

Displacement, 19,500 tons. Speed, 21 hnots. Coal, 2,000 tons. Armament: Twelve 12 inch ; twenty-two 4.7 -inch gans. Armor: Belt, 9 -inch; tarreta, 9 -inch; deck, 24 -inch.
This is one of three sister ships which will form the backbone of the new Brazilian navy.
TEIE FRW BRAZILIAN "DREADNOUGHT" TYPE BATTLESHIP "MINAS GERAES."-[See page.48\%.]

SCIENTIFIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO. - Editors and Proprietors

Publishod Weokly a

No. 361 Broadway. New York
charles allen munn, president 361 Broadway, Now York
FREDERICK CONVERSE BEACH, Sec'y and Treas. 361 Broadway, Now York

terms to subscribers.

One jopy, one year, for the United States or Mexico
One copy, one year, for Canada
THE SCIENTIFIC Scientific American (estabiebed 185)
Scientific Amed (established 1845) 83.00 Scientific American Supplement (established 1876)
American Homes and Garaens ${ }^{\text {Scientific American Export Edition (established 1888) }}$.
The combined subscription rates and rates to foreign countries, including Canada, will be furnished upon application.
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, New York
NEW YORK, SATURDAY, DECEMBER 12, 1908. The Editor is always glad to receive for examination illustrated articles
on subjects of timely interest. If the photographs are esharp, the articles short, and the facts authentic, the contributions will receive special at tention. Accepted articles will be paid for at regular space rates.

LEGISLATION TO PREVENT FOREST FIRES.

The frequency and seriousness of forest fires during the past autumn prove that the present laws for the protection of the forests are inadequate. We are of the opinion that negligence or inexcusable carelessness is responsible for the majority of the fires, not merely in the Adirondack regions, but also in the fire-swept districts of Minnesota, Michigan, and Wis consin. If this carelessness be measured by the mag nitude of the disasters of which it is the original cause, it takes on surely a strong flavor of criminality. For it is no excuse to say that the hunter who fails to extinguish his campfire, or the settler who leaves the edges of his clearing burning through the night in proximity to inflammable forest timber, does so with out any thought of the loss of life or property which may result from his carelessness; for he is well aware of the fact that such smoldering fires may, and do, start great conflagrations, and that in these conflagra tions it frequently happens that not one but many human lives are sacrificed. If such carelessness in the presence of this knowledge be not criminal, a new definition must be found for this last-named word.

Our attention has recently been drawn to the fact that in Canada there is a strong movement on foot urging the government to follow a more definite course of action in the protection of the forests, and to make the breach of the forest-protection laws punishable by imprisonment, without the option of any fine. The object aimed at by the suggested legislation is, not merely to increase the number and enlarge the powers of the forest wardens, but also to compel every campe to either extinguish his fire or keep:it under guard; to require every settler, railway contractor; or railway in clearing lands, to maintain a guard by night a well as by day, so long as the stumps are burning, and to prevent any stumps or underbrush being fired with in a reasonable distance of the standing timber; and finally, to make the railways and factories whose tracks or works are within the forest area responsible for the protection of the forest to a given distance on each side of the railway track or factory.
We commend this subject to the attention of the legislatures in those states most nearly affected. It is certain that legisfation bringing the careless starting and neglect of fires within the range of the criminal law would prove a: most speedy and effective check upon the present annual destruction of life and property.

NEWPORT CONFERENCE APPROVES DESIGNS OF NEW BATTLESHIPS

The fact that the Newport Conference, which was composed of over fifty sea-going officers and only four officers of the Construction Corps, has approved of the design of the."North Dakota" and "Utah" classes, mus be considered as the most complete refutation of the recent criticism of our navy that could possibly have occurred.: There is no gainsaying the significant character of this Conference. In age, experience, and ability, and the varied rank represented, the Conference was broadly representative of the navy, and the people of the United States may accept its word of approval as final.
The motive for the Conference is to be found in that campaign of bitter criticism of our warships as built building, and designed, which, originating about a year ago in an article that appeared in a monthly
magazine, culminated in a recent letter of Commander Key, U. S. N., addressed to the Navy Department, which contained a criticism of the designs of the "Delaware" and "North Dakota." Commander Key's criticisms, briefly summarized, were as follows: First, that the 5 -inch armor protecting the secondary battery should be removed as useless, and the weight devoted to turrets. in which these guns should be emplaced, or, as an alternative, that the 5 inch guns should be mounted on the tops of the 12 inch gun turrets; that more protection should be given to the ends of the "North Dakota"; that the given to the ends of the North of certain magazine between the engine location of a certain magazine between the engine
and fire rooms was inadvisable; that No. 3 turret and fire rooms was inadvisable; that No. 3 turret
should be placed abaft the engine room; and that Nos. 3,4 , and 5 turrets should be placed diagonally across the after deck, so as to secure axial fire aft for all three. The letter also directed attention to the supposed inferiority of American to foreign guns; to the question of the normal waterline and the depth of the armor belt; and to the overdraft of battleships already constructed.
We have before us a draft of the digest of the proceedings of the Conference, which the Acting Secretary of the Navy has issued for the enlightenment of the public upon this sadly confused question; and we must confess that, after a careful reading of the resolutions adopted by the Conference, we are impressed with the completeness with which it rejected the most important of the above-noted criticisms of the "North Dakota." Although the Conference recommended the thickening of the upper casemate armor from 5 to $61 / 2$ inches, it must be borne in mind that even this is quite unequal to keeping out large armorpiercing projectiles. Only too gladly would our naval constructors protect this secondary battery with 8 or 9 -inch armor, could this be done without exceeding the limit of weight of 20,000 tons imposed by Congress. Commander Key's suggestion to place splinter proof armor around the uptakes on this deck was proof armor around the uptakes on this deck was
adopted, and we think the suggestion is a good one; adopted, and we think the suggestion is a good one;
but this uptake armor would be useless were the $5-$ but this uptake armor would be useless were the 5 -
inch side armor removed as Commander Key suggests. The 5 -inch (now $61 / 2$-inch) armor will serve to explode the heavy projectiles, and the splinter-proof armor will then have a good chance to stop the fragments. The suggestion to mount the 5 -inch guns on the top of the 12 -inch gun turrets is impracticable: The British "Dreadnought" mounts her corresponding guns in this position, and the critics seem to be obsessed by the "Dreadnought." But the fact that she mounts 12 -pounders upon her main turrets is no guarantee that the far heawier 5 -inch gun would give satisfaction if so mounted. It really looks as though the sea-going officers have, even at this late day, a lingering fondness for the doubledeck turret idea. This, by the way, was one of their own suggestions, and it now has the distinction of being the most serious blunder ever committed in the arming of our ships.
Although the Conference decided that the 5 -inch guns, if mounted on the gun deck, could not be fought under certain conditions of weather, the Conference perfectly well understood that this is the principal position in which they must be mounted, if they are to be carried at all. The Japanese, Germans, and Russians carry these guns on the same deck: They can not be mounted on the main deck; since they would be in the way of the fire of the 12 -inch guns; and, if carried at a higher elevation, it would involve a se rious increase in weights, and greatly complicate the question of the stability of the ship
In addition to the recommendations regarding the 5 -inch battery, the Conference recommended that means of refrigeration be applied to all magazines; that two fire-control masts, similar to those tried on the "Florida," be installed; that ventilating pipes and funnels be kept as low as possible; and it also made minor suggestions regarding the location of searchlights, the provision of bridge facilities for naviga tion, and the arrangement of torpedo-control stations
The Conference decided that the 45 -caliber guns now afloat in our navy are equal to the latest 12 -inch guns afloat in the British navy, and that no change in the number and type of the main battery guns of the "North Dakota" and "Delaware" is desirable at' pres ent. In regard to the much-debated position of water line armor, the Conference decided that the lower edge of the armor should be placed with reference to that waterline at which the ship is most likely to float when engaging in battle. It decided that this most probable waterline is that at which the ship would float with full supply of ammunition and two-thirds supply of stores and fuel on board. It was further resolved that the lower edge of the waterline belt should be placed 6 feet below the most probable fight ing draft as defined by the Conference, and that the lower edge of the armor belt of the "North Dakota," being within a few inches of that line, is substantially correctly placed.
Perhaps the most reassuring to the general public of the resolutions adopted by the Conference as to the excellence of our battleships, is the following: "Re-
solved, That the votes of the Conference upon resolutions based upon several characteristics of the design of the 'North Dakota' are not to be considered in any way as adverse criticism of the deesign of the 'North Dakota' as a whole, as it is recognized that material sacrifices of weight and space have to be made in order to place five two-gun, 12 -inch turrets on the middle line and to attain a speed of 21 knots, which should give an offensive 12 -inch broadside fire to the 'North Dakota' equal to that of any other warship afloat or known to be designed at the present time. Passing from the consideration of specific minor defects, the Conference believes that the design of the 'North Dakota' and 'Delaware' is an excellent one. The Conference recommends, that the present arrangement of turrets of the 'North Dakota' be adhered to in the 'Florida' and 'Utah.' '
Limitations of space prevent our notation here of other resolutions, which recommend that the thickness of the belt and casemate armor of the "Florida" and "Utah". be the same as on the "North Dakota" and "Delaware"; and that to carry out the President's instructions to "submit recommendations for the 'Utah' and 'Florida' that will involve practically no delay in their plans," the Conference recommended that the designs of the "North Dakota" and "Delaware" be accepted for the "Utah" and "Florida," subject to certain minor modifications.
It is significant that in spite of the fact that the plans for the "North Dakota" and "Delaware" were approved eighteen months ago, and that many advances and improvements in naval material and ideas have taken place during that period, these plans were approved after a most searching examination and criticism by naval officers, and were found to be so far satisfactory that they were adopted with minor modifications, for our two latest ships, the "Utah" and "Florida."
A significant tribute, furthermore, to the good work being done in our Bureau of Construction is the fact that the latest designs for ships of the "Dreadnought" type by foreign naval constructors show a strong tendency to copy the leading characteristics of our two "Dreadnought" classes, the "South Carolina" and the "Michigan." We refer to the placing of all guns on the center line of the ship, and arranging them in pairs, so that the guns of one turret may fire above the roof of the adjoining turret. A reference to the drawings of recent battleships, as published in our later articles on the Leading Navies of the World, will show how widely this distinctly American plan is being followed.

DETECTION OF SULPHUROUS ACID IN FOODSTUFFS.

Commercial gelatine sometimes contains sulphurous acid, which may be detected and estimated as follows: 20. parts by weight of dry gelatine are immersed in 500 parts of water in a glass flask. After standing 12 hours the flask is heated on a steam bath until the gelatine is dissolved. To the neck of the flask is fitted a cork through which pass three glass tubes. The first tube, which extends to the bottom of the flask, is connected with a carbonic acid generator. The second tube ends immediately beneath the cork and is connected with a Will's tube fitted with a solution of iodine and potassium iodide (5 parts iodine, 7.5. parts potassium iodide, 1,000 parts water). The third tube dips below the surface of the liquid in the flask awd bears a funnel, provided with a stopcock. The stream of carbon dioxide is first allowed to flow through the unheated apparatus for ten minutes. The flask is then heated to a temperature not exceeding 158 deg. F., and 25 parts of a 10 per cent solution of phosphoric acid are sintroduced through the funnel.
The sulphurous acid combines with oxygen, derived from the phosphoric acid, and forms sulphuric acid which is carried over to the Will's tube by the stream of gas. The operation is continued for an hour and the sulphuric acid is then estimated in the usual way from the change of tint of the iodine solution. The presence of sulphurous acid in other foodstuffs can be detected by the same method.

Several months we described the method of extract ing venom from Lachesis trigonocephalus, a deadly serpent popularly known as the lancehead viper, and of preparing the venom for homeopathic purposes. The medical use of lachesis venom was first suggested in the latter half of the last century by Dr. Constantine Hering, and all the venom in homeopathic use up to last year was of his extraction. Hering, in his pub lished writings, repeatedly reiterated that the venom he used for the remedy, Lachesis, was obtained from the Lachesis Trigonocephalus, but since there is in the Museum of the Philadelphia Academy of Natural Sci ence a mounted specimen of Lachesis Mutus, labeled with Dr. Hering's name, it was supposed by some that the Mutus and not Trigonocephalus was the variety he employed. In order that both preparations might bo vailable, the venom of a Lachesis Mutus (Bushmaster) has now been extracted by Messrs. Boericke and Runyon and prepared for homeopathic use.

ENGINEERING.

In a paper read before the Society of Naval Architects and Marine Engineers, Henry Penton states that the oldest iron ship in the world is the United States warship "Michigan," the material for whose construction was "dragged across the mountains from Pittsburg to Lake Erie," where the ship was built, as long as sixty-six years ago.
A cave-in or slide of a portion of the preliminary work on the Gatun dam is causing considerable comment. The Chief Engineer of the Canal Commission, however, states that the mishap is of slight importance, and affords no cause for anxiety as to the sta bility of the dam itself when it shall be completed.
Our Consul-General to France writes of a rubberasphalt pavement which is being used in that country. The material is a product resulting from the association of asphalt and rubber. It is said to be more plastic and more adhesive than pure asphalt, and to resist higher temperatures. Experimental work covering a period of six years in such cities as Paris and Iyons has given good results.
With the completion of the vast irrigation works now being carried on by the federal government in our western States, this country will possess three of the greatest dams in the world. The Shoshone dam, with a height of 326 feet, and the extremely short length of 175 feet, will store 456,000 acre-feet of water; the Pathfinder dam, 215 feet high and 226 feet long, will store $1,025,000$ acre-feet; while the Roosevelt dam, 284 feet in height and 1,080 feet long, will store 1,284 , 000 acre-feet. The most notable structure comparable with these is the Assouan dam, which, after the work of increasing its height has been completed, will impound $1,860,000$ acre-feet of water.
Work is being rushed on the new Ambrose channel, which is to form the entrance to New York harbor, in order to open the channel as early as possible to a depth of 40 feet for a clear width of 1,000 feet throughout the whole of its length. The finished channel will be 2,000 feet in width by 40 feet deep. In the last report the least depth over the 1,000 -foot width is given as 37 feet; but, as a matter of fact, nearly the whole area has already been dredged to the 40 foot limit. Up to the present time, $54,000,000$ cubic yards have been removed. Four seagoing dredges are continually at work, and they are expected to complete the channel in about two years from the present time.
The recent trial of the British battleship "Invincible," in which she attained, under reduced power, a speed of 25 knots, was followed by a full power trial in November, when she steamed at the unprecedented speed of 28 knots on a continuous run of eight hours' duration. This is certainly wonderful going for a ship protected with 7 inches of armor and carrying a battery of eight 12 -inch guns. It is 9 knots faster than the speed of any battleship now in commission in our navy, and 2 knots faster than the one-mile trial speed of our swift cruisers of the "Salem" type. Moreover, it exceeds by 2 knots and $21 / 2$ knots respectively the trial speed of the "Lusitania" and "Mauretania," which are to-day the fastest merchant vessels afloat.
We have before us a photograph of a steam rotary excavator built for digging irrigation canals, which forcibly illustrates the natural aptitude of the average American for mechanics. The machine, which was built by a farmer on his ranch 120 miles from a machine shop, is drawn by a 110 -horse-power traction engine, from which it takes its steam for driving two auxiliary engines. It carries a drum, 30 inches in diameter by 30 inches in width, upon whose face is a series of 4 -inch cutters, which are driven at a speed of 450 revolutions a minute. The excavated material is thrown forward upon a cross conveyor, which delivers at the desired height or distance from the canal. Although the machine is crude in construction, it has shown a capacity of 500 cubic yards an hour in hard soil, and of about 1,000 cubic yards in soft unpacked scil. The cost of operation works out at $\$ 2$ an hour.
The Boston elevated railroad had not been many months in service before it was discovered that the rails on the curves were wearing out at an astonishingly rapid rate. The tracks were first laid with Bessemer rail having the low percentage of 0.45 of carbon; and, after about three months of service, these rails, where they were laid on curves, were so greatly worn that they had to be replaced., In 1902 some experimental manganese rails were laid on a curve of 82 feet radius; and these rails remained in service until August of the present year. A comparison of these rails with the Bessemer rails shows that the latter wore down 0.065 of a foot in forty-four days, whereas wore down 0.065 of a foot in forty-four days, whereas
the manganese steel rail wore down only 0.046 of a foot in 2,291 days. According to Mr. H. M. Steward, the company have tested other kinds of rail, made specially by the Bessemer or open-hearth process, including some of nickel steel; but none of these approaches the manganese rail in wearing qualities.

ELECTRICITY.

An electric charging launch has just been built as an auxiliary to the electric yacht "Cascapedia," so as to increase the radius of action of the yacht, and make it independent of shore charging stations. The launch, which is named the "Kilowatt," carries sufficient fuel to enable her to be operated 100 hours, and during this time she can recharge the yacht about a dozen times. This is the first electric auxiliary launch ever built.
Permission has been applied for by the New York, New Haven \& Hartford Railway to electrify the Harlem River and Portchester Railroad. This line runs through Mott Haven to New Rochelle, where it joins the main line. The fact that this line is to be electrified indicates that it will be used for extensive passenger service, as it would be hardly worth while to change to electricity if freight is to be the principal traffic.
The Austrian government intends to electrify its mountain railways, and has been studying the question of hydro-electric plants in Scandinavia. According to a report recently made to the government, Norway has a total water power of $28,000,000$ horse-power, Sweden $10,000,000$ horse-power, and Finland of $4,000,000$ horsepower. The plants of these countries now in operation or under construction have a total capacity of 500,000 horse-power.
Ten thousand electric flatirons are to be loaned to reliable customers of the Chicago Edison Company for a period of six months. The object of this is to popularize the use of electricity in the household, and lead to the introduction of other electric utensils. While these irons are loaned out for six months only, it is intimated that if the plan proves a success, they may be permitted to remain in the hands of the con sumers for an indefinite length of time.
An interesting example of the displacing of steam by electricity is to be found in the up-to-date laundry. The electric motor is used to provide an individual drive for the various machines. The principal advantage of electricity over steam in this particular application lies in the fact that many of the machines are idle for a large part of the time, and the driving motor of such machines need only be consuming power when its services are required. In addition to this, greater variations of speed are possible with the electric motor, and the machine may be driven at exactly the speed desired. No overhead shafting or belts are used, thus doing away with the dust and dirt that accumulates in the steam laundry.

