

Vol. XCLX.-NO. 26. ${ }_{\text {ESTABLISHED }}^{\text {1845. }}$.
NEW YORK, DECEMBER 26, 1908.

Copyright 1908 by Munn \& Co.
Salt in sea and on land.-Yearly production in the United States. $157,267,544$ tons of sodium are annually poured into the sea. Of this amount, $\mathbf{7 7 3} / 4$ per cent is common salt

SCIENTIFIC AMERICAN

 ESTABLISHED 1845 MUNN $\&$ CO. - . Editors and ProprietorsPublishod Wookly at
No. 361 Broadway, New York
Charles allen munn, president
361 Broadway, Now York
FREDERICK CONVERSE BEACH, Sec'y and Treas.
361 Broadway, Now York

terms to subscribers.

One copy, one year, for the United States or Mexico..
One copy, one year, one year, for Canada.

$\$ 3.00$
3.75

paid, 188. 6d. 4.5 the scientific american publications.
Scientific American (established 1845)
Scientific American Supplement (established 1876)............ 5.00
American Homes and Gardens.
The combined snbscription Edition (established 1888). 3.00
The combined subscription rates and rates to foreign countries, includ Ing Canada, will be furnished upon application. money order, or by bank draft or check.
MUNN \& Co., 361 Broadway, New York

NEW YORK, SATURDAY, DECEMBER 26, 1908.
The Editor is always glad to receive for examination illustrated articles short, and the facts authentic, the contributions will receive special at tention. Accepted articles will be paid for at regular space rates.

gation dam facts perverted.

It seems to be the fate of every great national enter prise undertaken by the United States to be assailed by a more or less numerous, and always vociferous, crowd of detractors and prophets of disaster. Such has been, and evidently will continue to be, the fate of the Panama Canal. The latest evidence of this was the altogether misleading statement that the set tlement of a small section of the Gatun dam proved that the site for the dam was unstable, and that the structure, when completed, must inevitably cave in and let loose the waters of the great Gatun Lake.
From the newspaper point of view, this item, as cabled from Panama, was a most attractive piece of sensationalism; and one of the leading New York dailies has not hesitated to exploit the incident, with all those refinements of the art which are so well understood and remorselessly practised to-day. Interviews were sought with engineers who were known to be opposed ${ }^{\text {ato }}$ the present lock-and-lake plan of con struction as adopted by the government, and their lurid predictions of what would happen, if the canal were completed along the present lines, were spread upon many a page of the journal in question.

Now, the Scientific Amertcan is in a position to as sure its readers that this subsidence of a small portion of the dam is a matter of no significance whatever, and gives, not the slightest reason to suppose that the dam when raised tó its full height will not be perfectly stable.
The Gatun dam, as completed, will consist of an artificial mound of sand and clay, 135 feet in height about 1,800 feet in width, and extending for $8,000^{\circ}$ or 9,000 feat across the valley of the Chagres 'River from hillside to hillside. This huge mound is to be formed by means of suction dredges, which will pump sand and clay, mixed with water, from the bed of the Chagres River below the dam, on to the site of the dam. Here, as the water drains away, the sand and clay will settle into a mass of very close consistency, so close as to be impervious to seepage. In order to confine the deposited material within the proper width of 1,800 feet, and prevent it from flowing away with the water, two walls of loose rock are being built entirely across the valley, one at the foot of the slope on the upstream side or lake side of the dam, and the other on the downstream side. The wall along the upstream toe, as completed, will be 30 feet broad at the top and 60 feet high. As the rock fill was being built out across the valley it crossed the old French canal channel; which runs through the site of the dam. Dùring the past twenty years this chanpel had become filled with silt and soft mud; and the engineers decided that, instead-of excavating this material until firm bot tom was reached, it would be more economical to dump the rock directly upon the mud, and allow the fill as thus formed to settle through the mud until it reached firm ground, :As the fill was raised in height, its weight at length became such that the expected displacement occurred, the rock settling down and forcing the mud up into mounds on either side of the fill. So far from the settling causing any concern to the engineers, it is exactly what they expected to take place; and the greater the settlement, the more they will be pleased. There is nothing new in this, and certainly nothing to warrant the attempt to stir up public apprehension, to say nothing of Congressional anxiety, regarding the stability of the dam. Railroad embankments are being made every.day by this very method of displacement; and when the rock fill at the toe of the Gatun dam has finally reached the under-
lying solid material, which it will do long before the dam is completed, the public need have no anxiety as to further settlement.

FASHIONS IN ELECTRIC SYSTEMS.

The views presented by an entirely disinterested and impartial critic, Mr. M. E. Uytborck of the Belgian State Railways, in the Bulletin of the International Railway Congress, describing his "Journey of Inquiry" in the United States, form a topic not a little suggestive in the light of other recent publications on the subject of electrical equipment.
Mr. Renshaw, in the December Electricat Journal, points out with admirable clearness and in a manner interesting to others besides the technically trained electrical engineer, the advantages of the monophase alternating current system. The paper of Mr. W. S. Murray, electrical engineer of the New York, New Haven \& Hartford Railroad, presented before the American Institute of Electrical Engineers, however much it is to be commended for its frank discussion in the interests of science of the difficulties encountin the interests of science of the difficulties encount-
ered in the electrification of that railroad, is quite as ered in the electrification of that railroad, is quite as
much a record of failure of the monophase system in its usual application as of the successful overcoming of unexpected difficulties.
The principal advantage of the monophase alternating system is briefly that it permits of the transmission by two conductors only-the trolley wire and the track-of those high voltages by which alone considerable economy in the first cost of conductors may be effected, and which are at the same time readily reduced to a safe working tension with almost no loss by means of entirely automatic and comparatively in expensive static transformers. The design of a method of trolley line construction by means of which the high-voltage wires can be safely secured, of transform ers portable on each car and of motors and control apparatus comparable in simplicity to those for direct current, has permitted the introduction of rural and interurban lines using this system, where the agricultural produce and similar freight traffic had to be created and the minimum expense was essential, and where the first cost of conductors, or rotary converter substations and feeders for an equivalent motor voltage, would have entirely prohibited a direct current system.

When the monophase alternating current comes to be applied to the congested terminus of a large railway system, however, these obvious advantages seem to be a little more than offset by practical disadvantages. There is no object in using alternating current except in the readily transformable high voltages desirable for conductor economy; high voltages cannot be safely carried in third-rail or similar conductors, and overhead wires have obvious disadvantages in stations, especially freight stations involving the use of cranes and travelers. The multiplication of switches and side-tracks involves a corresponding multiplication of conductors, which, in the case of overhead conductors, is enormously more costly in proportion, taking into consideration the desirability of making the wires from which current is taken as independent as possible and their supports as few as possible, whereas the third rail can be laid anywhere with equal ease and moved or replaced as readily as a length of running rail.

The theoretically automatic monophase transformer is found to provide a fiexibility and safety commensur ate with that of the direct-current system only with an attendant at every transformer substation; on the New - York, New Haven \& Hartford system no transformer stations are used, the generating station voltage being carried directly to the trolley, but, whereas on the New York Central electrification only one man to each 6.2 miles is required continuously to attend the rotary converters, on the New York, New Haven \& Hartford system there is an attendant in charge of the sectional cut-out corresponding to each switch-bridge every two miles. In either case the duties of the employee permit him to attend to other matters so that the only difference in cost favoring the monophase system is that of the buildings required and the moving machinery of the direct-current converter stations, which rather effectually disposes of the theory that on monophase railways no staff' is required for the distribution of traction current.
The number of employees of course decreases with the track congestion, and many miles of monophase trunk line would require only one sectional cut-out attendant," whereas a direct-current trunk-line would still require the converter station and attendant every six miles or so; to offset this, however, there is the immediate probability of the development for large power work of static transformers 'from alternating to direct current, and their introduction would at once put the direct current upon the same plane as the alter nating as regards automatic transmissiol
To come to the economy of operation, a New York Central train weighing, say 175 tons with an engine weighing 95 , requires in starting from stations and in
shunting operations only 400 to 500 amperes at 600 volts; a corresponding New Haven train in getting up speed requires 2,000 amperes and upward at the same voltage, or approximately five times the power, making no allowance for phase displacement, and, the motors have the additional disadvantage that running at low speed can only be effected by repeated cutting off and on of the current.
In view of the above considerations, the difficulties of adequately insulating high tension overhead wires in smoky tunnels, of stray magnetic fields, lack of in ductive element to counteract surging currents, and not least the electrical possibilities of a serious accident within the electrified zone, which are far more appalling for high-voltage overhead conductors than for any third-rail system under lower voltage, Mr. Uytborck concludes that traffic conditions should be the principal determining factor in deciding upon the system to be used. Electrical engineers, he suggests, have the tendency to follow the latest fashion and to adopt that which is new and has been successful in some instances in preference to older and betterknown methods that could sometimes be more economically used.

MANHATTAN SUSPENSION BRIDGE TO BE INVESTIGATED

The last thing that the Scientific American de sires is to pose as an alarmist regarding the safety of public structures; but we must confess to a feeling of relief on learning that the Mayor has directed that the Manhattan suspension bridge be submitted to an expert investigation. Had the recent expert inquiry into the cantilever structure at Blackwell's Island re vealed only some minor and easily remedied defects, our confidence in the suspension bridge would not be so rudely assailed; but when we remember that the stresses in some of the members of the cantilever bridge are as high as from 25 to 47 per cent above the limit which has been set by ,conservative engi neering practice, we may be pardoned for feeling no little anxiety as to the actual conditions of things in the Manhattan Bridge. When the present administra tion came into office, they found on file complete sets of plans for both of these bridges; and one of the first acts of the Bridge Department was to make some very radical changes in these plans. In the case of the cantilever bridge, the live load and the weight of the bridge itself were increased about 25 per cent; although the general outline and plan of the bridge were retained. In the case of the Manhattan Bridge, ,how ever, the plans which the Bridge Department found on file were ignored altögether, and others for an entirely different type of structure were drawn up. If, then, a mere change in the loading of the one bridge has sufficed to produce some deplorable results, what may we expect to find in the case of the other structure, in which not even the broad outlines of the original plan were preserved?

In view of these considerations we are gratified to learn that the Mayor has acceded to the request of the City Club for the appointment of "one or more competent bridge engineers to inspectsthe plans and stress sheets of thí Manhattan Bridge," Ralph Modjeski, one of the engine ${ }^{2}$.rs who will design the new Quebec bridge, haying been'sefectét. Anxiety regarding the ner structure is increased by the fact that although "the Bridge Department has from time to time made public the general plans of the Manhattan Bridge, it has never made public the strain sheet In the course of the investigation of the Blackwell's Island Bridge, the extraordinary fact was developed that no complete strain sheet, showing the stresses in the various members under the heavier loading, was available; and it is natural that a doubt should be raised in the minds of the members of the "City Club as to whether any complete strain sheet of the Manhattan Bridge has been drawn up. If approximate methods were adopted in determining the increase of size of the members of the Blackwell's Island Bridge they may have been used also in proportioning the Manhattan Bridge. It is certain that the only possible way to restore confidence in a suspension bridge, which is not only the largest but the most heavily loaded that has yet been designed or built, was to subject the plans to a searching examination by an independent bridge engineer of national reputation, such as will now take place.

Chinese wood oil is obtained from the nut of the wood oil tree by pressing or extracting. The color of the oil varies with the method of extraction. In China it is usually heated strongly and is consequently very thick and black. Wood oil forms a very durable lacquer for wood, far surpassing boiled linseed oil in hardness and permanence. The oil possesses the peculiarity of drying more quickly in damp than in dry weather. The residue of the nuts left after the re moval of the oil is a good fertilizer, which possesses the valuable property of destroying insects which feed on the roots of plants.

ENGINEERING.

The British navy is proverbial for the high speed of its ships. An analysis of this subject shows that there are 26 armored ships exceeding 23 knots in speed, in addition to 16 unarmored ships, chiefly scouts. The list includes 3 armored ships of 24 to 25 knots and 3 of 25 knots and over.
The Brazilian government is planning the construc tion of about 10 miles of new docks at Rio Janeiro which, with the two miles already provided for, will give this South American port some 12 miles of new dockage accommodation. The tonnage of the port is rapidly growing, having risen from about one and a half million tons in 1903 to two million tons in 1905.

A recent report by the Board of Trade on the street traffic problem of the city of London estimates it has a population of $7,323,000$, residing within an area of 692 square miles. The number of passengers carried in 1907 by local railways, tramways, and buses wa $1,281,000,000$, and the average number of trips during the same year was $1771 / 2$ per head of population.
The American Society of Mechanical Engineers has established its first student section by affiliating the Engineering Society of the Stevens Institute of Tech nology. The latter student organization has an in teresting programme of activities for the winter, of which a lecture on "Skyscraper Construction" and the problems it involves was given on December 3 by Mr C. G. Armstrong, architect of the Singer Building.

An interesting shipment of machinery was recently made, when the Curtis turbines which are being buil for the Japanese battleship "Aki" and armored cruiser "Ibuki" left the works of the Fore River Shipbuilding Company for the home dock yards in which the ships are being built. The "Aki" is a 19,750 -ton ship carrying four 12 -inch, twelve 10 -inch, and twelve 6 -inch guns, and the "Ibuki" is a 15,000 -ton ship mounting four 12 's, eights 8 's, and fourteen 4.7's.
One of the busiest centers of intersecting street traffic is the crossing at Forty-second Street and Fifth Avenue, New York. To break up the congestion, it is planned to depress Forty-second Street for one-half its width, and carry Fifth Avenue across the street on a viaduct of ornamental construction. Surface cars and heavy vehicles will use the depressed portion of Fortysecond Street, while lighter vehicles will use the non depressed portion crossing Fifth Avenue at street grade.
The advantages of a high-pressure water-supply system as a protection against fire, and as acting to reduce fire risk rates, is being realized in the city of San Francisco, where a substantial cut in the present rates is about to be made by the Fire Insurance Exchange. This action on the part of local fire underwriters is looked upon as a recognition of the security afforded by the new high-pressure system in New York against such confiagrations as have devastated Chicago, Baltimore, and Boston.

The Paris-Orleans Railway has built an unusually powerful compound de Glehn express locomotive, which possesses special interest for Americans because of the fact that it is of the "Pacific" type, which originated in this country and is just at present in great demand for heavy express work. The two high-pressure cylinders are $153 / 8$ inches, the low-pressure $253 / 16$ inche in diameter, and the common stroke $251 / 2$ inches. The heating surface is 2,569 square feet, and the total weight of the engine alone about 100 short tons.

We note that Dr. Schlick's apparatus for preventing ships from rolling at sea has lately given fresh proof of its ability. One of his gyroscopes has been fitted on board the mail steamer "Lochiel," and tried on the ship's regular route between Oban and Bunessan While the vessel was rolling $161 / 2$ deg. on each side, through a total angle of 33 deg., the gyroscope was started, and immediately decreased the total angle of roll to 3 deg. The apparatus is driven electrically, and réquires but little attention.
The good work done by the Public Service Commission in improving Subway conditions is shown by the recent increase of the capacity of the express tracks by about 14 per cent. This was secured by a rearrangement of the block sections and, signals at the stations in such a way that trains can be run closer together, following one another at intervals of $13 / 4$ minutes as against the former interval of 2 minutes. This acceleration has enabled the company to increase the number of cars that pass a given station from 240 to 272 in an hour.
There has recently been completed at Great Falls, Mont., a huge brick chimney for carrying away the fumes of the smelting works, which will take rank as one of the tallest structures in the world. It is $781 / 2$ feet in outside diameter at the base, and 53 feet 9 inches at the top. It extends 506 feet above the ground and $5281 / 2$ feet above its lowest foundation course. Its total weight is 24,964 tons. The brickwork is 18 inches in thickness at the top and 66 inches at the base. It is lined throughout with a 4 -inch wall of acid-proof brick.

ELECTRICITY.

The Bureau of Equipment will open bids on Janu ary 5 for the long-distance high-power wireless station which, as was recently announced, is to be located near Washington. The station must transmit mes sages over a radius of 3,000 miles and must also be equipped with a telephone system sending to a dis tance of 100 miles.

In some experiments with a kite to determine the electrical conditions of the upper atmosphere, it has been found that an abnormally sfrong current will flow down the wire during a high wind. The cause of this has not deflnitely been determined. Two rea sons have been suggested; namely, that the action of the wind would tend to cause a greater electrifica tion by friction, or that the greater volume of air passing over the kite would supply greater surface from which to collect the electricity of the atmosphere

A method of making glass which will conduct elec tricity is described in a paper read before the Royal Society of Edinburgh by Charles S. Phillips. The glass consists of 32 parts sodium silicate, 5 parts borax 0.8 part lead oxide, and 0.2 part sodium antimoniate This glass is not acted upon by acids, and has a resis tance of about 1,000 times less than that of ordinary glass. It is used for the windows of electrometers and electroscopes, and in the latter instrument fibers of the glass have been used in place of the gold leaves.

The proposed tax on electricity in Germany is still receiving a great deal of criticism. The tax is to be levied on filament lamps in proportion to their watt consumption, and it has been pointed out that carben filament lamps will be taxed to nearly 60 per cent of their market price, while metal filament lamps will be taxed only 9 per cent of their market price. Arc lamps are to be taxed according to the weight of the carbons, which is manifestly unjust for the quality of the carbons should be considered rather than their weight.

The French Academy of Science is somewhat puzzled over the question of the influence exerted by a high-tension line on hailstorms. In a recent paper presented before the Academy the instance was cited of a chain of mountains which apparently attracted hailstorms, owing to the location of numerous valleys that diverted the storms along the line of the chain. Recently, a three-phase 45,000 -volt line was built in this vicinity, and since then hailstorms have crossed the valleys and followed the high-tension line. Very evidently the transmission line exerted an influence on the storms, but the exact nature of this influence is difficult to explain

After building several experimental single-phase locomotives and thoroughly trying them out with various trolley constructions over an experimental five-mile track, efuipped with various forms of trolley constructions, the Pennsylvania Railroad has decided to adopt a third rail direct-current system for its tunnels under New York city. Three-phase twenty five cycle current will be supplied at 11,000 volts from Long Island City, and at various sub-stations it wil be converted into 600 volts direct-current. Steel moto cars and trailers will be used for the suburban traffic while electric locomotives will be used for throug trains. The design of these locomotives has not as yet been definitely decided upon.

A train staff system similar to that used in Eng land, has been adopted on the Fort Wayne Division of the Ohio Electric Railway. The cars incoming and outgoing are required to pass each other at a switch on the outskirts of Fort Wayne, but owing to the fact that the cars pass through different streets in the city, and are not always liable to come in sight of each other, it was found necessary to provide some system whereby the arrival of the car at the switch could be deflnitely determined. For this reason a wire hoop. with train numbers on tags attached thereto is given to the motorman at New Haven, and this he deposits at the siding at Fort Wayne, so that the car returning from Fort Wayne will know that his car has entered the city.
The advantages of small electrically driyen refrig rating plants were discussed, before the Franklin Institute last month. One rather interesting installa tion described was set up in a florist's shop. A large display case embracing about 500 cubic feet, was r frigerated by means of from 500 to 700 pounds of ice per day, this large amount being required by reason of the fact that the case was frequently opened dur ng the day. A small electrical refrigerating machine of one ton capacity has now been installed and this serves to freeze a solution of brine contained in four tanks. The brine solution is very weak and has a freezing point of about 26 deg. F. The tanks are frozen solid each morning, and the machine is not operated again until toward evening. The system has been found to work admirably even though the door is constantly opened and the temperature may rise at times as high as 60 deg.

SCIENCE.
Prof. Percival Lowell announces that spectroscopic proof has been obtained of the presence of water on Mars. This would seem to settle once and for all a moot Martian question in Lowell's favor.
F. von Strantz has obtained a German patent for a process of destroying insects on plants by the application of a mixture of lime water and the ammoniacal liquor of gas works. The patentee states that neither lime nor ammonia, used alone, is a certain insecticide in dilute solution, and that strong solutions are injurious to plants, especially green plants, but that mixed solutions of the two alkalies, too weak to do any damage to the plant, infallibly destroy all insect parasites.

The part played by sedimentation basins, or septic trenches, in the bacteriological purification of sewage is much disputed. Some writers assert that the basins serve only to retain part of the suspended matter, so that a less turbid liquid can be decanted which will clog the bacterial filter beds less rapidly than crude sewage, while other and more numerous authorities hold that a large proportion of the organic matter is decomposed, dissolved, and volatilized in the basins. Prof. Calmette, in a recent paper, shows the importance of this disintegrating action, which results in the sclution of from 30 to 50 per cent of the organic matter originally held in suspension. Experience proves, furthermore, that the matter which is not thus decomposed is little subject to putrefaction, or that the sediment left in the basins has very little odor, can be handled without inconvenience and may safely be thrown, in small quantities, into large running streams.

