cow. What did each cost, if the horse cost $\$ 13$ more than twice as much as the cow?
18. How many pounds of coffee at 30ϕ a pound must be mixed with 12 pounds of coffee at 20ϕ a pound to make a mixture worth 24ϕ a pound?
19. How many pounds of tea at 60ϕ a pound must be mixed with 25 lb . of tea at 40ϕ a pound to make a mixture worth 45ϕ a pound?
20. A man hired 4 men and 3 boys for a day for $\$ 18$; and for another day, at the same rate, 3 men and 4 boys for $\$ 17$. How much did he pay each man and each boy per day?
21. If a bushel of oats is worth $40 \not \subset$ and a bushel of corn is worth 35ϕ, how many bushels of each must be used to produce a mixture of 100 bu . worth $48 \notin$ a bushel?
22. A man can row 12 mi . down stream in 2 hrs ., but it takes him 6 hrs. to return. What is his rate in still water, and what is the rate of the current?
23. A man rows 20 mi . down stream and back in 8 hrs ; he can row 5 mi . down while he rows 3 mi . up stream. Find rate in still water, and rate of stream.
24. Find two numbers whose sum is 54 , and whose sum and difference are in the ratio of $9: 5$.

Supplemental Applied Mathematics

1. The specific gravity of ice (ratio of the weight of a cubic foot of ice to that of a cubic foot of water) is .92 . How much water is there in a cake of ice $3^{\prime} \times 10.5^{\prime \prime} \times 10.5^{\prime \prime}$? What will the ice weigh?
2. What is the third dimension of a cake of ice $1^{\prime} \times 1^{\prime}$, weighing 50 pounds?
3. A piece of iron $4^{\prime \prime} \times 8^{\prime \prime} \times 1^{\prime}$ is placed in a tank of water. How many liters of water did it displace?
4. One cubic foot of steel immersed in water weighs how much?
5. The specific gravity of sea water is 1.025 , and that of ice is .92. Find the difference in weight between one cubic foot of sea water and one cubic foot of ice.
6. A piece of ice $3^{\prime} \times 1^{\prime} \times 1^{\prime}$ is dropped overboard from an ocean liner. How much of the ice is submerged in the ocean?
7. A tank of water $18^{\prime} \times 8^{\prime}$ and 6^{\prime} deep is frozen to a depth of $7^{\prime \prime}$. Find the value of the ice at 42ϕ per hundred pounds?
8. Air is 14.43 times as heavy as hydrogen gas. 8500 cubic feet of hydrogen have been pumped into a balloon. What weight will it lift?
9. In testing 100 pounds of steam coal there was found 8.3 pounds of ash, .932 pounds sulphur. What was the per cent of carbon?
10. The span of a roof is 42^{\prime}. The pitch of $A C$ is 30°. The member* $C E$ bisects the angle $A C B$. Find the lengths of all the
 members used.

[^10] angles if the roof in example 11 is of the form of the truss shown in the accompanying figure. ($E F G$ is equilateral.)
12. A $1 \frac{1}{8}^{\prime \prime}$ rainfall on 20 acres of land is how many barrels of water?
13. A school building has eight drinking fountains, each flowing $1 \frac{1}{2}$ gallons per minute. These are supplied by a pump whose cylinder is $4^{\prime \prime}$ in diameter and $10^{\prime \prime}$ long. How many strokes per minute must the pump make to keep these fountains running?
14. The illumination given by any light is inversely as the square of the distance $\frac{I_{1}}{I_{2}}=\frac{d_{2}{ }^{2}}{d_{1}^{2}}$.