The street sweepers that operate at night on the more important boulevards of Chicago have found their work hampered and rendered dangerous by the carriages and automobiles that throng these avenues. In order to relieve this danger, each man is now provided with an electric lamp, which is attached to his helmet. A 2 -volt 6 -ampere tungsten lamp is provided, and this is fed from a storage battery in the sweeper's hip pocket. The entire outfit weighs less than a pound, and the lamps will burn for ten hours without recharging. The sweeper does not have to give the apparatus any care, as it is properly connected up and fitted to him when he starts out to work at night, and needs no attention until he returns from work in the morning.

The use of axle lighting systems in railway cars has reached a greater perfection in England than in this country. Of the 30,000 cars thus equipped in England by a single company, none is provided with any auxiliary system of lighting. This fact makes it imperative that every attention be paid to the electrical equipment to keep it in order. In this country we do not show sufficient confidence in electric light ing systems to depend upon them alone. Other forms of light are invariably used with the electric lights, and the former are apt to be better cared for, because their operation is better understood by the unskilled workman. In England the axle car lighting system is so standardized, that each road makes repairs in is so standardized, that each road makes repairs in
any of the cars of a foreign road that may happen to any of the cars of
run over its lines.
Some time ago a magnetic phonograph was invented, which the inventor hoped to use in connection with the telephone to receive and record messages in the absence of the owner of the phone. The objection to this system was that a person calling up a number and receiving no response was not inc̣lined to deliver his message to something so intangible as an unresponsive and apparently inanimate machine at the other end of the wire. The daily press reports a new improve ment along this line, in which a phonograph is provided to answer calls of telephones when the person called is out. The person before leaving will deliver a message to the phonograph stating when he will return, where he is going, or where he may be called and this the phonograph will automatically repea twice to each call. This it will do, no matter how many calls there may be.

SCIENCE

Dr. Charcot, the French explorer who is on his way to the South Polar regions, left Buenos Ayres on November 27.
Mme. Curie, who with her husband, the late Prof. Curie, discovered radium, has been appointed Chief Professor of Physics in the Faculty of Sciences, Paris University. Mme. Curie succeeded her husband in the professorship held by him in the Faculty of Sciences before his death.
Mr. Horace H. Poole has recently determined the heat evolved by pitchblende by means of a delicate thermocouple. With 560.7 grammes of pitchblende in an atmosphere of nitrogen, the temperature steadied at 0.0092 deg. C. above the surroundings. This corresponds to a heat leakage of 0.053 calorie per hour. Hence the amount per gramme per hour is 0.000094 calorie. The amount expected from the radium present is about half of this.
A German patent specification describes a process for preserving milk by removing all dissolved oxygen by means of the addition of a small quantity of ferrous carbonate. The process is based on the fact that freshly precipitated ferrous carbonate in the presence of oxygen immediately assimilates oxygen and evolves an equivalent quantity of carbon dioxide. One part of ferrous carbonate is sufficient for 50,000 parts of milk, and the properties of the milk are not altered in any way by the addition, which should be made before the milk is boiled.
Dr. Otto Rosaner recommends the employment, in soapmaking, of fatty acids distilled in copper vessels, and asserts that every large soap factory would find it profitable to install a distilling apparatus. The fatty acids subjected to distillation should be free from water and should not contain more than 5 per cent of neutral fat or more than $1 / 5$ per cent of ash. These requirements may be satisfied by washing the crude fat with dilute sulphuric acid, in order to separate the fatty acids, and treating the latter, after their separation, with concentrated sulphuric acid. In most cases the distillation may be conducted at temperatures between 450 and 480 deg. F. Distilla tion in two stages is recommended in preference to continuous distillation, as it both increases the quantity and improves the quality of the product.
A Swiss patent has been granted to a Berlin firm for an explosive mixture composed of sulphur, sodium nitrate, small quantities of potassium nitrate and a chromate, and a carbonaceous material of fatty or resinous character which melts between 85 and 400 deg. F., becomes plastic and adhesive when heated, and is impervious to water. These ingredients are thoroughly mixed, without the addition of water, and are subjected to high pressure and temperature. The explosive is fired with a fuse, like gunpowder, to which it is claimed to be superior in the following respects: The products of combustion are less voluminous, less irritating to the lungs, and settle more rapidly; the explosive never becomes moist, cannot be ignited under 660 deg. F., burns more quietly, is less sensitive to blows and shocks, and possesses greater explosive power. The same firm has patented a safety explosive composed of ammonium nitrate mixed with one-fiith its weight of dinitro or trinitro compounds of the aromatic series, dissolved in a suitable medium. Potassium nitrate may be substituted for ammonium nitrate and metallic powders may be added to increase the explosive action.
Since Prof. Leduc, of Nantes, read his paper at the annual meeting of the British Medical Association, in 1907, on ionic medication, a great deal of work has been done on this subject in England. Prof. Leduc proved the efficacy of this method of local application of drugs by a striking experiment. He soaked a pad of lint in strychnine solution and strapped it to the ear of a rabbit. . He then passed a current through the wet pad and the rabbit's ear, with the consequence that a rapidly fatal result occurred from strychnine poisoning. Ionic medication, or cataphoresis, has now been applied to the treatment of various conditionsskin affections, warts, ringworm, sciatica, and rheumatism. The treatment of rodent ulcer by zinc ions has been very successful. Among the cases already reported may be mentioned a case of rodent ulcer in the University College Hospital, which was treated by zinc ionization in the following manner: The ulcer which was about the size of a threepenny piece and situated on the chin of an elderly man, was thor oughly treated with a solution of sulphate of zinc, then covered with lint soaked in a similar solution, and a positive zinc electrode applied to the lint. A moderate current was then passed through the lint and ulcer for some ten minutes, as a result of which the malignant ulcer rapidly healed. Copper ionization has been tried with success in the treatment of ringworm. Salicylate of sodium and iodine have been used in this way for sciatica.-New York Medical Journal.

brazilian battleship " minas geraes"-most

 POWERFUL FIGHTING SHIP AFLOAT.It is a curious anomaly that the most powerful fight ing ship afloat should belong to a South American republic. The fact thaic this ship will fly the Brazilian flag is due to the recrganization of their navy, which is now being undertaken by the Brazilian government. Originally it was their intention to build three battleships of moderate displacement, supplemented with a few armored cruisers, scouts, and destroyers. The events of the Russo-Japanese war, however, and the construction of the British "Dreadnought" led the authorities to greatly modify their plans, by discarding the armored cruisers and putting the contemplated expenditure into three great battleships, which should embody the latest developments of naval construction. The working out of the plans were intrusted to the Elswick firm, who designed the fine ship which forms the subjeci $0 \underset{\text { Ê }}{ }$ our front-page illustration. A sister ship is now under construction by Messrs. Vickers' Sons \& Maxim at Barrow-in-Furness.
The principal dimensions of the "Minas Geraes" are as follows: Length 500 feet, breadth 83 feet, and displacement, on a normal draft of 25 feet, 19,500 draft of 25 feet, 19,500
tons. The vessel will be driven by reciprocating engines at a speed of 21 knots. She will be able to stow 2,000 tons of coal in her bunkers; and arrangements have been made for the storage also of several hundred tons of oil fuel in her double bottom.

The armor protection is very complete. It consists of a belt 9 inches in thickness which extends from stem to stern, being slightly tapered toward the ends. This armor, throughout the lengtth of the citadel, is carried to the upper deck, and affords an unusually complete protection to the broadside battery of 4.7 inch guns. In addition to protecting the secondary battery, the side armor will prevent the entrance of shells below the gun deck, on which fourteen of the 4.7 -inch guns are mounted, and its association with a protective deck carried slightly above the waterline will insure excellent protection to the machinery, boilers, and magazines. A novel feature in the protection

RESULTS OF THE ATTACK OF ARMOR FOR THE "MINAS GERAES" BY FOUR 9.2-INCH ARMOR-PIERCING PROJECTILES. MAXDMUM PENETRATION, 3 INCHES. NO CRACKS. PROJECTILES BROKEN UP.

German vessels of the "Nassau" class, the concentration of fire being as follows: Ahead and astern, eight 12 -inch and six 4.7 -inch; upon either broadside, ten 12 -inch and eleven 4.7 -inch. These figures are interesting for comparison with the broadside fire of other ships of the all-big-gun type. Thus comparing merely the guns of the main battery, the British "Dreadnought" can concentrate six 12 -inch ahead, six astern, and eight on the broadside. Our "North Dakota" can fire four ahead, four astern, and ten on the broadside. The Japanese "Aki" can concentrate two 12 's and four 10's ahead or astern, and four 12 's and six 10 's on the broadside. The German "Nassau" can fire eight 11-inch ahead or astern, and twelve on the broadside. The 11-inch, however, is a much less powerful piece than the 12 -inch carried by the Brazilian ship, whose end-on fire must be considered as more powerful, and her broadside of about the same power as that of the "Minas Geraes."
The 9 -inch armor was fabricated by the Krupp process, and it will be seen from the accompanying illustration, showing the results of a test of one of the plates at the proving ground, that the armor is of exceedingly fine quality. The attack on the plate was made by a 9.2 inch gun, firing 380-pound Firth shells, three rounds
usually heavy main battery, which consists of no less than twelve 12 -inch guns mounted in pairs in six barbettes. Four of these guns are mounted forward of the superstructure, four aft, and two on either beam. The mounting of the forward and after guns is similar to that adopted in our own "South Carolina" and "Michigan," four of the guns being mounted in twingun turrets on the upper deck, and the other four being carried at a sufficiently higher level to enable them to swing clear of the roof of the upper deck turrets, as shown in our illustration. The two remaining turrets are mounted well out on either beam amidships, the superstructure forward and aft being cut away so as to permit their guns to fire parallel with the axis of the ship. This arrangement allows an end-on concentration of fire, which is much greater than that of any other ship of the "Dreadnought" type except the
being fired at a velocity of not less than 1,850 foot seconds from a distance of a little under 100 yards. The first shot, which struck with an energy of 9,497 foot-tons, was completely smashed against the plate, the penetration being very slight, and no cracking of the plate being apparent. The second shot penetrated about 2 inches without being able to crack the plate; and the third, which struck the lower part of the plate in the center, failed also to produce any cracking, and merely served to shake out of the plate the points of the other shots which had become imbedded. The plate was accepted on the strength of these results, but it was determined to give it an additional and more severe test, by firing one more shot at a velocity of 1,977 feet per second and an energy of 10,312 foot tons. This severe test also failed to crack the plate; the penetration was not over a few inches, and the

Fig. 1.-Lightning flashes showing separate rushes and black discharge.

Fig. 4.-Spectrum of a spark from a static machine.

Moving camera apparatus for photographing lightning fleshes.

Fig. 2.-Lightning flash shoming long interval between rushes.

Fig. 8.-A spectram photograph of a lightning flash.
point remained imbedded in the plate. The maximum amount of bulging at the back of the plate, in the line of points of contact, was not over 1.5 inches.

A HYDRAULIC DRIVE SYSTEM.

The fact that the internal-combustion engine depends upon momentum of its moving parts to bridge the gaps between explosions, makes it impossible to start the engine under load, and materially lessens its efficiency as its speed is reduced under load. For this reason it is necessary to provide clutches and variable speed gears, which will permit of reducing the speed at the point of application of the power, while the engine itself operates under such a speed as will yield the highest as will yield the highest efficiency. A perfect me chanical variable - speed gear has yet to be discovered, and so far we have been obliged to worry along with systems, so abhorrent to the mechanical engineer, of operating by jerks from one speed to another. From time to time efforts have been made to overcome the difficulty by the use of a flexible medium such as electric or hydraulic drive, between the gasoline engine and the point of application of the power. But, hitherto, the operation of these systems has not been such as to warrant their commercial application.
A new system has just been developed by Charles M. Manly, who is probably best known for his work with the late Samuel P. Langley in the development of an extremely light gasoline motor for use on the Lang ley aeroplane. Mr. Manly's transmission is hydraulic; but oil is used instead of water, because of its lubri cating and non-freezing qualities. The oil is circulated in a closed cycle by means of a pump driven directly by the internal-combustion engine, and in the oil circuit one or more motors are included, which are located where the power is to be applied and which are driven by the circulating oil. The key to this system lies in a special form of double eccentric, the throw of which may be varied from the central or zero position, in either direction, so as to vary the stroke of the pistons to any degree within the limits of the mechanism.
In the accompanying illustrations we show the drive system as applied to the operation of an automobile truck. The pump which circulates and generates the pressure in the oil is indicated at A in the diagram, while one of the motors, of which there are two, one for each of the rear wheels, is indicated at B, the other being removed for clearness. It will be observed that the drive system does away with all gearing between the engine and the wheels, with the exception, of course, of sprocket and chain connections between the motors and the wheels. The differential gearing and the brake are done away with, as well as all vari-able-speed devices. A single lever controls the stroke of the pump pistons, and the pressure of the oil being directly dependent upon the pump stroke, this controls the speed of the wheel motors, and consequently of the truck. The engine may be run continuously at^{\prime} full speed, in fact there is no necessity for chang ing it for any purpose; setting of the eccentrics in the no-throw position brings the pump to rest when its stationary pistons will completely block the circulation of the oil, preventing the motor from operating, and thus providing an efficient brake. As the motors are connected "in parallel," to borrow an electrical term, differential gearing is unnecessary, for they will adapt themselves to the variations in load on the wo wheels, as the car is rounding a curve; in fact there can be no more per fect differential system. The advantage of this drive for use on trucks is that it does away entirely with all complicated mech anisms that would require a skilled .operator. The truck shown in our illustra tion is loaded with sand to a weight of 9,000 pounds.

A 5-ton motor truck fitted with a hydraulic drive system.
move the dead weight always carried. For this purpose a small gasoline engine, formerly used in a runabout of 16 nominal horse-power, is amply sufficient. Motor trucks now in use for similar work require a 30 - or 40-horse-power engine. Makers will admit that for a gross weight of say 10 tons, a speed of 6 miles per hour, grades not to exceed 5 per cent, and average road conditions, the drawbar pull renuires only one-fourth to one-third of that power, but the

The hydraulic engine. An engine drives each wheel.
balance is necessary for reserve, especially for start ing on up grades. The great advantage of the Manly drive is that the available power can be increased inversely as the speed, the maximum torque being available exactly when it is most needed in starting from rest without increase of engine power, and the maximum engine power being required only under the most favorable conditions, i. e., under the maximum speed of the car or truck with radiator and circulation giving their maximum effect. This is just what i

Top view of the hydraulic drive, showing control valve (C) pressure pump (A) and one engine (B) assembled in track chassis.
A HYDRAULIC DEIVR EYMTTY
least possible with drive systems at present in vogue for gasoline automobile use, as is evident to anyone who has tried to start his car up a steep grade. The engine must be run up to speed to attain its efficiency, the brake cautiously released to avoid running back, and the clutch as cautiously engaged, even if there be no necossity for a change of gear in such a situation, all of which difficulties are eliminated by the Manly drive on account of the above-mentioned features and the absolute braking effect of the oil under pressure in the system whenever the pump is even momentarily stationary.
In the demonstrations made for the Scientific American, the bulky motor truck with its 9,000 -pound load was backed and man euvered into and out of close corners, both in the ard and in crowded street traffic, with the utmost ease and quiet, and none of the starting and stopping of engine, engagement and disengagement of clutch, and screech of changing gears, so noticeable when an automobile merely draws up to a sidewalk in a crowded street, while quick changes from full speed ahead to reverse were made, which, with the momentum accumulated by the 20 tons gross of car and load, would have torn the teeth out of any known system of change-speed gear.

The driver of the truck, who is shown in the photograph, has never driven an automobile, and would not know how to drive one. All he knows about the auto truck is that when he moves the lever forward, the truck will move forward at a speed proportionate to the position of the lever; that on bringing the lever back to central position, the truck will be brought to an absolute standstill without requiring any brake; and that on further withdrawing the lever, the truck will move backward in the same proportion. It is obvious that the alteration of the throw of the eccentric must be against the pressure of the oil, which would be a laborious and sometimes impossible operation if the actual movement of the parts were effected by the manual lever. This is overcome by the introduction of an ingenious device, by which the oil pressure itself changes the eccen tric throw. The hand lever operates only a pilot valve, the casing of which is shown at C, admitting oil from the circulation to the eccentric-operating mechanism and returning to a neutral position when sufficient movement of the latter has been made.
During the entire year of operation, the hydraulic drive system of the truck has required no repairs whatsoever. The mechanism was provided with adjustments, so as to take up any wear of parts, but so little wear has resulted, due largely to the lubrication of the oil circuit, that, in the machines now building no such provisions for adjustment are considered necessary. The only attention the hydraulic system requires is that at the end of each week a pint of oil must be added to replace the oil lost by friction in must stuffing boxes.

The possibilities of this system for trucking are very alluring. Instead of gasoline engines, kerosene engines could be used. Heretofore kerosene engines have fail ed for automobile work, be cause they do not permit of the variations in speed that are possible in gaso line engines. A number of these automobile trucks could be started from a cen tral station by a skilled man, who would see that the engines were in proper working condition. Once the engines were started running, they could be lef in operation the entire day An ordinary truckman could then drive the ma chine without giving thought to the engine, his only attention being devot ed to the steering whee and the single lever that controls the starting, stopping, and reversing of the machine. A truckman would be much better fit ted for this work than the skilled chauffeur, berouse he would know better how
to handle cases, where to go for freight at the docks, how to thread his way through congested streets, and how and where to deliver the load, for which work, moreover, the operator sufficiently skilled to control the complications of the present automobile engine is either too expensive or considers himself superior. A single man could have entire control of the running of the machine and the handling of the freight, whereas in ordinary systems a skilled driver is necessary in addition to the usual freight. handlers In case of an accident to the machine, word could be sent to the central station, and a second truck could be sent out to replace the injured one, while the latter was being repaired
Although we have shown this hydraulic drive system as applied to auto trucks, it will be evident that it is equally applicable to high-speed automobiles. It is not necessary for a man to be a machinist in order to run an automobile thus equipped, because the usual trou-ble-making gearing is entirely dispensed with, and the possibility of a break is extremely remote. Mr Manly has suggested that the system could be used in connection with any power system, in which a variable speed is desired. On ocean steamers, for example, the hydraulic power transmission between the engines and the propeller would prevent racing of the propeller when it was lifted out of the water, for the reason that the incompressible oil circulating through the system determines positively the rate of motion of the various parts, and absolutely prevents the pistons from moving at a higher speed than is set by the circulating oil, even when the load is suddenly relieved.