A new watch has been invented for the use of physiclans and nurses in counting the pulse. The watch indicates, without mental calculation, the number of beats of the pulse in a minute. It operates on the principle of a stop-watch. By pressing the push-button a large second hand is set in motion, and the counting of the pulsations begins. At the 20th pulsation the motion of the hand is stopped by another pressure of the push-button. The dial accurately indicates the exact number of pulsations per minute. A third press ure on the push-button brings the hand back to the starting point. The use of this instrument does away with the necessity of observing the progress of the watch while taking the pulse, and in addition insures an absolutely correct record. The instrument is also a chronographic counter, facilitating the making of observations, which are automatically recorded in min utes, seconds and fifths of a second. A small dial placed below the 12 records minutes from 0 to 30 . The large hand records seconds and fifths of a second.
M. Pleissner, of the German Imperial Health Bureau, has investigated the formation and properties of the oxide, hydroxide, carbonate, sulphate, and chloride o lead, and has determined their solubilities in water by measuring the electrical conductivity of water im pregnated with them. He finds that alkalies and baryta water precipitate the oxide from hot solutions but the hydrated oxide from cold solutions of lead salts. The oxide forms grayish yellow scales of metallic luster, which yield a greenish yellow powder when ground. The same greenish yellow oxide is formed by the action of very highly oxygenated water upon lead while water which contains little oxygen produces hydrates of lead oxide. The solubility of lead oxid increases with the degree to which it is hydrated The solubilities of the lead compounds mentioned above expressed in milligramme-molecules per liter, are: oxide 0,31 , hydroxide 0.45 , carbonate 0.0002 , sulphate 0.126 , chloride 33.6. In other words, one million parts of water can dissolve about 64 parts oxide, 93 parts hydroxide, 0.04 , part carbonate, 26 parts sulphate, or 7,000 parts of chloride of lead: All of the basic salts of lead are less soluble than corresponding neutral salts.
That the smoke which rises from the chimneys of a city in winter greatly diminishes the practical dura tion of sunlight is shown by a comparison of observa tions made in the center of London, at Kew, a few miles to the west, and at Greenwich, a few miles to the east. The annual number of hours of sunshine is at Kew 1,399 or 31 per oent of the maximum possibl number; at the center of London 1,027 hours or 23 per cent, and at Greenwich 1,227 or 27 per cent Hence the center of London enjoys 372 hours (8 per cent) of sunshine less than Kew, and 200 (4 per cent) less than Greenwich. In winter the deficiency of sun shine in the center of London rises to 11 per cent The disparity between Kew and Greenwich is due to the fact that the prevailing winds are westerly, so that much of the city's smoke is blown over Green wich, but very little over Kew. At Hamburg, obser vations extending over eleven' years show an average annual number of 108 days without sunshine. At all seasons, but especially in winter, the air of Hamburg is flled with smaller or larger particles of soot. The result is that Hamburg annually enjoys only 1,236 hours of sunshine, or 28 per cent of the maximum possible number, while Berlin enjoys 1,672 hours or 37 per cent.

the transportation of sobyarines.

by p. A. Hislam.
In the latter part of 1906 the Japanese government placed an order with the British firm of Vickers, Sons \& Maxim for the construction of two submarines, the conditions of the contract stipulating that the vessels should be delivered at a Japanese port before the close of the present year. The submarines are vessels with a submerged displacement of 314 tons. They are 135 feet long, 13 feet 6 inches beam, and 12 feet deep, and are fitted with 16 -cylinder gasoline engines, the horsepower being 600 on the surface and 180 submerged, The corresponding speeds are 13 and 8 knots. The armament consists of two 18 -inch torpedo tubes, and sufficient fuel is carried to give the vessels a radius of 1,500 miles.

In order to overcome the difficulty of transporting the vessels to Japan, Messrs. Vickers, Sons \& Maxim designed and built a transporter of unique type. The vessel, which is 225 feet long, is constructed with a very short forecastle, while the engines are placed as far aft as possible, thus leaving a very large clear space amidships. The break of the poop is also the fore engine-room bulkhead, and a wide hatchway extends forward from this practically to the break of the forecastle. The athwartship hatchway beams are removable, so as to admit an object almost the entire length of the hold. There is, of course, a very large number of these beams, and they are made especially strong, in order to compensate for the huge deck opening.

The method by which the submarines were placed on board was as follows: The "Transporter," as the vessel is named, was drydocked, the port bulwark taken down, the hatch combing on the same side removed, and a portion of the steel deck taken up. The water was then admitted to the dock, totally submerging the hull with the exception of the upper portion aft. One of the submarines was then floated into the dock, hauled into position over the hold of the submerged ship, and held there while the water was pumped out of the dock. As the submarine sank into the hold, it was placed in specially arranged chocks by divers, and flnally secured in position on the starboard side of the hold. This operation was then re peated in the case of the second submarine, so that eventually the two vessels lay side by side in the hold

FARMAN'S EXPERIMENTS WITH HIS TRIPLE-SURFACE AEROPLANE.
By the addition of a third surface to his aeroplane Henry Farman has recently changed the appearance of his flyer somewhat, and has made it capable of lifting considerably more weight. The third plane, as can be seen from our photograph, extends only over about two-thirds of the total width of the lower surfaces. In addition to this plane, Farman has also lengthened the top surface of the box tail, so that the sides now extend beyond the vertical partitions.

On the 21st ult., Farman expected to give a demonstration before some Senators and members of the

Aeronautical Notes.
WILBUR WRIGHT'S NEW RECORD
On Friday, December 18, Wilbur Wright improved by 22 minutes and 8 seconds his previous record of September 21, for length of time in the air. On this occasion he made forty-five complete circuits of the Anvours parade ground at an average height of 24 feet and at an average speed of about 36 miles an hour. The total official distance was 99 kilometers (61.47 miles), but on account of the wide turns he made around the posts at the ends of the field, it is estimated that fully 120 kilometers (74.52 miles) were covered. The latter distance gives an average speed for the flight of 39.2 miles an hour, and the former one of but 32.4. The average of these two speeds-35.8-doubtless gives a fair approximation of the actual speed of the machine. For a motor of but 25 to 30 horse-power, this is a very high average, and it forms but one more demonstration of the efficiency of the Wright aeroplane. After making this record fight for the Michelin cup in the morning, Mr. Wright in the afternoon competed successfully for the height prize of the Aero Club of the Sarthe. A line of small captive balloons was placed at a height of 100 meters (328 feet), and, after making a 9 -minute flight, the aeroplane passed over the line at a height of some 25 or

National Aerial League who had journeyed from Paris to his experimental ground at Bouy, near Reims. Un fortunately, there was a strong wind blowing and Farman did not dare to make a fiight until this had moderated. Finally, at dusk, he made two short flights lasting about two and four minutes, respectively. In the second of these flights he circled twice around the parade ground. He had fitted automobile acetylene headlights to his aeroplane, and the effect of the machine flying at night is said to have been very weird.

Not until the 24th of November had the weather improved sufficientiy for Farman to make a demonstration. Even on this day there was a strong wind of from 6 to 14 meters per second or having a mean speed of $213 / 4$ miles an hour. Despite this wind Farman flew successfully, though the sudden puffs would raise and lower his machine suddenly a distance of from 45 to 60 feet. The oscillations thus produced were very curious. Farman was obliged to fly quite

THREE-QUARTER REAR VIEW OF FARMAN'S AEROPLANE WITH TRIPLE SURFACES.

30 feet above it

"Silver dart."

The new Bell aeroplane the "Silver Dart," after making four short fiights on the 14th instant, on December 17 made a flight of over a mile at Hammondsport, N. Y. The aeroplane flew in a snowstorm and against a wind of about 10 miles an hour at the start. After traversing a distance of less than a mile, a turn was made and the machine flew successfully with the wind about half way back to the start ing point. The flight lasted $11 / 4$ minutes and the estjmated speed was about 40 miles an hour.

Two days previously Mr. Wright made a new demonstration of the possibilities of his aeroplane, when used as a glider. He drove his machine sharply upward to a height of nearly 300 feet. Then, shutting off the motor, he glided down to the ground very easily. In so doing he traversed a distance of about three-quar ters of a mile. This demonstration proved the advan tage of height when navigating an aeroplane and gave a good idea of the distance that can be traversed in a

floating a bubyabine into a vesber for transportation.
of the "Transporter." The decks, hatch combings, and bulwarks were then replaced, and the vessel afterward returned to Barrow to complete the preparations for her voyage to the far East. With their arrival the Japanese navy will include ten submarines, two of which, of 85 tons, were built in Japan. Seven other vessels, of the same size as those built in England, are about to be laid down in Japanese yards.
The photograph shows the submarine on the port side sinking into the hold of the "Transporter."
high in order to take the turns successfully. When he flew with the wind his aeroplane traveled at the rate of about 55 miles an hour, while against the wind it almost stood still. These flights are the first in a closed circuit by this type of machine. The aeroplane showed such a marked improvement in stability when flying in a strong wind, that Farman, although he found in a subsequent test on November 28 that the machine was much faster with but two surfaces, nevertheless decided to return to the use of three.
horizontal direction should the motor stop when the aeroplane is high in the air.
A German company has recently been formed to carry on the aerial transportation of passengers, by means of huge airships of the Zeppelin type. Seven of these airships, with a capacity of ten passengers each, in addition to the crew, have been ordered, and are now under construction. The airships will start from Friedrichshafen, on Lake Constance, and touch at many of the leading German cities.

Scientific American

matically with a practically sufficient degree of accuracy for a given load, if the abutment be invariably rigid, or if the displacement or distortion be known. However, there are in reality no invariably rigid abutments, while the displacement and torsion generally depend on so many factors, that mathematical calculations fail to determine them. Starting from the results of a statical calculation for a given condition, any possible departures from the hypotheses made, and their possible influence on the distribution and magnitude of actual strains, should accordingly be gaged in each case.
The influence of these factors should by no means be underrated, being sometimes so considerable, that the results of calculation afford an entirely incorrect representation of the conditions of safety of a structure. Another striking instance is that of framed structures in which the rigidity of webs is liable to entirely impair the results of mathematical calculation, in connection with which hinged connections are generally pre-supposed. In order, therefore, to supply an independent check on mathematical instruction, based on practical experience, Mr. E. Carlipp of Erlangen, Germany, has designed an ingenious device for illustrating the distribution of strains in structures, of which we herewith give a short illustrated description, as well as some photographs.

Any structure under the action of forces (provided that no motion of the whole takes place as a consequence of a rupture in equilibrium) is liable to undergo some alteration in shape, which at each point bears a certain ratio to the strain obtaining there. If this alteration in shape be known, the distribution of strains will thus be likewise given

The models used by Carlipp are made up alter nately of springs and rigid sections (see Fig. 1) in order to allow the actual alterations in shape and strain to be visually observed. Any kind of forces (such as pull, thrust, inflection, torsion, rotation) will produce in a composite body of this kind, alterations in shape, which allow the nature and relative magnitudes of strains to be recognized. The strength of the springs corresponds to the coefficient of elasticity of the material; and by fitting springs of variable strength, the distribution of strains on a structure, made of different materials is readily illustrated.

The strains on the springs f_{1} (in Fig. 1), for instance, will be the smaller the less the springs f_{s} are able to yield, that is the greater the amount of load they are able to deal with. The same instance also corresponds to cases in which the coefficient of elasticity in regard to thrust is greater than elasticity in regard to pull. The points of maximum strain in many cases play an essentially important part.
If the model be lined with paper, plaster, etc. (Fig. 2), the fissures resulting from given conditions of load and given arrangements of abutments will allow their lacation to be determined, while illustrating

Fig. 7.- Diagram of arch with sliding abutment.

Fig. 8.-Distribution of loads inside a structure.
the relative amounts of strain in a specially striking manner, corresponding to real life. In the case of framework structures, the framework rods are generally formed by simple continuous springs connected by joints in the connections. These joints may be fixed by clamps with a view to illustrating the influence of rigidity of the webs. The various elements can be combined in many different ways, so as to obtain the most varied models suitable for instruction. Though all possible cases cannot obviously be enumerated in the present article, some instances will be quoted, illustrating the possibilities of these mod-

Fig. 1.-Composite model of springs and rigid sections.

Fig. 2. Nodel slowing strains by the flssures in the paper covering.

Fig. 8.-Arch supported whlle being loaded.

Fix. 4.-Arch under load, showing breaks at crown and abntments.

Fig. 5.-Arch with sliding abutment at one end.
els, both for demonstration before an auditorium and for self-instruction.
Fig. 5 represents a model in which the distribution of strains in an arch is illustrated for different loads, and with different abutments, one of the abutments being free to rotate round an axle and to move in a horizontal direction. This horizontal motion can.be counteracted by the weight H (Fig. 7), and the rotation by the weight G; the former thus representing the horizontal thrust and G the torque of the abutment. Both the horizontal displacement and rotation can be completely eliminated by arresting the abutment with the aid of suitable weights. Demonstration with this model could, for instance, be performed in the following manner:

The arch is first supported by a simple center liable to be lowered, while being loaded either by its own weight alone, or by an additional effective load of approximately uniform distribution (Fig. 3), thus illustrating the fact that all springs are by no means compressed uniformly, a lined arch being liable under certain conditions even to show some fissures; though with the actual shape and load of the arch there may be ascertained a curve of pressures which practically coincides with the central line of the arch.

It may even be shown that any moments of deflection obtaining in the arch (that is, any departures of the line of pressure from the central line) are mainly due to the elastic shortening of the arch, these moments being the greater as the ratio of the thickness of the arch to the pitch is greater, any arch in connection with which this ratio does not assume too small a value, being in reality something intermediary between an arch and an imbedded girder, and the girder action being the more predominant as the shape of the arch approximates that of a girder. If now a sufficient amount of weight be added in H, to prevent any displacement of the abutment, the stop being loosened, H will correspond to the horizontal thrust after an elastic elongation of the arch in the case of rigid abutments. By shortening the arch, an identical effect to an increase in the distance of abutments will be brought about. By increasing H, the abutments can be made to approach to one or other, the elastic shortening of the arch being compensated and uniform strains being produced in all the sections of the arch. It is also seen that the horizontal thrust decreases with the elastic elongation of the arch. It will now be readily understood in what manner the influence of the yielding of abutments can be illustrated: Each given weight H and G, the load remaining the same, will correspond to a given displacement or distortion, and the latter in turn will influence in a given manner the distribution of strains in the arch. In the case of a lined arch (Fig. 4) fissures can be produced, with $a_{\text {a }}$ given load, at the crown, at will, either on the top or below, by simply increasing or decreasing H. The influence of the most different loads can likewise be shown for the most varied arrangements of abutments, and the influence of transverse forces is readily illustrated by the relative displacement of the rigid parts.

The model represented in Fig. 6 is mainly intended for illustrating the fact that a structure, from the statical point of view, always exerts its effects as a whole, the actual strain on any part of the structure being dependent on those to which the remaining parts are submitted. If the upper parts of the supports (walls) be solidly reinforced; the roof structure will rest on abutments, capable of only relative displacement, and according as the joints are hinged or clamped fast, a given distribution of strains will be obtained with a given load. The distribution of strains will , be susceptible to alteration both in the main truss of a roof and in the supports, if the stiffening of the abutments being withdrawn, the elastic alterations in the shape of the supports are allowed to make themselves felt.
Another model designed by .Mr. Carlipp is represented in Fig. 8. When calculating a structure, the section of which has sides of different length (walls, bridges, girders, etc.), the load being approximately concentrated, incorrect results are obtained if the sections are supposed to remain plane. The model represented in Fig. 8 now illustrates with a. given drop of loads, the distribution of strains ingide the structure and the pressure exerted on the soil

Girders, etc., in which the effect of transverse forces is manifested separately, that is to say, by a vertical as well as by a horizontal mutual displacement of the rigid parts, can be combined in a similar manner to that illustrated in Fig. 8:
Even in cases which are not at all susceptible to calculation, such as that of plates resting on non-uniformaputments (e. g., triple abutments) such a model will allow the distribution of forces to be ascertained for ${ }_{c}$ any: load.

Simple girders can be constructed in a manner quite similar to the arch in Figs. 5 and 7, being dem onstrated for the most various arrangements of abut ments (isolated on two abutments wholly or partly imbedded, continually resting on supports of equal or
urequal height) and under any conditions of load.
While all the possible cases cannot obviously be demonstrated in the case of technical instruction, even a limited number of demonstrations will doubtless fit students to acquire an appropriate conception of the phenomena of elasticity obtaining in connection with real buildings, instead of being content with mechani cal calculation. Teachers will be able to use such demonstrations as a basis of general instruction of a kind which is apt to be neglected in the ordinary kind which is apt to be neglected in the ordinary
theoretically mathematical courses, while even advanced students will avail themselves of certain models to complete their knowledge of the statical conditions of structures. It will even be possible to construct models immediately imitating a given structure to be erected, so as to afford an absolutely correct gage of the actual distribution of strains.
In order to illustrate the distribution of stresses in homogeneous bodies, all the springs should obviously be of the same thickness, being submitted to the same strain. In order to allow this result to be readily ob tained, the springs are connected with the rigid parts, by a simple device, allowing the springs to be tightened or loosened, or even exchanged at a moment's notice.

MAGNITUDE OF THE SALT INDUSTRY

Sodium chloride or common salt is one of the most useful substances in the world and one of the most necessary to the hưman economy. Salt was first used as an aliment at the period of transition from the nomadic pastoral life to a more sedentary and agricultural life. Salt puts in motion the secretion of the stomach and furnishes it with some of its constituent parts. The material for the chlorine compounds of the gastric juice comes primarily from the salt of our food.
In any attempt to compute the relative abundance of the chemical elements we must bear in mind the limitations of our experience. Our knowledge of terrestrial,matter extends but a short distance below the surface of the earth, and beyond that we can only indulge in speculation. The atmosphere, the ocean, and . a thin shell of solids are, speaking broadly, all that we can examine. For the first two layers our information is reasonably good, and their masses are approximately determined; but for the last one we must assume some arbitrary limit. The real thickness of the lithosphere need not be considered; but it seems probable that to a depth of 10 miles below sea level the rocky material can not vary greatly from the volcanic outflows which we recognize at the surface. This thickness of 10 miles, then, represents known matter, and gives us a quantitative basis for study. A shell only 6 miles thick would barely clear the lowest deeps of the ocean. The volume of the 10 -mile rocky crust, including the mean elevation of the continents above the sea, is $1,633,000,000$ cubic miles, and to this material we may assign a mean density not lower than 2.5 nor much higher than 2.7. The volume of the ocean is put at 302,000;000 cubic miles, and Prof. Frank Wigglesworth Clarke in his valuable "Data of Geochemistry," says he has given it a density of 1.03 , which is a trifle too high. The mass of the atmosphere, so far ass it can be determined, is equivalent to that of $1,268,000$ cubic miles of water, the unit of density. Combining these data, we get the following expression for the composition of the known matter of our globe:

Density of crust..	2.5	2.7
Atmosphereper cent	0.03	0.03
Oceanper cent	7.08	6.58
Solid crust per cent	92.89	93.39
	100.00	100.00

In short, we, can regard the surface layer of the earth, to a depth of 10 miles, as consisting very nearly of 93 per cent solid and 7 per cent liquid matter, treating the atmosphere as a small correction to be applied when needed. The figure thus assigned to the ocean is probably a little too high, but its adoption makes an allowance for the fresh waters of the globe, which are too small in amount to be estimable, directly. Their insignificance may be inferred from the fact that a section of the 10 -mile crust having the surface area of the United States represents only about 1.5 per cent of the entire mass of matter under consideration. A quantity of water equivalent to 1 per. cent of the ocean, or 0.07 per cent of the matter now under consideration, would cover all the land areas of the globe to the depth of 290 feet. Even the mass of Lake Superior thus becomes a negligible quantity.
The composition of the ocean is easily determined from the data given by Dittmar in the report of the "Challenger" expedition. The maximum salinity observed by him amounted to 37.37 grammes of salts in a kilogramme of water, and by taking this figure instead of a.lower average value we can allow for salins masses inclosed within the solid crust of the earth, and which would not otherwise appear in the final estimates. Combining this datum with Dittmar's figures for the average composition of the oceanic salts, we
get the second of the subjoined columns. Other elements contained in sea water, but only in minute traces, need not be considered here. No one of them could reach 0.001 per cent.

Com	anic	Composition of ocean.	
NaCl	77.76	H	10.67
MgCl_{2}	10.88	Cl	2.07
MgSO_{4}	4.74	Na	1.14
CaSO_{4}	3.60	Mg	. 14
$\mathrm{K}_{2} \mathrm{SO}_{4}$	2.46	Ca	. 05
MgBr_{2}	. 22	K	. 04
CaCO_{3}	. 34	S	. 09
	100.00	C	

It is worth while at this point to consider how large a mass of matter these oceanic salts represent. The average salinity of the ocean is not far from 3.5 per cent; its mean density is 1.027 , and its volume is $302,000,000$ cubic miles. The specific gravity of the salts, as nearly as can be computed, is 2.25. From these data it can be shown that the volume of the saline matter in the ocean is a little more than 4,800 , 000 cubic miles, or enough to cover the entire surface of the United States, excluding Alaska, 1.6 miles deep. In the face of these figures, the beds of rock salt at Stassfurt and elsewhere, which seem so enormous at close range, become absolutely trivial. The allowance made for them by using the maximum salinity of the ccean instead of the average is more than sufficient, for it gives them a total volume of 325,000 cubic miles. That is, the data used for computing the average composition of the ocean and its average significance as a part of all terrestrial matter are maxima, and there fore tend to compensate for the omission of factors which could not well be estimated directly.
The facts that we can estimate, with a fair approach to exactness, the absolute amount of sodium in the sea, and that it is added in a presumably constant manner without serious losses, have led to various attempts toward using its quantity in geological statistics. The sodium of the ocean seems to offer us a quantitative datum from which we can reason. That is, if all the sodium in the sea were derived from the decomposition of igneous rocks, a shell of the latter one-third of a mile thick would supply the entire amount. An allowance for the sodium retained by the sedimentaries would increase this estimate to half a mile, which is the largest amount possible. All con ceivable corrections tend to diminish the figure. A stratum of igneous rock, one-half mile thick and completely enveloping the globe, would furnish all the sodium of the ocean and the sediments. Joly, by a similar process of reasoning and in part from the same data, has sought to compute the geological age of the earth since erosion commenced. From Murray's estimate concerning the discharge of rivers Joly determines that $157,267,544$ tons of sodium are annually poured into the sea. At this rate denudation of the land would require a period of from ninety to one hundred millions of years in order to make up the oceanic quantity of sodium. By applying certain corrections the figure is, reduced to eighty or ninety millions. of years as the time which has elapsed since water condensed upon the globe and aqueous denudation began.

