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PREFACE.

DUEING the last ten years the subject of Engine Balancing has

gradually forced itself upon the attention of Marine Engineers,

chiefly because the unbalanced periodic forces of the engine and

the natural periods of vibration of the hull have mutually

approached the sensitive region of synchronism. Electrical

Engineers have had vibration troubles at Central Stations and

on Electric Eailways, and many cases of undue wear and teai

and hot bearings in Mills and Factories undoubtedly arise from

unbalanced machinery, though the actual vibration produced may
not be great.

In general, the running of an unbalanced engine or machine

provokes its supports to elastic oscillations, and adds a grinding

pressure on the bearings, and the obvious way to prevent these

undesirable effects from happening is to remove the cause of

them, that is to say, balance the moving parts from which the

unbalanced forces arise.

The balancing of the marine engine and the peculiar problems

connected therewith have been investigated by many engineers,

and most of the original papers on the subject are to be found

in the Transactions of the Institution of Naval Architects. The

gradual introduction of the Yarrow-Schlick-Tweedy system of

balancing the reciprocating parts of an engine amongst them-

selves, is familiar to all who are in touch with modern marine
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engine design. The Balancing of Locomotives is carried out in a

traditional way, and the compromise which makes a hammer blow

on the rails a necessary accompaniment to approximate uni-

formity of tractive force is accepted by Eailway Engineers as

the best practical .solution of the problem. The advent of the

four-cylinder locomotive, however, brings with it practical possi-

bilities of balancing the inertia forces as great as in a four-cylinder

marine engine.

The main object of this book is to develop a semi-graphical

method which may be consistently used to attack problems

connected with the balancing of the inertia forces arising from the

relative motion of the parts of an engine or machine. In the case

of a system of revolving masses, or a system of reciprocating masses

where the motion may be assumed simple harmonic without serious

error, the application of the method is simple in the extreme, as it

requires nothing but a knowledge of the four rules of arith-

metic and good draughtsmanship. Moreover, the work can be

easily checked, and in the case of symmetrically arranged

engines, like locomotives, for example, the method is self-check-

ing. The application of the method to the case of a recipro-

cating system, in which the motion of the several masses is con-

strained by connecting-rods which are short relatively to the

cranks they turn, is considered in Chapter V. The use of the

method to compute the unbalanced forces arising from the

running of an engine or machine of given dimensions in

which the mass of each moving part is known, is illustrated in

Chapter VI.

The precise effect of an engine on its supports cannot be

predicted from a knowledge of the magnitudes of the unbalanced

forces alone. The effect depends upon the elastic peculiarities of

the support in relation to the periodic times and places of action

of the unbalanced external forces acting upon it. A brief
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discussion of the principles governing the behaviour of elastic

supports under the action of external forces is given in Chapter

VII. I am indebted to Lord Kayleigh's "Sound," Vol. I, for the

fundamental ideas of the first seven articles of the chapter. The

motion of the connecting-rod and its action upon the frame is

considered in Chapter VIII.

Those who are approaching the subject for the first time are

recommended to work up to Art. 30, and then to check the

balanced system given there by drawing out the force and couple

polygons for several different positions of the reference plane.

Having done this, proceed to Art. 33, and then go straight to

Chapter III. Those interested in locomotive work should begin

Chapter IV. after working the examples of Arts. 48 and 49, leaving

Example 50 for subsequent consideration. Progress should be

tested by working the exercises at the end of the book. Exercises

1 to 42 are based upon Chapters I. to IV.

A knowledge of the principles explained and illustrated

through the book, will enable an engineer to apply the method

to the many problems of balancing which he will find on every

hand, not only with regard to engines, but in connection with

machinery of all kinds. In fact, there is a balancing problem

proper to every machine which has a moving part, and the con-

sideration of this should form an essential part of the drawing-

office work connected with the design of the machine.

I must thank the Council of the Institution of Naval Architects

for permission to make free use of the two papers I have had the

honour to communicate to the Institution, entitled respectively,

"The Balancing of Engines, with Special Eeference to Marine

Work" (March, 1899); "On the Balancing of the Eeciprocating

Parts of an Engine, including the Effect of the Connecting-rod"

(March, 1901). I must also thank the Council of the Institution

of Mechanical Engineers for permission to use the substance of a
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paper I had the honour to communicate to the Institution, entitled,

"The Balancing of Locomotives" (November, 1901).

My acknowledgments are due to Dr. W. E. Sumpner for help

in connection with Chapter V. ;
and to Mr. C. Gr. Lamb for kindly

reading the proofs. I am also indebted to Mr. J. A. F. Aspinall for

the data of the Lancashire and Yorkshire Engines ;
to Mr. F. W.

Webb for suggestions regarding the balancing of four-cylinder loco-

motives
;
to Mr. J. Holden for details of locomotive connecting-

rods
;
to Mr. C. A. Park for details of the balancing of Carriage

Wheels; and to Mr. Yarrow for data supplied for the applica-

tion of the method to the balancing of a Torpedo Boat Destroyer.

It is too much to hope that a book involving so much numerical

computation will be free from error, and I shall be grateful for any

corrections.

W. E. DALBY.
Deccmler, 1901.

PREFACE TO THE SECOND EDITION.

IT has not been found necessary to make any essential changes in

the second edition. Numerical errors and a few verbal ambiguities

have been corrected, and live Appendices have been added.

Appendices I. and IV. contain simple geometrical constructions

for finding the acceleration of the piston, and for fixing a point

on the line of action of the force producing the instantaneous

acceleration of a link having plane motion. I am indebted to Mr.

G. T. Bennett, of Emmanuel College, Cambridge, for these simple

and useful constructions. In Appendix V. an investigation is

made of the balancing of a few cases where the problem reduces

to balancing in a plane.

W. E. DALBY.
March, 1906.
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THE

BALANCING OF ENGINES.

CHAPTER I.

THE ADDITION AND SUBTRACTION OF VECTOR QUANTITIES.

SIE WILLIAM HAMILTON divided quantities into two kinds. The
one kind called Scalar quantities, the other Vector quantities.

1, A Scalar Quantity does not involve the idea of direction.

Sums of money ;
the capacity of a tank

;
a quantity of matter,

say a ton of coal
;
the energy stored in a moving body ;

all these

are scalar quantities, and they are defined completely by the

simple statement of their magnitudes. Quantities of this kind are

added and subtracted by the ordinary rules of arithmetic.

2. A Vector or Directed Quantity involves the idea of direction

as well as magnitude. The simple statement of the magnitude of

a quantity of this kind is not enough to define it. The direction

in which the quantity is active must be given in such a way that

there can be no ambiguity. In general, a vector quantity is said

to have

Magnitude.
Direction.

Sense or Way of action.

It will be shown immediately that direction may be defined in

a way which will include the last two properties of a vector iu a

single statement.
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Force, acceleration, velocity, displacement, momentum, couples,

an electric current, are all examples of vector quantities.

A vector quantity may be represented by a line, whose length

is proportional to the magnitude of the quantity, and whose

direction is parallel to the direction of the quantity, the sense or

way of action being indicated by an arrow-head placed on the

line.

The upper line AB (Fig. 1) represents a vector quantity whose

magnitude is the length of AB to scale,

whose direction is parallel to AB, and

whose way of action is from A towards

B. The line is referred to as "vector

AB."

If +AB represent a given vector

quantity, a reversal of its sign, denoted

by a reversal of the arrow-head, shown
on the lower line of Fig. 1, is another

FIG. i. vector quantity specified by AB or

+ BA, so that a change of sign, or the

reversal of the order of the letters specifying a line, is equivalent
to reversing the way of action of the vector.

3. Addition of Vector Quantities. The extension of the idea of

addition to quantities of this kind is already familiar to every

draughtsman through the use of the polygon of forces, to find the

resultant of a number of forces acting at a point. The sum of the

separate effects of the forces is equivalent to the effect of the

single force,
"
the resultant." Or, the resultant is the vector sum

of the several vector quantities, which in this case happen to be

forces. The term "vector sum" is therefore synonymous with

the term t( resultant." Both terms may be used with reference to

vector quantities of all kinds, though in each particular addition

the vectors must represent quantities of the same kind.

The rule for addition may be stated as follows :

Starting from any point, set out the lines representing the

vector quantities as if to form a polygon, the arrow heads all

pointing round in the same direction : the line drawn from the

starting-point, closing the polygon, represents their sum or resultant.

The Order of setting out the lines is immaterial.

Let A, B, C, D, E (Fig. 2) be a series of lines set out in order
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representing a set of vector quantities, as forces acting on a point.
Notice that the letter at a corner denotes the end of one line and
the beginning of the next. The opera-
tion of setting them out may be

conveniently indicated by the ex-

pression

Vector sum (AB -f BC + CD 4- DE)

the direction of each being specified,

either numerically or by a drawing.
The sum is given by the line AE, so

that the first and last letter of the

series are the two letters in order

specifying the line representing the

sum. In what follows an expression
of the kind

FIG. 2.

Vector sum (AB -f BC + CD + DE) = AE . . (1)

must be understood to mean that the lines indicated by the

letters in the brackets are to be set out in order, their several

directions being otherwise specified, generally by a drawing, and

that the length, direction, and sense of AE, the closing line, are to

be found graphically.

4. Condition that the Vector Sum maybe Zero. Bring the right-

hand side of equation (1) to the left
;
then-

Vector sum (AB + BC + CD -f DE -AE) =
But -AE= +EA(Art. 2)

therefore, Vector sum (AB + BC + CD -f DE + EA) =
. (2)

The first and last letters of the series in the brackets denote

the same point. This expression represents the fact that when
the lines are set out in order, thev will form a closed polygon, inr J Q
which case the vector sum of the quantities is zero, since no line

has to be drawn to close the polygon. If the vectors represent

forces, this expresses the fact that the forces are in equilibrium.
It must be carefully remembered that the expressions (1) and

(2) are not equations in the ordinary sense. The first is merely a

convenient way of indicating an operation and its result, the

second only a convenient way of stating that the vector polygon

closes, and in both the sign
" = "

should be interpreted to mean "
is
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equivalent to." The greatest care must be taken when drawing

a polygon to get the arrow-heads rightly placed. The accidental

reversal of an arrow-head on a line means that a quantity, pre-

sumably specified by the line, has been left out, and one exactly

equal and opposite included. When the lines are set out, the

arrow-heads must all point in the same circuit, with the exception

of the one on the line representing the sum. This must point

against the rest.

5. Displacement Vectors. The properties of vectors may be

illustrated by the displacement of a point from a position A to a

position B. Let the vector AB (Fig. 3) represent a displacement
from A to B. A further displacement
from B to C is represented by the line

BC. The sum of the two operations,

that is

Vector sum (AB + BC) = AC

has resulted in a change of position from

A to C, which might have been attained

by the single displacement AC. If the

two transferences are simultaneous, as

when the point is carried in the direc-

tion AB, across the deck of a ship steaming the distance BC
in the same time, the result of the two transferences is a displace-

ment from the position A to the position C. The idea of the

transference of a point, kept in mind, is of great assistance in

thinking about vectors. Every individual unconsciously illustrates

the principles of vector addition by every movement and by every
walk he takes. A return to the same spot means that so far as

transference is concerned the vector sum of all his displacements,
reckoned from the starting-point, is zero

;
and if the lines repre-

senting the successive straight parts of the walk are plotted, they
will form a closed polygon. They need not even be plotted ;

the

series of places passed through, joined up on a map, is a vector

polygon, and is obviously closed by a return to the starting-point.

Or wherever he gets to, the position attained might have been

attained by walking straight to it from the start. The sense of

the vector being traced out at any instant is given by the direc-

tion of walking.
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6. The Subtraction of two vectors is performed by setting them

out from the same point ;
the line joining their ends represents

their difference.

The meaning of

Vector sum (AB + EC) = AC

has been defined in Art. 3, also the meaning of the minus sign in

Art. 2. Eemembering these, the following expressions, obtained

by transposing the terms of the above expression, evidently indi-

cate the operation of finding the vector difference :

Vector difference (AB - AC) = -BC = CB . . (3)

Vector difference
(
AC - AB) = +BC .... (4)

The corresponding triangles are shown in Figs. 4 and 5. The

only difficulty in performing this graphical subtraction is, that

FIG. 4. FIG. 5.

having drawn the triangle, it is not at once obvious how to place

the arrow-head on the line representing the difference. The rule

is, that it must always be placed in circuit with the quantity

being subtracted.

This method is of great use in finding the value of one quantity

relative to a second, both being originally expressed relatively

to a third quantity. For instance, if AC (Fig. 4) represent the

velocity of a train relative to the earth and AB represent the

velocity of a second train relative to the earth, CB represents

the velocity of the second train relative to the first and BC

(Fig. 5) represents the velocity of the first train relative to the

second. In the well-known proposition of the parallelogram of

forces, which is merely a method of adding two vectors, equivalent

to the rule already given, one diagonal of the parallelogram repre-

sents the vector sum, the other the vector difference.
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o

The principle of taking a vector difference is the basis of the

geometrical constructions used in the design of turbines and cen-

trifugal pumps, for finding the angles of the vanes
;

it is the key
to the geometrical methods given to find relative velocities and

accelerations in kinematics and in mechanisms. Illustrations of

its utility in this respect will be found in Art. 105.

7. Definition of Direction to include Sense. Let OX (Fig. 6)

be a line from which direction is to be measured. Suppose an

arm to be hinged at 0, a

point called the origin,

forming with the line OX
a kind of open compass.

Opening the arm out,

counter-clockwise, to an

/ / 9
\ \ angle 0, the direction it

x indicates is always to be

nieasured/Vo???. outwards

along the arm, or radius

vector, as it is called, for

a positive vector quantity.
No ambiguity in sense can

FIG. 6. arise, because the sense

from along the dotted

line would be specified by the angular direction being given 180

greater. Thus OA might be inclined 60
; OAi or AO, the direction

of the opposite sense, would be inclined 240. In the case where

the vector is negative, it would be measured from in the direction

opposite to the direction in which the arm points. For instance,

-OA when is 30, is equivalent to -fOA, where = 180

+ 30.

The initial line OX, and the lines measured from it, may be

all moved about together in any way, without altering the direc-

tions of lines relatively to it, or to one another. If the hub

of a cart-wheel, for instance, be selected for an origin, and one

of the spokes be fixed upon as the line from which to measure the

angular position of all the other spokes, any motion whatever

may be given to the wheel without in the least affecting the

inclination of the other spokes either to the initial spoke or to

one another. A rotating initial line, or line of reference, is one

Aa
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of the essential features of the method explained in the next

chapter.

8. On the Two Quantities determined by closing a Polygon.

Measuring direction by the method of Art. .7, a vector quantity
is defined by two quantities, a Magnitude and a Direction.

In a closed polygon of n sides there are n magnitudes and n

directions, 2n quantities in all. These 2n quantities cannot all

be chosen at will, since they are subject to the condition that

they form a closed polygon. This condition requires that two,

and two only, of the quantities shall remain unspecified, their

values being found, graphically or by calculation, by closing the

polygon. If less than two of the quantities are left undetermined,

the data will in general be inconsistent
;

if more, the closing of

the polygon is indeterminate. The two unknown quantities

may be

A, A magnitude and its direction.

B, Two magnitudes.

C, Two directions.

D, A magnitude and the direction of another known magnitude.

Case A. Consider the case of a five-sided polygon. Ten

quantities in all are concerned in the specification of its sides
;

of

these eight must be completely specified. Let the eight quantities

be specified by the following schedule, leaving a magnitude and its

direction unknown:

SCHEDULE 1,
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some fortuitous chance form a closed polygon ;
in general, how-

ever, an unknown term, EA, involving a magnitude and a direction,

is required to close the polygon. Setting them out as shown

in Fig. 7, it will be found that the closing side EA measures 1/61,

inclined 291 to the initial direction AB.

Case B. Let AB, BC, CD be completely given, and the

directions, Q l and 2 ,
of DE and EA. Set out the first three

quantities (Fig. 8). At D set out the direction I} and at A the

FTG. 8.

direction 180 -
2 . The magnitudes of DE and EA are deter-

mined by the intersection at E.

Case C. Let AB, BC, CD be given completely, and the

magnitudes only of DE and EA. Set out the completely given
vectors as in Fig. 9, arriving at the point D. From centre D
describe an arc with radius DE, and from centre A describe an

arc with radius AE. These two arcs will

(1) cut one another in two points, in which case there are two

solutions to the problem ;

(2) they will touch, in which case DE and EA are in the same

direction
;

(3) they will not intersect, showing that the data are incon-

sistent, and that there is no solution possible.

Case D. Let AB, BC, CD be completely given, together with

the direction of DE and the magnitude of EA. Set out the

completely given vectors (Fig. 10), arriving at the point D.

From D set out a line in the direction b and from A draw an

arc of radius AE. This arc will
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(1) cut the direction of DE in two points, giving two solutions
;

(2) touch DE, in which case EA is at 270 with DE
;

(3) not touch the line, showing that there is no solution to the

problem.
In general, therefore, two, and only two, quantities can be

FIG. 9. FIG. 10.

found from a vector polygon, and if the polygon have n sides,

of the 2n quantities concerned, (2n 2) must be given, but no

more, to make the problem determinate. Even then the data

may possibly be inconsistent, as exemplified in Cases C and D
above.



CHAPTER IT.

THE BALANCING OF REVOLVING MASSES.

9. The Force required to constrain Motion in a Circle. The natural

mode of motion of a mass of matter, unacted upon by any external

force, is in a straight line with uniform speed. The action of an

external force is required to change either the direction of motion,

or the speed. The force, in Ibs. weight, required to constrain a

mass of M pounds to move in a circular path, r feet radius, the

mass centre moving at a uniform speed of v feet per second, is

given by the expression

tjr

and its, direction of action is in a line through the mass centre of

the body, towards the centre of the path.

If to is the angular velocity of the mass in radians per second,

v = air, and the above expression may be written

9

or simply, MwV, when the force is measured in absolute units.

The radius of the path, r, means the distance measured from

the centre of the path to the mass centre of the circularly con-

strained body. For all practical purposes the mass centre is

coincident with the centre of gravity of the body, so that the

usual methods for finding the centre of gravity may be employed
to find the mass centre. The above expressions may be adjusted

70



THE BALANCING OF REVOLVING MASSES. 11

for revolutions per minute, N, or revolutions per second, n, by the

relations

2rrN

60

The different forms in which the magnitude of the constraining

force may be expressed are collected together in the following

schedule for convenience of reference :

SCHEDULE 2.

in pounds ; r in feet ; g = 32-2.

Angular velocity in

Constraining force F.

i Speed along tlie

path v feet per
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constraining force F may be supplied by tilting the sleepers, so

that the resolved component of the weight of the train is equal to

F, thus removing the pressure from the outer rail.

The force F is frequently of necessity applied to a body by
means of a radial connector. A stone whirled in a circle by
means of a sling is constrained in its path by the pull exerted

by the string, which is necessarily accompanied by an equal and

opposite pull at the centre. The two aspects of the constraining

force exerted by a radial connector, which together always form a

tension, have been named respectively the centripetal and centri-

fugal forces. By centripetal force is to be understood the action

of the radial connector with reference to the body it is constrain-

ing, and by centrifugal force the action of the radial connector on

the axis.

Example. A mass of 10 pounds is constrained to move in a circle

4 feet radius, at a speed of 5 feet per second, by means of a radial

connector. Find the reaction on the axis, i.e. the centrifugal force.

The tension F in the connector is

10 x 52

Hence, if 1'94 Ibs. weight is the pull on the axis, 1'94 is the pull

on the mass necessary to constrain the motion.

11. Dynamical Load on a Shaft A shaft supporting a rotating

body whose mass centre is not on the axis of rotation becomes

loaded therefore with what may be called a dynamical load a load

varying directly as the radius of the mass centre of the body, as

the square of the angular velocity, and changing continuously in

direction. At a high speed, such a load tends to set up vibrations

of the framework carrying the shaft, and of the floor or foundation

to which the framework is attached. In some cases even moderate

speeds cause trouble, and if the period of vibration of any part

of the supporting framework or foundation should happen to

\ coincide with the period of revolution of the mass, the disturbances

\i set up may become dangerous.

A mass of 1 pound at 1 foot radius attached to a shaft and turned

at 12,000 revolutions per minute, imposes on the shaft a dynamical
load of nearly 50,000 Ibs. weight. Or a mass weighing oaly 1 pound

requires a force nearly 50,000 times as great as its own weight to
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constrain the motion. Heavy foundations, strong holding-down

bolts, and stiffened frames are of little avail against these dis-

turbances
;
and moreover, even if such means reduce the extent of.

the vibrations to a practical minimum, the dynamical load has

still to be taken by the bearings, causing unnecessary wear and

tear, often heating, and always a loss of energy, thereby decreasing

the efficiency of the machine.

The Balancing of a Rotating System consists in the arranging

of the masses forming the system, so that the centrifugal forces

acting on the shaft, in consequence of the rotation, form a system
in equilibrium.

In developing the method of effecting such an arrangement, it

will be convenient to consider first those problems where the

masses are all in the same plane of revolution.

Definition. The plane in which a mass is said to revolve is

the plane in which its mass centre revolves.

Definition. A plane of revolution is a plane at right angles to

the axis of revolution.

An exact knowledge of the next three paragraphs is necessary

for the proper comprehension of the method developed in the rest

of the book.

12. Balancing a Single Mass by Means of a Mass in the Same

Plane of Revolution. Let a mass,

M!, be attached to a truly turned

disc (Fig. 11), at radius i\. Let

M
,
at radius r ,be the mass which

will balance the effect of M^
The condition that there may be

no unbalanced centrifugal force

acting on the axis, is, that the

resultant or vector sum (see Arts.

3 and 4) of the forces due to M,,

the disturbing mass, and M
,
the

balancing mass, is zero for all

values of w, the angular velocity

of the system. This condition is expressed by

(M.n + Mur )w
a =

w being put outside the bracket because it is the same for every

J
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point in the system. Now w is by the terms of the problem not

zero
; therefore, to satisfy this condition, the sum of the terms in

the brackets must be zero. Each term is a vector quantity, and

is called a mass moment. The magnitude of such a term is specified

by the numerical value of a product of the form Mr, and its

direction by the radius r, specified by a drawing, the sense being
determined by the rule that the way of drawing the vector is

always from the axis of the shaft towards the mass. The condition

that the vector sum of the terms in the brackets is zero, means

simply that when the vectors representing them are set out in

order, they must form a closed polygon. The angular velocity w

may have any value without affecting the result. Let it equal

unity, then a term of the form Mr is the centrifugal force when
w = unity. In this way the use of the term " mass moment "

may be avoided. The solution is to be carried out as follows :

Set out AB (Fig. 12) parallel to OG to represent M^ ;
then

BA is the vector required to close the polygon, in this case a line

returning on itself, so that the sum

AB + BA =0

BA, therefore, represents in magnitude and direction the quantity
Mur . Draw OM (Fig. 11) parallel to BA, remembering that it is to

be drawn in the directionfrom B to A. The balancing mass M can

be found directly the radius at which it is to be placed is given.
The analytical condition is in this case expressed by the

equation

M,r, = - M,;r()

M is always to be considered positive; the negative sign therefore

refers to the radius, and since the radii i\ and r are in the same

straight line, the negative sign indicates that, measuring i\ from

the axis outward along a diameter, ?* must be measured from the

axis along the diameter in the opposite direction.

Example. If the given mass M : is 5 pounds at a radius of

2 feet-

M
(j
r rr: -10

Fig. 13 shows graphically the way in which M varies with ?* .

so that their product may remain constant and equal to 10. The

choice of the mass to be used is evidently a very wide one if tLe

radius is not specified. Thus a mass of 5 pounds at 2 feet radius,
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equally with a mass of 1000 pounds at r ^ foot, or' 1 pound at

10 feet, will effect balance.

The centrifugal forces at the axis are not eliminated; they are N

merely balanced. The connector is in tension, along the line

connecting the masses under the action of the constraining force

Fb acting on Mlf and an equal and opposite force F lt acting on M . /

The one force is the reaction to the other at any speed of rotation.

RADI US IN FEET

FIG. 13.

As the speed of rotation increases, Y
l may become sufficiently

great to rupture the connector. For example, a pair of 100-pound
balls, attached to an iron rod 1 inch in diameter, at 10 feet

centre to centre, and rotated ten times per second about a central

axis at right angles to the rod, would require a tension in the

rod of 61,250 Ibs. weight to constrain their motion quite enough
to break the rod.

13. Balancing Two rigidly connected Masses by Means of a

Third Mass, all being in the Same Plane of Revolution. Let M,
and M2 (Fig. 14) be the two given masses at radii i\ and ra

respectively, and M the balancing mass at a radius TV When the
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angular velocity is w, the masses give rise to centrifugal forces

Mjw
2
?*!, M/uVo, M wV

,
w being the same for all.

In order that there may be no dynamical load upon the shaft

Vector sum (M^ + M,r2 + M> )o>
2 =

that is, (AB -f- BC + CA) =

where M^j, M2r2 ,
M r

()
are represented in magnitude, direction, and

sense by the lines AB, BC, CA, respectively. To find M// ,

therefore, set out AB (Fig. 15) to scale equal to M^, drawing

FIG. u. FIG. 15.

in a direction from the axis to the mass Mb and BC equal to

M2r2 , drawing from the axis to M2 . Then CA, the closing side

of the triangle, represents M r
,
the balancing product. Transfer

the direction CA to Fig. 14, remembering to draw from the shaft.

The magnitude of M can be fixed as before, when the radius at

which it is to be placed is given.

The method of this article may be extended to any system
of co-planar masses, and the next article is a general statement

of the proposition.

14. Balancing any Number of Masses, rigidly connected to an

Axis, by Means of a Single Mass, all being in the Same Plane of

Revolution. Let Mb M2 ,
M3 ,

. . . Mu ,
be the given masses, at radii

fu r.2) r3,
. . . rn ,

feet respectively. The angular positions of the radii

are to be specified by a drawing. Let M be the balancing mass

at radius r
() ,
and w the common angular velocity of the system.
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When the angular velocity is w, the masses give rise to centrifugal

forces MiwVi, M2o>
2r2 . . . MMwVB,

M wVo.

The condition that there may be no dynamical load on the

shaft is

Vector sum (M>i -f M2r2 + . . . + Mnrn + M r )w
2 =

In order that this may be true for all values of w, the vector sum
of the terms in the brackets must be zero. Eepresenting them by
the lines A 13, BC, . . .

,
these lines set out in order must form a

closed polygon. The necessary closure is effected by the side

corresponding to M r
, which, being measured to scale, gives the

value of the product. Its direction, transferred to the drawing

specifying the angles between the radii, fixes the direction of the

radius r relative to the given radii. The operation of finding the

balancing product Mur may therefore be stated thus

Set out the magnitudes of the products of the given masses and

their radii as if to form a polygon. The closing side, taken in

order with the rest, represents the product M r .

Example. Masses of 3 pounds, 4 pounds, and 3 pounds are

attached to a disc rotated by the shaft 0, at the respective radii

FIG. 16. FIG. 17.

2 feet, 1 foot, and 175 foot, at angles specified by Fig. 16. Find

the balancing product M r .

The centrifugal forces, when w = 1, or products of the given
masses and their respective radii, are 6, 4, and 5'25. Starting

c
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from A (Fig. 17), AB, 130, CD, represent these products set out in

order. The closing side measures 2'5
;
hence

MOTO
= 2-5

Assuming M to be conveniently placed at 2 feet radius, its

magnitude is 1*25 pounds, and its direction is completely specified

by DA.

15. Magnitude of the Unbalanced Force due to a Given System of

Masses in the Same Plane of Revolution. If M r is the balancing

product for the system, the centrifugal force due to the rotation of

MO is

M ruW
2

Since this balances the centrifugal forces due to the given system
of masses, it is equal and opposite to their resultant. Consider-

ing the previous paragraphs, the length of AD to scale, Fig. 17,

multiplied by w2
, gives the magnitude of the unbalanced force for

the system of masses shown in black by Fig. 16
; similarly, ACw2

is the unbalanced force due to the two masses Mb M2 of Figs.

14 and 15.

In general, the unbalanced force is found by taking the vector

sum of the centrifugal forces, assuming w = 1, and multiplying
this sum by w2

.

16. Mass Centre. The examples considered will have shown

how necessary it is to make as exact a determination as possible of

the position of the mass centre of each individual mass before

proceeding to find the balancing mass. Where the unbalanced

masses have been machined, their form is generally simple, and

there is little difficulty in finding this point near enough for

ordinary work. Any of the methods generally used for finding

the position of the centre of gravity may be used, since the mass

centre is a point which may be looked upon as coincident with

the centre of gravity. Locating it for irregular masses is more

difficult and sometimes impossible, and then recourse must be

made to experiment. For instance, a pulley running at a high

speed will sometimes cause trouble through being out of balance,

even though the rim has been turned inside and out, and obviously

the only possible way of balancing it is by experiment.

It may be of interest to show that the general method ex-

plained for finding the balancing mass may be extended to find
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the mass centre of a system of masses whose individual mass

centres are known.

The resultant centrifugal force acting on the axis due to the

rotation of a given system of co-planar masses, is equal to the

centrifugal force due to a single mass equal in magnitude to

the arithmetical sum of the masses forming the given system,

concentrated at the mass centre of the system. The combination

of this principle with the methods of Art. 14 gives a simple rule

for finding the mass centre.

Evidently the mass balancing the concentrated mass at the

mass centre is the balancing mass for the system. From Art. 12

it follows that the mass centre of the given system and of the

balancing mass are on a diameter, and are on opposite sides of the

axis. Hence, if x be the distance of the mass centre of the given

system from the axis of rotation

from which

_ vector sum (Mi^ -f- M2r-2 + . . . M,,rn )

scalar sum (Mi + M2 -f . . . Mn )

If the numerator of the fraction is zero, x = 0; hence, if the

vector sum of the centrifugal forces about a given axis is zero, the

mass centre of the system is on the axis.

Eeferring to Arts. 12, 13, 14, it will be seen that the result

of the balancing operations is in each case to move the mass

centre of the given system on to the axis of rotation by means of

the balancing mass.

Example. Find the mass centre of the system of masses

specified in the example of Art. 14 and shown in black in Fig. 16.

The vector sum of the centrifugal forces is represented by AD,
the magnitude of which is by measurement 2'5. The scalar sum
of the masses is 10. Therefore

2'5
x = 0-25 foot

measured from in the direction from A to D.

17. Experimentally Testing the Balance. The positions of

the mass centres of the several masses forming a system, and
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consequently the position of the mass centre of the system, cannot

be found with mathematical accuracy, even when the parts are

machined, by any method of calculation, because of the small varia-

tions of density throughout the material and the slight deviations

from the form assumed in the calculations. There will always be

a small error in a presumably balanced system on this account.

The error may be quite negligible at a relatively low speed of

rotation, but may become important at a higher speed. After a

system has been balanced as nearly as possible by the methods

given, the most delicate test which can be applied is to run the

system at a high speed, mounted, if possible, on springs. The mass

which must be added to make the system run quietly may then be

found by trial.

The carriage-wheels on the London and North-Western Kail-

way are all balanced experimentally. The system formed by a pair

of wheels and their axle, each part of which is of regular form and

placed so that the mass centre of the whole is presumably on the

axis of rotation, is placed in bearings mounted on springs, as shown

in Fig. 18. The system is driven by gear seen at the left hand of

the figure, so that the peripheral speed of the wheels is one mile

per minute. This corresponds to about 465 revolutions per minute

for the standard 43 J-inch wheel. Any want of balance is at once

shown by the vibration of the bearings on their spring supports.

Plates are attached to the inside of the wood centres of the wheels

until the system runs steadily.

When the mass and position of a balancing plate is known, the

original deviation x of the mass centre of the wheel may be readily

calculated. Suppose, for instance, that a mass of 1 pound attached

at 1'2 foot radius effectively balanced a wheel weighing 969

pounds

969aj = 1-2

or x = 0-00124 foot

measured from the axis on the line joining the mass centre of the

balancing plate to the axis, produced.

This seems a small amount to trouble about, yet at 80 miles

per hour the centrifugal force due to this slight deviation of the

mass centre from the axis of rotation is 157 Ibs. weight approxi-

mately. This force changes its direction of action at the horns

618 times per minute, and tends to set up unpleasant tremors in
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the carriage body. However excellent the permanent way may

be, for smooth running at high speeds it is essential that every

carriage-wheel in the train should be experimentally balanced.

18. Centrifugal Couple. If the two masses of Art. 12 are

placed in different planes of revolution (Fig. 19), their centrifugal

forces, though always exactly equal in magnitude and of opposite

sign, do not free the shaft from dynamical loading. They form a

couple tending to turn the shaft in a plane containing the axis

Fm. 10.

of revolution and the centrifugal forces, and therefore the mass

centres of the two masses. This may be conveniently referred to as

an axial plane, because it always contains the axis of revolution.

An axial plane is indicated by shading in Fig. 19. It will be

noticed that the radii of the masses lie on its intersections with

the planes of revolution.

DIGRESSION ox THE PROPERTIES OF COUPLES.

19. A Couple. A couple is the name given to a pair of equal

and opposite forces acting in parallel lines.

The perpendicular distance between the lines of action of the

forces is called the arm of the couple.

In Fig. 20 the pair of equal and opposite forces F, acting in

parallel lines a feet apart, form a couple whose arm is a feet long.

Proposition 1. The turning effort of a couple with respect to

any axis at right angles to its plane is the same, and is measured

by the product of one of the forces and the arm of the couple.
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Let AB, CD (Fig. 21) be the directions of action of two equal,

opposite, and parallel forces, acting upon a rigid body free to turn

about the axis, 0, at right angles to the plane of the couple.
From, draw a common perpendicular to the forces, cutting

them respectively at C and A. Let AB = CD represent the

< cu--

FIG. 20. FIG. 21.

respective magnitudes of the forces. Join BC. The turning effort

of the couple is equal to the sum of the moments of the two

forces with respect to 0.

The moment of AB about is positive, and is represented by
twice the area of the triangle OAB.

Similarly, the moment of CD is negative, and is represented by
twice the area of the triangle OCD. The resultant moment is

represented by twice the difference of these areas that is, by twice

the triangle ABC since the triangle OCB is equal to the triangle

OCD, both being on the same base and of equal altitude.

The turning effort or moment of the couple is therefore equal
to the product of one force and the arm of the couple, and this is

evidently constant for a given couple and independent of the posi-

tion of the axis 0. The product is usually expressed in
"
foot-lbs."

Corollary. Since the moment of the couple is the same with

respect to all axes at right angles to its plane, it follows that the

couple may be moved to any new position in its plane, without

affecting its moment with respect to a given axis. The several
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couples shown in Fig. 22 exert equal turning moments on the disc,

though they are applied in such different positions.

20. Equivalent Couples. The moment of a couple is represented

by the product of two factors, the arm and a force. Provided that

this product remains constant the turning effort of the couple
remains constant, however the individual factors are varied. If

F, the magnitude of the forces of a couple, be changed to Fb the

arm a must be changed to aly so that

Hence the arm varies inversely as the force for constant

turning effort. This is exhibited graphically in Fig. 23. The

arm a, of a couple whose moment is 10 foot-lbs., is plotted horizon-

a w

FIG. 22. FIG. 23.

tally against the force vertically. Taking an arm of length CA,
the corresponding force is represented by the ordinate AB, to the

curve marked 10. Notice how rapidly the magnitude of the force

must increase to keep the turning effort constant, as the arm is

shortened. Curves are also added for moments of 5 and 15 foot-lbs.

These curves and the curve of Fig. 13 are the same in form, and

follow precisely the same law, being in fact rectangular hyperbolas ;
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but they represent different quantities, though the quantities them-
selves have apparently the same name, viz. foot-pound. The

pound in the case of the mass moment refers to the quantity of

material in the mass, and in the case of the couple to the magni-
tude of the forces. To save confusion the moment of a couplo

might be written "foot-lbs. weight," but this is an awkward
combination. Generally the context is enough to indicate the

meaning of the term "foot-pound." There is no ambiguity if

forces are measured in absolute units, because then whilst a mass
moment is measured in

"
foot-pounds," the moment of a couple is

measured in
"
foot-poundals." Again, neither the terms foot-

pound nor foot-poundal must be confused with the corresponding
work units. To avoid this, it has been suggested to invert the

order of the words when the combination refers to the moment of

a couple that is, to write
" a moment of so many Ibs.-feet," or

poundals-feet. The usual way of writing the moment of a couple,
viz.

"
foot-lb.," will be followed, the abbreviation Ib. distinguishing

it from a mass moment.

21. Axis of a Couple. A line drawn at right angles to the

plane of a couple, whose length, measured from" the plane, is

proportional to the moment of the couple, and on the side of the

plane such that, looking along the axis towards the plane, the

couple appears to be exerting a counter-clockwise turning effort,

is called the axis of the couple.

The axis of the couple shown in Fig. 20 is a line Fa units

long, projecting at right angles above

the surface of the paper. The axis

of each couple in Fig. 22 is a line

AB x AC units long, projecting below

the paper.

To find which side of the plane of

a given couple the axis is to be drawn,
think of an instrument consisting of

a handle attached to a cardboard disc

(Fig. 24). Suppose a circle to be

drawn on the disc indicating the direction of positive rotation as

shown. To find the axis, imagine the disc placed in the plane of

the couple so that its director circle indicates the direction in

which the couple tends to turn. The handle then shows the side
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of the plane on which the axis is to stand, or, as it is called, the

sense of the axis. The moment of the couple is then to be set out

in a direction from the plane along this axis.

22. Addition of Couples, A couple is a directed quantity, and

it has been shown in the preceding paragraph how to represent it

by a line, the axis. Couples may be added by taking the vector

sum of their axes.

Three classes of problems present themselves. The couples

may act

(1) In the same or parallel planes ;

(2) In planes mutually inclined to one another, but all at

right angles to a given plane ;

(>) In planes inclined anyhow.
In the first case the axes of the couples are parallel, and their

vector sum is taken by adding their lengths algebraically, or,

what is the same thing, adding the moments of the couples

algebraically. This is the case of a large number of familiar

problems ;
for instance, questions on the equilibrium of levers,

of beams and girders, roofs, spur-wheel gearing, all afford examples
in which the couples involved have parallel axes.

The system of planes in the second case is represented by an

open Japanese screen. The leaves are all inclined to one another,

but they are all at right angles to a given plane, the floor.

Suppose each leaf of the screen to be the plane of a couple.

Each couple will be represented by its axis, standing out at right

angles to the one or other side of its leaf. All the axes will be

parallel to the floor. To find their vector sum, suppose each to be

moved parallel to itself so that the whole group may be laid out

in order on the floor. The single line representing their sum is

the axis of the resultant couple that is, it represents the united

turning effort of the several couples on the screen, considered as a

rigid system. Examples illustrating this case are to be found in

questions relative to the equilibrium of three-legged derrick cranes,

tripods, the gyrostat ;
and the application of this principle to find

the vector sum of a system of centrifugal couples is one of the

Leading features of the sequel.

In the third case, the axes of the couples form a system of

lines inclined to one another in all directions. Setting them out

in order from a selected origin, they form with the closing side a
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gauche polygon. The actual setting out of the lines can be done

by the principles of solid geometry.

23. The Condition that there shall be no turning moment is,

in each case, that the axes form, a closed polygon. The closed

polygon in the first case is a line returning on itself to the origin.

With this slight digression on the properties of couples the

course of the main argument may be resumed.

21 Effect of a Force acting on a Rigid Body fixed at one Point.

Let F (Fig. 25) be a given force acting at a perpendicular distance,

a, from the fixed point 0.

The force causes a pressure

on the point, equal and

parallel to itself. The two

aspects of this pressure,

together with the original

force, form a system of three

forces, which split up into

(1) A force equal and

parallel to F acting on the

point ;

(2) A couple, whose

moment is Fa, tending to

cause rotation about an axis

through 0, at right angles
to its plane.

Fig. 26 illustrates this

in a more general way. A sphere is supported at its centre.

A force, F, acts upon it at the point p. The ellipse shows the

plane of the couple. OC, at right angles to this, is the line about

which the sphere will tend to turn, urged by a clockwise or

negative couple of magnitude Ya. The dotted force F is the

action on the fixed point of support. The line AB, representing
the axis of the couple, must be set out parallel to OL, drawing
from towards L.

FIG 25.

25. Effect of any Number of Forces acting simultaneously on

a Rigid Body fixed at one Point. Each force is equivalent to an

equal and parallel force at the fixed point, and a couple. The
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resultant force on the fixed point is the vector sum of the
"
equal and parallel forces

"
there. The resultant turning effort

is specified by the axis, which is the vector sum of the axes of the

different couples.

The condition that there may be no force acting on the fixed

point is, that the vector sum of the forces be equal to zero
;
and

the condition that there may be no turning effort is, that the

vector sum of the axes of the couples be equal to zero. These

are two independent conditions, and must be separately satisfied.

The extension of this way of considering the effect of a force

to the centrifugal forces acting at the axis of a rotating system
is the key to the solution of many balancing problems, and is

the feature of the paper communicated by the author to the

Institution of Naval Architects, March 24th, 1899, The rotating
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system is supposed to be free from the constraint of bearings,

and to be held only at a fixed point selected at any conve-

nient place on the axis of rotation. The effect of the weight of

the system is to be entirely neglected ;
it acts constantly in one

direction, and only loads the bearings with a constant load. In

fact, the system to be balanced may be imagined at the centre of

the earth, where it would be weightless, but every other condition

of the problem would remain the same.

26. Effect of a Centrifugal Force with Reference to a Fixed

Point on the Axis of Rotation. Consider the effect of the mass M
(Fig. 27) attached to a truly turned disc D, when rotated by the

FIG. 27.

shaft OX, which is held only at the fixed point 0, distant a feet

from M's plane of revolution.

A force, MwV, is exerted on the shaft in the plane of the disc

D. This is equivalent to

(1) an equal and parallel force, McuV = F, acting at the fixed

point O, and shown by a dotted line
;

(2) a couple whose moment is MwVa, tending to cause
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rotation about an axis through 0, at right angles to the plane of

the couple, in the positive direction.

A plane through the fixed point 0, at right angles to the axis

of rotation, and revolving with it, will be called the reference

plane. It contains both the force at the fixed point 0, and the

axis about which the system is assumed to be free to turn

under the action of the centrifugal couple. The reference plane

may be thought of as a sheet keyed to the shaft, or as the

drawing-board on which all the vector summation which is

required in the problem may be imagined carried out.

Example. The effect of a mass of 10 pounds, revolving 4 times

per second at 5 feet radius, in a plane distant 5 feet from the

reference, is

(1) A force - :-- = 980'47 Ibs. weight, acting at the fixed
J

point 0, in the plane of reference
;

(2) A couple of moment 980'47 x 5 = 4902 foot-lbs., tending to

turn the system about the axis shown in Fig. 27.

If a balancing mass or masses be applied to the system, giving
rise to an equal and opposite centrifugal couple, there will be

no tendency to turn about the fixed point. If at the same time

the balancing masses have a resultant centrifugal force, equal and

opposite to the resultant centrifugal force at the fixed point, there

will be no pressure acting on it. Under these circumstances, the

constraint applied to the fixed point may be removed, and the

system will continue to rotate wit] \out trying to change the

direction of the main shaft. It would be a balanced rotatingO

system, and held in bearings, would put no dynamical load upon
them.

27. To balance a Single Mass by Means of Masses in Given,

Separate, Planes of Revolution. Many cases arise in practice in

which it is inconvenient or impossible to apply the balancing
mass in the same plane of revolution as the disturbing mass, in

the way illustrated in Arts. 12, 13, and 14.

Under these circumstances at least two balancing masses are

required, placed in separate planes of revolution, which may be

selected either with the disturbing mass between them, or outside

both of them, whichever may be the most convenient arrangement.

Having selected the position of these two planes, choose one of
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them for a reference plane. Then the conditions to be fulfilled

by the three masses that is, the disturbing mass and the two

masses balancing it are

(1) The sum of the forces at 0, the supposed fixed point, must

be zero
;

(2) The sum of the centrifugal couples must be zero.

Let M (Fig. 28) be the mass to be balanced, by masses placed

Fir, 3a

in planes Nos. I. and II. respectively. Choose Xo. II. for the

reference plane, being therefore the fixed point. Let plane No.

I. and the given plane be distant respectively a^ and a feet from

the reference plane. The mass in the reference plane, whatever

be its magnitude or position, will have no moment about 0. Let

M! be the mass in plane No. I., which will balance the couple due

to M about 0, acting at radius rx . The condition that the sum of

the moments of the couples about vanish is expressed by

That is, the vector sum of the centrifugal couples in the

brackets must be zero. The direction of the vector representing

the couple Mm is at right angles to the axial plane, and it may
be drawn by the rule of Art. 21. It is, however, more convenient
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to imagine that its axis is turned through 90, so that the direction

of the axis corresponds with the direction of the crank, measuring

from the shaft outwards. Then the side closing the couple polygon
is parallel to the crank to be added with the balancing mass, and

shows the sense in which the crank radius is to be drawn, viz.from
the axis of the shaft, outwards, in the direction indicated by the

arrow-head on the closing side, when, as in the present case, the

cranks are all on one side of the reference plane. Hence set out

AB (Fig. 29) to represent Mra to scale. The line closing the

polygon is BA, equal in length to AB, but points in the opposite

direction. This at once fixes the direction of No. 1 crank. The

magnitude of the mass it carries is found from

Mar

when ?*i is fixed.

The separate centrifugal forces due to M and M
t
are each

accompanied by an equal and parallel force at in the

reference plane. If M2 at radius r2 is the mass in the reference

plane, whose centrifugal force will balance the res ill tan t of the

transferred forces, the expression-

Vector sum (Mr + M^ + M>2)
=

states the condition of equilibrium. Setting out ab, be (lug. 30)

to respectively represent Mr and M^, the line ca, closing the

polygon, represents the force at in magnitude and direction

required to balance the forces there, ca is the crank direction,

and the magnitude of the mass it is to carry is evidently given

by-
Mr - M^ ........ (2)

for the case skown. When the radius at which M2 can be con-

veniently placed is given, the magnitude of M2 can be found at

once.

If the reference plane is between plane No. I. and the given

plane, a and a\ must be considered of opposite sign.

Example. Suppose M = 10 pounds at 2 feet radius, and a

and al are 2 feet and 5 feet respectively.

M!?*! = 8, from equation (1)

and M2r2
= 12, from equation (2)
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MX and M2 in this case are to be placed in opposition to M, as

shown in Fig. 28.

The effect on MI/I and M2r2 of varying the position of the

plane No. I. relative to the others, is shown by the curves A
and B respectively (Fig. 31). In any position of the plane for

instance, when it is ai feet from the reference plane the ordinate

40
FIG. 3i.

of curve A, xa, gives the value of MI?I, and the ordinate of curve

B, xb, the value of M2r2 . The figures refer to the case where

Mr = 10 and a = 2. The curves show clearly that MI?I is always

negative relative to Mr, and M2r2 is negative so long as plane
No. I. is to the right of the given plane, and positive when it is

on the same side as plane No. II., the reference plane.

28, Balancing any Number of Given Masses by Means of Masses
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-placed in Two Given Planes. This and the next three articles state

the general method of which the problems and examples already

given are particular cases. The earlier and simpler propositions

have, however, many practical applications, and should be carefully

studied.

Let a be the distance between the two given planes in which

the balancing masses are to be placed.

Choose one of these planes for the reference plane, thus fixing

the point 0. Let Mb M2 ,
M3, etc., be the given masses, at radii

?']> r.2) ?s, etc., respectively, revolving in planes a1} a2 ,
a3, etc,, feet

from the reference plane.

Let M5 be the balancing mass in the plane of reference at

radius r5,
and M4 the balancing mass at radius r4 in the plane,

which is by the terms of the problem a4 feet from the reference

plane.

When the system rotates, the centrifugal force corresponding

to each mass acts upon the axis, which in turn causes an equal

and parallel force to act at the fixed point 0, and a couple. The

condition that there may be no couple is expressed by-

Vector sum (M^'i^! -f M2?-2a2 + . . . + M4r4a4)or . (1)

and the condition for no force on by

Vector sum (M.j\ + M2r2 + . . . + M4r4 -f M5r5>,r . (2)

The artifice used to obtain a solution of the problem consists

in taking the reference plane coincident with the plane of revolu-

tion of one of the balancing masses, so that it has no moment
about 0, and consequently the balance for couples maybe adjusted

without it. The reference plane being at No. 5 plane, in the case

under discussion, M5r5 does not appear in equation (1).

Whatever be the value of w, the two conditions are separately

fulfilled if the vector sums of the terms in the brackets are in

each case zero that is, if when set out to scale they form a pair of

closed polygons. Consider equation (1). All the terms are given
but M4r4a4 ,

of which, however, the factor #4 is given. Calculate

their arithmetical values and set them out to scale, their relative

directions being specified by a drawing. The axes of the couples
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the terms represent are of course at right angles to the axial

planes in which they respectively act. A little consideration

will show, however, that the directions of the cranks themselves

may be used in actually drawing the couple polygon, if the

following rules are observed :

Rules for the Way of drawing Couple Vectors. If the masses

are all on the same side of the reference plane, the direction of

drawing is from the axis, outivards, to the mass, in a direction

parallel to the respective crank directions. If the masses are some

on one side of the reference plane and some on the other, the

direction of drawing is from the axis, outwards, towards the

mass, for all masses on one side
;
and from the mass, inwards,

towards the axis for all masses on the opposite side of the

reference plane, drawing always parallel to the respective crank

directions.