NEW DISCOVERIES ABOUT LIGHTNING.

by james cooke mills.

While photographs of lightning flashes are not new such pictures as recently have been taken under the auspices of the Smithsonian Institution are attracting unusual attention in the scientific world. Curiously enough, the investigations which have been conducted along this line were brought about almost by chance A year or so ago, a letter was received by the secre tary of the Smithsonian, inquiring for a publication of the Institution relating to photographic experi ments. It was couched in quaint English and written in a foreign hand, its author being Alex Larsen, who a short time before had arrived in this country from Denmark. In his letter Mr. Larsen mentioned inci dentally that he had taken some photographic light ning by holding a small camera in his hand and re volving it from side to side. He inclosed a proof of one of his pictures, and inquired if it was of any scientific value.

The idea of taking pictures of lightning with a moving camera, while not new to the officials of the Institution, was considered by them well worth ex periment. They opened a correspondence with the young investigator from Denmark, and found that he was more than ordinarily well versed in science, having made a study of chemistry, physics, and me chanical and electrical engineering in his native land His material resources were limited, and the appar atus he used was necessarily crude, he having conducted his studies and experiments at odd moments from the daily grind of eking out an existence.

The Smithsonian officials deemed young Larsen worthy of assistance, and they appropriated a grant from the Hodgkins Fund of the Institution for the provision of an excellent photographic apparatus, and a sum of money for the construction of a suitable moving device to continue his experiments, and also to pay in part for his support.

The results of this comparatively small outlay have been notable. The peculiar flickerings of most lightnirg flashes, which the ancients attributed to some supernatural origin, have now been analyzed, and several successful exposures clearly show that nearly all flashes are composed of several discharges following one another at certain intervals in the path made by the first discharge. It is deflnitely determined, therefore, that a flash of lightning is not one single vibration, as generally supposed, but is made up of numerous small flashes or "rushes."
How rapidly these rushes must follow each other may be imagined from the fact that the flash may be composed of as many as forty rushes, and the duration of the whole a fraction less than half a second. The perpendicular flash shows a broad sheet on the negative, and on the prints from that the distinctive rushes can be counted. The time of the flash is determinable from the known width of the sheet on the plate and the known motion of the table on which the camera is set. According to calculations made by Mr. Larsen the rushes vary in duration from three one-hundredths of a second to two one-thousandths of a second.
The most remarkable result of these experiments is the discovery of a "black rush" in the lightning flash, that is, a rush not discernible to the eye; and as paradoxical as it may seem, there is invisible lightning To verify and substantiate this, we have only to refer
to Fig. 1, a reproduction of a photograph taken September 1 at 9 P . M. The storm during which this flash was photographed began about 7 P. M., with the wind northeast, which is very unusual for Chicago. The wind gradually changed to north and northwest, the temperature being about 24 deg . C., and the barometer varied between 29.89 and 29.92 . The flash was obtained when the storm was most severe and while it was raining very hard.
This flash is composed of forty separate discharges, made up of one band, which in all probability is composed of a number of separate rushes or oscillations very close together, and one black discharge. It is this black discharge which makes this flash the more interesting, and the photograph shows it running parallel and on both sides of the first bright rush, the boundary line on the inner side being more plainly marked. From this black discharge issue several side branches on both sides, a large one spreading out over the other rushes quite prominently. These side branches all pointing downward indicate that the black rush was a downward stroke, and they also tend to prove that it must have had a good deal of resistance to overcome. It must have cleared the way for the first bright discharge, which in all probability pro ceeded from the ground upward. The difference in width of the bright discharge, measured at its lower and upper parts, would confirm this opinion of the experimenter, being nearly twice as wide at the lower part as at the upper part.
An interesting question here presents itself. Have we here two separate discharges with different rates of oscillation traveling the same path? Can such a condition be possible? To the experimenter's mind the most plausible explanation would be that the two discharges occupied two separate paths, one inside the other, one discharge forming, so to speak, a tube through which the other passed. It may also be claimed that the bright discharge is probably part of the dark discharge for some reason rendered more luminous. This explanation may be the true one, al though it appears as if the bright flash is entirely separate. The measurements of the width of the lower and upper parts of both discharges confirm this opinion.
Authorities differ in their opinions as to the prob able cause of these dark rushes. It has been suggested by some that there really are no black discharges, but what appear as such are excessively charges, but what appear as such causing a reversal of the image on the plate. This explanation may be the true one if we understand the word "brightness" to mean increased actinic power of light. In the black discharge repre sented this chemical effect must have been extremely high, owing to the fact that the smallest hair-like extremities of the side branches are well reproduced on the picture as black, in comparison with the broader and to all appearance more powerful discharges following after

It was at first thought likely that we had to deal with an interference phenomenon, but the idea was discarded. Then it was suggested that the black dis charge was probably due to slow oscillations (the width of it would tend to confirm this), and what appeared as black on the plate would be in reality dark red discharge on a partially illuminated background. The red, of course, would take black in the photograph. This opinion had also to be discarded for the reason that, if such be the case, the side branches of the dark discharge would have been ob literated by the other rushes following. The effect of halation and solarization was also considered, but rejected.
There was thus but one way to account for the prenomenon, namely, that the flash must have given out light of a wave length much shorter than the wave lengths of visible light, and with a power sufficient to render the portion of the plate struck by it non-sensitive to ordinary light. Such a flash would appear black on a partially illuminated background, or be invisible.
Dark flashes have been observed by the experi menter on several ocasions, and only when raining very hard. They appear to the eye the same as the accidental image produced after looking at a bright flash. Such an image may be retained in the eye for quite a while, but cannot easily be confounded with a real flash.
Fig. 2 was obtained on October 1. We have here a flash composed, first, of two bright discharges close together, then there appears to be an interval of about a fourth of a second, which in all probability was filled in with a number of fainter oscillations (the lines running across seem to indicate that), and at the conclusion of the flash are four bright rushes.

During the summer a new departure was under taken by Mr. Larsen, the object being to obtain spectrum photographs of lightning. Spectroscopic examinations of lightning have been made by many, but most of these observations have been visual, which at their best can only be rough approximations of the number of lines and their relative positions. An ap-
paratus was constructed, consisting of a camera with a prism fitted in front of the lens, no slot being used, as a lightning flash is a relatively narrow streak of light yielding a practically parallel beam. By means of this arrangement a few photographs have been obtained, one of which is reproduced in Fig. 3, while a spectrum photograph of a spark from a static machine, for comparison, is shown in Fig. 4. The flrst shows the spectrum of one of those horizontal meandering flashes often seen at the conclusion of a storm of long duration. It differs considerably from the other, several lines being absent. No deflnite opinion has as yet been offered by Mr. Larsen as to the meaning of the changes of these lines in the spectra of different flashes, because more material must be obtained before a positive statement can be made.
The moving camera apparatus for making. lightning flashes is a simple enough device, and has proved sat isfactory at all times. A spring motor movement (of the kind used to operate revolving stands for exhibiting goods in show windows) was procured and mounted inside a table specially constructed for the purpose, and a stand for supporting the cameras was fitted to the central shaft.
As the speed of the motor was too slow, the fly-vane shaft was removed and the vane moved to the next shaft, which was lengthened so as to extend under the table. Thus arranged the fly-vane could be made to revolve in a liquid placed in a vessel under the table, thereby preventing much of the vibration and getting a more uniform speed. Fig. 6 shows the arrangement of the apparatus, with the table top removed to show how the motor movement is placed; the fly-vane revolving in the water box beneath. The stand is usually revolved at a speed of one turn in ten seconds, which was found to be the most suitable for ordinary purposes. The reason for employing a motor movement with a uniform speed to move the cameras is to ascertain the exact duration of a flash cameras is to ascertain the exact d.
The amateur photographer who would take pictures of lightning flashes with a moving camera need have no such device to revolve the camera, as it may be moved by hand, being swung from right to left and back again, each swing lasting about a second and covering an angle of 60 degrees, which is also the angle of the lens. An ordinary magazine camera for all ordinary purposes is the most convenient, on ac count of the rapidity with which the plates can be changed, this being of great importance, because as a rule the time most favorable for obtaining good pictures is very short, seldom lasting longer than from ten to fifteen minutes.
The best way to hold the camera is to place it close to the body, tilting it somewhat upward so as to get as much of the sky in the picture as possible, and swinging the body from side to side. The time and angle of the swing can be regulated with a little practice so as to be fairly accurate. With the utmost care, however, the element of luck enters into the work to a considerable degree, and the game is one of patience and perseverance.

Official Meteorological Summary, New York, N. Y., November, 1908.

Atmospheric pressure: Highest, 30.45; lowest, 29.49; mean, 30.04. Temperature: Highest, 62; date, 26th; lowest, 27 ; date, 5 th; mean of warmest day, 57 ; date 26 th ; coolest day, 32 ; date, 15 th ; mean of maximum for the month, 50.8 ; mean of minimum, 38.6 ; absolute mean, 44.7; normal, 43.8; excess compared with mean of 38 years, +0.9 . Warmest mean temperature of November, 50, in 1902. Coldest mean, 37, in 1873. Ab solute maximum and minimum for this month for 38 years, 74 and 7. Average daily excess since January, 1, +1.6. Precipitation: 0.75; greatest in 24 hours, 0.66 ; date, 14 th and 15th; average of this month for 38 years, 3.43. Deficiency, -2.68. Accumulated defl ciency since January 1, -2.39. Greatest precipitation in November, 9.82 , in 1889 ; least, 0.75 , in 1908. Wind: Prevailing direction, west; total movement, 9,364 miles; average hourly velocity, 13.0 miles; maximum velocity, 46 miles per hour. Weather: Clear days, 13 ; partly cloudy, 6; cloudy, 11; on which 0.01 inch or more of precipitation. occurred, 3. Frost: Light, 2; killing, 5th. Snow: 0.6. Fog (dense), $\cdot 10$ th, 22d, 23 d 24 th, 25 th.

A $\mathbf{\$ 5 0 0}$ Prize for a Simple Explanation of the Fourth Dimension.

A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a prize for the best popular explanation of the Fourth Dimension, the object being to set forth in an essay the meaning of the term so that the ordinary lay reader can understand it.

Competitors for the prize must comply with the conditions set forth in the Scientiflc American of Novembor 21, 1908.

(Haxxesphotence

sir isald newton and the apple.

To the Editor of the Scientific American:
In yours of August 22 , 1900, you mention an oft-told story about the law of gravitation. I think we all hav eyes to see apples fall to the ground, but Sir Isaac had
eyes backed up by such a grand brain that he first saw the ground fall to the apple Law. Hareave Woollahra Point, Sydney, October 5, 1908.

GEAR-DRIVEN PROPELLERS FOR AEROPLANES.

To the Editor of the Scientific American:
I should like to eall your attention to the defective application of power in the Wrights' aeroplane. have just read of Wilbur Wright's saving himself from ville Wright's. This should be ben as serious as Or解 hains should be discarded for more positive drive using gears. Chains cannot be made which can abso lutely be depended on not to break, and they do break on automobiles and other pieces of machinery. As be an objection, there seems no reason for his no using gear-driven propellers. This would make ridin in the aeroplane fifty per cent more secure. Through your columns, which have given such valuable advic to inventors, will you not suggest some such change Francis Lee Herreshoff.
ber 19, 1908.
New York, N. Y., November 19 Fis, 1908

that mysterious aerolite

o the Editor of the Scientific American
In your issue of November 28, 1908, under the head ing, "The Mysterious Aerolite," Mr. E. B. Hoyte 'sug ests that the explosion heard by Mr. Park Mar by the exploding of a shipment of dynamite, and no by a possible meteor
That may be the solution of the disturbance, but hink it an interesting coincidence that on Septembe at about 10 A. M., while walking along a street of Winchester, Franklin County, Tenn., I suddenly looked up at the sky, and saw what seemed to be a pyrami of yellowish white flame, on its side, going throug he air at a tremendous rate, with the base end for clear day, but it did not blind my eyes. It seemed to e about three yards long from base to top, and exceed ngly high up in the sky. I scarcely had time to see it before it was out of sight. It was going in a north esterly direction at af unprecedentedly rapid rate.
I immediately told of what I had seen, and had just thought to be thunder out of a clear sky; but when th thought to be thunder out of a clear sky; but when the vibration of the ground, I thought there had been an explosion somewhere. It was not until all explosion heories had been proved false in the vicinity of Win chester, that I connected the noise with what I ha een.
Whether the two had anything to do with eac other, I do not know. But the object in the sky an orily explained to my knowledge A. M. Butrow
Waterford, N. Y., November 28, 1908.

the florida inland canal

Kindly permit me to say a word through your grea paper on the subject of an inland canal through th reat State of Florida.
I gave twenty-four years of the best days of my lif Ind broke down from overwork, in aiding in the de elopment of Florida. The last work determine the extent of the great bodies of muck land rom one foot to six feet under water, along the eas coast of Florida, and to see if those lands could be re aimed, which when reclaimed would constitute a por ion, and a large portion, of the richest sugar, rice egetable, and tropical fruit lands in the world. Work ng in co-operation with the great Diston effort to re lawer the wate of Lake Okechobee which is ine feet on its surface at low water above sea level. We discovered by joining these surveys at the head waters of the St. Johns River with those of the sur
veys by Mr. Diston from the headwaters of the Kissim mee River, that a ship canal on the sea level carrying a depth of twenty feet of water could be cut, giving canal almost the length of Florida, by utilizing th t. Johns River, running nearly a hundred miles due north to Jacksonville before it enters the Atlanti Lake Okeechobee and Lake Hickpochee and the Cala hasee River for nearly another hundred miles to ente the Gulf, thus saving millions of acres of some of th ichest land on earth on both sides of a canal nearly hree hundred miles lon'g, that can be constructed fo wenty-five million dollars and insure the drainage of the large
xpense.
Its they accident or a coincidence of ultimate r lanning to sea-level route was found. We were River from near the south end of Lake Washington nto the Indian River, the surface of Lake Washing on being about twenty feet above Indian River, an the St. Johns at Jacksonville being
Noting the peculiarity of the
Noting the peculiarity of the river running nearly o taking a system of levels at its fountain head, and we found that the St. Lucy River found its headwater n the same lake, running to the Atlantic Ocean in a outheast direction.
By checking up these levels, we found that if we ut a canal through to the Indian River from this lake we would damage navigation on the upper yet lowe
We found in
nd of Lake Washington to the Kissimmee the south strike the line of the Diston canal for Lake Okeecho
bee, that the Alpataka Flats was the drainage and
dividing line between the east coast and the west coast of south Florida, and that the lowest point acros was not exceeding

a few miles wide.
 boats through had already opened a canal for smal

 bee, Lake Hickpo Kissimmee by way of Lake OkeechoGulf, and had run level lines the entire distance Hence it was only a matter of comparing my east coas survey with his midland and west coast survey, and thus we found the long-looked-for canal route on a sea level that could be made available for ocean-going ships as well as for drainage; and found out also that without lowering the great lake to the sea level itwould be practically impossible to drain any grea would be practically impossible to drain any great
portion of the Everglades, or to keep the water in th Kissimmee Valley from backing up and overflowing the drained lands during extra heavy rainy seasons.
So astonishing was the simplicity of the construc tion of this canal, that would save and reclaim enoug land to produce the sugar and rice consumption fo fifty years in America at three cents a pound for suga at a good profit, and yet so stupendous was the vast
field opened for local and national benefit by the con struction of this canal, that it startled us; for th hope of a sea-level canal across Florida from the Gul to the Atlantic had been abandoned years ago afte numerous surveys.
This work should now be coupled with the great In land Waterways Proposition for the canal from Lake Michigan at Chicago to the Mississippi River; and grasp the world-wide benefits that will result from their construction
On the discovery of the possibility of a sea-leve canal that would accomplish this great double purpose we planned with Mr. Diston to join our work and as Congress to dig this canal, as it-would not only sav millions of acres of the richest land on earth, it would give the Gulf of Mexico an inlet and outlet to the At having to pass out of the Gulf over the dangerous reefs or around Cape Florida over the most dangerous reef known to American commerce. With the canal from Chicago to the Mississippi, boats both from the East and the West could go down and back through the Caribbean Sea, around the end of Cuba, and ou ing nearly all of the most dangerous voyage known to ing neariy all of the most dangerous voyage known Waynesville, N. C., November 8, 1908.

PROGRESS ON THE PANAMA CANAL

A review of the reports of the Isthmian Canal Com A review of the reports of the Isthmian Canal Com that most satisfactory progress is being made, th results in excavation exceeding the most sanguine estimates of progress. In order to concentrate author ty, to expedite the transaction of business, to secur proper co-ordination, to fix definitely the responsibility in any particular case, and to reduce the cost of ad ministration, a complete reorganization was under taken toward the close of the fiscal year, to be effected gradually, beginning July 1, by which all constructio work, in any given district, irrespective of its char acter, would be placed under one head, the necessary authority having been received from the Secretary War for the transfer of duties as between depart ments, required by executive order of January 6, 1908 To accomplish the objects sought, the zone was di vided into three parts, each of which is to constitute a division under the department of construction and engineering, the division engineers reporting direc to the chief engineer. The first is to include all terri tory north of Tabernilla, to be designated the Atlantic division; the second is to extend from Tabernilla t Pedro Miguel, to be named the central division; an the third, extending from Pedro Miguel to deep water in the Pacific, will constitute the Pacific division. As he reorganization is not complete at this time, it details must be left for the next annual report.
axcavation and dredging.
This department embraced the Culebra division, the chagres division, the Colon dredging division, and the La Boca dredging division.
Culebra division.-This division extended from the Chagres River in the vicinity of Gamboa to include the Pedro Miguel lock, a distance of 9.2 miles; the otal amount of material excavated in the Culebra division during the year was $12,065,138$ cubic yards, place measurement, of which $11,685,253$ cubic yard were from the canal prism and the balance for acces sory work. The total number of steam shovels as signed to this part of the work during the year was 59. As practically all the areas suitable for dumps within the limits of the division were utilized to their full st capacities, the greater part of the material wa hauled over the main line of the Panama Railroad to Gorgona and Tabernilla on the north and to the new dumps at Miraflores and La Boca on the south, th average haul being about 10 miles.
On October 4 the Cucaracha slide, which had caused more or less inconvenience since the work was begun by the French in 1884, started to move toward the east edge of the canal at a rate, at first, of 14 fee in twenty-four hours, decreasing toward the close of the month to about 4 feet in the same period of time About 113,000 cubic yards of material moved so a o effectually stop the transportation of materia hrough the "cut" to the south, and necessitated th handling of all material over the.single-track portion
of the Panama Railroad via Empire to the south. Work was prosecuted, without interruption, day and night, by steam shovels and improvised hydraulic means, and by the end of the month sufficient space was gained on the moving mass to permit the passage of dirt trains to the south over the old route. The total area of the slide was approximately 34,455 square yards, and it was estimated that about 600,000 cubic yards were in motion. The removal of this slide is not a source of difficulty in the dry season. A wide berm was left with the hope that should rapid movement again take place, steam shovels could prevent the in terruption of traffic.