A light 6 feet from a table is moved 3 feet from the table. How much more light does the table now receive?
15. A 16 candle power and a 4 candle power electric light are placed on opposite sides of a screen. The 4 candle power is 3^{\prime} from the screen. At what distance must the 16 candle power be placed that each side of the screen may receive the same amount of light?
16. A chandelier directly over a table contains four 16 candle power carbon filament lights. These lights are $4^{\prime}-6^{\prime \prime}$ from the ceiling. A new chandelier fitted with four tungsten lights $3^{\prime}-6^{\prime \prime}$ from the ceiling is put in. These tungsten lights give $1 \frac{1}{2}$ times as much light as the old 16 candle power. Does the table receive more or less light and how much?
17. A 16 candle power electric light is 5^{\prime} above a table and does not give sufficient light. To remedy this defect a wire is attached to the socket and brought down to a reading lamp containing a tungsten burner which is $18^{\prime \prime}$ above the table. How much more light does the table receive?
18. In cooling iron shrinks about $\frac{1}{8}^{\prime \prime}$ per lineal foot after it is cast. A casting must be $2^{\prime}-1^{\prime \prime}$ in length and $1^{\prime}-8^{\prime \prime}$ square after cooling. What were its dimensions when cast?
19. A gas engine cylinder is to be $4^{\prime \prime}$ in diameter and $4^{\prime \prime}$ long. What is its size before cooling?
20. A gas engine cylinder is to be $3 \frac{1}{2}^{\prime \prime}$ in diameter and $4^{\prime \prime}$ long. Find dimensions of the pattern from which it is cast.
21. What size bolt would you use in a $0.344^{\prime \prime}$ hole ?
22. What size bolt would you use in a $1.491^{\prime \prime}$ hole ?
23. A man was standing behind a target during target practice. Those doing the firing were 1 mile away and the velocity of their projectiles was 1150^{\prime} per second. Did the projectile strike the target before the sound reached there? What was the difference between the time the sound of firing and the projectile reached the target?
24. Estimate the weight per lineal foot of the Steel Tee Rail in the accompanying figure. Disregard the round corners ; consider them as angles.

25. If a plumber needs to change the direction of a pipe by 45°, he calls the hypotenuse $A C$ of the triangle $A B C$ equal to $B C+\frac{5}{12} B C$. What is the error when $B C=30^{\prime \prime}$? Which is easier to compute, the steam fitter's method or the correct method?
26. In estimating material for a bias ruffle a dressmaker calls the length of the bias $\frac{4}{3}$ the width of the goods. What is the error when the goods is $27^{\prime \prime}$ wide?
27. A plumber makes a 45° turn across a hallway 10^{\prime} wide. The hall is 46^{\prime} long and is piped the entire length. What length of pipe is used?
28. In example 27 , how many feet of pipe would be needed if a 30° angle were used in making the cross over?
29. In a triangle $A B C$, right-angled at $B, \angle A$ is 30°. In such triangles many mechanics estimate that $A C$ is $1 \frac{1}{2}$ times $A B$. How nearly correct is this when $A B$ is 10^{\prime} ? Is this method as easy to compute as the correct one, namely,
Let $2 x=A C$, then $x=B C, \quad$ and $A B=\sqrt{(2 x)^{2}-(x)^{2}}$.
Let $A B=a$, then $\sqrt{(2 x)^{2}-x^{2}}=a$,