The line closing the polygon represents M4r4a4 . Scaling this

off and dividing by a^, M4r4 is known.

Again, calculate the arithmetical values of the terms in

equation (2), and set them out to scale, the relative directions

being given by the drawing, and include of course the value of

M4r4 just found from the couple polygon, observing the following
rule :

Hide for the Way of drawing Force Vectors. Draw always from
the axis outwards towards the mass parallel to the respective crank

directions.

The line closing the polygon represents M5r5 .

Choosing the radii, r and r5,
the magnitude of the balancing

masses may be calculated at once. These added to the given

system, so that their radii are placed in the relative positions

specified by the closing sides of the two polygons respectively,

completely balance it for all speeds of rotation.

Checking the Accuracy of the Work. Having found the

balancing masses, add them to the drawing in their proper

positions relatively to the given masses
;
choose a new reference

plane anywhere, and draw a new couple polygon relatively to it.

If it close, it is safe to infer that no mistake has been made in

the work. The force polygon is the same for all positions of the

reference plane.

29, Nomenclature, It will be noticed that each term in the
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brackets of equation (2), Art. 28, is a mass moment, and that each

term in the brackets of equation (1) is the moment of a mass

moment with reference to a, the reference plane. The term,
"
pro-

duct of inertia," is also used to denote terms of this form. The con-

ditions of balance may evidently be concisely stated as follows :

(1) The sum of the products of .inertia about the axis of

rotation must vanish
;

(2) The sum of the mass moments about the axis of rotation

must vanish.

When these conditions are fulfilled, the axis is called a principal

axis. To avoid using these somewhat unfamiliar terms, the angular

velocity may be supposed equal to unity, since it may have any

value, in the problem under discussion, without affecting the

balance in any way. Then, as already indicated in Art. 12, a term

of the form Mr may be referred to as a centrifugal force, and a

term of the form Mra as a centrifugal couple.

30. Typical Example. Three masses (shown black, Fig. 32),

rigidly connected to a shaft, are specified in the following list, the

distances, a, being measured from a given plane of reference :

MX = I'O pound TI = 1'5 foot av
= 7'0 feet

M2
= 2-0 ra

= l-0 02 = 3-5

M3
= l-8 7-3

= 1'25 03 = 1-8

The angles between the mass radii are specified by the dotted

lines (Fig. 33).

Find the magnitude and position of two balancing masses,

which are to be placed, one in the plane of reference at unity

radius, the other in the plane of Ml3 also at unity radius.

It will be found convenient to arrange the data in a schedule

of the following kind, in order to calculate the arithmetical values

of the different terms,
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SCHEDULE 3.

Number
of plane of
revolution.
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with respect to a Given Reference Plane due to a System of Masses

rotating at a Given Speed, The unbalanced force is the vector sum

of the forces at 0, equal and parallel to the centrifugal forces.

The unbalanced couple is the vector sum of the centrifugal couples.

Considering the example of Art. 30, the unbalanced couple is
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represented by AD (Fig. 34), the magnitude of which is 4'4 foot-
ij

Ibs. The axis of the couple is at right angles to AD, and is

shown by OY (Fig. 33). The magnitude of the resultant force

is represented by ad (Fig. 35), which measures 1/8 feet to scale
;

2

the magnitude of the force is therefore 1*8 Ibs. weight acting
y

at 0, parallel to AD.
If the shaft rotates at 10 revolutions per second, these values

are 543 foot-lbs., and 221 Ibs. weight respectively.
The force and the couple may now be balanced in a more

general way than that given in Art. 30. To balance the force,

a mass, M, must be placed in the reference plane in a direction,

da, at such a radius, r, that

Mr = 1-8

To balance the couple, masses M(0 Mt ,
at radii ra ,

rb respec-

tively, may be placed anywhere in the axial plane, of which XX
(Fig. 33) is the trace, so that if ac be the axial distance between

their radii

Maraa c
= 4-4 = U brLac

their disposition being such that they give rise to a couple opposite
in sign to the unbalanced couple. This method gives in general

three balancing masses, which of course may be combined into

the two of Art. 30. The first method is by far the most convenient

for practical use, because it gives the balancing masses without

any necessity of thinking of their way of action, these being
determined automatically by the closure of the polygons.

32, Reduction of the Unbalanced Force and Couple to a Central

Axis. It will readily be perceived that the magnitude of the

unbalanced force is independent of the position of the reference

plane, but the magnitude of the couple is different for every new

position the reference plane is moved into. No fair comparison
of the unbalanced couples belonging to two different systems can

be made unless the respective reference planes be moved into the

positions for which the magnitudes of the couples are respectively

a minimum. But .this is a property of Poinsot's central axis, so

that the problem resolves itself into finding the central axis for
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the unbalanced force and couple found with respect to any
reference plane. This may be done in the following way :

Let OE (Fig. 36) be the resultant force for a revolving system ;

00 the axis of the resultant couple. Eesolve the axis in and at

FIG. 36.

oc SIN e

right angles to the direction of E. Thus 00 is equivalent to a

couple, OP, acting in a plane containing OE and the axis of revolu-

tion, and OP in a plane at right angles to this the axis of rotation

is the common intersection of these two planes. This resolution is

shown in Fig. 37 without distortion. Adjust the couple OP so that
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its forces are each equal to E, and so that one of them, EI, acts in

opposition to E. E, EI, being equal, annul one another, leaving a

. , f ,. , CP OC sin 9
single force, EI, at a distance -rr = fj-

~ ^rom the plane of
ii lii

reference, and a couple, OP, whose axis coincides in direction with

the remaining force. The disturbing forces are then reduced to a

single force EI, and a couple whose axis is along EI.

The line of action of EI is the central axis for the system. It

has the property that the disturbing couple about it is a minimum.
The central axis may be looked upon as fixed to, and revolving

with, the system. Its position relative to the cranks never

alters, being determined solely by the disposition of the masses in

motion. The magnitudes of the force and couple set off along it

vary with the square of the speed.

In Figs. 36 and 37, if OR = 5 tons and the resultant couple

OC 20 foot-tons, the resolved couples acting in and at right

angles to the plane containing the resultant force and the axis of

rotation are 19'5 and 5'5 foot-tons respectively. The plane con-

19'5
taining the central axis is therefore = = 3

-

9 feet from the
o

reference plane.

Q is the new origin, and marks the point in the shaft through
which the central axis passes.

A fair comparison of the want of balance of different systems
can now be made by comparing their central axes. The reduction

to the central axis is not of practical importance in a general way.

33. Redaction of the Masses to a Common Radius. It is often

convenient to make a preliminary reduction of the masses to a

common radius, the crank radius in an engine problem, or unity

in a general problem. The centrifugal force Mw2r is proportional

to the product Mr, and the individual factors, M and r, may have

any value, providing that their product remains constant. This

point has already been exemplified in Art. 12, Fig. 13. If E

represents the common radius, the reduced masses Mb M 2,
M 3 , etc.,

are obtained from the several equations

,
M 2E = M2r2,

M 3E = M3r3,
etc.

Substituting these equivalent products in equations (1) and (2)

of Art. 28, they become
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Vector sum (M^i + M2a2 + . . . 4- M 4a4)w
2E - . (3)

Vector sum (M x + M 2 + . . . + M 5)w
2E = . (4

If the vector sums in the brackets separately vanish, the two

conditions of balance are fulfilled for all speeds-. M is really a

mass moment, and N\a a moment of a mass moment, but, to avoid

using unfamiliar terms, the factor w2E may be supposed equal to

unity ;
then M may be referred to as a centrifugal force, and Ma

as a centrifugal couple.

To calculate the value of the centrifugal force and couple in

general, if the vector sum in the brackets be not zero, the quantities

M and N\a representing the respective sums must be multiplied
2

by E, the g being introduced to obtain the result in Ibs. weight
y

units of force. In what follows the ordinary capital M denotes

mass at crank radius unless otherwise stated.

34. Conditions which must be satisfied by a Given System of

Masses so that they may be in Balance amongst themselves. Suppose
all the masses to be first reduced to equivalent masses at a common
radius so that the terms "

equivalent mass
"
and "

equivalent mass

moment
"
may be used instead of

" mass moment "
and " moment

of mass moment "
respectively. Then

(1) It must be possible to draw a closed polygon whose sides

are proportional to the equivalent masses, and parallel in direction

to the corresponding mass radii
;

(2) It must be possible to draw a closed polygon whose sides

are proportional to the equivalent mass moments taken with

respect to any reference plane.

If condition (1) is satisfied and not (2), there is no unbalanced

force, but there is an unbalanced couple.

Condition (2) cannot be satisfied unless (1) is satisfied, for

although the couple polygon may be closed for any reference

plane, yet if the plane is moved into a new position, the couple

polygon for the new position will close only if there is no force

in the old reference plane that is, only if condition (1) is satisfied.

Balancing problems are conditioned, therefore, by the geome-
trical properties of two polygons, whose sides are parallel, but of

different lengths, the sides of the one being obtained from the

sides of the other by multiplication, the multiplier in each case
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being the distance of the equivalent mass from the reference

plane.

35, On the Selection of Data, The balancing of a given system
in a specified way can only be done if there are four independent
variables left to be determined by the pair of closed polygons
which condition the balancing, since the closure of each polygon

requires that two, and two only, quantities be left unknown (Art.

8). In fixing the preliminary data, therefore, it is necessary to

know exactly how many variables there are concerned in the

proposed problem. To completely specify any one mass in the

system there must be given

(1) The equivalent magnitude of the mass at unity radius
;

(2) The direction of the radius of the mass measured from a

line of reference in the reference plane ;

(3) The distance of the plane of revolution of the mass from

the reference plane ;

so that, if there are n masses there will be 3n quantities altogether

in the complete system. But these quantities are not all inde-

pendent variables.

Consider the number of independent variables as regards

(1) The Magnitudes of the Masses. The closed force polygon

only determines the ratios of the several equivalent masses repre-
sented by its sides, and not their absolute magnitudes. An infinite

number of similar polygons could be drawn satisfying the same
conditions. Consequently, any one side may be considered unity,
and the magnitudes of the rest expressed in terms of it. The
number of independent variables is, therefore, one less than the

number of sides forming the closed polygon that is, one less than

the number of masses concerned in the problem so that if there

are n masses, the number of independent variables of magnitude is

n-1

(2) With regard to the Directions of the Mass Eadii or Cranks.

The specification of (n 1) variables of direction is sufficient to

determine the n angles of a closed polygon, so that the number
of independent variables of direction corresponding to n masses is

n-1
(3) With regard to the Distances apart of the Planes of

Revolution. Measuring from any arbitrarily chosen reference
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plane, there are n quantities concerned in fixing the position
of n planes of revolution relative to it : dividing each distance by
any one of the distances, there will result

n - I

variables of distance.

The total number of independent variables corresponding to n
masses is therefore in general

3(n -
1)

The first step in the process of balancing a system is to

ascertain how many masses there are concerned in it, including, of

course, any masses it may be proposed to add as balancing masses.

Call this number n. The number of independent variables is

then 2>(n 1). The number of independent variables which

must be left to effect closure of the two polygons is four
; therefore

3(n 1) 4 = 3n 7 independent quantities must be fixed, and

no more.

In choosing these quantities, it must not be forgotten that the

number specifying the magnitude of a mass is only to be con-

sidered an independent variable if one of the masses is called

unity ;
when this is not done, it is the ratio of a pair of masses

which is an independent variable, so that fixing the magnitude of

two masses is equal to fixing one variable quantity, fixing three

masses equivalent to two, and generally fixing n masses is equi-

valent to fixing 7i l independent variables. Also, if the

reference plane does not coincide with the plane of revolution of

one of the masses, fixing n distances from it is equal to fixing

n 1 independent variables. Coincidence between the reference

plane and a plane of revolution determines' that one of the n 1

variables of distance = 0.

By way of example, suppose a balanced system is to consist of

five masses
;

in general, 3x5 7 = 8 of the independent

quantities must be settled to start with, but no more. Suppose
now that the distances of the five planes of revolution are given
from any arbitrarily chosen reference plane ;

this is equivalent
to fixing four of the eight quantities. Next, suppose the magni-
tudes of three masses to be fixed

;
this is equal to fixing two of

the variables, leaving two more to be fixed, which may be two of

the crank angles. If anything else is fixed, the data becomes

inconsistent, and the problem cannot be solved.
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FIG 41.
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36. Relation between the Polygons, Let equivalent masses,

MI, M2,
M3,

M4,
be distant i, a2, 3, *, feet respectively from the

reference plane at (Fig. 38), and suppose the system to satisfy

the conditions of balance, and that ABCD (Fig. 39) and abed

(Fig. 40) are the force and couple polygons, the order of drawing
the sides being 1, 3, 2, 4, to avoid re-entrant angles. Then

AB : al = MI : MII = 1 : a\

BC : Ic = M3 : M3a3 = 1 : a3
CD : cd = M2 : M2a2 = 1 : a%

DA : da = M4 : M4a4
= 1 : a

If the polygons are similar, the ratio between corresponding
sides will be constant, in which case

that is, all the masses are in the same plane of revolution. If a

pair of ratios are equal, the corresponding masses are in the same

plane of revolution.

This principle shows that two masses cannot balance one

another unless they are in the same plane of revolution, for the

only pair of polygons which can be drawn are a pair of lines

returning on themselves, ABA and aba, in which the ratio

AB : ab = BA : la

Assuming three masses to be in balance, let ABC (Fig. 42)

FIG. 42. FIG. 43.

be the force polygon, in this case a triangle. No other triangle,
as ale (Fig. 43), can be drawn with "parallel sides unless it be
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similar; therefore the three masses must be in the same plane of

revolution.

If, however, the force polygon closes up into a line returning

on itself, as AB + BC + CA (Fig. 44), a second line may be

drawn, as ab + Ic + cci (Fig. 45), so that the ratios of correspond-

ing sides, or segments, are different. It follows that the masses

may be placed in different planes of revolution, but now they
must all lie in an axial plane.

A pair of quadrilaterals for four masses may bo drawn in

which the four ratios of corresponding sides are all different,

FIG. 44.

providing opposite pairs of sides in one of the polygons are not

parallel.
Let Figs. 38, 39, and 40 illustrate this case. Alter the

scale of the couple polygon until db is the same length as AB.

This is equivalent to making a^ equal to unity. Then

AB : db = 1 : 1 CD : al = I :
~*
a

l

BC : Ic = I : ^ DA : da = I : ^
Then the couple polygon may be superposed on the force

polygon so that db coincides with AB, Da with da, and Be with

l>c\ cd remaining parallel to CD (Fig. 39). From this it is

evident that if any quadrilateral, as ABCD, is drawn, and a line

dc is drawn anywhere parallel to one side, cutting the other sides,

produced if necessary in d and c, then

(1) The common side as AB represents unity mass at unity
distance from the reference plane ;

(2) The sides of the quadrilateral ABCD are proportional to

the equivalent masses, that is, to the centrifugal forces
;

(3) The directions of the sides transferred from the force

polygon to an end view of the shaft give the crank angles ;

(4) The ratios of a pair of corresponding sides of the two

quadrilaterals, ABCD, ABctZ, is the distance of the corresponding
mass from the reference plane, a being unity.

These things are true for a pair of polygons of any number of
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sides, superposed so that they have a common side, the remaining
sides being parallel ;

if the ratios between two pairs of sides are

equal the corresponding masses will be in the same plane of

revolution.

Example. Suppose the quadrilateral ABCD and the parallel

cd of Fig. 39 to have been drawn at random. Measure off the

different lengths concerned to any convenient scale and arrange
them as in the following schedule :

SCHEDULE 4.

Plane of revolution.
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for any configuration in the way already illustrated by
Schedule 4.

The parallel cd (Fig. 39) may be drawn anywhere; it merely
fixes the position of the reference plane (Fig. 38) relatively to the

planes of revolution. Consider Fig. 46. Suppose cd to coincide

with CD.

REF. PLAN EAT oo

REF. PLAN EAT N?4-.

a

7
REF. PLANE AT N3.

REF. PIANEAT N?2.

Then

FIG. 4G.

Ad : AD = Be : BC = 1

this cannot be true unless the reference plane be at an infinite

distance from the plane of revolution. If cd passes through the

point A
Ad : AD =

therefore #4 = 0, and the reference plane coincides with the plane
of M4 .

Similarly, if it passes through B, the reference plane coincides

with the plane of M3 .

At Q-
cd : CD =

and the reference plane coincides with the plane of M2 .

Notice that the ratios a : ai and #3 : % become negative when
cd cuts either DA or CB produced. All the ratios approach

infinity as the reference plane approaches the plane of MI, simply
because its distance from that plane is reckoned unity.
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37. Geometrical Solutions of Particular Problems. Four-Crank

Systems. The problem of finding the positions of the planes of

revolution for any force polygon drawn at random may be solved

geometrically. Let ABCD (Fig. 47) be drawn at random. Number
the sides in the way shown. Select the point of intersection of

the two shorter sides
;
B in the figure. Draw the diagonal which

this point subtends, AC. Draw Be and Bc parallel to AD and

CD respectively, intersecting AC in c and /. Then ifAC represents

the distance between the extreme planes of revolution, e and/ give

FIG.

the positions of the two inner planes. If the lines meeting at B
are produced indefinitely, forming a pencil of four rays, any line

drawn across the pencil parallel to AC is divided in the same ratio

as AC, and may therefore be taken to represent to some scale the

relative positions of the planes of revolution. Notice that the

position of No. 2 plane is fixed by a parallel to No. 3 side, that

No. 3 plane is fixed by a parallel to No. 2 side, and that Nos, 1

and 4 planes are determined respectively by Nos. 4 and 1 rays of

the pencil.
There is thus a reciprocal connection between the
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positions of the inner planes and the sides of the corresponding
force polygon, and a similar connection between the outer planes
and the force polygon. The proof of this construction depends

upon the fact that if the plane of reference is at No. 4 plane, ABd
is the couple triangle (see Fig. 46) ;

if at No. 1 plane, BCc is the

couple triangle. Under these circumstances

Cc : CD = ao : a 4

and

ArZ : AD = <73 : a\

But in the triangle ACD, cf is parallel to AD, therefore

C/ : CA = Cc : CD = a2 : a,

Similarly

Ae : AC = Arf : AD = a3 : a\

Therefore if CA represents #4, C/ represents az, measuring from

C. The reference plane is at No. 1, and therefore point C corre-

sponds with No. 1 plane. Also if AC represents ai, Ae represents

#3, measuring from A. The reference plane is at No. 4 plane,

therefore A corresponds with No. 4 plane. But a^ = a\ t
therefore

AC is divided by e and/ so that the four points A, e, f, C represent
to scale the relative positions of the planes of revolution along the

axis corresponding to the force polygon ABCD.
If the positions of the four planes of revolution are given, an

inverse construction will disclose the force polygon, the first step
in the process discovering the crank angles for which balance is

possible. Stating the method categorically, suppose the shaft and

the position of the planes 1, 2, 3, 4 (Fig. 47) to be given. Take

any point B. There is no restriction in the selection of this point ;

it may be taken anywhere. Join the points on the axis to B,

forming a pencil of four rays. The directions of these rays fix the

relative positions of the crank angles, though in drawing the cranks

from them the reciprocal relation already stated must not be

forgotten. That is, the ray B4 (the 4 referring to the figure 4 on

the shaft) gives the direction of No. 1 crank (Fig. 48), Bl No. 4

crank, B3 No. 2 crank, and B2 No. 3 crank. The way the cranks

r?diate from the axis is best fixed by drawing parallels to the side

of the force polygon ; ambiguity of sense is thereby avoided.
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To determine the force polygon, draw any line across the

pencil, as AC in the figure, parallel to the axis of revolution.

This determines the two sides AB and BC. Draw CD and AD
parallel to B3 and B2 respectively. Then the sides of the polygon
so formed represent the masses at crank radius which will be in

balance for the crank angles determined by the position of the

point B and the given planes of revolution.

The method of fixing the crank angles for which balance is

possible, by drawing a pencil of rays to a point B, was indicated by
Dr. Schubert, in Mr. Schlick's paper on Balancing Engines, Insti-

tute of Naval Architects, 1900, and earlier in a paper contributed

by Dr. Schubert to the Hamburg Mathematical Society, 1898.

38. Experimental Apparatus. The principles of this chapter

may easily be verified experimentally by means of the apparatus
shown in Fig. 49. A wood
frame carries an accurately
turned and well-mounted steel

shaft, on which are arranged
four carefully turned and

balanced discs. One disc,

shown to the front in the

figure is fixed to the shaft and

carries a protractor, the others

are capable of angular and

longitudinal adjustment rela-

tively to the shaft. The radius

defined by a disc is fixed by
a small hole, drilled near the

periphery. The system is driven

by a motor also carried on the

frame, so that the discs may
be driven at any speed by
the motor, free from the action

of any external driving force.

The only unbalanced forces acting on the system are therefore

those due to the rotation of the discs, which should be nothing.

This is tested by slinging the frame on chains in the way shown
in the figure. Any want of balance is at once apparent, when
the system is driven, by the vibration of the apparatus. Assumin"

FIG. 49.
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the system to be balanced, the four discs now serve to carry any

assigned set of crank-pin masses. These are bolted to the discs

at the crank-pin holes (two such masses are shown in the figure),

the discs are set to the proper crank angles by means of the pro-

tractor on the front one, and the proper distance apart by means of

the longitudinal adjustment. Any want of balance is at once

shown by the oscillations set up when the system is driven.

The first apparatus of this kind was designed by Professor Ewing
for the Engineering Laboratories at Cambridge.



CHAPTER III.

THE BALANCING OF RECIPROCATING MASSES.-LONG
CONNECTING-RODS,

39, The Force required to change the Speed of a Mass of Matter

moving in a Straight Line. The last chapter was devoted to the

consideration of the effect of forcing a system of masses to move in

circular paths at uniform speeds. Turn now to the case where

the natural straight path of a mass is not interfered with, but the

speed in that path is changed from instant to instant by the action

of a force. In general, if M is the mass in pounds of the moving

body, and A the acceleration produced by the force F, acting at

the mass centre

F = MA poundals

or

-r,
MA ,, . , ,F = Ibs. weight
J

Since in balancing problems the magnitudes of the forces are

generally not concerned, it is more convenient to use the first

expression, avoiding thereby the introduction of g into the work.

In the steam-engine mechanism, when the motion of the crank-pin
is given, the corresponding acceleration of the piston can be found

for any given position of the gear, though the expression giving it

is a complicated one; its consideration will be deferred for the

present. On the other hand, if the connecting-rod be imagined

infinitely long, the expression is a simple one. In many cases in

practice the difference between the true accelerating force acting

on the piston, and the force calculated on the assumption that the

54
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connecting-rod is infinitely long, is small enough to be negligible.

The present chapter is concerned in showing how the effects of the

accelerating forces, acting on 7
the reciprocating masses, may FIXED

!

be balanced, supposing these

masses to be operated by in-

finitely long connecting-rods,

that is to say, supposing their

motion to be simple harmonic.

40. Value of the Accele-

ration of One Set of Re-

ciprocating Masses, when the

Connecting
- rod is infinitely

Long. The motion given by
the crank (Fig. 50) to the

slotted bar, which here repre-

sents a set of reciprocating

parts, is precisely the same

as if the^bar were connected

to the crank by an infinitely

long connecting
- rod. The

mechanism is, in fact, a

practical way of expressing

the conditions of the problem.

Let 9 be the variable angle

between a fixed line of refer-

ence OZ, the vertical centre

line of the gear, say, and the

crank whose radius is r. The

movement of the slotted bar

from its central position, in

terms of the angle, is given

by the expression

x = r cos 9

Differentiating this twice

with respect to the time, and

considering the angular velocity, o>, of the crank to be

sensibly constant, the acceleration of the slotted bar is

FIG. 50.
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J= -0*0080= A ...... (1)

and consequently the instantaneous value of the accelerating force,

F, is given by the expression

-MwVcosfl

Thus, if the mass of the slotted bar and all its attachments

were 500 pounds, and the crank radius were 1*5 feet, the revolu-

tions per second being 3, the magnitude of the accelerating force

when 9 is 60, would be 4140 Ibs. weight approximately.

41. The Accelerating Force and its Action upon the Frame.

However the reciprocating mass of Fig. 50 be moved, whether by
the effect of fluid pressure acting within the cylinder, or by the

action of a torque applied to the crank- shaft, given that the crank

revolves uniformly, the instantaneous value of the accelerating

force can always be calculated for a given crank angle from equa-
tion (2) of the previous article. In the case of steam-engines or

gas-engines this force must be taken from or added to the total

fluid pressure acting on the piston, to find the force transmitted

along the piston-rod to the crank, according as the acceleration is

positive or negative. Whatever be the instantaneous value of the

accelerating force, its action on the reciprocating masses necessarily

involves the action of an equal and opposite force on the frame of

the engine. The force is indicated by F (Fig. 50), the one aspect

accelerating the motion of the reciprocating parts, the other the

motion of the framework. The acceleration of the motion of a shot

from a gun is always accompanied by the recoil, the movement of

the shot and the gun being necessary consequences of the action of

the pressure due to the explosion. In explosion motors, as gas-

engines, the same thing happens, only that the shot, now a piston,

must move in a way prescribed by its connection to the crank-

shaft, and if the engine frame were free to move in the direction

of the line of stroke, the recoil would take place just as if the

cylinder were a gun. In the steam-engine the phenomenon
is precisely similar. In considering these examples, it should

be distinctly borne in mind that the recoil of the framework

depends only upon the acceleration of the shot, the piston or the

reciprocating masses, whatever be the name given to the bodies
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accelerated ;
and has nothing whatever to do with the agent causing

the acceleration. For instance, given that an engine crank-shaft

revolves uniformly three times a second, and that the reciprocating

masses weigh 500 pounds, the magnitude of the accelerating force

is 4140 Ibs. weight when the crank angle is 60. The recoil of

the framework is at that instant progressing under the action of

this force, whether the motion of the reciprocating parts is due

to the action of steam pressure, or to the explosion of a gas, or to

the action of a turning effort on the crank-shaft as when the gear

is working as an air compressor.

If such an arrangement as Fig. 50 were suspended from a

spring and driven with fluid pressure, the framework would be

seen to oscillate up and down, oppositely to the piston, but in

time with it. The mass of the framework being so much greater

than that of the piston, the oscillations would be in general of

smaller amplitude. If held from oscillation by holding-down

bolts, they have continually to sustain the effect of the accelerat-

ing force. They transmit the effect to the foundations, and

troublesome tremors are the usual consequences. In engines with

more than one cylinder, the frame forces corresponding to F form

a system which can, at any instant, be reduced to a force and a

couple. Then, in addition to the effect of the force, the couple

tends to tilt or rock the frame in the plane containing the recipro-

cating masses.

42, The Balancing of a Reciprocating System consists in the

arranging of the masses forming the system, so that the accelerat-

ing forces acting on the framework form a system in equilibrium.
A system of reciprocating masses is formed of any number

of masses moving in parallel lines in the same plane, and whose

periodic times are equal. In the steam-engine the masses forming
the system move in parallel paths, and with few exceptions there

is only one system of reciprocating masses to be considered. The

exceptions are those cases where the cylinders are inclined to one

another. In cases of this kind the number of systems is equal to

the numbers of different planes in which reciprocation takes place.

The principle to be observed in balancing engines of this class is

that each system must be balanced independently of the others.

43. Simple Harmonic Motion and its Relation to Circular Motion.
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If a mass M, equal to the reciprocating mass of Fig. 50, is

concentrated at the crank-pin, the centripetal force required to

constrain its motion in the circular path is, by Art. 9

The resolved component of this in the line of stroke is

cos 6

This latter expression is the same in form as expression (2)

(Art. 40). Similarly, the resolved component of the centrifugal
force in the line of stroke is the same in form as the force actingo
on the frame in consequence of the action of the accelerating force

to produce reciprocation. .
Hence

The disturbing force on the frame due to the reciprocation of a

mass M is equal to the disturbance which would be produced bij the

component of the centrifugal force in the line of stroke, due to an

equal mass M supposed concentrated at the crank-pin.

Thus, instead of fixing the mind on the reciprocating mass

and the force accelerating it, picture this mass transferred to and

revolving with the crank-pin; the force actually disturbing the

frame for any position of the gear is then disclosed by the pro-

jection of the centrifugal force due to the transferred mass, on the

line of stroke.

If there are several reciprocating masses connected to the

same shaft by infinitely long connecting-rods, the whole action

on the frame may be considered due to the combined effect of the

components of the centrifugal forces due to the rotation of the

several reciprocating masses at their respective crank-pins.

44. Method of investigating the Balancing Conditions of a

System of Reciprocating Masses whose Motion is Simple Harmonic

or may be considered so without Serious Error. Let ABCD (Fig.

51) be a closed force polygon in the reference plane, which is

supposed to be keyed to, and to revolve with the shaft, whose end

is shown at 0. The shaft carries four masses whose respective

centrifugal forces are represented by the sides of the polygon.

Let ZZ be any fixed line. It is clear that in the position shown

in Fig. 51, the sum of the projections of the sides of the

polygon on the line ZZ is zero. But these projections are the
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components of the centrifugal forces represented by the sides of

the force polygon, and therefore, if the masses concerned in draw-

ing the polygon are reciprocated in the plane of which ZZ is the

trace, the sum of the disturbing forces due to their reciprocation is,

for the position shown, zero, since these forces are instantaneously

represented by the several projections (drawn to the right of ZZ
for clearness) shown in Fig. 51. Again, consider the system
when the shaft, and therefore the reference plane and the polygon
on it, has turned into the position shown in Fig. 52, the line

ZZ, and the plane of which it is the trace, remaining fixed.

The sum of the projections of the centrifugal forces, viz. ab, "be, cd,

da, is still zero, and therefore there is still balance amongst the

FIG. 51. FIG. 52.

reciprocating forces. In fact, always providing that the force

polygon is closed, the sum of the projections of its sides on ZZ
is continuously zero during the rotation of the shaft, though
the individual magnitudes of the projections are continually

varying. Similar reasoning applies to a closed couple polygon.

During rotation the sum of the projections of its several sides

on ZZ is always zero, and therefore the reciprocation of a

corresponding set of masses in the plane, of which ZZ is a trace,

gives rise to no tilting action on the engine frame. From this it

follows that to investigate the balancing conditions amongst a

given system of reciprocating masses, it is only necessary to

imagine them transferred to their respective crank-pins, and then
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to proceed by the rules of Chapter II. In fact, every example on

revolving masses in the previous chapter may be looked upon as

FIG. 53.

If
4

FIG. 54.

an example in reciprocating masses, assuming, of course, that the

reciprocation is simple harmonic.
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To fix these principles in the mind, consider the system of

revolving masses MI, M2,
M3,
M4,

shown in Fig. 53, to be in balance

amongst themselves. Taking a reference plane anywhere, the

corresponding force and couple polygons will be closed. The

sum of the projections of these two polygons on the plane
indicated by shading will, therefore, be continuously zero during
the rotation of the system. If, therefore, the revolving system
be changed into the reciprocating system shown in Fig. 54, where

the masses have been taken from their respective crank-pins and

placed as pistons on the slotted bars (whose mass is here neglected),

the system of reciprocating masses so formed will be balanced.

45. Estimation of the Unbalanced Force and Couple due to a

Given System of Reciprocating Masses assuming Simple Harmonic

Motion.* Let ABCD (Fig. 55) be the unclosed force polygon

corresponding to a system of

three revolving masses carried

by the shaft, whose end is in-

dicated by 0. Let ZZ be a fixed

line, and let OX be a line drawn

in the reference plane by means

of which the angular position

of the plane may be specified

relatively to the fixed line ZZ.

When the angle between OX
and ZZ is known, the angles
between all the crank directions

and ZZ are known. The un-

balanced centrifugal force is

represented by the vector AD.
The projection of this on ZZ FIG. 55.

is the instantaneous value of

the unbalanced force due to a corresponding system of reciprocating

masses. If a is the angle between the vector AD and OX, and

is the instantaneous value of the crank angle, the magnitude of

this projection is

AD cos (0 + a)

* The method of finding the unbalanced force and couple by means of drawing

polygons was given in a paper,
" The Causes of the Vibrations of Screw Steamers,"

by Mr. D. W. Taylor, and published in the Journal of the American Society of Naval

Engineers, vol. iii., 1891.



62 THE BALANCING OF ENGINES.

Similarly, if AD represent the unbalanced couple, the expression

will give the value of the tilting couple acting on the engine
frame for the corresponding system of reciprocating masses in

terms of the crank angle.

It will be noticed that the value of the unbalanced force is

a maximum at the instant AD is parallel to ZZ. And remember-

ing the rules for drawing a couple polygon, the tilting couple is

a maximum also when AD, taken now to represent the unbalanced

couple, is parallel to ZZ. Eeferring to Art. 32, it will be evident

that the unbalanced force and the minimum values of the un-

balanced couple are the projections on the plane in which recipro-

cation takes place of the central axis belonging to the corre-

sponding system of revolving masses.

Example. Find the unbalanced force and couple due to the

reciprocating masses of a three-crank engine arranged with cranks

mutually at 120, and running at 88 revolutions per minute,

having given

Mass of each set of reciprocating parts ... 5 tons.

Crank radius ... ... ... ... 2 feet.

Cylinders ... ... ... ... ... 16 feet pitch.

Take a reference plane at the central crank. Imagine the

reciprocating parts concentrated and moving with their respective

crank-pins, and apply the method of Art. 31.

The force polygon is a closed equilateral triangle, so that there

is no unbalanced force.

The couple polygon is open, requiring a side 13 8 '5 units

long, inclined 90 to the direction of the central crank to close

it. The couple this represents at 88 revolutions per minute is

o

138'5 = 728 foot-tons. This is the maximum value of the
9

tilting couple for the reciprocating masses, and the value in terms

of the crank angle is given by

728 cos (0 + 90)

46, Elimination of the Connecting-rod, Not only does the

connecting-rod disturb the simple harmonic motion of the recipro-

cating masses, but the motion of the rod itself, partly reciprocating,

partly turning, and in each case changing from instant to instant,
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requires the action of varying accelerating forces to constrain its

motion, and the equal and opposite aspects of these forces disturb

the frame. Therefore, in addition to the assumption that the

connecting-rod is so long that the differences between the accelera-

tions of the mass it reciprocates, and the accelerations it would

give if it were infinitely long, are negligible, the forces due to its

own acceleration must be reckoned with before it can be finally

discarded from the problem. A full discussion of this subject is

given in Chapter VIII. For the present purpose it will be sufficient

to state that its effect on the frame in the line of stroke is imitated

by two separate masses, one being concentrated at the crank-pin,

the other at the crosshead. These two masses are then included,

the one with the reciprocating masses of the engine, the other

with the revolving masses. The magnitudes of these masses are

inversely as the mass centre of the rod divides the line joining

the crank-pin centre to the centre of the crosshead-pin, and their

sum is equal to the mass of the rod.

To find the mass centre of the rod, take it in its finished state,

complete in every detail, and balance it on a knife-edge. Let e

be the distance from the crank-pin centre to the knife-edge, and

/ the length of the rod centre to centre. Weigh the rod, and let

M be its mass in pounds or tons as the case may be. Then

Mass supposed attached to, and moving ~| _ Me
with the crosshead j /

Mass supposed attached to, and revolving ] _
with the crank-pin j

Another way of arriving at the proper division of the mass

is to place the rod with its centres on knife-edges, supported on

the platforms of two separate weighing-machines. The reading

given by the scale supporting the crank-pin end gives the mass

to be included with the revolving masses. The reading given by
the other scale, gives the mass which must be included with the

masses at the crosshead. It is obviously only really necessary to

support one knife-edge on a scale, the pressure on the other edge

being found by difference when the mass of the rod is known.

Example. A connecting-rod, 6 feet centre to centre, weighs
500 pounds. It is found to balance about a knife edge 1 foot 6

inches from the crank-pin centre, The mass to be included with
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the reciprocating masses is 125 pounds, the rest, 375 pounds, being
reckoned with the revolving masses.

47. General Method of Procedure for Balancing an Engine, when
the Motion of the Reciprocating Parts may he considered Simple
Harmonic. (1) Eeduce each mass to an equivalent mass at a

common crank radius by Art. 33, distinguishing between revolving
and reciprocating masses.

(2) Distribute the mass of each connecting-rod between the

revolving and reciprocating parts which it connects by the method
of Art. 4G.

(3) Fill in a schedule of the following type for the recipro-

cating masses, choosing the reference plane to coincide with a

plane of revolution for which the reciprocating mass is unknown.

SCHEDULE 5.

RECIPROCATING MASSES. Plane of Reference at ...

Number of crank.
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with the crank-shaft to deal with. Since in this revolving system
the crank angles are fixed, masses must be added to the system
to balance it. An example is worked out in Art. 51.

It will be noticed that the problem of balancing reciprocating

masses presents itself in a slightly different form from problems
on revolving masses. In the latter case, the problem is

usually
Given a system of revolving masses to find the masses which

added to the given masses, will produce a balanced system.
The least number of masses in the general case which must

be added is 2, so that if there are n masses given, there results

a system of (n + 2) masses in balance. There is little difficulty

in adding revolving balancing masses to a system. With recipro-

cating masses it is more difficult. A balancing mass in this case

means a new crank, connecting-rod, guides, etc., to operate a mass

which in every other respect but the enclosing cylinder may be

looked upon as a piston. Such a mass has been called a " bob-

weight." Mr. Yarrow, in a paper
*

at the Institution of Naval

Architects in 1892, described how the engines of a torpedo boat

had been balanced by the addition of two bob-weights. This

paper of Mr. Yarrow's is full of interest, as in it are given the

details of the calculations used to determine the bob-weights for

balancing the reciprocating masses of a three-cylinder engine.

It will be perceived that, providing there are a sufficient

number of cranks, the reciprocating parts operated by any two

cranks may be considered as the bob-weights balancing the

rest of the reciprocating parts.

The general problem of balancing a reciprocating system,

therefore, presents itself in this way
Given a system of n reciprocating masses to find how the

masses must be arranged so that they mutually balance.

It has been shown, in Art. 35, that the number of independent
variables concerned in a revolving system of n cranks is in general

3(?i 1). This applies equally to a system of reciprocating masses.

Consequently, if an engine is to be built with n cylinders, there

will be 3(n 1) variables to be considered in the balancing of

the reciprocating masses, which have to satisfy four conditions
;

consequently, 3?i 7 of these must be fixed, but no more. The

* On "
Balancing Marine Engines and the Vibration of Vessels." By Mr. A. F.

Yarrow. Trans Inst. Naval Architect t, London, 1892.

F
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remaining four variables can then be found by the foregoing

methods to balance the system.

Thus, in a four-crank engine, there are nine independent
variables

;
these are, or, rather, may be (for any one of the M's or

as may be used for the common divisor)

Variables of magnitude -,
---3

, .-- = 3
MI MI MI

Variables in a
a
-*, ^, ^ = 3
i ai ai

Variables of direction 12, 13, Ou = 3

Total = 9

The double subscript to the O's indicate the particular numbers

of the cranks between which 9 is measured. A good way is to

put the magnitude of one of the masses equal to unity, and one

of the distances from the reference plane equal to unity. The

letters left in then represent independent variables
; they are,

of course, now proportional numbers, and in the solution must be

interpreted in terms of the M and the a which were put equal
to unity,

If, for instance, MI and a\ be considered each equal to unity,

the variables are

Ma, M8 ,
M4

= 3

2, 3, 4
= 3

/) /) n Q
012, 1/13, "U = O

Total = 9

Of these 3x4-7 = 5 must be fixed. Fixing the pitch of the

cylinders is equivalent to fixing all the variables in a, that is, three.

The remaining two may be chosen at will from the above set.

For instance, any two of the M's may be fixed, or any two of the

angles, or one M and one angle. It is evident that if all the

masses are fixed as well as the centre lines of the cylinders, there

are too many data chosen, and no solution of the problem is possible.

It is also clear that there are as many solutions possible as there

are ways of choosing the two quantities, supposing the centre lines

to be fixed.

48. Example. Given the stroke, the cylinder centre lines, and
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the masses corresponding to three cylinders in a four- cylinder

engine, find the crank angles, and the mass of the reciprocating

parts belonging to the fourth cylinder so that the reciprocating

masses may be in balance amongst themselves.

The first step is to examine the data. There are nine variables

concerned in the problem (see Art. 47), and of these five must be

fixed. The fixing of the cylinder centre lines accounts for three,

and the fixing of three masses for the remaining two, because,

although three masses are given, this only corresponds to two

ratios. It is the same as putting one of the given masses equal to

unity.

Take the reference plane so that it contains the centre line of

the gear whose mass is to be determined as shown in Fig. 56, the

dimensions there shown being given. From it fill up Schedule 6.

SCHEDULE 6.

RECIPKOCATING MASSES. Plane of reference at No. 4 cylinder.

Number of crank.
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These directions are transferred to the end view of the crank-

shaft centre lines (Fig. 58).

One condition of balance is fulfilled, viz. that the couple

polygon close. The second condition, viz. that the force polygon

close, is easily satisfied by taking advantage of the adjustment

FIG. 56.

RECIPROCATING MASSES

N4-.

FIG. 57.

which may be made by crank No. 4, since, in whatever direction it

is placed, the mass it operates has no moment about the reference

plane, and consequently it may be fixed in any desired position

without disturbing the balance amongst the couples.

Choosing a convenient scale, make Ab (Fig. 57) = to 51, be =
6'49 and parallel to crank No. 2, cd = 7*025 and parallel to crank

No. 3. The polygon fails to close by the side dA.

Close it by means of the fourth crank. Thus, dA is the

direction of crank No. 4 relatively to the others, and its length
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represents the equivalent mass (of the reciprocating parts)attached

to the crank dA scales 4'95 tons.

Check the work in this way
Suppose the reference plane to be at No. 1 crank. Make a

new schedule for the masses with reference to this plane, including,
of course, No. 4 crank. Draw the couple polygon. If it closes,

the work is correct.

A consideration of the couple triangle (Fig. 57) will show that

the lightest mass should be placed in plane No. 1
;
that in plane

No. 2 the crank should be arranged oppositely to crank No. 1,

otherwise the mass at No. 3 would have to be relatively very

great to effect balance.

49. Example, Given the cylinder centre lines of a four-cylinder

FIG. GO.

engine, find the crank angles and the masses so that the recipro-

cating parts may be in balance amongst themselves.

It will be noticed at once that not enough data are given to



70 THE BALANCING OF ENGINES.

solve the problem. There are nine variables concerned in the

balancing, and of these five must be given to get a solution. Since

only three of the variables are fixed by the cylinder centre liner,,

two more must be fixed. Let these be two angles. Assume the

angles, which are shown in Fig. 59, between cranks 1, 2, and 3.

Take a reference plane at No. 4 cylinder. Set out AB (Fig. 60)

in the direction of No. 1 crank, and make it = 100, to some con-

venient scale. Draw BC, CA parallel respectively to No. 3 and

No. 2 crank
;
measure them off, and enter them in Column II. of

Schedule 7.

SCHEDULE 7.

RECIPROCATING MASSES. Reference plane at No. 4 crank.

Number of crank.
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dA, the closure, gives the direction of crauk No. 4, and its

length, 2*45, is the proportional equivalent mass number.

The masses must be adjusted so that they are in the ratio

of

2-45 : 372 : 4'37 : 3'02

50. Example. Both the preceding examples ignore the effect

of the valve-gear. The next example includes it, and is worked
out in somewhat greater detail to serve as a typical illustration

of a way of dealing with torpedo-boat engines. The peculiarity
of the problem is that the eccentric sheave angles are functions of

the corresponding main crank angles. The method of dealing with

the problem will be apparent in the working out.

Given the centre lines of four cranks and the corresponding
ahead and astern eccentric sheaves

;
the mass of the different parts

of the valve-gears and the mass of one piston ;
to fix the crank

angles and the masses of the pistons so that the reciprocating
masses may be in balance amongst themselves, and to find the

balancing masses for the crank-shaft.

Fig. 61 shows the crank-shaft and centre lines. Above each

crank and sheave is written the reciprocating and revolving
masses at the crank radius, it being understood that the con-

necting-rods and eccentric rods are included by the method
of Art. 46.

In calculating the reciprocating masses, it may be noted

that the engine is supposed to be in forward gear, and that

the equivalent reciprocating mass for the ahead eccentric

in each case includes the mass of the valve, valve spindle,

etc., an appropriate part of the eccentric rod, and one-half the

link.

The valve motion of No. 4 crank cannot be taken into con-

sideration in the general method, because its crank angles are

functions of crank No. 4, the last angle to be determined.

Assume the mass of the reciprocating parts of No. 1 crank to

be 1000 pounds.
Fill in Schedule 8.
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SCHEDULE 8.

RECIPROCATING MASSES. Reference plane at No. 4.

Numberlof crank.



FIG. 61.
REVOLVING MASSES
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Set out (Fig. 70) the angle between No. 1 and No. 2 cranks to

be 200, and between Nos. 1 and 3 100.

Draw the couple polygon thus

Trace the vectors of Figs. 65 and 67 on separate pieces of

tracing-paper. Pin the tracing from Fig. 67 over the vector draw-

ing of Fig. 63 by a single pin through A on the tracing and D
on the drawing. Similarly, pin the tracing of Fig. 65 through DI
on the tracing and A on the drawing. Turn the tracings rourd

their pins until AiBi is parallel to crank No. 2, and C D to crank

No. 3. X, the intersection of the indefinite lines AiBi and C T)
,

defines their length, and therefore the couples for cranks Nos. 2

and 3. Measure these off and enter them in the schedule.

Divide each by its appropriate distance from the reference plane,

and enter the force so obtained in Column I. It is at once settled

that the reciprocating crank-pin mass for No. 2 crank is 1500 pounds,
and for No. 3 crank 1275 pounds.

Draw a force polygon whose sides are parallel to the couple

polygon (Fig. 63), and proportional to the numbers in Column I.

(Fig. 71). It fails to close by the vector VA. The valve-gear of

No. 4 crank may now be included. To do this, draw ab, be, cd

(Fig. 69) parallel to OK, OF, OE (Fig. 68). Make be, cd proportional

to the corresponding equivalent masses. The magnitude of ab is

as yet unknown. Pin the tracing of these vectors over Fig. 71, d

on the tracing being over A on the drawing. Turn it until the

indefinite line passes through V.

Y6 represents the mass of the reciprocating parts of No. 4

crank, and gives the direction of the crank. This crank is added

to Fig. 70.

Care must be taken to see that in these vector polygons the

arrows are all pointing in the same way.
Notice that the valve-gear of No. 4 crank is balanced as

regards forces, but not as regards couples.

These couples are of small magnitude, and may be neglected.

They can be balanced, however

(1) By repeating the whole process and including the couples
in the couple polygon, assuming the radii of the two sheaves in

question to have the directions found by the first application of

the method.

(2) By two reciprocating masses arranged in two planes.

Pumps worked from the shaft may sometimes be arranged to do this.
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(3) By considering them as couples to be balanced with the

revolving masses of the crank- shaft.

Assume that it can be done by No. 2 method.

51. Balancing the Crank-shaft, The crank-shaft may be

balanced in either of two ways

(1) by the addition of two balancing masses in two separate

planes of revolution
;

(2) by the extension of the arms of each crank to form

balancing masses for the revolving masses of that crank.

The first case is treated by the general method; the second

case by Art. 12.

In the first case a crank-shaft in which there are any number

of cranks may be balanced by the addition of two masses only.

In the second case there are as many balancing masses as there

are crank-arms, but this method has the advantage that the inter-

mediate parts of the crank-shaft have not to transmit force from

one crank to another, since each mass is balanced in its own plane

of revolution. The shaft is thus freed from bending moment due

to this cause, so far as the revolving masses are concerned.

The addition of balancing masses to the crank-shaft may be

avoided altogether if it is balanced in the vertical plane only,

leaving the component force and couple in the horizontal plane

unbalanced. This may be done in marine engines in those cases

in which the ship's hull is stiff enough horizontally to render the

disturbances due to a crank-shaft unbalanced horizontally negli-

gibly small. To balance an engine in this way, add the revolving

masses and the reciprocating masses in each plane together, and

proceed by the method of the previous article. Many examples
of combining reciprocating and revolving masses into one schedule

will be found in the next chapter.

Returning to the example of the previous article, balance the

crank-shaft by the first method. The crank angles (Fig. 70) are

all fixed by the conditions of balance found for the reciprocating

masses. The equivalent revolving masses are all given in Fig. 61.

Fill in Schedule 9.
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SCHEDULE 9.

REVOLVING MASSES. Reference plane at No. 4.

Number of crank.
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An end view of the crank-shaft centre lines is shown in

Fig. 74.

FIG. 72. FIG. 73.

12 POUN
ATN94.PLANE
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52. Conditions that an Engine may be balanced without the

Addition of Balancing Masses either to the Reciprocating Parts or

to the Crank-shaft, If an engine has four cranks or more, the

reciprocating parts may be balanced amongst themselves without

the addition of balancing masses in the way already exemplified

in Arts. 48, 49, and 50
;
and this necessarily fixes the crank angles.

