

Exhausting the air of the bottles. After the vacuum is created the necks of the bottles are sealed and broken off.

After incubation the germs are killed and carbolized.

A. The bottle after it has received its charge of vaccine. B. The sealed neck containing a small proportion of the bottle contents. C. The receptacle in which the laboratory preserves the samples of vaccine.

The vaccine phials.

Each flask containing the boiled, fitered, and decanted liquid is passed into a large sterilizer and subjected to saturated steam at 30 pounds pressure. The result is a clear, sterile broth.
Decanting the vaccine into the bottles.

The incubating room. Here the germ broth is left in darkness for six weeks, during which the organisms multiply enormously.

Testing the culture for identification.

SCIENTIFIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO. - Editors and Proprietors
No. 361 Broadway. New York

Charles allen munn, president 361 Broadway, Now York
 CONVERSE BEACH, Sec 361 Broadway, New York

terms to subscribers.

One copy, one year, for the United States or Mexico 83.00		
One copy, one year, for Canada		
One copy, one year, to any foreign country, postage prepaid, 18s. 6 d	.	.7 .50
3.75		

the scientific american publications.
Scientific American (established 1845).... 83.00 a y
Scientific American Supplement (established 1876)............ 5.00
American Homes and Gardens
American Homes and Gardens............................. 3.00
The combined subscription rates and rates to foreign countries, includ-
Ing Canada, will be furnished upon application.
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, New York.
NEW YORK, SATURDAY, NOVEMBER 28, 1908.
The Editor is always glad to receive for examination: illustrated articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

TECHNICAL HEADS FOR TECHNICAL CITY DEPARTMENTS.

The costly blunder which has recently been discovered in the design of the Blackwell's Island Bridge, raises the question of the desirability, we had almost said the imperative necessity, of having technically qualified men at the head of such highly technical departments as that of bridges. We say this without the least intention to disparage the present Commissioner of Bridges, or any of the gentlemen who have preceded him that did not happen to possess the training of a civil engineer. With one exception, the present and former Mayors of this city have not considered it necessary that the Commissioner of the Department of Bridges should be a bridge engineer. It has been the custom for the newly-appointed Commissioner to select a chief engineer, and hold him responsible for all the strictly technical matters pertaining to the work of the Department.
But would it not be much more. satisfactory if, in the future, the Mayors of this city, in looking for a Commissioner, selected from among the many eminent and fully qualified bridge engineers of the country a man who combined in himself the professional knowledge and administrative ability required for this enormously responsible position? If, during the past decade, in which three of our most important bridges have been constructed or commenced, the Bridge Commissioner had been a qualified engineer, we are satisfied that mistakes would have been avoided, many economies achieved, and above all the colossal blunder of the Blackwell's Island Bridge would never have occurred.
By way of throwing further light upon this matter of the Blackwell's Island Bridge, it should be explained that, in the bridge as originally designed, the congested live load was very much less than that which was subsequently adopted. The contract drawings were made for a bridge with six tracks (two elevated and four trolley), a roadway for vehicles, and two sidewalks; the maximum loading being set down at 12,600 pounds per lineal foot of the bridge. After the contract was made there came a change of administration and engineers, and under the new régime it was decided to increase the number of elevated tracks from two to four by adding two tracks to those already provided for on the upper deck of the bridge. This change involved an increase, first in the live load, which was raised from 12,600 pounds to 16,000 pounds per lineal foot for congested loading; and, secondly in the dead weight of the bridge itself, due to the in the dead weight of the bridge itself, due to the
enlargement of the sections of the bridge to meet the heavier live loads thus imposed.
Now we believe it is a fact that when this most important revision of the plans occurred, the present Commissioner had not been appointed to office, and the responsibility for the mistakes which followed cannot therefore lie upon his shoulders. His predecessor also was not an engineer, for had he been, he sor also was not an engineer, for had he been, he
would have made it his first duty to see that the bridge was entirely redesigned, and an entirely new strain sheet drawn up. Whether this was done has not yet been disclosed to the public; but it cannot be denied that the extraordinary conditions revealed by the investigations of Prof. Burr and Messrs. Boller \& Hodge vestigations of Prof. Burr and Mess to suggest that the increase in the strength would seem to suggest that the increase in the strength
of the bridge was made by some rough-and-ready of the bridge was ma
method of percentages.

The conditions revealed by these reports are so disconcerting, so strongly suggestive of gross incapacity somewhere in the Department, that we think the matter should be made the subject of a searching investigation, similar to that which followed the fall of the Quebec Bridge. It is only by getting at the real facts of the case, and disclosing to public view the history of the design and construction of this bridge, that the city can be placed in a position intelligently to make such reforms in the Bridge Department as are necessary.

MARING ROCKS AND MINERALS ARTIFICIALLY.

The completion of the Geophysical Laboratory of the Carnegie Institution of Washington puts at the disposal of investigators attacking the many problems connected with the physics of the earth unique facilities in the way of organization and equipment. The new laboratory was erected especially for this purpose at a cost of $\$ 100,000$. A staff of expert and special investigators under the general direction of Dr. Arthur L. Day is engaged on researches of considerable importance, as they are designed to supply information in fields where present scientific knowledge is all too scanty.
The science of geophysics is typical of a modern tendency to unite in a single field certain elements of two or more of the older sciences. In geophysics there is an application of pure physics and pure chemistry to the data supplied by the geologist and mineralogist, or in other words a blending of physical or exact science, so far as the study of the earth is concerned, with natural and descriptive science. The phenomena presented by the earth to-day are due to the action of chemial and physical forces, and these phenomena range all the way from the most minute crystal to the earth itself in its relation to other celestial bodies. Now in the geophysical laboratory these phenomena are studied quantitatively by experimental methods.
One of the first tasks of the geophysicist is to study from surface conditions the nature of the interior of the earth and investigate the distribution of different materials and more especially the conditions under which they exist, such as temperature, pressure, density, and other characteristics. Accordingly if the nature of the interior materials of the earth and the temperature conditions are known it is possible to reach definite conclusions as to the nature of the formative processes, while if the distribution of pressure is studied it is possible to gain a more adequate idea of earthquakes and their transmission.
At the Carnegie Institution Laboratory the chief work at present is a study of rocks and their formation. Now the ordinary geologist studies the outside appearance of rocks and minerals at the surface of the earth, but the rocks and minerals so found are by no means pure, because so many kinds of action have been at work at different times that the ultimate result is different from that occasioned by the combination of simple substances under elemental conditions. So at great pains and trouble, after a mineral has been analyzed, the experimenter, using perfectly pure substances, combines them to form a chemically pure mineral. The chemical and physical properties of the artificial mineral are studied in comparison with its natural prototype, and knowing with accuracy not only its constituents, but the processes by which it was formed, it is possible to determine the nature and extent of the processes of nature. Thus a new and real science of mineralogy is being built up by the geophysicists, a science which shows quantitatively the combining conditions of rocks. Incidentally such studies often lead to matters of great economic and practical importance. For example, in the study of calcium oxide and silica; two constituents most frequently found in rock and also essential materials of Portland cement, it was demonstrated that they could combine only in certain ways and in certain proportions and not in the way that had been assumed by cement manufacturers. Now the basis of combination of these two oxides being understood, it will of course provide the cement maker with a scientific basis on which to prepare his product, replacing arbitrary and rule-of-thumb methods. Then again the question of adding alumina to a mineral combination is under consideration, as that substance also figures in many important minerals, as well as being essential to cement, and the results of the investigation may have an important bearing on that industry.

Another practical field in which these investigations of mineral formation seem destined to play an important part is in the study of ore deposits. If the fundamental conditions under which ores are formed are thoroughly understood, then the range of practical geology is widely extended and the amount of ore bodies available for economic exploitation can be materially increased.

In reproducing the original constructive processes of mineral formation in the experimental laboratory, the first requirement is the application of intense heat whose degree and quantity can be measured with accu-
racy. This of course is a difficult undertaking, but with exact thermometric measurements to establish the points at which various minerals act on one another to form certain combinations careful laboratory work can be carried on along definite and determined lines. With the apparatus of the Geophysical Laboratory high temperature measurements can be made up to $1,500 \mathrm{deg}$. C. with an accuracy of one degree, and between that point and $1,600 \mathrm{deg}$. C. with an accuracy of two degrees, so that it is possible to realize almost the precision of ordinary mercurial thermometry. This is important, as most minerals are formed below 1,600 deg. C., but above this temperature measurements can be made by optical methods of pyrometry even to the temperature of the sun with the error diminishing rapidly as better apparatus is invented. The mixtures of minerals to be subjected to the action of heat are inclosed in strong steel bombs and then placed in electric furnaces where any desired degree of heat can be maintained constant for several weeks or months as desired, generators, transformers, and storage bat teries supplying adequate current. Using the Nernst arc and iridium crucible furnace a temperature as high as 1,800 deg.' C. can be obtained, and this to-day represents practically the maximum temperature available for exact experimental investigations on minerals. The investigator concerned with studying various rock formations subjects the minerals to the action of intense heat, noting the temperature at which they react or the point on the selected scale of temperature at which melting or fusing occurs. For every such phenomenon or chemical reaction there is either a gain or loss of heat, and this can be measured by calorimetric processes which have been developed to a high degree of accuracy at the Geophysical Laboratory.
The product of combination of two or more minerals is then studied, and what is more, the artificial is compared with the natural mineral, chemist, physicist, and mineralogist uniting in the examination and employing the microscope and polariscope among other methods and making a record of the mineral by photomicrography, for which the laboratory contains a special equipment. Should any striking differences be found the reasons for these must be investigated, and especially the presence of impurities, which often occur naturally in a mineral that in the laboratory may be made from chemically pure components without any disturbing influences. By the introduction of a third substance the problem becomes slightly more complicated and the range of the investigation extended, but the results are no less sure and interesting.
After high temperature work the effects of intense pressures must be considered, and the Geophysical Laboratory has on its staff one of the most expert men in the world for high-pressure research. He was the first to make liquid carbon and came to the labcratory from Europe especially to advance this side of its work. Thus it is known that to produce diamonds and other precious stones artificially, extremes of pressure, to imitate the forces of nature, are demanded. Accordingly such pressures are applied to the reactions taking place in the electric furnace, and while the production of gems artificially is no more an object of study than the formation of any other minerals the study is interesting as showing where such investigations may lead.
In addition to temperature and pressure must be considered the effect of carbon dioxide and water vapor in their solvent action on the earth in forming minerals. The relation of water to the combining conditions of minerals is most important, and the universal presence of water and carbon dioxide in all natural rocks forces the belief that it is an important if not a controlling factor. To investigate this, steel bombs of great strength are filled with the minerals. Water vapor or carbon dioxide at pressure is introduced, and the rock is reproduced by imitating original conditions. On account of the great pressures the action goes on faster and at lower temperatures than in nature, and as the effect of the carbon dioxide is entirely unknown the outcome of this investigation is being looked forward to with great interest.
The conductivity of rocks for heat is another property that must be studied in order to understand volcanoes and their phenomena, and especir. \because to determine the effects of the intrusion of lava or other liquid rock into the cracks of the solid rock. The thermal properties of the earth-forming materials afford a most promising field for investigation and here the scientific staff of the laboratory is at present concentrating its attention. In addition there are many other properties as worthy of attention. A study of the elastic properties of matter as involved in theamaterials of the crust of the earth is now being undertaken at the laboratory by Dr. George F. Becker of the U. S. Geological Survey. This investigation deals with the relation between the force exerted on rocks and their displacement with the idea of determining quantitatively how and what forces have been at work to bring about the various displacements and changes noted by geologists.

ENGINEERING.

As a sure indication of returning business prosperity, it is gratifying to learn from the committee of the American Railway Association on power efficiency that the decrease.in the number of idle cars continues, that the decrease.in the number of idle cars continues, 100,000 . Analysis of the returns shows that as the demand for cars increases, the roads are repairing the cars that were temporarily unfit for duty, and are placing them in active service.
The record for rapidity in excavation is continually being broken at the Isthmus of Panama. The latest instance occurred on October 22, when 313 10yard dump cars were loaded in 370 minutes, an average of 1 minute and 11 seconds per car. Assuming that they were loaded to their full capacity, a cubic yard of material was placed on the cars every 7 seconds. The only interruptions occurred when the dipper was cleaned and the shovel moved forward to a new position.
The school of target practice established on the battleship "Sardegna" by ,the Italian Minister of Marine has shown excellent results. The competition for the gunlayers' prize was carried on from ships which were steaming at a speed of 14 knots at a little under 3,000 yards past a target measuring 23 feet by 56 feet for the heavier guns, and 10 feet by 30 feet for small guns. The average for all the ships was 60 per cent of hits, and on some ships it rose to 75 per cent.
According to the report of the United States Geological Survey on the petroleum industry for 1907, nearly $18,855,691$ barrels of oil were consumed that year as fuel by the railroads of the United States. This is an increase of over $3,000,000$ barrels above the amount used for the purpose during the preceding year. It is estimated that 13,593 miles of railroad were operated by the use of fuel oil, and the total mileage by oil-burning locomotives is estimated at over 74,000,000.
The new Lackawanna tunnel through the Bergen Hills in Jersey City, which has been driven to provide two additional tracks and extends parallel with the old tunnel, is nearing completion. It has been built to facilitate the handling of the heavy suburban traffic of the road. With a view to the probable future electrification of the system, connections are being sunk in the roof for carrying the electric conductors. The opening of the tunnel will take place early in December of the present year.
The largest dredger in the world, the "Leviathan," recently launched for the Mersey Docks and Harbor Board, is 487 feet long, 69 feet broad, and 30 feet 7 inches deep. Her pumps are capable of dredging 10,000 tons of sand into her bunkers in 50 minutes from a maximum depth of 70 feet, and she can carry these 10,000 tons out to sea at a speed of 10 knots. The dredging plant consists of four sets of engines, driving four centrifugal pumps connected to two 42 inch suction tubes on each side of the vessel.
The wooden schoolship "St. Mary's," after sixty years of service, first as a warship, and latterly as a schoolship in the service of New York, has been bought by a Boston firm for junk at a price of $\$ 5,000$, and is being broken up for the metal that is in her Sixty years ago she was one of the fastest warships in the United States navy. From 1874 until October of the present year, when her place was taken by the "Newport," over 1,000 boys had passed through this famous old vessel, and graduated from her after taking a two years' course in navigation and seaman ship.
Evidence of the profound impression made upon France by Wilbur Wright's recent success with his aeroplane is shown by the statement in the Army and Navy Gazette that the French Ministry of Marine are seriously considering the placing of an order for a large number of aeroplanes of the Wright type for the Coast Guard Service. It is reported that a mem ber of the Army Commission of the Chamber of Depu ties, who witnessed Wright's feat of flying for over an hour with a passenger on board, stated that the aeroplane has now been developed to a point where it will be_{f} of great value for military scouting.
Travel between New York and Brooklyn has seen a remarkable increase during the past year. The total travel in both directions for twenty-four hours was. 816,000 as compared with 706,000 last year, an in crease of about 16 per cent. The opening of the Subway tunnel and the growing traffic over the Williams burg Bridge have caused a decrease of travel over the Brooklyn Bridge from 423,000 in 1907 to 310,000 in 1908. An analysis of the traffic across the East River shows that the ferries carried 165,000 ; the Subway, 160,000 ; Williamsburg Bridge, 182,000; and Brooklyn Bridge, 310,000 . Nothing could show more forcibly than do these figures the commanding position held by the famous Brooklyn Bridge among the transpor tation facilities between Manhattan Island and Long Island.