$$
x=\frac{\alpha}{3} \sqrt{3}
$$

30. A house is 26 feet wide. The pitch of the roof is 30°. Find the length of the rafters, no allowance being made for extensions at the eaves.
31. The width of a house is 28^{\prime} and the roof has a pitch of 30°. What length rafters must the carpenter cut if the rafters project $14^{\prime \prime}$ beyond the house at the eaves?
32. Use dressmaker's rule in finding the number of yards of goods necessary to make a 6 -inch bias ruffle for a skirt 4 yards
 around. The goods is $27^{\prime \prime}$ wide and no strip of ruffling is to be less than $35^{\prime \prime}$ in length. Let $A F$ be the piece of goods, then $A K=36^{\prime \prime}$, the length of each strip of ruffling. It will therefore require 6 strips of ruffling for this 4 -yard skirt. The cut $A B$ along the selvage is $8^{\prime \prime}$. The amount of goods required is therefore $6 \times 8^{\prime \prime}$ plus the $27^{\prime \prime}$ (width of goods $M O$) wasted at the corner, or $2 \frac{1}{8}$ yards.
33. Find the cost of two $3^{\prime \prime}$ bias ruffles made from goods $30^{\prime \prime}$ wide and costing $95 \notin$ per yard, the skirt being 4 yards around.
34. Silk may be purchased "on the bias." This avoids paying for the waste at the corner. Find the cost of three $1 \frac{1}{2}$ " bias
ruffles to be used on a 6 -yard silk skirt, silk $21^{\prime \prime}$ wide and costing $\$ 1.10$ per yard.
35. The braces for a billboard are to have an angle of 60° with the ground. What length must the braces be cut if the foot of the brace is 8^{\prime} from the board?
36. A piece of steel is $1 \frac{1}{2}^{\prime \prime}$ by $5^{\prime \prime}$. It weighs 225 pounds. Find its length.
37. The volume of a cube is .512 cubic foot. Find its surface.
38. The water in an irrigating ditch flows $3 \frac{1}{2}$ miles per hour. It must supply a 160 -acre farm with $1^{\prime \prime}$ of water per week. What is the area of a cross section of the ditch?
39. Water is flowing through an $8^{\prime \prime}$ water main at the rate of 10^{\prime} per secoud. How many barrels of water will it deliver per hour?
40. A farmer had a pond of 6 acres which was frozen to a depth of $10^{\prime \prime}$. He sold the ice to a dealer at 12ϕ per hundred pounds. How much did he receive?
41. One diagonal of a rhombus and a side of the rhombus are each $18^{\prime \prime}$. Find the other diagonal, the angles, and the area.
42. A bar of copper $4^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime}$ is drawn into a $\frac{1^{\prime \prime}}{8}$ wire. How long is the wire? What does the coil weigh ?
43. The area of a cold-air box is to be $\frac{1}{6}$ less than the combined areas of the hot-air pipes. One hot-air pipe is $10^{\prime \prime}$ in diameter, one is $8^{\prime \prime}$, and the remaining six are each $6^{\prime \prime}$. Find the area of the cold air box.
44. From a town C one train goes north at 32 miles an hour. One hour later a second train goes east at 30 miles an hour. How far apart are they 3 hours after the first train started?
45. From a town C a train goes north at 32 miles an hour. 5 hours later a second train follows the first at 40 miles an hour. How far apart are they 8 hours after the second train started?
46. Chocolate contains 12.9% protein ; cocoa, 21.6%. How much chocolate will furnish as much protein as $\frac{1}{2}$ pound cocoa ${ }^{\circ}$
47. Chocolate contains 48.7% fat, and cocoa, 28.9%. One half pound cocoa measures 2 cups. How many cups cocoa will furnish as much fat as $\frac{1}{2}$ pound chocolate?
48. As to the quantity of fat, which is cheaper to use, cocoa or chocolate, if 8 ounces chocolate cost 22ϕ and $\frac{1}{2}$ pound cocoa costs 25 ¢ ?
49. If halibut costs 18ϕ per pound and 17.7% is refuse, find cost per pound of edible portion.
50. Haddock costs 12ϕ per pound ; 51% is refuse. Which is cheaper fish, halibut or haddock ?
51. Boned and dried codfish sells for 16ϕ per pound ; dried codfish for 10ϕ per pound. From the latter there is a loss of 20%. Which is cheaper?
52. Whitefish contains 12.8% protein ; 43.6% is refuse. It sells for 16ϕ per pound. Porterhouse steak contains 19.1% protein ; 12.7% is refuse. It sells for 30ϕ per pound. Which food contains more protein for less money?
53. Bass contains 9.3% protein; 54.8% is refuse. It sells for 12ϕ per pound. Which kind of fish is cheaper, whitefish or bass?
54. Herring contains 11.2% protein; 42.6% is refuse; it sell for $10 ¢$ per pound. Perch contains 7.3% protein; 62.5% is waste; it sells for 10ϕ per pound. Which fish contains more protein for less money ?
55. Pike contains 7.9% protein; 57.3% is refuse; it sells for 12ϕ per pound. Round steak contains 27.6% protein; it sells for 16ϕ per pound. Which is the cheaper fond?
56. Canned salmon sells for 18ϕ per can ; it weighs $1 \frac{1}{\ddagger}$ pounds; contains 19.5% protein, 14.2% waste. Sardines sell for 25ϕ per can, which weighs $11 \frac{3}{4}$ ounces; they contain 23.7% protein and 5% waste. Which is cheaper to use?
57. Dried beef contains 39.2% protein. It costs 30ϕ per pound. Which is cheaper, dried beef or salmon ?
58. Express graphically the edible quantities of haddock, halibut, whitefish, bass, herring, perch, pike, and canned salmon that can be purchased for 25%.
59. Express graphically the quantities of protein per pound in these fish.