It is not necessary to enter into the details of these and other similar calculations, for they can only be regarded as tentative and preliminary. They do, how ever, indicate certain possibilities and show how desirable it is that we should increase the accuracy of our data. When we know more precisely what chemical work is being done by the rivers, with annual averages for all of the greater continental streams, we may have materials for something like a fair measure of . geological time. Our present knowledge on this subject is too incomplete and too unsatisfactory.
In 1907 the quantity of salt produced in the United States was $29,704,128$ barrels of 280 pounds, valued at $\$ 7,439,551$, says W. C. Phalen, expert of the Geological Survey.
For convenience salt is classified according to the grades by whieh it is sold by the producer, the grades being determined by the amount of refining, the methods employed in refining, and the purposes for which the, salt is used. These grades are: "Table and dairy," "common fine," "common coarse," "packers," "solar," "rock," "milling," "brine," and "other grades." The "table and-dairy" salt includes extra fine and fancy grades prepared for family use, and all grades artificially dried, used for butter and cheese making and such special brands. Under "common fine" salt are included all other grades of fine salt of first quality not artificially dried, such as those known to the trade as:"C. F.,"."No. 1 F," "anthracite," etc. "Common coarse" salt includes all grades coarser than "common fine" made by artificial heat, such as "steam coarse," "No. 1 coarse," "'pan solar," "G. A.," "Liverpool ground," "C. C.," etc. By "packers" salt is meant those
grades prepared for the purpose of curing fish, meats, etc. "Coarse solar" includes all coarse salt made by solar evaporation. "Rock" salt includes all salt mined and shipped without special preparation. "Mill" salt is that used in gold and silver mills, and "other grades" includes all low-grade or No. 2 salt used in salting cattle and for fertilizers, track purposes, etc. "Brine" includes all salt liquor used in the manufacture of soda ash, sodium bicarbonate, sodium hydrate (caustic soda), and other sodium salts or brine sold without being evaporated to dryness.

Production of salt by grades in the United States 1907, in barrels:

Table and dairy salt.	3,537,157
Common fine salt.	7,684,638
Common coarse salt	2,055,054
Packers salt	422,324
Solar salt	862,929
Rock salt	5,809,328
Other grades	110,227
Brine	9,222,471
Total production, barrels.......... . $29,704,128$	
Value	\$7,439,551

In 1894 salt was placed on the free list and importations increased to $434,155,708$ pounds in 1894 and to $520,411,822$ pounds in 1896 . In 1897 salt was again made dutiable, and salt in bags, barrels, or other packages is subject to a duty of 12 cents per 100 pounds (33.6 cents per barrel) and salt in bulk is taxed 8 cents per 100 pounds (22.4 cents per barrel). The duty on imported salt in bond used in curing fish taken by licensed vessels engaged in fishing and in curing fish on the navigable waters of the United States or on salt used in curing meats for export may be remitted.

The imports came from the United Kingdom, Italy, British. West Indies, and Spain, named in the order of importance. From these four sources over 90 per cent of both quantity and value of the imports were derived.
The exports of salt of domestic production from the United States in 1907 was $61,603,422$ pounds, valued at $\$ 232,195$. Most of this salt went to Cuba, Canada, Mexico, and Panama
In the following table the statistics of salt production in the principal salt-producing countries of the wortd in 1906 are shown as far as statistics are available. The production of Turkey is not included. The industry in that country, as in Austria-Hungary, is a government monopoly, with no statistics of production published. No statistics are available from Russia published.
since 1903.

World's Production in Short Tons.

1906.	United S	$3,944,133$	$\$ 6,6$
1906.	United Kingdom	2,201,293	2,900,98
1906.	France	1,496,923	4,198,32
1906.	German Empire	2,059,096	5,000,82
1904.	Japan	773,776	4,852,049
1906.	Italy	586,424	1,119,7
1906.	Austria	414,465	9,717,1

Our graphical illustrations really explain themselves. Thus our upper engraving shows all the salt of the oceans thrown up on the land and sea, it would cover the entire earth to a depth of 112 feet or well above the roof of the Capitol at Washington. The next comparison shows the per capita consumption of the Frenchman 9 pounds, the Englishman 13 pounds, and the American 11 pounds. Then follow the two cones of salt, that in the sea $4,800,000$ cubic miles and 325,000 cubic miles for salt on the land. Little wonder that Mont Blanc appears as a mere speck. The last comparison is the yearly production of salt in the United States, which shows a tidy little barrel $70 \hat{0}$ feet high a_d 500 feet in diameter at its widest point. Truly the small condiment of our table presents an enormous mass in the aggregate.

In ths rebuilding of the Quebec Bridge, it is said that the engineers who have been retained by the Dominion government will consider the advisability of providing for at least ten feet more headroom from the water than existed under the former structure. It may be remembered that the height of the old Quebec Bridge was 150 feet above high water, and that the Montreal Board of Trade feared that this would pre vent the large ships of the future from passing up the river to Montreal. The height advocated by the Montreal Board of Trade was 190 feet, which, however, can only be obtained at a cost which is regarded as prohibitory. The tallest masts now arriving in Montreal are those of the Allan liner "Virginian," which are of a height of 141 feet. Under the old Quebec Bridge these would have passed with nine feet to spare. But the masts of the "Empress of Britain" and the "Empress of Ireland," of the Canadian Pacific line, are 154 feet high, and for these it would have been necessary to await the ebb of the tide if they wished to pass under.

(Haxxedpantantre.

CURIOUS FACTS ABOUT nUmbers.

To the Editor of the Scientific American:
The theorems given in the article on "More Curious Facts About Numbers" in last week's issue of the Scientific American are not new, but merely specia tion is usually stated: If p is a prime number, and x is any integer, $n t$ a multiple of p, then $x^{p-1}=1$ is any intege
(mod. p), or it easily follows that for any integral value of $x^{p-1}-1$ is diviside by $x^{p}-x$ is divisible by p.
For $x^{p}-x=x\left(x^{p-1}-1\right)$, and either the first or the second factor of the right member is divisible by p. sent a prime number.)
In regard to divisisibility, the writer of the "Curious Facts about Numbers" obtained three results, vizi:

1. $x^{7}-x$ is divisible by 7 , and $x^{33}-x$ is divisible by 13 .
2. $x^{13}-x$ is divisible by $2,5,7$ and 13 .
3. Either $x^{5}+1$ or $x^{5}-1$ is divisible by 11 . of (2), viz., the cases $p=7$, and $p=13$, but (2) is true for any other prime value of p. Thus, numbers of the form $x^{2}-x$ can be divided by 2 , those of the
form $x^{3}-x$ by $3, x^{5}-x$ by 5 etc. Or, to illustrate form $x^{3}-x$ by $3, x^{3}-x$ by 5 , etc. Or, to illustrate
concretely: $2^{27}-2$ can be divided by $17,11^{37}-11$ by 37, etc.
The second result can be deduced by factoring
$x^{13}-x$. $x^{13}=x$.
$x^{13}=x=x\left(x^{6}-1\right)\left(x^{6}+1\right)$, and $x\left(x^{6}-1\right)$ is a
multiple of multiple of 7 , hence $x^{13}-x$ is a multiple of 7 . Simi-
larly, by considering that $x\left(x^{4}-1\right), x\left(x^{2}-1\right)$ larly, by considering that $x\left(x^{4}-1\right), x\left(x^{2}-1\right)$, and
$x(x-1)$ are factors of the lows that 5,3 and 2 are divisors of $x^{13}-x$, all numbers of the form $x^{13}-x$ are divisible by 2,3 , 5,7 , and 13 , a more complete result than the one given
by Mr. Springer. It is clear that this method may by Mr. Springer. It is clear that this method may
be applied to all numbers of the form $x^{p}-x$, since $x^{p}-x$ can always be resolved into factors. Thus, $x^{x p}-x$ can always be resolved into factors. Thus, expressions: $x\left(x^{30}-1\right), x\left(x^{12}-1\right), x\left(x^{10}-1\right), x\left(x^{6}\right.$
$-1), x\left(x^{4}-1\right), x\left(x^{2}-1\right)$, and $x(x-1)$ and hence $-1), x\left(x^{4}-1\right), x\left(x^{2}-1\right)$, and $x(x-1)$, and hence
numbers of the form $x^{10}-x$ are divisible by $61,31,13$, numbers of the for
$11,7,5,3$, and 2 .
The third result is also a special case of Fermat's theorem, for according to (1) we have
or $\left(x^{5}-1\right)\left(x^{5}+1\right)$ is divisible by 11, i. e., either
$x^{5}-1$, or $x^{5}+1$ is divisible by 11 . In general, since x^{5} is an od $x^{5}+1$ is divisible by (excepting $p=2$), $p-1$ is even and $\frac{p-1}{2}$ is an integral number. Therefore

$$
x^{p-1}-1=\left(x^{\frac{p}{2}}-1\right)\left(x^{\frac{2}{2}}+1\right) .
$$

Hence, according to (1) $\left(x^{\frac{p}{2}-1}-1\right)\left(x^{\frac{p}{2}}+1\right)$ is divisible by p, and since p is prime, either $x^{p-1}-1$, or $x^{p} \frac{-1}{3}+1$ is divisible by p. Thus $x^{6} \pm 1$ is divisible by $13, x^{14} \pm 1$ is divisible by 29 , etc.
Finally it may be said that the formulx for integral values of a, b, and c, satisfying the equation $a^{2}+b^{2}$
$=c^{2}$ are very old, and quite generally known. They can be easily obtained by the general methods of solv ing indeterminate equations of the second degree.

New York University, November ArThur 1908.

A DEFENSE OF THE WRIGHT SYSTEM OF PROPELLERS

To the Editor of the Scientific Americiañ:
I have read from time to time criticisms of various details of the Wright machine, particularly as to the use of twin propellers. The unfortunate accident at Fort Myer has in most cases. been used as a strong argument against them.
It strikes me that it

It strikes me that it is about time that someone had something to say in defense of this feature. I was
personally a witness of the accident and fully believe personally a witness of the accident and fully believe
that the real immediate cause of the accident was the breaking of the rear rudder and its gear.
To be sure, this was caused by one of the propellers stri king a guy-wire, which held the top "strut in place; but it is extremely probable that if ' a single propeller
or tandem propellers had been in use the resultant or tandem propellers had been in use the resultant
injury to the rear rudder would have been the same injury to the rear rudder would have been the same
if a rear rudder guy had projected in the path of the single propeller. To understand how this injury to the rear rudder caused the accident it is well to consider just how the warping of the planes in conjunc-
tion with the rear rudder is used to maintain the transverse stability and also to make turns.
If the rear of the right wing is depressed a certain
amount, the rear of the left wing raised a correspoñdamount, the rear of the left wing raised a correspoñaing amount, and the plane forced straight forward, then, as the angle of incidence of the right wing is in-
creased and that of the left wing diminished, the right creased and that of the left wing diminished, the right
side of the plane will tend to rise. However, when side of the plane will tend to rise. However, when ance of both planes is increased a certain amount and if we consider the planes alone and leave out of the question the forward movement, it will be seen that, under the circumstances, the planes will tend to turn to the right under the resistance of the air and the force of gravity. If we move our rear rudder to steer the planes to the left, then we can overcome the tendency to move to the right caused by the warping
of the planes. In this case the right side of the plane of the planes. In this case the right side of the plane
will be tilted up, if the plane is moving through still air Or this movement can be used to counteract? a tendency to overturn the planes to the right caused by a strong gust of wind coming from the left. In turning to the left the rudder is used, and the planes are tilted so as to incline the machine to the inside bicyclist inclines his wheel in in rounding a curve bicyclist inclines his wheel in rounding a curve.
My theory of the accident is as follows: Most
the turns during all the fights of Orville Wright were made to the left. This of course would tend to stretch the left-hand rudder stays. The accident happened
just as a turn was being made or about completed It is probable that Mr. Wright was about straightening up for a straight run. To do this he would need to steer to the right, which would slacken the left rud der guy and cause it to sag ti the path of the left propeller with disastrous results, both the propeller and the rudder being put out of commission. For a time the right-hand propeller continued to turn, and this tended to tilt and steer the machine still further to the left.
response to the after the power was turned off, the response to the warping of the planes was sluggish,
and the machine lost headway owing to the increased head resistance caused by the warping. The result was to cause it to pitch forward, by reason of the change of the center of pressure caused by the loss of forward motion. Before the longitudinal balance could be regained the machine struck the ground
chine after the of an of the partures of the rudder. As all witnesses seem to agree on the fact thăt the machine struck the ground head on a a very cursory examination of the pictures will convince any thinking person that the damage to the rear rudder could not have been caused by the machine striking the ground at that end.
his chaing broke goes to to prove Wright in which one of his chains broke goes to prove that the loss of the propelling effect of one of the propellers is not in easily came to the ground without any damage to the machine or passenger. In fact the turning effect was probably much stronger in his case than in that of Orville Wright, since there was part of the left pro peller blade in action which would tend to counteract that of the other.
Twin screws have certain advantages on boats, and these are very much accentuated on aeroplanes. In
the first place there is with single screws a tendency to tip the plane sidewise in the opposite direction to which the screw turns, which effect is entirely neutra lized with twin screws.
Furthermore a screw shows much more efficiency at low than at high speeds. The practical limit of the diameter of the screws is about the distance between the planes. Hence by using two screws instead of one, the thrust will be doubled simply by doubling the is not that twin propellers must be discarded but that braces on any type of airship must be so arranged braces, on any type of airship must be so arranged
that ${ }^{t}$ it "is impossible for them to come in contact with the bblades of the screws. Santos Dumont learned this very early in his experiments with dirigibles.
One correspondent criticised thie use of a chain drive and advocated the use of bevel gears. It is probable that no one realizes more than the Wrights them-
selves that their machine has many shortcomings in minor details. The fact must be borne in mind that the "Wrights" were not persons of unlimited means and naturally they chose the methods which were the least expensive and likely to give the results wanted. It is probable that the chain drive as used by them
costs less than a tenth of what even a passably good costs less than a tenth of what even a passably good
bevel drive would have cost and gives service that bevel drive would have cost and gives service that
could only be surpassed by a bevel drive of the very could only be surpassed by a bevel driv
best design, workmanship, and material.
The Wright machines of to-day are but copies of a successful experimental machine and as such naturally lack many of the minor refinements which are bound to come when the machine becomes a regular manufactured article. However, even in its present form it would seem to be capable of winning most of the prizes offered for various feats of ${ }^{3}$ aviation.

Boston, Mass., December, 1908. Harold S. Brown.

The Current Supplement.

To many a man who has had to do with electric currents in some form or other, the question has risen, either in his own mind while at work, or in some discussion with' a friend: "What does direct current mean? What is the difference between a direct current and an alternating current?" Mr. S. A. Fletcher states the difference very simply and clearly in the opening article of the current Supplement, No. 1721. One of the features of the Dayton meeting of the Ohio Society of Mechanical, Electrical, and Steam Enigi neers was a discussion of the relative merits of the steam and gas engine. That discussion is summarized. Italian naval architects have suggested the use of concrete as an armor for warships. What it costs to break an Atlantic steamship record is set forth. ${ }^{6}$ G. H . Bryan gives a very succinct account of aeronautic principles. Tr. Andrew Wilson writes on the human"engine, in which he carries out the idea that a good many analogies exist between machines of man's making and his own body. Concrete is admirably adapted for many purposes upon the modern country estate. It may be successfully used by the laborer with fair intelligence under proper supervision. Mr. Linn White in a very exhaustive article gives carefully workedout details of the manner in which material may be thus used. An interesting article describes two remarkble sense organs, one of which is a thermoscopic eye, and the other a light-projecting eye.

At Bolthead, on the Devonshire coast, a wireless station has just been opened by the postmaster-general of the British post office. This station is intended to establish communication with ships at sea. It is stated that this is the first of a series of similar stations which are to be maintained by the post office throughout Great Britain.

A NOVEL SYSTEM OF CONCRETE CONSTRUCTION. by day allen willex
A novel method of building construction has recently been carried out in connection with structures being erected for the State militia at Camp Perry, Ohio. The use of concrete in the composition of the walls has permitted them to be practically completed before being placed in position. This is especially true of the mess hall, which is one of the largest structures of the group.

The process of constructing a wall was as follows:

First a platform of 2-inch lumber was laid across steel beams about 4 feet apart, these beams being supported by jacks. The platform was about 3 feet from the ground, and lay inside the limits of the proposed building. Four-inch boards were set up on the four sides to complete the form. On the platform were placed the window frames and the reinforced concrete cornice, which was molded in 6 -foot sections, 3 feet wide. In this case special ornamental window caps were required, and these were cast separately and placed in their proper positions on the platform. Then
concrete made of one part cement, one and a half to two parts sand, and four parts crushed stone, was poured upon the platform. After about 2 inches of concrete had been laid, twisted steel rods for reinforcements were placed in both directions, 6 inches apart, and the balance of the concrete was poured on. The wall was made 4 inches thick. As a facing, a cement mixture of one part white cement to one and a half parts white sand was laid on the surface. The work was allowed to stand forty-eight hours (Continued on page 474.)

Setting up the jacks for the wall mold.
Laying the reinforcement of the walls.

Laying the floor slabs.
Raising a 48 -foot section of wall.

Rear view of a wall almost in position.
A $\mathbf{7 6}$-foot wall coming to position. Vestibule in front already set up.
\triangle novel system of concrete construction.
fast steamers builit on "tetrafrdral" lings. by otto kretschmer.
The performance of the steamer "Lusitania" of the Cunard Line has caused the subject of the 25 -knot express steamers to become acute again, and the question arises whether, with a lower displacement and correspondingly lower engine power, greater success cannot be obtained. A solution of this question is not merely technically important. Above all,' the shipbuilders and the large steamship companies are vitally

Such a ship construction will be best adapted to fulfill the requirement mentioned above, viz., large area of waterline plane with sufficient resultant displacement. The best prototype from the animal kingdom for this purpose is the swan, which when swimming dives down the deepest in the front, with sharp entering lines of its front body and full, round, spoonlike lines of its hind body. . The geometrical fundamental form for a similarly shaped ship construction is certainly afforded in the tetrahedron.
showed at the model towing tank tests in the Admiral-
ty Basin at St. Petersburg the following results: Speed 16.3 knots, actual horse-power, 4,150 Speed 19.6 knots, actual horse-power, 7,450 Speed 22.8 knots, actual horse-power, 13,120 Speed 25.0 knots, actual horse-power, 19,000 Speed, 26.03 knots, actual horse-power, 22,500 Speed, 29.7 knots, actual horse-power, 37,900 For the tertahedral construction we may assume that the proportion of the actual horse-power to the

interested, for economic reasons, in arriving at a solution of the question; for it would enable them to invest less money in this field of transatlantic passenger transportation than is at present required when such a giant boat has to be constructed. If it should become technically possible to construct for the same sum as is now sunk into one of these vessels, two of them, this would signify an economic success which would cause an unprecedented revolution in the domain of international service, by reducing the price of the trips, increasing the number of voyages, and finally shortening the length of the passage.

What means to employ to bring about this revolution is the first consideration that arises for discussion.

In regard to the engine, a radical change cannot be expected; for in the piston engine probably the greatest possible perfection has been reached. The steam turbine is just entering upon its further development; but even here it may be predicted almost with certainty, that any considerable reduction of the displacement of these vessels cannot result therefrom. Hence the only thing that remains is to try to modify the shape of the submerged part of.the vessel, and to ascertain, if only theoretically at first, whether this will lead to the end desired.

Large area of waterline plane, with slight result ant displacement, is adapted in itself to produce great velocity with little engine power. The ordinary construction of the vessel expressed in the "beam," or mathematically in the parallelopipedon or the or mathematically in the parallelopipedon or the
hexahedron, which is their fundamental form, prohexahedron, which is their fundamental form, pro-
hibits taking the means indicated on account of various objections which would preclude their employment. It is the shape of a fish. Hence of an anima which moves in a medium, the water, like the bird in the air, and not at the border of two media, water and air, like the ship.