ELECTRICITY

The superintendent of the Hackettstown Electric Light Company reports that during a severe storm last summer, a severe lightning discharge passed through thirty-three series tungsten lamps. The film cut-outs in the sockets were punctured, but when these were replaced, the lamps were found to be un damaged except for a slight twisting of the filament.
A very effective gas lamp has recently been introduced, which has every appearance of an arc lamp, but gives a softer and more steady light. It consists of incandescent gas mantles, which are inverted so as to throw all the light downward. The mantles are pro tected by a globe of ground glass, which distributes the light and conceals the fact that the lamp uses gas instead of electricity.
The efficiency of wireless telegraph for communication between the earth and balloons or airships was recently tested near Brussels. Messages were success fully transmitted to a balloon, which also received signals from the Eiffel Tower in Paris. One of the objections to wireless apparatus in a balloon is the danger of igniting the gas with sparks generated by the apparatus.
Many strong arguments are being advanced for the installation of 25 -volt wiring in buildings, so as to permit the use of tungsten and tantalum lamps. The principal advantage is that the same candle-power may be obtained with a much shorter and stronger filament Furthermore, the lights can be run at a higher effi ciency. To be sure, a transformer will be necessary but the cost of the transformer would soon be made up by the greater efficiency of the lamps.
At the recent electrical exhibition in Manchester, a novel arc lamp was shown, which was provided with carbon magazines. The carbons are arranged in the form of flaming arc, one of the magazines being stationary, and the other movable, so as to bring the carbons in contact when starting the lamp, and to permit of adjusting the carbons so as to regulate the arc. The mechanism feeds the carbons steadily, and as soon as a carbon burns out another one is brought into play, the burnt-out carbons dropping into the globe of the lamp.
The Public Service Commission has granted permission for the building of an electric monorail road betwéen Bartow Station on the New York, New Haven and Hartford Railroad and Belden Point, City Island. This will be the first passenger monorail to be built in this country. The system will be similar to that used on the experimental road at the Jamestown Exposition. The cars will run on a single rail at the ground, and will be prevented from toppling over by a pair of guide rails above.

One of the indispensables of torrid India is the punkah, or large fan, which is operated by a colored servant to secure a draft of air and keep insects from disturbing the sleeper. The native is not always reliable, being apt to doze, and for this reason efforts have been made to devise a mechanically-driven punkah. These efforts have failed, owing to the difficulty of duplicating the action of the hand-worked punkah, the special value of which consists in the sudden jerk given the fan by the native at each turn. Recently an electrically-driven punkah has been devised, according to the Electrical Review and Western Electrician, in which this jerking motion is perfectly imitated by a "lath-shaped spring" covered with leather, which slaps the fan to and fro.

In German cities and towns considerable attention is paid to the generation of electricity from heat obtained in the destruction of refuse. Statistics for a number of German towns show that one kilogramme of refuse yields from 0.6 kilogramme to 1 kilogramme of steam at a pressure of 8 to 12 atmospheres. The following table has been compiled to show how much electrical energy should be obtained per day in cities of different size:

Inhabitants.	Kg.	Kw-hours.
250,000	286	$2,500,000$
100,000	104	911,000
50,000	47	411,000
20,000	17	149,000

Since the middle of May the St. Clair tunnel, running between Sarnia, Ont., and Port Huron, Mich., has been operated with electric locomotives. The operation has been in charge of the contractors, in order to thoroughly test the equipment. On the 12 th of this month the tunnel was handed over to the Grand Trunk Railroad. The St. Clair tunnel is 6,032 feet long, with a two per cent grade at each end. Heretofore it has been necessary to break up the freight trains at each terminal into separate sections, so that they could safely be drawn through the tunnel by a single steam locomotive. The use of electric locomotives eliminates the danger of suffocation in the tunnel, and permits long freight trains to be drawn through, thus saving considerable time, which heretofore has been used in making up the sections.

SCIENCE

The latest medical protest against the smoke nuisance comes from Dr. John T. Wainwright, who points out in the Medical Record that sunlight and health are almost synonymous terms, and that smoke means noxious gases. To drive home his point, he cites as modern instances the smoky towns of Manchester and Leeds and their notoriously high death rate. There is also a commercial side to the question. A Chicago merchant maintains that. smoke damages $\$ 200,000$ worth of his goods every year, which seems suspiciously but not incredibly high.

The tuberculosis exhibits of the recent International Tuberculosis Congress have been sent to New York, and are to be set up at the American Museum of Natural History. The exhibit, by far the largest of its kind ever collected, will be on view for at least six weeks, in which time there will be many public meetings and conferences on the prevention and treatment of tuberculosis. These are expected to extend the interest in the exhibit itself and increase its educational value. The exhibit will be open to the public from 10 o'clock in the morning until 10:30 at night daily and on Sunday afternoons.

A report for the calendar year 1907, just issued by the United States Geological Survey, contains the startling announcement that the total production of our mineral resources is valued at more than $\$ 2,000$,000,000 . This means an increase ranging from 5 to 40 per cent. The largest contributions to the mineral wealth of the year were made by coal and iron, which together represented considerably more than half of the total. The value of the coal mined showed a gain of about 15 per cent on 1906. The increase in iron was somewhat less.
The Pennsylvania Railroad recently sent out an instruction train for a three days' trip through eastern Pennsylvania, to deliver free lectures to the farmers along the line. The lecturers were members of the faculty of the State College of Agriculture. The three coaches of the train were fitted up as lecture rooms, and at each of the twenty-two stops forty-five-minute talks were made. Besides lectures on increasing the fertility of the soil, there were discourses on methods for increasing the output of dairy products, the care of live stock, testing seed corn and the cultivation of alfalfa.
The devastation of the Hudson River Palisades, now happily averted by law, finds its counterpart in the threatened destruction of the famous Giants' Causeway. Americans are usually branded as unsentimental, money-making despoilers of nature. Guilty as we have unquestionably been, it is doubtful if we have ever outdone the despoliation of the Giants Causeway, which is now occurring at the hands of a British syndicate. The basalt of which the Causeway is composed is an excellent road-making material, and to be trodden under foot seems now its ultimate fate. This latest bit of vandalism is in large measure due to the automobile. The advent of the high-speed motor car has brought about a necessary improvement in the macadam road, and the best possible road is made by the Irish basalt of which the Giants' Causeway is constituted.
At one time a large part of the potassium nitrate used in the manufacture of gunpowder was obtained from natural and artificial niter beds, by leaching out the niter which formed on the surface of stones and rubbish exposed to humidity and sprinkled with liquid excrement. During the wars of the French Revolu tion and Empire, when it was impossible to import niter from India, artificial niter beds were established in every part of France. The Committee of Public Safety published instructions concerning their operation and Fourcroy devoted many pages to them in the Encyclopedia. This crude process is now being re vived, after having been abandoned for a century Müntz and Bazin have taken out patents for a method by which farmers can produce for their own use fer tilizers rich in nitrates, which may be substituted for Chile saltpeter, which is increasing in price year by year. The process differs very little from that of olden times, except that stones and rubbish are replaced by peat, which is peculiarly well adapted for nitrification, very cheap and naturally rich in nitrogen Advantage has also been taken of the discoveries of bacteriologists in regard to the properties and func tions of nitrifying microbes. Dry peat is ground and mixed with one-tenth of its weight of chalk, half its weight of water and a little phosphate of lime. The mixture is placed, in a bed about three feet deep, in a building where the temperature can be kept constant ly at about 70 or 75 deg . F. The bed is then sprinkled with a solution of ammonium sulphate or any other ammoniacal liquid, such as sewage, factory waste liquid manure, or the ammoniacal liquor of gas works Within one month all the ammonia is converted into nitrate. The mixture can then be either used directly as a fertilizer or leached for the extraction of the niter, which can be purified and sold for industrial pur poses.

THE ECLIPSE OF THE SUN AND LUNAR APPULSE IN DECEMBER, 1908.

$$
\begin{aligned}
& \text { DECEMBEE, 1YU8. } \text { RIC B. HONEY, TRINITY COLLEGE. }
\end{aligned}
$$

The movements of the celestial bodies which characterize each year, are those which mark that period with special interest for the student of astronomy. The year 1907 was distinguished by the brilliant opportunity it afforded for observing our neighbor planet at opposition; and also for the rare recurrence of the November transit of Mercury which will be seen only nine times during the present century. The year 1908 has shown nothing of this particular nature; but it is distinguished for the three eclipse seasons which it includes. The occurrence of three eclipse seasons in one year is possible only when we have an eclipse very near the beginning of the year; and this is only possible at intervals of every nine years. The year 1899 included three eclipse seasons.

The plot, Fig. 1, illustrates the gradual advance of the dates of eclipses in 1908. The position of the earth is shown for the dates of the solar eclipses of January 3, June 28, and December 23; also for the lunar appulse of December 7.

Fig. 2 is a plot of the moon's orbit for December. That part which is represented by the full line is above, and the part shown by the dotted line is below the plane of the ecliptic. The point N is the ascending node where the moon passes from the space below to that above the plane of the ecliptic; N^{\prime} the descending node, is the point where she passes from the space above to that below; and $N N^{\prime}$, the line of nodes, is the intersection of the plane of the moon's orbit with that of the ecliptic. The position of the moon is shown for each day from the 1st to the 28th at Greenwich noon; and also at the time of the appulse, when the moon will be below the plane of the ecliptic, and will graze the earth's shadow. The moon's position at the time of the eclipse practically coincides with that given in the plot for the 23d, since the eclipse will occur between ten and eleven minutes before Greenwich noon. The direction in which the sun is seen from the earth is shown for the 1st and the 28th at Greenwich noon; aiso for the 7 th and the 23 d at the time of the appulse and of the eclipse. The sun and moon appear to move in the direction of the ar rows, and are represented by their longitudes. At the date of full moon, when the longitude of the sun and moon differ by 180 deg. the sun's rays in the direction of the arrow a illuminate the hemi sphere which is visible from the earth. The time of full moon is 7d 9 h .44 m .; and that of the nearest approach of the moon to the earth's shadow is 7d. 9h. 55m

Fig. 3 is a projection of the earth on a plane which is parallel to its axis and perpendicular to the plane of the ecliptic. In this projection the equator, tropics, polar circles parallel of Greenwich, and that of an observer to whom the centra eclipse will be visible at noon, are represented by straight lines. Th ggure represents the illuminated area and that which is in shade at the time of the appulse.
Fig. 4, drawn to scale, repre sents the earth, the moon, and their shadows, projected on a plane which is perpendicular to the plane of the ecliptic, and parallel to the earth's orbit radius on December 7 (Fig. 1). The length of the shadows of the earth and of the moon vary during the year. They are longest when the earth is at aphelion, and shortest when it is at perihelion. It is impossible to include them within the limits of this page

The length of the moon's shadow does not differ very much from the length of the moon's orbit radius, i. e. the distance between the earth and moon in Fig. 4; and the length of the earth's shadow is about three and two-thirds that measurement. That the moon's shadow on the average is about the same length as the radius of the moon's orbit is shown in a solar eclipse. In the case of an annular eclipse, the shadow does not reach the earth. When the eclipse is total

Dioplacement : 20,000 tons. Speed, 81 knots. Guns, ten 12-inch, fourteen 6 -inch Note the lofty forecastle deck and flaring bow.

LAUNCH OF THE "NORTH DAROTA."

from its maximum. The earth will be near perihelion, and the apparent diameter of the sun will be nearly equal to its maximum. The result will be a total eclipse within a limited area, i. e., between longitudes 28 deg. W. and $381 / 4$ deg. E.; and beyond these limits the central eclipse will be annular. The path of total ity will be limited to the South Atlantic Ocean, for which reason the eclipse will have purely an academic interest for inhabitants of the United States.