The slide at Paraiso, another which developed when the French were at work on the canal, gave trouble in April of this year. The estimated area is 16,700 square yards, and the amount in motion is about 140,000 cubic yards, of which about 90,000 cubic yards have been removed.
Chagres division.-This division covered a distance of about 23 miles and extended from Gatun to a point where the canal crosses the Chagres River at Gamboa The river crosses the canal line 23 times within the limits of this division, so that during construction a considerable portion of the prism is subject to over flow by floods, and to such an extent that progress of work is liable to be slow during the rainy seasons.

The surveys reported as in progress in the last an nual report were completed, and the center line of the canal permanently marked. Slight changes in the alignment were made in the final location whereby saving of $1,264,700$ cubic yards was effected; of this, 264,300 cubic yards were rock. These surveys show that the total amount to be removed from this part of the canal prism is $12,256,300$ cubic yards, of which $8,313,500$ cubic yards are earth and the balance rock During the fiscal year excavation was begun on four different sections. The total amount of material ex cavated was $1,774,124$ cubic yards, place measurement, all from the canal prism. The total number of steam shovels in operation in this division was 15 and the balance of the equipment is largely that left by the French; 47 out of a total of 50 engines in use are French, as are 410 of the 645 dump cars.

Colon dredging division.-This division extended from the foot of Gatun lock to deep water in the Carib bean Sea, and embraced the Mindi and Colon districts and the Cristobal machine shops. Excavation by steam shovels was begun in July, and two of them removed a total of 536,959 cubic yards, including both swamp and rock. Dredging during the year was done by two French ladder dredges, two dipper dredges, the 16 inch suction dredge, and by the seagoing suction dredge "Ancon." A total of $5,087,623$ cubic yards o material was removed, of which $4,947,330$ cubic yards were from the canal prism and the remainder from accessory works.

La Boca dredging division.-The change in the location of the locks and dams on the Pacific side extended the limits of this division about 3 miles, the area to be dredged extending from the Miraflores locks to deep water in the Pacific, a distance of about 8 miles, with a width of 500 feet. The quantity of material to be removed is estimated at $29,212,700$ cubic yards at least $1,500,000$ cubic yards of which is rock. There have been used on this stretch of the canal the sea going suction dredge "Culebra," which went into commission on January 1, and four French ladder dredges The dipper dredge was taken out of commission on January 17, 1908, as not suitable for handling the soft material, and will be utilized later in the remova of rock. During the fiscal year a total of $5,273,369$ cubic yards was removed, of which $5,264,019$ cubic yards were from the canal prism and 9,350 cubic yards from accessory works.

LOCKS AND DAMS.
This department of construction embraced the Gatun locks and the Gatun dam divisions, the Pacific division of locks and dams, and the division of meteorology and river hydraulics

The locks are in pairs, and since the compilation of the last annual report the projected dimensions have been increased so that the width in the clea will be 110 feet, the usable length remaining, as here tofore, 1,000 feet. The question of increasing the width was raised by the General Board of the Navy in a memorandum to the Secretary of the Navy, dated Washington, October 29, 1907, setting forth "that the width of the locks as now fixed, namely, 100 feet, is insufficient for probable ships of future construction and that sound policy would dictate an increase to a clear width of 110 feet."
The project prepared by the minority members of the board of consulting engineers for the lock type of canal provided for a flight of three locks at Gatun, a flight of two locks at La Boca, and one at Pedro Miguel. The locks at La Boca were placed on the est side of Sosa Hill, and were to overcome the dif erence of the level between the ocean and a lak formed by the Sosa-Corozal and the Sosa-San Juan ams. Steps were taken to construct the former of these dams in accordance with the proposed plan, and

Culebra cut, looking south.

Tenth Street, Colon, before paving.

The steam shovels load directly into trains which are hauled to distant dumps.

Tenth Street, Colon, after paving.

Pedro Miguel lock site.

Excavating for the spillway on the center of Gatun dam.
PROGRESS OF THE PANAMA CANAL.
trestles were built along the toes from which to dump material from Culebra cut. The trestles failed after the dumping from them began, and the material overlying the rock moved laterally, carrying the superimposed mass with it. When the unsuitable nature of the ground became evident, a careful examination of the canal route from Pedro Miguel to the Pacific was undertaken, and a study of the data thus obtained led to the conclusion that one lock at Pedro Miguel and two at Mirafiores offered the most economical and desirable solution. The advantages of this plan over the then existing project were that dams of lower height, less length, and resting on rock comparatively near the surface could be more easily constructed and could be completed at an earlier date; and finally that the locks in this location would be protected against all possibility of distant bombardment and would be less exposed to gunboat or torpedo boat attack. As a consequence, the commission recom mended a change in the project, which received the approval of the President on December 19, 1907.

The designs for the locks are still in course of preparation, but the studies have reached such a stage that the general features will be definitely determined at an early date.
Gatun locks.-lnvestigations were continued during the year to ascertain the depths of the underlying strata and to determine also whether suitable material extended sufficiently far below the level on which the lock walls are to be built to carry the weight; a depth of 50 feet below this level was fixed and the borings were so made. The materials encountered may be briefly summarized as a layer of argillaceous sandstone, overlying a layer of conglomerate which is composed of pebbles and other hard aggregates held together by a cementing material, and which subsequent excavation shows to be hard enough in texture to require blasting for its removal. The borings disclosed an underground flow through the sandstone, the source of supply being apparently ground water from the hills to the southeast and at a considerably higher elevation than the lock site. It is intended now to prevent access to the foundation of this wate by means of curtain walls connected with the under lying impervious stratum of argillaceous sandstone, and additional precautions will be taken if develop ments during construction make such advisable or necessary.
The excavation for the locks was continued through out the year,. The total amount removed from the site was $1,769,115$ cubic yards.
Gatun dam.-Investigations, primarily undertaken to verify data already on hand concerning the character of material for the foundation of the dam, were continued. A test pit, 12 feet square, was sunk in the hill through which the spillway is being cut and near its head, and this has been carried down to near its head, and this has been carried down to is practically the same as that at the lock site. On Gatun Island a test'pit 20 feet square was sunk to a depth of 68 feet below sea level. Wash borings were resorted to, but care was taken to secure drive samples whenever there were indications of any change in the character of the material.
The examinations made of the spillway indicate that the rock is of sufficient strength to bear sáfely any of the loads that will be placed upon it. What
on the scale of 1 inch to the foot, and these experiments show not only the suitability of the available material, but that a stable and water-tight dam can be built by hydraulic methods. Construction work at the dam during the year consisted in the removal of 918,920 cubic yards of material from the spillway.

Peáro Miguel.-As it was more advisable and economical, the Culebra division excavated the lock site down to reference 40, practically completing it to this grade at the close of the fiscal year, and removed $1,071,696$ cubic yards, which amount is included in the total yardage under Culebra division.
gravity well below the line of support. The propeller which is mounted upon a hollow steel shaft running in ball bearings, is placed at the front edge of the plane at the center. It is about 6 feet in diameter, with a $61 / 2$-foot pitch, and runs at a speed of 700 R. P. M. The machine as it now stands has a 24 -horse-power 8 -cylinder Antoinette motor, arranged on a 3 -wheeled running gear. The motor drives the propeller by a wide belt. A speed reduction of about one-half is ar ranged for from the motor to the propeller. The nor mal speed of the motor is 1,300 R. P. M. Its weight complete is 127.6 pounds. A seat is provided just back

Santos Damont transporting his new monoplane on his antomobile from Paris to his experimental field at St. Cyr.
This miniature aeroplane complete with its 24 horse-power motor weighs only 297 pounds. A speed of about 36 miles an hour must be attaned with it on the ground before it will rise in the air

Miraflores locks and dams.-It is shown conclusively by test pits and borings that the locks will rest on rock of ample strength to make suitable foundations. A hard limestone is found for the upper part of the site, changing to argillaceous sandstone at the lower end. The borings disclosed no such variations in the formation as exist at Gatun.
Municipal engineering.-The work of this division consisted of the completion of the waterworks, sewerage system, and paving in Panama and Colon, the cost of which is to be reimbursed to the United States through the collection of water rates in those cities, and of the construction of waterworks and sewerage systems, paving, grading, and road making in the Canal Zone. The total cost of the work done was $\$ 1,067,150.5$.
Work in Panama and Colon, as originally planned, is practically completed.

SANTOS DUMONT'S LATEST AEROPLANE

The tiny aeroplane illustrated on this page is the latest one to be produced by Santos Dumont. The noted Brazilian experimenter has not been actively engaged in continuing his experiments in aviation for the past few months, but he has now taken up the subject again, and has brought out once more the tiny

The 24 -horse-power, 8 -cylinder motor drives the large propeller by means of a belt. The motor is mounted upon a 3 -wheeled running gear and the aviator's seat is immediately behind it. Note the long vertical radiators on each side of the propeller, the gasoline tank above the wings, and the combined vertical and horizontal tail at the rear.
SANTOS DUMONT'S LATEST MONOPLANE, THE "DEMOISELLE."
seepage there is occurs in the top stratum; and though this is small, it is proposed to cut it off by sheet piling projecting up into the core of the dam and down into the impervious layer
Two experimental dams, with dimensions corresponding to the dam as it is to be built, were made.
aeroplane with which he made some..experiments last spring.
To give his monoplane good transverse stability, Santos Dumont has placed the two wings at a slight dihedral angle and has located his seat and the motor about 3 feet below. This brings the center of
of the motor for the aviator, who controls the combined vertical and horizontal rear rudder by means of a ver tical wheel placed beside the motor. The entire ma chine complete in running order weighs only 297 pounds. The spread of the wings is but 5 meters (16.4 feet), the dimensions of each wing being 2.5×2.1 meters. The total supporting surface is only 10.5 square meters (113.02 square feet). A speed of about 36 miles an hour must be developed upon the ground before the machine will rise in the air

This reconstructed monoplane is by far the lightest and most powerful machine of its kind that has ever been produced. With Santos Dumont in the aviator's seat the total weight to be lifted is about 411 pounds, which gives a loading of the single surface of 4 pounds per square foot. This is about the highest ratio of weight to surface that has ever been employed.
On the 12 th ultimo M. Dumont tried his new monoplane (which he has christened "Demoiselle") at St. Cyr. A number of short flights were made, no particular difficulty being experienced in getting up in the air. One of these flights terminated rather sud denly, with the result that one of the wheels buckled On account of the small size of his monoplane, Santos Dumont was able to carry it from Paris to St Cyr on the rear of an automobile, as is shown in one of our illustrations. This is the first time, so far as we know, that an automobile has been used for transporting an assembled aeroplane from the city to a suitable place in the country, where the aviator can conduct his experiments.

the fourth aeroplane of the aerial

 EXPERIMENT ASSOCIATIONThe photographs reproduced herewith show the latest aeroplane-"The Silver Dart"-of the Aerial Experiment Association, and also the third, or "June Bug," aeroplane, which has been remodeled and mounted upon pontoons for experiments upon the water.
The fourth aeroplane which the association has constructed has the same general lines as the "June Bug," which preceded it. Some modifications, however, have been made in the curve of the surfaces and in their size and spacing, while the new machine has no tail whatever, since the later experiments with the "June Bug" showed this to be unnecessary.
While the ribs of the former aeroplanes had a re verse curve at the rear (which form of curve the ex periments of W. R. Turnbull demonstrated to be the most efficient), it was thought that the upward pressure of the air upon the flexible rear edges of the planes made this reverse curve too pronounced, and tended to check the forward motion of the aeroplane. Consequently, the ribs of the new machine have only a single curvature, and it is believed that the air pressure upon the rear edges of the planes will automatically produce the slight upward curvature a this point. The width of the planes from front to back at the center has been reduced from $61 / 2$ to 6 feet, and the spacing apart of the planes also has been reduced to this figure. 'The width of the planes at their outer
nds is 4 feet, and they are spaced 4 feet apart. Thes changes have given the new machine somewhat finer lines than its predecessor. As the movable wing tips of the "June Bug" were not sufficiently powerful, of the "June Bug" were not suficiently powerful, total area of these is 40 square feet. The spread of he planes has been increased to 49 feet. This, added to the greater area of the tips, will doubtless give bet er transverse control. The total area of the support ing surfaces is 420 square feet.
The central part of the machine, which contains the power plant, steering wheel, and control mechanism is very substantially built, and is complete in itself The four planes are attached to this central section (which has sockets to receive their frames), and are ecured in place by guy wires tightened by turn buckles. The rubber-covered silk forming the sur faces is made in sections, which are laced over the ribs to the frames of the wings. The ribs slide in pockets in the silk. They pass beneath the rear part of the wing frames, and abut against the back edges of the front members of these frames. Small tin caps strung on a wire that runs through a seam in the rea edge of the silk, slip over the rear ends of the ribs. This wire, which forms the rear edge of each plane, is secured to the central section and to the oute ends of the wing frame, and is drawn taut by means of a turnbuckle. The wing tips and the rudder sur faces are covered by two thicknesses of silk, sewed to gether, and forming a pocket that is slipped over th frame of the wing tip or rudder. This gives a smooth urface on either side of the wing tip or rudder. A ib of steel tubing is used in the main planes, at th points where uprights connect them, as this has bee found to greatly strengthen the planes. The upright fit into suitable sockets on the frames of the uppe and lower planes, and are held firmly in place by the guy wires, all of which are provided with turnbuckles
The vertical rudder is carried on hinged bamboo struts about 11 feet back of the rear edge of the central ection of the planes. The dimensions of this rudde are 2 by 4 feet. A wire cable runs to the tiller of the front running wheel (which steers the machine when it is on the ground). The tiller is in turn con nected to the hand steering wheel of the machine, which thus operates the vertical rudder.
The horizontal rudder is of the double-surface type and is placed 15 feet in front of the planes. It has a direct connection to the steering post, so that by pushing or pulling on the steering wheel, the rudder s directed downward or upward. The dimensions of the planes of this rudder are 12 feet long by 28 inches wide, and they are spaced 30 inches apart. The rudder is pivoted at a distance of 5 inches back of its for ward edge, and is supported upon a bamboo canti lever truss.
The center section of the aeroplane is mounted upon a three-wheeled running gear consisting chiefly of two longitudinal wood girders similar to those used on the "June Bug." There are some improvements in th construction and the material used is heavier, how ever. The same may be said of the fish-shaped up rights and plane frames, which are all of heavier ma terial, and hence are capable of withstanding greate shocks.
The new aeroplane is intended to carry two per sons, one sitting directly behind the other. An ad justable seat has been arranged, so that it can be slid forward or backward to the proper point when only one man is carried. The passenger is expected to sit directly over the theoretical center of pressure when the machine is under way. As a result of this, if no passenger is carried, the balance of the machine would not be affected materially. The movable wing tips are controlled by a device which does not inter fere with the passengers, and which may be adjusted with the seat. The tips are controlled by the swaying of the body of the aviator from one side to the other. The rod connecting the steering column to the front rudder can be lengthened or shortened by means of a telescopic tube, in case the aviator wishes to move his seat to a point farther forward or backward. The
engine of the "Silver Dart" is a $33 / 4$ by 4 -inch 8 -cylin der, water-cooled, Curtiss motor, capable of develop ing 50 horse-power at $1,600 \mathrm{R}$. P. M. Including the radiator, water, oil, etc., the weight of the complete power plant is 250 pounds, but the engine alone can e stripped to 165 . The cylinders are fitted with cop per water jackets and auxiliary exhaust ports. Cir cular concentric valves are located in the cylinde heads, the inlet valves being automatic. The crank shaft is of specially treated vanadium steel. It is bored out hollow and is $13 / 8$ inches in diameter. The connecting rods are steel forgings, the cylinders and pistons being cast iron. The crank case is made of special aluminium alloy. The main bearings of the rankshaft are continuously fiooded with a bath of oil by means of an oil pump of the gear type. Individual

The power plant of the "Silver Dart."
V -cylinder Curtiss drives an 8 -foot wooden propeller by means af to 1,600 of the 1,000 re
aluminium carbureters are employed with all eigh cylinders. The engine is placed upon a bed located on top of the rear part of the lower plane, and it is braced from the chassis below. The placing of the engine at this point will put less strain on the machine when landing, and will also bring the cen ter of gravity somewhat lower than was the case with the "June Bug." The propeller, which is 8 feet in diameter, and of about the same pitch, is mounted upon a short shaft above the engine and halfway be ween the two planes. It is driven by twin V-shape belts similar to those used upon motorcycles, and there is a speed reduction from the engine to the pro peller of $1,1 / 2$ to 1 . The propeller is made of lamin ated wood and weighs, including the two clamps on each side of the hub, $81 / 4$ pounds. The line of thrust is about on a level with the line of resistance of th machine, but is inclined above the horizontal about $31 / 4$ degrees.