Deck plan showing motive power in center and passenger accommodations at side of ship.
indicated horse-power lies between 0.7 and 0.8 , unless the actual horse-power ascertained in the basin should, as is very probable, as with torpedo boats, be equal to the indicated horse-power actually developed later on. On the basis of these model towing tests two ex-

This construction or model has long been accepted as the best for high-speed motor boats, and it has given high speed with comparatively small displacement. In this branch, viz., that of building small vessels, it has been adopted almost exclusively as the most successful, most convenient, most seaworthy as well as the simplest and easiest-to-handle design or construction. It is interesting to note, in the case of the duck, which may also be considered an ani mal representative of the tetrahedron, how it dips down in the front and lifts itself up in the back when desiring to swim quicker.
The fast steamer of the Cunard Line, "Lusitania," according to the information at hand, possesses the following dimensions:

Length between perpendiculars.	790
Beam	88
Draft	371/2
Displacement	45,000

The engine power is said to amount to 65,000 horse power, but is probably 72,000 horse-power. The speed obtained on a trial of 1,200 miles was 25.4 knots per hour.
The fundamental form of the submerged hull of the "Lusitania" is the parallelopidedon.
A fast steamer designed on the tetrahedral lines possessing

Length between perpendiculars.	656.0 feet
Beam	78.7 feet
Draft	24.6 feet
Displaceme	16,800 tons

press (high-speed) steamer types have been designei by the author, which have furnished the following dimensions with computation of the weight-groups giver below which constitute the displacement.
Project I, for a speed of 26.5 knots but probably 30 knots-

Length between perpendiculars..	754.0
Beam	
Draft with half the coal.	24.6
Displacement with half the coal.	18,700
Horse-power	40,000

Weights.

Hull, with fixtures	11,000 tons
Boiler rooms	1,980 tons
Engine rooms	950 tons
Water for the boilers.	100 tons
Reserve inventory	250 tons
Four propellers.	16 tons
Shafts, etc.	204 tons
Coal, one-half	2,500 tons
Equipment	1,000 tons
Passengers, with effects.	500 tons
Cargo	200 tons

Project II, for a speed of 25 knots-
Length between perpendiculars... 656.0 feet Beam 78.7 feet Draft with half the fuel.................................... 24.6 feet Displacement with half the fuel. $\therefore 14,400$ ton
Horse-power 20,000

Future steamship improvement may come in altered lines of the submerged portion. The ocean liner here shown is munciou un tue genural hnes of the modern motor boat. PROPOSED FAET STRAYERS BUILT ON "TETBAHEDRAL" LINES

Hull, with fixtures.	9,600
Boiler rooms	960
Engine rooms	480
Water for the boilers	
Reserve inventory	150
Four propellers	
Shafts, etc.	180
Coal, one-half	1,500
Equipment	
Passengers, with effec	
Cargo	

For the operation Richard Schulz turbines and Yarrow boilers with very slight forced draft are intended. In the normal displacement for both projects one-half the fuel has been put down because in this construction it will not be necessary upon consumption of the fuel to gradually take in more and more water ballast to maintain the stability, as has always been necessary heretofore.
Mr. Stuyvesant, of St. Louis, as well as Admiral Fournier of the French navy, also hold that the tetrahedral form for ships offers the least resistance and that it is the most perfect construction in order to obtain great, and the greatest, speed. The latter has presented to the Académie des Sciences, through M. Bertier, chief constructor of the French navy, a paper on "Carène à grandes vitesses" in which he likewise furnishes the theoretical proof for the above views.

\triangle NEW AND INTERESTING MOTOR CYCLE

The "Max" motor cycle (Claude Johnson's patent) is a light and comfortable machine of the "runabout" type, intended for short-distance work at moderate speed, absolute safety for the rider being assured. In the ordinary pattern no seat is provided, the rider adopting a standing position on footplates which are within a few inches of the ground. In this position the rider has perfect control over the machine. There is none of that feeling of fatigue and ennui generally experienced after a run on the ordinary type of motor cycle. This cycle will easily maintain a speed of fifteen miles an hour (maximum). It will climb a hill of 1 in 6 grade at a velocity of ten miles per hour. It is inexpensive both in the consumption of fue and in maintenance. It occupies very little space, and the footplates fold up to form a stand for the machine when at rest. As the total weight is small, and the center of gravity low, it can be handled with mini mum effort, and all tendency to side-slip is avoided.
The latest model of the machine is fitted with a special $13 / 4$-horse-power engine with a back gear, so that a large belt pulley may be used, and Sims mag neto ignition. The frame is arranged with a continuous curved tube to carry the engine, these being intended to replace the holding lugs used in the former models. The wheels are 18 inches in diameter, and are fitted with 18×2-inch tires of the type mentioned above. The fuel tank has a capacity of about $11 / 8 \mathrm{gal}$ lons, or approximately enough for a $100-$ mile run. The control is effected almost entirely by means of a throttle and thumb switch, exhaust valve, lifter, front rim brake and drum brake on the engine-all controlled from the handle-bar. The weight of the machin complete is only 85 pounds. The wheel base is 39 inches, the length over all 58 inches, the total height 38 inches, while the handle bars are 18 inches wide.

A NOVEL SYSTEM OF CONCRETE CONSTRUCTION.

(Concluded from page 472.)
to give the material time to solidify, when prepara tions for lifting the wall to its permanent position were made. This was a comparatively simple task, most of the power being furnished by a 5 -horse-power engine. It was connected by belting with the shaft under the platform operating the jack screws, and slowly the wall was tilted into position. The plat form supports were so placed that the foot of the wall swung to its position on the foundation at precisely the right line and when the wall had assumed a ver tical position, every line was plumb. Five or six wood props braced to the window frames held the wall in position and the platform was taken away from the back and swung about for the construction of the next wall, at right angles to the first. This opera tion was repeated until all the walls were up. The reinforcing rods were set to protrude at the edges of the walls, and when all the walls were in position the rods interlocked at the corners of the structure They were twisted together, and an 8-inch board, the only false work used in the construction, was placed inside the corner. Here concrete was poured in, a joint made on the outside corner and the two walls thus bound together
As the photographs show, the mess hall is two stories in height and presents the appearance of massive construction, yet each wall was molded and set in place in less than three days' actual working time, although they have a height of 26 feet. The interio construction was also of the same material, and here
again a plan original with the engineer in charge, Mr. R. H. Aiken, was followed. Columns 8 inches square and 10 feet 8 inches long were used in connection with girders 15 feet in length and 8 by 12 inches in thickness. Their reinforcement consisted of $161 / 4^{-}$ inch steel rods to each member. Upon these girders were placed the floor slabs 3 feet wide and $21 / 2$ inches thick. Those of the first floor are reinforced with $1 / 4$-inch twisted bars, both ways, 6 inches apart; the second floor slabs have similar reinforcement, 4 inches apart. The slabs were molded in the following manner: On a bed of sand four cylinders were set, having holes to receive the steel rods that protruded about 6 inches on all sides of the finished slab. The concrete was poured in very wet, and tamped but little. Ten minutes after the first slab was molded, a sheet of heavy paper was spread on it, a new form placed on top and a second slab rested over the first. When the slabs were completed they were left to solidify and did not have to be handled again until placed in the floor.

In the floor, the reinforcing bars of the slabs inter weave at all sides. A board was placed under each joint and concrete poured in, forming a perfecting bond. In this, as in all similar cases on this work, the hard concrete was thoroughly wet before the cement mortar for the joint was applied. With the joint, each slab is 42 inches wide. After the slabs were laid, they were moistened and a top coat of concrete spread over the entire floor, bringing the thickness up to 6 inches. This has been termed the unit system of construction, but another method adopted was to mold the supports on the ground, then set them in place according to the plan sometimes fol-

THE "MAX" MOTOR CYCLE.
lowed in setting steel columns. By the method described no delay ensued in construction and no party of workmen was obliged to wait upon others engaged on the building.
How far this system can be employed in building construction is an interesting question. Apparently it could be utilized in wall formations of much larger dimensions than those described, provided the adjustable framework for supporting the wall is of sufficient strength to give equal resistance to all portions of the load while being raised. As the lifting capacity of the jack can be increased to meet any weight which may be placed upon it and the mechanical power can be suited to all the requirements it would seem as if concrete buildings of much larger dimensions could be literally molded upon the ground even to the ornaments of the exterior and much of the interior frame work, for if a wall is too large to be cast, so to speak, in one section it can be formed in parts and then raised upon its permanent site.

Where this plan of erection can be successfully accomplished without affecting the strength of wall or putting undue stress on the work it-possesses many advantages that are apparent-not merely in time saving but in labor saving, also in curtailing the space usually required in building operations so valu able in large cities. In the erection of a frame, brick or stone structure much of the time required is to "lay up" the walls piece by piece. All of the material must be elevated and transferred to the workmen This represents far more time than that employed in the actual labor on the undertaking, while expense of conveying material is a large item of the contract. It is also evident that a wall or other portion of a struc ture can be completed more thoroughly when on the
ground than from the aerial scaffold, since it is more accessible and far more men can work upon it to advantage, while each can accomplish more than he can by the ordinary process.
The practicability of "molding" a building on the ground, then raising and assembling the completed structure, is admitted by United States engineers who have examined the work at Camp Perry with the view of employing the method in military service and have given it their official approval. Col. O. B. Parsons, State engineer of Ohio, gives his opinion as follows:
"As regards the construction, I would say that I am convinced that it is both practical and economical inasmuch as it does away with an untold waste of lumber and admits of a much stronger wall being built with less material. Practically all the lumber that is used is the planks on which the walls are molded, and they are used over and over without being cut or nailed. In constructing a wall in this way the mixture does not separate as while being poured from the top of a building and there is also a great advantage in finishing, as one man will finish more than a half dozen will on a scaffold, do better work, and there is no trouble in bonding, as the surface is put on before the other material is dry."
At Camp Perry this plan of erection is being employed in another interesting way. A wall for supporting rifle targets was included in the plans. It is also formed of concrete but all of it is composed on the ground in sections, no less than 130 feet in length. These are, of course, molded upon framework located at the site of the wall, which is ten feet high and six inches thick. Consequently when a part of the barrier is set in place it is necessary to lift all this mass of concrete at one time, but the system of jacks supporting the adjustable framework has been efficient for the purpose, showing that the Aiken method is adapted to construction on a large scale.

A $\mathbf{\$ 5 0 0}$ Prize for a Simple Explanation of the Fourth sion
A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a prize for the best popular explanation of the Fourth Dimension, the object being to set forth in an essay the meaning of the term so that the ordinary lay reader can understand it.
Competitors for the prize must comply with the following conditions

1. No essay must be longer than 2,500 words.
2. The essays must be written as simply, lucidly, and non-technically as possible.
3. Each essay must be typewritten and identified with a pseudonym. The essay must be inclosed in a plain sealed envelope, bearing only the pseudonym. With the essay should be sent a second plain sealed envelope, akso labeled with the pseudonym, and containing the name and address of the competitor. Both these envelopes should be sent to "Fourth•Dimension Editor, Scientific American, 361 Broadway, New York, N. Y."
4. All essays must be in the office of the Scientific American by April 1, 1909.
5. The Editor of the Scientific American will retain the small sealed envelope containing the address of the competitor and forward the essays to a Board of Judges, who will select the prize-winning essay.
6. As soon as the Board of Judges have agreed upon the winning essay, they will notify the Editor, who will open the envelope bearing the proper pseudonym and containing the competitor's true name. The competitor will be notifled by the Editor that he has won the prize, and his essay will be published in the Scientific American.
7. The Editor reserves the right to publish in the columns of the Scientific American or the Scientific American Supplement three or four of the more meritorious essays, which in the opinion of the judges are worthy of honorable mention.
The judges who will award the prize will be three in number, and all will be eminent American mathematicians. The names of the judges will be announced in a later issue of this journal.

To Our Subscribers.

We are at the close of another year-the sixty-third of the Scientific American's life. Since the subscription of many a subscriber expires, it will not be amiss to call attention to the fact that the sending of the paper will be discontinued if the subscription be not renewed. In order to avoid any interruption in the receipt of the paper, subscriptions should be renewed before the publication of the first issue of the new year. To those who are not familiar with the Supplement, a word may not be out of place. The Supplement contains articles too long for insertion in the Scientific American, as well as translations from foreign periodicals, the information contained in which would otherwise be inaccessible. By taking the Scientific American and Supplement the subscriber receives the benefit of a reduction in the subscription price.

a NEW INCANDESCENT GAS MANTLE

Numerous efforts have been made from time to time to effect improvements in the incandescent gas mantle invented by Dr. Auer, with a view to securing additional strength and attendant prolonged durability, but the fragile and perishable character of the cotton foundation rendered such attempts only moderately successful. The majority of such improvements proved only to be of a temporary nature, with the result that the mantle soon lost its power of incandescence.
Greater success, however, has attended the experiments of a recent inventor. In this device the cotton foundation is abandoned, and instead a cage or "bush" of thin rigid filaments projecting from a solid base, on much the same principle as the bristles of a brush, is used. The principle of the invention is based upon obtaining by fusion at a very high temperature radiant and unchangeable threads composed of various oxides. These filaments are perfectly solid and white, closely resembling glass or porcelain. They are made in the form of rods or needles of a thickness of 0.8 millimeter (0.03 inch) and from 25 to 30 millimeters (0.98 to 1.18 inch) in length. As may be seen from the accompanying illustration, the rods or needles are disposed in three rows of different lengths in the form of a bush, and the intensity of the incandescent illumination obtained is controlled by the number and length of these bristle-like filaments.

The threads are raised to a high state of incandescence by the blue fiame of the Bunsen burner in precisely the same manner as the ordinary Auer mantle, the fiame being projected into the center of the overhanging bush by means of a special gas injector in the burner. Any shade or tint of light preferred can be secured merely by the introduction of certain oxides in the production of the filaments. Moreover, owing to the great strength of the threads, the light can be made in a variety of forms-fiat, inverted, round, or assume fanciful designs, such as flowers, stars, and so forth-ren dering it useful for decorative purposes. Furthermore, it can be adapted to any system of, gas illumination with equal readiness and success, such as petroleum, natural gas, gasoline, alcohol, etc., and .can be used with portable lamps.

The filaments are of great strength considering their spider-thread-like thickness. In fact, if a rod be placed between the thumb and finger, it cannot readily be broken. Changes of temperature exercise no harmful effects, nor is it affected by drafts, wind, or rain. A mantle can be taken from the burner while in a perfect state of incandescence, plunged into cold water, and then reinstated over the fiame without sustaining injury or any impairment of its efficiency.
The mantle is suspended in position over the flame by the hook of a thin fork, which slips into the slot of the metal holder of the mantle, and all that is neces sary to do is to see that the bush is centrally placed over the burner, and that the strongest filaments are not more than $1 / 4$ inch distant from the burner, adjust ment in this direction being secured by sliding the supporting rod up and down in a small clutch at the side clamped by a screw. Control of gas is effected by means of a small screw regulator at base of burner, by means of which it is possible to enable just sufficient gas to be passed to the burner to raise the filaments to their maximum state of incandescence, and without any waste of gas. One of these mantles under normal conditions of working will last from two to three years, and there is no accompanying diminution in the intensity of the light emitted with use.

THE MEASLES CANNIBAL. by crittenden marriott

A few years ago, an epidemic of measles broke out among the Indian tribes living on Vancouver Island in British Columbia, not far from Fort Rupert and the shamans or medicine men came to the conclusion that a cannibal sorcerer, whom they termed the hamatsu (measles cannibal), was slaying their children to eat them, and that he would continue to.do so until he was killed.
As they could not slay a ghost in his own person, they arranged a ceremony in which one of their number posed as the cannibal, and was treated as they would have liked to treat the real foe. This fact of a substitute was, of course not made public, only the medicine men knowing the truth of the matter.
Against a wall of rock was painted an mitation opening, in the center of which the "cannibal" was fastened, just as he appears in the accompanying pho-
tograph (which, by the way, was not taken at the time, but some days later, when the medicine men were induced to give a private exhibition for the benefit of members of the Bureau of Ethnology). At the proper time, after going through various incantations, a covering was jerked away, exposing the cannibal, appar ently springing through the solid rock. He was promptly grasped by two of the priests, who dragged him out and rushed him through a fire which was

a "bUSH" OF FILAMENTS AS A SUBSTITUTE FOR THE GAS MANTLE
burning in front of the place and which was surrounded by all the members of the tribe, beating drums and singing at the top of their voices. By some jug glery, the cannibal was gotten rid of, and the people glery, the cannibal was gotten rid or, and the people
were and would not come back.
After this ceremony had been repeated several times to put an end to other epidemics, which were only too prevalent among the Indians, it grew into a sort of annual affair, managed by the members of a secre society whose members know that the supposed hamatsu was only a man.

tHE MEASLES CANNIBAL

ammonio-Copper Processen of Making Artificial

 silk.The production of artificial silk steadily increases as the strength of the product is increased. Silk made from ammonio-copper solutions of cellulose is cheaper than silk made from solutions of nitrocellulose, and its manufacture appears to be on the eve of a great development. A great many processes have been devised, as is indicated by the following list:

Early Processes.-Desplessis Process.-This is the earliest process and the foundation of the others. It consists in dissolving cellulose in Schweitzer's reagent (ammoniacal solution of hydrated oxide of copper) and forcing the viscous solution through spinnerets into a weak acid bath which coagulates the mass and consequently transforms the liquid streams into solid fibers, from which the ammonia and the copper are removed, and recovered, by washing. The French patent was issued in 1890 and expired at the inventor's death in 1892.
Pauly Process (1897).-The solution is formed without heating, by an immersion lasting a week, in order to increase the strength of the fibers.
Fremery and Urban Process.-The cellulose is first oxidized, in order to lessen the time required to dissolve it, and the fibers receive special treat ment to increase their strength and gloss. These processes are employed in the factory at Oberbruch, Germany.
Mulhouse Process.-Cotton bleached, mercerized again bleached and ground with copper sulphate. The mixture is dissolved in strong ammonia.
Soie Parisienne.-The cotton is ground with sul phate or carbonate of copper and dissolved in a 14 per cent solution of ammonia at 32 deg . F. The fibers are coagulated in strong sulphuric acid (up to 80 per cent).
New Processes.-In most of the new processes the cotton is first mercerized. Bemberg, however, converts unmercerized cotton into hydrocupro cellulose by mixing it with sulphate and chloride of copper, caustic alkali and water. The product is then treated with ammonia and exposed to the action of the air. Raw silk or silk wastes may be added to the cellulose. The fibers are spun in a bath con taining castor oil and caustic soda.
Foltzer increases the solubility of the cellulose by heating it with alkaline solutions, under gentle pressure.
Linkmayer immerses the cotton in a weak bath, in which it swells, and then in a stronger bath where it dissolves, and subsequently extracts par of the ammonia of the bath with an air pump, which permits a weaker coagulating bath to be used.
The Hanan Kunstseide Fabrik accelerates solution by saturating the cotton with ammonia and mixing it with a paste of hydrated oxide of copper.
Crumière adds an excess of metallic copper to Schweitzer's reagent
Draeper dissolves cellulose or hydro-cellulose in an ammoniacal solution of copper carbonate
Friedrich proposes to substitute alkylamines for the ammonia
Lecoeur recommends coagulation by bisulphites of the alkalies.
The Soie Nouvelle company obtains very fiexible fibers by coagulating and washing in presence of gly cerine. Boncquey adds sugar or mo lasses to the bath and the Sociéte Fran caise des Soies Artificielles uses a co agulating bath of strong caustic soda, mixed with glucose or glycerine.

Guadini employs a mixture of sul phuric and hydrochloric acids.
Thiele passes the fibers through a bath of ether, benzene, chloroform or tetrachloride or carbon, containing oil or grease in solution, which produces partial coagulation, and then through the regular coagulating bath.
Linkmeyer and Kracht also effect the coagulation in two stages, with a weak and a strong bath, in order to prevent the fibers adhering to each other.

Finally, in several processes the semi liquid cellulose is treated with caustic alkali, or the coagulated fibers are mer cerized with caustic soda, chloride of zinc, or acids. Linkmeyer and Pollak subject the fibers to tension during mer cerization.