LAUNCH OF THE "NORTH DAKOTA."
In the Scientific American of November 14 we published a sketch of the "North Dakota," showing the completed ship as she will appear when viewed from abeam, and we supplement thatoillustration with views showing the great ship a few minutes after she had taken the water. The photograph gives an excellent impression of the huge bulk of the vessel and of the high freeboard which she will carry forward, where it will be serviceable in keeping her batteries dry when she is steaming head to sea. We draw attention to the considerable flare which she has at the bow above water. This is a feature which is being generally adopted among the latest ships, and particularly in those of the Japanese navy.

The ship's flaring bow will serve to throw off broken water that otherwise might come aboard, making things uncomfortable for the gun sighters by dimming the telescopic sights. Although the "North Dakota" is a turbine-driven ship, she has but two propellers instead of the four propellers which we are accustomed to associate with turbine marine engines. The possession of only two propellers is due to the fact that this ship is furnished with turbines of the Curtis type, one of the advantages of which is that the speed of revolution is comparatively low, a fact which renders it possible to develop the power on two shafts, and use propellers of larger diameter and more efficient design. The "North Dakota" is of 20,000 tons displacement and 21 knots speed, and she will mount ten 12 -inch guns in five turrets and fourteen 5 -inch guns in casemates.

Device for Preecooling Green Fruit.

The Southern Pacific Company has just announced that a pre-cooling device for preventing decay of fruit and vegetables on which more than $\$ 100,000$ has been expended during the past year has proved very suc cessful and has been adopted. This means much in the movement of green fruit from California to the East. Pre-cooling plants will be established at Rose ville and Colton, Cal., where the experiment work has been carried on-one for the northern route and one for the southern, in connection with the expenditure of more than $\$ 100,000$ for ice-produc ng plants.
Forty carloads at a time can be thoroughly chilled within four hours at the Colton plant and twen ty carloads at the Roseville plant, where to get the same degree of chill it would take four days in the ordinary ice plant. The experiments of the Department of Agriculture, which has been working with the fruit shippers and the Southern Pacific, demonstrate that the greatest value lies in the rapid reduction in temperature which suspends absolutely the decaying process of nature.
Air blasts passing over ice are forced into the cars by vacuum exhaust which in itself removes the immediate chemical cause of decay.
Green deciduous fruit shipments this year are 3,000 carloads in ex cess of any previous year and it is believed that with the adoption of this system the shipments can easily be increased to 20,000 per year.

A machine has been designed to show the actual working time of any or all machines in a shop, so as to give an accurate record of the cost of production. It is to show whether the machine has been working its full quota of hours, and, if so, to see if the output is in accordance with the rate set. After the time for handling the work in and out of the machine has been determined, it is easy to see whether it has been left running or not during the day. The records can be arranged to suit the conditions, and certain forms have the lower part perforated, so that the total for the day can be torn off for the works manager to see at a glance how many hours the machines have been work ing during the day.

IS CONCRETE STEEL A PERMANENT CONSTRUCTION?

 by J. a. fitzpatrick.An unusual example of deterioration of steel framing in buildings was recently discovered in the basement floor of the Eastern Power Station operated by the Brooklyn Heights Railroad Company at Kent and Division Avenues, Brooklyn.
The basement floor of the engine-room portion of the station is divided by the masonry engine foundations into several parallel galleries, each ten feet wide and running the full width of the building. A sub-basement or cellar, aboút six feet below the basement floor, leaves a clear space of less than flve feet between the two floors. On this cellar floor rest the jet condensers for the engines above.
The basement-floor construction consisted of 6 and 7 -inch steel I-beams framing into 15 -inch steel I-beam girders. Between the beams were segmental concrete arches, stiffened by a wrought-iron mesh center. These arches did not cover the bottom of the beams, but left the flange exposed except for an occasional coat of paint received in the early history of the station. The steel frame was erected by the Berlin Iron Company in 1890.
Considerable rust was noticed on the exposed beam flanges; and as some of these appeared to sag in the center, a section of arch was removed, to see the condition of the upper portions of the beams. In only a few cases was there any upper portion left, the steel having corroded to such an extent that the webs and top flanges had disappeared entirely, leaving only rust on the adjoining concrete. The floor, instead of being supported by the steel framing, was in reality carried by the threeinch slab of concrete covering the tops of the arches.

The writer carefully investigated the locality, finding the following condition to exist:
The condensers employ salt water in their operation, and much of this is ejected in the form of spray on all sides of the condenser pits. There being no chance of drainage, this has been allowed to settle for years in pools on the floor, and together with the exhaust steam from the engines above, which found its way into the cellar, the atmosphere in the space between the two floors was kept continuously moist. This moisture was absorbed by the concrete arches, and held as if in a sponge, close against the web and upper flanges of the beams. The decomposition was probably slow at first; but as the chemical action progressed, a space was made between the steel and the concrete, leaving a space for air to enter, thus accelerating the chemical action. The exposed bottom flanges were in far better condition than the inclosed portions of the steel, this probably being due to the paint they received.
The wrought-iron bolts throughout the work were in an almost perfect state of preservation. This was
in better condition than the material in the beams. The bolts, as mentioned before, were made of wrought iron, but the rivets were of rather a soft grade of steel, while the beams were of the hardest grade of steel that the writer has ever seen used in construction work. This leaves an open question as to whether the hardening elements in the high-grade steel, carbon and manganese, did not assist in the decomposition.

The shadow sections show the original size of the 7 -inch and 15 -inch I-beams when the floor was constructed. They were eaten away by rust until nothing was left
but the portions shown in dark tint, which are reproduced from a photograph. Deterioration of steel and concrete floor.
The main sewer draining the residential section of Williamsburg fiows past the station on the north side, emptying into Wallabout. Creek a few feet away from the mouth of the intake tunnel which supplies the water for the condensers. Traces of chlorine have frequently been detected in the basement, and this has undoubtedly assisted in the decomposition of the beams.

HOW INDIA IS FIGHTING THE PLAGUE-THE MANO.

FACTURE AND USE OF ANTI-PLAGUE VACCINE.

by the englibi corrigpondrat of the scientific american.
One of the most important and best-known scientific institutions in India is the Bombay Bacteriological Laboratory at Parel. For some twelve years it has been the scene of many notable achievements in the subjugation of the terrible epidemic which has ravaged the country. At first only a small plague-research

East where plague is indigenous, is prepared at this laboratory. Through the courtesy of Capt. W. Glen Liston, M. D., D. P. H., a member of the Plague Research Commission, and the Acting Director of the Laboratory, we are enabled to describe and illustrate the preparation of this prophylactic agent. The vaccine may be succinctly called a culture of the plague bacillus, which after being grown in a suitable soil or broth for at least six weeks, is sterilized or killed, and to which is then added 0.5 per cent of carbolic acid. The preparation is then packed in small hermetically-sealed glass bottles or phials, each of which contains on the average 20 cubic centimeters of the material, a quantity sufflcient for five full doses.
The medium in which the plague germs are cultivated is produced from goat's flesh or wheat fiour, to which a certain proportion of hydrochloric acid is added. This mixture is stored in large water-jacketed jars maintained at a temperature of 158 deg. for three days. During this period the insoluble albumen of the flour or meat, under the action of the hydrochloric acid, is converted into the soluble albuminoid bodies known as peptones and propeptones. The acid liquid is then neutralized by the addition of caustic soda. Common salt is thus formed. This liquid is diluted boiled, filtered, and decanted into large glass fiasks corked with cotton wool. The flasks are passed into a large sterilizer, and subjected to saturated steam at a pressure of two at mospheres. The result of this process is the production of a clear, sterile, amber-colored liquid or broth, constituting the soil in which the plague germ is grown.
The plague germ itself is isolated either from the blood or the bubo of a patient suffering from the disease. It is first purified by cultivation in test tubes containing broth jelly formed by the addition of agar-agar to the liquid broth previously secured. At this juncture the germ is examined and tested, in order to identify it definitely as the plague bacillus. Among these tests, one of the most important is the characteristic appearance known as "Haffkine's stalactites," presented by the growth of the organism in suitably pre pared broth. The plague bacillus thus isolated and identifled is subjected to cultivation in a Pasteur flask for a period not exceeding fourteen days. The seed multiplies considerably, and small quantities of the material raised in this Pasteur flask are transferred to several larger flasks, each containing one liter of broth, this operation being carried out in the sowing and testing room.
As each flask receives its quantum of the plague or ganisms, it is removed to the adjacent incubating room This is a large apartment in which the flasks are dis posed in rows upon long tables extending longitudinally from one end of the room to the other. Some idea of the magnitude of the serum-preparing opera-

Incculating natives at a village assembly.

The Bombay bacteriological laboratory at Parel. HOW india is fighting the plague-the mandracture and uge of anti-plague vaccine,
also found to be true of the wrought-iron mesh centers under the arches.
The illustration reproduced here shows typical examples of the 6 and 7 -inch beams framing into the 15 -inch beam girders. The steel being worn to a knife edge on the flanges, and the small portion of webs remaining, evidently show the effect of electrolysis.
The almost perfect preservation of the bolts is also shown, and it will be noticed that the shop rivets are
laboratory, started by Mr. Haffikine, it has developed into an extensive institution having a wide field of investigation. Here it was that Mr. Haffkine first evolved and prepared his "plague prophylactic," which medium in the hands of the British administrators has proved a highly efficient instrument for combating the disease, and which has been the means of saving thousands of lives.

To-day the whole of Haffinine's vaccine required not only for India, but other countries throughout the
tions may be gathered from the illustration of this department, showing several hundred flasks under incubation. The flasks are left in semi-darkness for at least six weeks. During this period the germs multiply enormously. When it entered the incubating room the broth was perfectly clear, but upon withdrawal it is.turbid, because of the vast increase in the number of plague bacilli.

It will be realized that in the preparation of this vaccine, it is imperative that the culture medium
should propagate plague organisms solely. Consequently, upon the conclusion of the incubation period, the flasks are returned to the sowing and testing room. A small quantity of the contents of each flask is care fully withdrawn with aseptic precautions, and transferred to a broth jelly tube. In the course of from twenty-four to forty-eight hours, the germs grow upon the surface of this tube. In precisely the same manner as the farmer can recognize the nature of the crops on his land, so can the bacteriologist distinguish the appearances of his germs, and detect the presence of any other bacillus in addition to that of the plague. Should the appearance indicate that plague organisms alone are existent, the fiask which has been so sampled is passed on to other departments for further manufacture and tests.

The next stage is the sterilization of the vaccine. The germs, which up to this point have been so carefully tended and cultivated, are killed. The flasks are immersed in water, and subjected to a temperature of 131 deg. F. for fifteen minutes. At the end of this period the material will be found absolutely sterile and containing no living organism. At the same.time, however, it might be possible for some latent organism to develop and thrive in or enter the broth subsequently, in which event serious complications would result, as experience has strikingly demonstrated. Consequently, at this stage the vaccine undergoes what constitutes one of the most important phases in its production, and upon the fulfillment of which its purity and safety vitally depend. This is the addition of 0.5 per cent of carbolic acid to the broth, to render it an unsuitable soil for the growth of any germ.

After carbolization the serum is ready for bottling. The vessels in which it is sealed for distribution are of peculiar shape, as may be seen by reference to the illustration. By means of an air pump and other special apparatus, the bottles are vacuumized and hermetically sealed. They are then packed into iron boxes, which are placed in large ovens and submitted to a temperature of about 390 deg. F. for three and a half hours, which action kills any bacteria that may be lurking within the bottles. As it is withdrawn from the oven, each iron box or crate is immediately sealed, and the word "sterilized," together with the date, is imprinted on the exterior. The boxes are now ready for receiving the charges of the vaccine, and this work is carried out in the decanting room.

The charging of the bottles from the fiasks of carbolized vaccine is a delicate operation, requiring great skill in order to prevent any possible chance of the vaccine coming into contact with the open air even for an instant.

The bottles after being filled are set on one side for a week, a sufficiently long period to permit of the multiplication of any germ that may have gained an entrance to the vaccine during decanting. The average number of bottles that can be charged from the contents or "brew" of each fiask is forty-five, and each batch is preserved, so that in the event of a "brew" subsequently evidencing contamination, the bottles charged from that particular affected fiask may be instantly ascertained and destroyed. Two bot tles are selected from each "brew," and are subjected to searching tests carried out in two waysaerobically and anaerobically. In the former tests, all those bacilli which require oxygen for their development are discovered, while the second process serves to reveal those organisms which can thrive only in the absence of oxygen, such as the tetanus bacillus. These tests proving satisfactory, the brew is pro nounced fit for use, and is passed through the last stage of its manufacture. This is the securing of a small sample of each phial for retention in the laboratory. A small portion of the fluid is forced into the long neck of the phial. The neck is then heated in a blow-pipe flame near the shoulder of the bottle, melting the glass and separating the neck from the body of the phial, and at the same time hermetically sealing both the bottle and the neck simultaneously. Each sample carries a duplieate of the label and date on the body of the phial, while all the samples collected from a single "brew" are stored in a sheet of corrugated paper and preserved in the laboratory. Should, therefore, any suspicion regarding the condition of a phial when sent out arise, or complications attend inoculation, the laboratory can easily substantiate the sterility of the vaccine sent out by testing the sample, and moreover can ascertain whether the serum has been retained for too lengthy a period before being used. In this way not only is the public safeguarded, but the laboratory is protected against false charges.
Haffkine's serum being a dead prophylactic agent, it has to be injected beneath the skin and introduced into the blood stream of the patient by means of a syringe, unlike vaccination, where the living vaccine is simply placed upon an abrasion of the skin. The operators who are privileged to carry out the inocula tion are specially trained in the methods of fulfilling the operation, and the vaccine is supplied only by the laboratory to those certified as competent for the work
despite its simple character. There is thus no possibility of the vaccine falling into the hands of unskilled or unscrupulous persons. Should any calamity befall a patient from inoculation, the responsibility for the misadventure can be brought home, since the various hands through which that particular dose of vaccine passed can be traced and checked from the first stage of preparation to its application.