The angle of attack of the surfaces of the aeroplan their outer ends is $91 / 4$ degrees. This angle is some what excessive, but it makes it easier for the aero plane to rise, and probably when the machine is in fiight the angle will be reduced to 5 or 6 degrees. It is on this supposition that the angle of the propelle shaft has been slightly raised above the horizontal The proper angle for the shaft can only be found by experiment
All the framework of the aeroplane, as well as th brace wires, etc., has been carefully measured, and the head resistance of the machine computed by the methods and coefficients employed by Mr. Octave Chanute. The equivalent head resistance of the ma chine in square feet of flat surface has been figure out to be 2188.47 square inches, or 1519 square feet
The weight of the machine complete with a 150 pound man, and with the tanks filled with oil, gaso line, and water, is about 860 pounds, so that the load ing of the surfaces is but 2.04 pounds to the squar foot. This is a low figure, and should make it pos ible for the machine to carry a considerable amount of additional weight, and to fly at high speed.

The aeroplane "Loon," in a recent test upon Lake Keuka, at Hammondsport, N. Y., covered two miles (one mile against and one mile with a wind of 5 or 6 miles an hour) in 2 minutes and 26 seconds, or at an average speed of 27.06 miles an hour. This speed wa not sufficient to enable the aeroplane to rise in the air and lift the floats upon which it was mounted. It is intended to make further experiments with a type of hydroplane hull.

The Current Supplement

The opening article of the current Supplement, No 1719 , describes a novel type of traction road train which has met with success in Germany. The British metallurgist Cowper-Coles has devised a process o producing electrolytic iron in the form of finished sheets and tubes. This process is thoroughly de scribed. Selenium cells and their varied uses are ably discussed by R. A. L. Snyder. Objections have been raised to the use of water resistances for the testing of alternating-current machinery. Karl Wallin has carried out tests at the Technical School of Stockholm in order to investigate the problem, using low voltages The substance of his experiments appears in the cur rent Supplement. Prof. S. J. Meltzer discusses in the Supplement whether or not, as in the human made machines, the structures and functions of th animal mechanism are provided with factors o safety. Mr. Edgar A. Custer's paper on Casting Pipe in Permanent Molds is concluded. Some time ago, the American Society for the Prevention of Cruelty to Ani American Society for the Prevention of Cruelty to Ani
mals offered a prize of $\$ 500$ for a device which would mals offered a prize of $\$ 500$ for a device which would
slaughter animals for food purposes more humanely and practically than is at present the case. The re port of the prize committee on the subject is published The cash value of the prizes which have been offered up to date to stimulate aeronautic inventors amoun to nearly $\$ 350,000$. In the current Supplement will be found a complete list of them

Dotection of Soap Bark.

Soap bark (Quillaja), soap wort (Saponaria), and other vegetable substances containing the glucosid saponin are often added to effervescent beverages i order to give them body and to produce foam. Th presence of saponin is most surely detected by Brun ner's process. To 100 parts of the liquid, previously neutralized with magnesium carbonate; 20 parts o ammonium sulphate are added, and the mixture is shaken thoroughly with 9 parts of phenol. The phenol, after it has separated, is next shaken with 50 parts of water, 100 parts of ether and 4 parts of alcohol The supernatant aqueous portion is then poured of and evaporated to dryness, and the dry residue is tested with acetone for saponin. If the liquid contains dextrine this must be removed before the process is applied.

The first annual exhibition of the Junior Aero Club of the United States will be held December 18 to 26 at Madison Square Garden, New York city, space for the purpose having been set aside by the managemen of the Holiday Bazaar. The Juniors will be pleased to receive for exhibition anything relating to aerial trans portation from anyone under twenty-one years of age whether members of the club or not. Contests for prizes will not be held until later in the winter, and non-members will not be eligible for such contests. All those who do not send models are cordially invited to send drawings on paper 10×15 inches in size, with their name, age, and residence written in the lower corner Any boy in the United States may enter a model or drawing of a novel kite, miniature glider, aeroplane spherical or dirigible balloon, or motor suitable fo model work, etc., designed or made by himself. No models may be more than six feet in length over all, and preferably not more than four or five feet. Any kind o motive power may be used. Drawings are to be sent to Miss E. L. Todd, 131 West 23d Street, New York at any time before December 16. Applicants should write for information with regard to the exhibiting of models.

The remodeled "June Bug" (now called the "Loon") mounted on floata A water-cooled motor is now used, the radiator for which can be seen projecting through the upper surface

Front view of the Aerial Experiment Association's aeroplane "Silver Dart." Note the two-surface horizontal rudder and the movable wing tips on the ends of the planes. There is a single vertical rudder in the center at the rear.

MECHANISM OF THE OVIPOSITOR DRILL
 OY PR

Hamilton Gibson called the wood-piercing ovipositor of the great ichneumon fly (Thalessa) "the most won derful drill in the world." Probably, considering the length of the drill, the mechanism of the cutting points, and the fact that Nature has developed this tool out of animal matter, the artist naturalist's ap pellation is merited. Knowing what this tiny drill is able to perform, and comparing these performances with the power behind the drill, naturally adds to our interest in determining the character of the in strument. We may also compare the ovipositors of other closely-related species, the hornflies of the genera Urocerus and Tremex. Of these, the well known pigeon tremex is the most available for study

The writer has observed the Tremex laying her eggs in a dead apple tree, near the butt of the tree and through the thin bark into the hard, solid wood. In a period of less than two minutes the ovipositor cut its way over half an inch into the wood. It was at once apparent, in watching the progress of the drill and the insect controlling it, that it was not thrusting force that continually worked the drill. The insect stood widely astride of the spot, and the ovi positor, drawn out of its long sheath, was almost a right angles to the abdomen. The thorax of the Tre mex moved very slightly from side to side, giving to the abdomen a somewhat twisting motion, and there was a slight downward motion also, evidently in the endeavor to keep the point at work.
Some idea as to the manner in which the boring is done may be gained from an examination of the boring itself in longitudinal section, a piece of the wood having been carefully cut from the tree where the insect's ovipositor is withdrawn. The hole in the wood is exceedingly straight and smooth, with indica tions of lengthwise cutting marks. Upon capturing the specimen also it will be found that the ovipositor is very much smaller than the boring, possibly not more than one-half its diameter.
It is very obvious that no matter how keen and hard the ovipositor might be, if it were merely thrus into the wood, no material of the kind could be trusted not to bend or break, and even were this not the case, the insect, though stout and active, could not exert a thousandth part of the force needed. It is apparent then that the drill must make its way into the wood by some special mechanism, fitted for cutting the way clearly, and upon examination we find that this is the case. In a construction of this character Nature seems to have rejected the tube, both in the insect's drilling ovipositor. and the piercing and sucking proboscis of the flies, so that not only is the protecting sheath in two pieces for its full length, but the harder drill itself is made up of four parts This allows of greater flexibility and naturally, therefore, in the work it has to do, of greater strength.
The ovipositor of a Tremex consists of two outer sheaths, somewhat similar in character to the protecting sheath in which it is carried when not in use, and a central shaft in two parts. The whole is as slender as a horsehair. At the end of this lance the outer sheaths are broadened or swelled, with file-like ridges, and then brought to a point, and within this enlarged end moves the central lance, also toothed, file-like, and bluntly pointed somewhat like the tooth of a saw. When this instrument is at work the sheaths are sufficiently divided at the end, to permit the teeth of the lance to protrude. This latter instrument is worked back and forth, and the small teeth cut away the wood at the bottom of the hole, much as a jig-saw does through the thickness of a board, the ovipositor having the much more difficult task, as it must get rid of its rapidly accumulating sawdust. This dust works its way to the surface, impelled by

e withdrawing motion of the rasp-like teeth. Upon capturing the specimen observed drilling in the tree and examining the ovipositor with a magnifying glass, the writer observed the central lance protruding from the side of the swelled ends and moving up and down, presumably much as it does when boring, though influenced spasmodically by the struggles of the insect
to free itself. It is not certain that it moved in just the same way. As the insect does not turn around so as to bring the cutting edge of the lance upon all so as to bring the cutting edge of the lance upon all
sides the hole, it becomes somewhat difficult to imagine in just what manner the hole is made so regular and even. It is necessary that the hole be

contains two gouges and two saws.
a, Side view ; b. poster-
ior; \boldsymbol{c}, anterior view
\boldsymbol{d} shows saws extended
beyond gouges when a
work, and e saws withdrawn to expel sawdus from the boring.
lowing season. As is well known, a Thalessa, ascertaining the position of the Tremex larval boring by a subtle sense that we cannot comprehend, proceeds to drill through the hard wood, and unerringly reaches the retreat of the Tremex larva and lays an egg therein. This hatches a larva that searches out the Tremex, fastens upon it, sucks its juices, and eventually kills it, the Thalessa thereupon passing through its transformation in the boring of the Tremex and emerging the following summer, at about the time that a Tremex, if unmolested, would have done. When a Thalessa drills its boring, the Tremex larva has per haps reached a considerable depth in the wood, hence the necessity for the very long drill of a Thalessa as compared to the shorter one of a Tremex. If a Tremex possessed a drill like the Thalessa and its larva could begin its boring at such a depth; then the drill of the Thalessa would need to be, perhaps, double in length. The ovipositor drill of a Thalessa is three or four inches long, and that of a Tremex less than an inch. Considering the delicacy of the Thalessa drill, the comparatively slight power behind it, and the hardness of the wood into which it is often thrust, nothing in the mechanism of Nature is more truly wonderful. Possibly it is only surpassed by the ability of the insect to ascertain the exact position of its victim at such a depth in the solid wood.

Luminous Projectiles.

It is proposed to substitute for searchlights on warships guns firing projectiles which will emit intense light, either during their flight through the air or on striking the water. The short duration of the flight, however, appears to make the first method imprac ticable. For the production of light on striking the water calcium carbide is the most suitable substance, as, on contact with water, it generates acetylene gas which, when ignited, produces a very intense light The latest form of acetylene or carbide bomb com prises two cylindrical wooden shells, which telescope together. The inner shell is filled with calcium car bide, calcium phosphide, and gunpowder, not mixed together. It has an iron head and, at its opposit end, an orifice for the escape of gas.
The two wooden cylinders separate immediately on leaving the muzzle of the gun and the inner cylinder continues its flight alone. On striking the water the projectile, after the first plunge, rises to the surface. Water enters the shell and evolves acetylene from the carbide, and hydrogen phosphide or phosphureted hy drogen from the calcium phosphide. The hydrogen phosphide ignites spontaneously on contact with the air and sets fire to the acetylene. The flame is not extinguished, but rather brightened, by contact with water, so that an intense light is produced even in a high sea. An intensity of 2,000 candles and a life of three hours are claimed for these acetylene bombs, and they can be projected to distances of two miles o more. Yet they form very incomplete substitutes for searchlights. They are of little use in the search for hostile torpedo boats because they are useful only when the position of the object to be illuminated is already approximately known. Even in such a case a torpedo boat could easily escape from the area illuminated by the bomb before it could be hit by the enemy's guns.-Prometheus.

At the recent soirée of the British Royal Society Mr. J. Franklin Adams, F.R.A.S., exhibited the in genious machine he has evolved in order to complete his extensive star-counting task and preparation of the star chart of the heavens. After securing photo graphs of every section of the northern heavens at var ious points, this astronomer in 1895 went to Cape Town and secured negatives of the southern heavens In all 260 successful negatives were obtained, upon which are recorded something like $23,000,000$ stars The task of counting this huge aggregation has almos been completed, but it has occupied nearly seventeen years. By means of his special machine precession

The pigeon horntail (Tremex columba) boring in wood.
a. Ovipositor drill forced in vertically; length, $7 / 8$ inch. b. Shest attached to body horizontally. Sheath not used to strengthen the drill as in Thalessa.
lines are drawn upon his plates, which are 15 inches square, the latter lines 0.01 millimeter apart giving star places at the $1855,1875,1900$, and 1925 epoch both in right ascension and declination. This machine works with such minute accuracy that regions adja cent to the selected areas can be subsequently added without overlapping or omission.

WINDING INDICATOR FOR WATCHES
In watches of the better class, and especially in chronometers, it is quite important to know just to what extent the spring has been wound; for in wind

WINDING INDICATOR FOR WATCHES

ing the spring to the limit one is apt to strain the delicate mechanism. Such an indicator has recently heen devised which operates in a very simple man ner. As shown in Fig. 2 of the accompanying engrav ing, a small indicating hand is provided on the face of the watch which, as the watch is wound, will move in one direction over a graduated dial and when the watch is running will move in the opposite direction. In Fig. 3 the winding arbor is indicated at A, to which is attached the winding gear B. The arbor A is pro vided with a reduced extension C. On this extension a disk F is threaded, and the lat ter is arranged to revolve with the spring barrel D, by reason of the fact that a pin E carried by the barrel passes through an aperture in the disk. The watch is of that type in which the opposite ends of the spring are secured to the barrel and arbor respectively, and both the barrel and arbor rotate in the same direction, the latter dur ing the winding of the watch, and the for mer when the watch is running. With the arbor A is revolved the disk F, which being prevented from rotating by its connection with the drum D is fed inward in contact with a cam surface on the spring lever G. The latter is provided with a toothed sector which en gages the pinion H and moves the indicator hand at tached thereto over the winding dial. When the watch is running, the disk E rotates with the barrel, and is thereby threaded outward on the shaft C, permitting the spring lever to return to its normal position, and thereby moving the indicator toward the unwound position. The inventor of this mechanism is Mr. Samuel Kahan, 1061 Park Avenue, New York, N. Y.

GRAIN-WASHING MACHINE

Pictured in the accompanying engraving is a grainwashing machine which is arranged in such a manner that when the machine becomes choked the sound grain is prevented from passing out through the over

GRAIN-WASHING MACHINE.

A PROPELLING MECHANISM FOR SHALLOW-DRAFT BOATS.
suspended from pairs of levers at their upper end the lower ends of the levers being pivoted to a framework in the compartment. On each paddle stem a sleeve is mounted which is pivoted between the arm of a crankshaft. The crankshaft is propelled by any suitable engine through bevel gears, and as the cranks revolve each paddle is moved through the water, and by reason of the lever suspension each paddle is lifted out of the water on the return stroke. The return stroke occupies but one-third of the rotation of the crank, so that there are always at least two paddles in active engagement with the water, and at times during each rotation all four of the paddles are in the water together, two beginning and two ending the propelling stroke. Each paddle stem is provided with a number of bolt holes which permit of adjusting its position with respect to the supporting levers, thu regulating the depth to which the paddles will reach in the water. The inventor of this boat-propelling device is Mr. Whiting Arnold, of Murray Hill Hotel New York.

BRAKE MECHANISM FOR WAGONS.

The mechanism which we illustrate in the accom panying engraving provides a very effective brak for wagons which will be operated by any back pres sure of the front axle that is greater than that on the rear axle. The wagon is provided with a main reach A, and a second reach B, both of which are se cured to the rear bolster, but have a limited sliding movement in the forward bolster. In addition to these two members there is a third reach C, rigidly secured to the forward bolster E, but free to slide in the rea bolster D. The main reach A is formed with an aux iliary part F rigidly secured to the bolster E, but hav ing sliding engagement with the main reach A. This construction serves to strengthen the reach and hold it in alinement while permitting it to move with re spect to the bolster E. Secured to the reach B is a cross-bar H from which is suspended the brake beam
a. the latter being provided with the usual brake shoes which bear against the peripheries of the rear wheels. Connected to the brake reach C are a pair of pivoted arms J which are connected by links K to the brake bar G. In operation, when going down hill, the rear wheels will tend to ride forward with respect to the front wheels, carrying the reaches A and B with them, and also the cross-bar H. However, as the brake bar G^{*} is held back by its link connection with the arm supported by the brake reach C, the result will be to force the brake shoes against the wheels. When it is desired to disconnect. the brake mechanism, a pin L

is passed through the brake reach C and its support on the rear bolster. If while driving the wagon it is desired to stop the automatic action of the brake this can be done from the driver's seat by lifting the notched bar N into engagement with the U-shaped bar M. The bar M being connected with the reach A and the bar N with the bolster E the result will be to lock these two parts together and prevent the forward movement of the rear wheels with respect to the forward wheels. Mr. Eben G. Doland, of Starksboro, Vt., has recently secured a patent on this brake mechanism for wagons.

IMPROVED RAILROAD TIE.

The accompanying engraving illustrates a railroad tie which may be constructed of metal or concrete, and to which is bolted a rail chair, with lugs fitted in the chair to engage the base of the rail and hold it in place. Between the rail and the chair wedge-shaped blocks of wood are provided which not only serve as cushions for the rail, but also may be used to force the rail into alinement. In the engraving the rail is indicated at A and the tie at B. The chair C is placed under the rail, and is provided with vertical portions at each side. A vertical orifice extends through each side portion and into each orifice a lug E is fitted. The latter is formed with a sleeve which engages the orifice providing a long bearing: The lugs are held in place by means of bolts F which pass through them and the tie B. The wooden wedges referred to above are indicated at G and H. Should it be found that the rail must be raised or lowered, the bolts are loosened and the wedge-shaped members E and H are forced together or apart until the proper adjustment is at tained, after which the nuts on the bolts are screwed home and the device is ready for service. The inventors of this improved railroad tie are Messrs. W. Hub bell and A. J. Annis, Siloam Springs, Ark.

RECENTLY PATENTED INVENTIONS. ноок Pertaining to Apparel. HOOK-EYE.-A. C. CARL, Joplin, Mo. As
ordinarily attached and located, hooks and eyes ordinarily attached and located, hooks and eyes
lie flat upon inner and outer sides of a garment and close to opposite edges of the same, points come in contact with the portion of the fabric directly underneath the eyes and wear and injure the goods. To prevent this result
the eyes are provided with a guard interposed the eyes are provided with a guard interposed
between them and the fabric, so that contact between them and the fabric, so that co
the hooks with the latter is prevented.
bullt-up material for belts and THE LIKE.-JOSEPHINE MOLLER, New York N. Y. In this material the major portion of patent-leather, felt, etc., the glazed and finishe patent-leather, felt, etc., the glazed and finished
faces of which are their outer faces and in which the weft consists of cord or braid whereby to provide a fabric which when single ribbons are used is especially adapted for use
as the body portion for bags and like articles, and wherein when the ribbons are used double or are placed back to back, a fabric is pro Haces which may be equally finished on bot faces, being
waist belts.
HOSE-SUPPORTER.-H. Allei, New York, N. Y. One purpose in this invention is to provide a supporter or garter that is exceed-
ingly simple, comprising practically but two parts, and wherein the supporting members, o those adapted for attachment to the sock, wil
draw equally upon the limb back and front.
holder--c. C. Wilhiams, Westifild, Pa
Tho purpose of the invintions, is to to provide a The per, arranged for convenient attachment to a support for easy manipulation, to engage
and securely hold the article in place and for ready adjustment, especially when used as a cuff holder,
coat sleeve
COMBINED GARMENT. - M. TARTIKoft New York, N. Y. The invention consists of supplementary waistbana, and a shield, th tons on opposite portions for detachably con necting them together and to a pair of pant or other similarly worn garments, with elastic members connected to the shanks of the but
tons, holding them in place and affording a tons, holding them in place and affording a
yielding connection between the pants and the
shield.
SAFETY-CLASP FOR PURSES AND THE LIKE.-W. McIlrox, Empire, Panama. The object here is to provide a compact, easily
operated device for detachably fastening purse or a like receptacle upon the dress, skirt, cannot be easily stolen; and also afford a nea ornamental auxiliary pocket for convenient use SUSPENDER ATTACHMENT.-J. HAUSER, Spokane, Wash. The attachment affords means
for reliably securing together the ends of the ooped portionsuring together bands in a ma her which will permit the release of the part when a changed adjustment is desired, whereby
the suspended bands are lengthened or short the suspended bands are leng
ened as cccasion may require.