Experiments are being carried out in the German navy with acetylene shells, which have been designed to take the place of searchlights. The shell is fired from a special gun, so as to fall in the water in the neighborhood of a hostile ship or fortification. It is ignited on striking the water, and each shell has been constructed to burn with 3.000 can dle-power for a period of three hours,

REGENTLY PATENTED INVENTIONS.
Pertaining to Apparel.
ABDOMINAL REDUCING-CORSET. - s. ticular purpose of the invention is to provid crse having portions the genera liameter of which can be contracted by de grees, and also having an auxiliary flap adapted to occupy different positions representing dif-
ferent diameters for the corset and provided with anelers for the corsel ant pieved with appropriate means located with

Electrical Devices

insulator.-C. Rosenberg and v. T. Bailer, New York, N. Y. In the present pat
ent the invention is an improvement in in sulators such as used in .connection with in candescent electric lamps, and has for its pur pose to relieve the binding screws or posts of the strain incid $n t$ to the stringing and the tretching of the wires.
TERMINAL FOR ELECTRIC WIRES.-B. morgan, Newport, r. I. The object of the invention is to provide a form of tip, whereby
the liability of the tip becoming detached from the liability of the tip becoming detached from
the conductor is reduced to a minimum, in the conductor ive reduced to a minimum, in
which extensive contact is made between the conductor and the tip, and in which the latter may be readilly secured to or detached from a binding post or the like, with
any wrench, clamp, or other tool
regulation of the period or in DUCTANCE OF HIGH-FREQUENCY CIR Cuits.-G. Ferbie, 51 bis Boulevard de Lacoursists in in providing in proximity to the in in-
conce. The actance windings other conductors, prefer ircuiting a portion of such other conductors the inductance being regulated by varying the
relative position of the inductance windings relative position of the inductance windings and surrounding cont
of the short circuit.
of Interest to Farnors
VENTILATOR FOR HEN-HOUSES OR BROODERS.-G. H. Lem, Omaha, Neb. While
the ventilator is intended to be used particuthe ventilator is intended to be used particu-
larly in connection with brooders and hen ouses, it is capable of general use as a ven tilating device, that is, where an inner com
partment or chamber is to have its air refresh ed through communication with the outer air WAGON-BODY AND HAY-RACK LIFTER.tion consists in an improved construction of wagon body lifter, in which special provision is made for bringing down the body in proper elation to the running gear when it is to be nd mati, the ary lif ing body to the running gear automatic as well as its disconnection from the running gear. beehive-Carrier.-A. C. Brovald, Finley, Wis. In this patent the wheel barrow is equipped with novel grasping and holding de-
vices for the hive. The cen ers are so arvices for the hive. The cen ers are so ar-
ranged hat when the barrow is brought to an anged hat when the barrow is brought to an approximately upright position adjacent to the are centered bembeath on which the hive rests arms for grasping the hive and which are manipulated from a point near the handles are brought into proper position to securely engage the hive and properly supported in th
barrow when transported.

Of General Interest

SAFETY-RAZOR.-T. F. Curley, New York, N. Y. The object of this inventor is to provide a razor arranged to permit of conveniently
placing the blade into accurate position on the frame or holder relative to the guard theredesired rigidity to the blade and which back plate can be readily opened or closed and securely locked in place when in a closed position.
HOSE-NOZZLE.-F. J. Radler, Jersey City, N. J. The connections of this nozzle are
particularly adapted for use with hose on fire particularly adapted for use with hose on ire
water-towers, stand-pipes and the like, the obect being to provide a nozzle with conne tions whereby it may be readily turned in
various directions, the connections being so cons
PROCESS FOR THE MANUFACTURE OF RESINOUS PRODUCTS CAPABLE OF REPlacing natural Resins.-L, Grognot,
18 Rue Labat, Paris, France. Phenols have he property of combining with the aldehydes under he influence of catalytic agents (such as mineral or organic acids, alkaline or other
bases) for forming the various resins analobases) for forming the various resins analo Nevertheless the action of these catalytic gents is difficult to control and beyond what is required. The present process avoids this defect.
MOLDING-FASTENING.-A. C. Goddard, New York, N. Y. Metal doors, windows, and other similar structures are comprised in this
invention, and the object is to provide a fasinvention, and the object is to provide a flis-
tening for securely fastening molding and like parts in place without the use of screws. rivet ing the fastening means on he outside of the molding or marring he exterior face thereof SHAVING-SOAP CAKE.-L. C. Benitz, and
down by the brush in the center of the top
of a soap cake, and the shaving brush finally comes in contact with the bottom of the cup remains nothing of the cake save a thin ring which soon breaks up into pieces or sections
that are thrown away and thus wasted. The invention provides a cake of improved shape that will wear so as to avoid
dent to the use of the old form
WATER-STORAGE SYSTEM
WATER-STORAGE SYSTEM FOR USE IN New York, N. Y. The object here is to provide a system whereby water may be stored in such manner as to be available in the event the usual water supply should fail, as for instance, by the breakage of the water mains by earthquake shock, or such a temporary re-
duction of the normal pressure occurs in the duction of the normal pressure occurs in the quacy in the supply.
WOVEN FABRIC.-H. Sarafian, Yonkers, N. Y. The aim of the invention is to provide provided with an exceedingly strong yet flexible back, thus rendering the fabric very sericeable for use as a carpet, rug or the like. It relates to fabrics such as shown and described in Lette
o Mr. Sarafian.

Hardware.

COMBINATION-TOOL.-W. Wrightsman, Evansville, Ind. This tool embodies a center punch, a try-square and a linear scale. An object of the invention is to produce a de-
vice having a center punch, and arranged so that when it engages a body of circular crosssection in a suitable manner, the center punch can be positioned at the cross-sectional center of the body.

Heating and Lighting.

BOILER-FURNACE.-J. O'NeiliL, New York, rovide a furnace, more especially designed for water-heating systems, and arranged to utilize the heat from the burning fuel to the
fullest advantage, to render the furnace exfullest advantage, to render the furnace ex-
ceedingly strong, and durable by constructing the same mainly of sheet metal and brickwork and to allow convenient cleaning of the

Household Utilities.

STRAW-BURNING STOVE--H. C. Ruggles, Moro, Ore. The invention relates to stoves for use in burning a highly combustible substance hay or straw. The aim is to produce ided with improved means for insuring a pro raft and for controlling the draft.
washboard. -Louise h. Percy, Philadelphia, Pa. The invention has in view the provision of means for supporting the board over the tub in a substantially horizontal and slightly depressed position. Its use prevents backache from bending, prevents injury to the
hands, such as callous knuckles and injuries esulting from pins, broken buttons, etc. The finest or coarsest article may be cleaned in oiling and the use of chemicals.
PORTABLE REEL GAS-OVE
Menk, New York, N. Y The object -G. B prevent heating of the exterior wall by the heat of the gas burners employed in the baking.
This is accomplished by forming each of the This is accomplished by forming each of the
walls or wall sections with an inner packing walls or wall sections with an inner packing
of asbestos or other suitable non-heat-conductof asbestos or other suitable non-heat-conducting material, and outside of the asbestos lining, o arranged that an automatic circulation air is maintained.

Machines and Mechanical Devices.

 WATER-MOTOR.-H. BROWN, Brandt, Ohio he purpose in this invention is to simplify the piston construction by making the cylinder from the wall of the chambers between the piston faces, to mount the inlet and exhaust mechanism intermediate the piston faces for perating the valves.SAWMILL--F. O. Willey, Newport, Ind. The object of the inventor primarily is to pro-
vide in connection with a saw mill like cutting machine a variable feed, which is under the absolute control of the operator, and which will give every possible rate of travel to the feed carriage within certain limits in ither direction.
AUTOMATIC STOP FOR TALKING-MA-CHINES.-R. B. Smith, New York, N. Y. The more particular purpose in this case is to enable a moving member carried by the machine and having a travel related to the progress made by the record to play, to act upon and
operate one or more brakes for the purpose of stopping the machine promptly when the playng of the record is completed.
DRIVEN WHEELL-J. T. MOORE and W. J. Fleming, Evansville, Ind. The object of the mprovement is to provide a driven wheel
wherein the momentum of the driving wheel at all times, when in action, predominates over the driven wheel, and the wheel is especially
adapted for use as the driven wheel of a band aw or band knife machine but may be used saw or band knife machine but may be used
in any loose pulley where a minimum momentum is desired.
CAMERA ATTACHMENT.-E. L. HALl, invention a construction of a camera finder
furnished with an adjustable hood that is ap plicable to any type of camera and which can
be expeditiously and conveniently fitted thereto, and which is also capable of being readily

PANTOGRAPHIC SHIFTER.-H. L. FALCO New York, N. Y. The invention relates to printing and arts allied thereto, the more par ticular object being to provide means for read ny shifting a printing film or the like, for the
purpose of multiplying the design carried by purpose of multiplying the design carried by
the film. The mechanism is a system of levers for use in moving the printing film frame and mechanism for guiding the operator as he actuates the system of levers by hand.

Railways and Their Accessories.

RAILWAY-SIGNAL.-M. M. Kane, ${ }^{\text {² }}$ Mont gomery, Ala. This signal is for use in pre venting collssions or accidents caused by open switches. The object of the inventor that it may be readily operated so as to distrack is clear or not.
TRACK-SANDER.-J. Schmitz, San Francisco, Cal. The aim of the vide a simple and efficient track sander, which can be applied to railway rolling stock of varous kinds, which is inexpensive to manufacure, and by means of which sand can be disributed in a plurality of directions and de TICKET OR RECEIPT CUTTER.-G. MCN. Rose, Jr., Nashville, Tenn. The invention is Rose, Jr., Nashville, Tenn. The invention is
an improved device for use in cut ing and thus dividing receipts, or tickets, given for cash fares paid by passengers on railway trains. It is embodied chiefly in he form, arrangement and adaptation for adjustment of the several
coacting cutters. The device may be quickly coacting cutters. Th
and easily adjusted.

Designs.

design for a glove.-I. Oliver, New York, N. Y. The glove is formed with a hand from the junction of the hand portion therewith to its free end, on the side adjacent to the little finger and the sides of the split are snap fastened. The wrist portion is split from he beginning of the palm upwardly and the
sides of the split are provided with buttons sides of the split
and button holes.
Notr.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please state the name of the patentee, title o
the invention, and date of this paper.

Full hint the head of this column in the issue of NovemAttention has Attention has been called by several corre
spondents to the answer to Query 11007, regarding the properties of aluminium. The editor must say that the latter part of the
answer is not entirely justified by the facts in the case. The compounds of aluminium are not to be regarded as poisons and are simp'y have condemned the use of aluminium dishes, but they are no worse in this respect than tin, if as bad, and excepting he caustic alkalis, the. amount of action of these chemicals of
foods upon the aluminium is so small that foods upon the aluminium is so small that
the salts formed cannot be sufficient to do harm.
(11033). B. T. asks how to make buff wheels. A. Turn up the wooden disk to form the wheel on the mandrel on which it is to run. glue, prepared as for gluing wood, stretch the leather around and confine it with shoe pegs driven in about 2 inches apart. When dry
turn off true with $\mathbf{a} \cdot$ sharp chisel. Give the leather a coat of glue and chill it in emery so as to make it retain it by being imbedded hard and it is ready for use
(11034) C. L. F. asks how to preserve bird-skins. A. Make an incision from the
breastbone to the vent; with a small piece of breastbone to the vent; with a small piece of
wood work the skin from the flesh. When the ood work the skin from the flesh. When the leg is reached, cut through the knee joint and
clear the shank as far as possible, then wind bit of cotton wool on which some arsenical soap has been put round the bone; do the same with the other leg. Now divide spine from root of tail, taking care not to cut too
near the tail feathers, or they will come out. Next skin the wings as far as possible and cut off. The skin will now be entirely clear of the out and the neck and skin gently pulled in opposite directions till the eyeballs are fully exposed. The whole of the back of the head may be cut off and the eyes and beain taken out and their places flled with cottan wool.
The whole skin should be rubbed : well with arsenical soap or plain arsenic, and the neck returned to its natural position, when, after filling the body with a ittle dry grass or wool,
the is done. It is very easy, and the skin of a bird is much tougher than one would suippose, though, of course, they vary, the night-
jar being very thin, while humming birds are sharp loife and a pair situs required is a large birds, a strong pair of nippers to divide the bones.
(11035) C. L. asks how to lace belts. . The ends of a belt should always be cut off square, not guessed at by the eye, but laid with a small punch at a proper distance from the end; the size of the holes and the distances of them depending on the width of the the holes are of an awl is reprehensible, for the holes are apt to be made irregular by it,
and much larger than there is need of. The end of the lace should be tied with a square knot in the middle of the outside, for the cor-
ners of the belt where it is cut are most exposed and apt to whip out. Tying a belt lace does not look so neat as where the ends are put through an incision, but tying saves the belt from having extra holes made in it. The laces ought to be of the same thickness from
end to end, or as nearly so as possible often happens that laces have very thin spots in them; such should be kept for short belts, and never used for long ones. Moreover, the holes must be made at equal distances apart he bett the many of them. Every hole weakens ential should be that are not absolutely esas new belts, should be stretched by hanging leum, sawdust, resin, and similar should never be used. When a belt gets harsh or dry, neat's-foot oil is the best thing to apply
(11036) C. M. S. asks: 1. Why does not an arc lamp short-circuit a current or wires leading from the generator are touched together and pulled apart, thus making an arc? A. The carbons of an arc lamp do not shortcircuit the current because he resistance of
the coils in the lamp cut the current down to the number of amperes needed to light the lamp. 2. Is there any form of a rheostat used in the ordinary arc lamp? A. There is a one of the SCIENTIFIC AmERICAN SUPPLEMENTS showing the construction of an electric furnace. ticle upon the construction of an electric fur-
(11037) K. G. C. asks: Owing to the precession of the equinoxes, is the apparent the northern cestial ans and the pole of larger or a smaller circle than formerly, or in other words, is the star approaching or receding from the actual pole? A. At present the
distance of Polaris from the North Pole is distance of Polaris from the North Pole is
about one and a quarter degrees. At the time about one and a quarter degrees. At the time
of the Star Catalogue of Hipparchus, it was 12 degrees distant from the pole. It will approach the pole for the next hundred years,
at which time it will be within a half degree at which time it will be within a half degree
of the pole. After that time it will recede from the pole, or rather the pole will recede from the pole,
from the star.
(11038) L. C. S. writes: 1. As I understand it the resistance is what makes the ing coil get hot. In order to avoid the heatwhat heats the coil, how, if rou account for the coolness of the fields after adding more wire, consequently more resistance? A. Your
statement that resistance causes the heating of an electric circuit is less than half right The exact statement is that the heat developed in a circuit is directly proportional (1) to its resistance in ohms, (2) to the square of the
current in amperes, (3) to the time that the current in amperes, (3) to the time that the
current flows in seconds. Now one ampere flowcurrent flows in seconds. Now one ampere flow-
ing through one ohm develops 0.24 calorie in one second. Putting these facts in a formula we have: Heat in calories $=0.24 C^{2} R t$. It can
now be seen why the heating of a coil can be now be seen why the heating of a coil can be
remedied'by adding more wire. The increase of resistance cuts down the amperes in the same ratio as the increase. But the reduction
of the amperes affects the heating power in the ratio of the squares of the amperes. Thus, If the resistance were doubled the amperes would be halved, but the heat produced would $\begin{array}{ll}\text { the square of } 1 / 2 \text { is } 1 / 4 . & 2 \text {. What is the cause }\end{array}$ of the humming in the field coils and pole pieces of an induction motor when the arma-
ture does not revolve, but the current is passing through the fields? A. The alternations of electric current produce vibrations which are heard as sound. These can be heard near an arc light run by an alternating current, or
near an alternating electro-magnet. 3 What changes are necessary to reverse the running changes are necessary to reverse the running
of an induction motor? Crossing the positive and negative wires at the binding posts will not do it. of course, merely reversing the main wires will produce no effect upon the di-
rection of rotation of a motor. If the inducrection of rotation of a motor. If the induc-
tion motor is two phase, the direction of rotation motor is two phase, the direction of rota-
tion will be reversed by changing the two leads of either phase. If it is three phase, it will be The diff by changing any two of the leads. behind each other, and the direction of rotation depends upon the direction in which the phases lag behind around the rotating part of the motor, whether clock-wise or contra-clock-
wise. To reverse the motor the direction of the lag in phase must be reversed. 4. Would
motor has been fully treated in several books
recently published: Oudin's "Polyphase Aprecently "pubhished : Oudin's "Polyphase Ap-
paratus," price $\$ 3$ by mail; Thompson's "Poly-
phase Currents," price $\$ 5$ by mail. These, with Thompson's "Elementary Lessons," price $\$ 1.40$, will put you in possession of quit
library of the subject at present.
(11039) R. W. asks for a rough method of estimating the horse-power of a steam en-
gine. A. Multiply the square of the diameter of the cylinder in inches by 0.7854 , and this product by the mean engine pressure, and the
last product by the piston travel in feet per last product by the piston travel in feet per
minute. Divide the last product by $\mathbf{3 3 , 0 0 0}$ for the indicated horse-power. In the absence of logarithmic formule or expansion table, of logarithe
multiply the boiler pressure for $5 / 8$ cut-off by
0.91 , for $1 / 2$ cut-off by 0.85 , \% cut-of by 0.75 , 3-10 cut-off by 0.68 . This will give the mean
engine pressure per square inch near enough engine pressure per square inch near enough
for ordinary practice, for steam pressures befor ordinary practice, for steam pressures betiplied by the number of revolutions per min-
(11040) H. B. asks for a formula for insulating material. A. Linseed oil, 2 parts; parts; light coal tar, 2 parts; Venice turpen ine, $1 / 2$ part; spirits of turpentine, 1 part tine, $1 / 2$ part; spirits of turpentine, 1 part;
gutta percha, $1-6$ part; sulphur, 2 parts;
heat the oils separately to about 300 deg. ; heat the oils separately to about 300 deg. F.;
cool to 240 deg., and mix in the other macool to 240 deg., and mix in the other ma-
terials, the sulphur last. Heat to 300 deg. terials, the sulphur last. Heat to 300 deg.
F . for about an hour or until the mixture beF. for about an hour or until the mixture be-
comes pasty, and on cooling is soft and elastic. (11041) F. W. B. says: My boat is 20 eet long by 4 feet 5 inches wide, with easy lines, and my engine is supposed to be a highinches, stroke 4 inches, weight less than 200 pounds. It is said to give 4 horse-power at 500 R. P. M., and I would like to know what size propeller you would advise me to use,
and what should be the proper pitch, and and what should be the proper pitch, and
whether it should be two fluke or three. A. whether it should be two fluke or three. A.
The size of a screw depends upon so many The size of a screw depends upon so many
things, that it is very difficult to lay down any rules for guidance. where the size and power of the boat does not exceed a speed of 20 knots per hour. First : The "pitch" of a propeller is the distance which any point in a blade, describing a helix, will travel in the direction of the axis during move around the axis. The pitch of a prounifor will advance during one revolution, provided there is no slip. case of this kind, the term "pitch" is analogous
to the term "pitch of the thread" of an orto the term "pitch of the thread" of an or-
dinary threaded screw. Let $P=$ pitch of propeller in feet. Then

$P=\frac{10133 \mathrm{~S}}{R(100-x)}$

In which $S=$ speed of boat in knots, $R=$ revolutions per minute of propeller, $x=$ per-
centage of slip. Assuming a speed of 10 knots per hour for your boat, with engine running
at 500 R. P. M., and assuming a 10 per cent slip, we get a pitch of
10133 10133×1
$500(100-10)$
This is probably high, due to the fact that assumed a low percentage of slip.
Diameter of propeller

$$
K \sqrt{\frac{\text { I. H. P. }}{\left(\frac{R \times P}{100}\right)^{3}}}
$$