CHAPTER X

Proportion

174. Review § 173 and exercise 60 . The relation of one number to another is often expressed in fractional form. These fractions are known as ratios. Thus, the ratio of 2 to 3 is written $\frac{2}{3}$. This was first written $2 \div 3$, then the division sign was modified to $2: 3$, now the fractional form is considered best.

A proportion is the equality of two ratios. It is therefore simply a fractional equation of two terms.

Thus, $\frac{a}{b}=\frac{c}{d}$ is a proportion. This is read a divided by b is equal to c divided by d.

The numerators are the antecedents.
The denominators are the consequents.
The first antecedent and the last consequent are the extremes. The first consequent and the second antecedent are the means.
Thus, a and d are extremes and b and c the means.

Properties of Proportion

1. The product of the extremes is equal to the product of the means.

This is easily proved by clearing the equation (proportion),

$$
\frac{a}{b}=\frac{c}{d},
$$

of fractions.
Whence,

$$
a d=b c .
$$

2. If the product of two numbers is equal to the product of two other numbers, a proportion may be formed, making one product the means and the other product the extremes.

Thus,

$$
x y=m c .
$$

Dividing by $y \cdot m$,

$$
\frac{x}{m}=\frac{c}{y} .
$$

Had you divided by $y \cdot c$, the proportion would have been

$$
\frac{x}{c}=\frac{m}{y} \cdot \quad(\text { See } 6, \S 174 .)
$$

3. If four quantities are in proportion, they are in proportion by composition.

Let

$$
\frac{a}{b}=\frac{c}{d} .
$$

Then,

$$
\begin{aligned}
& \frac{a}{b}+1=\frac{c}{d}+1, \\
& \frac{a+b}{b}=\frac{c+d}{d} .
\end{aligned}
$$

4. If four quantities are in proportion, they are in proportion by division.

Let

$$
\frac{a}{b}=\frac{c}{d} .
$$

Then,

$$
\begin{aligned}
& \frac{a}{b}-1=\frac{c}{d}-1 \\
& \frac{a-b}{b}=\frac{c-d}{d}
\end{aligned}
$$

5. If four quantities are in proportion, they are in proportion by composition and division.

Let

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} . \tag{1}
\end{equation*}
$$

By 3 ,

$$
\begin{equation*}
\frac{a+b}{b}=\frac{c+d}{d} \tag{2}
\end{equation*}
$$

By 4 ,

$$
\begin{equation*}
\frac{a-b}{b}=\frac{c-d}{d} \tag{3}
\end{equation*}
$$

Dividing (2) by (3), $\quad \frac{a+b}{a-b}=\frac{c+d}{c-d}$.
6. If four quantities are in proportion, they are in proportion by alternation.

Thus, if $\frac{a}{b}=\frac{c}{d}$ then $\frac{a}{c}=\frac{b}{d}$.
175. In a mean proportion the means are equal.

Thus, $\frac{a}{x}=\frac{x}{d}$ is a mean proportion.
Solving $x=\sqrt{a d}$.
That is, a mean proportional between a and d is the square root of their product.

The last consequent of a mean proportion is a third proportional to the other two numbers.

Thus in $\frac{a}{x}=\frac{x}{d}, d$ is a third proportional to a and x.
The fourth proportional is the last consequent in such a proportion as $\frac{a}{b}=\frac{c}{d}$, where no two terms are alike.