Electrical Devices.

insulating-bushing. - L. Steinberger, New York, N. Y. In this patent the invention has raerence to insulating bushing such as may
be employed in connection with high potential conductors, and used at points where such con ductors enter or leave a building or pass
through a wall, panel, or other barrier of any throug
disk strain-insulator. - L. SteinBerger, New York, N. Y. This invention re-
lates to strain insulators, and particularly those of the disk type, Mr. Steinberger's more especial object being to improve the general construction of such insulators and to render them, as near as practicable, proof against the evii effects of moisture. It relates further to increasing the dielectric properties of the insulators and giving
mechanical strength.
mLEXIBLE SUSPENSION FOR CONDUC-TORS.-L. STernebrger, New York, N. Y.
This invention relates to means for suspending This invention relates to means for suspending
conductors, and more particularly to a flexible suspension for conductors such as are used for transmitting currents of unusually high potential. One object among many is to promote
flexibility between the conductor and the cross arm or other stationary member, wherebs the atter and its connections are supported TELEGRAPH-REPEATER. - L. B. Cecil, Santa Barbara, Cal. The main line in operation, makes and breaks in the circuit are
repeated on the branch line through the contact of the contact point on an armature with branch line is working, the makes and breaks in the circuit are repeated on the main line by means of the contact point and the lower
end of a lever on a relay, and in elther case end of a lever on a relay, and in elther case
the erm on the bracket of the relay which is working keeps the armature of t.
is not working from operation.
relay for telegraphs.-J. Scotland, Hearts Content, Newfoundland. The invention
relates to the art of telegraphy and has for relates to the art of telegraphy and has for
its object to provide a relay and more sensiits obect those heretofore known. Another ob-
tive than ject is to so construct the relay that there
will be a greater and a more rapid demagnifiwill be a greater and a more rapid demagnifi-
cation when the circuit on the main line is
broken.

Of Interest to Farmer Chicken-perch.-W. H. Cole, Broken provide details of construction for a perch, which adapt it to contain and automatically discharge a graduated quantity of liquid and
insecticide, or germicide, from a reservoir nsecticide, or germicide, from a reservoir in mination of lice or mites that infest fowls or growing chickens, and also for the destruction disease germs.
trap-nest For hens.-M. J. Whittr, Croton-on-Hudson, H . Y. Ne fo obect here is for the entrance sufficiently open to permit a aying hen to enter, and which will be released y the entering of the hen, permitting the door or spring closed, thus trapping the fowl untin
uch time as an attendant may take the num ber of the fowl for recording the number ggs laid during the season.
Gate.-E. J. A. Rice, Harvard, Neb. The whereby the gate may be ready to mean whereby the gate may be readily operated by
person intending to pass through it, the mprovements further tending to render the gate, as far as possible, easy in its action and simple in its construction.
GRAIN-SCOURER.-T. Grose, Port Adehine for use in scouring grain has severa advantages over scourers hitherto in use, in
that it is simple and economical in manufac that it is simple and economical in manufac
ture, is far more durable, is driven much more slowly, requiring less

Of General Interest.

THREAD-SpOOL.-E. A. Zobil, Holmes ille, Neb. The invention pertains to an im provement in thread-spools, and in carrying out, what is usually a waste product is util ized, namely corn-cobs, which are particularly useful for the purpose in view of their cheap-
ness and the facility with which they may be worked up into the finished product.
Sanitary pipe-stem. - J. J. Gotts Hals, Taunton, Mass., and B. W. Phelps, tion is to provide a ne purpose orle to any pip and so constructed as to form within the stem a reservoir of saliva and the reception of for-
eign substances, preventing such factors coleign substances, preventing such factors col
ecting in the bowl of the pipe or its stem ex eepting in the reservoir.
Sash-holder.-E. t. Gaskill, Newbern N. C. By this invention it is sought to prowith equal facility and will be retained in any position to which it may be adjusted. In operation the sash will be held from rattling and can be secured in any desired position up or
down and will be dust proof from the outside own and will be dust proof from the outsice
n the use of the invention.
display-box for fruits and vege-tables.-F. E. Cabanis, Platteville, Wis The invention is in the nature of a skeleton
guard for boxes or other receptacles for fruits and vegetables and other articles. It is so constructed that it is extensibie lengthwise and thus adapted for boxes of different lengths, and it is also adjustable outward, or at dif-
ferent points to the open side of the box hand-bag.-T. R. Wridemann, Jerse City, N. J. The object in this case is to proVide a hand bag arranged to provide a main
compartment and a plurality of supplementary compartment and a plurality of supplementary compartments for the storage of money, hand
kerchiefs, and other articles, to which convenient access can be had without opening or otherwise disturbing the main compartment.
GRAPPLE.-C. L. SImmons, Spokane, Wash. Is to invention relates to hoisting and a designe for hoisting concrete blocks and other articles and arranged to securely grip the article to
permit of carrying the same to the desired destination and to allow the operator to coneniently release the article
HARMONICA.-A. W. ANDERSoN, Seldovia,
Alaska. The invention relates to teething Alaska. The invention relates to teething
rings for children and has for its object to fngs for children and has for its object to ring so that when it is used a sound or music will distract the attention of the child, and quiet it when it bites on the ring, and in that
way cuts its gums with its newly formed wath.
WAT.
water-elevator.-A. Hass, New York, . Y. The purpose of the invention is to mprove upon a construction for water or liquid
elevators, for which Letters Patent were levators, for which Leters Patent were the same to conditions under which it has been found that a double spiral screw can be successfully employed, the improvements relating particularly to the construction of the
lon
body of the device and the double spiral screw, and the details of the construction at the receiving and discharging portions of the device.
spray-nozzle.-A. S. Washburn, Germantown, N. Y. The nozzle is adapted for use
in spraying trees, shrubbery, plants, and the in spraying trees, shrubbery, plants, and the
like, so constructed that even when the liguid includes a preponderance of Paris green, lime sulfur, etc., there will be but a minimum tendency to clog, it being possible for the nozzle
to be continuously used for a long time without cleaning, the tendency of the nozzle in operating being to free itself of all particles contained in such mixtures.

Cover.-F. g. Laustrr, Sr., Ionia, Mich The cover is simple and inexpensive to manuacture, and has means for removably mounting
it adjacent to the side of the barrel or cask after it has been removed from the top, thas obviating the necessity of either holding the cover or placing it on the floor, while the
material is being removed from the barrel. Shears-holder.-H. L. Kocher, Cemenon, Pa. Means are provided for convenient one les of a pair of overalls wom by ne geg of a pair of overalls worn by paper
hangers, so that the workman can readily grasp shears for use while at work, and in
stantly replace them in the holder when the use of both hands is necessary for the proper
execution of the work.

Hardware.

Spike-puller.-W. e. Werd, h. rodda, and J. H. Hol, Butte, Mont. The invention an improved labor saving device for pulling
sikes from railroad ties, and the like in rapid and easy manner without pulling off the heads of the spikes. It may be of any desire size, but for the purpose of pulling spikes should be about five feet long and of stout an substantial construction, capable of bearing
hinge.-W. b. rodman, Charleston, s.
The invention has for its object the provision a hinge in which the two main leaves ar mediate leaves, arranged in series with the main leaves, and also by two auxiliary leaves arranged in series with the main leaves, ach auxiliary lear being connected to the oppo site intermediate leaf.
SAW-TABLE GAGE.-M. E. Loehr, Claypool, Ind. The object of this invention is to provide a new gage, by means of which the
adjustment may be accurately determined and adjustment may be accurately determined and
which will normally remain locked in position, which will normally remain locked in position,
but which, by movement of the hand, may be but which, by movement
released for readjustment.
Carrier.-A. K. Lef, Chaparal, ariz. Ter The object here is to provide a carrier, more ike receptacles, and arranged to permit plac ing the carrier conveniently in position on the receptacle or removing it therefrom, and to allow of folding the carrier into a compara-
tively small space for shipping, storing tively small s.
other purpose.

Heating and Lighting.

GAS-MIXER-L. M. Simmons, Reynoldsville, Pa. More particularly, the invention remployed at type of mixer in which there is source of gas at one end and adapted to b onnected to a burner at the opposite end, and having within the tube a helical bafte to bring the gas and air, and to produce a uniform the gas and air, and to produce a uniform combustion of the gas.
water-heater-P. Sasso and J. P. ates to water heaters, and the object of the invention is to produce a heater having a large heating surface, to the end that the water will become quickly heated. It may be used with
fuels of any kind. adjustable regulating-cock.-w. n. BEST, New York, N. Y. . In this instance the
invention has reference to certain improvements in cocks adapted for use with gas burn ers for lighting or heating purposes, and re lates more particularly to certain improvements whereby the fiow of gas is rendered more uniform and the extent to which the cock may be opened, limited.

Household Utilites

awning.-W. g. Buschemeyer and G. r. Caspari, Louisville, Ky. The object of the in vention is to simplify and strengthen the con-
nection between the awning frame and window casement, whereby it may be cheaply manufactured and assembled, and is unikely to become deranged or broken. It refers to awnings
more especially disclosed in Letters Patent more especially
granted to Mr. Buschesed in Letters Patent
dis, in which progranted to Mr. Buschemeyer, in which pro-
vision was made for the discharge of heated Vision was made for the dr
air at the top of the awning
Clothes-drier. - L. duncan, Butte Mont. The inventor's aim is to provide a drier, embodying details that adapt it for convenient
service, render it light, strong, durable, and easy to erect in or out of doors, and permit parts thereof to be closely fol
pact package when not in use.
washboard.-Sarah f. o'Connor, New York, N. Y. The board has hooks at each end for engaging over the top edge of the tub and supporting the board therein in a slightly depressed position, the board being preferably
made of shats made of slats corrugated longituadnaly on
their upper faces, these corrugations not only engaging the clothes and preventing them from slipping when the clothes are scrubbed with a
rubbing device, but also serving as a rubbing rubface.
PAN HOLDER AND STOVE LID LIfter. -B. Kessler, Harlem, Idaho. This device may be used either as a holder or handle for pans, or as a stove lid lifter. The handle is fitted with a shank which terminates in a toe
adapted to fit the slot of a stove lid. This toe
may also be fitted into a fork which may be die serves to grip the rim of the pan.
VENTiLator. - H. Shlamowitz, New York, N. Y. One object of the invention is to with windows or other openings in buildings, which is so constructed that in a certain arrangement of the parts air can enter the room a direction toward the celling the air at the a direction toward the ceiling, the air at the dust, dirt, or the like.

Machines and Mechanical Devices.

DOOR-HANGER.-E. G. Worden, New York, V. Y. The object of the improvement is to provide a hanger which will facilitate the
hanging of the door and enable the height of hanging of the door and enable the height of
the door to be nicely adjusted. Further, the abject is to construct and arrange the parts so
as to relieve the mechanism of jars or shocks, s to relieve the mechanism of jars or shocks, AUTOMATIC SPEED-CHANGING MECH-ANISM.-K. V. Hö̈nse, 20-21 Uhlandstrasse, Charlottenburg, Germany. The purpose here is of which the speed ratio of pulleys, shafts, and the like connected by gearing can be changed automatically in accordance with the greater or smaller speed of the driven pulley, shaft, or form speed of rotation of the motor.
WATCHMAN'S TIME-REGISTER.- G. W. will be impossible to register except at such pin is in engagement arm, which occurs once every two be equally impossible to register unless such station has been visited. Since all the mechanism may be inclosed, no tampering with the record is possible, and a glance at the numbers
appearing through the slit will show at once, whether the trips have been made, and if not, whether the trips have been mad
on what days trips are omitted.
AUTOMATIC DEPOSIT-BOX.-H. G. DORSEY, Granville, Ohio. The invention relates to and relates more particularly to locking mechanism for controlling the same. It is adapted for use in connection with boxes of any size or character, or employed for doors of rooms, bath houses, etc. The nature of the locking mechanism is not depencent upon the nature of the box or room in connection with which the not be employed in connection with the other

AIR-COMPRESSOR.-H. E. Bailey, Albany, N. Y. The intention in this case is to provide an air compressor which is simple and durable construction, not liable to leak or to get
out of order, and arranged to prevent the ater from accidentally passing into the re ceptable filled with beer or other liquid.
CURRENT-MOTOR.-J. R. Jeffrex, Fair tiew, British Columbia, Canada. In the prac provides a wheel adapted to be supported horizontally in the current of a stream, motion being imparted to the wheel by the action of vanes secured to the periphery of the wheel. The invention is entirely automatic in its
action. No attention is required after the action. No attention is required
wheel is once lowered into the water.
POWER-HAMMER.-J. HAMILTON and L. PIERCE, New York, N. Y. One purpose of the inventors is to provide a stationary channeled
piston rod and a hammer that is in the nature of a piston, sliding on the rod, together with valve connected with a source of steam supply, or a supply of compressed air, and ism operated by the is controlled by mechanwhereby the valve is opened alternately to one or the other port or channel in the piston

SAWMILL-DOG.-A. V. Wineman, Green ville, Miss. In the operation of the device, the
upper dog is moved into contact with the log after which the lug is engaged with a notch. On now swinging a lever the sliding bar is moved downward to force the upper dog into he latter also into the log.
LOGGING APPARATUS.-T. W. Tiley, ellingham, Wash. The aim of the inventor to provide an apparatus which will, operation, give complete control of the logs hich are being moved and which will obviate
the necessity of using brakes for holding the log necessity of using brakes for holding the
cable when the \log is descending a
grade.
TACK-DRIVER.-D. A. SAWYERS, Unionor use in The invention refers to mechanism the more particular object being to provide driver with an improved form of magazine for holding the tacks, and further provided with means under control of a trigger anc a charging the tacks one at a time and driving them as discharged.
LUBRICATOR.-J. P. Johnson, Abercrombie, N. D. The object here is to provide a lubricator by means of which moving bearings can be continuously supplied with oil from a
stationary reservoir, which is so constructed that it is impossible for dust or other foreign matter to become mixed with the oil being
fed to the bearings, and by means of which the
plied with different quantities of
cordance with their requirements.
cordance with their requirements.
BARREL-PACKING MACHINE.-J. H. Vogt
and L. Storck, Stamford, Conn and L. Storce, Stamford, Conn. The invention is an improvement in packing machines
for barrels and such like shipping cases which are filled with granulated or pulverized mathe uniform hammering or application of pressure to the material as the latter is placed in the case.

Prime Movers and Their Accessories. MEANS FOR CONNECTING AND DISCONNECTING RECIPROCATING ENGINES.S. S. Smith, Osage, Iowa. The object of the
improvement is to easily and quickly disconnect any reciprocating engine, and especially those of a locomotive, and leave the same balanced after it has been disconnected as it was
while working or under normal working conwhile working or under normal working con-
ditions. In such engine construction counterditions. In such engine construction counterthe pitman or connecting rod.
INTERNAL-COMBUSTION ROTARY EN-GINE.-H. Lee, Bowral Street, Kensington. near Sydney, New South Wales, Australia. The purpose of the inventor is to provide an en-
gine working on the rotary principle, which gine working on the rotary principle, which
will utilize the power of the gases generated will utilize the power of the gases generated
in the explosion more fully than heretofore. Its essential features consist of a rotary com pressor, an intermediate rotary valve, and a
nave or rotor carrying a sliding piston within chamber of peculiar construction and vary ing contour.

Railways and Their Accessories. CAR-FENDER.-C. Kleymeier, Covington, Ky. The purpose of this inzention is to profender, which render the device compact and convenient for placing upon or removing from a car; the fender, when in position for service, being adapted to positively guard against accitively jemoving laterally from the track posion or object that is picked up by the feider, and without injury to the person or object. railway cross-tie.-F. N. Drane and he invention is to provide a tie, provided with spaced concrete tie blocks, connected with each other by a metallic cross rod, extending cen-
trally through the blocks and having means for adjusting the blocks toward or from each other, to bring rails* held on the blocks to block and maintaining both blocks and their rails in the same plane.

Pertaining to Recreation
bowling-alley. - C. B. Brenneman, Boston, Mass. The invention is an improvement in bowling alleys and the alley-way is
of ordinary form and construction, comprising the floor, the side walls, and the return grooves, adjacent to the side walls, and upon each side of the floor. Instead of pins, balls are used, and that portion of the floor upon
which the balls are placed is provided with depressions arranged in proper position with re spect to each other.

Pertaining to Vehicles.

WHEEL FOR MOTOR VEHICLES.-J. V Pugh, Guiting House, Allesley, Warwick, Eng-
land. This invention relates to the wheels road vehicles, and the object is to provide reliable and readily detachable wheel. It consists in a wheel composed of a permanent
wheel hub, a removable hub enveloping the wheel hub, a removable hub enveloping the integral with the hubs.
VEHICLE-WHEEL.-G. H. Groth, Cincinnati, Ohio. The invention relates to certain improvements in vehicle wheels, and more
particularly to the steering wheels of motor vehicles. The object is to so construct the wheel that the ordinary steering knuckle may be employed, but at the same time, the pivot
of the steering knuckle may be located in the plane of the wheel.
SELF-PROPELLED VEHICLE.-C. RICHTER, Tampa, Fla. The invention relates to selfpropelled vehicles, and more particularly to that class usually characterized as automobiles. An object of the invention is to pro-
vide a self-propelled vehicle which is adapted to travel on land and water. Also to provide a vehicle adapted to travel on land and water
and having means for propelling the vehicle on land and water.
LAND-ROLLER.-H. P. A. Andersen, Cushnge, Neb. The invention provides a roller, grip alternating with toothed disks mounted upon a common axle, so that they revolve with the axle and revolve thereon, whereby
opposing plain disks form ridges and pack the soil, preventing the finer particles from rolling way, while the interposed tooth disks penetrate the crowns of the ridges, cultivating the to absorb moisture, thus tending to prevent the earth from being washed away.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of the invention, and date of this paper.