$K=$ constant $=17.5 . \quad$ I. \quad H. \quad P. $=4 . \quad R=$
500 R. P. M. $\quad P=2.25$. Therefore, diameter 500 R. P. M. $P=2.25$.
of propeller under
these
conditions, four blades to the screw, made of cast iron, would be approximately one foot diameter. To
allow for any increased slip which may occur, allow for any increased slip which may occur,
and other contingencies which may arise, we would not advise a screw less than 2 feet in will easily allow for any increased speed dewired over 10 knots up to 15 knots per hour.
(11042) C. J. N. asks how to draw on glass. A. To write or draw on glass, it is degree of roughness. This may be done by grinding or etching, but much more easily by applying some appropriate varnish. A good
matt varnish is made by dissolving in 2 ounces matt varnish is made by dissolving in 2 ounces
of ether, 90 grammes of sandarac and 20 grammes mastic, and adding benzol $1 / 2$ ounce to $11 / 2$ ounces, according to the fineness of the
matt required. The varnish is applied to the matt pequite after it has set. The glass may be heated to insure a firm and even grain. To render the glass again transparent, after writing upon it, apply with a brush a solution of
sugar or gum acacia. Still better as a surface for writing or drawing is a varnish of sugar. Dissolve equal parts of white and brown sugar in water to a thin syrup, add
alcohol, and apply to hot glass plates. The film dries very rapidly, and furnishes. a surface on which it is perfectly easy to write with pen or pencil. The best ink to use is
India ink, with sugar added. The drawing India ink, with sugar added. The drawing
can be made permanent by varnishing with a lac or mastic varnish.
(11043) W. F. J. asks how to make waxed paper on a small scale. A. Place cart-
ridge or other paper on a hot iron and rub it ridge or other paper on a hot iron and rub it
in turpentine. On a large scale it is prepared
by opening a quire of paper flat upon a table, and rapidly ironing it with a heavy hot iron, against which is held a piece of wax, which,
melting, runs down upon the paper and is melting, runs down upon the paper and is ab-
sorbed by it. Any excess on the topmost layer readily penetrates to the lower ones. Such paper is useful for making waterproof and airproof tubes, and for general wrapping pur-
(11044) S. C. H. asks: 1. What is the meaning of "ampere hour"? A. An ampere hour is a current of one ampere flowing for in form as "horse-power hour" or one horsepower used for one hour. 2. How is the
amperage of any light or coil measured? A. The amperes used by a light or coil are meas ured by an ammeter put into the circuit so
that the current flows through it. 3. What that the current flows through it. 3. What
are the necessary steps for a young man to get a position as electrician on board an ocean liner? A. To become an electrician in any
position, learn the business thoroughly and then apply for the plasins want. Make it appear that you are the man for the place, nd you will be likely to get it.
(11045) C. W. N. asks: 1. Approximately how large a spark coil is needed in
wireless telegraphy to transmit through a disWireless telegraphy to transmit through a disof five miles? A. A coil giving a spark one inch long will transmit one mile over water Over land the spark length varies with the
character of the surface. A coil giving a ten-inch spark will answer
distances and circumstances
large spark coil in which the greatest amount of wire is placed on the middle part of the coil, I have learned that it is customary to leave a
space between the core and the wire at the ends. Is there any disadvantage in winding so that the wire lies directly on the main in
sulating tube? A. The space is of the greater tendency of the spark to jump from the secondary into the primary as the ends of the coil are approached. See Hare's "Construction of Large Induction Coils," price
$\$ 2.50$ by mail. 3. Is there any better insuator than paraffine for use in the construction of coils? A. Paraffine or a heavy oil is employed. 4. What is the best material to use A. Hard rubber disks. 5. Are there any means by which the voltage of the secondary wire of a coil may be determined? A. Widely different sary to force to be found of the voltage necesof dry air. There is no rule giving a certain (11046) J. G. M. asks if cast iron balls and cones can be cast so as to wear, and if
they cannot, kindly state what other material they cannot, kindly state what other materia can be used besides steel. A. Cast-iron balls
and cones are not suitable for bearings for truly finished steel balls and bearings, hardtruly
ened.
(11047) C. G. W. says: Will you kindly inform me through your Notes and Queries schaum pipe? for coloring in a preparation of wax which absorbed, and a thin coating of wax is held on the surface of the pipe, and made to take
a high polish. Tinder the wax is retained the oil of tobacco, which is absorbed by the pipe and its hue grows darker in proportion to the
tobacco used. A meerschaum pipe at first tobacco used. A meerschaum pipe at first
should be smoked very slowly, and before a second bowlful is lighted the pipe should cool off. This is to keep the wax as far up on
the bowl as possible, and rapid smoking' will overheat, driving the wax off and leaving the pipe dry and raw. A new pipe should never
be smoked outdoors in extremely cold weather. be smoked outdoors in extremely cold weather
Fill the pipe and smoke down about one-third, or to the height to which you wish to color Leave the remainder of the tobacco in the pipe and do not empty or disturb it for sevtained. When smoking, put fresh tobacco on
the or until the desired color is ob the top and smoke to the same level. When once burnt the pipe cannot be satisfactorily colored, unless the burnt portion is removed
and the surface again treated by the process ing is meersch in prepa the un the oils and wax which are superficially on the exterior of the pipe,
process of manufacture.
(11048) F. B. C. asks for rules for alculating speed of pulleys. A. The diamete of the driver being given, to find the R. P. M.
of the driven; Rule.-Multiply the diameter of the driver by its number of revolutions, and divide the product by the diameter of the
driven; the quotient will be the number of driven; the quotient will be the number of
revolutions of the driven. Ex. 24 inches diam evolutions of the driven. Ex. 24 inches diam
eter of driver $\times 150$, number of revolutions, $=$ $3,600 \div 12$ inches diameter of driven $=300$. The diameter and revolutions of the driver being
given; to find the diameter of the driven, that shall make any given number of revolutions in the same time. Rule-Multiply the diameter of the driver by its number of revolutions, and
divide the product by the number of divide the product by the number of required
revolutions of the driven; the quotient will be its diameter. Ex.-Diameter of driver (as before) 24 inches \times revolutions $150=3,600$ Number of revolutions of driven required $=$
300 . Then $3,600 \div 300=12$ inches. The rules 300 . Then $3,600 \div 300=12$ inches. The rules
following are but changes of the same, and
will be readily understood from the foregoing
examples. To ascertain the size of the driver rule.-Multiply the diameter of the driven by
the number of revolutions you wish to mak and divide the product by the required revolu tions of the driver; the quotient will be th size of the driver. To ascertain the size of pulleys for given speed: Rule.-Multiply the diameters of the drivers together and al
the diameters of the driven together the diameters of the driven together; divide
the drivers by the driven; the answer multipl by the known revolutions of main shaft. (11049) L. P. says: Will you give me a rule for finding the power a stream of and drop of stream are known? A. The gross power of a fall of water is the product of the weight of water discharged in a unit of time into the total head, i. e., the difference of vertical elevation of the upper surface of the
water at the points where the fall in question water at the points where the fall in question
begins and ends. The term "head" used in begins and ends. The term "head" used in
connection with waterwheels is the difference in height from the surface of the water in the wheelpit to the surface in the penstock whe water discharged per if $Q=$ cubic feet of cubic foot of water $=62.36$. pounds, $A=$ total head in feet, then $D \times Q \times H=$ gross power in foot pounds per second, and $D \times Q \times H \div 550=$ gross horse-power. A waterwheel or motor of
any kind cannot utilize the total head H due to losses at the entrance and discharge from tion, wheel. tion, etc., which place the average efficiency of
waterwheels at about 75 per cent. Thus net $\boldsymbol{Q} \times \boldsymbol{H} \times \boldsymbol{D}$
water can be made use of in one or more of the following ways, namely: 1. By its weight, as in the water balance and overshot wheel.
2. By its pressure, as in turbines and in the hydraulic engines. 3. By its impulse, as in the
her Pelton waterwheel. 4. By a combination of
the above. Referring to your question, we the above. Referring to your question, we
might say that it would be impossible to commight say that it would be impossible to com-
pute the horse-power of a stream of water when the size and head are known only. It would be necessary to measure the quantity of this value Q could be determined in the form ula, H could be measured, and the horse-power calculated. 2. A dynamo of what lighting ca pacity will a 3-horse-power gasoline engine run a dynamo which could be engine would lighting system carrying safely thirty 110 -volt 16-candle power Edison incandescent lamps on a parallel circuit.
(11050) W. S. asks: Is it possible to consume all the oxygen in a confined quantity by placing copper scraps in the pipe and heat ing the air in the pipe. The oxygen combines with the copper, forming a solid s
and leaving the nitrogen uncombined.
(11051) C. M. writes: 1. I want to use a call bell in kitchen, battery to be in
second story, from which run two wires. I want one push button in one room, one in sec ond room, one in parior,- one in room down stairs, also one in dining room-five push but-
tons ; how could I connect all buttons to work properly with only one bell? A. Carry one wire from one post of the battery to the bell and from the other side of the bell a wire which shall branch through each push button to the other side of the battery. There will
then be a complete and separate circuit through then be a complete and separate circuit through
battery, bell and a push button. 2. I have one battery, bell and a push button. 2 . I have one
lamp, 8 candle power, 26 volts; could I light it with 14 cells improved standard Fuller wattery? If so, how about the amperes th 26 volts? A. You can light the
will lamp with 26 volts and 1 ampere of cur-
rent. 3. How old is Mr. Edison? Also, who was the first that invented the electric light I mean both the arc and incandescent lamps. A. Mr. Edison was born February 11, 1847.
The first man who ever saw a spark from artificially man who ever saw a spark from been Otto von Guericke in 1660 . This was the first electric light. Sir Humphry Davy is credited with first producing an electric arc light in 1801 . He had a battery of 3,000 plates, each four inches square, and used char-
coal points made of wood, which he immersed coal points made of wood, which he immersed
in a mercury bath to increase the conductivity. With this he melted many refractory sub stances such as lime, platinum, sapphire, and diamond. The incandescent la
vented and perfected by Edison.
(11052) G. S. M. asks: Will you kindly let me know through the columns of your paper whether it is necessary for the
temperature of the air to become 32 deg. F or lower in order to produce a "white frost" If not, please give reasons. A. It is necessary
for the air to be at 32 deg. at the point where for the air to be at 32 deg. at the point where
the white frost forms. It is not necessary for the white frost forms. It is not necessary for
it to be at 32 deg. any distance above that it to be at 32 deg. any distance above that
point, even one foot above. The air is a nonconductor of heat, and may be several degrees where frost is forming. Vegetation and stones are better conductors of heat than is air, and hence become cooler than the air. Hence the
dew is deposited on these, and the dew freezes to ice crystals, which is frost

(11053) G. B. asks: We have tried | different ways in cutting round glass rods of |
| :--- |
| $1 / 2$ inch to $~$ |
| $/ 8$ inch without good results. Will |
| you kindly advise best way of doing same? |

A. A glass rod is usually broken by making a cut on one side with a file or diamond and the cut. An improvement upon this method although requiring more work, would be to make a cut entirely around the rod, and apply heat at the place where the cut is made. A redhot piece of iron $\% / 8$ inch in diameter will be
the best for applying the heat to the rod. the best for applying the heat to the rod.
This may be fitted into a handle and used as This may be fitted into a handle and
a soldering tool is used in the hand.
(11054) J. P. A. asks: Comparing the chemical equivalents (atomic weights) given in Century Dictionary with those stated in text
books on this subject, I find considerable difference in the figures. In some cases, the ference in the figures. In some cases, the
amounts are one-half for those of text books as against the amounts of Century Dictionary, while in other cases the differences of amounts are without definite proportion. If the determination of equivalents of elementary bodies has passed beyond the presumptive state, will you kindly advise me where the truth of this
matter may be found? A. We should no more matter may be found? A. We should no more
think of going to the Century Dictionary for the chemical equivalents, or atomic weights of elements, than we should think of going to an almanac seventeen years old. The Century Dictionary is most valuable in its field; but surely its field is not to give data which have been made far more correct since its publication seventeen years ago. The American Chem-
ical Society has a committee upon atomic ical Society has a committee upon atomic
weights, and its figures reported from time to time are received as authority. Probably the most weighty name in connection with this work is that of Prof. F. W. Clarke, the chief chemist for many years of the United States Geological Survey. The determination of
atomic weights has passed beyond the "preatomic weights has passed beyond the "pre-
sumptive stage," and the results may be found sumptive stage," and the results may be found
in any recent chemistry, such as Remsen's in any recent chem
"College Chemistry."
(11055) A. M. asks: Please let me know what I would need to cause the sound 150 fock to be transmited a distance of, say, would consist of a telephone transmitter in front of the clock and a receiver at the point at which you would hear the ticking.
(11056) J. W. D. asks: 1. How long does it take to decompose one pound acidified time required to decompose a pound of water depends upon the amount of electricity used If $131 / 2$ amperes are used at 100 volts it will require one hour. From this the time for any other current can be found, or the current for any other time. Water is decomposed with any voltage greater than 1.47 volts. You will
see then that 100 volts is very much higher than is necessary. 2. How much does it cost to run a dynamo of 1,000 volts annually, in cluding all expenses? A. That depends upon how many amperes the dynamo is to furnish. A dynamo giving 1,000 volts might be lighting a small village, or it might be lighting a large section of your city. T
the same in both cases
(11057) G. G. S. asks: Please inform me as to the amount of current used by (1) $1 / 2$-inch solid carbons, (2) $1 / 2$-inch soft core car bons, (3) $5 / 8$-inch solid carbons, (4) $5 / 8$-inch
soft core carbons, when used in a stereopticon on 110 -volt alternating current circuit. A Stereopticons are usually run with $1 / 2$-inch carbons. We have never used one with a larger carbon. The $1 / 2$-inch carbon will carry as high as 25 amperes, but 10 to 15 amperes is
the usual current for such a lamp. A $5 / 8$-inch carbon would carry $25-16$ ths as much current as a $1 / 2$-inch carbon. The current would be proporti
carbon.
(11058) M. C. A. asks: Will you please inform me what size and how many feet of wire it will take to make an electric heater, 104
volts, say 5 to 7 amperes capacity? A. Seven amperes at 104 volts require 15 ohms of resistance. For a rise of 190 degrees F. the resis tance rises 40 per cent. Hence about 5-7 as
much wire will be needed if you wish to raise much wire will be needed if you wish to raise No. 14 iron wire may be used. This has about 65 feet to an ohm. These are approximate
numbers, and you can adjust the quantity to the temperature you wish to maintain
(11059) J. O. D. says: Do you publish an Encyclopedia of Receipts and a book on patent laws? A. We recommend and can
supply you with the "Scientific American Cyclopedia of Receipts, Notes and Queries," Cyclopedia of Receipts, Notes and Queries,
last edition containing 15,000 receipts, 736 pages, cloth bound, price $\$ 5$. Our "Scientific American Reference Book,'" price $\$ 1.50$, gives
the patent laws. Always give full name and the patent laws. Always giv
address when corresponding
(11060) W. A. L. asks: Is there any other metal that can be used in a gravity bat
tery besides zinc that will not dissolve? there is no way of obtaining electricity with-
Ther out using up some material. In the dynamo steam or water power is employed. In the bat
tery we usually burn up zinc. It is just as impossible to produce electricity without a disappearance of some other form of energy as it is to heat a house and still have the coal, (11061) C. S. J. asks: I wish to learn the cause of trichinæ in pork. A. The
Trichina spiralis is a worm, a parasite of the Trichina spiralis is a worm, a parasite of the
hog. It is often found in great numbers in
the flesh of these animals, in the encysted con-
dition but still alive. If such meat is eaten without cooking thoroughly, the parasite is taken into the body and is rapidly propagated. The worm came originally from the rat. As hogs eat rats, they pass into the hog and
thence into man. The only preventive is thorthence into man. The only preventive is thor-
ough cooking. This kills the trichinæ. No ough cooking. This kills the trichinæ. No
rare or underdone pork should ever be eaten The risk is too great. The cost of immunity is so little, that anyone may be safe. Cook all
pork thoroughly. 2. The cause of ptomaine poisoning by eating pork. What causes the poisoning by eating pork. What causes the
presence of the poison, how the poison can be presence of the poison, how the poison can be way of detecting the presence of poison before
using the meat? A. Ptomaines are formed by using the meat? A. Ptomaines are formed by
decomposition. If only fresh food is used, one decomposition. If only fresh food
will be safe from these poisons.
(11062) H. S. N. asks: 1 have been a reader of your paper for several years, and mit a problem for solution. The problem is this: Several years ago I took a picture of fier, at a point about two miles east of Decatur. On development the plate showed bur of $1-32$ inch, i.e., the pilot did. I used a Vive extra rapid plate; the focus of the lens
was 6 inches; the distance of the engine, the pilot, from the camera, 50 feet; the length oxposure, $1-100$ of one second; camera was What was the speed of the train? The camer was a Vive, $41 / 4 \times 4 \frac{1}{4}$, meniscus lens. A. The olution of your problem of the speed of the rain is not difficult, at least so far as a sufficiently close approximation is concerned. Sart with the fact that the image of the pilot moved $1-32$ inch during exposure. Since the lens is 6 -inch focus and the pilot is 50 eet away, the pilot moved across the line
drawn through the center of the lens, 100 imes $1-32$ inch, or 3.125 inches, since 50 feet is 100 times 6 inches. And since the camera made an angle of 15 deg . with the track, we must divide the 3.125 inches by the sine of 15 deg . to find the distance the pilot moved during the exposure. This gives 12.07 inches as the distance the train moved in the time
of exposure, or $1-100$ second. In one second it of exposure, or $1-100$ second. In one second
moved 1,207 inches, or 100 feet 7 inches. This a speed of somewhat over 71 miles per hour As we said above, this is an approximate solution, but still not far from the result which an xact solution would give.
(11063) J. S. N. asks: Will you kindly answer in your column of Notes and man computation? I suppose the matter is simple enough, but I have never come across any work explaining it, nor any person whom have asked who could throw any hight on the the method by which the Romans used their very inconvenient notation for performing the ordinary calculations. They are supposed to have used the abacus for all except the most imple problems. This instrument is in common use now by all Chinamen, and it is not ifficult for any one to see it used wherever hese men may be found. A description of the There was a rod for each denomination of umbers to millions, seven rods each carrying five balls. Another set of short rods corresponded to these, and had one ball sliding on each. They could thus count by fives and carry by tens. Other rods supplied their need or calculating ounces. Further than this their business did not require them to go; the sun by the velocity of light. They died n total darkness in regard to both of these lata of the universe. As we said at the outset, we do not know the detail of the method by which the Romans made their calulations. Their mode of writing number was not like ours by placing like denomina ions in the same column, but each letter had added by itself on the abacus, since each rod meant a denomination
(11064) W. D. W. says: Will you be kind enough to answer the following questions he greatest respect for your opinion on scientific matters? 1. Will electric wires, furnishing current for arc lights coming in contact with street trees, injure them, that is, when the nsulating covering has worn off from rubbing gainst the branches of the tree? One of the ree and park commission of this city (Colum elligent gentleman, insists that the electricity, hat is all that is taren by the tree in wet weather, will do no harm, while I hold to the opinion that it will ultimately kill it, and I wish to know which one of us is wrong. A. We have found by experience that leakage from electric arc light wires does injure the limbs of trees, particularly when the difference of potential is very great, although we do no very young. 2. When a tree has been killed by escaping electricity, how long a time should lapse, in case the leak be located and stopped, before it will be safe to put another tree in its place? A. We see no reason why another tree cannot be put in at once if the ground has been removed. 3. Some very large oaks that are exposed to the smoke from the ran an anxious to know if the smoke is responsible for their dying. The shops have been there
for a long time, and it seems that if the smoke
is the sole cause the trees ought to have died
long before this time. It may be possible howver, that loss of vitality on account of age may be partly responsible for their dying. If the trees are very close to the top of the
smoke-stacks, we have no doubt that the trees have lost some vitality on account of it, as the products of combustion are very destructive
vegetable life, but the trees would have to egetable life, but the trees would have
(11065) C. D. asks: 1. What point below the freezing point do air, hydrogen,.-ni trogen, oxygen, become liquid? A. These tem Fahr. degrees, below zero: Air, 312; hydrogen, 422 ; nitrogen, 317 ; oxygen, 297. 2. Please give me the address of a reliable company that sells chemicals and chemical apparatus. A. You had better deal with a firm in the city
near your home than buy at a distance and pay transportation charges. Our advertising of these dealers. We do not advertise dealers in the Notes and Queries column. 3. Where can I get some books on argon, helium, neon, srypton, and xenon, and give me the prices o them? A. We can send you many valuable papers on the rare gases of the atmospher
which have appeared in the SUPPLEMENT Among them are argon, Nos. 1000, 1001, 1002 1056,1057 , price ten cents each. 4 . What kind of chemical books, as organic chemistry etc., so I can find liquid formene? What is ormene? A. Formene is a tetrachloride of arbon CCl_{4}. Its preparation can be found an anæsthetic, similar to those of chloro causing insensibility. As it has been the cause of death also, it is not used by physicians. It is not a substance for an amateur to meddle with. 5. What are the uses of liquid air? A At presen
cial use.

NEW BOOKS, ETC.

animal Romances. By Graham Renshaw, M.B., F.Z.S. London: Sherpp. Price, $\$ 3$.
The book is illustrated by a number of most nteresting half-tones showing some interesting entertaining. The author has written a num ber of books on natural history and the pres ent volume is a worthy successor to "Natural
History Essays," "More Natural History Essays," "Final Natural History Essays."
Documentary Source Book of American notes by William Macdonald. New
York: The Macmillan Company
1908. 12mo.; 116 pp. Price, $\$ 1.75$.

The present volume has been prepared in
response to a request frequently made by eachers who have used the author's "Select Charters," "Select Documents," and "Select instruction of an elementary or compreensive character all of which covers the colonial and the constitutional periods of American history in a single year. The book is filled with vitally important documents deal ing with American history, such as the Navi gation Act, the charters of various States, the reaty of Paris, the Sugar Act, the Declaration of Independence, the Missouri Compromise, ision, the Civil Service Act. In all, there are 187 documents.
The Gardens of England in the Mídland
AND Eastern Counties. Edited by
Charles Holme. London and
York: John Lane Company, 1908 .
tio.; 136 plates, 8 in color. Price, $\$ 3.50$, postage 35 cents.
The publications of "The Studio" are noted for their sumptuousness, and the present volbeautifully chosen and finely executed, the color plates being very remarkable productions. They are reproductions of water colors. The stately homes of England offer a never-failing field for pies some thirty-seven pages, is excellent
Air Liquide, Oxygene, Azote. Par Georges Claude, lauréat de l'Institut.
de l'Institut. Paris: H. Dunod et E.
Pinat, 1908 . 8vo.; 400 pages, 149 figures. Price, $\$ 3.00$.
This work comprises within its scope all the phases of its subject. It is divided into four he liquefaction of devoted to the principles of the early experiments. The second part is upon the industrial liquefaction of the air, with the and the demonstration of the results which can be expected. The completeness of the work may be seen in the fact that it includes the American machine of J. F. Place, which was introduced to the public in the spring of 1908. The third part contains the many curious ex periments which illustrate the wonderful pheast part is realm of the absolute zero. The topic, the separation from each other of the gases of the air. It is in this part that the

has become probable that liquid air will find

 has become probable that liquid air will findits chief commercial value as a source of pure
oxygen and nitrogen for manufacturing pur-

 poses, and not as a source of power or as a
refrigerating agent. To all the departments of its subject the book is a valuable contribu-
tion.
THE

> THE Coming SciENCE. By Hereward Carrington. With an Introduction by James H. Hyslop, Ph.D., LL.D. Boston: Small, Maynard \& Co., 1908. 16mo.; 393 pages. Price, \$1.50. In presenting this work to the public the author must not be understood as indorsing or even as accepting all the views and theories that are advanced from time to time throughout the book. He offers these tentatively and merely as possible explanations for facts that, on the strength of existing testimony, he has assumed to be established. There are eighteen chapters, among which are "The Problems of Hypnotism"; "The Problems of TTeleathy"; "The Problem of Sleep and Dreams"; "Modern Spiritualism"; "The Case of Mrs. Piper"; "The Nature of Apparitions"; "Experimens in Weighing the Soul"; "Premonitions." The book is arousing considerable attention.