The distances between the planes of revolution of the revolving
masses are practically the same as the distances between the cylinder

centre lines, since the crank-arms, etc., are symmetrical with

respect to their respective cylinder centre lines, and therefore the

mass centre of each revolving mass is in the same plane in which

the corresponding reciprocating mass moves; hence, for the re-

volving masses to be in balance, the force and couple polygon

corresponding to them must be similar to the force and couple

polygon belonging to the reciprocating masses, and therefore the

revolving masses must be in the same proportion to one another

as the reciprocating masses. Or, briefly, no balancing masses will

be required if

(1) The mass centres of the revolving and reciprocating

masses of each line of parts are in the same plane ;

(2) The masses of the reciprocating parts are in the same

proportions as the masses of the revolving parts ;

(3) The 'reciprocating system is balanced by the method of

Art. 47.

For instance, in the example of Art. 49, the masses of the

reciprocating parts must be in the following proportions for

balance

2-45 : 3-72 : 4'37 : 3'02

and these, therefore, represent the ratios of the revolving masses if

no balancing masses are to be added to the crank-shaft.

This condition rarely obtains in practice, and it is, therefore,

necessary to add masses to the crank-shaft in order to balance it.

53. To find the Resultant Unbalanced Force and Couple due to

the Revolving and Reciprocating Parts together. The way to find

the unbalanced force and couple for a given system of revolving
masses has been given in Art. 31, and the method of estimating
the unbalanced force and couple due to a given system of

reciprocating masses, moving with simple harmonic motion,
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has been given in Art. 45. The resultant force or couple at any
instant is the resultant of the two vectors representing the

ibrce belonging to each system, or of the vectors representing the

couples.

Suppose the vector OA (Fig. 75) represents the unbalanced

force belonging to the revolving

system attached to the shaft, the

end of which is shown at 0, and

OK the unbalanced force of the

imaginary revolving system re-

placing the reciprocating system

operated by the same shaft. The

projection of OE on ZZ, that is,

Or, is the instantaneous value

of the unbalanced reciprocating

force (Art. 45). The resultant

of OA and Or, that is, OB, is

the instantaneous value of the

whole disturbing force. It may
be shown that the locus of the

point B is an ellipse. Notice

that OE and OA revolve with

the shaft, and that the angle a

between them is constant.

The couples may be dealt

with in a similar way.
This need not be further pur-

sued, because a method will be

given in Chapter VI. by means of

which both the unbalanced force

and couple may be found exactly for short rods by a simple

geometrical process.

54. Experimental Apparatus. Fig. 76 shows an apparatus which

has been designed by the author to illustrate the principles of

balancing reciprocating parts. There are four cranks, all mutually

adjustable, three of the flanges of the crank-shaft being divided into

degrees for this purpose. Adjustable masses may be fixed to the

tails of the respective piston-rods. Of the nine variables concerned

in the balancing of a four-crank engine six are susceptible of

FIG. 75.
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variation in this apparatus. Suspended from a frame as shown, its

motions when running unbalanced exhibit the way a marine

engine tries to wobble when running under similar conditions.

Properly balanced, it hangs motionless at all speeds, showing only
a little uneasiness when the

speed is passing through the

natural period of oscillation of

the supporting springs. Placed

on rollers in the way shown in

Fig. 101, it shows the effect on

the tractive force due to the

unbalanced parts of a four-

cylinder locomotive. In this

model the revolving parts are

so arranged that their balance

is not disturbed by any adjust-

ment that may be made in the

reciprocating parts or crank

angles. If provided with short

connecting-rods, it serves also

to illustrate the principles of

Chapter V.

55. Balancing Reciprocating
Masses by the Addition of Re-

volving Masses. The balancing
masses found by Art. 30 must,

of course, be reciprocated, form-

ing, with the given system of

reciprocating masses, a system
in a balance. If they are added

to the system as revolving

masses, being attached to the

FIG. 76. crank-shaft, although they do

produce balance amongst the

reciprocating masses, they introduce at the same time forces at

right angles to the plane of reciprocation exactly equal to the forces

they are balancing in the reciprocating system, though differing in

phase by 90. It may be that the unbalanced forces in this direction

are less serious than in the original direction, though in general
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balancing in this way cures one trouble only to introduce another.

This case is similar, though opposite, to the method mentioned in

Art. 51 of avoiding the addition of balancing masses to the crank-

shaft by arranging the reciprocating parts to balance it vertically,

leaving it unbalanced horizontally. The method of procedure is

alike in both cases, and, in the case of locomotives, is fully illus-

trated in the next chapter.



CHAPTER IV.

THE BALANCING OF LOCOMOTIVES,

56, General Consideration of the Effects produced by the Un-

balanced Reciprocating Parts of a Locomotive. The disturbances

caused by the machinery of a locomotive may be divided into

those due to the revolving and reciprocating masses respectively.

There is no need to discuss the effects due to the unbalanced

revolving masses, crank-arms, crank-pins, coupling-rods, etc. These

always can and always should be balanced forming a revolving

system in equilibrium at all speeds, and affecting, therefore, neither

the tractive force nor the rail pressure.

The effect due to the unbalanced reciprocating masses may be

investigated by reducing them to a reference plane taken centrally,

at right angles to the axis of the driving-axle. The unbalanced

forces then reduce to a single force and a couple.

In Fig. 77 the left-hand crank of a driving-axle belonging to

either an inside or outside 2-cyUnder engine is shown on the trailing

dead centre, and it stands to the front of the reference plane. The

right-hand crank is, of course, behind the plane. The reciprocating

system consists of two masses, each equal to M pounds say, con-

nected to cranks at right angles by rods which are relatively long

with respect to the crank radius. The unbalanced force and couple

are found by the method of Art. 45. Thus Oab is the force triangle

in which Oa and ab are equal, each representing M : the vector Ob,

therefore, represents the unbalanced force of the system of revolving

masses corresponding to the reciprocating masses. Its projection

on the line of stroke, Oa in Fig. 77, Oc in Fig. 78, where the crank

axle has turned through the angle 9, 9 being the angle between the

82
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centre line and the left-hand crank, represents the instantaneous

value of the unbalanced force in the centre line of the engine.

Since for a given speed Oa = db = - Ibs. weight, the
c/

numerical value of this force in terms of the angle 6 is

X/2 Marcos (0 + 45) lbs weighfc
9

or, in terms of the revolutions per second of the crank-axle n, M
being in pounds and r in feet, it becomes

Unbalanced force in lbs. weight} = Cl'TM^V cos (0 + 45) ap-

acting at the centre line j I proximately . . . (1)

Similarly, OAB (Fig. 77) is the couple triangle in which OB
R.

fcp^-^^ R: ^ .

b

FIG. 77. Fio. 78.

represents the value of the unbalanced couple for the corresponding

system of revolving masses
;

its projection, OA in Fig. 77, OD in

Fig. 78, therefore, represents the instantaneous value of the un-

balanced couple acting in the plane containing the centre lines of

the cylinders. This couple oscillates the engine about a vertical

axis, or one very nearly vertical when the cylinders are inclined.

This axis is always at right angles to the plane of reciprocation,
~i\ /r 2

Since for a given speed OA = AB = - :
foot-lbs., where a

is equal to half the distance between the cylinders, the numerical

value of the couple in terms of the angle is-^

ra cos (0
- 45)
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or, in terms of the revolutions per second n, and the distance

between the centre lines of the cylinders, d

85MftWcos (6
- 45) foot-lbs. approximately . . . (2)

The maximum values of the force occur when 0& turns into

the line ZZ, that is, when 9 = 45, or 135; and the maximum
values of the couple when OB turns into the line ZZ, that is,

when = +45, or 225.

There is still another disturbance due to the fact that the

centre line of the crank-axle is above or below the line of traction.

If the distance between the line of action of the force and the

line of traction is t (Fig. 78), the transference of the force to the

line of traction is equivalent to (see Art. 24)

(1) An equal and parallel force in the line of traction
;

(2) A couple whose arm is t.

This couple, which is continually varying in magnitude and

sign, tends to oscillate the engine in a vertical plane. This would
be perceived most with comparatively short tank engines with small

wheels. Assuming the distance of the line of traction above the rails

to be about 3 feet
4-^- inches, with a 6 feet 9 inch driving-wheel,

this cause of disturbance would be entirely absent, since t = 0.

It may be noticed incidentally that the tractive pull of the

engine must be transferred from the plane of reciprocation to the

line of traction, which transference gives rise to a couple varying
in magnitude, but acting to turn the engine about a horizontal

axis always in the same direction so long as the engine is pulling.

The effect of this couple is to cause a redistribution of the weights
on the springs. Also the turning couples on the crank-axle are

necessarily accompanied by equal and opposite turning couples on

the engine as a whole which modify the distribution of weight

on the springs to a much greater extent than the couple just

mentioned. The effect of the turning couple is to decrease the

load on the springs at the leading end for forward running, and to

increase it for backward running. This point is again discussed

on page 103. These turning couples are variable, and the

variation for each crank and of the total are shown for a particular

case in Fig. 91. Since the load is brought on to the main bearings

by means of springs, the variations of the turning couples set up
oscillations which are superposed upon the oscillations due to the

inertia forces of the unbalanced machinery. The disturbances due
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to the variation of turning moment cannot be eliminated by the

addition of balancing masses
; they can be minimized, however, by

placing the cylinders as close together as possible. A .discussion

of this question in connection with marine engines is given in

Arts. 130-132.

Summarising, if

M is the mass in pounds of the reciprocating parts, equal in

each cylinder, belonging to one cylinder ;

r the crank radius in feet
;

n the revolutions of the crank-axle per second
;

d the distance in feet between the cylinder centre lines
;

t the distance between the centre line of the driving-axle and

the line of traction
;

the unbalanced reciprocating parts cause

(1) An unbalanced force, the maximum value of which is

given by l'7MwV Ibs. weight. This force accelerates the whole

mass of the train positively and negatively in the direction of

travelling.

(2) A couple whose maximum value is *85M?i2n foot-lbs.

This couple produces an oscillatory motion about a vertical axis,

which, superposed upon the general forward motion of the engine,

causes a swaying from side to side, which, acting on a short engine,

may become dangerous at high speeds. The effect of this couple
must be judged with reference to the moment of inertia of the

engine about a vertical axis through its mass centre. The couple
is much less in magnitude for inside cylinders than for outside

cylinders, since it varies directly as d.

(3) A couple whose maximum value is r7M^2r foot-lbs.

This couple tends to cause oscillation in a vertical plane about a

horizontal axis. Its magnitude is usually small, and it disappears

altogether if the driving-wheel radius is equal to the height of the

line of traction above the rails.

57. Example. The mass of one set of reciprocating parts of an

unbalanced locomotive is 600 pounds, and the cylinders are 2-feet

pitch. Find the maximum values of the unbalanced force, and

of the couples about a vertical and a horizontal axis, assuming
the diameter of the driving-wheel to be 4 feet 6 inches, and the

line of traction to be 3 feet 4 inches above the rail, the speed
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being 38 -

5 miles per hour, and the stroke 26 inches. Find also

the values when 9 = 30 (see Fig. 78).

The number of revolutions of the driving-wheel per second at

the given speed = 4 approximately.
M = 600 pounds, and r = 1*08 feet

; therefore

(1) Maximum value of thel

unbalanced force }-
1* X 6QD X 16 X 108

= + and - 17,625 Ibs. weight
= -|- and 7*87 tons weight

This is greater than the average tractive force exerted by the

engine.

(2) Maximum value of couple about a vertical axis = -|- and
- 17,625 foot-lbs.

For outside cylinders d is about 6 feet, so that the value of

this couple would in this case be increased to 52,875 foot-lbs.

(3) Maximum value of the couple about a horizontal axis is,

t being 1125 feet

17,625 X 1125 = + and - 19,828 foot-lbs.

When = 30,

Instantaneous value of the unbalanced force is

17,625 cos (30 + 45) = 17,625 x '26 = 4582 Ibs. weight

Instantaneous value of the couple about a vertical axis

17,625 cos (30
- 45) = 17,625 x '96 = 16,920 foot-lbs.

Instantaneous value of couple about horizontal axis

4582 x 1125 = 5155 foot-lbs.

This example sufficiently illustrates the effects of the un-

balanced reciprocating masses. If the revolving masses are left

unbalanced as well, the maximum values are very much

increased, and in addition they introduce a couple acting about a

longitudinal axis, which causes a variation of the driving-wheel
rail-load.

It is instructive to set out the maximum values found above

to scale on a piece of cardboard, dotting in the position of the

cranks, in the way shown in Fig. 78. Pin the cardboard to the
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drawing-board through 0, and bring the edge of the T-square up
to the centre. Then turn the cardboard disc, which really repre-

sents the reference plane, into various positions : the changing
values of the force and swaying couple, represented by the projec-

tions of 0& and OB respectively, on to the edge of the T-square,

may then be easily studied.

58. Method of Balancing the Reciprocating* Masses of a Locomo-

tive. To properly balance the reciprocating masses requires the

addition of two more sets of parts reciprocated in the same

plane, forming either a two-cylinder engine with two sets of
" bob-

weights," as suggested by Mr. Yarrow, or a four-cylinder engine
in which the crank angles are found by the principles of Chapter
III. At the present time no locomotives in this country are

balanced with bob-weights, and no four-crank locomotive has been

built in which the crank angles and masses are arranged so that

the forces and couples balance, the usual arrangement being to

place the four cranks at right angles, in which case the forces are,

or rather may be, completely balanced, but the couple cannot be

balanced without the addition of balance weights. Four-cylinder

engines will be discussed more fully later on. It is almost the

universal custom to partially balance the force and couple due

to the reciprocating parts in a two-cylinder engine, by masses

placed between the spokes of the driving-wheels, these being
combined with the masses balancing the revolving parts to form

a single pair of balancing masses, or, to use the more familiar

term, balance weights.

The addition of revolving balancing masses to the reciprocating

system introduces forces exactly equal to the forces they balance,

acting at right angles to the plane of reciprocation, which, in the

present case, causes a variation of the pressure between the wheels

and the rail, a variation which in extreme cases is sufficient to

double the rail-pressure per wheel at one instant, and lift the

wheel clear of the rail in the next, the interval of time correspond-

ing to half a revolution of the wheel. This variation of rail-

pressure is injurious to the permanent way, to the bridges, and
to the engine tyres, and should be kept as small as possible. The

designer has therefore to keep in mind two contradictory conditions.

If the reciprocating parts are fully balanced by revolving masses,

there is no unbalanced force, and no swaying couple, but there



88 THE BALANCING OF ENGINES.

is a large variation in the rail-pressure. If, on the other hand, the

reciprocating parts are left entirely unbalanced (the revolving

parts are assumed to be completely balanced), there is no variation

of rail-pressure, but there is an unbalanced force and a swaying

couple which make it dangerous to run at high speeds.

A compromise is usually made, a common practice in this

country being to balance about two-thirds of the reciprocating

parts. The effect of the unbalanced part will be examined in

detail in Arts. 75 and 76. The next three examples represent

typical cases of locomotive balancing. The method followed is

to take a set of reciprocating parts and consider them common to

different classes of engines. The set of parts taken, dimensions

and revolving parts where possible, are those common to a large

number of engines on the Lancashire and Yorkshire Railway, the

data of which has kindly been supplied by Mr. Aspinall.

When revolving masses are used to balance the reciprocating

parts of an engine, it is unnecessary to divide the work into two

stages, as directed in Art. 47. The proportion of the reciprocating

masses to be balanced is to be included with the revolving masses
;

the revolving balance weight for the two systems is then found at

one operation, that is, by one schedule.

Following the usual custom, two-thirds of the reciprocating

parts are balanced in the typical examples given in Arts. 62, 63,

and 64.

59. A Set of Reciprocating Parts (Lancashire and Yorkshire

Hailway. Cylinder, 18 inches diameter x 26 inches stroke)

1 piston, 18 inches diameter ... ... 146 pounds

2 piston-rings ... ... ... ... 13

1 piston-rod and 1 crossliead ... ... 151

1 nut ... ... ... ... ... 6

1 crosshead pin ... ... ... 17J

2 slide-blocks ... ... ... ... 66

Total ... 399J

The connecting-rod weighs 444 pounds, and this mass is to be

divided between the reciprocating masses and the revolving
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masses by the method of Art. 46. The position of mass centre

is '659 the length, measured from the small end, therefore

659 x 444 = 292J pounds

is to be included with the revolving masses, the rest, 151 \ pounds,

being included with the reciprocating masses.

This gives finally

Mass reciprocated by the connecting-rod ... 399 J pounds

Proportion of mass of connecting-rod ... 151J

Total reciprocating mass per cylinder ... 551

60. The corresponding Revolving Parts of the Crank Axle are

1 pair of crank-arms ... ... 296 pounds at 13 inches

1 crank-journal ... ... ... 56

Proportion of connecting rod ... 292|

Total revolving mass per crank-pin 644|

61. Scales. In the following examples the distances from the

reference plane are expressed in inches. As a consequence, the

mass moments, or couples, are given by numbers involving some-

times five figures. It will be sufficiently exact for all practical

purposes if the scale to which the couple polygons are drawn is

chosen so that three significant "figures can be read, a fourth being

estimated, the fifth being considered zero. The scale of the force

polygon should allow three significant figures to be read.

62. Balancing an Inside Cylinder Single Engine.

DATA.

Stroke ... ... ... ... ... ... 26 inches

Distance centre to centre of cylinders ... ... 1 foot 11 inches

Distance between the planes containing the mass

centres of the balance weights ... ... 4 feet 11

Mass of unbalanced revolving parts per crank-

pin reduced to 13 inches radius ... ... 644 pounds
Mass of reciprocating parts per cylinder at crank

radius ... ... ... ... ... 551

Proportion of reciprocating parts to be balanced, two-thirds
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FIG. 81.

Masses to be balanced are therefore

Eevolving 644 pounds

reciprocating ... ... ... ... 3G7

Total at each crank-pin ... ... 10 1 1

Draw the plan and elevation of the crank-axle as shown in

Figs. 79 and 80. Notice that the left-hand driving-wheel shows

to the front in elevation. Choose a reference plane to coincide

with the plane containing the mass centre of the right-hand
balance weight, and mark on the drawing the three dimensions i, j,

and Jc. The balance weights are found by the general method.

The quantities concerned are shown in Schedule 10.

SCHEDULE 10.

Inside cylinder single engine. Reference plane at No. 1 (Fig. 80).

Number of crank.
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ABC (Fig. 81) is the couple polygon, the closure CA measuring

45,220.

This represents the product of the mass of the left-hand balance

weight and its distance from the reference plane, which distance is

59 inches. The mass of the balance weight is therefore 766 pounds.
Its angular position in relation to the cranks is at once given by

drawing QQ (Fig. 79) parallel to CA (Fig. 81), remembering to

draw from the centre of the axle in the direction from C to A.

The balance weight is shown in black.

The force polygon is Abed (Fig. 81). Its closure measures

766 pounds, and this is the mass of the balance weight in the

right-hand wheel, its angular position being defined by the direction

dA (Fig. 81). The balance weight is shown dotted.

It is unnecessary to take a new reference plane to check the

work, since the polygons check one another when the masses at

each crank-pin are equal, and their planes of revolution and the

planes in which the balance weights are placed are symmetrically

disposed with reference to the cential plane of the engine. Under

these conditions the balance weights are equal in magnitude, and

their angular positions are symmetrical with respect to the cranks.

One balance weight is found from the couple triangle ABC (Fig.

81), the other is therefore known, and the drawing of the force

polygon Abed is therefore only necessary to check the accuracy of

the work.

The actual mass M of the balance weight depends upon the

distance E of its mass centre G from the axis. If r is the crank

radius, MO is found from

MoE = M4r = 766?^ for the present example.

Taking r = 13 inches and E = 36 inches, which would be

about the practicable distance for a 7 feet 3 inches wheel

Mo = 376 Ibs.

This should be arranged in crescent form between the spokes,

as shown in Fig. 79.

63. Balancing an Outside Cylinder Single Engine, The re-

volving parts in an engine of this class consist of the crank-arm
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formed by the protrusion of the wheel-boss between the spokes
of the wheel, the crank-pin, and a proportion of the connecting-rod.
The planes in which the mass centre of the crank-arms revolve are

not, as in the previous example, coincident with the planes in

which the centres of the crank-pins revolve. There are therefore

six masses to consider, revolving in six planes, as shown in Fig 83.

DATA.

Stroke* ... ... ... ... 26 inches

Distance centre to centre of cylinders 6 feet If inches

Distance between planes containing the mass

centres of the balance weights 4 11

Distance between the planes containing the mass

centres of the wheel-cranks 5 If

Eeciprocating mass per cylinder ... ... 551 pounds
Unbalanced mass of one crank-arm and the part

of the crank-pin therein reduced, to 13 inches

radius... ... ... ... ... ... 130

Unbalanced mass of the part of the crank-pin

and washer outside the crank, 25 pounds;

together with 292 pounds of the connecting-

rod, both reduced to 13 inches radius ... 317

Mass at each crank-pin to be considered in the balancing

Eevolving 317 pounds

f reciprocating ... ... ... ... 367

Total at each crank-pin 684

The plan and elevation of the crank-axle are shown in Figs. 82

and 83. The cranks are arranged as in the previous case
; that is,

the left-hand crank is to the front and horizontal. Take the

reference plane at No. 3 to contain the mass centre of the right-

hand balance weight. Fill in Schedule 11.
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FIG. 84.

SCHl-X'JLE 11.

Outside cylinder single engine. Reference plane at No. 3 (Fig. 83).
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905, thereby checking the work. Eemember, in drawing the force

polygon, that the direction of drawing is always from the axis out-

wards to the mass, so that the force vectors cd and de are in the

direction of the right-hand crank, and therefore in the opposite
direction of the couple vectors CD and DE.

The balancing masses at crank radius are shown in Fig. 82, the

left-hand black, the right-hand dotted.

64. Balancing an Inside Cylinder Six-coupled Engine. (The
data for this example correspond with an 18 inches by 26 inches

six-coupled goods engine of the Lancashire and Yorkshire Bail-

way. Wheels, 5 feet OJ inch diameter.) The new feature in

this example is the coupling- rod. Each coupling-rod is to be

divided between the three outside crank -pins in the proportion

that they respectively support its weight since the rod is made

with a joint near the centre pin. The proportion in which the

division is to be made may be arrived at expeditiously by placing

the rod on three knife-edges at its pin centres, each knife-edge

being suitably supported on the platform of an independent weigh-

ing-machine ;
or by separately weighing each part of the coupling-

rod in the way indicated in Art. 46. In the present example the

leading and trailing wheels each take 143 pounds per crank-pin,
and the driving-wheel 257 pounds. The total mass of each rod is

543 pounds.

Very often the radius of the outside cranks is less than the

radius of the inner cranks, so that care must be taken that the

masses at the outside crank-pins are reduced to the inside radius

before including them in the schedule.

DATA FOR THE DRIVING-WHEEL (Figs. 85 and 86).

Stroke 26 inches

Eadius of outside cranks ... ... ... 10

Distance centre to centre of cylinders ... ... 1 foot 11 inches

Distance centre to centre of coupling-rods ... 6 feet If
Distance between planes 2 and 3 containing the

mass centres of the wheel-cranks ... ... 5 If
Distance between the planes containing the mass

centres of the balance weights ... ... 4 11

Unbalanced mass at each outside crank-pin in

planes 1 and 8, made up of 257 pounds of
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the coupling-rod, and 25 pounds for the crank-

pin and washer, in all 282 pounds at 10

inches radius, equivalent at 13 inches

radius to ... ... ... ... ... 217 pounds
Unbalanced mass of each wheel-crank and part

of pin in it reduced to 13 inches radius, in

planes 2 and 7 ... ... 96

Unbalanced mass of revolving parts at each

inside crank-journal ... ... ... ... 644

Mass of reciprocating parts per cylinder ... 551

Mass to be considered at each inside crank-journal in the

balancing is

Revolving

f reciprocating

Total per crank

Fill in Schedule 12.

644 pounds
367

1011

SCHEDULE 12.

Six-coupled inside cylinder engine. DRIVING-WHEEL. Crank radius = 13 Inches.
Reference plane at No. 3 (Fig. 86).

Number of crank.



FIG. 85.

DRIVING WHEEL

FIG. 86.
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Id,

FIG. 87.

Notice that the couple vectors EF and FG are drawn oppositely

to the corresponding crank directions, because they are on the

opposite side of the reference plane to the rest of the cranks. (See

Art. 28 for the rules for drawing couple vectors.)

Leading-wheel. The unbalanced masses are entirely revolving,

and are therefore to be completely balanced. They consist of the

crank-arm, crank-pin, and a proportion of a coupling-rod, in the

present example 143 pounds. The masses form a system similar to

the system considered in Art. 63. Fig. 83 may be taken to repre-

sent the plan of the leading-wheel of the present example. The

left-hand outside crank is there shown to the right ;
it should, of

course, be to the left to correspond with the driving-wheel of Fig.

85, but no confusion is possible, since in whatever position the

wheel is placed, the position of the balance weights is found

relatively to its cranks.

ADDITIONAL DATA.

Mass due to coupling-rod ... ... ... .., 143 pounds
Tart of crank-pin outside the crank, and washer ... 25

Total in planes Nos. 1 and 6 at 10 inches radius 168
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Mass of wheel-crank and the part of the crank-pin

in it, revolving in planes Nos. 2 and 4 at 10 inches

radius , 125 pounds

Fill in Schedule 13.

SCHEDULE 13.

Six-coupled inside cylinder engine. LEADING-WHEEL. Crank radius=10 inches.

Reference plane at No. 3 (Fig. 83).

Number of crank.
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The left-hand side of the engine is shown in Fig. 96, the

cranks being shown in their proper relation to one another, and

the balancing masses in black.

FIG. 88.

LEADING AND TRAILING WHEELS.

FIG. 89
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65. Variation of Rail-load:
" Hammer Blow," The variation

of load on the rail caused by the vertical component of the centri-

fugal force clue to the part of the balance weight concerned in

balancing the reciprocating parts is called the
" hammer blow."

This description of the effect does not describe what takes place very

well, because the variation of load is not sudden, but continuous,

except in the extreme case where the maximum value of the

variation is greater than the weight on the wheel
;

in this case

the wheel lifts for an instant, and gives the rail a true blow in

coming down.

To estimate the variation of load on one rail in any given

case, the balance weight concerned in balancing the reciprocating

parts must be separated from the main balance weight. The

quickest way to do this is to find the balance weight for the

proportion of the reciprocating masses balanced, neglecting

altogether the revolving masses. The schedule for this problem
would be similar to Schedule 10. It is merely necessary to write

in for the mass at each crank-pin the proportion of the reciprocat-

ing parts to be balanced. A more convenient way is to consider

the crank-pin mass unity. Then, in the couple polygon (Fig. 81),

AB would represent the dimension /, BC the dimension i. The

closure is therefore given by

CA = \/p -f j-2

and the magnitude of the balance weight for unity mass by

^A __ 1 /-s : =9- /.,.

-jr
:=

/y^+J
2

(1)

Then, if M is the mass in pounds of the reciprocating parts per

crank-pin and q the fraction of this quantity which is to be

balanced, the magnitude, m, of the balance weight required is

m = ^Vt^^f pounds (2)

The value of the angle of direction is given by

tan0= -% (3)

considering AB to be the initial direction.
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Let w be the variation of rail-load, that is, the vertical com-

ponent of the centrifugal force due to m,

a the instantaneous value of the angle, measured in the

positive direction, that is, counter-clockwise between the

line of stroke and the radius of the balance weight m,
r the crank radius in feet,

w the angular velocity of the wheel in radians per second.

Then
2 ^

w - sin a Ibs. weight (4)

The sign of w is determined by the sign of sine a
;
a positive

value indicates a diminution of rail-load, a negative sign an increase.

If V is the speed of the train in miles per hour, and D the

diameter in feet of the driving-wheel, containing the balance

weight
_ 2 x 5280V
~~3600D

Substituting this in 4, and dividing by 2240 to obtain w in

tons weight (m is in pounds)

00012wwV2
.

w =
j^2

sm a . . . % . . (5)

A further variation of the rail-load is brought about by the

obliquity of the connecting-rods. Considering the E.H. rod, the

transmission of force along it is accompanied by a force acting on

the slide-bar, and an equal and opposite force acting at the centre of

the driving-axle. These two forces, in fact, form a couple instanta-

neously equal to the turning couple acting on the crank. In the

ordinary stationary engine this couple tends to turn the engine-
frame as a whole. In a locomotive, the main bearings being spring-

connected to the frame, and free to move relatively to the frame in

the direction in which these forces act, the effect is somewhat
different. Supposing the engine to be running forward, the force

acting on the slide-bar is upwards for the greater part of the stroke.

The equal and opposite force acting at the driving-axle causes an

increase of the rail-load. The effect of the force on the slide-bar

is to lift the leading end of the engine slightly, thereby changing
the loads on all the springs and causing a slight diminution of the

load on the driving-springs, the amount of which it would be im-

practicable to calculate. It is certain, however, that this diminution
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is some fraction of the force acting at the bars because the other

springs share the effect, and the total change in load on all the

springs must be just equal to the slide-bar force supposing no

oscillations are going on. The variation of rail-load due to the

obliquity of the connecting-rod is therefore made up of two parts

the one, a force equal and opposite to the force at the slide-bars

acting directly on the driving-axle ;
the other, a change in the load

transmitted to the axle by the driving-springs in consequence of

the action of the force at the slide-bars on the frame. These two

parts are always of opposite sign, and the second part is always
less than -the first, so that if -f/ denotes a force acting upwards at

the slide-bars, / is the force acting at the driving-axle, and if i

and k have the same meaning as in Fig. 80 (k now being taken

equal to the distance between the wheel treads), the instantaneous

value of the variation of the rail-load at the left-hand wheel is

given by

/ X - minus change of load on L.H. spring.
/c

Similarly for the E.H. wheel. The changes from the left-hand

gear added to these give the total results.

The magnitude of these quantities depends upon the cut-

off in the cylinders, upon the speed, upon the method of springing
the engine, upon the strength of the springs, and upon the ratio of

the length of the connecting-rod to the crank. The later the cut-

off the greater the average value of f, the higher the speed the

more uniform the instantaneous values, and the longer the con-

necting-rod the less the values of/. To find the value of /for a

given crank position, deduce the resultant driving pressure from

the indicator diagrams, and take from this the force required for

the acceleration of the reciprocating parts. This nett driving

pressure multiplied by the tangent of the angle the connecting-rod
makes with the line of stroke gives the value of/. Multiply/ by
the distance between the crosshead centre and the centre of the

driving-axle, and the product is the turning couple (Art. 130).

The nett value of the driving pressure in a particular case is shown

in Fig. 95, and the corresponding turning couple by the curve

marked L.H., Fig. 91.

Compared with the effect of the balance weights, this cause of

variation of rail-load is practically negligible at high speeds. The
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effects of balance weights increase as the square of the speed, the

value of / decreases as the speed increases, in engines of the

ordinary proportions.

66. Example, Consider that the example of Art. 62 represents

a 7-foot inside single.

The value given by equation (1) of the previous article is

approximately 0'76
;

therefore the magnitude of the balance

weight required to balance the reciprocating masses is

0'76^M pounds

If the whole of the reciprocating parts are balanced, q = 1,

and M = 551 pounds ;
therefore

m = 076 X 551 = 419 pounds

Let V be 60 miles per hour, and D, the diameter of the wheel,

SPEED 60 M.RH. 7'WHEEL

I
D ry J

MASS OF RECIPROCATING PARTS 551 LBS. STROKE V03'.

FIG. 90.

7 feet. Then, from equation (5) of the previous article, the crank

radius being 1'08 foot

w = 4 sin a . . . tons weight nearly.

"When this balance weight is passing through its highest and



106 THE BALANCING OF ENGINES.

lowest positions respectively, sin a is +1 and 1. The load

on the rail is decreased in the first case by 4 tons, increased in

the second by 4 tons. Supposing the load on the axle to be

15 tons, that is, ?i tons per wheel, at every revolution the load

per wheel is alternately decreased and increased by about 54 per
cent. If two-thirds of M be balanced, the percentage variation is

reduced to 36 per cent. Taking a horizontal base line through

(Fig 90) to represent the circumference of the driving-wheel, curves

Nos. 1 and 2 respectively represent the variation of the rail-load

when the whole and when two-thirds of the reciprocating parts
are balanced. The static load on the wheel is represented by the

ordinate to the horizontal line PQ. The part of a vertical line cut

off by the shaded figure therefore represents the load available for

adhesion, at 60 miles per hour, when the point at which it cuts the

circumference is in contact with the rail, assuming two-thirds

of the reciprocating parts to be balanced.

67, Speed at which a Wheel lifts, When small wheels are

used, the piston speed increases for a given speed of travelling, and

the rail-load variation must be carefully considered in the balancing,

or the wheels may leave the rail altogether at every revolution, a

mistake in design not entirely unknown in practice. The formula,

equation (5), Art. 65, may easily be adjusted to find the speed at

which lifting takes place.

Let W be the static load on the wheel.

The rail-load at any instant is given by

W - w

If w is numerically equal to W, this becomes when the

balance weight is passing through its highest position, and 2W
when passing through the lowest. Hence, putting W for w in

equation (5), Art. 65, and solving for V, sin a being 1

V*0'00012mr
Vo is now the speed in miles per hour at which the rail-load

vanishes when the balance weight passes through its highest

position. Taking the data of the example of Art. 66, where

W = 7*5 tons, and m = 419 pounds for full balance

V = 82 miles per hour approximately
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If m = 280 Ibs., thus balancing two-thirds of the reciprocating

masses

Y = 100 miles per hour approximately.

These two calculations show that two-thirds is about the

greatest proportion of the reciprocating masses which should be

balanced in a single engine, and in a coupled engine also, if the

balancing mass m is all put in the driving-wheel.

Although the rail-load vanishes, slipping may not occur,

because the other wheel on the same axle may be able to provide

sufficient adhesion at the instant. To detect if slipping is about

to take place, the turning effort on the crank must be compared
with the couple resisting slipping, this couple depending upon the

instantaneous sum of the rail-loads.

68, Slipping, The driving-wheels tend to slip when the turning

effort on the driving-axle is equal to the couple resisting slipping.

The forces of this latter couple are, the frictional resistance at the

rail and the equal, parallel, and opposite tractive force at the driving-

horns
;
the arm of the couple is the radius of the driving-wheel.

The force due to the frictional resistance varies directly as the

pressure between the wheel and the rail. If Wx is the static load

on the two driving-wheels, w\ the resultant variation of rail-load

for the two wheels, the greatest value of the frictional resistance

is about

W, - W!

Therefore, if the turning couple on the driving-axle is greater than

the couple

(1)

E being the radius of the driving-wheel, slipping will tend to take

place.

The resultant of the right-hand and left-hand balance weights

concerned in balancing the reciprocating parts is equal and opposite

to the resultant of the proportion of the reciprocating masses

balanced, the latter being considered concentrated at the respective

crank-pins. This latter resultant (Art. 56, Tig. 77) is equal to

M#\/2 pounds at 45 to each crank. The resultant balance weight
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is, therefore, a mass M#\/2 pounds, attached to an imaginary crank

at the centre of the driving-axle, placed at 135 to each crank,

as shown in Fig. 92. The instantaneous value of the whole

variation of the rail-load for the two wheels is given by the pro-

jection of the force vector belonging to this imaginary central crank

on a line at right angles to the plane of the rails. If 9 is the

angle between the left-hand crank (Fig. 78) and the line of stroke,

measured counterclockwise, the magnitude of this projection is

sill (0 + 225) Ibs. weight.

or in terms of the revolutions per second, n, of the crank-axle, M
being in pounds, r in feet, and dividing the constant by 2240

wi = -OOOTTtfMwV- sin (9 + 225) tons weight ... (2)

The instantaneous value of the couple resisting slipping is

therefore

This is a maximum when the imaginary central crank is passing

through its lowest position, that is, when 9 = 45
;
and a minimum

when passing through the highest position, that is, when 9 = 225.

For instance, if W = 16 tons, on 7-feet driving-wheels, the

mass of the reciprocating parts per cylinder being 551 Ibs., of which

q = are balanced, stroke 26 inches, the minimum value of the

resisting couple when n is 4 per second, corresponding to 60 miles

per hour, is

3
.

6
|16

- -00077 X | x 551 x 16 x
1-Q8|

= 7.77 foot ..tons

The value corresponding to the static load of 16 tons is 11*2

foot-tons.

69. Example. To further illustrate this point, the actual driving

effort or torque is compared with the couple resisting slipping for

a complete revolution in Fig. 91, in the case of a Lancashire and

Yorkshire 4-coupled bogie express passenger engine running at

65 miles per hour, taking two-thirds of the reciprocating parts to



THE BALANCING OF LOCOMOTIVES. 109

^6

74

i*jt

CO

0,

g*

u
3
Or 2
CC

O

l^TLE^

N?2.

U

16

~ff
12

10

X /

Fw, 91.

- H

RESULTANT BALANCE V><

52O LBS

. 92.



110 THE BALANCING OF ENGINES.

be balanced in the driving-wheels, which are 7 feet diameter;

cylinder, 18 inches diameter; 26 inches stroke.

The ordinates of curve No. 1 (Fig. 91) represent the torque or

driving-couple acting on the driving-axle, those of curve No. 2 the

couple resisting slipping. It will be noticed that the two ordinates

are nearly equal for crank position 1. A little more steam and

curve No. 1 would have cut curve No. 2, and if this had been a

single engine, slight slipping would be the result. In the case

in question, the coupled wheels would come into play and prevent

it. Between crank positions 7 and 8 there is a large difference in

the ordinates, and slipping is not to be feared
;
the instantaneous

load on the rails is increased from 16 J, however, to 21*8 tons. The

rail-load corresponding to the minimum value of the resisting

couple is 11 '2 tons, so that the rail-load under the driving-wheels

at 65 miles per hour is continually varying between 1T2 and 21'8

tons once per revolution, that is, 4'2 times per second.

The method of drawing the curves is as follows :

Fig. 92 shows the cranks and the resultant balancing mass, which

is 520 pounds. Notice the way the crank positions are numbered

round from the initial position of the left-hand crank. The

instantaneous angular distance of the radius of the resultant

mass from the initial position, 0, of the left-hand crank is given

by + 225, 9 being measured downwards from the horizontal

centre line. The left-hand crank shows to the front and the

engine is running forward.

(a) Divide the crank circle into twelve or more equal parts,

and find the corresponding positions of the crosshead graphically.

(I) Find the nett driving pressure from the indicator cards

which are shown in Fig. 93, by taking the intercepts between

the steam-line of one diagram and the exhaust-line of its fellow.

The shaded parts of the diagrams show the width to be taken

for the left-hand end. These are plotted in Fig. 94, curve No. 1,

for both ends, and calibrated to give the total pressure acting on

the piston in tons. The numbers on the horizontal axis are those

corresponding to the numbers on the crank circle in Fig. 92.

(c) The pressures of Fig. 94 are modified by the forces required

to accelerate the motion of the reciprocating masses. These are

quickly found by Klein's construction (Art. 104). The curve

representing them is No. 2 (Fig. 94). The driving pressures on

the piston are decreased by the accelerating forces during the first
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part of the stroke, and increased during the second part. The

vertical width of the shaded figure gives the instantaneous value

of the force operating at the crosshead to turn the crank for any

given crank angle. These widths have been re-plotted in Fig. 95.

TOTAL I.H.P. 54-8.

_ Boiler PressJBOlbs. Cuubof? %%
__ Speed/ 65 M.P.M.

FIG. 93.

FIG. 'J4.

FIG. 95.

Notice how much more uniform this driving force is made by the

action of the accelerating force. In the neighbourhood of the

points 5 and 11 the driving force vanishes and becomes negative,

that is, the crank is now driving the piston instead of the piston

the crank. These are the points at which a change over takes

place all through the driving system. The pressure between the

connecting-rod brasses and the crank-pin changes from one side

to the other at these points. The slide-blocks leave the top bar
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for the bottom bar in forward running, returning to the top bat

at positions 6 and 12. These changes are accompanied by a

knock if there is any slack at the places where they occur.

(d) The crank-effort diagram may be constructed by any of

the usual methods from the curve of pressures in Fig. 95. A
full discussion of this, and a simple construction for the purpose,

are given in Art. 130. The curve marked L.H. in Fig. 91 is the

crank effort or torque curve corresponding to the driving pressures

of Fig. 95. The curve corresponding to the right-hand crank is

assumed to be the same in form
;
the left-hand curve is, therefore,

simply redrawn with an angular difference of 90 to get the crank-

effort curve for the right-hand crank. The two are then added to

get curve No. 1 (Fig. 91), giving the total crank effort in terms of

the position of the left-hand crank.

(e)
The data for drawing the curve resisting slipping are

W = 16
J- tons; E = 3'5; M = 551 Ibs.

; q = %; n = 4'2
;
and

r = rOS^feet.

Expression 3, Art. 68, reduces to

Eesisting couple = 11-55 -f 378 sin (0 + 225)

the positive sign being used because the angle 8 is measured counter-

clockwise and downwards from to the left-hand crank radius.

This is represented by curve No 2, Fig. 91. The average
crank effort is 5'12 foot-tons. The average resisting couple is

1T55 foot-tons, more than double the average torque. Judging
from these figures alone, there would appear to be ample margin to

prevent slipping, and yet, as the diagram shows, the engine would

be just on the point of slipping if it were not prevented by the

coupled wheels.

70. Distribution of the Balance Weights for the Reciprocating
Parts amongst the Coupled Wheels, A way of decreasing the

variation of rail-load in coupled engines is to divide the balance

weight necessary to balance the reciprocating parts, amongst the

coupled wheels. The effects of these separate weights on the

engine-frame add up to the same horizontal effect as that due to

the single balance weight m in the driving-wheel. The variation

of rail-load is reduced at the driving-wheel, a proportional variation

being introduced at the coupled wheels to which part of the
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balance weight is transferred. There is also a redistribution of

pressures at the horns.

To illustrate this method of distribution, consider the example
of Art. 64 again. Fig. 96 shows the crank circles drawn out with

the balancing masses, shown in black, already found for the com-

DRIVING. TRAILING.

h N

317 LB&

FIG. 9G.

218 LBS.

178 LBS.

Fio. 98.

plete balance of the revolving parts and two-thirds of the recipro-

cating parts, the latter being balanced in the driving-wheel. The

balance weight required in the driving-wheel to balance the revolving

masses alone is 248 pounds, placed as shown by the dotted circle.

The balance weight (m of Art. 65, equation (2)) required to balance

the reciprocating parts alone is 279 pounds, placed as shown by
I
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the full open circle. The black mass of 494 pounds is the resultant

of these two.

Draw lines OiQi and 2Q2, in the leading and trailing wheels

respectively, parallel to the radius OQ in the driving-wheel, and

place one-third of the 279 pounds, that is, 93 pounds at 13 inches,

in each wheel. This is equivalent to 120 pounds at 10 inches, the

radius of the cranks for the leading and trailing wheels.

Considering the leading or trailing wheel, the 120 pounds
due to transferred mass combines with the 317 pounds already

found for the revolving masses to form a resultant mass of 218

pounds at 10 inches radius, placed as shown in Fig. 97. Re-

combining the 248 pounds balancing the revolving masses of the

driving-wheel, with the 93 pounds left of m, a resultant mass

of 324 pounds is obtained. The new balance weights are shown

in Fig. 97. Balancing is effected to precisely the same extent by
them as by the heavier set of Fig. 96

;
the variation of the rail-

load is reduced by two-thirds, though there is now a load variation

under each of the coupled wheels. Fig. 98 shows the set of

balance weights which will balance the whole of the reciprocating

parts (551 Ibs.). In this case m, the mass corresponding to the

open circle in the driving-wheel of Fig. 96, is 419 pounds, Art. 66

giving 140 pounds at 13 inches radius per wheel to be combined

with the masses balancing the revolving parts. The result of this

combination is to give 178 pounds in the trailing and leading

wheel, and 364 pounds in the driving-wheel, a set of masses

weighing less than the sets of Figs. 96 and 97, though balanc-

ing the whole of the reciprocating parts, and causing less

variation of rail-load than the first set. The three sets of bal-

ance weights are drawn one under the other for the sake of

comparison.

This method of distribution is unquestionably the best way of

dealing with whatever proportion of the reciprocating parts may
be balanced so far as the permanent way is concerned. The
variation of the tractive effort may be completely balanced since

the whole of the reciprocating masses may be balanced without

introducing too great a variation of the rail-load.

The division between the coupled wheels may be made in any

proportion. Having decided what proportion is to be balanced in

the different wheels, the proper balance weights are found directly

by the use of a schedule of the style of No. 12. Each wheel, in fact,
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to which a part of the reciprocating mass is to be transferred is to

be looked upon as a crank-axle coupled by an imaginary connecting-
rod at the imaginary inside crank-journals to the real inside crank-

journals belonging to the crank-axle, and carrying the part of the

reciprocating mass assigned to it at the crank-journals.

If an engine without a bogie or small leading-wheel is to

be balanced in this way, it would be advisable to assign a less

proportion than one-third to the leading-wheel if the engine is to

run very fast.

71. American Practice. Mr. Henszey, of the Baldwin Locomo-

tive Works, has kindly furnished the following details of their

practice :

All the revolving parts are balanced and two-thirds of the

reciprocating parts on single-expansion engines, three-quarters on

the Vauclain Compound. The weights balancing the reciprocating

parts are distributed equally between the coupled wheels. One-

third of the connecting-rod is included with the reciprocating

parts, two-thirds with the revolving parts. This is the distribution

for a rod whose mass centre is '66 x /, measured from the small

end. The coupling-rods are "weighed" (see Art. 46), to find the

mass to be assigned to each crank-pin. The parts are balanced

as though their respective mass centres revolved in the same

plane, that is, the balance weights are put exactly opposite the

cranks.

72. Example Eight-coupled Engine, Class "E," Baldwin

Company, Fig. 99 shows the arrangement of the wheels.

WHEELS 4.8' DIAM

FIG. 99.

Mass of reciprocating parts, including piston, crosshead, one-

third of connecting-rod =1170 Ibs. Of this two-thirds is balanced,

which, equally distributed between the four wheels, gives 195 Ibs.

per wheel.
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The mass to be balanced in each wheel is made up as

follows :

Wheel numbers.
No. 3. No. 4. No. 5. No. 0.

Reciprocating parts equally distri-

buted 195 195 195 195 pounds

Revolving parts

Two-thirds connecting-rod ... 464

Coupling-rod 169 214 265 106

Wrist-pins 73 90 275 86

Crank-hubs , ... 184 204 272 204

At 14 inches radius ... 621 7031471 591

At 16| inches the radius of the mass

centres of the balance weights 531 605 1267 508

73. Four-cylinder Locomotives. The reciprocating masses in

a four-crank locomotive may be arranged to balance amongst
themselves without the use of balance weights at all. Under

these circumstances, always supposing the revolving masses to be

balanced, there will be no variation of rail-load, no unbalanced

force, and no horizontal swaying couple. The engine will, in fact,

be perfectly balanced, neglecting the error due to the obliquity

of the connecting-rod.

The crank angles involved in balancing four reciprocating

masses amongst themselves require the employment of a separate

set of valve-gear per cylinder. Considerable mechanical simplicity

may be obtained by arranging the cranks in two pairs, the two

cranks in each pair being at 180 with one other, the pairs

themselves being at 90. If the reciprocating masses be equal,

the force polygon would close, forming a square or a right angle

returning on itself
;
there would be, therefore, no unbalanced force.

The couple polygon, however, would not close
;
there would be,

therefore, a horizontal swaying couple left whose maximum magni-
tude is by the principles of Art. 56

1-7M7* cos (0 + 45)

where "b is the distance between the cranks forming a 180 pair.

The disturbing effect of this couple will depend upon the moment
of inertia of the engine about a vertical axis through its mass
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centre. The longer and heavier the engine, and the more the

mass is grouped at the leading and trailing ends, the less the

disturbance. If this couple is left in there will be no variation

of rail-load because there are no revolving masses in the system

applied to balance reciprocating masses
; if, however, revolving

masses are added to balance this couple, they introduce a variation

of rail-load. If the engine will run steadily at high speeds, there

is no doubt that the best thing to do under the circumstances is to

leave the swaying couple in, so that the engine may run without

variation of rail-load. If this couple is left unbalanced, the whole

static load on the wheel is always available for adhesion. If,

however, there is much swaying, masses may be put in the driving-

wheels to reduce it.

An example of a successful four-cylinder engine in which

advantage is taken of the four sets of reciprocating parts to avoid

the use of balance weights is furnished by the four-cylinder com-

pounds introduced on the London and North Western Eailway in

1897, by Mr. F. W. Webb, for running between Euston and Orewe

without a stop with the heavy trains for the North. A description

and drawings are published in Engineering, December 3, 1897.

The cranks are arranged in two 180 pairs at right angles, and only
two sets of valve-gear are employed, one set being arranged to

work the two valves of a 180 pair.