EXERCISE 61

1. Find a mean proportional between 4 and 9 .
2. Find a mean proportional between 16 and 25 .
3. Find a mean proportional between 289 and 256.
or,
Then,

$$
\begin{aligned}
\frac{289}{x} & =\frac{x}{256}, \\
x & =\sqrt{289 \cdot 256} . \text { But } \sqrt{a b}=\sqrt{a} \sqrt{b} \\
x & =\sqrt{289} \cdot \sqrt{256} \\
& =17 \cdot 16=272 .
\end{aligned}
$$

4. Find the mean proportional between 121 and 729.
5. Two lines are 196^{\prime} and 25^{\prime}, respectively. Find a line equal to their mean proportional.
6. What is the mean proportional between $1.44^{\prime \prime}$ and $2.56^{\prime \prime}$.
7. Find a fourth proportional to $2^{\prime}, 3^{\prime}, 8^{\prime}$.
8. Find a fourth proportional to $5,9,15$.
9. Find a fourth proportional to $6,9,3$.
10. Find a fourth proportional to $5,7 \frac{1}{2}, 9$.

Note that in such proportions as $\frac{2}{3}=\frac{6}{x}, x$ may be obtained by inspection. For since $6=3.2$ (the first numerator), x must be 3.3 (the first denominator). Or, reading vertically instead of horizortally, since the first consequent is $1_{2}^{\frac{1}{2}}$ times the first antecedent, the second consequent must be $1 \frac{1}{2}$ times the second antecedent.
11. Find a third proportional to 2,8 .
12. Find a third proportional to 5,15 .
13. Find a third proportional to $5,9$.
14. Find a mean proportional between .0529 and 529 .
15. Find a mean proportional between $\frac{x^{2}+5 x+6}{x+5}$ and $\frac{x^{2}+8 x+15}{x+2}$.
16. Find a mean proportional between $\frac{2 x+5}{x^{2}+8 x-7}$ and $\frac{x+7}{2 x^{2}+3 x-5}$.
17. Find a fourth proportional to $x^{2}+9 x+20, x^{2}-3 x-28$, and $2 x^{2}+19 x+45$.
18. In a semicircle, if a perpendicular is dropped to the diameter, from a point in the circumference, the perpendicular is a mean proportional between the segments of the diameter. The diameter of the circle is 20 and the perpendicular to it from the circumference is 8 . Find the segments of the diameter.
19. The segments $A B$ and $B C$ of a diameter $A C$ are $4^{\prime \prime}$ and $9^{\prime \prime}$ respectively, find the length of the perpendicular to $A C$ erected at B and extending to the circumference.
20. $\frac{2 x+8}{2 x-3}=\frac{5 x+11}{5 x-11}$. Solve, using $\S 174,5$, before clearing of fractions.
21.

$$
\begin{aligned}
& \frac{(x+7)+(3 y-1)}{(x+7)-(3 y-1)}=\frac{7}{2} \\
& 5 x-7 y=-9 .
\end{aligned}
$$

(Use $\S 174,5$, on the first equation before clearing it of fractions.)
Ratio plays a very important part in science, though the ratio idea is often disguised to such an extent by the scientific notation that the pupil thinks in other terms than those of ratio or measurement.

For example, the mysteries of Specific Gravity disappear when one feels that the specific gravity is simply the ratio of a volume of some substance to an equal volume of some substance taken as a standard.

The standard for liquids and solids is water.
One cubic centimeter (c.c.) of water weighs 1 gram , or $1 \mathrm{cu} . \mathrm{ft}$. weighs $62 \frac{1}{2}$ pounds.

For gases the standard is usually hydrogen ; sometimes air, which is 14.44 times as heavy as hydrogen, is used.

Ex. A cubic foot of steel weighs 490 lb . Find specific gravity of steel.
Specific gravity of steel $=\frac{490}{62.5}=7.84$.
It is customary to write specific gravity in a decimal form, not as a common fraction.