INDEX OF INVENTIONS

 or which Letters Patent of the United States were Issued December 15 Ending
[See note at end of list about copies of these patents]

1
to
Bale
Bali
Ball
Bar
Bar

 Light Running Lathes

Engine and Foot Lathes

Have You Seen The Perfection Wrench？

POPULAR ELECTRICITY

The Automobile Number of the Scientific American

Will issue on January 16， 1909

this year we have done something entirely new

Wcalled on $\mathbf{I 2 0 0}$ manufacturers of automobiles and acces－ sories for suggestions．The result was eye－opening．For days and days suggestions came in，most of them illumi－ nating，helpful，and instructive．We read over every one of those letters and made up our minds to use each in some way．We classified them carefully and turned them over to a corps of expert writers on automobiles，with instructions to embody these ideas in the best series of practical articles and short meaty notes that ever appeared in any one issue of a magazine．

Among the articles will be one on the commercial truck and delivery wagon． It tells just what the commercial self－propelled vehicle is capable of doing， compared with the horse－drawn vehicle of the same type
The average automobilist is not an engineer．When his machine stops，he
all but helpless．Many of the 1200 thought it would be an act is all but helpless．Many of the 1200 thought it would be an act of mercy to help him out．Mr．Roger Whitman，technical director of the New York School carry in his hat，if need be，and consult if he finds himself in mechanical straits． A glance at that chart will tell any intelligent man，woman，or child how to locate a defect and what to do if a car refuses to run．

Magneto Ignition，because it is comparatively new，is a subject on which the automobile user needs enlightenment．Just what magneto ignition is，how tension，are ably explained in a lucid article．

The Two－cycle Engine is another innovation which ought to be dealt with in the opinion of the trade．Mr．E．W．Roberts，a well－known authority on the subject，has prepared an article which sets forth simply and accurately what the
two－cycle engine is，and what it will do to simplify and improve the automobile．

Tires any other part of the car．A tire expert has prepared an article，which the tire manufacturer ought to welcome，simply because it informs the chauffeur what he ought to do and what he ought not to do，and places the blame for much tire trouble where it properly belongs－on the man who drives the car．We think we have succeeded in explaining some of the mysteries of
that we have laid a heavy finger on the cause of the trouble
＂Lubricants and Lubrication＂is made the subject of some straight talk by Mr．Hanauer，whose chief business in life at present is to lecture on oil and oil devices at the New York School of Automobile Engineers．The driver of a for the various parts of his car．Mr．Hanauer explains all this clearly．What is more，he gives a few simple tests which will indicate whether the oils are what they purport to be．

Repairs are charged for at piratical prices．Automobile manufacturers rail at the garage keeper，because he is not fair to their cars．He puts them in a bad right．No manufacturer cares to learn how many dollars his car cost in publish an article＂Making Your Own Repairs，＂which will pluck out a pain－ ful thorn and make the owner of a car at least partly independent of the
exorbitant garage man． exorbitant garage man．

There will be a page full of novelties－short，illustrated articles about clever automobile inventions that save time and labor．Many of them will give the reader a little thrill of mechanical pleasure to learn that such simple－we
might almost say obvious－devices are conceived and manufactured．Every one of them is a mechanical short cut

The number will contain about 40 pages and will have a striking

 colored cover．The price will remain the same－ 10 cents．MUNN \＆COMPANY 361 Broadway，New York

907.046 906.960 906,632

²x

306，603

Supporting device，adjustable，L．$\because \ldots \ldots$ ．．Ken－

Telegraphic transmitting tapes，
for preparing，${ }_{\text {P }}^{\text {P．．}}$ B．Delany
Telephone drop，T ，.$~ L i d b e r g ~$
Telephone
Roll

TIn erap，detioning in Leitein

Ioter

906,903
906,730
909

まし
\％

\section*{| 906,572 |
| :--- |
| 906,784 |}

cisisu

 ※＂w上．．．

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more than ten lines aceepted. Count
seven words to the line. All orders must
panied accomREAD THIS COLUMN CAREFLLLY.- You will find inquiries for certain classes or articles numbered in
consecutive order. If you manufacture these goods
write us at onee and we will send you the name and madress of the party desiring the information. There
 Where manufacturers do not respond promptly the
nquiry may be repeated.
MUNN \& CO.

BUSINESS OPPORTUNITIES
 elect. Write me today. 15 W .
ANNOUNCEMENT. - Mr. 1 I. Fisher with A.

 life saver" on the market. Prospective
inght wish become interestoc can
with Louis M. Flsher at above address.

PATENTS FOR SALE.
NECK YOKE CENTER.-Patent No. 904, 934. An Im-
 Inquiry No. 8835. - For partles making a still for
the purpose of extracting alcohol from saw-dust.
 lnquiry No. 8y 89 - For parties manufacturing

 Inquiry No. 8847.-Wanted laundry tubs.

 tireite shields fabric from driving mechanism of ma-
chine. Address Miss
E. Bailey, Fordoche, Lousiana, Inquiry No. 8852.- Wanted to have made a con-
cave brass or copper reflector with focus of four or five
feet.

HELP WANTED.

LOCAL REPRESEANTATIVE WANTED.-Splenid
ncome assured ripht man to act asour representative after learning our business horoughly by mail. Former
experienee unnecessary Al
abllite wequire is honesty

 Inquiry No. ©
paint suitable for gasoline engines.

Inguiry No, 8860 . - Wanted to buy
crinding, wasking and drying kum chiole

MOTION PICTURES

 ored tocture moving Micture, illustrated song and lan
Moving Picture World, Box 450 , N. Y. Inquiry No. 8863.--Wanted to buy machine to
separate pecan nutsinto sizes and dust the dirt offl

LISTS OF MANUFACTURERS

 butioniry No. 8868.-Wanted to buy nickelold for
 1nquiry
maching.

MISCELLANEOUS

$\underset{\substack{\text { Inquiry } \\ \text { kerosene burners. } \\ \text { 88\%1. } \\ \text { Now Wanted to } \\ \text { buy chimneyless }}}{\text {. }}$ Inquiry No. 8892.-Wanted to buy a ball nozzle
puzzle. Inquiry
porters of metai knownas "Kaiserzin ma,",
Inquiry
alase.for pictures.
889\%. - Hor manufacturers or convex Jnquiry No. 8878.-For factory makink paper out
of peat.
Inguiry No. N8y9.- For the manufacturers of
steam air pumps such as are used on the Conrad steam Inquiry No.
shower baths. 8880.-For manufacturers of portable "Gnamiry No. 8884 ,- Wanted to buy second-han
 Inquiry No. 8886. - For makers of bean harvest
ing machines. Inquiry No. 888\%.-For makers of sorghommill
and evaporators. Which breaks and divides apricot stones. Inquiry No. 8890.-For manufactorers of a milk Inquiry No. 8891. - For manufacturers of a paten
Vise with an attachment for borink small holes. Tnguiry No. 8893 .-W anted to buy a second-han
adding machine. luquiry No. 8894.-For manufacturers of an anto-
matic camera for making photographs on pin trays, etc. Inquiry No. 8896. - For the manufacturers

 Inguiry No. s.a00.-For the address of kleacric

Inouriry No. Soop.-Fior the mantacturers of an
Inguiry No. Soma,
 outrit perines and wire parts, single machine or ful
Gasquiry No. 8906.-For the address where Benz
ConnniryNo. 890\%.-For address of New England
Inquiry No . 8908 .-For a dealer in tapes and cords
for venetian binds.
Inquiry No. 8909.-For a machine to paint shade
or bind rullers.
Inquiry No. $8910 .-$ Wanteă to buy ta device for
mending tin-ware without soldering.
Inquiry No. 8911 -. Wanted to buy steamfitter's Inquiry No. S912.-Wanted to buy an apparatus
for cuunting currency of different denominationas. Inquiry No. 8913. - Wanted to buy machinery for
shelling castor beans. Inquiry No. 8914.- Wanted to buy a kettle with
out a bail but has a handle on the lid and clasps on the side to nold the lid. The tsettle to be about $53 / 8$
inches high and 7 inches in diameter. Inquiry No. 8915. - For parties who sell plans and Inquiry No, 8916. Wanted to buy a shoe-shiner
that, coan be attached to a wall with a last to dtit any
man's shoe

Truck bolster side bearing, M. Ca	
Tr	
Trunk	
T_{T}	
Tube cleaner,	
ube expander and cutter, combine Hawkins	
Tunneling machine, J . Retail	
Turbine, elastic fiuld, B. LJu	
Mills	
Typewriting	
Typewriting mach	
mrelia	
Updrait rurnace, ${ }^{\text {d }}$. D. Orvis	
ve, Hutomatic	
ve, automatic expa	
Valve, automatic safety gas, G. W. Bowman	

Votilg mana, mine, C. Canedy ${ }^{\text {E. Spiaining }}$
Vulcanizer.

Water cooler, D.' Howart
Water gage, W. Nelson
Water wheel, ${ }^{\text {A }}$ Tschirgi

Wire basket, A. Kaspar.......
Wire furniture. Wa
Wire lever stopper, W . Ortmann

Wringer, A. Liese
Writing machine
$\&$ Enyard

DESIGNS.

 TRADE MARKS
Alfalfa horse feed, Commonwealth Feed Mill

 phalt Paring Co,
Band shoes, leather, Roberts, Johson
Rand Shoe

 gars, Santlago. Umpierre \& Co

Practioal and Instructive scientilic Books

 hate of tarm Irte. 1 it is one of the most prac-
hical treatises on the subject which has ever been
 racture and Uses.
vogel.
8vo.;
B28
By

 CoMarprsssed ATr.-Compressea Air. Its
Production. Uses, and Application

 DIEs.-Their Construction and Use for the the

Joseph V. Wood worth. 8vo.; 384 pages;

12 moo ; 682 payes; 393 illustrations.
pration

GAS Exargryss.-Gas Engine Constraction

Frederick Cof Ilins. Rvo.; 290 pages. 14.
illustrations.

By Oscar E. Perrigo.
314
illustration
8van
 classes of machine tools.

MUNN \& COMPANY, - Publishers,

 1,800
illustrations.
and

MECHANICAI APPLIAXCCES.-Mechanical

 the expe

 RECEITPS.- The Scientific American Cyclo-

Or.-Sclentific American

 iliustrations. $\$ 4.00$

 A new and fully
illustrated work describing in
in
construction.
operation,
and

[^0]
ILLUSTRATIONS.

Aerial Experiment Association,
fourth aeroplane
fourth aeroplane43
Aerial navigation, first crossAerial navigation,
country flight $\ldots \ldots349$
Aeronautic society, first exhib..338
Aeroplane factory, an.........356 Aeroplane factory, an............ 35 Aeroplane in France and United
States, Wright Brothers'..... 140
Aeroplane, "June Bug".........13, 45 Aeroplane military scout.
Aeroplanes, recent foreign. Aeroplanes, recent foreign...........124

American trophy

Aeroplane, Wright, at Fort Myer. 169 Aeroplane, Wright, construction. 209
Air pump, improved............. 284 Airships, United States and British government
Anti-plague vaccine
Arsinoitherium g, early........ 210
Automobile hoe

Barge Canal, New York State, construction of217 Battle practice, British navy... 448
Battleship, steam-driven and gasdriven
Beds, bracket attachment for....... 79 Bird's eye view Manhattan bridges and tunnels. Bird's soaring flight attained mechanically
Blacksmith's napkin ring
Blow, evolution of..
Boat made of newspapers
Boats, reinforced concrete for..... 126
Bob sleds, brake for..............34
Bones, opacity of, to Roentgen
Bones, opacity of, to Roentgen
rays
rays $\ldots .95$
Box, dovetailed, evolution of. . 247 Bracket attachment for beds.
Brake for bob sleds.
Braunschweig," German battleship.
Bread-slicing machine 1227
Bridge, Baltimore \& Ohio, reconstruction of
Bridge, B. \& O. Susquehanna,
Bridge cable, Manhattan
Bridge canilever, Queensborough.. 4 Bridges, city's giant. .
Bridge, Curzon, construction of.
Bronze cannon, antique
Brooms, holder for..
Bucket, clamshell, new type

Canal, Suez, widening of. .
Car fender tests, public service... 610 Car service and wheel guard tests, public service.
Catskill water supply. Catskill water supply............. 396 Clam-shell bucket, new type ... 137 Clock to open furnace drafts Coke, machine for handling.
Comets, mystery of. .
Concrete flower pots. Concrete steel, is it a permanent Concrete system, novel.
Condor, the California............ 17 Controller, no-segment graphiteant graphite-Copper-plating fowers, etc.......... 379 Croton watershed, development of. 394 Culebra cut, excavation of. Cullinan diamond, polishing
Cyclone, Nebraska work
Cyclones on the sun............. 78

D

Dam, irrigation
Dam Mari Kanavè, India3, 293
Diamond, polishing the Cullinan Dish-pan and drainer Dock' and harbor improvements. Door check and closer
Drainer and dish-pan. "Dreadnought," launch of first Drill, mechanism of oviposito Drilling holes in marbles. Drilling horizontal holes, Dry farming, semi-arid districts. 120 Drydock construction, modern im-
provements in

Ganges, narrowing the........... 201 Garden, Christmas tree............ 379 Gas mantle, new.................. 475 Gasoline-propelled gunboats, river. 140
German navy of to-day........ 85 "Germania," new German racing schooner
Glass-sponges, uses of
Gliding boats Gliding bot, old.
Grand Central terminal 319 Granite quarrying, lifting process. 301 Grinder, compound, foot-power... 264 Guide for drilling horizontal holes. 319 Guiding lights of our coasts.....377
Gyratory stone crusher.......... 309

H

Harbor and dock improvements... 408 Harmsworth motor boat race... 111 Heavens in August Heavens in September
Heavens in October. Heavens in November.
Heavens in December. Helicopter, Luyties High-pressure fire service High-tension electric ce, test of 332 Hoe, automobile 142 Holder for broom Hook for garments. Human ostrich
Hydraulic drive system.............. 1329
1
Ice-making machine, domestic . . 257
Incandescent gas mantles.... 300 Incandescent gas mantles........ 300
India fighting the plague, how... 369 Irrigation of Yuma Valley..

Kettle tilter
Kite, motor-driven 340

Lamp extinguisher, automatic. ... 340
Lamp shade, metal, home-made... 380
Lathes, fluting and beading at-
tachment for
Lathes, screw-slotting attachment. 319
Letter boxes, attachment for. 192
Leyden Jar, unbreakable.
Library in miniature.
Lock for cars.
London, me, a new British. 41 Lunar appulse, December, 1908.... 372

Machine for piling timber. Machine for handling coke Machine Wimshurst ho Magic, Hindu
Mari-Kanavè dam, India.
Match safe, conveni
Measles, cannibal
Measles, cannibal
Mechanical joys in Coney Islo.... 475 Metallographs or photographs of
metal specimens
Microbe farm, a municipal. Mine explosives, government tests. 27 Miner's gallery and rescue train-
ing school 260 ing school ...

Models of Old London......
Molding machine, multiple.

Monoplane, No. 8, Bleriot's.......
Motor boat race, Harmsworth
trophy
trophy
Mottiple air propeller, possibilities 244
Multiple cycle for blind.......... 336
Municipal microbe farm.......... 104
Music stand or book rest. 40
Napkin ring, blacksmith's. 264
Napkin ring, blacksmith's......... 264
Naval stores industry............ 245
Needle, rag carpet............ 319
Needle, rag carpet.
No-segment graphite-resistance
controller
…................... 110
Nut lock and bushing for boxes.................. 210

0

Opera records, preserving of. . . . 62
Optical illusions Optical hasions

Package tie .
Painter's platform bracket.
Panama Cana, progress
Paper, consumption of..
Patuxent, side launching
Photometer, a selenium.
Photographs, Photographs, stereoscope
Photography, table top
Photography, table top.
Pipe fittings, ejector ma
Pipe wrench, improved.
Pipe wrench, substitute for Plants, electric
Plants, eyes of
Plants, faculties of..........
Plow for turning surface soil Plow, novel type of..
Police academy at R
Poncho and tent Rome
Punctures, tool for repairing tire 359

Railroad fill, method of making. . 276
Railroad picks, repairing.......... 155
Railway spike, improved........ 283
Railroad terminal station, Pennsylvania
Railway ter
Railway terminals
Rescue training er's gallery 260 Revolving Chr
Rocking-chair, rubber-tired
Roller mounting Christmas tree. 378
Roots and shoots, growth..
Rope bracket for swing seats.... 47
Roosevelt Dam
Roosevelt Dam
Rotary, home-made printing press 47
Rubber-tired rocking chair
$\square \mathbf{s}$
Salt industry, magritude...
Salving cruiser "Glad
Sandpaper, holder for.
Sapphires, artificial
Sawing a building in two. Scout crusier "Salem," trials of... 205 Screw-slotting attachment, lathe. 319
Sea water, artificial. Seal and protector for
Seal and protector for kn
Seismograph, home-made
Shaft sinking by freezing process. 191 Shank drills, holder for broken... 319 Shaving brushes Ships' bottoms, electric scrubber. 316 Shoots and roots, growth
Shore anchor Shore anchor
Shutter attach
Side launching, "Patuxent Siphons, starting device fo Slide rule, how to use.. Sluice box, improved
Snakes, hatching
Spring, coiled, method of making. 264 Steam driven and gas driven bat-
tleships

$$
\begin{gathered}
\text { tleships } \\
\text { Step-ladder, }
\end{gathered}
$$

Stereoscope collapsible
Stone crusher, gyratory.......... 309
Storage battery without chemi-
eals 359
Submarines, transportation Subway, freight distribution Subways and tunnels..
Sugar testing in U. S.
Suez Canal, widening of. Sun, cyclones on.
Sun's radiation, its study. Suspension bridge, Manhattan..
Suspension bridge, Williamsburg Suspension bridge, Williamsbu
"Swift," 38 -knot destroyer... "Swift," 38-knot destroyer.. Swing seats, rope bra
Table-top photography
Tall buildings of New
Telautograph, new form of
Telegraph sounder, improved.
Telescopes, mountain
Tetrahedral steamers
Tetrahedral steamers
Timber, machine for pil

Tire for automobile wheels
Torpedo, Davis projectile. Tourmaline, trick with. Toys and tricks, recent. Trains under East Rive Tree candles, Christmas, protect 379 Tunnels and subways. 400 Two-thousand-foot building

Universal joint, simple design.... 247
Vacuum cleaner, home-made. 320 Vanderbilt cup, fourth automobile. 312

Watches, winding indicator for.. 436 Water, price of.

$\begin{array}{r}.436 \\ .224 \\ \hline\end{array}$ Water supply, Catskill. | .224 |
| ---: |
| . .283 |
| .396 | Waterproof fuse cap................ 340 Weather instruments, home-made. 72 Winch, improved

Wire fastener
Wire suspension foot bridge........ 1346
Wireless telephony, long-distance,
Collins
Wireless typewriter, Knudsen Wood, cutting with paper. Workshop, construction of. Wrench, handy
Wright, Wilbur, at Le Mans.................283

Yuma dom
\mathbf{Y}
Yuma dam

MISCELLANY.