Full hints to correspondents were printed a
the head of this column in the issue of Novem ber 14 or will be sent by mail on request.
(11012) H. J. P. says: 1. When a town is being changed by an electric company ing, it is not possible to run a motor of ans kind of direct-current type with the of any ing system, is it? A. Some forms of alternating current may be used upon a direct-current motor by bringing the motor to speed before the current is thrown on. The motor will then keep step with the current. It is far better
to use a self-starting alternating-current motor. 2. Which is considered the most up-to rent? A. The alternating current is displacing the direct current in a great many places. 3 . Rewiring of the houses I presume would not be
necessary? A. The house wiring is the same both kinds of current.
(11013) J. M. K. says: 1. How should make the connections for a miniature overtive pole of the current is usually connected to the trolley wire and the negative pole to
the rails. 2 . Are magnetism and electricity the rails. 2. Are magnetism and electricity
the same? A. Magnetism and electricity are not the same. Magnetic whirls are the result through which an electric current is flowing. 3. In your issue of October 17, 1908, page
257 , is an article on ice making at home. Is Prof. Audiffren's machine on the market? And if so, where can it be gotten? A. The ma-
chine will probably be placed on the market in this country in a short time. Address will be supplied by mail. We do not give addresses
in this column. 4. Cannot the current from a 6 volt, 4 -ampere direct current be raised to 110 volts direct current through transformers or something? A. An electric current can be trans formed from 6 volts to 110 volts, by means of
transformer, but the amperes will be cut down in the same ratio as the volts are raised. 0.2 ampere at the finish and not have about can be done. 5. Acetylene gas made from calloons.
(11014) R. S. says: Would you kindly inform me whether a dynamo is capable of
creating more power than that required to crun it? In other words, when a dynamo is
creating a certain amount of power, is the power back of the dynamo greater or less than dynamo is always greater than the electrical power which the dynamo can furnish. There
are no perpetual-motion machines in tion as such a one would be if it could furnish more power than is put into it to make it energy and not a creator of energy. There is no machine which can create energy. All
machines merely transform energy to some special use, always with a loss, the object being being the price paid for the exchange. Steam in the engine cannot be used for light; electricity can be so used. Steam cannot be conveyed many miles to drive cars at a distance
from the engine house. Electricity can b from the engine house. Electricity can be
conveyed hundreds of miles, and there be used as power or light.
(11015) L. W. H. says: If you will allow me I will state the question: In a
dynamo, electricity is generated by the armature shaft cutting the lines of force of a magnet. Is it a fact that clouds passing east or
west generate more electricity than those passwest generate more electricity than those pass-
ing north or south, considering the earth as a great magnet? Is this why know whether from the west? A. We do not east generate more electricity than do those moving north or south. Storms all move from
a westerly toward an easterly quarter. The a westerly toward an easterly quarter. The tion, drawing from the outside toward the
center of the storm. The rotation in the northern hemisphere is opposite to the motion of the hands of a clock, or over from east o west. This is caused by the rotation of the
earth upon its axis. In the southern hemiearth upon its axis. In the southern heml
sphere the rotation and the winds in storms sphere the rotation and the winds in storms
are in the opposite direction from what they are in the northern hemisphere. This is to be
found fully discussed in Davis's "Meteorology," which we will mail for $\$ 2.50$.
(11016) W. P. B. asks: 1. What can mix with coal tar to dissolve it? A. Any or the hydrocarbon oils will dissolve asphaltum,
or coal tar-gasoline, naphtha, benzine, keroor coal tar-gasoline, naphtha, benzine, kero-
sene, as also turpentine. 2 . The house fly can use its legs and wings with great rapidity, the two fore legs as a man uses his hands. Are they moved by muscles? If not, by what?
A. Flies and other insects move their legs and wings, and other parts also, by muscles as do the higher vertebrate animals. There is this
difference, however, that the muscles of insects are not gathered into bundles terminated by tendons, as are those of the vertebrates, but
in most cases. The fibers form layers which may be regarded as separate muscles. The fibers
are composed of minute fibrillæ which have
been seen to be striated as are the been seen to be striated as are the muscular
fibers of vertebrates. It is hardly necessary to add that these fibers are very numerous, num-
bering several thousand in a single insect. The segments of the body are also well provided with muscles. Some of these go from the front
of one segment to the front of the next, and others go to the rear of the next segment. Thus the segments can be tilted to and fro. The
muscular strength of many insects is enormuscular strength of many insects is enor-
mous, far exceeding that of the higher animals, relative to their weight. It is said that a flea can leap 200 times its own length. An equivalent leap for a man 6 feet would be 1,200 feet. A beetle has been known to sus-
tain 500 times its own weight and creep out tain 500 times its own weight and creep out
from under it. What would an equivalent from under it. What would an equivalent
load for an elephant be? For a man of 200 load for an elephant be? For a man of 200
pounds in weight it would be 50 tons. Beetles often gnaw holes in lead pipes, and an instance is recorded of a European beetle gnawing a hole an inch in diameter in an iron canister in which it was confined, proving not only its muscular strength, but also the hardness of its mandibles. 3. Jupiter and Venus are now and have been in view near together. Approximately how far apart are they? A.
When Venus and Jupiter are to be seen near each other in the sky Jupiter is nearly 500 millions of miles farther from us than is Venus, or about his own distance from the sun. 4. What can I put around the roots of
trees from 1 to 4 inches in diameter to kill them? A. An ax at the root of a tree is the easiest mode of killing it. The simplest mode adopted in clearing new land by the early
settlers was to girdle the trees near the ground and they were dead the next season. There is nothing which can ${ }^{\circ}$ be put into the ground to kill a tree that would not kill whatever else was growing there
(11017) W. B. B. says: 1. In E. S Lincoln's article in the Supplement for $X=-R(D-1)$ read $D-d$ instead of $D-1$?
Letting the currents corresponding to deflec$\begin{array}{lcc}\text { tions } D \text { and } a & \text { be represented by } I \text { and } i \text { re- } \\ \text { spectively, } & E & E\end{array}$

$$
I=\frac{E}{R}, i=\frac{E}{R X}
$$

Whence, $\frac{I}{i}=\frac{D}{d}=\frac{R+X}{R}=1+\frac{X}{R}$.
A. Your correction of the printer's error the article seems to be justified, and to be al
right. 2. If the efficiency of a motor is $E-e{ }^{2}$. If the efficiency of a motor is
unter E.M.F. respectively, so that eI Inss, then to have efficiency 100 per cent, e must equal E_{s} in which case no power at all
would be used. At least that is the only way I can see it, though I have been studying the matter for years. In other words, if the motor uses any power at all, all the power it uses is
loss and is therefore not used after all. Can you explain that so that I can understand? If it is not all loss, what part is not? A. Take care and do not conclude that a motor
100 per cent efficiency would be a per of 100 per cent efficiency would be a per-
petual-motion machine. It is a queer inference petual-motion machine. It is a queer inference
that you make, "in which case no power would be used." What is to produce E to which Power must be spent every instant in forcing the motor against the counter electromotive force, and the current it generates, else there
would be no motion of the motor and no counter electromotive force to be overcome by the impressed electromotive force. We suggest
that you read the chapters in Carhart's "University Physics," vol. 2, upon "Electromagnetic will send the book for $\$ 1.75$ postpaid.
(11018) O. B. F. asks: We want formula for painting concrete walls of a bathwould also like an enamel effect if it could be had. A. Cement may be painted with any waterproof washable paint, such as is used for bathrooms, if the caustic properties have be-
come sufficiently neutralized by exposure for come sufficiently neutralized by exposure for
the paint to adhere. As this requires some time, it is often effected artificially as fol with a with new concrete. Sponge the surface
with 12 fluid ounces of oil of vitriol $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to a gallon of water. This neutralizes any caustic lime present in the cement surface and turns it into the inert sul-
phate of lime (gypsum). It also roughens the surface so as to give the paint a firm hold. To remove final traces of alkali, wash with strong vinegar and allow it to dry thoroughly
before applying the paint. Prime the surface treated asplying the paint. Prime the surface linseed oil, and let it dry and get quite hard; if applied liberally that will have stopped all the pores, and next put a coat of flat paint, composed of the necessary pigments, linseed oil, turpentine, and Japan dryer, which may be repeated if the first coat shows up unevenly, and finally, a finishing coat of weatherproof
gloss paint or enamel. By the above method, gloss paint or enamel. By the above method,
you can use any colors you prefer, but if you wish to preserve the natural color of the ce
ment, a wash of 1 part of water-glass (silicatr
soda) to 3 parts rain water may be ap
plied; this decomposes any lime he surface, and converts it into silicate, the surface becoming hard and glassy and entirely moisture
(11019) W. K. asks: I am in plumbing shop where they do some lead
burning occasionally, and in order to become thoroughly familiar with the therry book from you on the subject, by Fay, in which it says that pure hydrogen can be pro duced from pure zinc or iron steeped in sulphuric acid; it further says that hydrogen for lead-burning is generally obtained by using ordinary spelter (and acid), and by this latter process we obtained very good results. We ran out of spelter one day and tried the iron, tainly obtain well as malleable, and we cer not burn with a blue flame; the flame was yellowish green; the addition of air from the mixing fork would not change its color; it was oxidizing and the lead would not unite. Now, I would like to know what kind of iron must be used to get a blue unoxidizing flame, gas so give a flame similar to that obtained from spelter, without making the lead-burning ap paratus unhandy and complicated? A. We should not advise using iron for making hy-
drogen, nor sulphuric acid either. We use zinc or spelter, and hydrochloric acid, or as you may know it better by the older name, muriatic acid. You cannot get hydrogen rapidly by the
use of pure zinc. Commercial zinc will yield hydrogen rapidly. If pure zinc is used a few drops of platinic chloride should be added to start the action. To prepare the spelter for the action of the acid it should be melted and poured from the ladle into a pail of water, slowly, so as to allow it to granulate. The large surface presented to the acid by granu-
lated zinc will give a rapid evolution of gas.
(11020) J. C. B. asks: 1. Can the experiments made by means of the rectilineaor be taken for granted as demonstrating the concavity of the earth? It was found that the 8 inches the first mile, 32 the second, 72 the 8 inches the first mile, 32 the second, 72 the
third, and the fourth mile the rectilineator touched the water. A. No experiments have ever been performed which proved the earth to be - concave. It is not concave, but convex,
and curves away from a straight line by 8 inches in the first mile, etc., as you give the figures for concavity. They are the figures for
convexity. Within a few years the convexity. Within a few years the experi-
ment to show the convexity of the earth by ment to show the convexity of the earth by
setting stakes in still water has been several times performed, and always with the result that the middle of a set of stakes is seen to be higher above a straight line than the end
stakes. All astronomy, navigation, engineering, surveying and geography proceed upon the basis of a convex earth, and the results come out right. This conformity of fact to
theory proves the theory to be true. 2. If the sun is such a great distance as 93 million miles from the earth, why is it in the morning or evening shining through clouds the rays up of the sun's rays at rising or setting is due to the rays passing over our heads. As they must seem to pass from the horizon seem to rise If the earth were concave they would seem to descend and not to ascend. (11021) J. W. E. L. asks: Your reply No. 10898 has brought to my mind a condi about right in asserting that only a little more than 30 per cent of the energy stored in coal is available at the boiler stop valve? This in
being converted into useful work at the engine is again so wasted that in ordinary triple marine engines about 8 per cent is avail able to propel the ship. A common tyipe of
marine engine is twin screw, four Scotch boilers, developing 5,000 I. H. P I have often wondered what condition would be brought about by dividing the engine into four or six high-speed types, and building them inside the boilers. Practically I think that it could be
accomplished, and I would value your opinion upon its theoretical efficiency. A. Your sug upon its theoretical efficiency. A. Your sug-
gestion of putting the engines inside the boilers in order to save the heat but we fea is certainly novel and is hardy figures are about right as to the proportion of the heat energy in coal actually delivered by the engine in useful work, but the principal losses are not at points where they would be prevented by the insertion of the engines in the boilers. Of about 90 per cent total losses only 1.5 to
2 per cent is lost by radiation from main and auxiliary pipes and about 2 per cent or a little over in radiation from engine; these are the only losses which could be saved as you sug-
gest, the balance being 1 per cent lost through grates, 5 per cent radiation from boiler, 20 per cent or more in chimney gases, and the bal-
ance in main and auxiliary exhausts. The theoretical advantages would therefore be hardly sufficient to justify such a change inaccessibility of the engine for repairs, etc.
(11022) E. E. L. asks: 1. I have a Wheatstone bridge arrangement the conductor water and into the circuit of the ordinary wire bridge is interposed an electro-magnet
arranged. so that it may lift a small arma ture. Supposing that a dilute acid be poure through the bridge and will it be sufficient to lift the small armature? I intend using a small relay to lift a heavier armature; also a glass vessel for holding the water and car bon electrodes. A. The question you ask re garding a water resistance has only the answer that the current will lift the armature of an electro-magnet if you make it strong
enough. The only way to determine the mat ter is to make the experiment. 2. Can small dynamo be used for charging a condense or, in other words, is it possible to charge a Leyden jar to the same capacity as with frictional electric machine, by a direct con tinuous current? A. A dynamo will charge a condenser to its own voltage and no higher When that is reached the action stops. As friction machine has many thousands of volts in its spark, it can charge a condenser to much greater height than a dynamo can do An alternating current will not charge a con denser; a continuous current will do so.

NEW BOOKS, ETC.

The War in the Air and Particularly While It Lasted By H. G. Wells. New York: The Macmillan Company 1908. 12mo.; 395 pages. Price, $\$ 1.50$ The author leads up to a peculiar situatio in which the cockney hero finds himselt marooned on Goat Island with the bridge to the American shore destroyed by the wreckage of a dirigible balloon, and cut off from the main land by the swirling Rapids. The hero, how-
ever, succeeds in getting hold of a damaged ever, succeeds in getting-hir" machine and escapes. The book is filled with the most romantic, but not altogether impossible incidents. There is no question that the dirigible balloon and the heavier-than-air machine are both destined to play a very important part in the wars of the future. Mr. Wells writes as entertainingly as ever and is never unscien-
tific. It must be said that his knowledge of New York geography is impeccable.
The Temperature-Entropy Diagram. By Charles W. Berry. New York: John
Wiley \& Sons 1908 . 12 mo ; 300 pages, 109 illustrations. Price, $\$ 2$. In the revised edition of the Temperature In tropy Diagram a more extended applica tion of the principles of the $T \phi$-analysis to advanced problems of thermo-dynamics has been made than was possible in the limited scope of the previous edition. The chapter on the flow of fluids has been entirely rewritten and treats at length various irreversible from the $p v$ - into the $T \phi$-plane has been elaborated for perfect gases and its application illustrated in the chapters on hot-air engines and gas engines. The various factors affecting the cylinder efficiency of both gas and steam-engines have been thoroughly discussed. One chapter has been devoted to the thermodynamics of mixtures of gases and vapors, and
another to the description and use of Mollier's total energy-entropy diagram.
The Mechanical Engineering of Steam
Power Plants. By Frederic Remsen
Wiley \& Sons, 1908. 8vo ; 825 pages,
700 illustrations. Price, $\$ 5$ net.
former edition of this book, issued in 1897, embodied the study and experience of the author gathered during the previous twenty years and brought together for teaching pur-
poses. The years since then have been a peposes. The years since then have in the power plant and in all engineering departments con-
tributory thereto; and while the old edition was modernized here and there and year by year, the time had come with the opening decade of the twentieth century that it be rewritten entirely. The present edition is the result of such rewriting. It is a new book so much enlarged that the old plates could not be used, but the size of page has been increased, new illustrations chosen, and many
new topics and treatments have been intronew topics and treatments have been intro-
duced. While the former approved analytical view-point is retained and amplified, there has also been introduced a discussion in many chapters of the principles and data of ap plied mechanics attaching to the subject in hand. This has been done to enable teachers who desire to enliven the drill in the mathe-
matical classes to find practical problems and matical classes indicans of interest and future meaning, and to encourage teachers of the applications of theory to find easily the links and bases for such sound applications. The distinction between the applied thermal principles and those derivable from other departments of theory should tend
Along the Riviera, France and Italy
Written and illustrated by Gordon
Written and illustrated by Gordon
Home. London: J. M. Dent \& Co.
Home. London: J. M. Dent \& Co.,
1908. New York: The Macmillan
1908. New York: The Macmillan
Company. 8vo.; pp. 328. Price, $\$ 3$ net.
This is a beautifully made book, with most charming colored illustrations. The Riviera
may be described as a collection of jewels may be described as a collection of jewels
strung together at irregular intervals on a rough mountain chain. Some are genuine an-
tigues, others are overlaid with modern work tiques, others are overlaid with modern work-
manship, and they vary much in size and
shape, but the mediæval holds good neverthe-
less. It has been the author's endeavor to describe every place along the whole coast from Marseilles to Pisa, omitting only a few towns close to Genoa which have suffere through the growth of factories and uninter esting houses. There is nothing more de ightful than an automobile trip over the per ect roads of the Riviera, and thousands of enthusiasts take this trip each year. The book to the series known as "Old world Travel." The aim of this new series is to describe both by pen and brush those parts of the Old World which travelers find most worthy of their attention, and to do for countries and districts what the same publishers' well-known Mediæval Town series has done for cities. The various volumes will prove not only welseme to the traveler during his visit, but why and will also bring the different districts vividly before the minds of those who are unable to leave home. The colored illustrations are in all cases reproduced from drawings actually made on the spot.