There is another point in connection with the balancing of this

engine which should be noticed. Each inside crank is balanced

by prolonging the crank-arms on the opposite side of the axle to

form a balance weight. In this way the loading of the axle with

centrifugal force between the wheels is avoided. In the usual

arrangement, where the balance weights are placed in the wheels,

although the axle, as a whole, is thereby freed from dynamical load

due to the rotation of the masses belonging to each crank, yet the

axle has to transmit the centrifugal force from each revolving mass

to the planes in which the balance weights are placed, thereby

causing a bending moment on the axle.

To emphasise this point, consider the case of a crank-axle of

the usual type for an inside cylinder engine where each crank and

the part of the connecting-rod included with revolving masses is

equivalent to 700 pounds at a radius of 1 foot. At 60 miles per

hour, with a 7-foot driving-wheel, the axle is making 4 revolutions

per second. The centrifugal force corresponding to this is 6*12 tons
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INSIDE RIGHT
MASS-:

weight. At 80 miles per hour the centrifugal force increases to

10 "9 tons per crank. So that at this latter 'speed acting at each

inside crank is a force of 10*9 tons due to the motion alone. This

force loads the axle almost as severely as the full steam pressure

at starting, so far as the bending moment is concerned.

74. Crank Angles for the Elimination of the Horizontal Swaying

Couple. If four sets of valve-gear be employed, the crank angles

may be arranged for complete balance in a large number of ways
for a given set of cylinder centre-lines. The only solution which

is practicable for coupled engines is that in which the outside

cranks are at right angles. Consider the case of a symmetrical

engine in which the pitch of the outside cylinders is 67 feet and

the pitch of the inside cylinders 2'2 feet. Proceeding by the

method of Art. 49 or Art. 37, it will be found that the crank angles

must be those shown in Fig. 100, and that each set of inside

reciprocating parts must be 2 '27

times a set of outside recipro-

cating parts. Under these cir-

cumstances there would be no

unbalanced force, no variation

of rail-pressure, and no swaying

couple, except to the extent in-

FIG 100
troduced by the obliquity of the

connecting-rods, which in the

case of locomotives where the ratio of the rod to the crank is

always relatively great, is negligible. Up to the present, no loco-

motive in this country has been balanced so perfectly as this, and

whether the gain in smoothness of running and absence of vibration

is worth the extra mechanical complication, or whether an engine
with such crank angles would work well on the road, are points

which can only properly be decided by a practical trial. It should

be noticed that an engine with the crank angles of Fig. 100 has

only one dead centre at a time. To obtain a good crank-effort

curve the work may be distributed amongst the cylinders by the

principles of Art. 131. The revolving parts must be balanced

independently as a separate system. See Art. 51.

75. Estimation of the Unbalanced Force and Couple. If the

proportion q of the reciprocating masses is balanced, there

OUTSIDE LEFT
MASS-1.

OUTSIDE RIGHT
MASS - 1 .
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remains (1 #)M pounds unbalanced. This causes disturbances

like those enumerated in Art. 56. The maximum value of the

unbalanced force is

1*7M(1 q)n*r Ibs. weight, from equation 1, Art. 56

the maximum value of the swaying couple is

85M(1 -
q)n

2rd foot-lbs., from equation 2, Art. 56

similarly
-

q)n*rt

is the maximum value of the couple acting in a vertical plane.

These values are, of course, only true for engines of the ordinary

type, that is, with equal reciprocating masses symmetrically

arranged. For any other type, two-cylinder compounds with

unequal reciprocating masses, four-cylinder engines with arbitrarily

determined reciprocating masses, etc., the general method of

Art. 45 must be used to find the magnitudes of the closures to

the force and couple polygons.

76. Comparative Tables. The following schedules have been

calculated for the purpose of comparing the different types of

engines with regard to their possibilities of balance. Schedule 14

gives the general formulas for the different cases. The expressions
in column A. are reduced from the formula

l-22gM?iV
+ f1

Ibs. weight . . . . (1)
rC

formed by the combination of formulae 4 and 2, Art. 65. The
values of i,j, Jc, assumed in calculating the quantities stated, are

those given in Fig. 80, viz. 18, 41, and 59 inches respectively, for

the inside cylinder engines, and those given in Fig. 83, viz. 7*2,

6 6 '2, and 59 inches respectively, for the outside cylinder engines.

Column B. is calculated from

2)?iV ....... (2)

and column C. from

85M(1 -
q)n*rd ....... (3)

The errors of the four-cylinder engines are estimated in the

way indicated in Art. 73.
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SCHEDULE 14.

M = the mass of the reciprocating parts per cylinder in pounds.
r the crank radius in feet.

n = the number of revolutions of the crank-axle per second.
d the distance between the cylinder centre lines in feet.



THE BALANCING OF LOCOMOTIVES. 121

SCHEDULE 15.

M = 551 Ibs.

71 = 4 revolutions per second.

r =. I'OS foot (26-iuch stroke).
Piston speed, 1030 feet per minute.
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SCHEDULE 16.

Speed corresponding to different diameters of driving-
wheel for a piston speed of 1(36 feet per minute, and a

26-inch stroke. Revolutions per second . 4.

Diameter of driving-
wheel in feet.
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engine by any practicable arrangement of the cranks. Balanced

in the way explained in Art. 74, there is no primary force nor

couple error, but both secondary force and couple errors. With
the long connecting-rods usual in locomotive practice these

secondary errors are negligible.

77. Experimental Apparatus, Fig. 101 shows a model of an

inside four-coupled engine, by means of which the various problems
of locomotive balancing may be studied. It is shown resting on

rollers. Supported in this way, the effect of the unbalanced

masses on the tractive force is separated from the other effects.

Unbalanced, the model rolls backwards and forwards when the

FIG. 101.

gear is driven. When the proper masses are added to balance the

whole of the reciprocating and the revolving parts, the model

stands quite still on the rollers at all speeds of rotation. If the

model be suspended by three chains after the manner of the

apparatus shown in Fig. 49, the effect of the swaying couple would
be seen

;
if one of these chains be replaced by an elastic link, or

a spring, the vertical oscillations would indicate the hammer-blow.



CHAPTER V.

SECONDARY BALANCING,

WHEN the ratio between the length of the connecting-rod and the

crank is small, the difference between the true motion of the

piston and the motion it would have if the rod were infinitely

long, is often sufficiently great to introduce considerable error in the

balancing made on the assumption of an infinite rod. The error is

called a secondary one, because its chief part is of half the periodic

time of the engine, and the maximum value of the force due to it

is smaller than the maximum value of the force due to the simple
harmonic motion of the reciprocating mass. The two forces are

often referred to as the primary and secondary forces due to the

reciprocation, and similarly, the terms primary and secondary

balancing refer to the balancing of these respective forces. The

object of this chapter is to show how to arrange an engine so that

the primary and secondary effects of the reciprocating masses

may be balanced without the addition of balancing masses. The

geometrical ideas of the previous chapters are merged into an

analytical method, by means of which a general method is obtained

of treating both primary and secondary balancing. The first step

in the investigation is to substitute the expression (2), Art. 78, for

the simpler expression for the acceleration, equation (2), Art. 40.

Notice that the new expression is the old one with the new term

* w *

cos 2(9 -f a) added. This new term represents the secondary

effect. This expression has been used by Mr. Mallock, by Mr.

Mark Eobinson, and Captain Sankey ;
it is the basis of Mr.

Macfarlane Gray's Accelerity Diagram ;
it has been used by

124
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M. Normand, and, more recently, by Herr Schlick. The degree
to which it approximates to the real acceleration is examined in

Art. 79. The error is small, and its effect is, probably, very much
less than the effects of the unbalanced auxiliary engines, or of a

propeller, even slightly out of balance. After establishing the

general method, it is applied to several actual examples, including
the case of partial balancing, given in Herr Schlick's recent paper

(Trans. I.N.A., vol. xlii., 1900). The solution for the balancing
of a four-crank engine completely is given in Art. 94, and, though
it cannot be applied practically, it is used, in Arts. 99 and 100,

to obtain new solutions, with respect to the balancing of five- and
six-crank engines, which solutions are shown to satisfy four more
conditions in Art. 101.

78, Analytical Expression for the Acceleration of the Reciprocat-

ing Masses, including the

Secondary Effect. Let 9 be

the variable angle between a HR M
fixed line of reference OZ

(Fig. 102), the centre line of

the engine, say, and a line of

reference OXi, drawn in the

revolving reference plane,

containing the crank OP.

The circle may be looked

upon, in fact, as a crank disc,

on which the lines OP and

OXi are scribed.

Let abe the constant angle

between the direction of the

crank OP and the line of

reference OXi; 0, the angle

between the connecting-rod

and OZ
; r, the crank radius

;

I, the length of the con-

necting-rod.

The distance, x, of the

crosshead, B, from the origin

O, is given by the expression

r cos (0 + a) -f I cos

FIG. 102.
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But since

r sin (6 + a)
= I sin

r2

/. cos < = 1
n^sin

2
(0 + a), approximately

cos

/. x = r cos (0 + o) + g cos 2(0 + ) +
('-33)

- - . (1)

Differentiating twice, with respect to the time, and considering
df)

the angular velocity, -rr = = w, of the crank to be sensibly

constant, the acceleration of B is

d^r r2 2

^ = -r0'2 cos (0 + )
- cos 2(0 + a)

Let M be the mass reciprocated by the point B ; then, writing
w for 0, the instantaneous value of the unbalanced force, acting on

the engine-frame in the line of stroke, which is equal and opposite
to the force required for M's acceleration, is given by

MwVJcos (0 + a) + 7003 2(0 + )} .... (2)
v

79. On the Error involved by the Approximation. It will be

observed that the approximate formulas (1) and (2), of Art. 78,

depend upon the extraction of the square root of the expression

giving cos
</>, by the Binomial Theorem, to two terms only, it

being tacitly assumed that the remaining terms in the expansion

may be neglected, without involving serious error. How sur-

prisingly small the error is may be seen by comparing the real

acceleration for a few crank positions, with the acceleration

calculated by the approximate formula (2). Differentiating the

true expression for the displacement x, twice, with respect to the

time, the true value of the acceleration is given by

_
,,,vf

cos
( + )+ !f^2(e + a)+^sinMe +

a| 3
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The values calculated by this formula are compared with the

approximate values calculated by formula (2), for 30 intervals, in

the following schedule, for a rod 3^ times the length of the crank.

It will be noticed that when (0 + a) = 0, or 180, the values

given by the formula (2) are exact, because sin (0 + a) = 0, and

therefore the true expression reduces to the same form as the

approximate one.

The greatest percentage error in the table is at 90, and is of

the order 4 per cent.

SCHEDULE 17.

Crank angle.
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This is equal to the projection OB, on the line of stroke, of the

centrifugal force due to M, concentrated at a crank radius j,.

rotating twice as fast as the main crank.

In this way, the unbalanced force caused by the recipro-

cation of M may be separated into a primary and a secondary

part.

The primary part is simply the projection, on the line of stroke,

of the centrifugal force, due to the reciprocating mass, supposed
transferred to the crank-pin.

The secondary part is the projection, on the line of stroke, of

the centrifugal force, clue to the reciprocating mass, supposed

transferred to the crank-pin of an imaginary crank, -^
times the

radius of the main crank, revolving in the same plane twice as

fast as the main crank.

The line of reference OXi (Fig. 102) revolves at the same speed
as the crank

;
the angle a, therefore, remains constant. Similarly,

the line of reference OX2 revolves twice as fast as the main

crank, and the angle 2a remains constant.

81. The Effect of the Primary and Secondary Unbalanced Forces

with respect to a Reference Plane a Feet from the Plane of Revolu-

tion of the Crank. Fig. 103 shows a crank, and the instantaneous

relative position of the imaginary crank causing the secondary
forces. The effect of the two cranks, with reference to any chosen

reference plane, is conveniently treated by supposing that there

are two coincident reference planes : one belonging to the main

crank, and revolving as though keyed to the shaft; and one

belonging to the secondary crank, and revolving twice as fast as

the shaft. The two planes may be thought of as a pair of infinitely

narrow fast-and-loose pulleys. These planes are shown separated
in Fig. 103, for the sake of clearness. The principles of the method

explained in Chapter II., Arts. 24-28, may now be applied to

the consideration of these cranks. Due to the mass M, at the

main crank radius r, whose angular velocity is w, there is

(1) A force MwV, equal and parallel to the centrifugal force

due to M, shown by Oa, to scale, in No. 1 reference plane ;

(2) A couple, whose moment is Morra, represented by OA in

plane No. 1.
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?
,2

Due to the mass M, at the imaginary crank radius
j-,,

whose

angular velocity is 2w, there is

(1) A force v-
, equal and parallel to the centrifugal force

due to M, and shown by OjS in plane No. 2
;

TV 1" 22

(2) A couple, whose moment is -,
,
and shown by OiS in

plane No. 2.

82. Effect of More than One Crank on the Same Shaft. If there

are several cranks on the same shaft, each will be accompanied by
its imaginary fellow, and each crank will, therefore, give rise to a

set of forces and couples, in a given pair of coincident reference

planes, similar to the set stated above. The angles between the

set of imaginary cranks will remain constant, although the imagi-

nary shaft is revolving twice as fast as the main shaft
;
in fact,

they form an imaginary crank-shaft, in which the angles between

any pair of the imaginary cranks is always double the angle between

the corresponding pair of real cranks. If the effect of each crank is

referred to one pair of reference planes, as in Fig. 103, the whole

effect will be represented by the vector sums of the several forces

and couples. The sum of the projections of the resultant force

vectors on the line of stroke will give, at any instant, the value

of the disturbing force
;
and the sum of the projections of the

resultant couple vectors, the value of the disturbing couple.

Evidently the conditions that there shall be no force and couple
are that the four polygons shall separately close. For instance,

if there were four cranks on the shaft (Fig. 103), and if it were

possible to draw the closed polygons

OABC, Oabc
; OiSTU, Oistu

the engine would be balanced both for primary and secondary
forces and couples ; because, obviously, their several projections

on the line of stroke would be zero for all positions of the polygons,

that is, for all the values of 9.

83. The Conditions of Balance. The conditions of balance, to

include the effect of the connecting-rod, are, therefore, completely
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stated thus. Choosing a pair of coincident reference planes any-

where along the shaft

(1) The primary force polygon must close.

(2) The primary couple polygon must close.

(3) The secondary force polygon must close.

(4) The secondary couple polygon must close,

B

84. Analytical Representation of a Vector Quantity. Take a

pair of axes OX, OY (Fig. 104). Let
fj. represent a vector whose

magnitude is 0V. The direction

cf the vector is determined by
the two quantities x and y,

measured along OX, and parallel

to OY, respectively, having re-

gard to the usual convention

respecting signs. The end of y t

remote from the X axis, fixes

a point, q. The line joining

to q defines the direction of the

vector completely.

There are an infinite number

y
of pairs of values of x and y,

-
oo

being constant, which will define the same direction, and the

choice of a pair depends upon the particular work in hand. If

the direction is to be set out on a drawing, x and y should be

chosen to bring q as far from as possible, to ensure accuracy.

For purposes of analytical investigation, it is usually more

convenient to choose that pair of values which make

or
2 + f = 1

in which case the vector is represented by

OV(> + iy)

where i may be looked upon as a symbol of operation, directing that

y is to be set out parallel to the axis of Y, from the axis OX
tovjards q. Considering the figure, it is evident that, assuming

a2 + y
2 = 1

it follows that x cos a, and that y = sin a
; also, if x = 0, then



132 THE BALANCING OF ENGINES.

y = 1
; and, if y = 0, x = 1, since $ + y

2
is, by hypothesis, always

equal to unity.

The magnitude of 0V is always considered as a positive

quantity. Further, if, in the two vectors, OV(# + iy) and

OiVi(#i + iy\), x = #1, then y = ?/i ;
the sign of the y in each

case being determined by the conditions of the problem.

85. Relation between the Quantities defining the Directions a

and 2a. Let x and y (Fig. 105) define the direction Oq, and xlf y\

the direction 0^. The four quantities are connected by the

condition that the angle XO^i is to be double the angle X0#.
Since

X0?i = 2

and

Xi = cos 2a = cos2 a sin2 a

or x\ = y? y
2

since x and y are respectively, cos a and sin a
; similarly

y\
= sin 2a = 2 sin a cos a

or ?/i
= 2xy.
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Therefore, if x and y define a direction a, (a? y'
2

) and 2xy are

the pair of values of the quantities defining the direction 2a.

These are, of course, to be measured along and parallel to OX and

OY respectively.

86. Application to the Balancing Problem, Taking OV(# -f- iy)

to represent a centrifugal force, the magnitude 0V is given by
MwV. If it represents a centrifugal couple 0V = MawV. Hence

the side of a primary force polygon is represented by a vector of

the form

MwV(aj -f- iy)

the side of a primary couple polygon by

the side of a secondary force polygon by

aiv.l the side of a secondary couple polygon by

Adding subscripts to distinguish the different cranks, the

statement of the conditions B, Art. 83, may now be transformed

into

It is a property of the quantities of the kind considered that,

in any one equation of the above type, all the quantities associated

with the symbol i must of themselves form an expression equal to

nothing ;
the remaining quantities forming a second expression,

also equal to nothing.

87. The Eight Fundamental Equations. Using the principle of
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the previous article, the equations of Group C become as below,

a, r, and I cancelling out

'

(1)

(3;

(4)

D

(5)

(6)

(7)

( Primary ( {Mi#i 4-

J
forces vanish

( {M.\yi +
\ Primary ( {Mi^ai -f Ma?2a2 4- .

[couples
vanish

Secondary
|
[Ufa* -

y?} 4 M2fe
2 -

y.?) + ...}=
forces vanish

( {Mi(xiyi) + M2 (#2?/2) 4- . .
.}

=

Secondary ( {M1 (^1
2 -?

couples vanish {l&i(xiy1)0,1 4- M2 (ov//2)<x2 + . . (8)

It should be carefully remembered that every x is connected

to the y, with the same subscript, by the relation (x
2 + ?/

2
)
= 1

;

so that, when any x is known, the corresponding y is known also.

A direction is, in fact, completely specified by the value of an x
t

or, of course, the value of a y. Although the eight equations

appear to involve the four sets of unknown quantities in M, a, x,

and y, respectively, they are really in the three sets M, a, and x,

since the y's can everywhere be expressed in terms of the

corresponding x.

The above eight equations express completely the analytical

conditions of balance amongst the reciprocating parts, for an

engine with any number of cranks, the cylinders being arranged
in the way usual in marine work, i.e. all on one side of the

crank-shaft, their centre lines being all in the vertical plane,

which contains the axis of the crank-shaft. The connecting-rods

are supposed to be equal in length, and the masses are the

equivalent masses, reduced to the crank radius.

83, On the Relation between the Number of Conditional Equations

and the Number of Variables. In the application of these equa-

tions to any particular example, the possibilities of a solution are

indicated by the following propositions, quoted from "
Chrystal's

Algebra," pp. 286 and 288, Part I. :

(1)
" The solution of a system of equations is in general deter-

minate when the number of equations is equal to the number of

variables."

(2)
" If the number of equations be less than the number of
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variables, the solution is in general indeterminate
"

(that is, several

solutions are possible).

(3)
"
If the number of independent equations be greater than

the number of variables, there is in general no solution, and the

system of equations is said to be inconsistent."

89. On the Number of Variables. It has already been shown

(Art. 35) that there are in general o(n 1) variables in balancing

problems where n is the number of cranks. This formula applies

equally to a set of revolving or reciprocating masses.

It should be carefully remembered that the variables in M and

a are ratios. The value of any one magnitude may always be put

equal to unity, if found convenient
;
for this does not fix the

value of a variable in M it only means that the M's remaining
in the equations represent, not their values in pounds or ton?,

but their respective ratios to the absolute value of the particular

M fixed to unity. Similarly, any one of the a's may be considered

unity.

80. On the Selection of the Conditional Equations. If the eight

conditional equations of Art. 87 are satisfied, the solution is

independent of the position of the reference plane. The possibili-

ties of balancing the reciprocating parts of an engine amongst
themselves in which the number of variables is less than eight,

are to be investigated by solving a set of equations selected from

the fundamental Group D, Art. 87, equal in number to the

number of variables concerned in the problem. For instance,

the number of variables in a three-crank engine, whose cylinder

centre lines are fixed, is 2(n 1) = 4. This indicates that four

of the eight conditions may be satisfied.

The selection cannot be made at will. In the first place, the

equations must be taken in pairs, that is, (1) and (2), (3) and (4),

etc., must be taken together ; and, in the second place, the

solution of the chosen equations must be independent of the

position of the reference plane ;
for there is no axis which can

be specified as the particular one about which the engine will

tend to turn, consequently any solution which is dependent upon
the position of the reference plane is illusory, and is of no practical

value. The following theorem shows how this second condition

operates to restrict the selection.
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Theorem. In order that the balancing of the secondary couples

may be independent of the position of the reference plane, the

conditions for the balancing of the secondary forces must be

satisfied as well.

Let the functions

0, represent equations (1) and (2) of G roup D, Art. 87 (a)

(3) (4) (b)

(5) (6) (c)

F(M,ajaJ|y)
= 0, (7) (8) (d)

Suppose the reference plane moved a distance z from its original

position, then the values of all the as change by this amount,

becoming ai + 2, ^2 4- #> etc. The functions (b) and (d) become

,y) . . . (e)

The condition, that the balancing may be independent of the

position of the reference plane, is, that the functions (c) and (/)

vanish, when the functions (b) and (d) vanish. The first term of

each of the functions (c) and (/) is similar in form to the respective

functions (I) and (d), which, by supposition, vanish, leaving

zf(M.,x,y)
=

and

The z*s divide out, leaving functions of the same form as (a) and

(c), which must vanish to make (e) and (/) vanish. Hence the

theorem.

Corollary 1. It is evident, from equation (e), that the primary

couples cannot be balanced independently of the reference plane,

unless the primary forces are balanced as well
; for, in order that

the expression may vanish, each term must separately vanish.

Corollary 2. It is also clear, from equation (e), that if the

primary force and couple polygons close for any one position of

the reference plane, they will close for all positions of it.

Corollary 3. The unbalanced primary couple is constant for

all positions of the reference plane, if the primary force polygon
close. For, suppose F(M,a,a;,^) = A, then, from equation (e), if

f(M,x,y) = 0, F{M(a + z),(x,y)}
= A, for all values of z.
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Corollary 4. The unbalanced secondary couple is constant

for all positions of the reference plane, only if the secondary
force polygon close.

This is proved in a similar manner to Corollary 3, by using

equation (/).

It follows, from the above theorem, that, to obtain any useful

practical result, equations (7) and (8) cannot be taken, without

at the same time taking equations (5) and (6), and that equations

(3) and (4) must be accompanied by equations (1) and (2).

Returning now to the selection of the four equations which

contain the possibilities of balancing a three-crank engine, whose

cylinder centre lines are given, it is evident that, under the

operation of the two conditions stated above, the selection can

only be made in two ways. These are equations (1), (2), (3), and

(4), or (1), (2), (5), and (6).

Any other set of four would be inconsistent with the condition

that the equations be taken in pairs, or with the above theorem.

This at once shows that a three-crank engine may presumably
be balanced

(1) For primary forces and primary couples, leaving the

secondary forces and couples unbalanced
;

(2) For primary forces and secondary forces, leaving the

primary and secondary couples unbalanced.

The possibilities of balancing the reciprocating parts of an

engine of this type amongst themselves, are confined to these

two cases, and no arrangement of three cranks is possible whereby

anything further can be done, though there remains the practical

problem, in all such cases of partial balancing, how to select the

data so that the unavoidable errors left are as small as possible.

91. Application of the Method to One- and Two-crank Engines,

Obviously, nothing can be done to balance the reciprocating parts

of a one-crank engine without adding another set of reciprocating

parts. This evident fact may be used to illustrate the use of the

expression giving the number of conditions which may be satis-

fied; for, substituting the value 1 for n in expression (1), Art. 89,

it becomes

3(1
-

1)
=

which means that none of the conditions of balance can be fulfilled.
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Considering a two-crank engine, the expression becomes

3(2
-

1)
= 3

showing that three of the balancing conditions may be satisfied.

The conditions of Art. 90 limit the selection to equations (1) and

(2), from the fundamental Group D, Art. 87, because the selection

must be made in pairs ; therefore, two only can be taken, and (1)

and (2) must be taken before (3) and (4), by Corollary 1, Art. 90,

and it is evidently no use taking (5) and (6) until (1) and (2)

have been satisfied. Hence equations (1) and (2) express all

that can be done in the way of balancing the reciprocating parts

of a two-crank engine amongst themselves.

Taking these two equations to two terms each, they will at

once reduce to values of x and yt showing that the cranks must

lie in the same plane of rotation, exactly opposite to one another,

the masses at crank radius being equal.

These two cases are given merely to illustrate the way in

which the expression giving the number of variables may be used

at the beginning of a problem, to define the limits between which

a solution is possible.

92, Application to Three-crank Engines, The number of condi-

INITIAL CONDITIONS.

UNKNOWN
FlG. 106. FIG. 107.

lions which may presumably be satisfied is equal to the number

of variables, and this is, by equation (1), Art, 89

3(3 -
1) - G
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The conditions of Art. 90 limit the selection to the first six

equations of the fundamental Group D, Art. 87.

Assume No. 1 crank to be in coincidence with the line of

reference. Then x\ = 1 and y\ = 0. Also take the reference plane

at No. 1 crank so that a\ = 0. This latter assumption reduces

the number of variables by 1, leaving 5. These initial conditions

are shown in Fig. 106.

To investigate the general conditions, however, take the first

six equations and substitute the above values. The equations

become

Ml + M2B2 -f Mrft, = ... (1)

M2v/2 + M^ = ... (2)

M2 2^2 -h M3a3^3 = . . . (3)

M2a2?/2 -f M3<73?/3 =
. . . (4)

Mi + M2(^2
2 -

VA/) + M3fe
2 -

y/} = ... (5)

M2#2?/2 + Ma^a = ... (6)

Eliminating the M's from equations (2) and (6)

From this, either x3
= x& in which case y3

=
,y-2 (Art. 84), or

x3 is not equal to 2 ,
in which case the above equation requires

that y-2
=

2/3
= 0, an untenable solution, since this requires that

x-2 = x3
= 1, which is contrary to the second supposition.

Taking #2 = x3 ,
and therefore y% = 2/3,

it follows, from equation

(2), that

Ma = M3

Equations (1) and (5), therefore, reduce to

Mi + 2Ma&2 = 01

M! + 2M2(^ -
yj) = OJ

Eliminating the M's

x* - yf = ^2

that is, substituting (1
- x*) for ?/2

2

2x, -f
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From this

or

this is untenable, since it involves

and this has been shown above to require that x% is not equal to

#3 . The first value of x% is, therefore, the only tenable one.

The values of ?/2 and ?/3 corresponding to this are

2/2
= 2/3=

Snbstituting the values of x% and x3 in equation (1), remembering
that M2

= M3

Mi = M2 = M3

From equation (2) it is clear that 7/2 is of opposite sign to 7/3,

since the M's must be positive. The crank directions are, there-

fore, completely specified by Schedule 18, from which it appears
that the cranks are mutually at 120.

SCHEDULE 18.

Crank.
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From which

2 =
a3
=

indicating that the planes of revolution must be coincident, as

shown in Fig. 107. Three equal masses, therefore, disposed in a

plane of revolution, so that their respective radii are mutually at

120, are balanced for primary and secondary forces. The foice

triangle corresponding to this is, of course, equilateral.

If the planes of revolution are not coincident, couple errors,

both primary and secondary, will be introduced to an extent

depending upon the distances apart of the three planes. This is,

in fact, the case with the three-crank engine, which has been used

so much in marine work.

Given that the masses are equal, and that the crank angles are

mutually at 120, such an engine would be completely balanced

for primary and secondary forces
;

but there remains a large

couple error. Mr. Mark Eobinson and Captain Sankey
* investi-

gated the force errors very carefully in this arrangement, and

communicated their results to the Institution of Naval Architects

in 1895. By the graphic method they used, no errors could be

detected; calculation from an exact formula, however, disclosed

a force error of about one Ib. weight in a 300 H.P. engine, running
at 350 revolutions per minute, the ratio of connecting-rod to

crank being 4'77 to 1.

93. Three-crank Engine Cylinder, Centre Lines fixed. There

is another way of looking at the three-crank engine problem
which may be noticed. Suppose it given that the cylinder centre

lines are fixed. Then the number of independent variables in the

problem is

2(3
-

1)
= 4

This shows that only four conditions can be satisfied, that is,

that only four of the eight equations of Art. 87 can be chosen.

Now, consistent with the conditions of Art. 90, the selection can

only be made in two ways, viz.

Equations Nos. (1), (2), (3), and (4)

* " On a Method of preventing Vibrations in Marine Engines
"

By Mr. Mark
Robinson and Captain H. Riall-Sankey. Trans. Intt. Naval Architect*. London.

1895.
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or

Equations Nos. (1), (2), (5), and (6)

The latter set have been fully considered in the first part of the

preceding article, and they are completely satisfied by an engine
with equal masses, and cranks mutually at 120.

The first set merely lead to a solution for complete balancing,

supposing the motion to be simple harmonic. The way to obtain

the solution of (1), (2), (3), and (4) is as follows, assuming the initial

conditions to be the same as before, and as shown by Fig. 106.

Eliminating the M's from equations (2) and (4) of the pre-

ceding article

a-2 is, by supposition, not equal to a3) therefore

7/2
=

7/3
=

and therefore

02 -= #3 = 1

since--

a? + f = 1

Sub stituting these values in equation (3)

=

If #2 and a3 are both positive, x2 must be of opposite sign to x3 ,

in order to leave the above two quantities connected with a minus

sign, since the M's are always positive.

Suppose #2 negative and x3 positive, then the conditions of

balance are stated by the two equations

Mi -f- M3
= M2 ,

from equation (1)

and

=

The as are both of the same sign here, and therefore the cor-

responding planes of revolution lie on the same side of the

reference plane which is at crank No. 1. Also, since all the ys
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SOLUTION

are zero, the cranks all lie in the same axial plane. The solution

is shown in Fig. 108.

If the two x's were of the same sign, the corresponding a's

would, of necessity, be of opposite signs, and the two planes of

revolution would be

on opposite sides of

the reference plane.

Summarizing, the

general conditions of

balance for a three-

crank engine with,

fixed centre lines

are

(1) The three

cranks must lie in

the same axial plane.

(2) The masses

in the two outer FIG. 108.

planes of rotation

must be such that their moments, with respect to the plane of

rotation between them, must be equal and opposite, and the sum
of the two outer masses must be equal to the central mass.

94. Application to a Four- crank Engine. The number of

variables is in general

3(4
-

1)
= 9

In this case, all the conditions expressed by the fundamental

group of equations D, Art. 87, may, presumably, be satisfied.

Take the reference plane at ISTo. 4 crank so that # 4 = 0, thus

reducing the number of variables by one, and put No. 1 crank

in coincidence with the reference line OX, so that #1 = 1, and

?/i
= 0. These initial conditions are similar to those shown

by Fig. 106, except that the reference plane is now at No. 4

crank, which is not shown there. Substituting these values,

and taking four terms, in each of the equations of Group D,
Art. 87, they become
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MI 4- M2&2 4" MyOfc 4- M4#4 =
. (1)

4 M2y2 4* M3?/3 4- M4?/4 =
. (2)

MI^I 4~ M2tt2a?2 4* M3^3a?3 4~ ==
. (3)

4- M2a2?/2 -h MS^S + = . (4)

MI + M2(a?2
2

?/2
2
) 4- M3(cc3

2
?/3

2
) 4- M4(a?4

2
?/4

2
)
= . (5)

4 M2^2ic2y2 4* MaOaa^a 4 = . (8)

Equations (3), (4), (7), (8), in Ma above, are precisely similar in

form to equations (1), (2), (5), (6) of Art. 92, in M. The solution of

(3), (4), (7), (8), in Ma, is, therefore, the same as the solution of

(1), (2), (5), (6) of Art. 92, in M. Hence

MI#I = M2 2 = M3a3 = 1, say .... (9)

And the cranks are mutually at 120. Substituting the values of

the M's in terms of the as, and the values of the x's and tfs from

Schedule 18, Art. 92
;
in equations (1), (2), (5), and (6), they reduce

to

From (10)
- 2n111 - ft^4 Ifi ^4

that is

(2.x, + l)fe - 1) = ...... (12)

From (11)-

-^2/4 = | ........ (13)

From (12)-

^=1
and therefore

or
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and therefore

Both these solutions also satisfy equation (13).

Considering the first solution, it shows that crank No. 4 is

parallel to crank No. 1, and since the right and left hand

expressions of equation (11) vanish, y being zero, 0% must be

equal to a3 . The second solution leads to the same result, in

terms of different letters. Hence, from (9)

M2 = M3 ....... (14)

Substitutin the values

in equation (10)

M, = 1-1 ....... (15)
2 #1

From this it is clear that a\ must always be greater than 2 >
in

order to make M^ positive.

The relation between the masses is deduced from this equation

with the aid of (9), above, from which

Substitute these values in the numerators of the terms on the

right of equation (15), then

_

a-2 ai

From which

M4 + Mi = M2 = Ma ..... (16)

Summarizing, a completely balanced four-crank engine must

satisfy the following conditions :

(1) The four cranks must be arranged in three planes of

revolution, two of the cranks being in the central plane.

(2) The two cranks in the central plane must be at 120

with one another: the two outside cranks must point in the same
direction in the same axial plane, which plane is at 120 with

each of the cranks in the Central plane of rotation.

L
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(3) The masses in the central plane must be equal.

(4) The masses in the outer planes must be such that their

moments, with respect to the central plane of rotation, are equal

and opposite, and their sum must be equal to one of the equal
masses in the central plane.

The arrangement is shown in Fig. 109, and, though impracticable
to realize, is useful in the solution of other problems.

Fm. 109.

95. Example. Let the ratio be 3. Measuring from No. 4

crank

If MI#I is unity, from (9)

Mi =
i

and

Ma = M3
= 1

from (15) or (16)
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96. Four-crank Engine satisfying Six Conditions. Case I.

Schlick Symmetrical Engine. Conditions 1, 2, 3, 4, 5, and 6 may,

presumably, be satisfied, leaving in general three of the nine

variables concerned in a four-crank engine to be fixed arbitrarily.

The solution of this problem was the main feature of Herr

Schlick's paper* at the 1900 Spring Meeting of the Institute

of Naval Architects.

Choose the line of reference so that it bisects the angle

between No. 1 and No. 4 cranks, as OX (Fig. Ill), then, xi = #4,

and therefore y\
= y.

The three conditions which may conveniently be fixed are

(1) That the line of reference shall also bisect the angle
between cranks No. 2 and No. 3. This involves that

and therefore y% is equal in magnitude and opposite in sign to 7/3 .

(2) That the ratio MI : M4 = 1.

(3) That the ratio a\ : a2 is given.

The first two equations from Group D, Art. 87, become, under

these conditions

2ajiMi + 2(M2 + Ms)
= ..... (1)

+ 2/2(M2
- M8)

= ..... (2)

Considering equation (2), M2 must evidently equal M3 ,
since y*2

is not zero ; therefore (1) becomes

Mia* + Maara = ....... (3)

Taking a reference plane to bisect the distance between planes
Nos. 1 and 4, so that a\ = a, the third equation from Group
D becomes

Mo#2(#2 + ;})
=

whence

The consequences of the three assumptions detailed above are,

therefore, that M2 = M3 ,
and 2 = #3, the two a's being of opposite

sign.

The cylinder lines are, therefore, symmetrical, with reference

* "On Balancing Steam Engines." By Herr Otto Schlick. Tram. Intt. Naval
Architects. London. 1900.
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to the central plane of the engine. Substituting the foregoing

equalities in the first six equations of Group D, Art. 87, they
become

= .... (4)

-f M2#22/2
=

. . . . (5)
2 -

2/2
2
)
= . . . . (6)

Eliminating the M's from (4) and (6)

Introducing 1 x* for ?/

2
,
this at once reduces to

XiX-2 = -
i

Eliminating the M's from (4) and (5)

Squaring each side, and substituting
-- - for x%, from (7), this
Zxi

reduces to

*i
4(W) + tf(a? - ^2

2
)
- a? = . . . . (8)

If

P = 5^, and Q2 =
,

8ti2 42
ai

2 = -P v/l^ + Q8 ...... (9)

Also

Xl
* = ^- from (7) and (4) .... (10)

#1 can be calculated from (9), when the ratio a\ : a% is given.

Then x can be found from equation (7). The corresponding values

of the y's are found from the relation

f = I - a?

their signs being determined from equations (4), (5), (6), (7). The

ratio Mi : M3 is found from equation (10).

The relation given in equation (7), above, is that stated in the

form cos - cos 2 = _> in Heir Schlick's paper.



SECONDARY BALANCING. 149

Case II. Unsymmetrical Engine. The general solution of the

equations (l)-(6), Art. 94, has been published by Dr. Lorenz

in a book, entitled Dynamik der Kurbelgetriebe (Leipzig, 1901),

from which equations (!!)-(14) have been quoted, the symbols

having been altered where necessary, to bring them in conformity
with those already used in the previous articles.

The elimination of the M's from equations (1), (2), (5), and (6),

gives a relation between the angles, which, stated in its trigono-

metrical form, is

COS2i^+ COS2^ = 008^
*

. . . (11)

where 72, yi, /3>
are pairs of opposite angles arranged in the

way shown in Fig. 111. This equation may be reduced to the

form

2 cos cos E = cos
A A

which, if
/3
= 8, as in the case of the symmetrical engine,

becomes

cos cos 1=1
a relation already expressed by equation (7) of this article.

Returning to the consideration of equation (11), it will be

seen that by assuming values for /3 and 8, and thereby fixing the

value of (72 + 71) since

72 + yi
= 360 -

(0 + S)

the value of (72
-

71) can be calculated, from which and the

previous data 72 and 71 are at once determined.

The corresponding masses are to be found by the elimination

of the factors of the M's in equations (1), (2), (5), and (6). If M4

is unity, then measuring the angles 01, a^ and a3 from crank No. 4,

Fig. Ill

* This condition and similar conditions to those given by equation (12), are

given in a paper by Dr. Schubert to the Hamburg Mathematical Society, dated

February, 1898. (Mittheilungen der Mathematischen Gesellshaft in Hamburg
Band 2, Heft 8.) The geometrical condition between the angles and centre lines,

which is the basis of Art. 37, and a solution of the general equations for a fivo-

erank engine, are also given.
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Q 9

siu "^ sin - a3 sin
al sin

^ 02

Mi2 =-=-rr-=-----*- . (12)
sin *L_Jii sin

^(
3
-
a^sin^p sin -(a2

- ai)

The expression for M2
2

is obtained from this by writing tho

subscripts 1 for 3, 3 for 2, and 2 for 1.

For M3
2 write 2 for 3, 1 for 2, and 3 for 1.

Having found the masses, and knowing the angles, the cylinder

pitches are to be found from equations (3) and (4) of Art. 94.

They reduce to, expressed in the trigonometrical form

3__ _ MI sin (q2 ai) _ _ MI sin
(|3
+ 72)

ai M3 sin (a2 as) M3 sin 73

Oz_ __ __ MI sin (a3
'- a2) _ _ MI sin |3

i M2 sin (a3 a2)

~ M2 sin ( yi)

In these expressions, the reference plane is taken at No. 4

crank, so that a4
= 0. Thus, assuming the values of the angles

/3
and 3, which assumption, of course, carries with it the value of

(71 + 72), the masses and cylinder centre lines can be calculated

from the above equations.

97. Examples. Case I. Symmetrical Engine. Given that

MI = M4, that the crank angles are symmetrical, and that the

ratio #1 : #2 = 6 '5 : 2. Find the crank angles, and the ratio of

the masses M2 : MI, so that the engine may be balanced for

primary and secondary forces and primary couples.

The data necessitate a symmetrical engine, as shown in Fig.

110, i.e. M2 = M3, and, taking the reference plane at the centre so

that 0,1 = a, a2 = a3 ,
of necessity.

Calculate the values of the quantities P, P2
,
and Q2

,
and solve

equation (9) of Art. 96.

therefore

P2 = 1-428
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Equation (9) becomes

x\ = -1195 x/1'428 -f 2-643

therefore

x\ = + -823

the negative value being untenable, since x\ must be real. There-

fore, retaining the positive sign, Xi = + '908.

FIG. 110.

M.-607 M-6'6'7

FIG. 111.

From equation (7), Art. 96

2 X '908
= --551

Then

1
= \/l - -9082 = '421

2 = X/1-'5512 = '834
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The three assumptions made include

7/1 is equal in magnitude and opposite in sign to 7/4

yi 2/3

The individual signs of y\ and 7/2 are to be determined from

the general equations.

From equation (5)

MI and M 2 are positive, a\ and #2 are of the same sign ; therefore

7/1 must be opposite in sign to y%.

Arranging the results

Xi = +'908 7/1
= +'421, giving the direction of No. 1 crank

X2 = --551 ya
= -'834, No. 2

.T3 = --551 7/3
= +-834, No. 3

34 = +-908 7/4 =--421, No. 4

From equation (4), Art. 96

Mi : M3 = cca : a* = '551 : '90S = -607 : 1

This is also the ratio M4 : M3

And-
MI = M.i = 1 by hypothesis

Therefore

M, = M
:{
= -G07

Figs. 110 and 111 show the centre lines and crank angles, set

out in their proper relative positions. The crank angles, in

degrees, are added between the successive cranks and between

the cranks Nos. 1 and 4, and 3 and 2.

Case II. Unsymmetrical Engine. Given that /3
= 100 and

that 8 = 90, find the angles Ti, 72, the ratio of the reciprocating

masses and the cylinder centre lines so that the engine may be in

balance for primary and secondary forces and primary couples.

The following is a convenient semi-graphical way of solving

this problem. Calculate the values of 72 and 7i from equation (11)

of the previous article. Next calculate the value of MI from

equation (12). Now draw an end view of the crank angles,

numbering them as in Fig. Ill, and set out the two sides of the
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corresponding force polygon which are known, namely, M4 = 1,

and MI from the value just computed from equation (12). Com-

plete the polygon by lines parallel to cranks 2 and 3, thus

determining the magnitudes of M2 and M3 . Now apply the

construction of Art. 37 and Fig. 47 to determine the pitches of

the cylinders.

From the given data

/*
- _ ~

~2~
and therefore

2

Hence from equation (11)

cos
72 ~ 1 = cos 5 - cos 85 = 0*909039

The angle corresponding to this is 24 37'.

Hence

T2
- T! = 49 14'

7.2 + Tj = 170 0'

Therefore

T2
= 109 37'

7i = 60 23'

Again, substituting the values of the angles in equation (12)

= sin 80 ll
f

sin 240 34' sin 135 sin 405
11 sin 50 sin 150 sin 104 48' sin 314 24'

From this

Mi = 1-2735

Drawing the force polygon, and measuring the sides corresponding
to cranks 2 and 3

Ma = 1-685

M8
= 1-727

Applying the construction of Art. 37, Fig. 47

^ = 0-386

^ = 0-790
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98. Symmetrical Engine. On the Variation of the Different

Quantities in Terms of Pitch of the Cylinders. Two Graphical

Methods. Let b be the ratio of
, or, since the engine is syin-

2

metrical, the ratio of the pitch of the pair of outside cylinders to

the pitch of the pair of inner cylinders. Then

,
and Q2 = -

The way the different quantities vary for different values of b

is shown by the curves in Fig. 112. The values of xi and #2 are

shown by the ordinates to curves JSTos. 1 and 2 respectively.

Curve No. 3 gives the ratio
j~.

If the pitch of the middle pair

of cylinders is considered unity, the value of b is the pitch of the

outer pair. Also, if MI is considered unity, the ordinates to curve

No. 3 give the value of M2 . This curve shows how rapidly the
TVT

ratio = increases as b increases. The outer cylinders, therefore,

should be kept as near the middle cylinders as possible, i.e. b

should be as near unity as possible, in order to avoid the necessity

of increasing the weight of the reciprocating parts of the inner

pair of cylinders too much beyond what would be necessary if

designed simply for strength.

The angles corresponding to 7i and 72 between cranks Nos. 1

and 4, and 2 and 3, respectively (Fig. Ill), are given by curves

Nos. 4 and 5. The scale for these two curves is that on the right-

hand side multiplied by 100. For example, suppose the ratio b

to be 2. Then, taking the lengths of the ordinates corresponding
with 2 to the different curves, xi = '83, x% = '6, the angle 7 L

=
67j-

and the angle 72 = 106J, ^-
2 = 1/38.

The crank angles may easily be set out from the curves when

the ratio b is given. With the distance unity on the right-hand

vertical scale as radius, draw a circle (Fig. 113). Set out along a

horizontal diameter the distances x\ and x* taken from the curves,

measuring x% to the left of a vertical diameter. The intersection of

the verticals through p and q with the circumference of the circle

determine points r, s, b, u, which fix the crank positions.
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Anticipating Chapter VL, Equation (8), Art. 118 gives the

maximum value of the unbalanced secondary couple. Considering

^o

a 2 PitcJv of muddle

Fio. 112.
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the factor 2Ba2Mi = unity, the value of the couple for different

values of b is shown by curve No. 6 (Fig. 112). The scale for this

curve is on the left of the

diagram. This couple increases

rapidly as b increases, furnishing

an additional reason for keeping
the ratio b as near unity as pos-

sible. To find the actual value

of the couple in any given case,

measure off the ordinate to the

curve, and multiply by 2Mia2B,

where B =
y-.&

When b = 2, the ordinate to

the curve is 3'2. If 2a2 = 16,

, , r e , -p,
wV2

and MI = 5, and B =
j-
= 1/5,

which is the case when r = 2 feet, 1 = 7 feet, and the revolutions

per minute are 88, the maximum value of the unbalanced

secondary couple is

1-5 X 5 x 16 x 3-2 = 384 foot tons

FIG. 113.

When b = 1, cranks Nos. 1 and 2 are opposite and in the same

plane of revolution, and cranks Nos. 3 and 4 are similarly cir-

cumstanced, the two being at right angles to Nos. 1 and 2. MI
is then equal to M2 and the secondary error is a minimum.

The following construction, which is slightly modified from

one given by Mr. Macfarlane Grey in the discussion of Mr. Schlick's

paper to the Institute of Naval Architects, 1900, gives the relations

between the masses, crank angles, and cylinder centre lines for a

symmetrical engine satisfying the conditions of Case I., Art. 96.

Draw a circle of any diameter and draw a pair of diameters at

right angles AB, CD (Fig. 114). From C with any radius cut the

circle in G and the diameter AB in E. Join EC and ED. Join

CG, and produce it to cut the diameter AB produced in F. Join

FD. Then EDFC is a force polygon such that the angles of the

corresponding cranks satisfy the relation of equation (7), Art. 9G.

To prove this, number the cranks as shown. Consider CE =
ED = DH =B CG each equal to unity, and draw perpendiculars Gj
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and HA, to CD. Then CO represents xi} and DA

x>2. Also Gg =r H/i = y%. Therefore

since CA X DA = HA2

- 2

157

represents

i.e. x\xz = }2

But the direction of x% is negative ;
therefore

which is the condition of equation (7), Art. 96. The centre lines

may be found from the force polygon by the method of Art. 37.

In Art. 37 and Fig. 47 it has been shown that angles for

which balance is possible may be determined by drawing a pencil

FIG. 114. FIG. 115.

of rays through the traces of the cylinder centre lines, to meet

in a point B. In the paper quoted there Mr. Schlick has shown
how to find the point B to satisfy the condition of equation (7),

Art. 96, for a symmetrical engine. The construction is as follows

(Fig. 115):-
'

Set out the centres of the cylinders to scale, ABBiAi. At
B erect a perpendicular BC, and make AC = ABi. Produce

CB to cut a line drawn at A at right angles to AC in D. Join

D and AI, and make DE = DB. Erect another perpendicular at

AI and make AiF = A]E. With radius BC and centre F describe

an arc cutting the line AAi at Gr. Produce AiF to cut a parallel
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to FG through B1 in H. Erect a perpendicular at M and make
MI = B1

!!. Bisect MI in O. O is the required point. The

angles corresponding to this are shown in the figure.

99. Five-crank Engine. The number of variables in this

case is in general

3(5
-

1) = 12

All the conditions expressed in the eight fundamental equa-
tions of Art. 87 may presumably be satisfied, therefore, leaving
four of the variables concerned in the problem to be fixed arbi-

trarily. The solution of the problem may be derived from the

general solution of the four-crank problem given in Art. 94,

without reference to the eight equations of Art. 87.

Fig. 109 shows the disposition of four cranks and the corre-

sponding masses for complete balance. All the eight equations of

Art. 87 are satisfied. A combination of two such systems would

also satisfy all the conditions of balance, for each is in equilibrium ;

and the combination of two systems, each in equilibrium, must

form a single system in equilibrium. Combine two four-crank

systems, of the type shown in Fig. 109, to form a single system,
in the way shown in Fig. 116, one system being distinguished by
the radii of its masses being shown in full lines, the masses

forming the system being MI, M2 , MI, and ??i 2 ,
the other system

being formed of the masses M3 ,
M4 , M5 ,

and m6 ,
their radii being

shown dotted. It will be observed that the two systems are

placed coaxially, with their central double cranks in the same

plane of revolution, which plane may conveniently be chosen for

the reference plane.