The vaccine thus prepared, if preserved in a cool dark place, will retain its full efficiency for a period of eighteen months, though of course it is expedient that it should be used as soon after being received as possible. After retention for eighteen months, however, the old vaccine should be destroyed.
The medical officers experience no little difficulty at times in securing the consent of the natives to inoculation. As a rule, the operators collect the influential leaders of the people, and secure their interest in the proposal. The advantages of inoculation are carefully explained, and they are urged to persuade their less educated tribesmen to consent to the ordeal. About one hundred people are thus possibly assembled, and those who volunteer to undergo the operation are duly inoculated before the community. The painlessness of the operation thus being demonstrated, many waverers will frequently follow the example of their friends, and in this manner a number of people may be inoculated at the one meeting.
Inoculation itself is simply and quickly carried out. The most convenient spot on the body is the back of the left upper arm about midway between the shoulder and the elbow. The skin is first well scrubbed with a five per cent of carbolic lotion, and is then puckered up between the thumb and fingers of the left hand, the needle being injected into the skin in a sloping direction more or less parallel with the surface, care being observed to avoid the big vessels and not penetrating the muscles, but at the same time entering the subcutaneous tissue. The dose is then slowly injected, the needle withdrawn, and a few pads of cotton wool dipped in the carbolic solution applied for a few minutes.

The symptoms of inoculation commence as a rule in from three to five hours, and consist chiefly of swelling and pain at the seat of inoculation, accompanied by a rise of temperature. As the pain becomes more acute by the movement of the affected part, it is advisable to give it a complete rest for about thirty-six hours. The fever generally lasts from twenty-four to thirty-six hours, but pain at the seat of inoculation generally prevails for three or four days. As, however, the vaccine acts differently on various people, a uniform reaction cannot be obtained, fever being almost absent in some cases; but the fact that there is an absence of reaction does not necessarily imply that the inoculation has not "taken," as would be said under similar circumstances after vaccination for small-pox. The doses range from 0.2 cubic centimeter for an infant to 4 cubic centimeters or a full dose for an adult.
Careful observations have been carried out to ascertain the efficacy of the anti-plague vaccine in decreasing the mortality arising from the disease. Although inoculation does not necessarily signify immunity from attack, yet as in small-pox vaccination it insures a lower proportion in mortality. For instance, in the Punjaub, out of 49,433 cases of plague among 639,630 uninoculated persons, 29,723 cases proved fatal-a case mortality of 60.1 per cent. In the same area there were 186,797 members of the population who had undergone inoculation. Out of this number, 3,399 fell victims to the plague, but the mortality was only 814 ; representing a case mortality of 23.9 per cent. In other districts even more striking results have been obtained, the sum of which conclusively proves that in this prophylactic agent the authorities have an efficient scientific instrument for reducing the effects of the scourge. In addition to supplying the whole of the country with the necessary vaccine, the Bombay Bacteriological Laboratory prepares supplies for the medical officers in other parts of the world where the epidemic is rampant; and it speaks volumes for the care and skill with which the agent is prepared, that since the above-described processes of manufacture have been adopted, and the many precautions enforced to insure absolute sterility of the vaccine, out of the thousands of phials that have been distributed, not one single instance of contaminated vaccine has been discovered. The institution, moreover, performs other highly valuable offices in connection with the bacteriological treatment of disease and plague research, and it was here that the epoch-making discoveries in connection with the etiology of plague were made by a commission working on the facts and materials which had been accumulated after ten years of patient labor on the part of the staff of the laboratory.

An authority states that the best test for cylinder oils is to heat them in a current of air for one hour at the temperature corresponding to the steam pressure at which they are to work. The loss in weight should not exceed 0.5 per cent.

(1)dxxespandente.

tHE MYSTERIOUS AEROLITE.

To the Editor of the Scientific American:
In your issue of November 7, 1908, under the heading "Was This an Aerolite?" Mr. Park Marshall, of Nashville, Tenn., writes a very interesting account of what be believes to have been a meteor. He declares that from his position the crash of the impact was as a great explosion of dynamite accompanied by a slight vibration of the earth, and that it was audible throughout several counties, including Franklin, Coffee, War-ren, and Grundy, of Tennessee.
He adds that "so great was the interest and excite ment created by this aerial disturbance, that citizens ormation, and that it is the chief subject of query ormation, and that it is the chief subject of query I find that on September 8, at about 10 A . M. (which he mentions as the exact date and time in his corres pondence to have been the hour in which that section was so terrified by this "aerial disturbance") a ship ment of dynamite was exploded at Wartrace, Tenn., on the N. C. \& St. L. Railway.
As the writer states that he was at Estill, Tenn., at the time, which is only a very short distance from the hat it was explosion, may 1 with apologies suggest Mr. Park Marshall, heard? E. B. Hoyte Mr. Park Marshall, heard?
Nashville, Tenn., November 14, 1908.

A500 Prize for a Simple Explanation of the Fourth Dimension.
A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a prize for the best popular explanation of the Fourth Dimension, the object being to set forth in an essay the meaning of the term so that the ordinary lay eader can understand it.
Competitors for the prize must comply with the conditions set forth in the Scientific American of November 21, 1908.

oliver Weldon Barnes.

Oliver Weldon Barnes. engineer, died on November 17, still active in his proession up to the last, despite his advanced age.
Mr. Barnes in 1847 joined the pioneer surveying corps of the western division of the Pennsylvania Railroad. He made the final location of the daring lines which then distinguished that division.
Mr. Barnes in the course of his career was in charge of the engineering for many railroads, including the Boston, Hartford \& Erie.

The Current Supplement.
The current Supplement, No. 1717, opens with a plea by Frederic A. Lucas for the preservation of the fast-disappearing whale. Prof. P. Gruner gives a historical review of theories of electricity. S. E. Brown tells how the Paris telephone switchboard, recently destroyed by fire, was rebuilt by an American firm in record-breaking time. The construction of the German automatic stamp-vending machine is described in detail. Stanley C. Bailey discusses the question whether precious stones can be manufactured. The manufacture of catgut for surgery is described at length. Dr. Gustav Glock propounds a theory of the ascent of sap in plants. The Kuch quartz mercury lamp is described by 0 . Bechstein. The Scientific American's English correspondent writes on a 325-horse-power kerosene motor for use in Italian submarine boats. The Cowper-Coles process of making copper tubes, sheets, and wire direct is explained. Prof. J. C. Kapteyn presents a- very striking picture f the motion of our solar system through space. The usual notes are also published.

A New Method of Eléctric Welding.

L. S. Lachman has devised a new process of electric welding; which makes it possible to employ steel instead of malleable iron in the manufacture of numerous: articles: As two pieces of metal of unequal sections cannot be welded together satisfactorily Lachman has one piece cast with a projecting edge and the other with a point. The two projections, forced together by a hydraulic press, are included in an electric circuit, of which they form the segment of highest resistance. Hence, when a strong current is caused to fiow through them, they are heated nearly or quite to the melting point and, being subjected to great pressure, quickly become welded together, and attach themselves to each other more firmly than they could be attached by means of rivets, because there is no break in the continuity of the metal.

Acid-resisting Cement.-A recent issue of the Brass World gives the following formula for an acid-resisting cement, for tanks, floors, etc.: Silicate of soda (water glass), 6 parts; glycerine, 1 part; red lead, $31 / 2$ parts; fine cinders, 10 parts. The silicate of soda and glycerine are mixed and then the red lead and cinders added to make a mass resembling putty. This cement soon sets or hardens, and when heated to the temperature of boiling water, unites with brick or Portland cement to form a strong joint.

thi heatens in drgember

by henky norrib rusgrll, ph.d.

Morehouse's comet, for the last two months the most noteworthy object calling for our attention, is by this time so low in the west at sunset that it can no longer be well observed.

We may turn our attention in another direction, and consider some results recently published by Prof. Lowell, concerning the atmospheres of the major planets.

No substance is perfectly transparent; but all known bodies absorb the light which passes through them, to a greater and greater extent as their thickness increases. For most transparent materials, this absorption is general; i. e., it affects light of different colors (or wave lengths) very much in the same way. But some substances show a selective absorption for light of particular wave lengths; that is, they absorb this light strongly, while letting through that of closely neighboring wave length almost undiminished.
All hot gases act in this way; for example, the sun's atmosphere absorbs light of the same wave lengths it emits, producing the familiar Fraunhofer lines of the spectrum. But some cold gases, though emitting no light, show a similar absorption. Among these are oxygen and water vapor, which are responsible for many lines in the solar spectrum as we see it.

That the absorbing med ium is in our atmosphere and not in the sun's, is proved by the fact that these lines increase in strength as the sun sinks lower toward setting; that is, as the thickness of air through which we look increases. The water vapor lines, too, change with the varying humid ity of the air.

Almost all the lines in question are at the red end of the spectrum, and for this reason have been very difficult to observe in the spectra of other bodies than the sun; for the extreme red is very faint to the eye, and wholly without effect on ordinary photographic plates.

But the workers at the Lowell Observatory, using the new red-sensitive plates and making long exposures, have succeeded in obtaining photographs of planetary spectra which in the case of Jupiter and Saturn at least, extend as far into the red as eye observations could possibly go under any circumstances.

The results are of great interest. For all four of the outer planets the lines due to atmospheric olxygen are stronger than for the moon (used for comparison to show the influence of our own atmosphere). We may hence conclude that their at mospheres contain oxygen.

Similarly, in the case of Uranus and Neptune, there is reason to believe that hydrogen, and perhaps helium are present in their atmospheres. But in all four cases, the strongest bands in all the spectrum are those, far out in the red, due to water vapor, which are very much heavier than those produced by one atmosphere alone. So it appears that the vapor of water is a principal constituent of their atmospheres. In our own it is present only in a small percentage; but this would be greatly increased by a moderate rise in temperature, which would increase evaporation from the ocean. If the earth's surface temperature should in any way be raised above 212 deg. F., the oceans would begin to boil, and we would soon have an atmosphere composed mainly of water vapor, which in this case we would call steam.
We are thus led to believe that the outer: planets: are hotter chan the earth. This has long been suspected, in the case of Jupiter, on account of the very rapid changes of the cloud-like markings upon his surface; but this new evidence, applying to all four planets, is still stronger. How hot they are, we cannot of course estimate; but it looks very likely that these planets consist of a nucleus hot right up to its surface, veiled in dense, unbroken clouds, floating in an atmosphere largely composed of steam.

NIGHT SKY: NOVEMBER AND DECEMBER

Studying our map, we see that the winter constellations are now fairly in sight. Orion is well up in the southeast, with Aldebaran above him, and Sirius flashing and twinkling below.

Due east, and to the left of these constellations, are Auriga (with the great yellow star Capella), Gemini, and lowest down Procyon in Canis Minor.
Perseus, Andromeda, and Aries are almost overhead. Pisces, Cetus, and Eridanus fill a very large and dull region in the southern sky. The bright star low in the southwest is Fomalhaut. The one above it, not shown on the map, is the planet Saturn.
The great square of Pegasus is high up, west of the zenith. Far below, just on the horizon, Altair is setting. Vega is likewise very low, almost due northwest, with Cygnus above.

Cassiopeia and Cepheus are above the Pole, Ursa Minor and Draco below, and Ursa Major lower still, east of north.
the planets.
Mercury is morning star till the 23d, and afterward evening star, but is too near the sun all through the month to be well seen.

Venus is morning star in Libra and Scorpio, and rises about $4: 40 \mathrm{~A} . \mathrm{M}$. in the middle of the month.

Mars is likewise morning star, very near Venus at the beginning of December; but as his eastward motion is much slower than hers, she draws away from him, and is about 20 deg. distant at its close.
Jupiter is in quadrature with the sun on the 5th; rises about 11:30 P. M., and crosses the meridian at 6 A. M.

Saturn is. also in quadrature, on the: 25 th, but, being east of the sun instead of west, crosses the meridian at: 6 P. M. and is visible all the evening.
Uranus is approaching conjunction with the sun, and is unobservable. ${ }^{\text {a }}$ Neptune is nearing opposition, and can be observed after $10 \mathrm{P} . \mathrm{M}$. or thereabout.

THE MOON.
Full moon occurs at 5 P. M. on December 7, last quarter at 4 P . M. on the 15th, new moon at 7 A . M. on the 23 d , and first quarter at $1 \mathrm{~A} . \mathrm{M}$. on the 30 th .
The moon. is nearest us on the 26 th, and farthest away on the 14th. She is in conjunction with Saturn on the 2d, Neptune on the 10th, Jupiter on the 14th, Mars on the 19th, Venus on the 20th, Mercury on the 23d, Uranus on the 24 th, and with Saturn again on the 29 th .

At 1 A. M. on the 22 d the sun reaches its greatest southern declination, and in the language of the almanac "winter commences."

ECLIPSESS.
There is an eclipse of the sun this month, and there comes very near being one of the moon.
The former, which takes place on the 23d, is visible only in the southern hemisphere. The track of central eclipse crosses South America, about 30 deg. below the equator, passing a little north of Buenos Ayres. A large partial eclipse will be visible in the morning all through Argentina, Chile, and southern Brazil. The rest of the shadow track is all over the ocean, passing about 1,000 miles south of the Cape of Good Hope, so that a partial eclipse will be visible in South Africa.
At the time of full moon on December 7, the moon just grazes the earth's shadow. If it was a few miles farther north, it would enter the shadow, and there would be a small partial eclipse. As it is, we may be interested, if we watch the moon rise that evening, in. knowing that it is as nearly full as the moon can possibly be without getting into the shadow of the earth.