PATENT CAUSES

1NV ENTORS are invited to communicate with
Mann © Co. 361 Broadway, New York, or
625 Street, Washington, D. C., in regard 62s F Street,
to secaring valid ashington, D. C., in regard protection for their inventions. Trade-Marks and COpyrights
registered. Design Paients and Foreign
registered. secured.
Patents sent, Trade-Mark and
We undertake all Patent Copyright Practice, both before the Patent
Omice and the Courts. and we have special facili ties for handling Infringement and other suits in
Federala and State jurisictions. A Free Opinion as to the probable patenta-
Aility of an invention will be readily given to any bility of an invention will be readily given to any
inventor furnishing us with a model or skefth, and
a brief deseription of the device in question. All a brier description of the device in question. Alt
communications are stricty conflential. Our
Hand-Book on Patents will be sent free on Hand-Book on Patents will be sent free on
request.
Ours is the Oldest agency for mecanter patents

361 Broadivvevidion
INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued
or the Week Ending
Décember 1, 1908.
AND EACH BEARINGTHAT DATE
[See note at end of list about copies of these patents.] Acetylene generator, portable, L. Trou-
tretzkoy
Agricultural impiement, Fruecht \& ziomer.
Air and gas compressor
 Amusement device, A. Bragg
Anchor, post, C. C. L. $\begin{aligned} & \text { Binchain } \\ & \text { Animal trap, C. B. Trumble }\end{aligned}$

Automatic draft regulator, hot water hea
Ing system, Eeige
Automobile drawing mechanism, R.

Givenfeldt
Bearing, E. Peckham
Bearing for looking
B.
earing plate riler …….................

Bottles or similar
Bow, Ahn $\begin{aligned} & \text { A. L. } \\ & \text { Box, } \\ & \text { B. } \\ & \text { B. Wright }\end{aligned}$
N. Wright

Calk, horseshoe, G. E. Lindberg.............
Can cover, J. A. Pratt Caniou.......
Can fusing and soldering machine for square
rectangular, or polygonal cans, Young

905,
905,6
905,5,
905,
995,
905,
995,
995,
990,
905,
90
 Howard
bonaceous materisis, briqueting.

Castin Castin Catch Cemen Ceme

 ement, treatment of blast furnace siol or orproduction of hydraulic, B. Grau......

Chair display rack, Finney \& Harper.... Chair ata Chair san atachenent, C. H. Harber Chairs and the like, attachment for barber

Column, v. I. Richards M. Combing machine, M. Rot. Combing machine draw off de Compressor, air. C. W. Moore

Copper and purifying, casting, and alloying
the same, A. . Tossi.
Corn harvesting and husking machine, E.

905,176
905,355

Now

905,466
905,243
905,764

\section*{| Ele |
| :--- |
| Ele |
| Elev |
| Em |
| Em |
| En |
| E |
| E |
| E |
| E |
| E |}

shuttle, D. Dagnetic Bacon
Lubricant,L. Chapman

$905,67,245$

Concrete, Reinforceed Concrete Concrete Building Blocks

Scientific American Supplement 1543 contains an
article on Concrete article on Concrete, by Brysson Cunningham.
The article clearly describes the proper com-
position an mixture of concrete and . gives results of elaborate tests.
Scientific American Supplement 1538 gives the
proportion of gravel and sand to be used in concrete.
Scientific
1569 American 1570 and 1571 Supplements
cussion
contain an elaborate dis 1569 1570, and 1571 contain an elaborate dis.
cusin by Lieut. Henry Jones of the
various systems of reinforcing concer various systems of reinforctng concrete, con-
crete constructions and
These articles constitute a their dapplications. on the subject of reinforced co Scientific American Supplement 997 contains an
article by Spencer Newberry in Whith prac-
tital notes Spo the proper preparation of con-
crete are given. Scientific American Supplements $\mathbf{1 5 6 8}$ and 1569
present a helpful
concrete blocks by
account one of the making of Scientific
critical $\begin{gathered}\text { American } \\ \text { review of }\end{gathered}$ reinforced concret
Scientific. American
give a of reinforced concrete cone rarious systems
cussed and illustrated. Scientifo A
 merits and defects of reinforced concrete are
analyzed.
Scientific
the
principerican
Supplement
1551
contains some principles of reinforced concrete with
webb.
 ciples of success. in concrete block manufac-
ture, illustrated. Bcientifio
steel for
American Supplement Scientific American Supplements 1575, 1576, and
1577 contain a paper by Philip L. Wormley.
Tr

 facing concrete, wood forms, concrete side-
walks. detalts
concrete posts. Each
enta
number of the Supplement costs 10 Oble set of papers containing all the articles
above mentioned will be mailed for $\$ 1.80$.
Order from your newsdealer or from MUNN \& CO.
361 Broadway. New York City

Announcement

R. HENRY SMITH WILLIAMS has taken the whole field of Science from the earliest times down to the present day, and put it into a readable, narrative form that will give any one a right understanding of how Science began, how one discovery led to another, how all the Sciences are related to one another, and just what problems Science is working out today.

Everybody respects the word Science, and has some off-hand information about the tremendous achievements that Science has made in electricity, medicine, mechanics, etc., but few péople have that general understanding of, and familiarity with, Science that they would like to have.

In this connection a more readable or more profitable set of books than "A History of Science," in five illustrated volumes, cannot be found. It is the only work that has ever attempted to put a comprehensive knowledge of Science within the grasp of the average intelligent reader.

A business-man, in Kansas City, Missouri, writes us that
'Professor Williams has managed to make what I heretofore considered 'rather dry subjects' so very interesting, has explained the different stages of science in so simple and concise a manner, as to make it very intelligible and entertaining to the average reader."
We could quote many similar letters of surprise and gratification that "A History of Science" has evoked from merchants, bankers, lawyers, shopkeepers, and others, to whom Science has been more or less of a mystery until they read these books. The author, Dr. Henry Smith Williams, M.D., LL.D., has that rare faculty of being able to write entertainingly on scientific subjects. He is widely known as a scientist and popular author of articles and books on science.

These five magnificent volumes are the very books you have perhaps often wished for. They are permanently bound in dark blue cloth, with gold lettering, and fully illustrated with portraits of famous scientists, diagrams, facsimiles, pictures of scientific apparatus, etc.

OUR OFFER

On receipt of $\$ 1.00$ we will send you, all charges prepaid, the complete set in five volumes. If you do not like the books when they reach you, send them back at our expense, and we will return the $\$ 1.00$. If you do like them, send us $\$ 1.00$ a month for eleven months, until the full price, $\$ 12.00$, is paid. On receipt of your request for these books we will enter you as a subscriber for one year, without additional cost to you, for either Harper's Magazine, Harper's Weekly, Harper's Bazar, or The North American Review. In ordering state which periodical you wish.

Harper \& Brothers, Publishers, New York

Classified Advertisements Advertising in this column is 75 cents a line.
than four nor more than ten lines accepted.
Count than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on
READ THIS COLUMN CAREFULLY.- You will find inquiries for certain classed of articles numbered in
consecutive order. If you manufacture these goods Write us at once and we will send you the name and 18 no charge for this service. In every case it is necessary to give the number of the inquiry.
Where manufacturers do not respond promptly the
inquiry may be repeated

BUSINESS OPPORTUNITIES
WANTED.-Parties to manufacture and sell on roy-
aitty my patented tre kinder. Great time and labor
saver. All special tools and dies read and

Inquiry No. 868\%.-Wanted to buy motor plows.

 Inquiry No. 8735.-For parties making a still for CAPITAL WANTED to manutacture automobile and
marine engine acessury of established reputation. A
competent engineer has machinery and contracts pending to the value of 550,000 subject to possibilitities of de

 and mineral wool, steam supplies. iron and lead pipe,
power transmission machinery and steam fitters' tools. W A ATEDD-Capital to manufacture patented double-
acting, self-starting and reversing gaoolene and kero-
sene engine. No brokers. Capital, Box 773 , N. Y. Inquiry
butcher hand saw.
8846. - Wanted to buy an electri WEEED KLLLERS.-Three to four acres of weeds may
be killed each hour used. Patent right on sale. J. F.
Dunn, St, Joseph, Missouri.

Inquiry No. 8847. -Wanted laundry tubs.

PATENTS FOR SALE.

 tee-iron frame. Light, durable, attractive and che cheap
and easy to
Metal Works, Tampact, Frorida. Inquiry No. 8852. - Wanted to have made a con-
cave brass or copper refector with focus of four or five
feet.
 Innuniry ioo sissi-w antied to buy steel gray

Snaniry No. \$863.- Wanted to byy machne to
 Inquiry No. 886\%.--Wanted to buy plant for dry
cleaning.
 Juthouiry No. 8868.-Wanted to buy nickeloid tor

heLP WANTED

 machainery. No

REAL ESTATE
ENGLLSH FACTRXY SITES FOR SALLE.-The new
British Patent Act is causing many holders or Ameri.
can patent rights in England to manufacture in that
 sity
Inquiry
verosene borners. 88

FOR SALE.

Abrar oro foundir. fally equpped and in

 Inganiry No. 8872.-Wanted to bay a ball nozz1e

MOTION PICTURES

 Inquiry No. 88

LISTS OF MANUFACTURERS. COMPLETE LISTS of manufacturers in all lines sup.
plied at short notice at moderate rates. Small and
pocial lists compiled to order at various prices. Es mates should be obtained in advance. Address
Munn \& Co., List Depar ment, Bux 773 , New York.
 A LIST OH 15 , salable for wrineers.
 Ox Tis, New York.
Inquiry No. 889%, -For manufacturers of conve

MISCELLANEOUS.

1 nquiry No. 8878.-For factory making paper out Inquiry No. 8879.-For the manufacturers of
steam air pumps such as are used on the Conrad steam Inquiry No. S880.-For ma nufacturers of portable
shower baths. Inquiry No. 8881 .- Wanted to buy about forty
second hand enclosed arc lamps for direct 68 ampere Inquiry No. X888. - Wanted to bay a second-band
horse power, single phase induction motor 105 volt Inquiry No. 8883 .- Wanted to buy new or second
hand complete carbide of calcium plant. Inquiry No. ©884.-Wanted to buy second-hand Inquiry No. NS85. - For manufacturers of the
Mgsterious Ball "likethat of Mr. Lepere's-a man ill Inquiry No. 8886. - F.or makers of bean harvestInquiry No. 888\%, -For makers of sorghum mill
and evaporators. Inquiry No. S888.-For address of makers of
broom mackinery. Inquiry No. X889.- Wanted to buy a machine
Which breaks apd divides apricot stones. ing mairy No. 8890.-For manufacturers of a milk
 Inquiry No. 889\%. - Wanted to buy a rotar Inquiry No. 8893 .-Wanted to buy a second-hand
adding machine. Inquiry No. 8894.- For manufacturers of an auto
matic camera for making photographs on pin trays, etc. Inquiry No. $\mathbf{8 8 9 5}$.- Wanted paint that can be
used in lettering gas \mathbf{c} nimneys that will not burn off
with the Inguiry No. X896. - For the manufacturers of
earthenware vessels. earnanware vessels.
"Inquiry No \mathbf{N} " can opener.

 operating, W, H. MO M

 Well mechanism, M. E. Layne
Wheel casting mold, H. E. Chipman.
Winding mechanism, line, H. A.
 Wire stay bending machine, W. F. Wash
burn
Wires, machine for crimping electric resisWires, machine for crimpin
tance, J. I. Ayer
Wrench, W. W. Patterson Wrench, W. . W. Wabsroad
 inc, extracting, E. H. Shortman
Zinc plating, electroytic solation for, Zither, J. D. Foreman DESIGNS.
 Hat, soft felt,
Lamp pedestal,
Spoon, fork,
Roberts

TRADE MARKS

 Schloss
Buchy, co
Buckets,
Buckets, hand, J. Srapin \& Corron
Calcium
Co...

Coal, New
Coffee, Hi
Coffee,
\qquad
 Corn starese, Cooker Co. National Starch Co.
Cream, face,
Dte B. Thomas

cular
Eloctrical
Loomp
supplies,
co.
\qquad
Flesh ${ }^{\text {Co. }}$.

HOLIDAY SUGGESTIONS IN USEFUL BOOKS

Experimental Science A Complete Electrical 25th Edition, Revised and Greatly En-

 1,100 Pages. 900 Illustrations. Cloth Bound, Postpaid, \$5.00. HalMorocco, Postpaid, $\$ 7.00$

Scientific American Reference Book

boctian

Price $\$ 3.50$ Pgstpaid.

 rent generators and motors, and transformers are
fully treate. The thistribution ssatem, including
transmission circuits ot various kinds, switch boards meters. and protective revices, is described, and and arc lamps, motors, electropiating, heating. tele.
phony and telecraphy, are given a good share of
attention. A practical work for the practical man. Contains 11 chapters, and whenever the text can be
gimplifed by mean of an illustration, an illustration
is given. It is the standard work on the subject.

The Scientific

American Boy

MUNN Q CO.
361 Broadway. N. Y. City

MODELS In EXPERIMENTAL Wor

RUBBER | Expert Manufacturers |
| :---: |
| Fine Jobbing |
| Work | PARKER. STEARNS\& CO.. 228.229 South Street, New York

 MOEFTM R C COMPANY

Exderimentál \& Model Work MODELS (${ }^{\text {chiche }}$ DRYING MACHINES For stamed R Ree Patad

MASON'S NEW PAT. WHIP HOIST

急 Magical Apparatus. 25c. Parlor Tricks Catalogue, free.
MARTINKA \& CO.. Mfrs.. 493 Sixth Ave., New York
 STEAM TURBINES. - THEIR CON-

LEARN WATCHMAKING

 Pin Duryea's Buggyaut

chas. s. duryea, Reading, Pa.

Is Your Patent For Sale?

or do you wish to enlist capital or obtain a
partner? If so, we have something interpartner? If so, we have something interesting to say to you whereby you should be able to reach the proper parties at
small expense. For full information address

Business Dept. Scientific American
361 Broadway, New York City

 Lime, plaster, and roofing paper and roofing
felt, Mckallip \& Co. .a...................

 Malt be berage, Terre Haute Brewing Co. Co.
Malt beverage, non-intoxicating, Home Brew-
 Matches, safety, Nitedals Taendstikfabrik.
Medicinal oil for internal and external use,
C. Dilly. Medicines for certain diseases, s-L Drug co.
Menstrums for sorins, pastes, and pills,
Dr. Magaris Home, Treatment
 Milk, condensed, Mohawk Condensed Milk
Milk, condensed, wayne County Condensed Musical instrument strings, M. E.ing Nipples, nursing, Gotham Co \& Oils, lubricating, Standard onl Co. of New Overcoats and outer suits, Friend Bother Pants. Fur Coat Co.

 Pens, fountain, Parker Pen Co..............
Pens, stylographic and fountain,
Petroleumo refined, Standard Oil Co. of New Pipe and boiler co.......... \ldots.

 Remedy for scratches, wounds, and sores,
F. w. Hopkins
 Sauces for meats and stews, peeled gree
chili and regetable, Royal fracking co.
Sheeting and ready made sheets, wide, G. A
 Starch, laundry, National Starch Co..71,511,
Stock foo, Russell Grain Co.

strips, duck, Marshall-Wells Hardwar
 Nazareth Waist
Vegetables, fresh, Long Isiand Potato............. Water coolers. ice cream freezers, ice boxe
and refrigeratorstash Hard ware Co
Whiskies, blend of straight corn, R. M. Ros.
 Wines, certain, Cerruti Meicantile Co.....
Wines of the Tokar type, white, Hammond
port Wine Co.
 LABELS.
"American A. B. C. Lager Beer," for lager
beer, Independent Breweries 'Co
 mpliments of the Season,,\ldots for cigars,
Schmidt \& Co "Crown, Dearls," for cigars, schmidit \& Co
"Ddier Bitters,', for aromatic bitters, J
A. Didier

 "old English Gray Ware, , for enamel ware,
"Repullic Stamping \& Enameling Co.....
"Primacia, for cigars, Schmidt \& Co.....
 "Protecto," for cipars, Schmidt \& \&o........
,Scandinavian Ruptre Remedy
Scandinavian rupture remedy, J. Nelson
 Manz
"Superior Water Prof Wrapping Paper for
Butchers and
Grocers,
for paper, G. A. Manz

PRINTS.

"Burke's Bottled Guinness Stout,", for stout
Edward \& John Burke, Ltd.

A printed copy of the specification and drawing
of any patent in the forenoing list, or any patent
in print issued since fi863, will be furnished trot of any patent in the foregoing list, or any paten
on. print issued, since 1883, will bee furnished from
this oftce for 10 cents, provided the name an number of the patents, provided the name and
liven. Address Munn \& Cosired and the date be
York. Broadway, New York.
Canadian patents may now be obtained by the in
ventors for any oo the inventions named in the fore
coing list. For terms and further

A Yestern \&lectric Ontercommunicaling System

Will Unite Your Organization

whem the system gives connection from any department to any other department by the simple pressing of a button. Such ease of communication prevents neglect, avoids mistakes and miscarried or delayed instructions, and in gives the highest the and mond

Write for our Booklet 5003 on Intercommunicating Telephone
Systems for Business or Residence Use

WESTERN ELECTRIC atcman. compar

American Homes and Gardens

gives its readers the experience of experts in solving the most difficult
HOME PROBLEMS. It is a thoroughly practical word "Home" for its keynote.

HOW TO BUILD THE HOME

Floor plans and details of construction of houses of moderate cost as well as more pretentious mansions are a feature of each issue.

HOW TO DECORATE THE HOME

The most experienced decorators in the country describe how the best and most artistic results are attained from the point of expenditure, and the more important one of satisfaction

HOW TO PLAN AND LAY OUT THE GARDEN

The frame of the House-picture is the garden, and success in its treat ment means that each tree and shrub is correctly placed as well as properly grown, hence this department will be found most helpful.

OUTDOOR LIFE AND AMUSEMENTS, ARTICLES ON HOUSE INDUSTRIES

every phase of country life is authoritatively discussed from month to month in its pages. "American Homes and Gardens" is conceded to b the handsonest magazine published America. Its beautiful cover printed in colors changes each month, and is always a work. of art. Subscription price, $\$ 3$ per year. If we receive your order for a year's subscription now we will por for other words, fourteen months for price of a year's subscription.

MUNN \& CO., 361 Broadway, New York City