The angular disposition of the two systems, relative to one

another, is to be such that the four cranks in the reference plane

are mutually at 120. This arrangement is only possible, if one

crank of the central pair, belonging to one system, coincides with

one crank of the central pair belonging to the other system, as

shown in the reference plane (Fig. 116). The set of four masses in

the reference plane may now be divided into two groups

(1) A group of three masses, mi, tn^, T>IQ, whose radii are

mutually inclined at 120
;
these are indicated by cross-hatching

in Fig. 116.

(2) A single mass lettered M5 ,
and shown black

;
this is drawn
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at a slightly greater radius, for the sake of clearness. It is, of

course, really coincident in position with m^.

If the shaded masses were equal in magnitude, they would
form a system in equilibrium amongst themselves, both for the

primary and the secondary forces they give rise to. Art. 92 is a

proof of this, or it may be proved by substituting these values of

FIG. 116.

T.__

-a,a -

CRANKS N?? I &2.

CRANKS 3 & 4- CRANK N5

FIG. 117.

the masses and angles in equations (1), (2), (5), (6), of Group D,

Art. 87. They might, under these circumstances, be subtracted

from the combined system, without interfering with its equili-

brium. Let them be equal, therefore, and let them be subtracted

from the combined system ;
there will be left, in the reference

plane, the single mass M5 .

Now, the masses forming each of the original systems must

satisfy the relation expressed in equation (16), Art. 94, which is,
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considering one system, that the magnitude of each of the two

central masses is equal to the sum of the magnitudes of the two

outer masses
;
the two outer masses are always, of course, in the

same axial plane as shown in Fig. 109. Therefore, for the combined

system under discussion, the following two equations must hold,

the first line referring to the system whose mass radii are shown

by thick lines, the second to the system whose mass radii are

shown dotted in Fig. 116 :

MI -4- M2 = mi = w2 from equation (16), Art. 94

M3 -f M4
= m 2 = w6

But mi = 7/i2 = m6 , by supposition ;
therefore

Mi + M2 = M3 -f M4
= Ms (1)

And from the conditions of balance in the original four-crank

systems

(2)

(3)

Equations (2) and (3) each express the relation given by expression

(9) in Art. 94.

From these three equations the values of the masses for given
values of the as may be found in terms of M5 . Notice that, in

this case, fixing the pitch of the cylinders is equivalent to fixing

four of the twelve variables concerned in the problem, and that

the remaining eight quantities must be found from the equations.

Assuming the pitch of the cylinders to be settled, the magni-
tudes of the several masses may be more explicitly stated as

follows :

From equations (1) and (2) above

Mi -J- M2 = M5 = 1, say (4)

MI^I = M2 2 (5)

Eliminating M 2 from (4) and (5)

Similarly

a^ > in the same axial plane
Mo = 1 - Mi

j

in the same axial plane

4
= l - M3

)

at 120
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Example. Suppose the pitch of the cylinders to be such that

ai = 2 feet, #2 = 3 feet, a3 = 4 feet, a = 5 feet, each of these dis-

tances being measured from the plane of the central crank of the

five. Substituting, in the above expressions, and taking M5 = unity,

the masses must be proportional to the numbers placed below

them in the following rows :

Mi : M3 : M3 : M4 : M53.2.5.4.1
8 ' 5 9 9 *

The crank angles have the same sequence as those shown in

Fig. 117.

10t>, Six-crank Engine. The number of variables in this

case is in general

3(0
-

1) = 15

A solution of this problem may be derived from the general

solution of the four-crank problem given in Art. 94, by the method

explained in the previous article, for a five-crank engine, although
there are presumably other solutions possible. Combine three

four-crank systems of the type shown in Fig. 109, to form a

single system, in the way shown in Fig. 118, the masses forming
the systems being respectively

MI M2 mi m^
M3 M4 m3 m
M5 MG m5 ra6

It will be observed that the three systems are placed coaxially,

with their central double cranks in the same plane of revolution,

which plane may conveniently be chosen for the reference plane.

The angular disposition of the three systems, relatively to one

another, is to be such that the six cranks in the reference plane
are mutually at 120. This necessitates the arrangement shown
in Fig. 118, in which the cranks form coincident pairs. The set

of six masses in the reference plane may now be divided into two

groups

(1) A group of three masses, m^ m^ 7??e, shown cross-hatched,
whose radii are mutually at 120.

(2) A group of three masses, ra3,
m4 ,

ra5 ,
shown slightly

displaced behind the former three, whose radii are mutually
inclined at 120.

If the masses in each group were equal, they would form two
M
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systems, each in equilibrium, both for the primary and the

secondary forces they give rise to when reciprocated. (Art. 92

contains the proof of this.) The two systems might, under these

circumstances, be subtracted from the combined system, without

interfering with its equilibrium. Let them be equal, therefore,

and let them be subtracted from the combined system ; there will

be left six masses, viz. MI, M2,
M3 ,

M4,
M5,

M6, three on each

FIG. 118.

M^ x-v
/T\ r \ i \

I >
\ i \

L_ 1] L i i

CRANKS I & 2.

CRANKS 5& 6 CRANKS 3

FIG. 119,

side of the reference plane, forming a six-crank engine, whose

cranks are shown in Fig. 119. The following equations are true

of each system, respectively, from the conditions of balance of the

original systems :

MI 4- M2 = mi = ra2 from equation (16), Art. 94

M3 + M4 = m3
= m

M5 + M6
= m5

= m6

But mi = ?/i 2 = me, and m3
= mm

therefore

Mj -f- M2
= M3 + M4

=

m5 , by supposition

M6 . . . . (1)
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and, from the conditions of balance of the three original four-crank

systems used in the combination

....... (2)....... (3)

....... (4)

Equations (2), (3), and (4), severally, express the relations (9;

in Art. 94.

This solution adjusts itself most happily to the general condi-

tions of design. The rules for designing a six-crank engine of

this type may be thus stated

Take a reference plane, and group three pairs of cranks about

it, each pair to be in an axial plane and to satisfy the conditions

......... (5)

MI + M2 = a constant = 1, say .... (6)

Assuming the spacing of the cylinders to be settled, all the a's

are known, and the magnitudes of the several masses may be more

explicitly stated as follows :

n 1_ /y f
2

J>
in the same axial plane ^

Ma
= 1 - Mi

M3
=

^4

J>
in the same axial plane i at 120

C

M4 = 1-M3

Ms=~-) .

6 > in the same axial plane

101, Extension of the General Principles of the Foregoing Articles

to the balancing of Engines when the Fundamental Expression (2),
Art. 78, includes Terms of Higher Order than the Second, If the
extraction of the square root of expression (a), Art. 78, be con-
tinued to more terms, the final expression for the displacement of
B (Fig. 102) will contain terms in cos 4(0 + a), cos 6(9 + a), etc.

This converging series of cosines, differentiated twice, gives a con-

verging series for the acceleration of B (Fig. 102), which, when
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multiplied by the mass, gives the values of the unbalanced force

acting on the frame. Expression (2), Art. 78, then becomes

MwVfcos (9 + a) + A cos 2(0 -f a)
- B cos 4(0 -f a)

+ C COS 6(0 + a) . . .
} .......... (1)

where the coefficients A, B, C have the values, c being the

ratio -

. .

4 -1C

C = + . . .

. The details of the calculation of the above expression are

given in full in an interesting paper by Mr. John H. Macalpine,

Engineering, October 22, 1897.

Each term in the series may be interpreted in the way ex-

plained in Art. 80 for cos 2(9 + ). Thus, the force corresponding
to the third term may be considered as the result of the rotation

of an imaginary crank, revolving four times as fast as the main

crank. The fourth term represents an imaginary crank, revolving

six times as fast, and so on.

For balancing purposes, therefore, the main crank-shaft of an

engine may be looked upon as associated with a series of imaginary

crank-shafts, rotating with speeds twice, four times, six times, etc.,

the speed of the main shaft, about the same axis of rotation
;
the

angles between the cranks of the imaginary shafts being respec-

tively twice, four times, six times, etc., the actual angles between

the cranks of the main shaft, the masses carried by each imaginary
shaft being in the same proportion as those of the main shaft, the

planes of rotation of the series of imaginary cranks, corresponding
to any one of the actual cranks, being, of course, coincident.

Keyed to each shaft is an appropriate reference plane. The condi-

tions that each imaginary shaft may be in balance are, simply,

that force and the couple polygons belonging to it shall close.

Consider a force vector belonging to one of the main cranks, and

let its direction, with the initial line in the reference plane, be a.

The series of imaginary cranks belonging to this crank will have
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directions 2a, 4a, 6a, etc., with the initial lines in their respective

reference planes.

These directions may be severally represented analytically in

terms of the quantities specifying the direction of the force vector

in the reference plane corresponding to the main crank. The

way of doing this has been explained in Art. 85 for the 2a direc-

tion. By an obvious extension of the method, a vector in the

reference plane corresponding to the 4a crank is denoted by

where E is a function of the mass carried by the main crank the

length of the rod and the crank radius, but which, for balancing

purposes, may be written equal to M, since everything else cancels

out when the final conditional equations are formed.

Similarly, a vector in the next plane of the series is represented

by-

The eight conditional equations of Art. 87 will be increased by
four for every additional imaginary crank-shaft taken in the series.

Thus, corresponding to the 4a crank-shaft will be the four

additional conditions

-
8?/

2 + 1) =0
=

-
8?/

2 + 1)
=
=

Similar sets of four more must be added to the conditions, if the

6a crank-shaft is taken in, and so on.

The solution of the set of sixteen simultaneous equations,

corresponding to the main shaft and the first three imaginary

crank-shafts, presents formidable analytical difficulties. They

may be used, however, without much trouble, to test the balancing
of a proposed arrangement; and, by the introduction of proper

coefficients, the magnitude of the unbalanced force and couple

corresponding to any crank-shaft in the series may be found.

Eeverting to the polygons in the series of reference planes, it

will be evident that, if a given arrangement of engine is in perfect

balance, corresponding to the closed force polygon in the first and

second reference planes (see Fig. 103), there will be a closed polygon
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in the third plane, whose sides are proportional in magnitude to

the sides of the force polygon in the first plane, but make four

times the angle with their initial line that the sides of the first

polygon makes with its initial line. There will be a closed

polygon in the next reference plane, the directions of whose sides

with their initial line is six times the angle of the sides of the

first polygon with its initial line. And so on through the whole

series. There will, of course, be a similar series of couple

polygons.
The application of this test to the arrangement shown in

Fig. 109 discloses that, not only is the primary and secondary
shaft in balance, but that the imaginary shaft, corresponding to

4a, is also in balance for forces. The 6cr shaft is out of balance.

The 4a shaft is also balanced for couples. Since the 6 a forces are

not balanced, the 6a couples are not balanced independently of

the position of the reference planes. In general, the infinite series

of imaginary shafts are in balance, with the exception of the 6a

shaft, and all multiples of it. If the reference plane is taken at

the centre, the whole infinite series of couples are in balance, but

those belonging to the n(6a) series appear again, if the reference

plane is taken in any other position ;
this follows from an exten-

sion of the theorem of Art. 90. To prove these statements, take

the reference planes at the centre (Fig. 109), and the lines of

reference in them, to correspond with the direction of the two

outer cranks. The force polygon, in the first plane, is the equila-

teral triangle (Fig. 120). In the second plane, corresponding to

the 2a shaft, it is also an equilateral triangle (Fig. 121). Fig. 122

shows the triangle for the 4a shaft, still closed. In the next plane,

for the 6a shaft, it becomes the line of Fig. 123. Continuing in

this way, the 8a, lOa polygons close, opening into a line for 12a.

The couple polygon for all planes is a line returning on itself,

since the angle of the two outer cranks with the initial line is

in each case 0, and therefore all the multiples are nothing.

The actual magnitude of the maximum unbalanced force due

to the 6a shaft is represented by OC (Fig. 123), and this is

evidently = 30A.

OA represents to scale the maximum force due to the mass M.

This is given by the value of

x C Ibs. weight
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the fourth term in expression (1) of this article, so that it is only

necessary to calculate the value of C. As a matter of interest,

FIG. 120- c

FIG 122.

FIG. 121.

O

FIG. 123.

however, the whole series is given for the case of a rod equal to

three and a half times the length of the crank. It is

Ma>2y
Vcos + '291 cos 20 -006 cos 40 + '0002 cos 60 + . .)

9

The maximum unbalanced force is then

0-0006 . weight
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If M = 11,200 pounds, r = 2 feet, revolutions per minute = 88,

this force is equal to 33 -6 Ibs. weight, a quantity negligible

compared with the unbalanced forces, even from the auxiliary

engines about the ship.

From these properties of the arrangement of Fig. 109, it follows

that the five- and six-crank engines derived from it are similarly

in balance. Thus, an engine balanced by the rules of Art. 99, or

a six-crank engine designed from Art. 100, would be in balance for

forces and couples up to those of the 6a class. There can be no

doubt but that these are the kinds of engines to use to avoid

vibration. The four-crank engine cannot approach them in this

respect, -since, even in the best arrangement, that of Art. 96,

couples of the 2a class of considerable magnitude are left un-

balanced. Moreover, the crank angles of the five- and six-crank

engines fit in so well with the other conditions of design. A
uniform crank-effort diagram can be obtained with ease, and therj

are no awkward starting angles.

102. General Summary. (a) One or any number, n, of rigidly

connected masses revolving in the same plane may be balanced, by
the addition of one mass in that plane, whose magnitude and

position are found by Art. 14, forming with the given masses a

system of n + I masses in balance
; or, by the addition of two

masses, each in a given separate plane of revolution, forming
a system of n + 2 masses in balance. These two masses may be

found by(the general method of Art. 28, or by using first Art. 14

to fincj5the mass in the plane of the given masses and then divid-

ing it between the given planes, inversely as their distances

from the plane of revolution of the given masses.

(&) One or any number, n, of rigidly connected masses, each

revolving in a different plane, may be balanced by the addition

of two balancing masses in any two given planes of revolution,

forming with the given masses a system of n + 2 masses in balance.

These masses are to be found by the general method of Art. 28?

(c) It is generally better to reduce the masses to a common

radius, the crank radius in engine problems, before filling in the

schedules. This is done by the method of Art. 33. Any balanc-

ing mass
"
at crank radius

"
may be placed at any radius, provided

it is changed so that the product Mr remains constant. (See Art.

12 and Fig. 12.)
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(d) Assuming that the masses forming a reciprocating system,
as in a multi-cylinder engine, move with simple harmonic motion,

any number, n, may be balanced by the general method of Art. 28

(see Art. 44), the balancing masses found being reciprocated in the

common plane of reciprocation. The system then consists of n + 2

reciprocating masses. The problem of balancing the reciprocating

parts of an engine generally presents itself in this form given n

cylinders to find the masses of the corresponding reciprocating

parts and the crank angles so that the system may be in balance

without the addition of balancing masses of any kind. Typical
solutions for four masses, and for four masses and their valve-gear,
are given in examples Arts. 48 to 50.

(e) In some cases, locomotives in particular, after finding the

balancing masses for the reciprocating parts, in order to avoid the

practical objection to reciprocating them, they are added to

the system as revolving masses. Under these circumstances,

the balancing masses introduce an unbalanced force and couple

equal to those they are balancing, in a plane at right angles to

the plane of reciprocation. (See Art. 65 for an illustration.)

(/) Secondary balancing can be partially effected in four-crank

engines and completely effected in five- and six-crank engines. The

following general directions show how to set about balancing an

engine, and the possibilities of balancing each type are briefly

indicated :

(g) Two-cylinder Engine. Put the cranks at 180, and make the

reciprocating masses equal. This ensures balance for primary
forces. The primary couples and the secondary forces and couples

cannot be balanced. Keep the two planes of revolution as close

as possible to minimize the couple error.

Three-cylinder Engine. The cranks must all be in the same

axial plane as shown in Fig. 28, and the masses proportioned so

that the middle one is equal to the sum of the outer two, and the

moments of the outer two about the plane of the middle one are

equal. In this arrangement the primary forces and couples are

balanced. The secondary forces and couples are not balanced. If

equal masses at crank radius are operated by cranks at 120, the

primary and secondary forces are balanced (Art. 93), but the

primary and secondary couples are unbalanced. To minimize

the couple error, keep the planes of revolution as close together as

possible.
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Four-cylinder Engine. Set out the centre lines of the cylinders,

and choose any three of the remaining seven variables (see Art. 35),

and apply the method of the example of Arts. 48 or 49. Do not

fail to check the work as directed in Art. 47. To include the

valve- gear, proceed as in the example of Art. 50. A four-cylinder

engine balanced in this way is completely balanced for primary
forces and couples, but is unbalanced for secondary forces and

couples. If the cylinder centre lines are set out symmetrically
as shown in Fig. 110, lay down the centre lines, and then calcu-

late the ratio of the pitch of the extreme cylinders to the pitch

of the inner cylinders, which has been called &. Find this

number on the horizontal scale of Fig. 112, and read off the

quantities xi, x* from curves Nos. 1 and 2 respectively, and set

out the crank angles in the way illustrated in Fig. 113. Then

read off' the mass ratio ^~ from curve No. 3. An engine con-
Mi

structed from these angles and masses will be in balance for

primary and secondary forces and primary couples. There will

be a secondary couple error, the variation of which is shown by
curve No. 6. The amount of the error in foot-tons is found by

multiplying the ordiuate from the diagram by the product of the

pitch of the inner cylinders in feet and the mass in tons of

one of the outer reciprocating masses, and by 1'2 r
, where n

= the revolutions per second, and I and r are the length of the

connecting-rod and the crank radius respectively. This error is

smaller the smaller the value of &; therefore keep the distance

between the outer pairs of cylinders as small as possible re-

latively to the pitch of the middle pair. The balancing of a sym-
metrical engine in this way was described by Mr. Schlick in his

paper to the Institute of Naval Architects, 1900. For an example,
see the s.s. JDeutschland, Engineering, November 23, 1900. To

include the valve-gear, find the angle between the two inner

cranks either from equation (9), Art. 96, or from Fig. 112;
assume two equal masses for the inner cranks, and then apply
the method of Art. 50, taking a reference plane at one of the

outer cranks. The final angles will be slightly different from those

required for the balancing of the secondary forces. See exercises

43 and 44 at the end.

If the angles |3 and S (Fig. Ill) are not equal, the conditions
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for balancing the primary and secondary force and the primary

couple necessitate an unsymmetrical engine, the details of which

are to be found by the method illustrated in Art. 97, Case II.

Five- and Six-cylinder Engines. Set out the cylinder centre lines.

Then the crank angles must be placed in 120 pairs, two pairs and

a central crank for the five cylinders (Figs. 116 and 117), and

three pairs for six cylinders, as in Figs. 118 and 119. The masses

are then calculated by the formulae at the ends of Arts. .99 and

1(K). In these engines the primary and secondary forces and

couples are completely balanced, and further, as shown in Art.

101, the fourth period forces are balanced also. In fact, five- and

six-crank engines arranged in this way are the most perfectly
balanced engines of the usual multi-cylinder type that it is possible
to construct.

The Crank-shaft, The crank-shaft is in general an unbalanced

revolving system in which the planes of revolution and the crank

angles are fixed by the reciprocating system which it operates.

It can be balanced by either of the methods of Art. 51. If the

ratio of the revolving to the reciprocating masses is the same
for every cylinder in the engine, no balancing masses will be

required for the crank-shaft.



CHAPTER VI.

ESTIMATION OF THE PRIMABY AND SECONDARY
UNBALANCED FORCES AND COUPLES.

103. IN this chapter it is shown how the unbalanced force and

couple may be estimated for an engine whether any attempt has

been made to balance it or not. Methods have been given in

Art. 31 for dealing with a set of revolving masses, and in Art. 53

for finding the resultant force and couple due to a revolving and

reciprocating system together, the reciprocation, however, being

simple harmonic. The method about to be explained combines

that of Art. 31 with, in the first place, a construction which gives

the accelerating force acting on the piston accurately for any length

of connecting-rod, and, in the second place, with an approximate

graphical method, requiring rather less work, based upon the

formula (2), Art. 78. Finally, it is shown how the equations of

Art. 87 may be used to calculate the maximum values of the primary
and secondary components of the resultant force and couple.

104. Klein's Construction for finding the Acceleration of the

Piston.* This construction is theoretically accurate. It is, in fact,

the graphical solution of expression (3), Art. 79. It is simple,

quickly applied, and gives the result in a convenient way. The

construction is given in the Journal of the Franklin Institute,

Yol. CXXXII., September, 1891. t

Let OK (Fig. 124) be the crank, KB the connecting-rod, BO
the line of stroke. The acceleration of the piston masses is the

same as the acceleration of the point B, representing the cross-head.

It is required to find the acceleration of the point B in terms of

the crank angle 9, assuming the crank to rotate uniformly.
* See also Bennett's Construction, Appendix I.

+ See reference on page 234.

172
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Produce the connecting-rod BK to meet a perpendicular to

BO, the line of stroke, in V. On BK as diameter draw a circle.

From K as centre, with radius KV, draw an arc cutting this circle

in QQi. Join QQi, producing the line if necessary to cut the line

of stroke in A. Then AO represents the acceleration of the cross-

head B, to the same scale that KO, the crank radius, represents

FIG. 124.

FIG. 125.

the acceleration of the crank-pin K. The latter is uniform and is

equal to w'
2KO. For instance, suppose the drawing to be made to

a scale of 1J inches = 1 foot, and that AO scales 2*2 feet. Then

the acceleration of B, from B towards A, is 2'2 X to
2

. If the crank

is making 88 revolutions per minute, w2 = 84'5, and therefore the

acceleration of B is 185 '9 feet per second per second.

105, Proof, Let BX be the acceleration which is to be found.

It may be resolved into two components, BZ along the rod, ZX
at right angles to the rod. If the magnitude of either of these

components is found, the scale of the acceleration triangle BZX is

fixed, and the values of BX, and the component ZX, may be

scaled off. Now, BZ is equal to the radial acceleration of B
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relatively to K, plus the component acceleration of the crank-pin
K along the rod.

Draw OT at right angles to BV and qii parallel to BO. If

KO represents the radial acceleration of the crank-pin, KT is

clearly its component along the rod. It will be proved immediately
that qK is the radial acceleration of B relatively to K. Therefore

qT represents the whole acceleration of B along the rod, and qu is

evidently the acceleration of B in the line of stroke, which is again

equal to AO.
It remains to show that #K is the radial acceleration of B

relatively to K.

Let V be the velocity of the crank-pin K. This is known in

magnitude and direction.

U the velocity of the cross-head B, known in direction only.

v the velocity of B relatively to K, known in direction,

since it must always be at right angles to the rod BK.

v = the vector difference (U V) (Art. 6)

This is a case of B (Art. 8). Set out ab (Fig. 125) to represent

V, and ac in the direction of the velocity U. Draw be at right

angles to the rod BK, thereby fixing the point c and the magni-
tudes of the velocities v and IT. Comparing this triangle with the

triangle OVK (Fig. 124), it will be perceived that the two are

similar, OK corresponding to ab and 0V with ac. Therefore KV
represents v to the scale on which OK, the crank radius, represents

V. Thus the first operation in Klein's construction gives the

velocity triangle KOV in which the radius represents the velocity

of the crank-pin. Under these circumstances KO also represents

V2

= wV, the radial acceleration of the crank-pin.
r

Again, the triangles BKQ and QK^ are similar, BK corre-

sponding with QK. Therefore

qK : KQ = KQ : BK

v2

But KQ = KV = v. Therefore ^K =
,
the radial accelera-

tion of B relatively to K. Hence the construction.

The way this construction may be used to investigate the state

of balance of an engine is most easily explained by applying it

directly to an example.
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106. Data of a Typical Engine, The following data may be

taken to apply to a modern engine of about 12,000 I.H.P. They
are given in schedule form at once to avoid repetition, and for con-

venience of reference. The engine is supposed to be in full gear

ahead. The H.P. and L.P. forward reciprocating masses include

an allowance for the air-pump gear operated by their respective

cross-heads. The ahead gear includes the mass of the valves, valve

spindle, motion block, half the link, a proportion of the eccentric

rod. In the two L.P. gears the mass of the balancing pistons is

included. The astern gear includes a proportion of the eccentric

rod and half the link, and reciprocation of the rod is supposed to

take place in the main plane of reciprocation, an assumption which

involves a negligibly small error. The rest of the valve-gear is

included with the revolving masses. The angular advance of all

the eccentric sheaves is assumed to be 45. In an actual engine

they would differ for the H.P., Int., and L.P. cylinders.

SCHEDULE 19.

RECIPROCATING MASSES.
100 revolutions per minute, Crank radius, 2 feet.

Ratio crank to rod, 1 : 3'9.

Crank.
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SCHKDULB 20.

REVOLVING MASSES.

Crank.
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represents wV, the acceleration of the crank-pin, the corresponding
~ii/r 9

force in tons is therefore - . At 100 revolutions per minute
y

o>
2

is very nearly equal to 110. From the schedule, M, for the

H.P. cylinder, is 6 tons, and r is 2 feet, so that XR represents a

force of 41 tons. Draw Xr at any angle, and set off 41 to a suit-

able scale, marking off the points 10, 20, etc., at the same time,

to correspond to 10-ton intervals
; join rE, and draw parallels to

it from 10, 20, etc., thereby reducing the 10-ton intervals to the

\r
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to the example, Schedule 19, if lengths XT, XU, XV are set out

so that

XS : XT : XU : XV = 6 : 6'3 : 7 : 6*6 = 1 : 1-05 : 1166 : 1-1

and curves be drawn through the points T, U, V similar to the

curve through S, from the appropriate curve of the set so obtained

the force corresponding to the motion of the parts belonging to any
one of the cylinders may be read off for any given position of the

crank belonging to that cylinder. The proportional increase in

the ordinates of the curves are quickly found by the use of a pro-

portional compass.

109. Combination of the Curves for their Phase Differences.

In order that the simultaneous values of the forces corresponding
to an assigned angular position of one of the cranks may be read

off, the curves must be combined for the phase differences of

their cranks relatively to it. In Fig. 128, the four curves corre-

sponding to the cranks 1, 2, 3, 4 of Schedule 19 are combined in

their phase relation to the H.P. crank. Thus when the crank is at

30 with the line of stroke, the ordinates ab, ac, ad, ae respectively

represent the instantaneous value of the forces acting on the frame

due to the reciprocation of the parts belonging to cylinders Nos.

1, 2, 3, and 4. Their algebraic sum

ab -\- ac ad ae = of

is the instantaneous value of the unbalanced force acting on the

engine-frame. The ordinates for a number of positions are

quickly added by means of a pair of dividers, and through the

series of points so obtained, of which / is one, the error curve

may be sketched in. It will be observed that the maximum error

is about 10 tons. The combination for difference of phase may
be made in the following way. Draw an end elevation of the

cranks (Fig. 127), marking on the drawing their angular distances

from the H.P. crank. Consider the intermediate crank No. 2.

Assuming the four curves, through the points S, T, U, V (Fig. 126),

to have been drawn according to the instructions of Art. 108, trace

the curve belonging to the intermediate cylinder, that is, the one

through T, and mark on the axis XX the point corresponding to

the angular distance of its crank from the H.P. crank, in this case

270. Place the tracing over a drawing of the H.P. curve so that
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the angle marked on the XX of the tracing coincides with the

zero of the H.P. axis XX, and so that the XX of the tracing coin-

cides with the XX of the drawing. Then prick or rub the curve

through on to the drawing. Do this for each curve in turn,

obtaining finally a set like those shown in Fig. 128. The
calibration of the diagram is obtained, of course, from the calibra-

tion of any one of the curves, since they are all drawn to the
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same force scale. For instance, XR on Fig. 128 is the XR
of Fig. 126, and this has been shown to represent 41 tons for the

example under discussion. The force-error curve shows at a

glance the variation of the unbalanced force acting through a

complete revolution of the crank-shaft. The component of the

unbalanced force due to the revolving parts in the plane of recipro-
cation must be added to this to get the whole force in that
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plane. In the present example the force polygon for the re-

volving parts is a closed square, so that there is nothing to add

to the curve shown. The work entailed by strictly following the

directions of this and the preceding two articles may be consider-

ably curtailed in ways which will be obvious after one trial of the

method.

110. Calibration and Combination of Klein Curves to obtain the

Unbalanced Couple belonging to the Reciprocating Masses of an

Engine. If a is the distance of the centre line of a cylinder from

the reference plane, the magnitude of the couple in foot-tons is

given by the

a x acceleration
9

The only variable in this expression is the acceleration. But this

is given by a Klein curve. Therefore the ordinates of the curve

represent to some scale the changing value of the couple in terms

of the crank angle. To fix the scale it is only necessary to observe

that the length XB, representing the radius of the crank, now

stands for the couple
-

. This is equal to 1722 foot-tons for

the quantities corresponding to the H.P. cylinder, Schedule 19.

The curve marked 1 (Fig. 130), which is merely the curve of Fig.

126 recalibrated, thus represents the couples at any instant due

to the H.P. parts taken with reference to a plane at the L.P.A.

cylinder centre line. Curves Nos. 2 and 3 are drawn so that

their maximum ordinates have the ratios to ISTo. 1 curve given in

the last column of Schedule 19, and so that their phase differences

are those given by Fig. 127. The thick curve marked "reciprocat-

ing masses
"

is the resultant curve of the three found by taking
the sum of their ordinates at points along the base in the way
already explained. The drawing of this curve finishes the problem
so far as the reciprocating masses are concerned, for corresponding

to any assigned crank angle of the H.P. crank, the instantaneous

value of the unbalanced couple can be read oft". Thus when the

crank angle is about 45, the couple acting due to the motion of

the piston masses is about 1600 foot-tons, changing to about 1700

foot-tons, whilst the H.P. crank turns through about half a revolu-

tion, the corresponding time interval being 0'3 second. Serious as
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this couple is, it is not by any means the whole unbalanced

couple, for there must be added to it the component of the un-

balanced couple due to the revolving masses.

J72Z

3000
FIG. 130.

3000
FIG. 129.

111. Addition of Couple due to Revolving Parts. To find the

effect of the revolving parts/set out the couple polygon correspond-

in 01 to the data for the main cranks given in Schedule 20. It

will be found that the vector sum of the couples, that is, the line

joining the origin to the end of the last vector, or the
"
closure

"

reversed, scales 170, and makes an angle of 312 with the H.P.

crank (Fig. 129). The projection of this line, as the system

revolves, on the plane of reciprocation gives the instantaneous

value of the component couple. These projections, set out on the

crank base (Fig. 130), form a cosine curve whose maximum ordinate

represents the actual value of the couple. If the diagram is cali-

brated in foot-tons for a given value of o> and r, then the maximum

ordinate of the cosine curve must be taken so that it represents

foot-tons

This curve is shown dotted in the figure. The thick curve marked
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"
total

"
is obtained by adding the ordinates of the dotted curve and

the curve marked "
reciprocating masses." It will be noticed now

that the unbalanced couple changes from a positive value of about

3000 foot-tons to a negative value of the same amount in about

half a revolution. A ship with a similar set of engines to those

specified in the schedules vibrated so much under the action of

the unbalanced couple that they had to be altered.

112. Acceleration Curve corresponding to the Approximate

Formula (2), Art. 78. It has been shown (Art. 79) that the differ-

ence between the true acceleration and that given by the approxi-

mate formula is small. It follows that the difference between the

acceleration curve constructed from this latter formula and the

Klein curve, which realizes the exact formula, will be negligibly

small also. The method of building up the approximate accelera-

tion curve from a primary and a secondary curve is exhibited in

Fig. 131. XX and XR are taken equal in length to the correspond-

\
\\

\\

270'

FIG. 131.

ing lines in Fig. 126, so that the two curves may be compared.

Referring to formula (2), Art. 78. the form of the acceleration curve

is given by the quantities in the brackets, since the factor Mo;V is

constant. Measuring angles from the H.P. crank, a becomes

zero. The first term in the brackets is represented graphically by
a cosine curve whose maximum ordinate is XR (Fig. 131), the

second term by a cosine curve whose maximum ordinate is the

fraction
j
of XE;

in phase with the other curve at 0, but of half

the periodic time. In fact, the values of the ordinate of the two
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component curves are given respectively by the projections of the

main crank and its imaginary fellow, revolving twice as fast, on

the line XR The positions of the two cranks corresponding to

30 of the main crank are shown to the left of the figure. Adding
these two curves together, the thick curve is obtained, which will

be found to differ only slightly from the true curve of Fig. 126.

The approximate curve may, therefore, be used as the basis for esti-

mating the unbalanced force and couple for most practical purposes.

MorV
The calibration of the curve is fixed as before from XR = --

,

or
,,

.

,
as the case may be.

J
A well-known and convenient way of finding the ordinate for

this approximate curve is illustrated in Fig. 132. Let 9 be any

crank angle, BO the line of stroke, OK the crank. Draw two
/vt

circles, each with radius - so disposed that they touch one another
(/

externally at the centre 0, and that the line joining their centres

coincides with the line of stroke. From the points K and e drop

perpendiculars to the line of stroke. Then

aO +/o

represents the acceleration of the piston to the same scale that KO
represents ojV, the acceleration of K.
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The intercept fc is a vector quantity (c is the centre of the

circle nearest the cross-head) always directed from/ towards c
;
but

when the crank cuts the other circle, the direction of the intercept

is from the centre d towards /, the foot of the perpendicular. Also

aO is a vector always directed towards 0. In the position shown

in the figure the quantities happen to be oppositely directed.

When the crank is at 90, the point / coincides with 0, and the

v

intercept/c is then equal to the radius of the circle, that is, -,. The

proof of this construction is simple. If KO represents ojV,

then fc represents wV( j cos 20\ since the exterior angle ace of
\t /

the triangle cOe, is equal to the two interior and opposite

angles, each of which is equal to 0. The projection aO represents
7*

wV cos 0; hence the vector (aO +fc) represents wV(cos 9 -f
-j

cos 29),

a form identical with that of the expression giving the accelera-

tion. The advantage of this method is that it can be applied

without having to draw the connecting-rod in at all.

113. Process of finding the Primary and Secondary Components of

the Resultant Force and Couple Curves. The resultant of curves like

Fig. 131, might be found in the way that has just been described

when exact curves like Fig. 126 are used. A much simpler method

is available, however, since the component vectors of all the curves

are known. The total unbalanced force may be represented by

cos (0 -f a) -f- My cos 2(0 + a)}
fc

To find the effect of the first terms alone, set out the M's in

order parallel to the crank directions in the usual way, to find

their vector sum. Set them out again, only this time draw

parallel to the cranks of the imaginary shaft, that is, a shaft in

which all the crank angles are doubled. This second sum, inulti-

7*

plied by j,
is a vector representing the effect of the second terms

in the expression. These resultant vectors may now be conceived

attached, the one to the crank-shaft, the other to the imaginary

shaft, which is revolving twice as fast. The respective projections of
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those two vectors on the plane of reciprocation will then represent

the instantaneous values of the ordinates of the two curves which are

the components of the resultant curve, in the same way that the

two thin curves of Fig. 131 are the components of the thick curve,

only now there will in general be a phase difference. This method

avoids the necessity of drawing any but the two component curves

to obtain the resultant curve. A similar process may be used to

find the unbalanced couple curve. The method is illustrated by

applying it to find the unbalanced couples of the example previously

considered.

114. Application to the Couples of the Example, The vector OC

(Fig. 133) represents the sum of the couples in Schedule 19, found

by drawing a polygon relatively to the main cranks of the engine.

LPA INT

An end view of the imaginary crank-shaft is shown in Fig. 134.

The angle between the H.P. and L.P.A. crank is now 180, between

the L.P.A. and the L.P.F. 180, and between the L.P.F. and Int. 180.
7*

OD (Fig. 133) is the vector sum of the couples, multiplied by y,
(/

found from a polygon whose sides are drawn parallel to the cranks

on the imaginary shaft (Fig. 134). The curves corresponding to

the rotation of these two vectors, the latter twice as fast as the

former, are shown in Fig. 135, the one marked I corresponding
to the vector 00, the one marked a, to the vector OD. Their sum
is shown by the thick line. Comparing this line with the corre-

sponding one in Fig. 130, marked "reciprocating masses," very
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little difference will be observable to the scale of the illustrations.

The sum of the couples belonging to the crank-shaft system is

shown by OE (Fig. 133). The curve corresponding to this may
be drawn on the diagram, as in Fig. 130, and then added to the

3000 r

2000

1000 *-

1.000

2000

3000 L-

FIG. 135.

resultant curve for the reciprocating masses as before. Or the sum
of the vectors 00 and OE may be taken, and a curve drawn for

their resultant. This curve added to curve a will give the curve

representing the total unbalanced couple acting in the plane of

reciprocation. The principle of the method explained in the last

two articles is the principle of Mr. Macfarlane Gray's
*
Accelerity

Diagram.

115, Valve-gear and Summary, The ratio of the eccentricity to

the length of the eccentric rod is usually so small that the effect

of the rod's obliquity may be neglected, and the motion of the

valves, therefore, treated as simple harmonic. Also considering

the engine in full gear ahead, the effect of the idle eccentric rod

* " On the Accelerity Diagram of the Steam Engine." By Mr. J. Macfarlan

Gray. Trans. Inst. Naval Architects. London, 1897.



UNBALANCED FORCES AND COUPLES. 187

may, without sensible error, be supposed to take place in the main

plane of reciprocation. On this understanding the unbalanced

forces and couples due to the valve-gear are to be found by the

principles of the preceding articles, and added to the total curves

given for the main cranks. The several masses belonging to the

reciprocating and revolving parts of the valve-gear, all reduced to

the crank radius of 2 feet, are given in Schedules 19 and 20 for

the example under consideration. Instead of drawing two polygons,

one for the reciprocating and one for the revolving masses, one only
need be drawn for the purpose in hand, using for the equivalent

mass the sum of the reciprocating masses and the revolving masses

given in the schedules. The angular advance of the eccentrics for

both ahead and astern sheaves is 45. An end view of the eight

eccentric cranks concerned can therefore be drawn. It will be

found that the force polygon closes, and that the vector sum of

the couples is a line 29(Ma) units long, making an angle of 112J
with the H.P. crank. It is shown in its proper phase relation and

scale to the other vectors in Fig. 133 by 0V, its length being

given by the radius of the small inner circle. The cosine curve

corresponding to it is shown by chain-dotted lines marked valve-

gear in Fig. 135.

It will be observed that in this particular case the unbalanced

couple due to the valve-gear is not so great as the unbalanced

secondary couple due to the piston masses. In other cases it might
be greater. This shows that if an engine is balanced for secondary
forces or couples the balancing can hardly be considered satisfactory

unless the valve-gear is balanced also. This can be done conveni-

ently by the addition of balancing masses to the crank-shaft, it

being unnecessary to distinguish between the reciprocating and

revolving parts of the valve-gear, since the projection of the

centrifugal force due to the proportion of the masses balancing the

reciprocating parts on a horizontal plane will cause little effect

about a vertical axis.

The processes of this and the preceding two articles may be

summarized thus

(1) Make a schedule in which the equivalent mass M repre-

sents the sum of the revolving and reciprocating masses appropriate

to each crank in the system, including the eccentrics.

(2) Find the vector sum of the forces and the corresponding
sets of couples.
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(3) Make a schedule of the reciprocating parts alone belonging
to the main cranks of the engine, and draw an end view of the

imaginary crank-shaft in which all the main crank angles are

doubled. Using the same force and couple scale as in (2), find the

vector sum of the forces and couples for these angles, remembering
that the lengths scaled, as the sum or closure reversed, is to be

rt*

multiplied by =- in each case, to reduce them to the scale of the
I

vectors found under (2).

(4) Combine these vectors, two for the forces and two for the

couples, in the way shown in Fig. 135, by the curves a and I for

the couples.

116. Calculation of the Maximum Ordinates of the Components of

the Resultant Force and Couple Curves, Extension to any Number
of Terms in the General Series, The "

vector sums "
of the forces

and couples may be calculated directly from the general equations

D, Art. 87, the coefficients being introduced which divide out

when those equations are equal to 0. Consider the primary force

polygon. Equation (1), of the set D, gives the value of the sum of

the x components of all the disturbing forces, equation (2), the sum

of the y components,
- -

being equal to unity. Calling the first

t/

sum X, and the second Y, the magnitude of the sum is

\/X2 + Y2

This is, in fact, the length of the closure to the polygon. The

y

tan-'Y

direction of this is given by

Care must be taken to give the proper signs to the numerator

and denominator of this fraction in order to fix the quadrant in

which the vector lies. The magnitudes of the four sums are given

in the following general form for the sake of reference. The

summation sign indicates that a number of terms equal to the

number of cranks in the problem is to be taken of the form to

which the sign is prefixed.

Magnitude of the maximum unbalanced primary force in Ibs.

weight
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*
. (1)

9

Direction

Magnitude of the maximum unbalanced primary couple in

foot-lbs.

* ..... (3)
o

Direction

....... <
4 >

Magnitude of the maximum unbalanced secondary force in Ibs.

weight
2,.2 i

2
;

2 -
I)}

Direction

Magnitude of the maximum unbalanced secondary couple in

foot-lbs.

Direction
^/OTVTrv^A

.... (3)

117. Application to the Example of Art, 106. The values of the

x's and y's to be substituted, taking the H.P. crank for the axis

of X, are (Fig. 127)-

a?3
= - 1 2/3

=

#4 = 2/4=1

The values of the M's are given in Schedule 19.
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Substituting these values in equations (1) and (2) of D, Art. 87

= +0-3

Substituting these sums in (1) of the previous article

Maximum primary force = - Ibs. weight app.

Substituting them in (2)

0*3
Direction relatively to the H.P. crank is tan"1

^
= 0'3

Similarly, the secondary force error, by substitution in (5) and

(6), reduces to

026 x wV- Ibs. weight

and the direction is coincident with the H.P. crank, since 2(2M#?/)
is zero.

The set of expressions for primary effects may be used to find

the maximum values of unbalanced forces and couples due to the

revolving masses. It will be found, using the numbers from

Schedule 20, that the sum of the forces is zero.

Again, substituting the proper values from Schedule 19 in

equations (3) and (4) of D, Art. 87-

= +140
= -182-7

and these sums substituted in (3) of the previous article give-

Maximum primary couplo - - foot-lbs.

Substituting them in (4)

_ i<397
Direction relatively to H.P. crank is tan"1 -

+ 140-0

the corresponding angle being 308. This vector is shown by 00
(Fig. 133).
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For the secondary couples, substituting the proper values in

equations (7) and (8) of D, Art. 87

1)
= 181-3

a 2xy =

Substituting these values in (7) of the previous article

Maximum secondary couple is - foot- Ibs.

The direction of the vector is coincident with the H.P. crank.

It is shown by OD (Fig. 133).

Similarly, the couple due to the revolving masses may be found

by using the proper quantities from Schedule 20 in expressions (3)

and (4) of D, Art. 87, and (3) and (4) of the preceding article. The

valve-gear may, of course, be treated in the same way.

Thus the maximum values of the component curves can be

calculated directly for any given arrangement of cranks and

magnitudes of parts. From these values a very good idea can be

formed of the engine as to the balance. Proceeding further and

calculating the directions, all the data are obtained for Fig. 133,

and the resultant curves may be built up from these vectors in

the way already explained.

118. General Formulae for Typical Cases, Let A represent
-

,

wV2

and let B represent j-.

Type 1. Three-crank engine, the cranks all being in the same

plane, the masses being proportioned by Art. 93, so that the

primary force and couple polygons are closed, but the secondary
force and couple polygons are open to an unknown extent. The

values to be used in the general equations of Art. 116 are, taking
the reference plane at the central crank

M3
= Ma
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The closure for the secondary force polygon reduces to

2BM/ai + a3
] Ibs. weight (1)

\ a3 /

in terms of the pitch of the cylinders ;
or

2B(Mi + M3), or 2BM2 Ibs. weight .... (2)

in terms of the masses.

The length of the closure to the secondary couple polygon

depends upon the position of the reference plane, since there is

secondary force error (Theorem 1, Art. 90).

If the reference plane is taken at the central crank, the

secondary couple polygon closes, and there is, therefore, no error
;

if it be taken at an outer crank, the closure reduces to 2BM&
foot-lbs., the M and a being respectively the mass and the distance,

corresponding to the crank farthest from the reference plane.

Type 2. Three-crank engine, arranged as in Art. 92.

Taking the reference plane at the central crank, the quantities

to be substituted in the general equations, Art. 116, are

Ml = M2 = Mg

In this case the primary and secondary force polygons are both

closed, the remaining two polygons being open.

The closure for the primary couple polygon reduces to

AM\/a2
i -f a2

3 + aids foot-lbs (3)

and for the secondary couple polygon to

i + a\ + aia3 foot-lbs...... (4)

If the cylinders are equally spaced, so that a\ = a3) these two

closures reduce respectively to

AMav/3, and BMax/3 foot-lbs..... (5)

The magnitudes of both the primary and secondary couple
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errors are constant, because both the primary and secondary force

polygons close.

Type 3. Symmetrical four-crank engine, arranged as in Art. 96,

illustrated by Figs. 110 and 111.

The general data in this case, the reference plane being at

the centre, are

Xl
= Xi yl= -7/4

The only open polygon is that representing the secondary
couples ;

the other three are closed, by the conditions of the

problem. The closure reduces to

+ MaOtfe^a) foot-lbs
(G)

Referring to equation (10), Art. 9G, it will be seen that

tf ~ M*

~2Mi

By means of this relation, and

aa = -^-
f
-, from equation (5), Art. 96

and

#2 = -
,
from equation (7), Art. 96

the x's and y's may be eliminated from the above expression for

the error
; for, substituting these values for x%, a2 ,

and putting

\/l xi* for
fji,

and multiplying and dividing by xi} where

necessary, to obtain the x-f form, the expression becomes

A
j

- 1 ) foot-lbs.

and this, substituting
**- for a^

2
, gives

^ -
ij

foot-lbs. ... (7)
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an expression of the same form as that given by Herr Schlick in

the paper already quoted.

If 1) =
,
this expression may be written

#2

2B 2M1
i(l

+ JrXx/^
1 -

l)
foot-lbs. ... (8)

a convenient form for use when 2a2 , MI, and B are each put equal

to unity (see Art. 98, and Fig. 112).

Type 4. Four-crank engine with cranks at 90, and equal

reciprocating masses.

Take the reference plane at the centre, so that a\ and a>> are

positive ;
and a3 and a4 are negative. The data are

#1 = -f 1 2/i
=

#2 = 1 2/2
=

#3 = 7/3
= +1

4
=

7/4
= - 1

Mi = M2 = M3
= M 4

Substitute these values in the proper equations, and the

following results will be obtained :

Primary force polygon

Length of closure =

Primary couple polygon : the closure reduces to

AM>/(ai - a2)
2 + (a4

- a3)
2 foot-lbs.

which is equal to

foot-lbs....... (9)

if the distances between each pair of cranks, which are at 180,
are equal.

The secondary force polygon closes, and the secondary couple

polygon reduces to BM(#i + #2 4- #3 + #*)

This is equal to

02)

if the distances between each pair of cranks which are at 180,

are equal.



UNBALANCED FORCES AND COUPLES. 195

119. Comparative Examples, It is interesting and instructive

to compare the disturbing effect, due to different arrangements of

an engine, on the assumption that the magnitudes of the lightest
set of reciprocating parts is the same in each case, and that the

engine cylinders are spaced a given distance apart. For this

purpose, assume the following data :

Mass of the lightest set of reciprocating parts = 5 tons

Crank radius = 2 feet. Cylinders, 16 feet pitch
Katio of crank to rod = 1 : 3*5

Eevolutions per minute = 88

Then
w = 9'2 approximately

<o
2 = 84-5

^ = 5-25 = A
9^ = 1-5 = B
gi

The force errors may be compared with the maximum disturb-

ing force, due to the reciprocation of the lightest mass, with

simple harmonic motion, which, in the case under discussion, is

9
The different results are set forth in Schedule 21. The general

formulae for the errors will be found in the first horizontal row,

corresponding to each type. The second row gives the forms the

formulae assume when the several pitches of the cylinders are equal.

The figures in the third row are the numerical results corresponding
to the above data.
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force error.
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couple error.

Tons.

T)2BM" or 2B(M1 +Ma)
d

Foot-tons.

Variable.

4BM,

30
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Although the magnitudes of the unbalanced force and couple

of a given engine of any one of the types considered may readily

be inferred from Schedule 21, yet nothing can be predicted about

the behaviour of the support or foundation of the engine from this

knowledge alone. On some supports the engine may run without

causing vibration enough to be troublesome, even though there is

a large unbalanced couple. Place the same engine on another

support, and the vibration it causes may be exceedingly great.

Again, a support may be sensitive to a small unbalanced force,

and at the same time undisturbed by a large unbalanced couple,

and vice versa. It is always necessary, therefore, when considering

the effect likely to be produced by an unbalanced engine, to have

in mind the general principles governing the vibration of supports

under the action of an external force or couple. A short account

of the main features of this subject is given in the next chapter.



CHAPTER VII.

THE VIBRATION OF THE SUPPORTS.