Units to be remembered :
$1^{\prime \prime} \quad=2.54$ centimeters.
1 liter $=1000$ cubic centimeters (c.c.).
1 kilogram = 1000 grams.
1 c.c. water weighs 1 gram.
1 liter hydrogen weighs 0.09 gram.
Specific gravity air (hydrogen standard) is 14.44 .
22. Tce weighs 57.5 pounds to the cubic foot. Find its specific gravity.
23. The specific gravity of oak is 0.8 . Find the weight of 1 cubic foot.
24. A cubic foot of lead weighs 706 pounds. Find its specific gravity.
25. A cubic foot of copper weighs 550 pounds. Find its specific gravity.
26. The specific gravity of aluminum is 2.6. Steel is how many times as heavy?

LIST OF CONSTRUCTIONS

Page
70. To draw a straight line equal to a given straight line 75
74. To construct an angle equal to a given angle 76
79. To bisect a given angle 79
87. To construct a triangle when three sides are given 82
99. To draw a perpendicular bisector of a straight line 90
100. To draw a perpendicular to a line from any point in the line 91
103. To draw a perpendicular to a line from a given point with- out the line 93
119. To draw a straight line parallel to a given straight line 108

LIST OF THEOREMS

Lines

Theorem VII
Page
98. If two straight lines intersect, the vertical angles are equal 90
Theorem VIII101. If a perpendicular is erected at the middle point of a line,I. Any point in the perpendicular is equidistant from the extremi.ties of the line,II. Any point not in the perpendicular is unequally distant fromthe extremities of the line91
Theorem IX
104. From a point without a line but one perpendicular can bedrawn to the line93
Theorem XII
107. If two unequal oblique lines drawn from a point in a per-pendicular to the line cut off unequal distances from the foot of theperpendicular, the more remote is the greater96
Theorem XIII
108. If oblique lines are drawn from a point to a straight lineand a perpendicular is drawn from the point to the line,I. Two equal oblique lines cut off equal distances from the footof the perpendicular,
II. The greater of two unequal oblique lines cuts off the greater distance from the foot of the perpendicular 97
Theorem XIV
120. Two lines parallel to the same line are parallel to each other 109
Theorem XV
121. A line perpendicular to one of two parallels is perpendicu-lar to the other109

Theorem XVI

PaGE
124. If two parallel lines are cut by a transversal, the alternate- interior angles are equal 111
Theorem XVII125. If two lines are cut by a transversal, and the alternate-interior angles are equal, the lines are parallel112
Theorem XXI130. Any point in the bisector of an angle is equidistant fromthe sides of the angle117
Theorem XXVI
137. If a series of parallels intercept equal parts on one transver-sal, they intercept equal parts on every transversal123
Theorem XXVII
138. The line joining the middle points of two sides of a triangleis parallel to the third side and equal to one half of it 124
Theorem XXVIII139. The line joining the middle points of the non-parallel sidesof a trapezoid is parallel to the bases and equal to one half of theirsum124
Lines which Meet in a Point Theorem XXIX140. The bisectors of two of the angles of a triangle intersect onthe bisector of the third angle125
Theorem XXX
142. The perpendiculars erected at the middle points of the sidesof a triangle meet in a point which lies in the perpendicular bisectorof the third side126
Theorem XXXI
144. The three altitudes of a triangle meet in a common point 127
Theorem XXXII
145. Two medians of a triangle meet in a point of the thirdmedian127

Triangles

Theorem I

77. Two triangles are equal when two sides and the included angle of one are equal respectively to two sides and the included angle of the other

Theorem II

78. Two triangles are equal when a side and two adjacent angles of the one are equal respectively to a side and two adjacent angles of the other78

Theorem III

85. In an isosceles triangle the angles opposite the equal sides are equal81

Theorem IV

88. Two triangles are equal when three sides of one are equal respectively to three sides of the other82

Theorem V

96. Any side of a triangle is greater than the difference of the other two sides88

Theorem VI

97. The sum of two sides of a triangle is greater than the sum of two lines drawn from any point within the triangle to the extremities of the third side of the triangle89

Theorem X

105. Two right triangles are equal when the hypotenuse and an acute angle of the one are equal, respectively, to the hypotenuse and acute angle of the other