Figures preceded by a star (*) refer to illustrated articl

Abydos, excavations at.......... 167
Acetylene, gas for street lamps. 167 Acetylene, gas for street lamps.. 167
Aerial navigation, first cross-country flight.
Aerolite, mysterious....315, 374, 431
Aeronautic contests, coming...... 206 Aeronautic contests, coming......206
Aeronautic Society, first exhibition3338 Aeronautic Society for Inventors. 13
Aeronautical trophy, SCIENTIFIC Aeronautical
american
Aeronautics, home and abroad............ 380 Aeronautics in war.............. 38
Aeroplane disaster, Wright, lessons of
Aeroplane f
Aeroplane factory, an.............. 355 Aeroplane, Farman's exper......*46
Aeroplane, fourth of Aerial ExAeroplane, fourth of Ae
perimental Association
Aeroplane in France and United
States, Wright brothers' States, Wright brothers'......*140
Aeroplane history, making of.... 18 Aeroplane, is it practicable for scouting?
 Aeroplane military scout........445
Aeroplane, naval $\ldots \ldots218$ Aeroplane records in France,
Wilbur Wright's $\ldots222$ Aeroplane, Santos Dumont latest ${ }^{* 433}$ Aeroplane test in France, Wright. 135
Aeroplane transport.......... .350 Aeroplane trial flight, Scientific
AMERICAN trophy 30 AMERICAN trophy330
Aeroplane, what designers ought to consider 315 Aeroplane, Wright,-construction.**1
Aeroplane, Wright, at Fort Myer*169 Aeroplanes, gear-driven propellers. 431 Aeroplanes, military possibili-
ties of. Aeroplanes, recent foreign. Aeroplanes, twin propellers......*1279, 315 Air pump, improved............
Air scouts and artificial fog... Airship disaster, Zeppelin Airshp disaster, Zeppelin........ 102 Airships, United States and British government
Ariship, vacuum
Amido bodies, absorption of from soil Anti-plague vac \qquad Arsinoitherium, prehistoric giant*253 Artificial food, fallacy of
Aswan Dam, success of...
Attachment for printing stamps. 31
Automobile collisions, force..... 29 Automobile, commercial, and pne
atomobile for hors
Automobile road race, grand prize. 39
Automobile tour, Glidden Trophy,
fifth annual
A

Ayrton, Williams Edward, death. 355
Antartic expedition, Shackelton

B
Balloon in foggy weather........ 274
Balloons, military dirigible....... 135 Balloons, military dirigible.......135
Ballooning, military, in Japan. .. 103 Ballooning, military, in Japan..... 103
Barge Canal, New York State..*217 Barge Cana, New York State...
Barnes, Oliver Weldon, death of. 374 Bars at the mouth of the Mississippi 46
Battery for converting energy. 47 Battery for converting energy.. 47
Battle practice, British navy.. 448 Battleship, steam-driven and gas-
driven driven $\ldots .58 ~$
Battleship designs, Newport conference on 42 Becquere, He 15 Bells of the Metropolitan Tower. 91 bris eye view, Manhattan Birds' soaring flight attained mechanically
Blacksmith's napkin ring.*264 Blind, multiple cycle for.........**36
Blow, evolution of
Boat made of newspapers. ${ }^{* 10}$
Boat-propelling device..........*436
Boat-p, reinforced concrete for..... 152
Boats Bob sleds, brake for. *340 Bones, opacity of, to Roentgen rays
Bottle,
Bottle, non+refillable..................*7 Box, dovetailed evolution of. . .*247
Bracket attachment for beds. Bracket, painter's platform*31 Brake for bob sleds.............*340 Brake mechanism for wagons. . .*436 "Braunschweig," German battle-
ship 12 Bread-slicing machine $\ldots \ldots \ldots \ldots$...................... Bridge, B. \& O., reconstruction. * 184 Bridge, B. \& O., Susquehanna, fall $* 240$ Bridge cables, Manhattan, foot. .*69
Bridge,
cantilever, brarough400
bridge chord test (Blackwell's
Island) 134
Bridge chord, test of full-sized. . 155 Bridge chord, test of full-sized. . 155
Bridge, Curzon, construction of.*201 Bridges, city's giant*39
Bridges, latticed compression
members in $\ldots \ldots$. Bridge, Manh., investig. 466 ing under 166 Bronze cannon, antique.......... ${ }_{* 148}^{*}$
Brooms, holder for Brooms, holder for................ 243 Bucket, clam-shell, new type... *13 Bucket dredger, "Péluse".......*165
Burr, Samuel D., death of 314

Canal, progress on Panama
*431
Car fender tests public service**6
Car fender tests, Schenectady 238 Car fender and wheel guard Carbon extracted by plants.......... 11 Carbon monoxide in air.......... 310 Carnegie meridian astrometry
expedition $\ldots310 ~$ Catskill water supply
Cattle killing, humane 43 Cement-coated wals, enameling. 106
Cement from blast-furnace slag. 303 Cement mortar in repairing bridge pier
Centers,
Charact, finding of, round work.*456 Characters, inherit. of acquired. 450
Chord test, Blackwell's Island Chord test, Blackwell's Island
bridge Christmas
Christmas tree upset., prevent.. 378 Clock-shell bucket, new type....*137
lo

	Gatun Dam facts perverted.....466			
ious facts	Gear-driven propeliers for aero-			tuff
		joy	Rans	Sulphurous acid in sugar refn.. 139
Current rushes during switching		Medication, Io	Rails, to prevent spreading of... 107	Sun, cyclones on..............353
Cyclone, Nebraska, work	"	Metallographs	Railroad fill, method of making. 2776	
clones on the sun..........3353		of metal specimens. 3317		thoracic, new method.. 8
	Gl	"Microbe farm," a municipal...*104	Railroad spike, obsolete........107	Suspension bridge, Manhattan.. $* 397$
	Glidden	Micro-organisms, immortality of.	Railroad spike, 20th century.... 86	ion bridge, Williamsburg. 397
m, irrigation*3, *293	Gliding boats,	Micro-photography, meaning	Railroad terminal station, Penn-	
Dam, Mari Kanave, India......*149				Swing seats, rope brackets for...*47
Dams at the Panama Can	Gol	Military balloonin	Railroad tie, improved*436 Railroad ties, future of........ 74	
Dar	(lidal solut	Military dirigible balloons....... 135 Military possibilities of aero-	Railroad ties, future of......... 74 Railroad tree planting 63	
Darwinian theory, present posi.. 39	Grand Central terminal station,	planes 107	Railway accidents	Table-top photography...........*224 Tall buildings of New York. **400
ylight for recreation........ 70				
nd,	Granit	"Dreadnought"*425	Railway, Pan-American ${ }^{4}$	
Diamond, polishing the Cullinan.*262	Green		Railway pro	Tela
Dish-pan and drainer*228				
Display box, puzzling*3	Grow		Railway spike, improved**283	sounder, improved....*283
harbor	memory and habit Guide for drilling horizontal holes*3	ing school*260	Rateau system, power generat... 154	Telegraphic cables, and
Door check and closer.	Guide for drilling horizontal holes*319 Guiding light of our coasts.*377	Mirror Mitts,	Rearming of warships 155 Red Cross Christmas stamp.... 454	methods 298
"Dieadnought,", launch of frst.*		Mitts, waterproof 192	Red Cross Christmas stamp.... 454	
"Dreadnoughts, change	Gun erosion 451	Models of Old London.............*29 Molding machine, multiple.......*41	Reinforced concrete for boats. . . 152	Telescopes, mountains of Switzer-
edger,		Monoplane, No. 8 Bleriot's. *44		land*277
Drilling holes in				
Drilling horizontal		Monuments to engineers........ 118	8	Thunder storms,
		Mosquito larvæ, electrocuting... 187	Roads, political economy of good.451	theory of \qquad
Dry-blast system, rails by......182	Hardness, testing for.	Moth trap, electric 138	Rocking chair, rubber-tired.....*228	Tie, improved railroad.........*436
Drydock construction, modern improvements in.................*175	Harmsworth trophy, motor race \qquad	Motor accidents in Great Britain. 139 Motor boat cup, defender of.... 102	Rocks and minerals, making. 370 Roller mounting Christmas tree.*378	
Dry farming in semi-arid dist. .*120		Motor boat	Roosevelt dam *3	
Drainer and dish-pan	Heavens		Roots and shoots, growth......*126	Tire for automobile wheels.....*228 Torpedo craft, tactical value of. 330
Driver for small dri	Heavens in Septem	ITotor bus, is it proftable...... 134	Rope bracket for swing seats....***	Torpedo, Davis projectile......*159
	Heavens in Oc	Motor-car lock, wanted. 214	Rotary home-made printing press*47	0
				Torpedoes, hot-air-driven 77
	Heavens in Decemb	Motors, light-weight, early....... 392		Tourmaline, trick with........*381
Earthquake warning service.... 42	Hedin's, Sven, retu	Multiple air propeller, possibil..*244		
lipse of sun, December,				
lipses, recurrence of........*171	Heli			Trains under the East River....*191
d	Helicopters, inclined propellers. . 223			Trap, moth, electric 138
				9
Electric scrubber. for ships....*316	Helium really liquefied........... 59 High-pressure fire service......*24			
			"Gladia-	
Electrical resistance of human body.........................$~$ 126				
ctrical show, Madison Squa		Na		
Garden	Hiscox, Gardiner	Naval aeroplane 218		
Electrical standards, accuracy and uniformity in \qquad		Navy Department, reorganization. 446		
-		Newport conference294, 426		
ectrification of		Newton, Sir Isaac, and apple...431		${ }_{T}$ win propellers for aeroplanes.. 279
		Niagara water power. restriction. 22		
ricity, tapping earth for... 278	Hydraulic drive system**429			
Electro-acoustic measuring of sea distances 375	Hydroplane and gliding boat, difference between 40	"North Dakota," launch of..... 372		storage 218
Electrocution of animals........123			Scientific American trophy, second contest 258	
			Schooners,	
Enginers, monuments to 118	Ice-making machine, domestic. . ${ }^{*} 257$			
Ethics of criticism . Evolution of the blow	Ice-making machines, kitch Incandescent gas mantles..	Nut lock and bushing for boxes.*283		Universal joint, simple design. . ${ }^{\text {247 }}$
cavation at Abydos	Incandescent gas mantles.. India fighting the plague, ho		19	
Exhaust steam, power	India rubber, artificial	Oil pipes, California, rifled.... 223	Seal and protector for knots....*47	
	Insects injurio		Seismograph, home-made*263	Valve gear, Walschaert.........335
Explosives, how to des	In	Optical illusions*158	Selfridge, Lieut, funeral of..... 222	Valves, expan
Exposition, Japanese 87 Eyes of plants 256	$\mathrm{Inv}_{\text {Inv }}$	Optical properties		
Eyes of plants 256	Inventors, problem Inventor, tribute	lutions of gold	Shaft sinking by freezing proc..*191	12
	Inventor, tribute to			
kes, a few facts about.	Irrigation of Egypt $\because \ldots{ }^{5} 5$ Irrigation of Yuma	Ore		chloride \ldots...............313
kes, a few facts about. rman, Henry, at B			Ships' bottoms, electric scrubber*316 Shoe varnish 143	
			Shoots and roots, growth.......*126	7
Farman, Henry, a talk with..... 86	Japanese navy of to		Shore anchor*192	
			Shutter attachment, new......*284	
Feeling, hearing, seeing and smelling, curiosities of....... *6	Ju	Panama Canal, progress on....*431 Panama and Erie canals com-	Side launching, "Patuxent"......*117	
Ferment of egg yolk........... 151			Siphons, starting device for. $\ldots . . * 319$	
Ferro-boron, manufacture of..... 298	Kaiser's silver flotilla 23	Panama hat, cost of............ 258		Wagons, brake mechanism for..*436
Fighting tops, past	Kettle tilt	Panama	Slaughtering, humane $\ldots{ }^{\text {a }}$. 23	Wall paper, sanitary.......... 79
Fire-control masts 299	Kitchen ic		Slide rule, how to use.........*455	Walls, cement-coated enameling.. 106
Fire service, high-pressure......*24 Fire service, high-pressure test. ${ }^{\text {a }}$,	Kite, motor-dri			
Fire service, high-pressure test.*332 Firebacks in the French navy... 274		turing 274 Paper industry related to forests	Smoke problem, solution of...... 314 Smokeless fuel 223	Warships, rearming of......155, 279 Waste wood and veneer.......... 256
Fish hooks, book	Laboratory of the physiology of	and education 243	Snakes, hatching**46	current mot
		Patent		Water famin
"Flip-flap," Franco-British exposi* ${ }^{190}$	Lamp exting	Patent, may a manufacturer buy. 102	Sodium, radio-activity of........ ${ }^{62}$	against 310
Flower pots, conc	Lamp globes f	Patents, report of Commissione	Solar eclipse, total, 1908....... 55	Water, price of*224
Flowers, etc., copper-plating...*33	Lamp shade, metal, home-made..*3	"Patuxent," side launching....	Solid vs. pneumatic tires. 335	Water sterilized at the tap...... 276
Fog, artificial, and air scouts...	Lancehead viper, venom fr	Pearls, a farm for cultivating... 78	Soundings in Niagara Falls..... 77	Water storage destroys typho
		Peary's polar expedition.... 27,38	South Pole trip \ldots..........169	cillus218
Foodstuffs, boric, salicylic, benzoic acids in................... 450	Lathes, fluting and beading attachment for*339	Perrine, Dr. F. A. C., death of. . 298 Petroleum, India's resources. ... 46	Speed, question of $\ldots \ldots \ldots \ldots \ldots 22$	Water supply, Catskill........*396 Waterproof fuse
Foodstuffs, sulphurous acid in . . 426	Lathes, screw-slotting attac	Photographs, stereoscope for...*320	Spring, coiled, making.......*264	Waterproof fuse cap $\ldots . . . \ldots \ldots{ }^{* 340}$
ot bridge, wire suspension....*136	Launch of first "Dreadnought"**33	Photography, table-top*224	Staining wood, process for...... 155	Waterproof matches 247 Waterproof mitts 92
Foot-power compound grinder.,*264	Lemoine	Photometer, a selenium.........*42	Star and crescent, notes on....... 23	Waterways, useful artificiali5
Forest fire, menace of.......*333	Letter boxes, attachment for. . . 192	Picture post-card industry, Ger.. 318	Steam-driv	Weather charts, of high seas.... ${ }^{\text {d }} 8$
Forest fires, legislation........426	Levulose or fruit sugar	Piles, wooden, electrical teredo-	tleship*58	Weather instruments, home-mad ${ }^{\text {P }}$
Forest fires, loss Forest service	Leyden jar, unbreakable Library in minfature.		Steam generation, producer gas. 94	Welding, electr
Forest service Fossil, wonders from	Library in miniature	Pipe fittings, ejector made of.. ${ }^{* 359}$	Stellar streams, the two 106	Whaling me
Fossil, wonders from Fayum...*261 Fourth dimension,	Life-saving applian	Pipe wrench, improved........*192 Pipe wrench, substitute for.... ${ }^{\text {a }}$ /19	Step-ladder, collapsible 339	White Mountain express, wreet ${ }^{\text {a }}$ 23
Fourth dimension, explan.. 355,314 Fourth dimension, explanation of.454	Light, energy consumed for.....206	Pipe wrench, substitute for....*319 Plants, electric currents upon.. ${ }^{\text {a }}$ (42	Stereoscope for photographs. ...*320 Stoking, mechanical $\ldots \ldots . .352$	Winch, improved *339
Fourth dimension, explanation of. 454 Fourth dimension prize......... 430	Lightning, new discoveries about. 430 Liner "Clieveland" launched. ${ }^{\text {a }}$ (219	Plants, electric currents upon.. ${ }^{\text {a }}$ (142 Plants, eyes of	Stoking, mechanical $\ldots \ldots \ldots . .352$ Stone crusher, gyratory	Winding indicator for watches. $*$ *336
Fountain pen***143	Liner, first $25-\mathrm{knot}$............ 3	Plants, faculties of*174	Stope drill competition 74	Wire fastener \times.............. 340
Freight distribution by subway.*413	Linoleum, making inlaid	Plow, novel	Storage battery without	reless te
Freight tunnel, f	Lock for cars	Plow for turning surface soil. . *339		Collins 185
	Locomotive, a new British......*41	Pneumatic vs. solid tires....... 335	Strains, models for illus.**669	Wireless typewriter, Knud
French navy of to-day.......*181	Locomotive, express, powerful.. 182	Pneumatic tire, and commercial	Street cars, prizes for essays on.. 278	Wood, cutting with paper.... .*247
Fresh water from sea water....*247 Frying pans, cover for......*340	London, models Luminous project	automobile 134		Wood, microscopic tests of.....257
Frying pans, cover for........3340 Fuel, government investigation .314	Luminous projectiles	Police academy at Rome.........*172	Street noise crusade and rail	Workshop, construction of.,....*359
Fuel, government investigation . 314 Fuel resourcesa..... ${ }_{4}$	Lunar appulse, December, 1908.*372	Polishing a varnished surface. . 126	joint 150	Workshop, furnishing th
	"Lusitania" record 139	Poncho and tent......*339	Street noises, prevention of.187, 223 Structures,	Workshop, ha
el, smokeless $\ldots \ldots \ldots \ldots \ldots$		Postal rates to	Structures, ornamental elevated.. 150	Wreck of White Mountain ex 154
ls, relation to gas producer.:		Postal tubes in subways......... 238		
Fungus, $\begin{gathered}\text { destructive of white } \\ \text { cedar }\end{gathered}$.......................	Macadamized road flasco......... 274 Machine for handling coke.......*37	Pre-cooling green fruit 372 Producer gas for steam genera-	Submarines, transportation *468 Subscribers, to our. 454	Wright, Willur, at Ce Man 1133
	Machine for handling coke.......*37 Machine for piling timber......*88	Producer gas for steam genera- tion 94	Subscribers, to our. 454	ght, wilbur, in trance..... 169
	Machine, Wimshurst, home-m	Propeilers, Wright syst........471		
	agic, Hindu ...	Punctures, tool for repairing tire*359	Subway cars, side doors for..... 22	Wright, Willur, record for height.350
Ganges, narrowing the........... 201 Garden, Chisistmas tree.........*379	Manufacturing under British		Subway, freight distribution by. $* 413$	
Gas-driven ship problem	Mari-Kanave dam, India			
Gas lighter, wutomatic. ${ }^{*} 228$			Subways and tunnels .	ng, sc
			Canal, widening of. . . *60, 107	ternational 392

HARDERFOLD HYGIENIC UNDERWEAR Inter-Ar-space System
 Invaldis Merchantiss Alonalimentant And ail ocupatios in infer, madean hare outyin in eiftivifitithe en HARDERFOLD FABRIC CO. 163 River Street, TROY, N. Y Send for Catalegue

CE MACHINES Gorliles Engines, Brewer

MODELS IAvenperiment il work RUBBER | Rypert Manfacturers |
| :---: |
| Fine jobbing |
| Work | PARKER. STEARNS\& CO.. 228-229 South Street, New York

 MODELS F CHICAGO MODEL WORKS

 s. E. worreli, hannibal, Mo., t. s.

Experimental \& Model Work NOVELTIES \& PATENTED ARTICLES

Model\& Experimental Work
ASPARAGUS SEED. $-1,000$ lbs Palmetto, 200

MASON'S NEW PAT. WHIP HOISTS

Magical Apparatus.

LEARN WATCHMAKING
 curad. Ekas terme. seand tor oratalos.
BT. LOCIB WATCHMAEING School, st. Lonit, Mo. Duryea's Buggyaut The minter vericile
Rew parta tem trubies Chas. S. duryen, Readiag, Pa

Manufacturers Can Increase Their Business

Read carefully, every week, the
Classified Advertising Column in the

SCIENTIFIC AMERICAN

Some week you will be likely to find an inquiry for something that you manufacture or deal in. A prompt reply may bring an order
Watch it Carefully
絧这

Cotton priece goods, Inbert Coo cons.........

 s

LABELS.

"Black Beauty
ibs,
int Love Polish,". for stove pol-

 PRINTS.

 Canadian patents may now be obtained by the in
ventors for any or the inventons named in the ore
voing soing list. For terms, atd further particularin

WHO OWNS THE EARTH?

HOW DID THEY GET IT?

American Homes and Gardens

gives its readers the experience of experts in solving the most difficult HOME PROBLEMS. It is a thoroughly practical magazine, having the word "Home" for its keynote.

HOW TO BUILD THE HOME

Floor plans and details of construction of houses of moderate cost as well as more pretentious mansions are a feature of each issue

HOW TO DECORATE THE HOME

The most experienced decorators in the country describe how the best and most artistic results are attained from the point of expenditure, and the more important one of satisfaction

HOW TO PLAN AND LAY OUT THE GARDEN

The frame of the House-picture is the garden, and success in its treat ment means that each tree and shrub is correctly placed as well as properly grown, hence this department will be found most helpful
OUTDOOR LIFE AND AMUSEMENTS, ARTICLES ON HOUSE INDUSTRIES every phase of country life is authoritatively discussed from month to month in its pages. "American Homes and Gardens" is conceded to in colors changes each month, and is always a work of art. Subscription price, $\$ 3$ per year. If we receive your order for a year's subscription now we will send you the November and December, 1908, numbers free; in other words, fourteen months for price of a year's subscription.

MUNN \& CO., 361 Broadway, New York City

"WELL, WELL!

WRITE FOR THIS BOOK ON THIS FULL 18-20-Horse Power Goes the Route
CAR that ALWAYS Not "an engine in a buggy" but built up from highest type Chassis carrying powerful water-cooled motor. Speed 1 t
gallon of gasoline.
THE INVINCIBLE
AUTO-RUNABOUT SCEACCETC Economy of first cost and long wheel style best for all roads-sand, mudad auto appearance-Hintain climbing.
durability.
Quick control drive-Double chain to each rear wheel-Absolutely gearless and clutchless-Puncture proof
Goodrich solid rubber tires-Timken roller bearings-Schebler carburetor etc. All of highest THE SCHACHT MANUFACTURING CO., 2700 Spring Grove Ave., Cincinnati, Ohio

The smallest and newest PRISM GLASS made. Has and clearness.
Descriptive catalogue C. P. GOERZ AMERICAN OPTICAL CO.

GRUDE ASBESTOS

PREPARED ASBESTOS FIBRE for Manufacturers use	R. H. MARTIN, office, St.paul building 220 B'way, New York.
PENBIOL	UBRICATESSEND ANYIHINGS SAR 13-21 5 .cinuto ity

Bristol's Recording Instruments
 \& ELECTRICITY THE BRISTOL CO.,Waterbury, Conn

[^0]: 361 Broadway, New York City