120. Preliminary. The foundation or support of an engine or

machine is in general an elastic system susceptible of vibrating

in a variety of ways. If any part of the system is displaced

from its position of equilibrium by the action of an external

force which suddenly ceases to act, the system, in returning to its

position of rest, overshoots the mark, and begins to vibrate in one

of the ways peculiar to it. The energy of the vibration is gradually

dissipated in heat, and by communication to the surrounding medium.

If the application of the disturbing force is repeated at regular

intervals, that is to say, if a periodic force acts on the system, it

is compelled to vibrate in a way foreign to it, the period of this

forced vibration being equal to the period of the force producing
it. This period is in general different to the period of any of the

natural modes of vibration of which the system is susceptible if

disturbed and then left to itself. If the periodic time of the dis-

turbing force should happen to be equal to the periodic time of

any one of the many natural modes of vibration peculiar to the

system, a large disturbance is produced, even though the magni-
tude of the force producing it is extremely small. The work

done by the force in displacing the system from its position of

rest appears as the energy of the vibration
;

if the next applica-

tion of the force is so timed that it begins to act just at the time

that the vibration caused by the first application is about to repeat

itself, it is able to communicate another small amount of energy
to the system without interfering with the amount communicated

by its first action. If this timed action of the force be continued
199
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indefinitely, energy is gradually accumulated in the system to

such an extent that the consequent vibration may be sufficient to

break it down.

An unbalanced engine or machine applies a periodic force and

couple to its supports, compelling them to execute forced vibra-

tions, which may be of small amplitude and little consequence,

though the force and couple acting may be large. If, however,

the support possesses amongst its many natural modes of vibra-

tion, one whose period is equal or nearly equal to the time of

revolution of the engine or machine bolted to it, then the ampli-
tude of the force vibration is large, and out of all proportion to the

force producing it. In this way the engines of an electric light

station, though bolted to large concrete blocks, may set up vibra-

tions in the ground in which the block is embedded, which may
be transmitted all round the neighbourhood. The hull of a

steamer may be thrown into violent vibration to the discomfort

of the passengers and the injury of the ship. An unbalanced

machine bolted to a shop floor may shake the whole building,

though the actual value of the force and couple may be insignifi-

cant. A locomotive may be thrown into violent and dangerous
oscillation if the swaying couple coincides in period with the

natural period of oscillation of the engine on its springs. A
carriage will ride roughly if the speed of the train is such that

the interval of time between the blows from the fish-joints is

equal to a periodic time of one or more of the loaded carriage

springs. The precise investigation of even the simpler problems
of this kind is difficult. A great deal of instruction, however,

may be obtained from the detailed consideration of the natural

mode of vibration of the simplest kind of support and its behaviour

under the action of a periodic force.

121. Natural Period of Vibration of a Simple Elastic System.

Let a mass M be supported by a steel bar whose mass is negligibly

small compared with M
;
and let the bar rest in two closed

Y's (Fig. 136). The bar is the support whose behaviour is

to be examined. One of the objects in the investigation of

the vibration of such a system is to find an expression which

will give the displacement of the point c, relatively to its position

of rest, at the end of any time after the commencement of the

vibration. The assumption is made that the system is only free



THE VIBRATION OF THE SUPPORTS. 201

to vibrate in a vertical plane, and that the displacements are not

so great that the bar or spring is strained beyond the elastic limit.

The magnitude of the displacement will be fixed by one variable,

which will be denoted by y. This symbol will, therefore, always
stand for the distance of the centre of the mass M from its position

of rest. The equations are formed from the familiar fundamental

form

Force = mass x acceleration

In the problems under discussion the force and the acceleration

arc continuously variable and functions of the time. Newton's

method of indicating differentiation with respect to the time is

used, so that

y = the displacement of c from its position of rest

y =
-J-
= the instantaneous value of c's velocity

(tt

d\i
y = -~L = the instantaneous value of c's acceleration

Ct L

It may be noticed that the problem is just the converse of that in

Art. 78. There the displacement x is fixed for a given crank angle,

which, of course, is a function of the time, by the mechanism itself,

and it is desired to find an expression for the acceleration. This

is accomplished by two differentiations. In the problems about

to be discussed the acceleration is stated in terms of the force, and
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the displacement is required in terms of the time. This involves

two integrations to get to the displacement equation. In what

follows the equations will be stated and their solutions given,

because the interest lies in their solution and not in the method

of obtaining it. The equations all belong to the type known as

linear differential equations with constant coefficients, and rules

for their solution are to be found in any work on differential

equations.* The solutions may always be verified by substituting

the value of y in the original equation and differentiating.

Eeturning to the problem, let F be the force in absolute units,

acting at c, which produces the deflection y. This force varies as

F
the deflection, and therefore - is the force which must be applied

t/

to produce unit displacement of one foot. This may be found

experimentally or by calculation from the formula

F_48EI
y" P

for the case under consideration, E being Young's modulus, and

I the moment of inertia of the section of the bar about the neutral

axis, I the distance between the Vs.
F

Let be represented by /n.
Then when the deflection is y,

J

the accelerating force is given by My. This force is also equal to

juy, the minus sign being introduced because the force acts to

oppose the motion. Hence the equation of motion is

My + ny = Q
(1)

of which the solution is

y = a cos (qt
-

a) (2)

The two constants, a and a, are determined by the initial conditions

of the motion, and q = \y -.

Thus, if the mass of M be 50 pounds, and it requires a force of

* "Calculus for Engineers," Perry. London, 1897. "Integral Calculus,"
Edwards. London, 1S94.
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10 Ibs. weight = Wg poundals, to produce a deflection of 0*0071

feet, JUL,
the force which will produce unit deflection, is--

10

0-0071
X 32'2 = 45,352 poundals

q therefore is 3014.

To find the constants a and a, the initial conditions of the

motion must be specified in some way. Suppose that the system
be held at 01 foot displacement, and that the time be counted

from the instant it is let go, then y, the displacement, is O'l foot

when t is nothing, and the constant a is 0, since the angle is nothing
when t is nothing; substituting these values of t, y, and a in

equation (2), a = 01. Substituting the values of a and q in

equation (2), the displacement for any given time t is

y = 01 cos 3014* feet

The displacement curve for this free vibration is drawn and

calibrated in Fig. 137.

SECOND

FIG. 137.

The cosine of an angle repeats itself exactly if the angle be

increased by 2?r. Reverting to equation (2), all the circumstances

of the motion will be the same, therefore, when

(qt%
-

a)
-

(qti
-

a)
=

from which

= 2,!
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giving on substitution of the value of q, the well-known

formula

= 2,r, /I
/*

T being called the periodic time of the vibration.

The system under consideration will, therefore, execute vibra-

tions in periodic time

2:r = 0'208 seconds
3014

or its frequency will be 4'8 vibrations per second.

This vibration is the principal one natural to the system, and

whatever be the magnitude of the force producing the initial

displacement, providing always that it does not strain the system

beyond the limit of its elasticity, the vibrations following its

removal will always have the same periodic time, though the

amplitude will depend upon the magnitude of the force starting

the motion.

122. Damping. The successive ordinates denoting the maximum

amplitude of the vibration in Fig. 137 are shown equal. This

could only be true if none of the energy of the vibration were

lost. In any actual system, part of the energy is gradually
frittered away in heat, partly through the imperfect elasticity

of the bar, partly through the frictional resistances between the

surface of the system and the medium in which it is vibrating,

another part being communicated to the environment, so that

eventually the system is brought to rest. In many cases the

loss through frictional resistance is very great relatively to the

other causes of loss, and its effect in modifying or damping
the amplitude of the vibration is considerable. In some cases it

is artificially increased by means of dash-pots and such-like

apparatus. Frictional resistance is equivalent to a force acting
to oppose the motion, and its magnitude may be assumed propor-
tional to the velocity of the mass M in the simple case under

discussion. In the consideration of the motion of the system

(Fig. 136), the effect of the resistance at the surface of the bar

may be neglected. The frictional force at any instant may
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therefore be written Sy, S being a constant determined by

experiment. The force acting to retard the motion is now

and the equation of motion is

My + Sy + /# = ...... (3)

the solution of which is

y = ke -iM cos{\/($
2 -

#>*)t
- a) .... (4)

where I =
,,
and q =\J !-, A and a being constants determined

by the initial circumstances of the motion. If |6
2
is less than q

2
,

so that the quantity under the root is positive, the motion is

oscillatory, otherwise the displaced mass M returns gradually
towards its position of equilibrium, but does not overshoot it.

Fig. 138 is a copy to scale of a displacement curve which

I'M

D

FIG. 138.

was automatically drawn by a damped system of the simple kind

under consideration, and in which the mass was 6 '83 pounds and the

support was a spiral spring. Equation (4), with proper constants,

may be taken to represent this curve. It is an interesting exer-

cise to determine the values of these constants from the curve.

This incidentally indicates a method of experimentally finding

and
JJL.

The time of a complete vibration is represented by twice

the distance AC or AiCi. This was observed to be 1/46 seconds.

The isochronous character of the motion can be verified by measur-

ing the series of intercepts made by the curve along the axis. At
the point A, midway between the points where the curve crosses

the axis, the angle is such that its cosine is unity, whatever
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may be the value of the individual quantities in the brackets of

equation (4). Similarly, after 073 seconds, the angle has changed
by TT, and its cosine is - 1. Therefore the ratios

= ==e-i<>-<.>
AiBi AB Ae~i J

Measuring several pairs of successive ordinates the ratio was
found to be 0'9 1. And t%

-
ti = 073, therefore

-0-366 = loge O-91

from which

I = 0-202

The mass being 6'83 pounds

3 = 0-262 x 6-38 = 1-67

This means that the frictional resistance to motion is T67
poundals when the velocity is unity.

Again, choosing the origin of co-ordinates at a point midway be-

tween two successive zero values of y, so that cos {(vV~l^~a}
= 1

;
when t = 0, a = 0.

The coefficient of t is found from the consideration that for a

change in the time 073 seconds the change in the angle is TT.

Hence

0-73 VV -
i&

2 = TT

In this I = 0-262. Solving for f

f = 18-54

and since this =
J^,

and M = 6 '38 pounds

ju
= 118 poundals

meaning that a force of 118 poundals will displace the system 1

foot from its position of rest.

To find A, measure a pair of simultaneous values of y and the

angle. One pair of values is y = '094 feet, when t = 0. Substi-

tuting these in equation (4), it at once reduces to

A = -094
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Hence = .

0946 -o-ia cos 4.3 feet

123. Vibration of the System under the Action of a Periodic

Force. Suppose now that the mass M (Fig. 136) is an engine,

self-contained, whose crank-shaft makes n revolutions per second.

Let there be an unbalanced force in it whose maximum value is

E poundals. Whether this be from revolving or reciprocating

parts, the unbalanced force in the vertical plane, which is all that

is under consideration at present, will have the value

E cos pt

where p = 2?m. As in the previous case, suppose the frictional

forces resisting motion to be expressed by S^. Then the sum of

the forces acting to cause motion is

$y juy + E cos pt

and the equation of motion is

Mv/ + y + M = E cos pt ..... (5)

The solution of this is

where the value of
,
which fixes the phase of the motion, is

given by

$ / "F
In these expressions I = -, and q = \/ - = 2wni, P =

.M v M M
When q = p, the revolutions of the engine per second are

equal the number of oscillations per second natural to the system,
sincep = 2-rrn and q = 2-n-ni. Under these circumstances, tan c = in-

finity, and therefore = 90, so that sin c 1 and cos t = 0.

Equation (6) then becomes

*
Equation (4), page 205, should strictly be added to this equation, but thi?

damped oscillation soon disappears if it is present initially.
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If "b is small, y becomes large ;
in fact, y tends to infinity as i

tends to zero. This shows that when I is small, and when q = p,
the engine could set up vibrations of sufficient amplitude to break

down its supporting rod altogether. This equation is one of great

importance, and it should be carefully studied, trying the effect on

y of different values of b, and gradually approaching values of p
and q.

The effect of the frictional resistance in modifying the maximum
amplitude of the forced vibration is illustrated by the diagram

(Fig. 139). Considering a system similar to Fig. 136, whose natural

FIG. 130.

number of vibrations per minute is 286 '48, suppose the speed of

the engine, assumed contained in the mass M, to be gradually

increased from 283 to 291 revolutions per minute. Further,

suppose P = 1, and that b has the different values shown in the

figure against the corresponding curves (Fig. 139). The maximum

amplitude of the forced vibration, calculated from equations (7) and

(6) of the present article, are shown by the ordinates of the curves,

for the different speeds and for the different values of b. When the

engine is running at 28 3 revolutions per minute, the maximum values

of the amplitudes are practically the same for all values of b taken,

and they are relatively insignificant in amount. At 286 revolutions

per minute the effect of the different values of b is distinctly shown.

At the synchronizing speed,* b exerts its maximum influence. It

* See Appendix II.
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should be remembered in considering this diagram, that if I = 0,

the maximum amplitude of the forced vibration at the synchroniz-

ing speed is infinite. Beyond the synchronizing speed the curves

rapidly drop again to insignificant values of y. This indicates how

it is that a dangerous speed may be run through to higher speeds
at which the disturbance becomes negligible. These curves, though

only illustrating an example of the simplest kind, show how

necessary it is to include the frictional resistance into any actual

problem to get even an approximate result. At the synchronizing

speed the phase difference is 90. Below 285 revolutions per
minute the phase difference is small

;
above 288 revolutions per

minute it is nearly 180. When b = -

3
l

,T,
the phase differences

corresponding to different speeds are shown below.

Revs, per miu. Phase difference.

284 3 48'

285 5 3'

286 16 51'

286-3 41 14'

286*48 90 Synchronism.
286-6 126 51'

286-8 153 44'

287 162 26'

288 172 51'

292 178 21'

Thus within a few revolutions of synchronism the phase

difference is practically nothing if p is less than q, and about 180

ifp is greater than q.

124. Natural Vibrations of an Elastic Rod of Uniform Section.

The vibrating system of the last three articles consists of a single

mass whose motion is controlled by a steel bar. The mass of the

bar itself has been neglected. Consider now that the system

consists simply of a steel rod, so that the forces called into play

when any point of it is displaced from the position of equilibrium

act on the mass of the bar only. This is a much more complex

system to deal with than the first one. The bar possesses several

natural modes of vibration. The first three, corresponding to the

gravest periodic time, and the next two higher, are shown in Figs.

140, 141, and 142. The points marked with the dots are the

nodes, or places of rest for that particular vibration, though they
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need not be points of absolute rest, since all these separate modes

of vibration may exist simultaneously. The respective numbers

of vibrations per second corresponding to successive modes of

division are very nearly in the ratios of the squares of the odd

Fio. 140.

NODE

' 2Z4 =

Fio. HI.

^ J< 261 ----- -4 258 A 2*7 4"ttW>|

FIG. 142.

numbers. The next three lines show the characteristics of these

natural modes of vibration.

3

5 fl

0-36

4 5

72 92

0183 0-111

6 7

II2 13a

0'074 0-053

Number of nodes ... 2

Frequency ratio 3

Eatios of periodic times 1

The gravest frequency may be calculated from the formula

22-4K /E
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where p is the density of the material, E Young's modulus, I the

length in feet, K the radius of gyration of the section about an

axis perpendicular to the plane of bending.

125. On the Point of Application of a Force and the Vibrations

produced. If the rod considered in the last article be supported
in such a way that it is free to vibrate in any of its natural modes,
the application of an external force, whose periodic time is equal
to or is a multiple of any of the natural periods of the bar,

is capable of forcing vibrations of considerable magnitude
of that period, corresponding with the case of Art. 123. It is a

fundamental principle that the point displaced by the action of

the force cannot be a node in the subsequent vibration, so that

all modes of vibration requiring the point of application for a

node disappear. Advantage is taken of this principle in fixing

the point at which the hammer shall strike a piano string. A
point is chosen which would form a node in a mode of vibration

inharmonious with the principal modes of vibration of the

string. The act of striking the string at this point eliminates

those particular modes from the note. Suppose now that the

period of the applied force acting on the bar is equal to the

gravest mode of vibration natural to the bar. If the force be

applied at either of the corresponding nodes, it cannot induce the

vibration, though applied at any other part of the bar large

forced vibrations will result.

If a couple be applied at the bar, it can force vibra-

tions of its period if applied at a node of that period, but not if

applied midway between a pair of nodes. These two principles

will perhaps be more clearly understood if the matter is considered

in another way. When the bar is vibrating in any one of the

modes peculiar to it, every point is constrained to move in a

certain way. A point midway between a pair of nodes moves

vertically in a straight line, and the element of length surrounding
this point has no freedom to turn. The point forming a node is

not free to move, but the element of length in its neighbour-
hood is free to turn about an axis through the node. Motion in

a straight line is produced by the action of a force, turning about

an axis by the action of a couple, and neither can produce the

effect of the other. Hence a periodic force in agreement with a

natural period of the bar is unable to force the corresponding
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mode of vibration if it is applied at a node belonging to that

mode. Neither can a periodic couple in agreement force the

corresponding vibration, if it is applied midway between a pair

of nodes corresponding to the system. If the engine of Art. 123

have a period of revolution in agreement with one of the natural

mode of vibration of the bar under consideration, it would still

be possible to prevent it forcing the corresponding vibration on

the bar by properly choosing its position of attachment to the

bar, supposing it had either an unbalanced force or an unbalanced

couple. These principles may be studied practically by suspending
the model already described in Art. 54, from a flexible bar, itself

supported in hooks hanging freely from a cross-bar, so that their

distance apart may be varied quickly. At a synchronizing speed
of the model the part of the bar projecting beyond the frame may
be thrown into vibration with nodes which can be made to dis-

appear by an increase or decrease of the speed. The model can

b3 adjusted to give either a force or a couple.

126. Longitudinal and Torsional Vibrations. In addition to

the lateral vibrations already considered, the bar is susceptible
of vibrating in the direction of its axis and about its axis, these

being called longitudinal and torsional modes of vibration respec-

tively. Corresponding to each kind, there is a fundamental

vibration with one node at the centre and a series of higher
vibrations with two, three, etc., nodes. The nodes and the

corresponding ratios of the frequencies and periodic times are

given in the following lines :

Nodes ............ 123 45
Eatios of frequencies ... ... 1 2 3 4 5

Eatios of periodic times ... 1 -5 '333 '25 '2

The frequency of the gravest period is given in the case of

longitudinal vibrations by

and for torsional vibrations by
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\vhere p is the density, E Young's modulus, C the modulus of

rigidity, I the length in feet.

Example. Let I be 10 feet
; E, 30,000,000 x 144 x 32

poundals per square foot; p, 490 pounds per cubic foot. Intro-

ducing these values in equation (2), n, the frequency of the

gravest longitudinal mode of vibration, is 842 per second. The

gravest frequency of the torsional vibrations would be less than

this in the ratio of \/E to \/C. For hard steel, E : C about in

the ratio 1 : '4, consequently the ratio of the frequencies is 1 : '63,

or the gravest torsional vibration corresponding to one node at the

centre is 530 per second.

The gravest vertical vibration may be calculated from equation

(1), Art. 124, when the diameter of the bar is given. Suppose it

to be '2 feet diameter, then K, the radius of gyration, will be *05.

Substituting this and the data of the example in the equation, the

gravest frequency is found to be 30 vibrations per second. The

higher frequencies follow the ratios given in Art. 124. Suni-o

marizing the results

Vertical. Longitudinal. Torsional.

Gravest frequency ... 30 842 530 N

Frequency of next mode 83 1684 1060 / Vibrations

Frequency of third mode 163 2526 1590 ( per second

Frequency of fourth'mode 270 3368 2120 )

A periodic force or couple agreeing with the periodic time of

any of these modes of vibration, and applied in the proper manner

to the bar, is capable of exciting large vibrations of that period.

127. Simultaneous Action of Several Forces and Couples of

Different Periods, The effect of the simultaneous action of a set

of forces is indicated by the following quotation from Lord

Kayleigh's
"
Sound," Vol. I. p. 49 :

" From the linearity of the

equations it follows that the motion resulting from the simultaneous

action of any number of forces is the simple sum of the motions

due to the forces taken separately. Each force causes the vibration

proper to itself, without regard to the presence or absence of any
others. The peculiarities of a force are thus in a manner trans-

mitted into the system. For example, if the force be periodic in

time r, so will the resulting vibration. Each harmonic element of
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the force will call forth a corresponding harmonic vibration in the

system. But since the retardation of phase c and the ratio of

the amplitudes are not the same for the different components, the

resulting vibration, though periodic in time, is different in character

from the force. It may happen, for instance, that one of the com-

ponents is isochronous, or nearly so, with the free vibration, in

which case it will manifest itself in the motion out of all proportion
to its original importance." From this it appears that the vibra-

tion for each periodic force is to be found as though it alone acted.

If the displacement of any point from its position of rest be

examined, its magnitude and position at any instant will be the

vector sum of the several displacements which would be caused

by each force acting separately.

A knowledge of the principles of the preceding articles of this

chapter will often indicate a way in which troublesome vibrations

of foundations or supports may be minimized.

128. Possible Modes of Vibration of a Ship's Hull and the Forces

present to produce them, A ship's hull is an elastic structure

susceptible of vibrating in all the different modes which have

been considered for the solid bar, although the positions of the

nodes and the corresponding periodic times of vibration are very
different. Exact mathematical treatment is impossible. The
different parts of the hull are loaded differently at different times,

and since the loads have to share the vibrations, they must be

included even in an approximate treatment of the problem. Any
resulting state of vibration may be analyzed into the following

components :

(1) Vibrations in a vertical plane after the manner of the rods

in Figs. 140 to 142, though the nodes will not be in the same
relative positions as there shown.

(2) Vibrations in a horizontal plane.

(3) Longitudinal vibrations.

(4) Torsional vibrations.

The two latter types approximate much more closely to the

modes of the rigid bar than the former two. Their frequencies

are, however, so great relatively to the frequency of the engine
that synchronism is a remote contingency.

The periodic forces acting to throw the hull into vibration are

(1) The unbalanced force and couple due to the motion of the
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reciprocating parts of the engine. These force oscillations in a

vertical plane.

(2) The unbalanced force and couple from the revolving parts
of the engine. The horizontal and vertical components of these

force vibrations in a horizontal and vertical plane respectively.

(3) The variation of turning moment on the propeller shaft.

This tends to force torsional oscillations.

(4) Corresponding to the variation of turning moment, there is

a variation of the thrust on the propeller.

(5) The variation of thrust due to a partially immersed pro-

peller.

(6) Want of symmetry in the propeller, and slight variations

of the pitch of the blades.

With all these exciting forces in simultaneous activity, each

producing a forced vibration proper to itself, the hull is thoroughly
searched for any of its natural modes of vibration of corresponding

periodic time. Any that are found are immediately exalted in

amplitude above all the rest of the co-existing forced vibrations,

and as a result the ship is thoroughly uncomfortable to voyage in.

This agreement in periodic time may take place at relatively slow

speeds for instance, a ship may be in violent vibration at half

speed, and quite comfortable at full speed, or the oscillations may
be unbearable at 80 revolutions per minute, and insignificant at

90. It has been shown by experiment, and may be predicted

from theoretical considerations, that the unbalanced forces from

the engines are the most important agents in producing forcing

oscillations. The magnitude of the force or the couple may be

large, and in addition the engine may be placed in just that part

of the ship, relatively to the nodes, most favourable for forcing

the oscillations.

There is a peculiarity in the vibration of twin-screw steamers

which may be mentioned here. The two engines cannot be run at

exactly the same speed. One is continually gaining slightly on

the other. Suppose each engine to force a vibration. Then two

vibrations of very nearly equal period will be impressed on the

hull. The combination of two such vibrations gives a resultant

vibration of varying amplitude. One instant the resultant is equal

to the sum of the components, at another instant equal to the

difference of the component amplitudes, the number of maxima

or minima per minute being given by the difference between the
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number of revolutions of the engines per minute. The phenomenon
is similar to that of beats in music. If, for example, the speeds of

the two engines are 80 and 81 revolutions per minute, and the maxi-

mum amplitudes of the vibration due to each separately are equal,

each being a inches, there will be once per minute an amplitude
of 2a inches, decreasing gradually to 0, and then increasing again
to the maximum 2a. This peculiarity may be illustrated if two

curves like the one in Fig. 137 are added to get a resultant curve,

the base of one curve, however, being taken slightly longer than

the base of the other.

129. Experimental Results, Mr. Yarrow * has given direct

experimental confirmation of the foregoing principles by means

of a series of costly and beautiful experiments, in which the

actual vibration of the hull of a torpedo-boat was measured

under different circumstances by a "
Vibrometer." To separate

the effect of the propeller from the effect of the engines, vibra-

tion diagrams were taken, firstly with the boat under weigh,

secondly with the boat at rest and the propeller removed, thereby

entirely eliminating whatever vibration it caused. The recorded

vibrations were practically alike when the engines ran at the

same speed in the two experiments, and this agreement continued

in over a hundred similar experiments at different speeds, showing
that the effect of the propeller was small, and that the real cause

of vibration was to be looked for in the engines. Experiments
were then made on a first-class, 23-knot torpedo-boat, 130 feet long,

13 feet 6 inches beam, carrying 20 tons. The reciprocating parts

of the three-crank engines were balanced by means of bob-weights

(Art. 47), so that the reciprocating system (neglecting the valve-

gear) really consisted of five cranks. It was found that 248 revo-

lutions per minute corresponded with a natural mode of vibration

of the hull. The experiments were made under three conditions

of balancing, in all of which the speed was kept at 248. The

amplitude of the vertical vibration at the stem was gj inch, when
no balancing of any kind was used, the cranks being at 120, and

the engines being of the usual design. This was reduced to |J when

balance-weights were attached to the crank-shaft, properly placed
to balance the revolving masses only, and to -

G
7
4
- when bob-weights

* " On Balancing Marino Engines, and the Vibration of Vessels." By Mr. A. F
Yarrow. Trans, lint. Naval Architects. London, 1892.
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were added to balance the reciprocating parts. Thus at a critical

speed, the proper balancing of the engine, neglecting the effect of

the obliquity of the connecting-rod, reduced the maximum ampli-
tude of the vibrations in the ratio of 27 to 7. The hull being
moored and the propeller removed, instantaneous photographs
were taken of the ripples on the surface of the water caused by the

vibrating hull for each of the three conditions above stated. The

ripples indicated the nodes in the hull and the places of maximum
vibration, and their decreasing amplitude showed the decreasing

amplitude of the hull's vibrations as the balancing of the engines
was improved. The photographs are published in Engineering,

April 5, 1892.

In some observations made by Mr. Sclilick on the twin-screw

despatch vessel, Meteor, belonging to the Imperial German Navy,*
the maximum amplitude of the vertical vibration just near the

stern post was /
;

G inch, and the maximum horizontal vibration
-f^,

at a speed of 186 revolutions per minute. At 220 revolutions

per minute the amplitudes of both directions were comparatively

small, the maximum amplitude being observed at 175 revolutions

per minute. At 120 revolutions the vibrations practically dis-

appeared. Mr. Schlick attributed the lateral vibrations recorded

by his instrument (described in Trans. I.N.A., 1893) to the effect

of torsional oscillations, the stiffness of the ship horizontally being
too great to have a natural period corresponding to the speed of

the engine.

Mr. Sclilick | has devised the following simple formula from his

experimental observations, designed to give the number of vibrations

per minute of the gravest natural mode of vibration of the hull :

N = vibrations per minute.

13 = the displacement in tons.

L = length of the hull in feet.

I = the moment of inertia of the midship section, in the

calculation of which the several areas constituting

the section are to be expressed in square inches, and

the respective distances of their centres of gravity
from the neutral axis in feet.

* " On rn Apparatus for Measuring and Registering the Vibrations of Steamers."

By Herr Otto Sclilick. Trans. Jnst. Naval Architects. London, 189:3.

f
" Further Investigations of the Vibrations of Steamers." By Herr Otto

Schlick Trans. Intt. Naial Architects. London, 1801.
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Then

N = ^ /-L/VDL3

where for

Vessels with very fine lines, such as torpedo-boat 1 __ -K/.

destroyers ... ... ... ... ... 1

Large transatlantic passenger steamers with fine IJL 142500
lines I

^ "

Cargo-boats with full lines ... ... ... ... < = 127,900

Mr. Schlick *
also states that for ships with very sharp lines,

like cruisers and despatch-boats, the after node is from 0'23L to

0'25L from the after perpendicular, and the forward node from

0'31L to 0'36L measured from the fore perpendicular, these corre-

sponding to the gravest period of vibration of the hull. The

number of vibrations corresponding to the next mode of vibration is

sometimes only twice the number of the gravest kind. Referring
to Art. 124, it will be seen that for the solid rod the ratio is

much higher.

Mr. Mallock t has suggested a method by means of which the

natural period of vibration and the position of the nodes in a

proposed ship may be approximately found from the behaviour

of a plank shaped so that its width is everywhere proportional

to the moment of inertia of the corresponding section of a wood

model of the hull under consideration, and loaded so that the

weight at any cross-section is proportional to the weight at the

corresponding cross-section of the model.

In a recent paper to the Institution of Naval Architects,

Mr. Schlick J describes some interesting experiments carried

out on the s.s. Deiitschland to ascertain the cause producing
the vibrations of the hull at the synchronizing speed. The

instrument recording the vibrations was placed at the ex-

treme after end, and at the synchronizing speed of 67 revolutions

* " On Vibrations of Higher Order in Steamers and on Torsional Vibrations."

By llerr Otto Schlick. Trans. Inst. Naval Architects. London, 1895.

t "On the Vibration of Ships and Engines." By Mr. A. Mallock. Trans.

Inst. Naval Architects. London, 1895.

J
' On Some Experiments made on Board the Atlantic Liner Deutschland during

her Trial Trip, June, 1900." By Herr Otto Schlick. Trans. Inst. Naval Architects.

1901.
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per minute the maximum amplitude of the vertical vibrations

recorded was about 6̂ inch, a small amount for a ship 662

feet long and 37,000 horse-power. The curve indicated a

simple vibration of the same periodic time as the engine.

The engines were balanced by Mr. Schlick's method, so that

the primary forces and couples in both engines are presumably

completely balanced, and there is only a secondary couple un-

balanced. Electrical apparatus connected each crank-shaft to

the drum of the recording instrument, so that an indication

was made when the respective forward cranks of the engines
were vertical. A time-line was also drawn, so that from the

lines on the drum the revolutions of the engines could be

exactly computed, and the position of the cranks relatively to

the vibration curve fixed at any instant. It has been shown, in

Art. 123, that in the immediate neighbourhood of synchronism,
the phase difference between the force and the vibration it causes

is about 90, being exactly 90 at the critical speed. Using
this principle, Mr. Schlick inferred that the vibrations produced
in the vertical plane were caused by a difference of resistance

amongst the blades of the propellers, which difference is attributed

to slight differences in their pitch.

130. Turning Moment on the Crank-shaft, When the forces and

couples due to the motion of the parts of an engine have been

balanced, there still remains a couple acting on the frame equal
and opposite to the turning couple on the crank-shaft. This

couple may have a periodic variation sufficiently great to cause

vibration. In the case of a ship, whatever be the turning moment

or couple exerted by the engine on the propeller shaft, there is of

necessity an equal and opposite couple acting on the hull of the

ship, which, if the couple is uniform, holds the hull steadily in a

position imperceptibly inclined to the vertical. There is a proper

position of equilibrium corresponding to every value of the turning

couple. A periodic variation of the couple causes an oscillation

of the hull about the position of equilibrium corresponding to its

average value, that is, to the average value of the turning moment
on the shaft, and is thus able to force the hull into torsional

vibrations, which may be insignificant or important according as

the periodic time of the variation approaches the period belonging
to one of the hull's natural modes of torsional vibration. The
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cause of the oscillations is removed if the turning effort on the

shaft is made uniform.

Fig. 143 shows an engine-frame in diagrammatic form
;
the

forces in thick lines are those acting on the frame in consequence
of the driving pressures exerted by the fluid pressure P. The

couple acting on the frame is represented by E X OB for the

crank position shown. Considering the question in more detail, let

M be the mass of the reciprocating parts, and a, their acceleration.

Then, if p is the steam-pressure or gas-pressure per square inch

in the cylinder, pi the back pressure, and A the area of the

cylinder in square inches, the total resultant pressure acting on

the piston and equally on the cylinder cover is (p pi)A.. Of

this, the part ,
in which the acceleration a can be found by

t/

Klein's construction (Art. 104), is required for the acceleration of

the reciprocating masses
;
the remainder

/ N 4 Ma T ,
*

(p-pi)A - _ = P

is the pressure acting to produce the turning of the crank. (The

continuous variation of P is shown in Fig. 95 for the case of a

locomotive running at 65 miles per hour. The indicator cards

are shown in Fig. 93. The ordinates of curve No. 1, in Fig. 94,

represent the values of (p pi)A, and those of curve No. 2, ,

t/

for one revolution of the crank.) The forces and couples due to

the motion of the parts can be balanced by the methods already

given ;
the finding of the effect of P may therefore be considered

as a statical problem. Assuming, therefore, that all the inertia

effects are balanced, P is kept in equilibrium at the cross-head B

(Fig. 143), by the force Q, along the connecting-rod, and the slide-

bar reaction E (acting to the right as shown by the dotted force

11). The values of these three forces are given by the force

triangle abc (Fig. 144), where ab represents P, and ca and be

represent respectively the force Q and the reaction K. The equal

and opposite value of E, viz. cb
t
is the force acting on the frame

from the cross-head. The connecting-rod applies the force Q to

the crank-pin K in the direction shown, and its effect with respect

to the axis of the crank-shaft is equal to (Art. 24)

* See Appendix Til.
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FIG. Hi
a.

Q

FIG. 143.
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(1) An equal and parallel force acting at 0.

(2) A couple, Q x Ok, acting to turn the crank, OJc being

perpendicular to the rod BK.
The force Q, represented by de in the force triangle def

(Fig. 145), causes pressure on the main bearing, and its horizontal

and vertical components are evidently equal to E and P of

Fig. 144. The forces acting on the frame at the cylinder end are

cb, that is Ic reversed, at the bars
;
and ba, or ab reversed, at the

cylinder cover. Thus E at the main bearing and E at the slide-

bars form a couple acting on the frame from the gear. The
vertical downward component, df = P at the main bearing, is

balanced by the vertical upward force ba = P acting on the top

cylinder cover.

To show that the couple E x OB is equal to the turning

couple on the crank, it is only necessary to express Q in terms

of E, and OB in terms of the angles and 0. The angle OKg is

equal to (9 + rt),
therefore Ok = OK sin (0 + 0) = BO sin f And

Q = E cosec 0, and hence the couple Q x Ok = E cosec X OK
sin (0 + 0).

But BO = OK sin (0 + 0) cosec 0, therefore E x OB represents
the magnitude of the turning couple on the crank-shaft.

Again, draw Og at right angles to the line of stroke
; then, since

/-\T)

P = E cot = E x
Q-,

the product P X 0# = E x OB, also repre-

sents the moment of the couple. Also, if Y-'represents the resolved

component of Q at right angles to the crank, that is, the tangential

force, Y x OK is another product representing the couple. Collect-

ing these results, any one of the four products

Q X 0& = E X OB = P x Og = Y x OK. . . (1)

may be taken to represent the moment of the turning couple, and

therefore the equal and opposite couple acting on the frame, as

may be most convenient for the problem in hand. It will be

observed that the factors of the first three are all variable, but

that Y only is variable in the fourth. Therefore, the variation of

Y represents the variation of the couple. A convenient construc-

tion for finding this is as follows :

Set out Kx (Fig. 143) to represent the value of P, measuring
from K along the crank radius

;
draw x\j parallel to 0^, that is,
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horizontal; then xy represents the value of Y. To prove

this

that is

therefore

Kz : xij
= KO : 0</

P : xy = KO : 0#

xy x KO = P x Og

But P X 0/7 is equal to the moment of the couple from (1), therefore

xy = Y. This method may be very quickly applied to find the

value of the turning couple for any position of the crank, and the

variations of the couple may be exhibited by plotting Y vertically

over a straight line

drawn to represent the

circumference of the

crank circle. Such a

curve is usually called

a crank-effort diagram.

The curve may ob-

viously be drawn so

that the vertical ordi-

nate represents the

couple Y x OK, in which

case the length of the

base-line represents 2?r.

It is a matter of in-

difference whether the

constant multiplier OK,
the crank radius, be

introduced vertically or

horizontally, the form of

the curve and its area

remain the same. The curve marked L.H. (Fig. 91) represents

the turning couple acting on the left-hand crank of the locomo-

tive under consideration in that article, resulting from the varying
values of P shown in Fig. 95. There the base represents 2?r, and

consequently the ordinates represent the couple Y x OK. Curve

No. 1 (Fig. 146) shows the crank-effort curve for an engine, 6 feet

-5-1
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131. Uniformity of Turning Moment. In a single-cylinder

engine there will always be a large variation of turning moment
of the order shown in the cases just discussed. Where there are

more cylinders than one, the cranks may be so arranged that the

combination of the crank-effort curves corresponding to each

results in a more uniform curve. In motor-cars, where the

cylinders are often put in the same plane with cranks at 180 or

parallel, the variation is of the type shown in Fig. 147. Con-

sequently, even if these engines were properly balanced for the

moving parts, there will always be acting on the frame a variable

couple tending to cause oscillations. Speaking generally, syn-

chronizing oscillations of large amplitude are not to be feared,

because the speed of the engine is so high that the supporting

springs have no grave periods to correspond to it. There are,

however, forced oscillations of small amplitude, and to get rid

of these the engines must be arranged, not only for balance

amongst the moving parts, but so that the turning effort is much
more uniform than is usually the case.

The result of combining two crank-effort curves when the cranks

are at right angles is shown in Fig. 91, by curve No. 1. The varia-

tion is now much less, but takes place twice as fast. The ratio of

the maximum to the mean is now reduced to 146, and, instead of

the minimum being negative, it is positive and 0'45 of the mean.

The crank-effort curves and their resultant curve for the s.s.

Kaiser Wilhelm der Grosse are given in Engineering for April 8,

1898, p. 434. There are four cylinders, and the ratio of the

maximum to the mean is 119, and the minimum to the mean "66.

In three- or four-cylinder engines with cranks at 120 and

90 respectively, the usual equal division of work amongst the

cylinders is the best to get a uniform turning moment on the

shaft. The same rule would give equally good results applied

to the five- and six-crank engines of Arts. 99 and 100. Applied
to four-crank engines in which the cranks are arranged at angles

specially found for balancing the reciprocating masses amongst

themselves, the equal division of work amongst the cylinders

results in a turning effort in which there may be considerable

variation during a stroke. Dr. Lorenz * has shown how the

* " On the Uniformity of Turning Moments in Marine Engines." By Dr. Lorenz

Trans. Inst. Naval Architects. London, 1900. Also "Dynamik der Kurbelgetriebe."

By Dr. Lorenz. Leipzig, 1901.

Q
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division of work may be made under these circumstances,

to secure a better approach to uniformity of effort. The rule

applies to engines of any number of cranks with any angles

between them. The process of finding the rule is given in full,

to show exactly what assumptions are made to obtain the results.

The form of the crank-effort curve corresponding to one

cylinder, depends upon the cut-off, back pressure, mass of the

reciprocating parts, the length of the connecting-rod relatively

to the crank, and the speed of the engine, yet, when the average

speed and the rate of working are constant, the curve repeats

itself at every revolution, or neglecting the effect of the obliquity

of the connecting-rod, at every stroke. In other words, the

turning effort is continuous and periodic in the time occupied

by half a revolution, and it may therefore be represented by

a Fourier series. That is to say, if Y is the moment of the

turning couple at any instant corresponding to a crank angle 0,

which is dependent upon the time, the value of Y is expressed by

Y =
,

AO + A2 cos 20 + A4 cos 40 ...
+ B2 sin 29 + B4 sin 40 . . .

where AO is the average height of the crank-effort curve, and

A2 ,
B2 , etc., are numerical coefficients. The odd values of the

angles do not appear in the series because the curve is periodic

in half a revolution. There are a variety of ways of finding the

values of the coefficients in the series corresponding to a given

curve, the quickest and most convenient being to use some form

of harmonic analyzer.

It is an essential feature of Dr. Lorenz's method that terms

above 29 must be discarded, consequently the value of Y is

assumed to be given by three terms only of the series, or

Y = AO + A2 cos 29 + B2 sin 20 .... (1)

To show to what extent this value of Y differs from the true

value in a typical case, the author analyzed the tangential force

shown by the crank-effort curve marked No. 1, in Fig. 146, into

the above harmonic constituents, finding the coefficients by means

of a Henrici analyzer. The value of AO is found by measuring
the area of the curve with a planimeter and calculating the

average height in the usual way. The result is

Y = 8-2 + 4-8 sin 29 - 57 cos 29
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The component curves are shown in Fig. 146, and are numbered

Nos. 2 and 3. Their sum, including the mean height, is shown by
the chain-dotted curve No. 4. A comparison between this curve

and the true curve, No. 1, with which it is assumed to coincide,

shows to what extent equation No. 1 is able to realize the actual

conditions of any given case. It does so nearly enough to use as a

basis for obtaining a working rule.

To find the turning moment on the propeller -shaft for a multi-

cylinder engine, the ordinates of the crank-effort curves corre-

sponding to each cylinder are added together after the curves have

been adjusted relatively to one another for their phase differences,

in precisely the same way that has been explained for the force

curves in Art. 109. Or stating the process more generally, if

there are n cylinders, the turning effort on the propeller-shaft is

represented in terms of the crank angle of any one assigned crank

by the proper combination of n curves of the type No. 1 (Fig. 146) ;

or, assuming No. 1 curve to be represented nearly enough by No.

4 curve, by the proper combination of n curves of No. 4 type.

But the resultant curve in this latter case may be found by com-

bining its components separately, thus finding the components of

the resultant curve. Now, the sum of the components of the mean

heights will be a straight line parallel to the axis under all circum-

stances, assuming uniform speed. The resultant components of

the curves of the types Nos. 2 and 3 give two resultant components
which are variable. If, however, it were possible to arrange that

these two resultant components were separately zero, then the

resultant turning effort would be constant, since under those cir-

cumstances it would be represented by the sum of the average

heights of the n crank-effort curves. Dr. Lorenz shows how the

separate sums of the n component curves of the types 2 and 3

(Fig. 146) may be made nothing if the n crank-effort curves

are similar. This assumption of similarity cannot be exactly
realized in four-cylinder balanced engines, because the inertia

correction for each set of reciprocating masses is different, and

therefore, even if cut off, etc., and all the other circumstances

of a stroke could be kept constant through all the n cylinders of

the engine, there would always remain the different inertia cor-

rections to destroy the assumed similarity of the crank-effort

diagrams.

Dr. Lorenz finds the rule analytically as follows :
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Let YI, Y2,
Y3, etc., be the turning moments on cranks Nos. 1,

2, 3, etc. Also let be the variable angle between an initial line

of reference revolving with the crank-shaft and a fixed line, the

fixed vertical centre line of the engine, and let ai, a2,
a3, etc., be

the respective crank angles measured from this revolving line of

reference. (Fig. 102 illustrates this : OXi is the revolving line of

reference and OM is one crank, OZ being the fixed line from

which the variable angle is measured.) Then for crank No. 1

Y = Ao + A 2 cos (20 + 2oi) + B2 sin (20 +2ai)

or expanding the cosine and sine and rearranging the terms,

Y= Ao + cos 20(A 2 cos 2oi + B2 sin 2ai)

sin 20(A 2 sin 2ai - B2 cos 2ai)

The total turning effort on the shaft is then

SY = SA + cos 20S(A2 cos 2a + B2 sin 2a)
- sin 20S(A2 sin

2a - B2 cos 2a)

If this total effort is not to be influenced by the variations

originating from the double angle 20, then both equations

S(A2 cos 2a + B2 sin 2o) =
S(A2 sin 2a - B2 cos 2a) =

must be separately fulfilled.

Assuming a similar form of indicator diagram for all cylinders,

the coefficients A and B (dropping the subscript 2) are proportional

to the average turning effort Yw of each crank, or if a and &

denote constant quantities

A = aYm and B = bYxl

Then the conditions are

aSYm cos 2a -f &SYW sin 2a =
SYm sin 2a - &SVm cos 2a =

which for finite values of a and I require that

SYm cos 2a =
SYm sin 2a =

Interpreted graphically, this means that it must be possible to

draw a closed polygon whose sides are respectively proportional to
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the average turning effort exerted by the cranks, and the directions

of whose sides are parallel to directions which are double the

actual crank angles.

132, Example, To illustrate this method, consider the example
in Chapter III., Art. 48. Find what must be the distribution of

work amongst the cylinders in order to obtain the most uniform

turning moment.

Draw an end view of the crank-shaft showing the crank angles

(Fig. 148). Measuring angles from crank No. 1, draw another

end view in which the angles are all doubled (Fig. 149). Draw
AB (Fig. 150) parallel to No. 1, and BC parallel to No. 4 in Fig.

149, taking them any lengths. Close the quadrilateral by two

FIG. 148. FIG. 149. Fiu. 150.

lines, CD and AD, drawn parallel respectively to cranks Nos. 3

and 2 (Fig. 149). Then the distribution of work should be in the

proportion

AB : BG : CD : DA

for the cylinders Nos. 1, 4, 3, 2 respectively.

A parallel da gives another set of lengths, aB, BC, Cd, da,

which satisfy the necessary conditions, and there are obviously a

great many other ways in which they may be satisfied.

Fig. 151, taken from Dr. Lorenz's paper already quoted, is the

crank-effort diagram of the s.s. Medjerda. The line AB represents
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the circumference of the crank circle, the angles between the

cranks being indicated by the figures below it. The work done in

each cylinder is written against the corresponding vertical for the

respective cylinders. It will be found that the horse-powers are

very nearly in the ratio of the sides of the double-angled polygon

corresponding to the angles given. In this case the maximum is

~/ ^~*
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cylinders are placed in pairs across the shaft. The cross-heads of

a pair are connected by a rocking beam, and one of the pair of

cross-heads is connected to a crank by the usual form of connecting-

rod. The two sets of reciprocating parts forming a pair are made

equal in mass, and being moved in opposite directions by the

rocking beam, the forces in the arrangement proposed are very

nearly perfectly balanced, but there remains a couple in the plane

of the two cylinders tending to force torsional oscillations. Mr.

Macalpine's contention is, that it is preferable to have couples in

a plane across the ship of relatively great magnitude, to having
forces and couples of exceedingly small magnitude in the longi-

tudinal vertical plane, since in the former case the periodic time

of the gravest torsional oscillation of the hull is so small compared
with the periodic time of the engine that trouble from torsional

vibrations is not to be feared.

In the Wigzell engine the cylinders are all placed athwart the

frame in one plane, and balance amongst the reciprocating masses

effected so that there is no torsional couple left. The frame is

very short, and the only forces acting on it are those due to the

angle of the connecting-rods. A full description of this engine
will be found in Engineering, September 7, 1900. There are three

cylinders, each containing two pistons, which move oppositely to one

another in each case. The three piston-rods coming through the

lower cylinder-covers are connected to one central crank by a tri-

angular connecting-rod. The corresponding three piston rods taken

through the upper cylinder-covers are similarly connected to two

outer cranks by triangular connecting-rods connected to the upper
set of cross-heads by coupling-rods. An incidental advantage of

this arrangement is that there is practically no pressure between

the crank-shaft and the main bearings. What pressure there is,

is chiefly due to the weight of the crank-shaft system alone.



CHAPTER VIII.

THE MOTION OF THE CONNECTING-ROD.

134. THE motion of the connecting-rod is one of periodic

acceleration, and therefore the forces required to produce the

motion have also a periodic variation. These forces ultimately

appear as reactions on the frame, and, being periodic, may cause

vibration. The effect of the rod may be divided into two distinct

parts: first, it disturbs the simple harmonic motion of the

reciprocating parts ; secondly, the forces required for its accelera-

tion appear as forces on the frame tending to cause oscillation.

Chapter V. shows how the first effect is dealt with in the balancing
of the engine, and a rule has been given in Art. 46 for dividing
the mass of the rod between the revolving and reciprocating parts

of the gear to eliminate the second effect, it being tacitly assumed

that the accelerations of these two masses require reactions on the

frame equal to those required by the motion of the actual rod.

The object of this chapter is to investigate the motion of the rod,

and show to what extent the rule given is a valid one.

135. Dynamical Principles on which the Investigation is based.

Let C (Fig. 152) be the mass centre of a body, free to move
in the plane of the paper and acted upon by a system of co-planar

forces whose resultant is R. This force is equivalent to

(1) An equal and parallel force acting at the mass centre.

(2) A couple whose moment is B x CZ = L, say.

The effect of the force is to accelerate the motion of the mass

centre in the direction of its line of action. The effect of the

couple is to accelerate the angular motion of the body about an
2.32
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axis through the mass centre, at right angles to the plane contain-

ing the force E and the point C. It is a fundamental dynamical
principle that the acceleration of the mass centre C is the same as
if the whole mass of the body were concentrated at the one point
C, and that the angular acceleration

of the body about C is the same as if

the axis through Owere fixed. Hence,
if E be given in position and magni-
tude, the instantaneous acceleration of

the mass centre, and the angular ac-

celeration about the mass centre, can

be found when the mass of the body
and its moment of inertia about the

perpendicular axis through C are re- FIG. 152.

spectively given. The acceleration of

any point in the body is then determined, being the vector sum of

the acceleration of C, and the acceleration of the point about C.