Princeton University, Observatory.

Electro-acoustic Method of Measuring Distances at

Debrix has invented an ingenious method of measuring the distance of a vessel which cannot be seen, because of darkness, fog, or intervening objects. The method is based on the difference between the velocities of sound and Hertzian waves.
At the receiving station, which we may suppose to be a lighthouse or semaphore station on the coast, a train of clockwork causes a pointer to move over a divided dial at the rate of one division per second. The clockwork is started by a Hertzian wave, which is sent out by the ship simultaneously with a sound wave, produced by a gun, siren, or whistle. As the propagation of Hertzian waves is practically instantaneous, the pointer may be regarded as starting at the instant at which the sound wave leaves the ship. The observer on shore watches the pointer and notes its position at the moment the sound reaches his ears. The distance of the ship is then obtained by multiplying the number of divisions traversed by the pointer by the velocity of sound (about 1,100 feet per second).

The pesition of the ship can be determined with greater precision if the Hertzian and auditory sig nals are received by two shore stations, which can communicate with each other by telegraph. The distance of the ship from each station having been found, the ship's position on the chart will be at the intersection of two circular arcs drawn about the sta tions, as centers, with radii equal to the two distances. The result might be communicated to the ship by wireless telegraphy.
A still better plan would be for each of the chain of coast stations to emit, at regular intervals, simultaneous Hertzian and auditory signals (the stations being distinguished by peculiarities in the signals, as lighthouses are now differentiated). Then any ship provided with the simple receiving apparatus described above could determine its position at any time and make its way safely to port.-Cosmos.

A motor-operated revolving door has recently been installed in a Boston store, which differs materially from the ordinary type. The door is 10 feet in diameter, and is fitted with six wings, which are so ar ranged that if they come in contact with any person, they will swing back out of the way. The doors will swing in either direction, so that in case of a panic the crowd can pass out at either side, the doors folding before them. A quarter horse-power motor drives the door at a speed of about six revolutions per minute. After'a wing has been swung out of its normal position, it returns under the action of the spring, but its motion is controlled by an air check.

AT AUTOMOBILE HOE By JACQUEB BOTER
An automobile hoe, or cultivator, represents a recent application of automobilism to light agricultural machinery. The new implement, which is designed especially for the cultivation of beets and other crops planted in rows, has six blades and is driven by an explosion motor, by means of gearing. The chassis, constructed of steel - angle bars, is pointed in front and rests on four wheels, of which the front pair serves for steering and the hind pair for driving. In the front of the machine is a two-cylinder, four-cycle motor of 10 or 12 horse-power, which may be adapted to burn either carbureted alcohol or gasoline by an easily effected change in the carbureter. The feed and escape valves may be controlled by hand, and the ignition is furnished by accumulators, an induction coil and electric bougies. The bearings are continuously lubricated by a mechanical device. The cylinders are cooled by water, which is continuously $p u m p e d$ through a radiator of the wing type, which is shown very clearly in one of the photographs (Fig. 2). On the axis of the flywheel and almost surrounded by its rim is a conical fric tion clutch, so constructed as to exert no lateral pressure on the collars. This clutch is connected by an elastic sleeve with the speed changing box, which contains two trains of gearing, one for for ward, the other for backward motion, the latter effecting a reduction of speed in the ratio of 1 to 3. The differential is controlled by an endless screw. The maximum speed of the machine is about 2 feet per second or a mile and a quarter per hour. Because of the re duction mentioned above the speed backward can not exceed 8 inches per second. The driver sits in the center of the ma chine and steers by means of a Galle chain connected with the front pair of wheels. But the apparatus is so arranged that the position of the operator may be varied to suit the requirements of the work. In some cases he walks behind the machine, where he can watch the hoes and regulate the speed accordingly. On reaching the end of the row the machine turns on one of its driving wheels as on a pivot, and that wheel returns along the track made by it in coming. This maneuver, which is illustrated in one of the photographs (Fig. 2) is easily effected by means of the differential.

The automobile hoe com plete weighs 2,750 pounds, and cultivates a strip more than 8 feet in width Over horse hoes it pos sesses the advantage of suppressing the trampling of the young plants, in addition to greater uniformity of action. Hence it will, doubtless, be generally employed wherever drilled crops are cultivated on a large scale. By the substi tution of blades of special form the machine can be
adapted to accomplish, rapidly and neatly, the preparation of the ground before sowing, which is so important, especially in the cultivation of beets.

Electric Cleansing Compound.-Spot removing prep-

Optical Properties of Colloidal Solutions of Gold.
The study of the remarkable phenomena exhibited by the colors of colloidal solutions of gold was commenced, and pursued with some success, by Faraday, but no further progress was made until the recent invention of the ultramicroscope made it possible to prove the absolute uniformity of the particles of gold in a given solution.
W. Steubing has indicated a new method of investigation, by which the quantity of light diffracted laterally by the colloidal solution can be measured. He begins by preparing a number of gold solutions of each of the characteristic colors (blue, red and violet) in such a manner that the solutions are very permanent, pure in tint and as much alike (for any one color) as possible. These solutions are first examined with the ultramicroscope for the purpose of determining the color, luminosity and size of their particles. Two series of observations with the spectrum photometer follow. In the first series the absorption of various rays of the solutions (suitably diluted) is measured; in the second series the color and intensity of the light diffracted by the solutions are determined. The polarization of the light is next studied with the ultramicroscope in combination with a Babinet compensator. A second very careful examination with the ultramicroscope alone is then made, for the purpose of making sure that no change has taken place in the solutions. Finally, the quantity of gold is measured by two electrolytic methods.

In general, it was found that most the incident light was absorbed by the particles of gold and only a small fraction was diffracted. It was shown also that the color phenomena could not be explained by resonance. The lateral radiation from red solutions (containing green particles) was maximum for wave lengths between 560 and $570 \mu \mu$. In blue solutions (containing reddish yellow particles) a weak maximum was found at $570 \mu \mu$ and a stronger maximum in the red. The violet solution (containing both green and reddish yellow particles) is equivalent to a mixture of the red and blue solutions. The dull green solution (containing yellowish particles) exhibitếd a feeble luminosity with no well-marked max imum.

The curve of absorption of colloidal gold does not coincide with that of massive gold. The red solutions showed a well-marked maximum of absorption at 525 to $530 \mu \mu$. The blue solutions showed a minimum absorption at $490 \mu \mu$ and an ill-defined
aration. To 500 parts of water add 30 parts of glycerine, 7 parts of the strongest caustic ammonia, and 30 parts of ether, mix all thoroughly, then add 500 parts of water and 30 parts of white olive oil soap, shaking thoroughly until everything is dissolved.
maximum in the yellow, orange, or red. The ab sorption of the grayish green solution was almost uniform throughout the spectrum. The diffracted light was found to be partially polarized, the maxi mum polarization occurring with a deviation of 90
deg. The ultramicroscopic examination of the red and blue solutions by polarized light revealed considerable differences in the form of the particles. With the red solution the diffraction disks were always circular, but with the blue solution they were often curiously deformed. In general, the phenomena exhibited by the blue solutions were far less uniform than those of the red solutions.

THE GUIDING LIGHTS OF OUR COASTS.

 by c. H. CLAUDY.The goal toward which the Lighthouse Board of this country is striving, is a continuous chain of lights, completely encircling the United States and possessions, and, in the case of rivers and inland seas, bounding the waters on all sides, so that a ship may never leave the area of light thrown by one lighthouse, before entering the circle of light of another. As fast as Congress will appropriate the money, the gaps are being filled.
But what makes the light? When the curious inquirer is told "kerosene," he naturally wonders why his own student lamp does not give a better one, if the same oil in the lighthouse sends its beam from five to twenty-five miles.
Various methods of lighting were in use until 1840, when a new system was introduced of employing nearly true paraboloid reflectors and better glass lenses. In some cases these reflectors gave a light which is not surpassed even to-day, except when handled with intelligent care. In 1852, when the present Lighthouse Board was instituted, the Fresnel system of lenticular glasses was introduced from France, and still remains. The first cost is great, but by the saving. in oil over the reflector system this is soon reduced. With any reasonable care, a fine light always results; and it is impossible for a keeper to maintain a poor light with this apparatus without flagrant disobedience of instructions.
The accompanying illustration shows a first-order lenticular apparatus. It gives a flash every four seconds, alternate flashes being of slightly different duration. It will be seen that there are more or less complete lenses in the center of the apparatus, surrounded by more or less complete rings of prisms. Above and below are other sets of prisms, which catch the spreading rays of the central light and send it out straight toward the horizon.
Even with such an apparatus, no common lamp can supply the light. First-order lamps have five wicks, one inside the other, and are fed with oil by a pump and pipe system. The oil is fed to the wicks so that it reaches the ends, where the flame is, in the right time and in the right quantity. It is difficult to look at it, so intense is the light. In the lenses rather than in the lamp is the secret, for they pick up and utilize nearly all the rays of light•which ordinarily go astray. The Fresnel apparatus collects almost all of this waste light, and reflects and refracts it out in one great broad beam of light, parallel to the surface of the sea, where it is needed.

A diagram is reproduced with this article, showing the relative range of lights of the different orders and the relative intensities of a flash and a steady beam. All the light available is concentrated into the flash. In the steady beam, which has no intervals in it, the light covers a broader space, and so cannot cover it so far. That is one reason for making most flrst-order lights, which are to be seen at a great distance, very high, when they are fixed, and flashing whenever possible, so as not to interfere with near and similar lights.

The flames which come from the lamps are largely transparent. So, of course, are all other similar flames. If flames were not transparent, there could be no ad-

First-order revolving Fresnel lamp.

Third-order flame.
lamp and lens system is carefully adjusted, until all the light from the flame in the focal plane of the sys tem is being sent to the place where it is most needed. In some lighthouses, usually for range light purposes, the light is all to be concentrated in one beam. This is done by concentric rings of prisms and a cen tral bull's eye and a reflector. Vessels getting such a light in range, either by itself or with another light, and running down the beam, are safe from obstructions which may be nearby the range lights, or beams of light, marking out the channel to be followed.
It is frequently asked of light keepers, why electricity is not used in place of mineral oil. An electric light is expensive to install, and difficult and expensive to maintain. There is always difficulty in keeping the arc exactly in the focal point of the lenses, the carbons never burning twice alike, and constant watching being necessary. Failure to have the light source exactly in the focal point of the lens results in sending the light rays up or down instead of straight out where they are wanted. Electricity, while superior in penetrative power in a fog, has no advantage over a powerful oil lantern in clear weather. Mineral oil, colza oil, or lard oil lights of the flrst order could be seen a hundred miles were it not for the curvature of the earth; and as long as the light is visible long before the coast is, all purposes are served.
It is only within recent years that min eral oil has been in use. Lard oil succeeded colza oil, and was used exclusively up to 1880, and with mineral oil up to 1889. Since the latter year, mineral oil has been used entirely, except where electricity has been experimented with, or coal or acetylene gas So far, coal oil, for power, efficiency, cleanliness, ease of operation, and cheapness, holds its own against all other means of light making.
Electricity, if it can be successfully installed, is the best light; but through expense of maintenance, and in the inability to get skilled attendants for such a light for the price the law sets on keepers' services, it makes slow headway. The Lighthouse Board, however, keeps fully informed as to all improvements in such apparatus, and is
vantage in having one flame inside another, and a third inside the first two, etc. The lights from the inner ones could not get out, and would do no good. Pictured with this article are flames of a flrst-order and a third-order lantern, to illustrate the transparency of the flames. These photographs were taken in a fraction of a second, and developed with great care, so as not to block up the delicate tracery of detail. As it is, the reproduction necessarily loses much of the fineness of the original.

The irregularity of the flames is of less importance than the maintaining of a solid band of flame across the focal plane of the system, which is shown in the larger flame photograph, by black lines. It is from this point that the lenses take the light which they project out to the horizon, this part of the flame being the brightest and the steadiest. The relation of
anxious to experiment further whenever Congress will provide the funds.
The traveler who cruises up the coasts, and who sinks one light before picking up another, may know that somewhere in the dark circle is a spot picked for the foundation of a light which will be erected as soon as funds and time allow.

It is reported that from 2,500 to 3,000 tons of electrolytic copper will be required for the electrification of 1,310 miles of railroad in Sweden, the conversion of which from steam to electricity has been decided upon. The lines concerned are all to the north of Stockholm except the Charlottenburg and Laxa and the Gothenburg and Stramstad lines. The system will be fed from five power stations, and work will be commenced early next year.

Diagram showing relative intensities of lights of different orders and different characters.