Theorem XI

106. Two right triangles are equal when the hypotenuse and leg of the one are equal, respectively, to the hypotenuse and leg of the other

Theorem XVIII

126. The sum of the angles of a triangle is equal to two right anglesTheorem XIXPage
127. If two angles of a triangle are equal, the triangle is isosceles 116
Theorem XX129. If two sides of a triangle are unequal, the angles oppositeare unequal, and the greater angle lies opposite the greater side116
Theorem XXII
128. If two triangles have two sides of one equal respectively to two sides of the other, and the included angle of the first greater than the included angle of the other, the third side of the first is greater than the third side of the second.119

Parallelograms

Theorem XXIII

134. In a parallelogram the opposite sides are equal, and the opposite angles are equal121

Theorem XXIV

135. Two parallelograms are equal if two sides and the included angle of one are respectively equal to two sides and the included angle of the other122

Theorem XXV

136. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram

Polygons

Theorem XXXIII

149. The sum of the angles of any polygon is equal to twice as many right angles as the polygon has sides, less four right angles . 128

Theorem XXXIV

150. The sum of the exterior angles of a polygon formed by producing one side at each vertex of a polygon is equal to four right angles129

INDEX

Abscissa, 105.
absolute term, 106.
absolute value, 19.
acute angle, $79,86$.
acute-angled triangle, 81.
addition, 16.
of fractions, 160.
adjacent angles, 75.
algebraic expression, integral, 164.
alternate exterior angles, 110.
alternate interior angles, 110.
altitude of triangle, 83, 109.
angle, 75.
acute, $79,86$.
alternate-exterior, 110.
alternate-interior, 110.
bisector, 79.
complementary, 87.
exterior, 109, 110.
exterior-interior, 110.
interior, 110.
obtuse, 79, 86.
of polygon, 127.
right, 79.
supplementary, 87.
supplementary adjacent, 87.
vertical, 87.
antecedent, 188.
applied mathematics, $29,48,68,100$, $130,151,180$.
arc, 70.
axioms, 11, 76.
Base of triangle, 83.
binomial, 2.
square of, 135.
bisector of angle, 79 .
of line, 90 .
brace, 7.
bracket, 7.

Circle, 70.
circumference, 70.
coefficient, 3.
common factor, $6,138$.
common multiple, 159.
complementary angles, 87.
complex fractions, 168.
concentric circles, 71.
conditional equation, 10 .
consequents, 188.
constants, 106.
coördinates, 104.
curved line, 70.
Decimals, 29.
degree, 105.
diagonal, 120.
diameter, 72.
difference, 21.
of squares, 133.
digit, prime, 1.
dividend, 25.
division, 25.
by zero, 171.
fractions, 167.
polynomials, 41.
divisor, 25.
Elimination, 56.
equation, 10.
condition, 10.
equivalent, 107.
fractional, 170.
geometric, 11.
identical, 11.
inconsistent, 106.
root of, 10 .
simultaneous, 56, 105.
solution of, 10 .
equiangular polygon, 128.
equilateral polygon, 128.
equilateral triangle, 81.
equivalent equations, 107 .
exponent, 26.
exterior angle, 109.
extremes, 188.
Factor, 2, 133.
factoring, hints on, 145.
factors, common, 6, 138.
prime, 5.
fractional equations, 170.
fractions, 155.
addition, 160.
complex, 168.
decimal, 29.
division, 167.
improper, 163.
multiplication, 165.
reduction, 29, 155.
Geometric equation, 11.
solid, 69.
surface, 69.
geometry, plane, 70.
graphs, 103.
Hints on factoring, 145.
housekeeping problems, $34,48,67,98$, 131, 153, 184.

Identical equation, 11.
improper fractions, 163.
inconsistent equations, 106.
independent term, 106.
indirect method, 97.
inequalities, 54 .
solution of, 63 .
inscribed, 74.
integral expressions, 164.
interior angles, 110.
isosceles trapezoid, 120.
isosceles triangle, 81.
Line, 69.
broken, 70.
curved, 70.
parallel, 106.
sect, 69.
segment, 69.
locus of points, 117.
lowest common multiple, 159.