The connecting-rod problem is precisely the converse of this.

Two points in the rod are compelled to move in a definite manner,
the one in a circle guided by the crank-pin, the other in a straight

line guided by slide-bars, and if the acceleration of the first point

be given, the acceleration of the second can be readily found. But
if the accelerations of two points in a body moving in a plane be

given, the acceleration of every point can be immediately deduced.

From the acceleration of the mass centre and the mass of the rod,

the force E producing this acceleration can be at once calculated.

Similarly, the angular acceleration of the rod about the mass centre

can be found when the accelerations of two points are given, and

hence the couple L may be inferred when the moment of inertia

about the mass centre is known.

The problem naturally divides itself into two parts : first, the

determination of the acceleration of the mass centre and the

magnitude and direction of the force E
; secondly, the determination

of the position of E relative to the mass centre so that it causes

a couple equal to L. In the geometrical method of finding E,
which will be explained first, the first construction gives the

acceleration of the mass centre, after which there are several ways
of finding the position of E relative to the mass centre, depend-

ing upon the artifice of concentrating the mass of the rod at two

points, so that the two masses thus concentrated form an equivalent
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dynamical system to the actual rod. Then the two forces which

must act to produce the instantaneous acceleration of this two-

mass system, which has, of course, the same acceleration as the

actual rod, must have B, for a resultant. The magnitude and

direction of R is found by the first construction. The aim of the

second is to find a point on the line of action of K. This point is

discovered by the intersection of the directions of the two forces

producing the instantaneous motion of the equivalent two-mass

system.

136. Graphical Method for finding the Acceleration of the Mass

Centre of the Bod,* Assume the angular velocity of the crank to

be sensibly constant. Let OK (Fig. 153) be the crank, KB the

connecting-rod, and BO the line of stroke. Let C be the mass

IO

FIG. 153.

centre of the rod. Draw CQ parallel to BA. The acceleration of

the point K is w2KO. The acceleration of the point B may be

found by Klein's construction (Art. 104). This acceleration is

shown by AO in the figure. From a reference to Art. 6, it will

be understood that AK is the acceleration of B relatively to K.

QK is then the acceleration of C relatively to K, since QK : AK
= CK : BK. The whole acceleration of C is the vector sum of

its acceleration relatively to K and the acceleration of K, that is,

the vector sum of QK and KO = QO. It is evident that there is

nothing to restrict this reasoning to the point C. Therefore, the

acceleration of any point on the rod may be found by projecting

the point on to KA by a line parallel to BO, and joining the

point so found to 0. Any point thus projected divides KA in the

* Many of the following graphical methods are given in "New Constructions of the

Force of Inertia of Connecting-rods and Couplers and Constructions of the Pressures

on their Pins." By Professor J. F. Klein. Journal of the Franklin Institute,

Vol. CXXXIL, September and October, 1891.
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same ratio that it divides KB. In fact, KA is the rod drawn to

a smaller scale, and in such a position that the line joining any

point on KA to 0, represents the acceleration of the corresponding

point in the actual rod. On account of this property, KA has

been called the acceleration image of the rod. QO is to be

measured to the scale on which KO represents the crank radius
;

then the actual value of the acceleration is w2
QO.

If M is the mass of the rod, the magnitude of the force E, is

-w2QO Ibs. weight

acting at C in a direction parallel to QO from Q towards 0. This

force applied at the mass centre, would produce the instantaneous

acceleration of the mass centre which it actually undergoes.

137. Equivalent Dynamical System. The conditions to be

satisfied by the concentration of the mass of the rod at two

points are

(1) The sum of the two masses must be equal to the mass of

the rod.

(2) Their mass centre must coincide with the mass centre of

the rod.

(3) Their moment of inertia about an axis through the mass

centre at right angles to the plane of motion of the rod, must be

equal to the moment of inertia of the rod about the same axis.

Let mi, W2 be the two masses into which M is divided, distant

respectively di and d2 feet from the mass centre of the rod, and let

7j be the radius of gyration of the rod about the axis at the mass

centre. The three conditions stated above are expressed by the

equations

mi -f m2 = M (1)

m\di mA =
(2)

ra^2 + mM = M/c2
(3)

From (1) and (2)-

and

Mdi
(5)'
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Combining these with (3)

(6)

This is the relation governing the position of the masses.

Their magnitudes are, as shown by equation (2), inversely as the

mass centre divides the distance d\ -f- c?2 . Observe that k is a

mean proportional between d\ and d.2. Hence, if the position of

one mass and k be given, the position of the second mass can be

found by the following construction :

Let C be the mass centre of the body, which is symmetrical
about the line sH, shown in Fig. 154. Let s be the given position

FIG. 154.

of one mass. Draw CP at right angles to Hs, its length repre-

senting to scale the radius of gyration k. Join s and P, and draw

PH at right angles to sP. H then marks the position of the

second mass.

It is evident that there is nothing to restrict the position of

the given point s, consequently an infinite number of pairs of

points, s and H, can be found. It may be noticed that if the body
be suspended from an axis through the point $, sH would be the

length of the simple equivalent pendulum, and that H would be

the centre of percussion relatively to s, and s the centre of

percussion relatively to H.

Eeturning to the connecting-rod, the value of k must be known,
or the position of the two points s and H, before the division of

the mass can be made.

The best way to arrive at the position of a pair of points of a

finished rod is to let it oscillate about some selected point s, the

axis through the centre of the small end usually, and adjust the
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length of a plumb-line until it swings in unison with the rod.

The length of the plumb-line, measured from the point about

which it swings to the centre of the bob, gives the distance sH,

that is, di + d%. The position of the mass centre C can be found

by balancing the rod on a knife-edge ; thus the individual values

of di and dz are known, and 7j can at once be calculated.

Example. The length of a plumb-line adjusted to swing in

unison with the connecting-rod belonging to an inside-cylinder,

four-coupled passenger engine, the rod swinging about an axis at

the small end-centre, was found by experiment to be 5*9 feet.

The distance of the mass centre, the position of which was found

by balancing the rod on a knife-edge, was 4'92 feet from the axis

of suspension. Therefore

di = 4-92 feet, cl2 = 0'98 feet

Hence

W = 4-82, and k = 219 feet

138. Constructions for fixing a Point in the Line of Action of

R.* Having found a pair of points, s and H, on the assumption
that k is known, the object of each of the following constructions

is to find the respective lines of action of the forces acting on the

concentrated pair of masses. The intersection of these two lines

of action fix a point X on the resultant, defining thereby its line

of action, since its direction is known from the construction of

Art. 136.

Construction 1 (Fig. 155). Choose the point s to correspond

FIG. 155.

with B, and find H by the method of Fig. 154. Repeat the con-

struction of Fig. 153 to find KA, the acceleration image of the

rod. The direction of the acceleration of B is along the line of

stroke. To find the direction of acceleration of H, refer it to the

line KA, then hO gives the required direction. Therefore, the

* See Appendix TV.
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intersection X, of a line parallel to 7^0 drawn through H, with BO
fixes a point in the line of action of E. The line through X
parallel to QO, E's direction, is the line of action of the resultant

E. Its perpendicular distance from C is such that it causes the

couple L, producing the angular acceleration of the rod.

Construction 2 (Fig. 155). The motion of the rod may be

analyzed into a translation of the rod parallel to itself, every point

moving with the acceleration of B, and an angular motion about

B. The force to produce the first acceleration must be applied to

the system at the mass centre C in a direction parallel to the line

of stroke. The force to produce the angular acceleration about B
must be applied at H in the direction of acceleration of H relatively

to B, that is, in the direction 7*A. The intersection of a line

through H, parallel to 7&A, with CQ fixes a point, Xi, in the line of

action of E. A line through Xi parallel to QO is therefore the

line of action of E.

Construction 3 (Fig. 156). Choose s to correspond with the

big end-centre K, and apply the construction of Fig. 154 to find

H. The direction of acceleration of K is along the crank radius.

Project H on to the image of the rod KA, to find 7^0, the direction

of acceleration of H. A line through H, parallel to AO, intersects

the crank produced in a point, X2, on the line of action of the

resultant E.

Construction 4 (Fig. 156). The motion of the rod may be

analyzed into a motion parallel to itself, where every point moves

in a circle of radius equal to the crank radius, and an angular
motion about K, the crank-pin. To produce the first, a force must

be applied at the mass centre C in a direction parallel to the

crank KO. To produce the angular motion about K, a force must

be applied at H in the direction of the acceleration of H relatively

to K, that is, in the direction liK. Therefore, the intersection X3

of a line through H parallel to 7dv, with a line through C parallel

to the crank radius KO, fixes a point in the line of action of E.

Construction 5. The point s may be taken in any position on

the centre line of the rod, and a point, H, to correspond with it

found by the construction of Fig. 154. The directions of their

accelerations are found at once from the acceleration image, from

which a point, X, can immediately be fixed.

Any one of these constructions may be used in combination

with the construction of Art. 136 to find B. The combination
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with Construction 1, and, in fact, the whole question of the inertia

loading of links, is discussed in Professor Klein's paper already

quoted. The combination with Construction 2 is due to Professor

Bunkerley and Mr. J. B. Peace. The use that may be made of

Fio. 156.

it to find the inertia loading of a connecting-rod is shown in an

article by Professor Dunkerley in Engineering, June 2, 1899.

The whole question of acceleration and velocity images is treated

in a general way in Professor Smith's
"
Graphics."

139. Combined Construction, For convenience of reference, the

steps in the combination of the construction of Art. 136, with

construction No. 1 of the previous article, are restated.

To find the fcrce E (Fig. 155) for any given crank angle :

mark the points C and H on the rod
;
find AO, the acceleration of

B, by Art. 104; join KA ;
draw CQ and HA, respectively parallel

to BO. Then the intersection of a line through H parallel to hO
with the line of stroke fixes a point, X, in the line of action of R
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A line through X parallel to QO is the line of action of R, and

E's magnitude is

-W2QO Ibs. weight
u

140. Effect on the Frame and on the Turning Moment exerted

by the Crank. Since the force R, under whose action the instan-

taneous acceleration might be produced, can be found for any
crank angle by the construction of the previous article, the effect

of the rod's motion on the frame is reduced to the statical problem
of finding the effect of K on the frame.

Let R be the resultant force (Fig. 157) for the crank angle
shown. Referring K to the crank-pin, it is equivalent to

(1) An equal and parallel force K acting on the crank-pin.

(2) A couple whose moment is E x gi acting on the rod.

The couple is actually applied to the rod by a pair of parallel

forces acting respectively at the cross-head and crank-pin in a

direction at right angles to the line of stroke BO, since this is the

only direction in which a force can act from the frame at the

slide-bars, neglecting friction. Draw Kp at right angles to BO,
then the magnitude of each force of the couple is

R X gi _ s
~SJT

So that acting at the crank-pin there are two forces, S, acting

always at right angles to the line of stroke, and a force equal and

parallel to R. Referring these forces to the main bearing, 0,

each is equivalent to an equal and parallel force acting at the

bearing and a couple acting on the crank. Tho whole couple

acting on the crank is thus

K x O/ + S x Op

This is the extent to which the turning moment exerted by the

crank is modified by the motion of the connecting-rod.

The resultant force R, therefore, requires that

(1) A force, S, acts at the slide-bars from the bars to the rod.

(2) Forces S and R act at the main bearing 0.

These are the forces which must act from the frame on the

gear to produce the acceleration of the rod. The forces acting from

the gear on the frame are therefore equal and opposite to these, and
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are shown below in Fig. 158. Notice that S at the bars and S

at the main bearing form a couple. The effect of R on the frame

is thus equal to

(1) A force, equal, opposite, and parallel to R, acting on the

main bearing.

(2) A couple S x OB.

FIQ. 157.

FIG. 158.

of R and S at the main bearing. Call

Another way of stating the effect is

(1) The resultant

this F.

(2) A single force S at the slide-bars.

The forces F and S may be found directly by a simple con-

struction (Fig. 159). The rod is at any instant in equilibrium
under the action of three forces, viz. the forces acting through its

ends and E reversed. These three forces must therefore meet in a
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point. The force acting at the slide-bars must be at right angles

to the line of stroke, and the line of action of E is known
; hence,

draw a line at right angles to the line of stroke through B, to meet

E produced in the point V. Join VK. Set off Wi equal to E.

Draw ViV2 parallel to VB. Then Y2V is the whole force acting

at the crank-pin, from the rod to the pin, and ViV2 is the force

from the rod to the slide-bars. The force V2Y at the crank-pin is

equivalent to an equal and parallel force at the main bearing and

a couple VV2 x Oa. This couple is equal and opposite to that

FIG. 159.

previously given, which modifies the turning moment of the

crank, and the force F is the same as the resultant of E and S

(Fig. 158).

When the construction is carried out on the figure used to find

the value of the resultant E, that is, QO in Fig. 153, the point V
is only required to fix the direction W2, since, if a perpendicular

to the line of stroke be drawn from Q to cut a line through

parallel to VV2 ,
the point of intersection fixes the value of F and

S. The triangle formed in this way is shown in Fig. 158, where

OE is the resultant, OEi the direction Y2V, and EEi, perpendicular

to the line of stroke which fixes the point EI, defining thereby

the lengths of OEi and ERi, that is, F and S.

141. Examples. Fig. 160 shows the frame reactions at the

main bearing and the slide-bars respectively for the rod of an

inside cylinder locomotive. The specification of the rod is as

follows :
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Length, centre to centre, 6*81 feet

Distance of mass centre from the small end, 4*93 feet

Distance of the centre of percussion H from the small end,

6-0 feet

Mass of rod, 454 pounds

The method of finding points on the curves was first to find R
by the construction of Art. 1.39, arid then to apply the construction

FK. 160.

CRANK p
//y

of Fig. 159 to find S and F, for twelve different angular positions

of the crank.

Curve No. 1 is the locus of the point corresponding to R (Fig.

158), and curve No. 2 the locus corresponding to point EI (Fig.

158). The vertical distance between the curves represents EEj

(Fig. 158), that is, the force S, whose equal and opposite acts at

the bars. Curve No. 3 (Fig. 161) represents the changing values
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of S, set out at the slide-bars. Thus, when the crank is at OK
(Fig. 160), the length of 04 measured to curve No. 1 represents the

magnitude and direction of E, the length of 04i the magnitude and

direction of OEi = F, the whole force on the main bearing, and

the intercept, 44i, equal to 44i on curve No. 3 (Fig. 161), represents

the force at the slide-bars. The actual magnitudes of these forces

are to be found by measuring the lengths of the lines respectively

JL - CRANKS --*)

flic

7L

FIG. 165.

N9 3

representing them on the diagram, to the scale on which OK
represents the crank radius, and multiplying the lengths so found,

in feet, by the mass of the rod and the square of the angular

velocity of the crank, dividing by g to get the result in Ibs. weight.

For example, if the crank radius OK represents TOS feet, 04

measures 0'846 feet, 04i measures 0*76 feet, and 44i measures

0114 feet. At 240 revolutions per minute u>
2

is 632.
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Therefore
M

04 =-. -<o2 x 0-846 = 7538 Ibs. weight = R

04i = ^o>2 x 076 = 6770 Ibs. weight = F
tj

TVT

44i = _ w2 x 0114 = 1016 Ibs. weight = S

Figs. 163 and 164 show sets of curves for the rod of a torpedo-

101112,

boat destroyer, and Figs. 166 and 167 curves for a rod of uniform

section. These latter curves are merely of theoretical interest,

since the big and small ends of the rod must always be of con-

siderably greater section than the body connecting them. In each

case the dynamical peculiarities of the rods are indicated by the

centre-line drawings (Figs. 162, 165, and 168). Comparing Figs.



246 THE BALANCING OF ENGINES.

160, 163, and 166, it will be noticed that the nearer the point H,
the centre of percussion relatively to the small end, is to the big

end, the smaller is the maximum vertical distance between the

curves Nos. 1 and 2, which indicates that the couple, of which the

vertical distance represents one force, is small also. If H coincide

with the big end, the line of action of the resultant E passes

through the point in every position of the crank
;
and if in any

position of the crank E pass through K, the couple vanishes. This

is the case in Fig. 163 at No. 10 crank position.

142. Balancing the Rod. Suppose the form of the rod to be such

that, when s is taken at the small end, H falls on the crank-pin

centre. The two masses forming the equivalent system are then

concentrated at these two points, their magnitudes being inversely

as the mass centre divides the rod
;
this follows from expressions

(4) and (5) (Art. 137). If the masses are treated independently,

the one considered to be attached to and moving with the cross-

head reciprocating masses, the other attached to and moving with

the crank-pin, the forces required for their acceleration must have

E for their resultant, since the masses are equivalent to a dynamical

system of which E is the resultant accelerating force. If these

forces are exactly balanced, it is clear that E at the main bearing

is balanced, since in all positions of the gear the line of action of

E passes through the centre of the main bearing. There still

remains the couple S x OB acting on the frames, consequent upon
the existence of the couple E X gi (Figs. 157, 158). The frame-

couple only vanishes when this couple vanishes, that is, when the

line of action of E passes through the crank-pin centre.

The rod is seld.om of such a form that s and H fall at its

centres. But it will be noticed that their position has no effect

on either the magnitude or the direction of the force E. These

points only determine the line of action of E relative to the mass

centre, and therefore affect only the magnitude of the couple E x ig,

and ultimately the frame-couple S X OB
;
and since S is always

at right angles to the line of stroke, it has no component in the

line of stroke. Hence, so far as the unbalanced forces in the line

of stroke are concerned, it is only necessary to consider E at the

main bearing for any form of rod. If the mass of the rod is

distributed between the crank-pin and cross-head inversely as the

mass centre divides the rod, the assumption is tacitly made that
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these two separate and independent masses form an equivalent

dynamical system ;
so far as the forces in the line of stroke are

concerned, there is no error in the assumption ;
at right angles to

the line of stroke, however, this assumption involves an error in S

depending upon the position of the point H. No attempt is usually
made to balance this couple on the frame.

The author suggested a way of dividing the mass of the rod

between the crank-pin and cross-head whereby the resultant of the

BH - -66L

BC = 5L
L = 4 CRANKS

FIG. 169.

forces required to accelerate the two masses is approximately, but

very nearly, coincident with the force OEi, the whole force on the

main bearing, during the whole revolution. The mass at the

crank-pin is found from the expression

M x EG x BH
KB2

M being the mass of the rod, BC aud BH the respective

distances of the mass centre and the centre of percussion from the

small end centre, KB the length of the rod. The remainder of M
is placed at the cross-head.

The curves of Fig. 169 show to what extent the resultant

force at the main bearing, due to the acceleration of the two

masses found from this formula, differs from the true value of
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The thick curve (No. I.) shows the locus of the point

corresponding to EI of Fig. 158, and is, in fact, curve No. 2

of Fig. 166. The thin curve (No. II.) shows the locus of the end

of the force acting on the main bearing due to the accelera-

tion of the masses divided in the way suggested, and the dotted

curve (No. III.) shows the locus of the end of the force due to

the acceleration of the cross-head and crank-pin masses divided

inversely as the mass centre divides the rod. In the position 8, for

example, the length of 08 measured to curve No. I. is the actual

force on the main bearing, the length of 08 measured to curve

No. II. is the force consequent upon the mass division suggested,
the length of 08 measured to curve No. III. is the force consequent

upon the inverse mass division. This shows that a better agreement
at the main bearing can be obtained if desired, leaving the force S

at the slide-bars unbalanced. There is an error introduced in the

line of stroke by this method, but it should not be forgotten that in

many cases the mass added to balance the reciprocating mass can

only be arranged to do so in a very approximate manner, and that

therefore a small error in the line of stroke in the mass assumed

concentrated at the cross-head is of no consequence. The method
of division suggested may sometimes be found useful when it is

desired to relieve the main bearing of the whole force OKi due to

the acceleration of the rod, and when the point H is some distance

from the big end.

143. Particular Form of Balanced Engine, The rod is some-

times balanced by opposing to it a similarly formed rod of equal

mass, moving similarly but in opposition. Fig. 170 shows the

arrangement. The crank is prolonged so that there are two cranks

at 180, and the mass centres of each rod move in the same plane.

The forces acting on the frame are two sets like those of Fig. 158.

They are indicated in Fig. 170, one set being shown in dotted

lines. It will be seen that the forces at the main bearing mutually

balance, leaving a force S at each slide-bar, which together form an

unbalanced couple of moment S X B]B2 .

To realize this arrangement practically, one connecting-rod
must be divided into two, each, half the mass of the original

rod, and formed similarly to it, and each being placed at equal
distances on opposite sides of the central plane of motion. It

should be noticed also that in this arrangement equal reciprocating
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masses of any magnitude, placed at B2 and BI respectively, balance

each other exactly. The effect of the angle of the connecting-rod
is entirely eliminated in the line of stroke, since B2 and BI move
with exactly equal and opposite acceleration.

Suppose that instead of splitting one rod, the two are displaced

relatively to one another along the axis of the shaft so that their

FIG. 170.

BFiG. 172.

FIG. 171,

respective planes of motion, 1 and 2 (Fig. 171), are a feet apart.

It will be apparent that there will be now couples E x a and

S x a, acting on the frame derived from the forces at the main

bearing, and a couple, S x B2Bi, the diagonal distance between the

cross-heads, derived from the pair of equal and opposite forces

acting at the bars. If a similar system of two cranks is arranged
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anywhere along the shaft in the manner shown in planes 3 and

4 (Fig. 171), the couples arising from the forces at the main

bearing mutually balance. The forces at the four cross-heads form

two couples acting respectively in the planes of which BiB2 and

B3B4 are the horizontal traces. Their axes are in the respective
directions XX and YY, and their magnitudes are equal. The

vector sum of these couples, found by the triangle (Fig. 172), is

represented by the line AC. This couple is always equal in

magnitude to twice the projection of the distance BiB2 = B3B4,

on the line Bl (Fig. 171), which equals BiBa (Fig. 170) multiplied

by S, and it tends to rock the frame about the axis of the crank-

shaft. There is always, in addition to this, the couple equal and

opposite to the driving couple (see Art. 130), and the couple due

to the acceleration of the reciprocating masses by the rod, tending
to rock the frame about the crank-shaft. These are usually great

in comparison with the couple due to the connecting-rod.
Mr. W. G. Wilson has designed a motor-car engine on these

principles, and its smoothness of running at all speeds, the maximum

being 1500 revolutions per minute, is remarkable.

FIG. 173.

144. Analytical Method of finding R and L,

Let M be the mass of the rod (Fig. 173) ;

9, the crank angle measured from the initial direction OX
;

w, the constant angular velocity of the crank
;

<, the angle made by the rod with the initial direction OX
;

a, the angle made by the resultant force E with OX
;

OK = a, the crank radius in feet
;

KG = I, the distance of the mass centre C from the crank-

pin K ;

KB =
I, the length of the rod

;

k, the radius of gyration about the mass centre
;

x, y, the co-ordinates of the mass centre G.
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Use the Newtonian notation for representing differentiations

with regard to the time, viz.

In all that follows, 6 = a), the angular velocity of the crank is

assumed to be sensibly constant, so that = 0.

Suppose the force E transferred to the mass centre C, the

transference giving rise to the couple L (see Art. 135).

The component of R parallel to the X axis is E cos a. The

acceleration of the mass centre parallel to the X axis is x.

Therefore

Ecos a = MX ....... (1)

Similarly

and

L = M/*2 ....... (3)

The direction of E is evidently given by

tan a = if

x

Its magnitude can be calculated from either (1) or (2).

The position of E relatively to the mass centre is given by

^
= CZ (Fig. 157)

The constraint applied to the rod by the crank-pin and slide-

bars is such that, for all positions of the gear, whether the rod is

arranged to work to the left or to the right of the crank as shown

in Fig. 173, by full and dotted lines respectively

= -sin0 (4)
L

Therefore

I cos
(jt

= \/l
2 a2 sin2

(5)

the positive sign to be taken if the rod is to the right of the crank,

the negative sign if to the left, because, in the first case, cos
<p

is
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positive during the whole motion of the crank
;
in .the second case,

it is always negative.

In what follows the minus sign will be retained in the radical

corresponding with the arrangement of gear shown in full lines in

.Fig. 173.

From equation (4)

The angular velocity of the rod

. 9a cos

X/
2 - a2 sin2 6

The angular acceleration

92
a(P - a?) sin 9

(7)

If the rod is arranged to the right of the crank
<j>

will be

negative and
<j> positive.

Using the value of <p given by equation (8) in (3), and writing

a, the constant angular velocity of the crank, for 0, the couple L
is given by

from which its magnitude can be computed for any given value of

0, the crank angle. It will be noticed that at the dead centres,

where sin 6 is zero, the couple vanishes.

Again, the position of the mass centre relatively to 0, the

origin, is found by taking the sum of the two vectors, a, 0, and b, <

;

or by taking the sum of their horizontal and vertical components.

Thus, x is always the vector sum of a cos 8 and & cos
</>,

and y the

vector sum of -a sin 9 and I sin <. Then

x = a cos 9 -f I cos $ ...... (10)

Velocity of C parallel to X

x = a9 sin 9 &<sin<^ ..... (11)

Acceleration of C parallel to X, remembering that 9 =

x = 2 cos 9 &<
2 cos $ Ify

sin ^ . . . (12)
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Similarly

y a sin -f- I sin
<f>
...... (13)

Velocity of C parallel to Y

y = a6 cos -f 1)$
cos ...... (14)

Acceleration of parallel to Y

y = #02 sin &^>
2 sin ^ + 50 cos $ . . . (15)

Therefore

_ 5 _. a& sin - I
j>

2 sin
ft -f frft

cos ,..,,>,

# a#2 cos
&ft

2 cos
ft

5< sin ^

and

E = _ = _

cos a sm a

145, Values of $, 0, and 5, y, at the Dead Centres. When 8 = 0,

or 180, cos = 1 and sin = 0. Substituting these values in

equation (7)

and

CtlJ CtiO T f\ H r\ r\Q

ft
= = when a = loO

A substitution of the value of the sine in equation (8) shows

that

ft
=

Again, substituting these values of
ft

and
ft

in equation (12),

writing w for 0, and noting that
ft
= 180 when = or 180, so

that cos
ft

is negative

x = -aw2

(l
-
j\ when = ... (18)

and

x = a^(l 4-
a
\\ when = 180 . . . (19)

y vanishes for both values of 0.
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146. The Acceleration of the Cross-head in the Line of Stroke

may be found by putting I for b in equation (12).

Let xi represent the acceleration in the line of stroke
;
then

&]_
= ad2 cos 8 /<

2 cos
(f) l<p

sin < . . . (20)

If the values of
<j>, <^>,

from equations (7) and (8), and the values

of sin =
-j

sin 9 and cos = + -
\/fi &2 sin2 9, be substituted

t I

in this equation, it reduces to

n _ aP cos 20 + a3 sin4 01 ,01 xs0 + --
. 3 > . (21)

(I
2 a2 sin2 0)5

in which the upper sign is to be taken if the rod is to the left of

the crank, and the lower sign if to the right.

The acceleration of the cross-heads at the dead centres may be

found by writing / for I in equations (18) and (19), giving,

when = ........... (22)

and when = 180 .......... (23)

147. Example. Given that

a = I foot

I = 1-2 feet

I = 3 feet

7;
2 = 0-81

and that the rod is arranged to the left of the crank in the way
shown in Fig. 173, find the magnitude, direction, and position of E,

and the value of the couple L, when = 120 and at the dead

centres, in terms of the mass of the rod M and the angular

velocity w.

If the values of ^ and ^ in terms of 0, given by equations (7)

and (8), be substituted in equations (12) and (15), giving the value

of x and ?/,
2 will appear as a factor of every term. Hence, in
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computing the values of these expressions, 6 may be taken equal

to unity ;

2 = w2 must then be introduced as a factor in the final

result. Hence, wherever appears, take it equal to unity.

From the given data

= 196 46' from equation (G)

^ = _0'174w radians per second from equation (7)

;j)

_ O292u>2 radians per second per second from equation (8)

x = 0'434w2 feet per second per second from equation (12)

y 0'520o>
2
feet per second per second from equation (15)

Then

tana=

from which

a =309 55'

Also

R = _M^ =.- _M#, from equations (1) and (2)
cos a sin a

Therefore

E = O'GSMw2 in absolute units of force

The value of the couple L, found by substituting the value of

<ji
in equation (3), is

The perpendicular distance, li^g (Fig. 157), of R from the mass

centre, to cause this couple, is found from

, L 0'236Mw2
A or-p

ig
=
R
= "

5
" : approximately

R must be placed so that the couple is negative, i.e. clockwise.

A.t the dead centres, using equations (18) and (19)

R = -096Ma.2 when =
R = l-9lLMo>2 v/hen = 180*

L vanishes for both angles.
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The acceleration of the cross-head, found from equations (20) or

(21), is-

At the dead centres, using equations (22) and (23), the accele-

ration is

-0-66o>2 when n.

and

l-33wa when = 180 :'



APPENDICES

APPENDIX I.

(With reference to Article 104.)

The Acceleration of the Piston. Professor Schroter has pointed out

to the author that Klein's construction (Art. 104) is to be found in a

paper by the late Professor Kirsch, entitled,
" Ueber die graphische

Bestimmung der Kolbenbeschleunigung," which was published in

the Zeitschrift Verein Deutsche Ingenieure, 1890, page 1320.

Mr. G. T. Bennett, of Emmanuel College, Cambridge, sent the

author the following simple construction in August, 1902 :

FIG. 174.

Let OK (Fig. 174) be the crank and KB the connecting-rod. On
the connecting-rod take a point L, such that

KL x KB = KO2

That is, KO is a mean proportional between KL and KB, so that

the point L may be fixed by dropping a perpendicular from 0, on

to the rod, when the crank is at right angles to the line of stroke.

2o7 S
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Then, the crank standing at any angle with the line of stroke,

draw LP at right angles to the connecting-rod, PN at right angles

to the line of stroke, and, finally, NA at right angles to the rod.

AO is the acceleration of the point B to the scale on which KO
represents the acceleration of the crank-pin K.

At the dead points, when the connecting-rod and therefore the

point L is in the line of stroke, the distance between the points

L and gives the acceleration. Thus, in Fig. 175, LO is the

acceleration at the dead point, and LiO the acceleration at the

180 dead point.

FIG. 175.

Proof:

Let be any crank angle (Fig. 174), and let < be the correspond-

ing angle between the connecting-rod and the line of stroke. Also

let a be the crank radius, and I the length of the connecting-rod.

Then

/ sin
(f>
= a sin 9 (1)

Differentiating this with regard to the time tt and writing ^
7 , 7/1

for -, 9 for -jr, and assuming 9 constant and equal to w
u/t dt

l<j>
cos

(f>
= auj cos 9

Eliminating 9 from equations (1) and (2)
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Differentiating this again with regard to the time

Z
2 a2 sin

Again, the position of the cross-head B is given by

x = a cos B + I cos <

(5)

Differentiating this with regard to the time, the velocity of

the cross-head towards is

x = a^ sin 6 -f- l<p
sin (6)

Differentiating this velocity with regard to the time, the

acceleration is

x = aw2 cos 6 + Iff
sin

<J>
+ Z<

2 cos . . . (7)

Substituting the values of <

2 and
if
from (3) and (4)

Z
2 a2

x =
(JL?{CI

cos 6 + Z cos
<p

-, sec3 $| . . (8)

In the construction given above

OB = a cos 6 4- I cos

and from the relation KB . KL = a2
, that is, 1(1

- BL) = aa

BL= ^-^
Therefore

BP =
j

sec
<p

BN = l
* ~ a"

sec2

and, finally
72 _ 02

BA== *_o,

Therefore OB - BA = AO is seen by expression (8) to represent

the acceleration of the point B to the scale on which KO represents

the acceleration of the crank-pin K.
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(With reference to Article 123.)

On the Maximum Amplitude of the Forced Vibration. As the

value ofp increases towards the value of q, the amplitude y of the

forced vibration gradually increases, until, just before synchronism,

y attains a maximum value. The value of p corresponding to the

maximum value of y is so nearly that of q, that for all practical

purposes it may be taken equal to q, unless the damping is very

"Teat. In order to find the value of p, which makes y a maximum,
it is convenient to write equation (6), page 207, in a different form.

Since

pi
tan e = -

9
-

s

<T
~ P

sin E =
vV - ff + P*P

and, substituting this value of sin e in equation (6), page 207-

p
y = - _ COS (pt t)- --f +

For given values of q, p, P, and b, y is a maximum when cos

(pt
-

t)
= unity.

For given values of q, P, and 7;, the value of p which makes y

a maximum is found by putting cos (pt t) equal to unity, and

then equating the differential coefficient of y with regard to p to

zero. Thus

2(^2
_ (j2) 4.

2 _ o for a maximum
Hence

p =

The form of this equation shows to what a small extent p differs

from q when y is a maximum. Taking a numerical case corre-

sponding to the curve marked I = J in Fig. 139, q
= 30, therefore

p = x/000 - 0-0078

= 29-999

260



APPENDIX III.

(With reference to Article 130).

Weight of the Parts, and the Turning Moment on the Crank. The

effect of the weight of the parts on the turning moment is not

included in the expression for P given on p. 220. Strictly a term

should be added to allow for this, but usually the effect is negligible
in comparison with the effect of the steam pressure and the accelerat-

ing forces. In a horizontal engine the weight of the reciprocating

parts has no effect on the turning moment ;
and the weight of the

unbalanced revolving parts has a small effect, which is practically

reduced to zero if the revolving parts are balanced by masses placed
on the prolongation of the crank-arms. This is also true for the

revolving masses of a vertical engine, but in this case the weight
of the reciprocating masses exerts its maximum influence on the

turning moment. The effect of the weight of the reciprocating parts
on the turning moment in the case of a vertical engine may be

allowed for by adding a term to the formula for P given on p. 220,

so that the value of P is increased for the downstroke, and is

diminished for the upstroke by an amount equal to the weight of

the reciprocating parts.

Thus, ifW is the weight of the reciprocating parts in pounds

P = (P Pi)& h W for the downstroke
t/

P = (P
-
Pi)^ - - W for the upstroke

J

261
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(With reference to Article 138.)

Bennett's Constructions for finding a Point in the Line of Action of

the Force producing the Instantaneous Acceleration of a Kigid Link

moving in a Plane. Several methods of finding a point in the

line of action of the resultant force producing the instantaneous

acceleration of the connecting-rod are given in Art. 138. All these

methods require that the directions of the acceleration of two points

in the rod be given, and, in addition, the magnitude of one of them

must be given also. Mr. Gr. T. Bennett has given the author the

following general proposition and corollaries relating to the motion

of a lamina in a plane, by means of which a point may be found

in the line of action of the resultant accelerating force when only

the directions of acceleration of two points in the lamina are given.

Stating the proposition formally :

Given the instantaneous directions of the acceleration of any
two points of a lamina moving in a plane, find a point in

the line of action of the resultant accelerating force.

Let B and K (Fig. 176) be any two points in the lamina, and let

the respective directions of acceleration be BO and KO. Let C be

the mass centre of the lamina, and k the radius of gyration about

an axis perpendicular to the lamina through its mass centre.

Construction. Produce the given directions of acceleration to

meet in 0.

Draw a circle through the three points, B, K and 0.

Produce the line joining and C to cut the circle in Y.

Take a point Z on the line OY so that YC . CZ = k2
.

Then Z is a point in the line of action of the resultant accele-

rating force.

Proof. The proof depends upon the fact that the angle between

the direction of acceleration of any selected point in the lamina,

262
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and the line joining that point to the centre of acceleration

in the lamina is constant. Thus, referring to Fig. 177, let P be

any point in the lamina and X, the centre of zero acceleration.

If & is the angular velocity of the lamina, and a/ the angular

acceleration, the radial acceleration of P is o>
2

. PX : and the

tangential acceleration of P is a/ . PX. Hence the angle <, made

by the resultant acceleration of P with the line PX, is such that

o> PX &/
tan d> =

and thus, wherever P is taken in the lamina, the angle $ remains

constant. Thus the angles made by the respective accelerations

of PI and Pa with the lines PiX and P2X are each equal to 0.

Y

FIG. 176. FIG. 177.

The proof of the preceding construction is now simple. Take

X to be the centre of zero acceleration in the lamina. Then the

angles XKO and XBO are equal. Hence X is a point on the circle

OBX
;
and YO, making an angle with XY equal to the other two

angles, is the direction of acceleration of Y.

Again, since Z is taken so that YC . CZ == &2
,
the lamina may

be represented by two particles placed respectively at Y and Z,

these two particles forming an instantaneous equivalent dynamical

system.
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The force causing the acceleration of the particle at Y acts

along the line YZO, and the force causing the acceleration of the

particle at Z acts through Z. Therefore the resultant of these two

forces acts through Z. Q.E.D.

Corollary 1. The point Z may be found also by the following

construction (Fig. 178) :

Produce the directions of acceleration to meet in 0, and draw

the circle as before, and then produce the line joining K and

C to cut the circle in V.

Take a point A so that KG . CA = A;
2

. Join VO, and through
A draw AZ parallel to VO to cut the line joining and C
in Z.

Fia. 178.

The proof of this follows from the preceding proposition.

Assuming the point Z to be known, by the preceding proposition
YC . CZ = k2

,
and this is also equal to KG . CA. Therefore

KG : CY = CZ : CA

Therefore the triangles KCY and ZCA are similar, and hence the

angle at A is equal to the angle at Y. But by the property of the

circle the angle at V is equal to the angle at Y, therefore the angles
at A and at V are equal. Therefore the line AZ is parallel to VO,
hence the construction.

Corollary 2. If the points K, C, and B are in a line, the con-

struction reduces to a simple one, which may be applied to the
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coimecting-rod problem in order to find Z. Thus, in Fig. 179, suppose

BO and KO are the given directions of the acceleration of the points

B and K, and that C is the mass centre of the rod BK. Produce

the given directions of acceleration to meet in 0, and join OC.

Take the point A such that KC . CA = W. Draw AZ parallel to

FIG. 179.

BO. Z is then a point in the line of action of the resultant

accelerating force. The point may equally well be found by taking

D such that BC . CD = &2
,
and then by drawing DZ parallel to KO.

Another proof of this construction is given in "Valves and

Valve Gear Mechanisms," by the author, and the construction is

applied to problems connected with the accelerating forces acting

on the links of a Joy valve gear.

Corollary 3. If the points KBO (Figs. 170 and 178) lie on a

FIG. 180.

circle of large diameter, it may be inconvenient to draw the circle.

Then the following construction may be used :
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Produce the directions of acceleration to meet in (Fig. 180)
and join to C, the mass centre of the lamina.

Produce the line joining the points K and C to A, A being

taken so that KG . CA = &2
. Then make the angle at A

equal to the angle KBO, and complete the triangle CAZ. Z

is the point required.

A reference to Fig. 178 will make the proof of this clear. In

Fig. 178, the angle at A is equal to the angle at V, and this is also

equal to the angle KBO, since KBO and KVO are angles subtended

by the common chord KO.
The construction may equally well be carried out by producing

the line joining B and C to D, D being taken so that BC . CD = A,
2
,

and then by making the angle at D equal to the angle BKO.
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The Balancing of Engines of the Type where the Axis of the Crank-

Shaft is at Right Angles to the Plane containing the Centre Lines

of the Cylinders. The conditions of balance have been investigated

in the preceding pages for multi-cylinder engines of the usual marine

type, that is to say, the axis of the crank-shaft and the centre lines

of the cylinders are in the same plane ;
the centre lines of the

cylinders are parallel, and the cylinders themselves are all placed
on the same side of the crank-shaft, with the single exception of

the case considered on page 249.

There are some interesting problems, however, in connection

with types of engines which differ from this standard form, but

which possess the common property that the axis of the crank-

shaft is at right angles to the plane containing the centre lines of

the cylinders. The respective mass centres of all the moving parts

of properly designed engines of this class are in one plane, the

plane of the cylinder centre lines, and therefore there is no centri-

fugal couple to consider of the kind discussed on page 22. The

balancing problem, in fact, reduces to problems concerned with the

equilibrium of forces acting in a plane.

Fig. 181 shows a diagrammatic view of an engine of this type.

It will be seen that there are two cylinders at right angles driving
on to one crank.

The unbalanced force along the line of stroke of either cylinder
is given by Expression (2), page 126. In applying this to the type
of engine under discussion, care must be taken to measure the

respective crank-angles for the several lines of parts from initial

lines similarly situated with regard to each line of stroke. It is

convenient to define the initial line for any one line of parts as the

line drawn from the centre of the crank-shaft along the line of

stroke towards the cylinder. Also it is to be remembered that all

angles are to be measured from these initial lines in the positive or

267
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counter-clockwise direction. Thus, referring to lug. 181, the angle
from which the instantaneous value of the unbalanced force along
the line AB is to be calculated is measured from the initial line

OA, in the positive direction, and is represented by : and the

angle from which the corresponding instantaneous value of the

unbalanced forces along the line CD is to be calculated is measured

from the initial line OC, in the positive direction, and is 270 + 9.

C

Consider the primary and secondary forces separately by means

of the principle explained on page 127.

The instantaneous value of the primary unbalanced force along

the line AB due to the acceleration of the reciprocating masses

MI of No. 1 cylinder is, r being the crank radius,

Miw2r cos

At the same instant, the corresponding instantaneous value of the
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primary unbalanced force along the line CD due to the reciprocating

masses M2 of No. 2 cylinder is

MawV cos (270 + 0) = M2w2r sin

The primary unbalanced force due to the reciprocating masses is

therefore the resultant of these two forces, that is

cos2 6 + M2
2 sin2

0)

If MI = M2,
this reduces to

acting along the crank-arm.

Thus the reciprocating masses cause a primary unbalanced

force of constant magnitude to act along the crank-arm, and this

force may therefore be balanced by placing a balance-weight MO
at radius rQ opposite to the crank, so that

M r = Mxr .

The revolving masses may also be balanced at the same time by

suitably increasing MO. The unbalanced revolving mass is the

sum of the unbalanced parts of the crank itself, and the unbalanced

revolving masses belonging to each line of parts. Let this sum be

M at crank radius. Then to include the balance-weight required

for the revolving parts with that required above for the recipro-

cating parts M must be found from

(Mi + M) r = M r

Keferring to Expression (2), page 126, and to Fig. 181, it will be

seen that the secondary unbalanced force along AB is to be com-

puted from the angle 20 and along CD from the angle 2(270 + 0)

= (180 + 20).

The secondary unbalanced force along AB is therefore

Mio>V2

-, cos 20

and along CD it is

Ml
^'

2

cos (180 + 20) = - ^~ cos 20
i i

The resultant secondary unbalanced force is therefore
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inclined at an angle ^ to AB such that

- cos 2(9
tan d> = -

--77- = 1
cos 20

therefore

= 315

That is to say, the resultant unbalanced secondary force is variable

in magnitude and sense, but acts along the constant direction EF
(Fig. 181). Since the magnitude of the force is a function of the

crank-angle, and its direction is always along EF it cannot be

balanced by a revolving mass. To balance it a mass of MI pounds
would have to be reciprocated with simple harmonic motions along

the line EF by a crank whose length is
j-.

times the radius of the

main crank, and whose speed is twice the speed of the main crank,

as explained on page 128.

Let the turning moment on the crank due to the line of parts
AB be represented by the crank-effort curve, Fig. 146 : and let the

corresponding turning moment due to the line of parts CD be

also represented by the same curve. The actual turning moment
on the crank at any instant will then be represented by the

ordinates of a curve found by taking the sum of the ordinates of

two curves like Fig. 146 after they have been displaced horizontally
relative to one another through a distance representing 270, since

when No. 1 piston is at a dead point, and the crank angle is zero,

the crank angle corresponding to No. 2 piston is 270. The engine
is therefore equivalent as regards turning moment to an engine of

the ordinary type with two cranks at right angles.

Fig. 182 shows a diagrammatic arrangement of an engine in which

three cylinders are arranged in one plane, their centre lines meeting
at 0, the intersection of the axis of the crank-shaft with the plane
of the cylinders. The centre lines are mutually inclined to one

another at 120, and the pistons are coupled to one crank.

Adhering to the convention regarding the measurement of the

crank angles specified above, it will be understood from the diagram
that the angle to be used in Expression (2), page 126, for the calcu-

lation of the unbalanced force along the line OX is 9, along the

line OA it is 240 + 9, and along the line OB, 120 + 9.

Let P, Q, E be the simultaneous instantaneous values of the
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unbalanced forces along the directions OX, OA> and OB re-

spectively.

Then resolving these along and at right angles to the direction

OX, the instantaneous force along OX is

P + Q cos 120 + E cos 240 = S (1)

FIG. 182.

and at right angles to OX

Q sin 120 + R sin 240 = T (2)

The instantaneous value of the resultant unbalanced force is

X/S^+T2
(3)

acting in the direction $ such that
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It only remains to insert the proper values of P, Q, and II in

these equations. Considering first the primary forces

P = MiwV cos

Q = M2cA cos (240 + 0)

E = M8wV cos (120 + 0)

If MI = M2 = M3 the equations reduce to a simple form. Thus,

introducing these values in equations (1) and (2), with MI for the

mass of the reciprocating parts for each cylinder, they reduce to

S = fMiwV cos 6

T = -jjMiwV sin

o

and the resultant force becomes ^MicoV acting along the crank from
-j

the centre of the crank-shaft towards the crank-pin. Hence the

unbalanced primary force due to the reciprocation of the three sets

of parts may be balanced by a single balance-weight M placed in

the prolongation of the crank-arm at a radius r
,
such that

3M!r = M r

As before, the revolving masses may be balanced also by suitably

increasing the mass of MQ. The unbalanced revolving mass is the

sum of the unbalanced parts of the crank itself, and the unbalanced

revolving masses from each line of parts. Let this sum be M at

crank radius. Then to include the balance-weight required for

the revolving parts with that required above for the reciprocating

parts, MO must be found from

(M! + M> = M r

The angles from which the secondary unbalanced forces are to

be calculated are

along OX, 20

along OA, 2(240 + 0) = (120 + 20)

along OB, 2(120 + 0) = (240 + 20)

Equations (I), (2), (o), and (4) may now be used to calculate the

resultant unbalanced secondary force, providing that the values of

1*, Q, and E are calculated from the expression

P = ~ cos 20
i
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eog (120 + 20)

!> =
-ii^_

cos (240 + 20)

Inserting these values in expressions (1) and (2) they reduce

to

~ irMiajV2 n n
S = 2

-j
cos 20

d

T = _|M^V s
.

n2e

and the resultant force is therefore equal to

acting in the direction $ given by

- sin 20
tan th = -

5
cos 2

Interpreted geometrically, this means that the secondary un-

balanced force due to the three reciprocating masses is equivalent to

n*

that due to a mass of MI pounds at radius
-j-, revolving with twice the

speed of the main crank and in the opposite direction, the imaginary
radius being in coincidence with the main crank when = 0. This

could be balanced by a mass properly placed and revolving twice

as fast as the main crank.

The turning moment in this type of engine is similar to that of

an engine of the usual type arranged with three cylinders and with

cranks at 120.

Another interesting example of an engine where the mass centres

of the moving parts are in a plane is afforded by the well-known

Lanchester Motor Car Engine, shown in diagrammatic form in

Fig. 183, the centre lines of the parts being sketched below in

Fig. 184.

A frame of links, or four-bar chain, is connected at the joints D
and C with the crank-pins of the cranks which are centred at E
and F, and the chain carries a piston at each of the joints A and B
as shown. The crank-shafts revolve in opposite directions, with

equal angular velocities being connected by gearing (not shown in

T
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the sketch) to insure this. The pistons are constrained by the

cylinders to move along a common centre line. Supposing for the

moment that the joints D and C are disconnected from the crank-

pins, the motion possible to the chain as a whole is one of trans-

FIGS. 183, 181.

lation along the common centre line of the cylinders, and the

pistons are free at the same time to move relatively to one another

since the bars of the chain are free to close up or open out, and

whilst doing so the joints D and C move vertically. When the
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joints C and D are connected to their respective crank-pins the

common motion of translation of the pistons and the chain, together
with the superposed relative motion of the pistons, becomes con-

strained because the joints C and D are now compelled to move in

circles. It will be observed that, assuming the bars of the chain to

be equal amongst themselves and the pistons also to be equal, the

mass centre of the combination of the pistons and bars falls at the

intersection of the diagonals of the bars G in every configuration

of the gear. It will be seen therefore that, assuming the cranks

to revolve uniformly, the point G moves with simple harmonic

motion, notwithstanding the complex motion of the pistons.

The unbalanced force along the line of stroke is that due to the

mass of the two pistons and the four-bar chain concentrated at the

point G, moving with simple harmonic motion. This force can

therefore be balanced by means of equal revolving masses M
,
M

placed opposite to the cranks, because the sum of the projections of

the forces due to them parallel to the line of stroke is a true simple
harmonic motion, and the projections on a line at right angles

to the stroke mutually balance since the cranks revolve in opposite

directions. If M is the mass of one balance-weight at a radius TO,

and if M is the mass of the unbalanced parts of one crank at crank

radius r, and if MI is the total mass of the two pistons and the

four-bar chain, the relation between these quantities is

M0r = (Pli + M)r

Another feature in the design is the manner in which the

impulsive reaction on the frame, due to the explosions in the

cylinder, is balanced. A flywheel is keyed to each crank-shaft (one

only is shown in the figure), and the moments of inertia of the two

wheels are equal. It will be understood from the sketch that,

when the speed varies, the angular accelerations of the wheels are

equal and opposite, and therefore the frame of the engine is

entirely relieved of the couple equal and opposite to that required

for the acceleration of one wheel.