The Editor of Handy Man's Workshop will be glad to receive any hints for this depare and pay for them if available
 Che Cbristmas Cree.
\triangle bevolvina chisismas treb.
There is nothing more impressive at Christmas time than a revolving Christmas tree, lighted by electric lamps. The following illustrates a simple yet inex-

pensive way of arranging a revolving Christmas tree, that will not upset and is easy to put up and take down year after year. The initial cost is the only one except the recharging of the batteries every year, which can be done from an ordinary lamp socket, using a number of lamps as a rheostat.
First locate in the ceiling, at the selected place for the tree, a beam or lath, and with the point of a sharp knife cut out a V in the ceiling paper, and bend the point of the paper to one side. Into this exposed part of the ceiling screw a hook about $3 / 16$ inch in diameter. To this the tree is hung as hereinafter described. When the tree is taken down and the hook unscrewed, the V -shaped piece of paper may be pasted back to cover the hole and leave no marks in the ceiling.
The inside or stationary part of an old bicycle pedal is fastened to the above-mentioned hook. To the outer or revolving part are secured two wires about 12 gage and 2 feet long. These wires are securely fast

SOME IMPORTANT DETAILS OF THE REVOLVING TREE
ened on opposite sides of the tree, preferably bent under a branch (Fig. 1). A piece of tin may be cut and fastened at the top of the pedal, from which the tinsel and strings of glass balls may be hung.
To the lower part of the tree is secured an arrangement as shown in Fig. 3. This consists of a large grooved pulley about 12 inches in diameter by $7 / 8$ inch thick, made out of ordinary pine board. The groove may be made with the edge of a half-round rasp. To the upper side of this pulley are secured three or more small brackets, which are fastened to the tree with wood screws. On the under side of this pulley are secured and. insulated from each other two metal disks or rings, such as brackets for ordinary gas globes, terminating on top of the pulley with binding posts. Into the center is driven a tenpenny wire nail. A small box placed on its side may be put on the floor ûnder the tree with a small hole to receive the nail. This forms a guide for the lower end of the tree. The box may either be nailed or weighted down, so as to keep the tree steady. Fastened on the box and insulated from each other are two copper brushes, one for each ring respectively. A small electric motor, such as is usually sold for $\$ 1$, is now placed about 18 to 24 inches from the large pulley. As a rule, these motors run too fast for this purpose. A wire may be coiled about the motor shaft and soldered fast to form a worm which may mesh with a train of clock wheels. These can be obtained from any watchmaker. To the shaft of one of these wheels a small pulley is secured about 1 inch in diameter (Fig. 1). Wrap this pulley with cord, and put some rosin on, so as to increase the friction. Now place a small endless cord over the large and small grooved pulleys. The motor should be connected up with a dry-cell battery, and by placing in the circuit a switch or push button, the motor may be started at will.
The tree is now ready to revolve, and should make five to seven revolutions per minute. The batteries may either be kept in the box under the tree or in the cellar, where they will be out of the way. Two small holes may be drilled in the floor, about 2 inches apart. A pointed copper wire about 8 gage may be pushed through the rug or carpet into these holes and connections made to these wires with the batteries in the cellar and to the brushes on the top of the box, and by putting a switch in the cirputting a switch in the cir-
cuit the current may be cuit the current
turned on or off.
From the binding posts on top of the large pulley, the feed wires are run on opposite sides of the trunk of

an blectric candle. lamps; ordinary bell wire will answer the purpose. I have found it best to run several of these feed wires, and to put about five lamps on each set. This gives far better and more uniform distribution of the electricity to the lamps than when large wires are used, as the top lamps get very little or no current. The lamps used in series from the ordinary current are by far too bright, as it simply puts the tree in the "shade." A soft light is the more desirable, and the tree may be decorated to a better advantage with battery lamps, as no unsightly sockets or heavy cords are used, and there is no danger of fire. The wires are soldered on the lamps, as shown in Fig. 4, and may be placed in the hands of the images used in decoration of the tree. The lamps may also be inclosed in small Japanese lanterns, which will greatly add to the beauty of the tree.

Another pretty effect may be obtained by using an ordinary tree candle with its usual holder hung on a bough. To do this, remove the wick by boring a small hole in the center of the candle, into which insert the wires, already soldered onto the lamp, letting the lamp rest on the top of the candle (Fig. 5). Of course, the more lamps used, the prettier the effect. A 7 -foot tree will require from 25 to 35 lamps.
The connection between the lamp and the feed wires may be done by twisting the ends together. Care should be taken that the ends of the opposite wires do not touch each other, and that no tinsel comes in contact with them. Run the branch wires on top of the branches. A diagram of the wiring is shown in Fig. 1.

When all the lights are turned on, start up the motor and see that everything is all right and that all the lamps are burning bright before decorating the tree. Then the lamps may be moved to suit the ornaments.
The box under the tree as well as the motor may now be covered up with cotton batting and small twigs cut from the lower branches of the tree.

Instead of placing the tree in front of a window, it may be placed in the center of a dining-room table. The table may be opened about six inches to let the trunk of the tree pass through. Some of the lower branches will have to be cut off. The chandelier may be removed and a small hook screwed on the gas pipe, from which the tree may be suspended. To close the opening in the table, two tablecloths must be used, and a few twigs may be placed where the cloths meet. A double floor switch may be employed, to one side of which the wires from the motor and to the other the wires to the lights may be connected. By manipulating the switch with the foot, the motor may be started or the lights turned on independently of each other.

ROLLER MOUNTING FOR THE CHRISTMAS TREE.

by aeorge w. naylor.

Christmas trees are usually placed in a corner of the room, and this is often the cause of an upset when decorating parts that are adjacent to the walls and difficult of access. It has been the writer's practice

ROLLER MOUNTING FOR THE CHRISTMAS TREE.

to mount the tree on castors, so that it can be trimmed and lighted in the center of the room away from curtains and draperies and, when ready, moved into the corner or any other desirable location. The tree stand is broad, and the castors cause it to slide across the floor rather than upset, when the branches are bent in reaching the presents or decorations.
The stand consists of two 3 -foot lengths of 2×3 inch scantling, halved and joined together at their centers. An ordinary castor is fitted to each arm of the stand. The tree is mounted in a holder of strap iron consisting of a ring to which four arms are riveted or secured with stove bolts, as shown in the sketch.

FOLDING TREE STAND.

by a. v. searing, jr.
The accompanying cut shows a simple way to make a support for a Christmas tree. The material should be of hard or tough wood that will not split easily.
Make three pieces like A, of $7 / 8 \times 2$-inch strip, also three pieces like C, of $7 / 8 \times 25 / 8$-inch strip, and one piece ike B; for this the bottom of a peach basket will do ery well. In the center of the disk B bore a 2 -inch hole to receive the sharpened base of the tree. Fasten the C pieces to the underside of the disk B with screws. Bore holes in the arms of each C piece to just receive a 3 -inch wire nail. In the top of each leg, A, as shown, insert a small nail or screw to form a point that will press into the tree. Now place a leg A in the slot sawed out of C, and pass a 3 -inch wire nail through the holes.

When the Christmas tree is taken down the legs may

FOLDING TREE STAND.
be unhinged and the stand folded and packed away for use next year.

TO PREVENT THE CHRISTMAS TREE FROM UPSETTING. by н. \boldsymbol{G}. \mathbf{L}.

The Christmas tree can be safely supported by the use of fine, almost invisible, wire. Fasten three or four wires to the main body of the tree at a point near the top. Draw each wire tight, and secure to brads in the door and window frames, or the picture molding, at opposite sides of the room. Twist one or two of the wires about strong limbs to prevent the tree from turning. This arrangement obviates all necessity for marring the floor.

A CHRISTMAS TREE GARDEN
 by l. GEsBFORD HANDY.

A "garden" under the Christmas tree offers an excellent opportunity to add much to the interest of the children's holiday. In the accompanying illustrations I have shown how an interesting and instructive

PLAN VIEW OF THE GARDEN.
utside track. Switch 5 connects with the main out side track, and switch 6 with the remaining side of motor. The train always stands at station 8 until button 4 is pressed, when it makes a circuit of the garden, and stops at station 8 until the button is again pressed. This feature is not only interesting, but saves the battery. The switch 5 controls the railroad system, and switch 6 the water system and wind mills. A small motor costing $\$ 1.50$ is arranged as shown in Figs. 1 and 7. The shaft 9, carrying wheel 10 , is $1 / 8$ inch diameter and 4 feet long. It is designed to operate the windmills in the manner shown in Fig. 1. Waxed thread is used for belts. The lift is made of an endless brass-wire sprocket chain passing over 1 -inch wheels at top and bottom. Small buckets of painted tin are soldered to each sixth link. The wheel centers are 10 inches apart
Fig. 6 illustrates clearly how the water is fed underground from the mountain lake to the falls 1 and 2. A 30 -inch length of $3 / 4$-inch copper tube is used here Figs. 3 and 4 illustrate the manner of mounting the mill wheel.
Old cigar boxes and similar light material are employed to form the frame of the waterways, hills, etc For the streams, these are cut as in Fig. 5; for other parts, they are cut and arranged as required. Short lengths of copper wire are bent to necessary shapes, and fastened in place with small staples. For large areas rust-proof wire netting is bent and tacked to the frame. Irregular pieces of tough paper, dipped into oil paint, are laid on the network of wires to a thickness of several layers. The beds of the streams and lakes are covered with five layers. When the paint is thoroughly dry, the waterways are spread with several coats of good shellac.
For a summer garden, paint the "ground" a flat grass green, and cover judiciously with artificial moss and trees. For a "winter" scene paint the ground a flat white, and cover with raw cotton and snow-laden trees. Sprinkle with artificial snow. A quantity of gravel in the streams, a sailboat or two on the lake, ducks, horses, etc., and even people placed around the garden give life to the scene.

PROTECTION FOR CHRISTMAS TREE CANDLES

by G. h. rutherford.
It is a foolishly dangerous practice to risk the con sequences of fire from the unprotected lights com monly seen on Christmas trees. In the accompanying illustrations I have shown how a very simple and orna mental protector may be made at home. The cylinder

PROTECTION FOR CHRISTMAS TREE CANDLES.

1 is preferably of glass, but a wire netting may be used with entire satisfaction. The top and base are each made from a piece of tin cut $17 / 8$ inch square They are identi cal, and are punched with two holes to re ceive the wire 2 The corners ar bent inward just far enough to enter the ends of the tube. To light, slide the
tube along the wire until the wick can be reached. The tube should be 3 inches long by $11 / 2$ in diameter.

Some நome-made Gbristmas Presents.

FLEXIBLE MIRRORS.

by leonard f. greene.

Mirrors which can be bent into any desirable shape, or can be cut to conform to any pattern, can be made by the following process: Coat stout paper or tissue with three or four coats of white of egg, allowing each coat to dry before applying the next, and then apply several layers of transparent varnish to the thickness of mirror glass. Smooth a sheet of tinfoil, and apply to it several coats of waterproof varnish. When dry, glue the varnished side of the foil to paper, tissue, or whatever substance is to form the permanent support of the mirror. Spread mercury on the other side of the tinfoil, forming an amalgam. On this lay the varnished surface of the first paper, applying first a transparent glue, very thin.
Subject the whole to a strong pressure, as in a letter press, letting it stand for
at least twelve hours. The upper paper is now removed by moistening with water until the white of egg is dissolved. The result of the operation will be an actual mirror, the beauty of which will of course largely depend upon the clearness and transparency of the varnish used. The mirror may be made in such a form as to fit the place it is to occupy. But this is not absolutely necessary, since the finished mirrors can be bent into any desired shape.
Beautiful effects can be produced by using colored mirrors, which are obtained in the same manner by substituting a varnish of the desired color over the white of egg.

COPPER-PLATING FLOWERS AND OTHER PERISHABLE ARTICLES.

The following process of preserving objects as souvenirs in a state where they will not only retain their original shape, but have their appearance greatly added to, while comparatively simple, depends for its success on the thoroughness with which the different operations are performed.

The requirements consist of any common form of

COATING THE OBJECT WITH WAX.

battery-three Daniell or two Bunsen cells connected for intensity, will be found sufficient-a large stoneware or glass pot large enough to hold the object, and two rods to fit across the top. The stoneware pot is now filled with the usual copper sulphate solution used in plating, namely, 4 pounds sulphate of copper, 1 pound sulphuric acid, 18 to 20 pounds water. The solution should be filtered. The object to be preserved is suspended in the solution, and attached to the zinc wire of the battery. To the other wire a piece of copper is hung. So far the process is that of copper plating. In order to obtain an even deposit of copper, however, on the objects, they must be prepared beforehand, and this is where the skill is required. The list of objects that can be thus coppered is large, and each will in a measure require different treatment.
If, however, I describe the handling of two or three different kinds, the necessary requirements will be made plain to anyone accustomed to copper plating.
One popular souvenir is "baby's first shoe" when it has arrived at the cast-off state. The shoe is taken and washed thoroughly to remove all grease, such as polish. It is then coated evenly with graphite, which is well rubbed into the leather inside (as far as pos.

HOW THE BATTERY IS CONNECTED FOR COPPER plating.
sible) and out. The laces tied in a bow left half way up the shoe add to the appearance when finished. When this is covered with copper it presents a very solid appearance, and can be left dull or polished in places. The exact appearance of the shoe is retained.
A piece of lace makes a very pretty object when covered with copper, as it has the appearance of being woven in copper thread. The lace must be well covered in graphite, the best method being to pin the lace on a board and rub the graphite well into the fabric with soft linen. In suspending it in the copper solution, it must be spread out and held in position by means of small shot tied to it by means of thread, to keep it vertical. If a very delicate piece of copper lace is silvered afterward, the effect is very fine.
The most beautiful object is perhaps a flower covered with copper, and this requires special treatment. Let us take a simple flower as a sample. A daisy is covered by means of an atomizer with a thin coating of paraffine wax, care being taken that all parts are covered. On cooling, the wax-coated flower is dusted over with graphite, and when thoroughly covered is treated as other objects described above. A half-
opened rose is more difficult to spray with wax, but when cool the petals can be moved to any desired position. A rosebud is comparatively simple, requiring only to be dipped. Leaves and other objects of a similar shape need not be waxed if the graphite will adhere without. Copper-coated flowers are now being used as hat pins, and make very artistic Christmas presents.
The best form of atomizer to use is one composed of two tubes at right angles to each other, the vertical one being inserted in the hot wax, which can be kept in a water bath. By blowing in the horizontal tube, a fine spray of wax will cover the flower.
In order to obtain an even coating on the object, a good method is to have two copper wires from the carbon, and hang a piece of copper on each side. If this is not done, the object must be turned at intervals.