Mathematics applied, 29, 48, 66, 98, 130, 151, 181.
means, 188.
method, indirect, 97.
minuend, 21.
minutes, 87 .
mixed numbers, 164.
multiple, common, 159.
multiplication, 24, 35.
fractions, 165.
polynomials, 35 .
sign rule, 25.
Negative numbers, 15.
number, mixed, 164.
negative, 15 .
positive, 15.
prime, 1.
system, 1.
Oblique angle, 79.
oblique angle triangle, 81 .
obtuse angle, $79,86$.
obtuse angle triangle, 81.
oral review, 8.
ordinate, 105.
origin, 105.
Parallel lines, 106.
parallelogram, 120.
parenthesis, 7.
perpendicular, 79.
perpendicular bisector, 90.
plane, 70.
polygon, 127.
mutually equilateral, 128.
regular, 128.
polynomial, 2.
division, 41.
multiplication, 36.
positive numbers, 15 .
prime digit, 1.
factor, 5 .
number, 1.
principles of fractions, 155 .
problems, housekeeping, 34, 48, 67, 98 , 131, 153, 184.
shop, $29,49,66,98,130,151,181$.
proportion, 188.
Quàdrant, 72.
quadrilateral, 130.
quadrinomial, 2.
quotient, 25.
Radius, 70.
reading of figures, 120.
rectangle, 120.
reduction of fractions, $29,157$.
regular polygon, 128.
review, oral, 8.
rhomboid, 120.
rhombus, 120.
right angle, 81.
right triangle, 81.
root of equation, 11 .
rule, sign, 19, 22, 25.
subtraction, 22.
Scalene triangles, 81.
seconds, 87.
sect of line, 69.
segment of line, 69.
semicircle, 72.
shop problems, $29,49,66,98,130,151$, 181.
sign rule, addition, 19.
division, 25.
multiplication, 25.
subtraction, 22.
similar terms, 2.
simultaneous equations, 56, 105.
solid, geometric, 69.
solution, equations, 11.
factoring, 148.
inequalities, 63.
square, 120.
of binomial, 135.
substitution, 58.
subtraction, 20. rule, 22.
subtrahend, 21.
supplementary angles, 87.
surface, geometric, 69.
straight line, 69.
Term, 2.
degree of, 106.
terms, similar, 2.
theorem, 76.
transposition, 36.
transversal, 110.
trapezium, 120.
trapezoid, 120.
triangle, 76.
acute, 81.
altitude, 83 .
base, 83 .
equilateral, 81.
isosceles, 81.
oblique, 81 .
obtuse, 81.
right, 81.
scalene; 81.
vertical angle, 109.
vertices, 76, 109.
trinomial, 2.
trinomial square, 135.
Value, absolute, 19.
variables, 56, 106.
vertical angles, 86.
of triangle, 109.
vertices of triangle, 76.
vertex, 75.
of triangle, 109.
vinculum, 7.
Zero, 1.
zero division, 171.

[^0]: * That is, a number is exactly divisible by each of its factors.

[^1]: * In this text the difference between a and b means the remainder obtained by subtracting b from a.

[^2]: * Solve as you would an equation.

[^3]: * Also when only one angle is formed at a vertex, it may be read by a single letter, as $\angle B$, read "angle at B." Small letters denote values; capital letters denote position only.

[^4]: * In reading the letters at the vertices of a triangle always read counterclockwise, beginning as far as is practicable at the lower left-hand corner, e.g., $A B C, D N M$ in above triangles.

[^5]: * In such statements fractions are avoided by letting the required values be represented by a multiple of the unknown number. For example: Let 3s be one side, and 4 s the other.

[^6]: * The vertex opposite the base is the vertex of the triangle.

[^7]: * The teacher will find it advantageous to use some of these before all thirteen theorems are proved.

[^8]: * Remember that all additional lines drawn in a figure must be dotted lines.

[^9]: * A median is a line drawn from a vertex of a triangle to the middle point of the opposite side.

[^10]: * The pieces used in forming a roof truss are called " members," "angle irons," or "angles."