EXERCISES.

GRAPHICAL work is connected with most of the following exercises.

The student is recommended to get a set of scales in which the foot

is divided decimally instead of into inches. The glass scales made

by Zeiss, divided into centimetres and tenths, are very useful, and

are more accurate than the ordinary type of boxwood or ivory

scale. The scale divisions are engraved on the side of the glass,

which is put in contact with the paper ; parallax in reading the

scale is thereby avoided.

To set out an angle, as a (Fig. 104), measure out the distance

x equal to unity, using as large a scale as possible. Then set out

y at right angles to OX, equal in length to the trigonometrical

tangent of the given angle, the value of which is to be found from

a table of tangents.

Conversely to measure any angle, set out x equal to unity, to

as large a scale as possible, and draw y at right angles. Measure

y t
and look out the corresponding value of the angle from a table

of tangents.

In the following examples many of the results are given

approximately, angles being given to the nearest degree, and

magnitudes to the nearest whole number.

Unless otherwise stated, an angle is always to be measured in

the way shown in Fig. 6, from a horizontal initial line. Direction

will be indicated in some cases by subscript figures or signs ;
thus

123o, 6083400, AB0o

mean, respectively, a vector quantity whose magnitude is 12 and

277
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whose direction is 30 with the initial direction; a quantity of

magnitude 603 whose direction is 340 with the initial line,

measured of course counter-clockwise
;
a vector of magnitude AB

inclined 6 degrees to the initial line.

1. Find the sum of the vectors given in Schedule 1, setting

them out in any four of the possible twenty-four different orders.

2. Show that, if the magnitudes of the three vectors are

equal

ABo -f- BCi2o -J~ CD24o =

and that

AB90o + BOW + CD27o = ABieoo

and that

4- BC60o + CD60o
= 2-654io

3. Assuming the following set of vectors to represent forces

acting at a point, lind the force required to maintain equi-

librium

12(>o, 2 4300, 36120, 10 190

Answer, 41 *

4. Find the velocity of a point in the rim of a driving-wheel

turning in the positive direction, belonging to a locomotive running
at 60 miles per hour

(1) When the point is in its highest position.

(2) When in its lowest position.

(3) When the radius of the point is at 120 with the initial

line.

Diameter of the wheel, 7 feet.

(Take the vector sum of the velocity of the wheel-centre and

the velocity of the point in the several cases, supposing
the wheel-centre to be fixed.)

Answers,

(1) 176i8o feet per second. (2) 0. (3) I70i95 feet per second.
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5. Find the difference of the vectors

(1) 1230o
- 30180o.

(2) 30180o
- 1230o.

Answers. (1) 40'89 . (2) 40'8i890 .

6. A bicyclist rides at 12 miles per hour due north. Find the

direction from which the wind appears to him to be blowing, and

find the component velocity of the wind he must actually ride

against when the actual velocity of the wind is

(1) 12 miles per hour blowing from the E.

(2) 12 S.

(3) 12 N.

(4; 12 N.E.

Answers.

(1) Direction N.E. Northerly component, 12 miles per hour.

(2) No wind.

(3) N. Northerly component, 24 miles per hour.

(4) 23 to E. of North. Northerly component, 20*5 miles per

hour.

7. The crank of an engine makes 5 revolutions per second in

the clockwise direction, and the crank-pin is 9 inches radius, the

connecting-rod is 3 feet long. Find

(1) the velocity of the cross-head pin relative to the frame,

(2) the velocity of the cross-head pin relative to the crank pin,

(3) the velocity of the crank-pin relative to the cross-head pin,

when the crank angles are respectively 30, 90, and 120 degrees,

measured from the initial direction, the cross-head being arranged

to the left of the crank-shaft (as shown in Fig. 153).

(The velocity of the cross-head relatively to the crank-pin is

given by

Vector difference (velocity of cross-head minus

velocity of crank-pin)

The direction of relative velocity is at right angles to

the connecting-rod ;
hence the directions of the three

sides of the vector triangle are given and the magni-
tude of one of them from which the various problems
above can be solved.)
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Answers,

Angles

Velocity of cross-head pin rela-

tive to frame ...

Velocity of cross-head pin rela-

tive to crank-pin

Velocity of crank-pin relative to

cross-head

30
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Answers. (1) 20^30 and 14'923o>.

(2) 12-53oo and 32-7210 .

or

12'5i6i and 32-7252o.

10. A clack-box is bolted to an angle-plate on the face-plate

of a lathe for boring out the valve seating. The mass of the box

and the angle-plate and attaching bolts is equivalent to 50 pounds
at 3 inches radius. What mass must be added to the face-plate

at 1 foot 6 inches radius to effect balance ?

(The seating cannot be bored truly unless the work is

balanced.)

Answer. S'33 pounds.

11. A rope-wheel, weighing 1 ton, driving the main shaft of a

mill at 150 revolutions per minute, caused the bearing nearest to it

to heat. The distances of the right-hand and the left-hand bear-

ings from the centre of the wheel are respectively 1 foot 9 inches

and 5 feet. The shaft was disconnected, and it was found by

experiment that the wheel was put of balance (the rim was not

turned inside) to the extent of 34 pounds at 2'8 feet radius. Find

the distance of the mass centre of the wheel from the centre of the

shaft, and the dynamical load on the bearings. Assuming a co-

efficient of friction of 01, find the horse-power required to over-

come the friction of the bearings due to the dynamical load alone.

The diameter of the shaft is 5 inches. What fraction is the

dynamical load of the static load ?

(Horse-power required is given by

Dynaml. load on bearing X coefficient offriction X rad. ofjour, in ft. x w

550

Answers.

(1) J inch nearly. (2) Dynamical load on right-hand bearing,

540 Ibs. weight; on the left-hand, 189 Ibs. weight. (3) 0'44 H.P.

(4) 32^ per cent.

12. The crank-arms and crank-pin of a crank-shaft are equivalent

to a mass of 700 pounds at 1 foot radius. The shaft is supported
in two bearings, 5 feet centre to centre, and the centre of the crank
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is 1*5 feet from the left-hand bearing. The diameter of the shaft

at the journals is 8 inches. Find the dynamical load on the shaft

and on the bearings for a speed of 240 revolutions per minute,

and calculate the rate, in horse-power, at which work is dissipated

in heat at each bearing, assuming a coefficient of friction of 0*05.

Answers.

Dynamical load on shaft, 13,708 Ibs. weight, load on bearings,

left hand, 9595'6 Ibs. weight; right hand, 4112*4 Ibs. weight.

H.P. loss, left-hand bearing, 7'30
; right hand, 312

; total, 10'42.

13. Draw the bending moment diagram and the shearing force

diagram for the shaft of the previous question due to the revolution

of the unbalanced mass, assuming the shaft to be a straight one.

State the numerical value of the maximum bending moment.

Answer. Maximum bending moment, 172,720 inch Ibs.

14. Find the single mass at 3 feet radius which will balance

the mass of question 12. Find also the magnitudes of two masses

which will effect balance when they are placed in the same plane
of revolution as the disturbing mass, at radii of 4 feet and 5 feet

respectively, these radii being inclined to the radius of the

disturbing mass at 160 degrees and 220 degrees respectively.

Answers. (1) 233 J pounds.

,<y\ (130 pounds at 4 feet radius.)

( 55 pounds at 5 feet radius.)55 pounds at 5 feet radius.

15. What is the direction of the axis of the couple exerted on

a double-ended wrench, to tap a nut with a right-hand thread ?

Answer.

A line drawn parallel to the axis of the tap with the arrow-

head on it pointing from the wrench towards the point of the

tap.

16, Add the couples
2030 ,

Answer.

37'233o, meaning that the axis is inclined 33 degrees to the initial

line, and that the moment of the couple is 37'2.
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17. A three-legged table touches the ground at points which

joined, form an equilateral triangle, ABC, of 2-feet side. A force

of 7 Ibs. weight acts vertically on the table at a point D, 1-2 feet

from A and 1/4 feet from B. Find the pressure at the points of

support.

(Take A for the origin. Consider the lines AB, AC, AD,
to be the horizontal traces of three vertical planes.

Referring the given force to the origin A, there will

be an equal and parallel force at A, and a couple
7 X AD foot-lbs. acting in the plane of which AD is

the trace. This couple must be balanced by couples in

the planes of which AB and AC are the horizontal

traces. Therefore set out the axis of the couple in plane
AD, 7 X AD units long, and complete the triangle by
lines drawn at right angles to the remaining traces, the

intersection of these lines will determine the length and

sense of the two unknown axes. Measuring these off

and dividing respectively by the arms AC and AB, the

forces of the two couples at the supporting points are

known.)

Answer.

Force at A = 2-23 Ibs. weight
at B = 1-4

at C = 3-37

18. Find the two masses which will balance the mass of

question 12, when they are placed at 4 feet and 5 feet radii

respectively

(1) In planes of revolution, the first 1 foot to the left of the

plane of the given mass, the second 2 feet to the right.

(2) In planes distant 1 foot and 3 feet respectively to the

right of the given mass.

Answers.

(1) Mass in plane to the left 116'6 pounds at 4 feet radius,

the radius being at 180 with the radius of the given mass.

Mass in plane to the right 46 '6 pounds at 5 feet radius, the

radius being at 180 with the radius of the given mass.

(2) Mass in plane nearer the given mass, 262*5 pounds at
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4 feet radius, the radius being at 180 with the radius of the given
mass.

Mass in further plane 70 pounds at 5 feet radius, the radius

being at with the radius of the given mass.

19, Draw the bending moment and shearing force diagrams for

the shafts of the two balanced systems of question 18, due to the

dynamical loading alone, when the speed is 250 revolutions per
minute.

20. Five pullies, equally spaced at 2 feet apart, are keyed to a

shaft which is supported on bearings 12 feet apart. The pullies
are out of balance to the following extent :

No. 1, 5 pounds at 1 foot radius.

No. 2, 6 2 feet

No. 3, 7 1 foot

No. 4, 2 2 feet

No. 5, 6 1 foot

The angles between the several mass radii and the mass radius

of No. 1 pulley are respectively 45, 90, 120, and 240 degrees.

Find the two masses which will balance the system

(1) When placed in Nos. 1 and 5 pullies at 1 foot radius.

f^\ 9, 4--"

Answers.

m C 3-S4308 in No. 5.) m f 91 5o in No. 4.)
( }

a5-25225 in No. 1.5
;
t22-722oin No. 2.)

The anles are measured from the direction of No. 1 radius.

21. Find at what speed the maximum value of the unbalanced

force of a locomotive is 4 tons, assuming that the revolving masses

are balanced and that the reciprocating masses, which weigh 600

pounds per cylinder, are unbalanced. Diameter of wheels, 4 feet

6 inches. Stroke, 2 feet. (Use formula in (1), page 85.)

Answer. 28*6 miles per hour.

22. What is the speed in question 21, if the revolving parts,

which weigh 700 pounds per cylinder, and are at 1 foot radius,

are unbalanced as well ?

Answer. 19'4 miles per hour.
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23, Calculate the values of the swaying couples in questions
21 and 22, assuming the cylinders to be inside and 2 feet centre

to centre. (Use formula in (2), page 85.)

Answer. 8950 foot-lbs. in each case.

24, What is the speed in question 21, if two-thirds of the

reciprocating masses are balanced and all the revolving masses ?

Answer. 49*5 miles per hour.

25. Calculate the speed in the previous question when the

diameter of the driving-wheel is 7 feet.

Answer. 77 miles per hour.

26, Calculate the values of the respective swaying couples for

a speed of 60 miles per hour and their respective periodic times,

for the following engines, in each of which the revolving masses

are balanced and the mass of the reciprocating parts per cylinder

is 600 pounds, two-thirds of which is balanced. Stroke, 2 feet.

(1) A 7-foot inside single, cylinders 2 feet pitch.

(2) A 7-foot outside single, cylinders 6 feet pitch.

(3) An 8-foot outside single, cylinders 6 feet pitch.

(4) A 5-feet inside cylinder tank, cylinders 2 feet pitch.

Answers. (1) 5440 foot-lbs. 0*25 seconds.

(2) 16320 0-25

(3) 12495 0-286

(4) 10662 0179

27. Two engines are built with similar sets of reciprocating

parts, one as a 7 -foot outside single in which the cylinders are 6 feet

pitch, the other as an inside cylinder tank engine in which the

cylinders are 2 feet pitch. The revolving masses and two-thirds

of the reciprocating masses are balanced in each case. For what

diameter of the driving-wheels would the swaying couple acting

on the tank engine be equal to that acting on the single engine,

when both engines are running at the same speed ?

Answer. 4 feet diameter approx.

28. Assuming that the tractive force exerted by an engine
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varies inversely as the speed, and that the tractive force is 2 tons

when the speed is 30 miles per hour, and also that there are 200

pounds reciprocating mass unbalanced per cylinder, find the speed
at which the maximum value of the unbalanced force becomes

equal to the average tractive force. Wheels, 7 feet diameter.

Stroke, 2 feet.

Answer. 44*6 miles per hour.

29. Find the balance weights for the inside single engine speci-

fied by the following data :

Stroke, 26 inches. Cranks at right angles, left-hand crank lead-

ing. (In Fig. 79 the right-hand crank is leading.)

All the revolving and two-thirds of the reciprocating masses are

to be balanced.

Distance centre to centre of the cylinders ... 2 feet 4 inches

Distance between the planes containing the mass

centres of the balance weights ... ... 4 ,, 11 J

Mass of the reciprocating parts per cylinder ... 612 pounds
Mass of the revolving parts per cylinder ... 720

Answer.

Left-hand wheel. 880 pounds at 13 inches radius at an angle

of 160 degrees measured from the left-hand crank, counter-clock-

wise, when facing the left-hand wheel.

30. Find the balance weights for the inside cylinder four-

coupled engine specified by the following data :

Stroke, 24 inches. Inside cranks at right angles, right-hand crank

leading. Outside cranks, 11 inches radius, placed oppositely

to the corresponding inside cranks. All the revolving and

two-thirds of the reciprocating masses to be balanced. The

mass of each coupling-rod to be divided equally between

the driving and trailing wheels. The balancing mass for the

reciprocating parts to be divided equally between the driving
and trailing wheels.

Distance centre to centre of cylinders 2 feet

Distance between planes of motion of

wheel-cranks ... ... ... 5*166 feet

Distance between planes of motion of

coupling-rods ... ... ... 6 '27 w
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Distance between the planes containing

the mass centres of the balance

weights 4-94 feet

Mass of reciprocating parts per cylinder 642 pounds at 12 inches

Inside revolving masses per cylinder 723 12

Mass of each coupling-rod ... ... 224'5 ,,11
Mass of each wheel-crank in driving

and trailing wheels ... ... 117'6 11

Mass of part of crank-pin outside crank,

together with the pin and washer

for each outside crank 38'2 ,,11

Answer.

Left-hand driving-wheel. 493 pounds at 12 inches radius at an

angle of 37 degrees, measured from the outside crank, counter-

clockwise, when facing the left-hand wheel.

Trailing-wheel. 145 pounds at 12 inches radius at an angle
of 144 degrees, measured from the outside crank, counter-clockwise,

when facing the left-hand wheel.

31. Find the balance weights for the engine of the previous

question when the two-thirds of the reciprocating masses are

balanced entirely in the driving-wheels.

Answer.

Left-hand driving-wheel. 651 pounds at 12 inches radius at

an angle of 34 degrees, measured from the outside crank, counter-

clockwise, when facing the left-hand wheel.

Trailing-wheel. 268 pounds at 12 inches radius at an angle
of 175J degrees, measured from the outside crank, counter-clock-

wise, when facing the left-hand wheel.

32. Calculate the maximum value of the hammer-blow for the

driving-wheel in the two preceding examples when the crank-shaft

is making four turns per second (corresponding to 60 miles per
hour with a 7-foot wheel), and hence find the maximum and

minimum load on the rail, supposing the static load to be 7^ tons.

(Use expression (1), Art. 76.)

Answers.

For example 30, where one-third is balanced in the driving-

wheel, hammer-blow = 3185 Ibs. weight.
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Maximum load on the rail, 8 '92 tons weight ; minimum, 6'08

tons weight.

For example 31, where two-thirds is balanced in the driving-

wheel, hammer blow = 6370 Ibs. weight.

Maximum load on the rail, 10*34 tons weight; minimum, 4*66

tons weight.

33. Assuming the mass of the reciprocating parts shown in

Fig. 50 to be 1000 pounds, and the crank radius to be 1 foot, find

the accelerating force when the crank makes 480 revolutions per

minute, for the crank angles, 0, 60, 90, 120, and 180 degrees.

Answer.

-78440, -39220, 0, +39220, +78440 Ibs. weight.

34. Find the maximum values of the unbalanced force and the

unbalanced couple in terms of the revolutions per second, due

to the reciprocating masses of a four-crank engine in which the

cylinder pitches, reckoning from the left, are 10 feet, 12 feet, and

10 feet respectively, the corresponding masses, reckoning from the

left, being 2, 3, 4, and 2 tons, and in which the crank angles are,

reckoning from the left, between cranks 1 and 2, 90 degrees ;

between cranks 2 and 3, 90 degrees ;
between cranks 3 and 4, 90

degrees. Stroke, 4 feet.

Answer.

?i
2

Unbalanced force, 176 '5 Ibs. weight.
/

Unbalanced couple in plane of reciprocation about an axis at

n2

the centre of the engine, 5920 foot-lbs.

35. Find the unbalanced force and couple using the data of the

previous question \vhen the sequence of cranks is changed to the

following, reckoning from the left : angle between cranks Nos. 1

and 2, 180 degrees; between cranks 2 and 3, 90 degrees; between

cranks 3 and 4, 180 degrees.

n?
Answer. Unbalanced force, 176'5 lbs. weight.

9
v>

Unbalanced couple at the centre, 1275 foot-lbs.
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36. The mass centre of a connecting-rod, I feet long, is Q'Sl

from the small end. Its mass is 850 pounds. Find the masses

which must be included with the revolving and reciprocating parts

which it connects, in order that the effect of the rod may be

balanced when these masses are balanced.

Answer. 680 pounds with the revolving mass.

170 reciprocating mass.

37. Beckoning from the left in order, let the letters A, B, C, D
denote the cylinders of a four-crank engine. The distances between

them are, 5 feet between A and B, 8 feet between B and C, 6

feet between G and D. The revolving masses corresponding to

A, B, C, D are respectively 1, 1J, 1J, and 1 ton at crank radius.

Given that the angle between the cranks of cylinders B and C is

105 degrees, and that the reciprocating masses of cylinders B and G
are respectively 2 and 2 tons, find the remaining crank angles and
masses so that the reciprocating parts may be in balance amongst
themselves, neglecting the obliquity of the connecting-rod. Find

also the masses which must be added to the crank-shaft at cranks

A and B to balance it.

Answer.

Angle between cranks C and A, 97J decrees ^
A r KQ~ (

measure
)> " U) ^ ,

D B 99^ J
order<

)) D
>
y ?2 > '

Eeciprocating mass at A, T615 tons.

at D, 1-343

Eevolving mass attached to crank-shaft at A, 0-07i 84 tons.

at D, 0158 9io

The subscript directions being measured from crank B towards
crank C.

38. Taking the data of the previous example, find the remaining
crank angles and reciprocating masses, including the revolving
masses with the reciprocating, so that the reciprocating and revolv-

ing masses are together in balance in the plane of reciprocation,
but the revolving masses are unbalanced in the plane at right

angles to it.

u



290 THE BALANCING OF ENGINES.

Answer.

Angle between cranks and A, 96 J degrees
^ meaguring Ju

"

D
"

B 101? I order'

*-> ^> iUX 6 > J

Keciprocating mass at A, 1/69 tons.

at D, 1-19 tons.

39. Taking the data of question 37, balance the reciprocating

masses amongst themselves, and find what the corresponding

revolving masses should be so that they may be in balance without

the addition of balance weights, having given that the revolving

mass at A is 1 ton.

Answer.

Eevolving masses must be in the same ratio as the reciprocating

masses.

Eevolving mass at B, T394 tons.

atC, 1-238

at D, 0-833

40. The reciprocating masses of a four-crank engine are

respectively 5J, 7, 6, and 5 tons, taken in order. Find the cylinder

centre lines having given that the pitch of the extreme cylinders

is 39 feet, and that the remaining two are to be arranged sym-

metrically with respect to them, neglecting the obliquity of the

connecting-rod. Find also the corresponding set of crank angles.

(This problem may be solved by taking advantage of the

geometrical properties of the combined force and couple

polygons, Art. 37, Fig. 47, to calculate the ratio
, the

distances a\ and a% being measured from a central refer-

ence plane, as in Fig. 110, and then drawing the couple

triangle ABd or CBc, from either of which the force

polygon may be completed. Referring to Fig. 47, page

50, the condition of symmetry requires that

M _ Cc

AD CD

and therefore the line joining d to c is parallel to AC.



EXERCISES. 291

Hence

Be = e

4 x Brf = 2^2 B^ (1)
ttC #1 -j- #2

Since if AC represents 2#i, tfc represents #1 + #2, and

e/ represents 2&2-

Acraino

since

-d)-OD(l-4

CA

Substituting the value of Ed, in (1)

Similarly

B/ = -2AD

Again considering the triangle ABC, let be the

central point of AC, and let the angle BOC be 0.

Then

AB2 - BC2 = 2aiOB cos 6

Be2 - B/
2 = 2a2OB cos 9

Dividing and substituting the values of Be and B/

AB2 - Be2 _ a2 Mi2 - M4
2

#

CD2 - AD2
~

ai M2
2 - M3

2

After the value of this ratio has been calculated from

the four given masses, either of the couple triangles

ABd, or BcC, may be drawn. Completing the force

polygon all the crank angles are determined. The

lengths to be used in drawing the triangle ABd are

AB = 2iMi
Bd = (i +
Ad = (ai

* This relation is given in Herr Schlick'a paper
" On Balancing Steam Engines,

Trans. Imt. Naval Architects, 1900.
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Answers

Eatio
<** = |ai 52

Pitch of inner cylinders 15'75 feet

Angle between cranks 1 and 3, 118 degrees (see Fig. 48)
3 and 2, 81J
2 and 4, 123

4 and 1,37J ,,

41. Eeferring to the engine of which the data are given in Art.

50, find the change which must be made in the masses belonging
to Nos. 2, 3, and 4 cranks, and the change in the direction of

crank No. 4, relatively to crank No. 1, in order that the reciprocat-

ing parts may be in balance amongst themselves, when the valve-

gear is neglected.

Answer.

No. 2 mass, increased 100 pounds, 6
-66 per cent, of the original

mass.

No. 3 mass, increased 125 pounds, 9'S per cent, of the original

mass.

No. 4 mass, increased 75 pounds, 7' 2 per cent, of the original

mass.

Angle between cranks 1 and 4, 47J degrees, being a change of

2^ degrees.

42. Eeferring to the engine of which the data are given in

Art. 50, assume that the masses of the reciprocating parts corre-

sponding to cranks Nos. 1, 2, and 3 are given, being respectively

1000, 1500, and 1275 pounds, and find the two solutions which

are possible when the valve-gear is included.*

(This is case C of Art. 8. Neglecting the valve-gear, the

solutions differ only in the respect that the sequence of

angles in the one is opposite to that of the other. Or,

holding the drawing of the angles from one solution in

front of a looking-glass, the reflection is the other solu-

tion. Including the valve-gear, there are two different

solutions, one of which in the case in question is of

course the solution of Art. 50.)

*
I am indebted to Professor Dunkerley for this extension of Art. 50.
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Answer.

2nd solution. Angles between cranks 1 and 4, 4 and 2, 2 and

3, are respectively 44\ degrees, 118 degrees, and 93\ degrees
measured counter-clockwise.

Mass at No. 4 = 1095 pounds.

43. The cylinders of a four-crank engine are arranged

symmetrically. The pitch of the outer pair is 35 feet, and of the

inner pair 15 feet. The mass of each set of reciprocating parts

belonging to the outer cylinders is 6 tons. Find the crank angles
and the inner masses, so that the reciprocating masses may be in

balance for primary and secondary forces, and primary couples.

(Use equation (9), Art. 96, and check the work by Fig. 112.)

Answer,

Let A, B, C, D indicate the cylinders taken in order.

Angle between cranks A and J), 61 degrees 42 minutes.

,,
B C, 108 48

Reciprocating mass corresponding to cylinders B and C,

8 '844 tons per cylinder.

44. Details of the valve-gear belonging to the engine of the

previous question are given below.
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tons per cylinder, as found in the previous question, find the

remaining angles and the masses corresponding to cylinders A
and D, including the effect of the valve-gear.

(Take a reference plane at crank A and include the couples

belonging to the valve-gear of crank A, by assuming
that the direction of crank A is that found in the

previous question.)

Answer.

Angle between cranks A and D, 63 degrees 53 minutes.

A C, 95 56

B D, 91 23

Mass at A, 6'3 tons.

at D, 6-0

45. An opposite pair of crank angles, ft
and S, in a four-crank

engine, have the values
ft
= 110 degrees and = 90 degrees.

Find the remaining angles, the ratio of the reciprocating masses,

and the pitch of the cylinders so that the engine may be in balance

for primary and secondary forces and primary couples.

(Find 71 and y2 from equation (11), Art. 96, and MI from

equation (12), Art. 96
;
then find M2 ,

M3 ,
&2 , #3, either by

calculation or by the graphical method of Art. 37.)

Answer.

= 44 degrees 12 minutes

73 - 115 48

If M4
= 1, then

M! - 2-3155

Ma = 2-9026

M3
= 2-9563

If the reference plane is taken at No. 4 crank, so that #4
= 0,

and &i be put equal to unity

a-2 = 0-8326

3
= 0-6236

46. Given that the crank radius of the symmetrical engine
detailed in question 43 is 2 feet, that the connecting-rod is 7 feet
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long, and that the engine runs at 80 revolutions per minute, find

the maximum value of the unbalanced secondary couple.

(See Art. 118, type 3, or the formulae in Schedule 21.)

Answer. 385 foot-tons.

47. Given that the crank radius of the unsymmetrical engine
detailed in question 45 is 2 feet, that the connecting-rod is 7 feet

long, that the pitch of the extreme cylinders is 35 feet, that M4 is

6 tons, and that the speed is 80 revolutions per minute, find the

maximum value of the unbalanced secondary couple.

(The most expeditious way of doing this is to find the closure

of the secondary couple polygon graphically. This
f) n

measures 312 units. Multiply this by ^-7--

Answer. 385 foot-tons.

48. A steel tube, 6 feet long say, is firmly fixed at one end in

a vertical position, and loaded at the free end with a mass of 10

pounds. It is found by experiment that a force of 10 Ibs. weight,

applied at the centre of the mass at right angles to the length of

the tube, produces a displacement from the position of equilibrium
of a tenth of a foot. Find the time of vibration of the system,
and the displacement of the centre of the mass from the position

of equilibrium at the end of 10 seconds, having given that the

displacement is 0'3 feet when the time is nothing, and that a is

nothing when the time is nothing. Neglect the mass of the tube.

Answer. Time of vibration = 0'35 seconds.

Displacement at the end of 10 seconds is 0'2S feet.

49. Find the displacement at the end of 1 second for the

system of question 48 when there is a frictional resistance acting,

which is proportional to the velocity, having given that the

resistance to motion is 3 Ibs. weight when the velocity is 1 foot

per second.

Answer. 0*00004 feet.

50. Suppose a periodic force whose periodic time is 0'4 seconds,

and whose maximum value is Ibs. weight, to act on the mass of
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the system of question 48. Find the maximum amplitudes when
the frictional resistance to motion at unit velocity is respectively

3 Ibs. weight and - Ibs. weight. Find the maximum amplitudes
ij

in the two cases when the periodic time of the force is 0'35

seconds.

Answers.

0-0059 feet and 0'0066 feet when the periodic time is 0'4

seconds.

01306 feet and 0'637 feet when synchronism takes place.

51; The reciprocating masses of a single-cylinder engine weigli

6 tons. The cylinder is 70 inches diameter and 4 feet stroke, and

the connecting-rod is 7 feet long. When the connecting-rod sub-

tends a crank angle of 60 degrees, the difference between the

forward and the back pressure in the cylinder is 30 Ibs. per square
inch. Find the turning moment on the crank when the speed is

80 revolutions per minute.

(Calculate the acceleration of the reciprocating masses by
equation (2), Art. 78 (a is zero in this case), or use

Klein's construction, Art. 104. Calculate the length
of 0</ (Fig. 143), and use the appropriate product from

equation (1), Art. 130.)

Answer. 83-6 foot-tons.

52. Find the ratio in which the total horse-power should be

distributed between the four cylinders of the example, case 2, Art.

97, in order to obtain a good crank-effort curve, having given that

the horse-power of No. 2 cylinder is to be equal to the horse-

power of No. 3 cylinder.

Answer.

Calling the horse-power of cylinders Nos. 2 and 3 each equal
to unity

Horse-power of No. 1 cylinder = 074
: M M ^ *

= v
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53. Find the ratios in the previous example, if the horse-

powers in cylinders 1 and 4 are each equal to unity.

Answer. Horse-power in cylinder No. 2 = T53.

No. 3 = 1-34.

54. The mass centre of a connecting-rod 7 feet long from

centre to centre, is 4*9 feet from the small end. The rod, sus-

pended so that it is free to swing about an axis through the small-

end centre, swings in unison with a plumb-line 6 '3 feet long.

Find k, the radius of gyration about a parallel axis through the

mass centre.

Answer. 2-61 feet.

55. The rod of the previous question is suspended so that it is

free to swing about an axis through the big-end centre. Find the

length of a plumb-line which will swing in unison with it.

Answer. 5 '36 feet.

56. The connecting-rod specified in question 54 drives a crank

2 feet radius. The mass of the rod is 1610 pounds. Find the

force required to produce the instantaneous motion of the rod when

the rod subtends a crank angle of 60 degrees, and the crank

revolves uniformly at 80 revolutions per minute.

Answer.

5305 Ibs. weight in a direction inclined 307 degrees with the

line of stroke (the crank radius in the line of stroke, representing

the initial direction, points away from the cross-head), and cutting

the line of stroke at 0*71 feet measured from the centre of the

crank-shaft towards the cross-head.

57. Taking the data of the previous question, find the instan-

taneous values of the reactions on the frame.

Answer.

(1) A force of 5305 Ibs. weight inclined 127 degrees with the

line of stroke (the initial direction pointing away from the cross -

head) acting at the axis of the crank-shaft.

(2) A couple whose moment is 4930 foot-lbs., the equal

forces of which are each 634 Ibs. weight.
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Accelerating force, action on the frame,

12, 56, 58 ; approximate expression for,

to include effect of the obliquity of the

connecting-rod, 126
;

exact expression

for, to include obliquity of connecting-

rod, 126
; expression for, infinitely long

rod, 56; for uniform motion in a circle

(Schedule 2), 10, 11
;

on connecting-

rod, 233, 237-240 ;
series for, on piston

masses, 164

Acceleration of connecting-rod, 232;

angular, 251; at dead centres, 253;
resultant force causing, 237-239

Acceleration of mass centre of connecting-

rod, analytical calculation of, 250 ;

graphical constructions for, 234
Acceleration of piston masses, approximate

construction for short rods, 182 ; approxi-
mate formula for short rods, 126

;
curves

calibrated for unbalanced couple, 180;
curves calibrated for unbalanced force,

177, 178; exact construction for, 172,

App. I. ; exact expression for short rods,

126, 254 ; expression for long rod*, 56

Addition of couples, 26

Addition of vector quantities, 2

Analytical method of investigating condi-

tions of balance, short connecting-rods,

eight fundamental equations, 134 ; five-

crank engine, 158; four-crank engine,

143-153; fundamental theorem, 136;

general method, 122-134; six-crank

engine, 161; three-crank engine, 138;
two-crank engine, 137

Axial plane, 22

Axis, central, reduction to, 39

Axis of a couple, 25

Axis, reaction on, 11

Balancing an engine with cylinders at

right angles in the same plane, and

driving on one crank, Appendix V.

Balancing an engine with three cylinders
at 120 degrees in the same plane, and

driving on one crank, Appendix V.

Balancing an engine without the addition

of balancing masses, 78

Balancing connecting-rod, 62, 88, 246

Balancing, higher orders than the second,

163; primary and secondary, 124

Balancing reciprocating masses, 80, 87
;

eight-coupled locomotive, Balwin Com-

pany, 115; inside cylinder single loco-

motive, 89; inside cylinder six-coupled

locomotive, 96
;
outside cylinder single

locomotive, 92

Balancing reciprocating masses, long con-

necting-rods, example, including valve-

gear, four-crank engine, 71 ; examples,
four-crank engines, 67, 69

; general
form of the problem, 65 ; investigation
of method, 58 ; locomotive, 87 ;

number
of variables, 66

;
statement of general

rule, 64

Balancing reciprocating masses, short con-

necting-rods, 124. See "Analytical
"

Balancing revolving masses, any number
of given masses in different planes of

revolution, 34 ; carriage-wheels, L. and

N. W. R., 20 ; crank-shaft, 75, 117 ;

general conditions of balance (equations

(1) and (2), p. 34), 36

Balancing revolving masses by recipro-

cating masses, 75

Balancing revolving masses in one plane
of revolution, any number of masses, 16;
one mass, 13; two masses, 15

Balancing revolving masses in three planes
of revolution, 30

Balancing the Lanchester Motor Car

Engine, Appendix V.

Bennett's construction for the acceleration

of the pistou, Appendix!.; for finding
a point on the line of action of the

resultant accelerating force on a rigid

link, Appendix IV.

Bob-weight, 65

Central axis, reduction of unbalanced force

and couple to, 39

Centrifugal couple, 22; vectors, piymary
and secondary, 133

; vectors, rule for

way of drawing, 35

Centrifugal force, 12; effect of, with

reference to a point, 29; vectors,

primary and secondary, 133; vectors,

rule for way of drawing, 35

Centripetal force, 12

299
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Closing a vector polygon, quantities deter-

mined by, 7

Closure, 37
Common or crank radius, reduction of

masses to, 41

Condition for no turning moment, 27

Condition that vector sum may be zero, 3

Conditional equations for primary and

secondary balancing, 134-
;
selection of,

135
;
theorem controlling selection of, 1 36

Conditions of balance, a system of revolving
masses (equations (1) and (2), p. 34), 36,

42; five-crank engine, short connecting-

rods,! 60; four-crank engine, long connect-

ing-rods, 78
;
four-crank engine, short

connecting-rods, 145
;

four-crank sym-
metrical engine, short connecting-rods,

148, 155; four-crank unsymmetric.il

engine, short connecting-rods, 149 ;
four

revolving masses, 47 ; primary and

secondary, 130, 134 ; reciprocating

masses, long connecting-rods, 61
;

re-

ciprocating masses, short connecting-

rods, 130, 134
;

six-crank engine, short

connecting-rods, 163; two-crank engine,
short connecting-rods, 138; three-

crank engine, short connecting-rods,

143; three revolving masses, 46; two

revolving masses, 46

Connecting-rod, action on frame, 240-

250; action on turning moment, 241;

analytical investigation of motion of,

250
; balancing, 62, 88, 246

;
motion of,

232, et seq. ; opposing motion of two

rods, 249

Couple, addition of, 26
;
arm of, 22

;
axis

of, 25
; causing angular acceleration

of connecting-rod, 250, 252 ; centri-

fugal couple, 22
;
closed couple polygon,

27; curves for unbalanced engine, 181,

186; definition of, 22; equivalent, 24;

modifying crank-effort due to motion

of connecting-rod, 241 ; moment of, 23
;

rules for way of drawing vectors repre-

senting a couple in the balancing pro-

blem, 35

Crank-effort diagrams, 223
; analysis of,

into harmonic elements, 226
;
four-crank

marine engine, 230
; gas engine, 224

;

locomotive, 109, 223; method of drawing,
222

; single-cylinder engine, 223

Crank-effort, ratio of maximum to mean,
225, 226

; uniformity of, 225

Crank-shaft, balancing, 75, 117; turning
moment on, 219, 225

D

Damped vibrations, 204

Data, Lancashire and Yorkshire engines,

88, 89, 96

Data, selection of, 43, 66, 135
Definition of, arm of couple, 22; axial

plane, 22
;
axis of couple, 25

;
balanc-

ing reciprocating systems, 57 ; balancing
revolving systems, 13

; direction, to

include sense, 6
;
mass moment, 14

;

moment of mass moment, 36 ; plane
of revolution, 13

; reciprocating system,
57

;
reference plane, 30; secondary

balancing, 124
; turning moment of a

couple, 23
;
vector quantity, 1

Displacement vectors, 4
Division of horse-power amongst cylinders

for uniform turning moment, 228, 229

Dunkerley, Professor S., 272

Dynamical load on shaft, 12

Dynamical system, equivalent, 235

E

Effect, any number of forces acting simul-

taneously, 27
; centrifugal force with

respect to a point on axis, 29
;
connect-

ing-rod on frame, 232, 240-250; of

a force on a rigid body, 27
; unbalanced

forces on supports, 12, 56, 199, 214, 216
;

unbalanced reciprocating parts of a loco-

motive, 82, 102, 120

Errors, arithmetical computation of

maximum primary and secondary com-

ponents, 188
;
formulae for typical cases

(Schedule 21), 191-197; four-crank

engines specified in Schedules 19 and
20. ..175-186, 189; four-, five-, and
six-crank engines when balanced for

primary and secondary effect, 167
;

general method of finding for given

engine, 187
;
involved by use of approxi-

mate expression for acceleration of

piston masses, 126

Equations, fundamental, for primary and

secondary balancing, 134

Equivalent dynamical system, 235

Equivalent mass at crank radius, 41

Exercises, 277

Experimental apparatus, four-crank reci-

procating systems, 80
; locomotives,

122
; revolving systems, 52

Experimentally testing the balance, 19

Five-crank engine, 158, 166, 168

Force, accelerating, 10, 11, 56, 126, 164,
233

Force, centrifugal, and centripetal, 11, 12
;

effect of centrifugal, on axis of rotating

body, 12, 27, 29
;

effect of, on a rigid

body, 27
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Force required to constrain circular motion

(Ex. 8, p. 262), 10

Foot-lbs., 25

Foot-pounds, 25

Forced vibrations, 207, 211, 214, Ap-

pendix II.

Four-crank engine, balanced for primary,

secondary, and tertiary effects, 166
;
con-

necting-rods opposed in pairs, 249 ;
crank-

effort diagram of, 225, 230
; examples

of balancing (S.H.M.), 66, 69, 71;

primary and secondary balancing of,

143
; primary and secondary forces

balanced, and primary couples, 147
;

Schlick symmetrical engine, 147, 150,

154; unsymmetrical engine, balanced

for six conditions, 149, 152
;
unbalanced

forces and couples from, cranks at right

angles, 175-186, 189

Four-crank revolving systems, properties

of, 50, 51

Frame, action of connecting-rod on, 233,
237-240

Frame, action upon, by accelerating forces,

12, 56, 58

Geometrical properties of a pair of force

and couple polygons, 44-46
Geometrical solutions of particular pro-

blems, four-crank systems, 50, 157

Gray, Mr. Macfarlane, 48, 124, 156

Hammer-blow, 102, 105, 120, 121

Henszey, Mr., 115

Horse- power, rule for division of, amongst
cylinders, 228, 229

Indicator cards, L. and Y. locomotive at

65 M.P.H., 111

K

Kirsch, Professor, Appendix I.

Klein's construction for, acceleration of

connecting-rod, 234, 237
;

acceleration

of piston, 172

Lanchester Motor Car Engine, Appendix V.

Lateral vibrations (or vertical), 210

Locomotive, adhesion modified by balance

weight, 105, 107, 108, 112; American

practice, 115; balancing reciprocating

parts, 87 ; comparative tables, 119
;
con-

necting-rod, 88; crank-axle, 89, 117;
crank-effort curve, 109

;
distribution of

balance weights amongst coupled wheels,

112; effect of obliquity of connecting-

rod, 103
;

effect of unbalanced recipro-

cating parts, 82, 118; elimination of

horizontal couple, 118; examples of

balancing, 89, 92, 96, 99, 112, 115;

experimental apparatus, 122
;

four-

cylinder engine, 116 ; hammer-blow,
102, 105, 120, 121

;
horizontal swaying

couple, 83, 85, 118, 120, 121, 123;
indicator diagrams, 111; nett piston

pressure, 111
; secondary balancing, 122

;

slipping, 107; speed at which driving-
wheel lifts, 106

;
unbalanced force, 83,

85, 118, 120, 121, 123; variation of

rail-load, 102, 105, 120, 121

Longitudinal vibrations, 212

Lorenz, Dr., 149, 225

Macalpine, Mr. J. H., 164, 230

Magnitude of unbalanced force. See " Un-
balanced

"

Mallock, Mr. A., 124

Mass centre, 18

Mass moment, 36

Moment of mass moment, 36

Motion in a circle, acceleration for (Ex. 8),

262; force to constrain, 10

N

Natural period of vibration, concentrated

mass, 200; Schlick's formula for ship's

hull, 217; ship's hull, 214, 216, 218;
S.s. Deutschland, 218; s.s. Meteor, 217;
torpedo-boat hull, 216

Nodes, application of force or couple at,
211

;
of a rod vibrating laterally (verti-

cally), 210; of a rod vibrating longi-

tudinally, 212; of a rod vibrating
torsionally, 212; ship's hull, 218

Normand, M., 125

Obliquity of connecting-rod, effect on rail,

103; approximate formula for piston
acceleration, including, 126; exact for-

mula for piston acceleration, including,
126; formula for piston acceleration,

neglecting, 56
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Polygon, two vector quantities determined

by closing, 7

Pound, signification and abbreviation of, 25;

foot-lbs., 25
; foot-pound, 25

; Ibs.-feet,

25
;

Ibs. weight, 25
; pound, 25

; poun-
dal, 11, 25; poundals-feet, 25

Product of inertia, 36

R

Radial connector, 12

Reciprocating parts, method of balancing,
locomotive (sec

"
Balancing "), 87 ;

stan-

dard set of, 88

Reciprocating system, balancing of. 57
;

balanced by revolving masses (see
"
Balancing "), 80

;
definition of, 57

;
in-

vestigating balancing conditions of, long

rods, 58
; investigating balancing con-

ditions of, short rods, 125, et scq.

Reduction of masses to a common or crank

radius, 41

Reference plane, definition of, 30

Reference plane, position of, and couple

polygon, 49

Reference plane, position of, and number of

variables, 44
Relation between force and couple polygon

belonging to a balanced system, 44

Revolving masses. See "
Balancing

"

Revolving systems, two-, three-, and four-

crank, 46-50

Robinson, Mr. Mark, 124, 141

Rules, for checking accuracy of work, 35
;

general, for balancing an engine, long

rods, 64
; general, for balancing two-,

three-, four-, five-, and six-crank engines,
169-171 ; way of drawing centrifugal

couple (moment of mass moment, or

product of inertia) vectors in balancing

problems, 35
; way of drawing centri-

fugal couple (moment of mass moment,
or product of inertia) vectors in general,
25

; way of drawing centrifugal force

(mass moment) vectors, 32

Sankey, Captain, 124, 141

Scalar quantity, 1

Scales, 89

Schedules, list of, (1) a set of vectors, 7
;

(2) different ways of expressing force

constraining circular motion, and there-

fore centrifugal force, 11; (3) typical

example of a revolving system, 37 ; (4)

quantities derived from a force polygon
drawn at random, 48

; (5) standard
form of schedule, 64

; (6) reciprocat-

ing masses, four-crank engine, 67
; (7^

reciprocating masses, four-crank engine,
70 ; (8) reciprocating masses, four-crank

engine, including valve-gear, 72
; (9)

revolving masses, four-crank engine, in-

cluding valve-gear, 76
; (10) data of

inside cylinder single engine, 91
; (11)

data of outside cylinder single engine,
95

; (12) data of six-coupled engine,

driving-wheel, 97
; (13) data of six-

coupled engine, leading and trailing

wheel, 100; (14) expressions for un-

balanced force, hammer-blow and sway-

ing couple, 120
; (15) expressions for

unbalanced force, hammer-blow and

swaying couple when piston speed is

1036 ft. per min., 121
; (16) speed and

diameter of driving-wheel, piston speed
1036 ft. per min., 122

; (17) errors of

approximate formula for piston accelera-

tion, 127; (18) crank directions for

three-crank engine, 140; (19) data of

reciprocating masses, typical four-crank

engine, 175; (20) data of revolving
masses, typical four-crank engine, 176

;

(21) primary and secondary force errors,

typical engines, 196

Schlick, Herr Otto, 52, 125, 147, 217, 218

Schroter, Professor, Appendix I.

Schubert, Dr., 52, 149

Secondary balancing. See "
Analytical

"

Secondary unbalanced force, effect of, 128,
130

Shaft, dynamical load on, 12

Short-framed engines, 230

Simple harmonic motion, balancing for

(Chaps. III. and IV.), 58; relation to

circular motion, 57

Six-crank engines, 161, 168

Slipping, locomotive driving-wheel, 107,
109

Smith, Professor R. H., 239

Subtraction of vectors, 5

Summary, general, 1G8
;
method of finding

errors, 187, 188

Swaying couple, locomotives, 83, 85, 118,

120, 121, 123

Symmetrical engine, determination of, from

given centre lines geometrically, 157

Symmetrical engine, determination of, from'

given force polygon geometrically, 156

Symmetrical engine, Schlick four-crank,
errors of, 155, 193, 196

Symmetrical Schlick four-crank, 147, 150

Synchronism, 208

Synchronizing speed, Schlick formula for,'

218
;
s.s. Deutschland, 218

; torpedo-boat,
216
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Taylor, Mr. D. W., 61

Three-crank engine, 138, 141
; balancing

of (see "
Balancing ") ;

errors of, 62,

196

Torpedo-b.oat, vibration of, 216
Torsional vibration, 212

Turning moment on crank-shaft, 219 ;

curves representing (see
" Crank-effort

diagram ") ;
effect on frame, 219 ;

effect

of motion of connecting-rod on, 240 ;

uniformity of, 225
;
ratio of maximum

to mean, 224, 225
;

effect of weight of

parts on, Appendix III.

Two-crank engine, 137, 168

IT

Unbalanced force and couple (jsee
" Errors ") ;

force and couple, general investigation,

172
;

force and couple, reciprocating

system, long rods, 61
;
force and couple,

revolving system, 37
;

force and couple,

revolving and reciprocating parts, long

rods, 78; forces, primary and secondary,
effect of, with respect to a given reference

plane, 128; reciprocating parts of loco-

motive, 82, 118; revolving co-planar

system, 18
; engine with two cylinders

at right angles driving on the crank,

Appendix V. ; engine with three cylinders
at 120 degrees driving on one crank,

Appendix V.

Valve-gear, included in balancing an

engine, 71-75

Variables, number of, and conditional

equations, 134; number of, in a given

problem, 65, 135

Vector quantities, 1
;

addition of, 1
;

analytical relation between, defining
directions a and 2a, 132

; analytical re-

presentation of, 131
;
condition that the

sum of, may be zero, 3
;
determined by

closing a polygon, 7
;
direction of, 6

;

subtraction of, 5

Vector representing, centrifugal couple

(moment of a mass moment), 25 ;

centrifugal force (mass moment), 14
;

displacement, 4; primary and secon-

dary forces and couples, 133
; process of

finding primary and secondary un-

balanced force and couple, 184, 185,

188
Vibration and natural modes possible to a

ship's hull, 214
;
formula for gravest

vibration, 218; twin-screw steamers,
215

Vibration, experimental result?, s.s. Deut-

schland, 219; S.S. Meteor, 217 ; torpedo-

boat, 216

Vibration, lateral (vertical), of a solid rod,

209, 213
; longitudinal and torsional, of

a solid rod, 212, 213; of support, and

point of application of force, 211 ;
under

action of several periodic forces, 213

Vibration of a concentrated mass, curves

exhibiting, 203, 205, 208; damped by

friction, 204
; damped by friction and

under action of periodic force, 207
;

natural period of, 200
; synchronizing

with period of supports, 208, 209

Webb, Mr. F. W., 117

Wigzell engine, 231

Work, division of, amongst cylinders, 228,
229

Yarrow, Mr. A. F., 65, 87, 216

THE END.

BX WILLIAM CLOWES AWD 8OKS, LIMITED, LONDON AND BKCCLBS.







THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSED FOR FAILURE TO RETURN
THIS BOOK ON THE DATE DUE. THE PENALTY
WILL INCREASE TO SO CENTS ON THE FOURTH
DAY AND TO $I.OO ON THE SEVENTH DAY
OVERDUE.

AUG 21 1936

1QR1

LD 21-100m-8,'34



bb7/J

4940u

UNIVERSITY OF CALIFORNIA LIBRARY

V