ORNAMENTAL CONCRETE FLOWER POTS AND HOW TO

 MAKE THEM.by ralph c. datison.
The majority of people know something of concrete and of its advantages for a building material, especially where strength and fire-resisting qualities are a

THESE ORNAMENTAL FLOWER POTS MAKE EXCELLENT CHRISTMAS PRESENTS.
factor. Few however know of the wonderful ornamental possibilities which can be obtained with it by a little ingenuity in the selection of the proper aggre gates and the imbedding of tile arranged in varying designs.
A most interesting example of this work, the conception of Mr. Albert Moyer, is displayed in the permanent exhibition hall of the Concrete Association of America, New York. Here are to be seen a number of highly decorative flower pots. These look as though they were difficult to produce, but they are simple to make when one knows how.
Concrete is a mixture of cement, sand, and stone; to this is added the proper amount of water and the whole is then worked into a pasty mass. Thus the concrete mixture being of a plastic nature, can be molded or cast into any desired form.
Therefore the first thing to do is to prepare a mold in which the pots are to be cast. A detailed drawing for a pot 9 inches square by 10 inches high is shown in the accompanying illustrations. Use wood not less than $1 / 2$ inch thick, $9 / 4$ inch or 1 inch would be better. The outside form, Fig. 1, should be made first. This is nothing but a wooden box with the top left off and the bottom nailed on from below. Use as few and as small nails as possible. Three on each side will be
 plenty, as indicated in the illustration. The core, which is shown in Fig. 2, is the most difficult part to make. It is in the form of a tapered box, and must be made of sections as indicated, so that it can readily be removed after the concrete has set or hardened. After completing the mold, the concrete mixture should be made up. This should consist of 1 part Portland cement, 1 part good clean sand, and 4 parts of an equal mixture of marble $\begin{array}{cl}\text { Fig. 1. -THE OUTSIDE FORM mixture of marble } \\ \text { OF THE FLOWER POT MOLD. } & \begin{array}{l}\text { chips and trap rock } \\ \text { varying in size from }\end{array} \\ & \\ 1 / 2 \text { inch to } 9 / 4 . \operatorname{inch} \text {. If marble is not available, very }\end{array}$ $\begin{array}{cc}\text { Fig. 1. -THE OUTSIDE FORM mixture of marble } \\ \text { OF THE FLOWER POT MOLD. } & \begin{array}{l}\text { chips and trap rock } \\ \text { varying in size from }\end{array} \\ & 1 / 2 \text { inch to } 9 / 4 \text { inch. If marble is not available, very }\end{array}$ $1 / 2$ inch to $9 / 4$ inch. If marble is not available, with the trap rock. Mix the sand and cement together thoroughly while dry, wet down the marble and trap rock by dipping it in a pail or sprinkling with water, and then add it gradually to the sand and cement, thoroughly mixing the whole, and at the same time adding enough water to make it the consistency of a good heavy cream.
The next operation after mixing is the pouring or placing of the plastic concrete into the mold. This is done as follows: First fill the mold solid up to a level with the bottom of the core, pack the cement down well, and then place the core box in position,
as indicated in Fig. 3. Be sure that it rests solid on the concrete which is already placed, and that it is centered in the box. This is important, for if the core is not exactly in the center, the sides of the pot will not be of equal thickness. A good way to center and secure the core in position is to nail a strip of wood to it, and in turn nail the ends of this strip to the top of the outside form, as shown in Fig. 3. This will also keep the core down in place. After the core has been placed, and secured as above, fill the rest of the mold with the plastic concrete, packing it or ramming it down well with the blunt end of a stick. When the concrete mixture reaches the top of the mold, smooth it off nicely, and set the mold and its contents on a. level place to let the concrete set or harden. In twenty-four hours from the time of pouring (do not let it be longer than this, for if so the concrete will be too hard for treatment) the concrete will be sufficiently hard to remove the molds. This should be done carefully, in order not to break the corners, as the concrete is yet more or less soft. First remove the bottom and then the sides of the outer mold. These should come off easily, unless there have been too many or too long nails used. As yet do not attempt to take out the core, as the concrete is not hardened, and the core will help to hold it up. After removing the outer forms, the surface of the concrete will appear comparatively smooth and uninteresting. The next operation is to wet the concrete surface down lightly by dashing water on it, and then to gently scrub it with a stiff brush, such as an ordinary house scrubbing brush. This operation will remove all of the surface cement and will expose the aggregates, that is the pieces of trap rock and marble which were used in the mixture, thus producing a surface similar in some respects to a black and white mosaic. If it is found that in some places the surface cement will not

Fig. 2.-DETAILS 0F THE CORE BOX.

come off by rubbing with plain water and a brush, a solution of 4 parts of water to 1 part of commercial muriatic acid may be used. Apply this with a brush, and be careful not to get it on the hands. Let this solution remain on the surface for 15 minutes, and then scrub again with clean water and rinse thoroughly. This will leave a good, bright, clean surface, each stone sticking out boldly and free from all surface cement.
After the surface has been treated thus, the pot should be put away for two or three days to dry out and harden. The core can then be removed. This should be done as follows:

First remove the small strips $a b$, which have been nailed from the inside, as indicated in Fig. 2. On removing these the V -shaped section c will be released from the sections $d e$ and can be forced toward the center of the pot and drawn out. After these V-shaped pieces have been removed, the sides f will be free and can be collapsed toward the center, and in turn can be removed. The bottom, which is made in two pieces, as shown, will then release itself freely. Before pouring the concrete mixture it is well to grease all parts of the mold, which come in contact with the plastic concrete, with a heavy oil or vaseline. This will prevent sticking, and will allow the mold to be released readily from the concrete after it has set up or hardened.
Many will probably ask why it is necessary to have a collapsible core. Why will not a plain, solid box do? The reason for this is that in pouring your wet concrete mixture, more or less moisture is absorbed by the wood mold, thus causing it to swell. If the core were made solid, it would be next to impossible to remove it without cutting it to pieces.
Therefore, in order to prevent any undue strain on the fresh concrete by hammering or cutting on a solid core in order to remove it, and also in order to be able to save the core, so that it can be used over and over again for other casts, it is always better to make a collapsible core, as shown in Fig. 2.
So far the method of procuring a mosaic effect has only been explained. But by exerting a little artistic taste, by the incorporation of colored tiles in pleasing designs, one can produce some very interesting and really striking results.
There are various means which can be employed for inserting the tiles in the outer surface of the pots. One is to place in the outer mold a negative mold.

This is done by cutting out a piece of wood the exact shape but a trifle larger than the tile which is to be inserted, and nailing it in the desired position to the inside of the outer mold. On drawing the outer mold this will leave a cavity in the outer surface of the pot into which the tile can be cemented. In cementing the tile in place, the surface of the pot as well as the tile itself should be well soaked with water. Use a mortar composed of 1 part cement to 1 part fine sand. Another method for placing the tiles is to bore small holes through the outer forms, and secure the tiles to the inside of the outer forms by tying with string, as indicated in the illustration; care being taken to see that the ornate side of the tile is placed next to the wood. Then pour in the plastic concrete as you would proceed to do in an unornamented pot. Before removing the outer forms in this case, however, the strings which hold the tile in place should be cut. This is

Fig. 3.-THE MOLD ASSEMBLED FOR THE PLACING OF THE CONCRETE
perhaps an easier method of placing the tile than that of making a negative mold. But in some cases it is hard to get the plastic concrete to flow completely around the tile. If in removing the forms, however, it is found that there are some places where the concrete has not run up to the tile, these holes or "voids," as they are called, can be filled in or pointed up by cementing small pieces of stone in them. Anyone making a vase or pot after the above directions will be amply repaid for his trouble; for the work is inter esting, and is suggestive of an unlimited number of designs and combinations, each of which will contain more or less individuality.

HOME-MADE METAL LAMP SHADE.

BY b. A. JOHNS.
The accompanying sketches show a simple and yet effective way to make a metal lamp shade. When the desired size, shape, and general style of the shade is selected, a diagram is made, from which the blanks or sections are made. The blanks are cut out from some thin metal, such as copper, brass, or black iron, with a small strip on one side, as indicated in dotted lines in Fig. 3. This flap is to be turned in and soldered to the adjoining blank
Now trace the desired design on the blank, which may be a conventional flower or anything that ap-

干if. 1

home-made metal lamp ghade.
peals to the fancy of the maker. Put ar blank on the end of a hardwood block, such as maple, and with a small punch, any shape, punch out the outlines of the design as closely as possible. After this the blank is turned over and laid on a piece of soft iron, and with a small prick punch a number of indentations are made in it between the outlines of the design.

After the blanks have thus been prepared, solder strips of metal on the inside, for the purpose of holding the glass, also to make the blanks stiff (Fig. 3). Now solder the blanks together. Small bows of lead ribbon may be made and fastened at the corners, giving the impression that the several blanks are tied together. The shade is now ready to be painted. Use any kind of paint that will dry fiat, such as ivory black. When dry, place between the glass and the frame a color screen of colored gelatin or celluloid, Different colors may be pasted on the glass, side by side, so as to bring out the different colors the design is supposed to represent. For instance, if the design should be a bunch of cherries on a twig, red may be used for the cherries, brown for the stem, and grees for the leaves.

When the glass is finally put in place, the pieces of metal soldered on the inside of the shade are now turned over, so as to hold the glass in place. Care should be taken that the glass does not fit too tightly. Always give it more or less room to allow for thermal expansion. A string of beads may be fastened to the bottom or lower edge of the shade.
The shade may be made of paper, in which case two blanks are used. These are fastened and perforated at the same time with a large needle over a small cushion of sand or emery. The color screen is then inserted between the blanks, and the latter are bound together with ribbons. Another pretty effect may be
may be made to appear or disappear as the operator desires, by the manipulation of the switch. An interesting adaptation of this box is to provide an opening in the side of the box, as well as one in the rear opposite the front opening, so as to permit two persons to place their heads in the compartments. These persons will be hidden behind a curtain, as indicated

OL TOUCHING THE bUtTON ONE FACE mergrs

 INTO THE OTHER.in one of the illustrations. Now, on operating the switch, first one face and then the other may be made instantly to appear in the box. If a dimmer is used, which will gradually shut off the light of one lamp while turning on the light in the other, one face may be made to fade and merge into the other. This illusion box should make an interesting feature of the Christmas entertainment.

THE GOLD FISH APPEAR AND DISAPPEAR AT THE TOUCH OF A SWITCH.

\triangle TRICK WITH TOURMALINE.
 prof. gustave michaud, cos

The little apparatus here described allows one to see easily any object in spite of an obstacle which will prove insuperable to all eyes but yours. The principle which underlies the experiment is not widely known among persons who have not made a study of optics, and the performance always causes considerable curiosity, even after the mystery has been duly explained.
You hold a plate of transparent, colorless glass in your hand, and ask the company whether anyone feels sure he can always read plain writing or print directly under the glass, within a reasonable distance from the eye and with plenty of light falling upon it. Upon re-
obtained by using two blanks of white Bristol board, without any perforation, and instead of the color screen, place between the sheets some pressed fiowers, leaves, grasses, or the like.

Che Gbristmas Entertainment.

A PUZZLING DISPLAY BOX.

by frank c. perkins.
An interesting electrical illusion box has recently been devised, which is well within the ability of a handy man to construct. It consists of a perfectly square box of any material, such as wood or tinplate soldered together. The box is divided into two compartments by a diagonal partition consisting of two sections of equal size, one of the sections being a glass plate. Immediately in front of the glass section there is an opening in the box, through which observers can view the illu. sions. The whole interior of the box except the glass plate is painted a dead black. The illusion is produced by placing two objects in the two compartments. One of these objects may be a globe containing gold fishes, and the other a globe of identically OF THE ILLUSION BOX.
ceiving an affi ceiving an ammmative answer, you bring a table near the window. The plate of glass, with some printed matter under it, is laid fiat on the table, close to the window. A few books are piled on the other end of the table. You rest your chin upon them, and then move the plate of glass until you can see the luminous sky refiected on the glass under an angle somewh a t smaller than 45 deg. (34 45 deg. (34 deg. will give the best re sults, but there is no need of accuracy). In such circumstances you will find your will find your self unable t see anything under th glass. The as sistants may try, one after the other, to the other, to take your place and read the script; their attempts are vain. On the plate they see the bright sky. the bright sky Under it the see nothing not even th shape or color of the sheet of paper. The intense ligh intense light refiected on
the surface of ward compartment, and to light the lamp in the rear compartment, the other object only is seen through the glass partition. In this way the fishes in the globe

The invisible printing is read easily through what appears to be common green glass.
 A TRICK WITH TOURMALINE.

RECENTLY PATENTED INVENTIONS. Pertaining to Apparel.
TROUSERS-STRETCHER.-R. C. MITCHELL, ayetteville, Ark. This invention has for its object the provision of features of construc
tion for a trousers stretcher which afford a light, strong, shapely and very convenient device of the character indicated, that is adapted for manufacture from metal rapidly and
fectly by machinery, at a moderate cost.
NeCKTIE.-M. Prager; New York, N
More particularly this invention relates to neck ties which are tied or knotted by the wearer An object of the invention is to provide a tie,
cravat, scarf or similar article of apparel which cravat, scarf or similar article of apparel which
can be tied or knotted by the wearer, which can be tied or knotted by the wearer, which
tends to retain its normal shape for an exor fold marks.
GARMENT-HANGER. - A. K. Bowman Greensburg, Pa. The invention is designed par icularly to improve that form of hanger tha consists of a hanger bar adapted to support a sion hook in the hangers as generally made, being fixidly secured in place, which makes the hangers bulky, and hence inconvenient for
packing, etc. The object is to provide a hanger packing, etc. The object is to provide a hanger
having a detachable hook, thus materially having a detachable hook, thus materially
economizing space in the packing, shipping, and storing of the hangers.

of Interest to Farmers

CULTIVATING-SCRAPE. - A. F. DAVIS Marion, Ala. The scrape is adjustably con that the former can be run shallow or deep as required, and further, so that the scrape ing its entire cutting edge to the earth, weeds bushes, etc., in the most effective manner with the least possible draft resistance and without a tendency to turn in either direction, or to
tilt forward or backward while being run or used, thus providing a balanced and adjustable scrape.
HOG-TRAP.-W. S. Phillips, Wolfrun, w Va. This structure provides a means for prop erly securing a hog for ringing it or perform-
ing other operations on animals. The hog is ing other operations on animals. The hog is
driven into the structure through a rear door riven into the structure through a rear doo
so that the door may be moved forward by ropes and a winding shaft to force the an door, where it can be secured. It is adapted to be thrown so as to have the animal on its
side when the operation to be performed reside when
quires it.

Of General Interest.
digging implement.-J. P. Manahan, Red Bank, N. J. The implement or spade has and at the side edges and at the lower edge cutting teeth or serrations, the blade having
secured thereto a handle provided with transverse rings and itself having an opening which serves, like the rings, to receive the foot of the operator, who can thus apply his weight at successive supports in forcing the implement
gradually into the ground.
PLANE:-A. Link, St. Paul, Minn. An ob-
ject of this inventor is to provide a plane for ject of this inventor is to provide a plane for
cutting grooves or rectangular cavities and having means for easily and rapidly adjusting the cutter. The device has handles, by means a cutter adapted to be projected from the
plane stock, one of said handles controlling the cutter and serving both to operate the plan and to adjust the cutter.
SHAVING-CUP.-J. HolzSAGER, New York N. Y. This sanitary cup is adapted to re
tain a cake of soap in the center of its bot tom and provides a rubbing surface about the soap. The bottom is constructed with a cen-
tral depression and the adjoining portion of the bottom is made at a higher level to pro vide an annular rubbing surface, whereby the
brush may have a complete sweep on this surface around the soap in the production the lather. A handle and dischage spout ar provided, A the latter permitting tilting for
pouring off an excess of water or draining the pup.
MEASURING-HOPPER.-C. SUITER, Billings, Mont. This invention refers to a measuring or portioning hopper capable of use in many
ways, but especially adapted for mixing ma terials for compositions, the principal objec being to provide means whereby predetermined
quantities of the materials for a composition quantities of the materials for a composition
can be fed simultaneously from the hopper. WINDOW.-A. C. GoddARD, New York, Y. The object in this case is to provide cer
tain new and useful improvements in tain new and useful improvements in me
tallic windows, whereby the window is ren tallic windows, whereby the window is ren
dered dust-proof and the sashes are efficiently dered dust-proof and the sashes are efficiently held against ratting. By the arrangement a
exceedingly strong and durable sash is pro vided, securely holding the panes in place.
Cigarette-case.-B. Epstein, New York, N. Y. This invention pertains to pocket cigarette cases such as carried by cigarette smokers. The inventor's purpose is to produce a case
which can be very economically formed, and which will present pockets from which the cigarettes may be readily removed.
COMB-CLEANER.-F. Fevola, New York,
N. Y. Means provide for engaging the oppoN. Y. Means provide for engaging the oppo-
site ends of the comb and a member supported
ed to intermesh with the comb teeth wher
one or the other is revolved, the member b ing interchangeable with other like members and laterally adjustable with respect to the comb in order that the device may be used in
cleaning combs having the teeth of varying depths and spaced different distances apart. SUPPORTING DEVICE FOR UMBRELLAS, F. B. Cumpston, Blooming Grove, Tex. In the present patent the invention has for its purpose the provision of simple means for ad rom the person of the user of the device, and thus permit the free use of both hands and arms as occasion may require
FORM FOR ANIMAL-HEADS.-B. COHEN, New York, N. Y. The invention provides a a skull portion, an under jaw and snout por tion, and a lower jaw or tongue, all rendered practically indestructible and sufficiently fiexible, at the same time properly displaying the ead of a fur skin fashioned over the form and without danger of losing its shape. It reLetters Patent of the U. S., formerly granted to Mr. Cohen.
fountain-PEn.-J. Board, Chester, N. Y. hen the pen is used, the ink will feed to its bint, and when not being used, the flow will
shut off. In other words, the flexing ment of the point is utilized to stimulate the feeding action; but the construction is such
as to enable the pen to be carried in the pocket as to enable the pen to be carried in the pocket
even in an inverted position without leakage even in an inverte
AIR-PRESSURE SYSTEM FOR TURRETS ND THE LIKE.-H. Bensch, New York, N. The improvement pertains to high power whereby after the gun is fired and the breech block opened for reloading, the gases of comblock opened for reloading, the gases of com-
bustion are completely scavenged from the bore of the gun and "fiarebacks" positively
ATTACHMENT FOR DRIVING-REINS OF double harness.-J. Sutherland, Springer, New Mex. The object here is to provide an attachment for double harness which will prevent an accident occurring, by rendering it
impossible for the connecting buckles between impossible for the connecting buckles between
the long and short members of each pair of eins from passing through a complementary with as to prevent full control of the reins and the horses connected thereto.
SAW-FILING DEVICE.-H. F. Hill, Scotia, Cal. This device can be easily set up in po-
ition on an ordinary work bench, and which will operate to guide the saw in the filing operation, the arrangement being such that the file may be advanced by a simple movement from one end of the saw to the other as the
operation progresses, and the file is constantly operation progresses, and the file is constantly
maintained in a fixed relation of inclination ith respect to the blade, so that the edge $\dot{\text { POCET }}$
POCKET-KNIFE.-R. L. Guthrie, Skagway, Alaska. The object of this invention is changeably holding all sorts of knife blades, screw drivers, manicure implements, etc., and arranged to permit convenient and quick re
moval of a tool and the insertion of another. MACHINE FOR MAKING RIMS FOR SOFT
PIES.-J. F. KOHLER, New York, N. Y One PIES.-J. F. Kohler, New York, N. Y. One purpose of the invention is to provide a spe-
cial type of head for automatically pressing ough fed to the machine in rims in pie plates, and constructed in annular sections, which
sections act upon the dough consecutively from the inner outwardly, as the head is brought nto shaping position, automatically releasing rises, thus insuring the pie plate remaining in position during both of the operations, and

Machines and Mechanical Devices.

OPERATING MEGHANISM FOR REED-OR GaNs.-H. E. Chote, Peru, Ind. This improvement is in mechanism particularly adapt-
ed for use in reed organs for controlling the ed for use in reed organs for controlling the
notes of the organ, the active coupler, and the like, and resides in the arrangement of this ism, whereby the desired movement the parts may be obtan
traveling crane.--L. H. Miller and . A. Newcomb, Tacoma, Wash. In the pres eling cranes, the more particular purpose of the inventors being the provision of a crane
having quite a variety of independent movehaving quite a variety of independent movethe will of the operator
Gearing.-W. Lesemann, Egg Harbor City, N. J. This invention refers to a rever sible gearing in which the drive shaft may simply moving the lever to the right or to the tral point the gearing can be released and the loose pulley on the shaft will then revolve dis. APPARATUS FOR DEMONSTRATING AND Forbes, New York, N. Y. In this case the invention is an apparatus for use in the demonstration of the formation and propagation sation and rarefaction, as sound waves, and transverse waves, as
heat, and electricity.

SPRING.-L. Y. Leon, San Juan, Porto Rico. The more particular object here is to produce a kind of spring consisting of two members each having substantially the form of a rib-
bon, these two members being disposed symmetrically in relation to each other for the purpose of increasing the durability and the
elasticity of the metalic members of the spring CENTRIFUGAL PUMP. - L Befiot, levard Richard Lenoir, Paris, France. The invention comprises in a pump, the combina tion of a fixed central distributer and a hollow guides arranged in a general radial direction and having a special double curvature, the concave portions of the guides being arranged
contiguous to the distributer, so as to utilize contiguous to the distributer, so as to utilize
the first impact of the liquid while the outer the first impact of the liquid while the oute
conver part of the guides serves as a piston.

Prime Movers and Their Accessories.

EXPLOSION-TURBINE.-C. Beceman, New
York, $\mathbf{N} . \mathbf{Y}$. The object of this invention is to York, N. Y. The object of this invention is to
produce a prime mover simple in construction and efficient in operation. Further objects are o provide an arrangement which will enable to provide improved means for feeding the charges to the explosion chambers, and to pro-
vide important means for igniting the same.

Rallways and Their Accessories.

AUTOMATIC SAFETY-SWITCH.-J. ThornTon and I. Wertheimer, New York, N. Y The inventor relates to railway switches, and
the object is to produce a switch which if left open in such a way that a train running at high speed on the main track could run upon
the siding, the switch would be closed automatically. In this way accidents will be voided.
CAR-STAKE.--J. Bagley, Tacoma, Wash This invention is an improvement in car stake such as are used on flat or like cars, and has
for its purpose the provision of a comparatively light and strong device of this char acter, which may be released instantaneously, with other like stakes at the same side of th
car and be easily erected.

Pertaining to Vehicles.

bugGy-shaft support.-B. M. Perdue ranklin, Ky. When the animal is unhitched,
the shafts are lifted out of contact with th ground, so that there is no liability of break age. When it is desired to hitch to the buggy the animal may be led under the shafts In this position, the spring is under ten
sion, since the arms are more nearly in aline ment with each other. After the animal is hitched, the tension of the spring keeps the immediately returns them•to their elevated po sition when the animal is unhitched
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please invention, and date of this paper
the

Full hints to correspondents were printed at the head of this column in the issue of Novem-
ber 14 or will be sent by mail on request.
(10999) A. M. St. C. says: I see in the papers that Halley's comet is expected soon. Can you tell me about when it will be
visible and about when it will pass perihelion A. The search for Halley's comet has already begun at the large observatories by means photography, and will be kept up till the
comet is discovered. It will doubtless be comet is discovered. It seen by the eye. It is due to pass perihelion
in May, 1910. We cannot say when it will May, 1910. We cannot
become visible to the eye.
(11000) F. S. asks: Will you kindly inform me as to whether or not there is any reason for the common opinion of boatmen tha
waves become heavier in the fall as the wate gets colder? Here on tach as the wate man will tell you that this is the case. I can no reason for beleving that there is any the opinion you give as common among boat men that waves are heavier in fall than in an opinion
(11001) J. L. H. says: Will you be ind enough to advise me what is meant by the use of the term "boring the tubes" in con-
nection with the tunnels under the river; nection with the tunnels under the river;
whether the tube was actually driven by hydraulic pressure under the river or dug by the same process as the subway was built,
pick and shovel? A. We cannot settle pick and shovel? A. We cannot settle your
bet, but we can give you enough information to enable you to judge which of the parties was correct. We cannot give a full explanation of the process of shield tunneling, for Nos. 1027, 1028, 1042, and 1122, which give most interesting details of the methods em-
ployed in London tunnels and copied almost ployed in London tunnels and copied almost
exactly here, or No. 1474, which gives fairly
are excellent descriptions for the non-technical man, of a most interesting subject, and will
sent you for 10 cents each, postage paid. The shield is essentially and was originally intended to be a portable false work for taking the place of timbering and retaining the oof and sides of a tunnel in soft ground dur-
ing the process of excavation and until the ing the process of excavation and until the The ground in front of the shield is blacted. if rock, and removed by pick and shovel, if soft enough, and when sufficient has been excavated for one "ring" of iron or masonry orward by hydraulic power. In so far the ydraulic pressure has no connection with the ctual excavation, but in a considerable part of the tunnels under the Hudson the ground it was only necessary to apply hydraulic that it was only necessary to apply hydraulic pres-
sure to the shield to force it through the silt, which squirted through apertures in the hield like paint out of a compressible tube, irectly into cars, by which it was conveyed ut of the tunnel. The direction of the shield was controlled by the admission of a greater or less, or a higher or lower portion of the
ilt. In this use of the shield the ilt. In this use of the shield the hydraulic pressure may certainly be said to have perconsiderable sections of the tunnel in which he shield, with its of the tunnel in which ply pushed through fiuid silt, which was orced to one side, no part of the ground eing "excavated" in the usual sense of the term, but in this use also the tunnel may be said to have been "dug" by the hydraulic press-
re, since the latter forced the opening filled ure, since the latter for
(11002) W. B. H. says: 1. Will you lease explain in your notes and queries the
viring and working of an induction coil with only three wire terminals? A. We know no with three terminals. A wire is sometimes bridged across from one end of the secondary one of the primary terminals. This will parently. The spark will now jump only apingle terminal of the secondary to one of the terminals of the primary. 2. The connections at the dynamo of a three-wire lighting system where either 110 or 220 volts can be ob-
tained? A. There are several modes of making connections for a three-wire system, giving ither the whole or half the voltage, 220 or 110 volts. We would refer you for diagrams
and explanations to our Sloane's Handy Book of Electricity, pages 497 to 502 , which we nd for $\$ 3.50$ postpaid. 3. Have you any Supancints which explain the working of an instating-current brush moto ent motors have slip rings and do not have commutators. You will find this subject also fully treated in Sloane's book, pages 348 to
438 . This book may be said to be indispen438. This book may be said to be indispen-
sible to one wishing a knowledge of modern lectrical machinery.
(11003) For W. G. F.: The article relating to the Fermat formulas, published in
our issue of February 1 last, has called forth our issue of February 1 last, has called forth
much correspondence. Yet so far as we can judge none of the letters are from persons versed in pure mathematics. One would think
that a proposition which, as the article states, that a proposition which, as the article states,
the great mathematicians of the world have not been able to solve, would hardly be solved by those unfamiliar with the subject involved. The theorem is, the sum of the cubes or any higher
power of two numbers cannot be equal to the cube or the same higher power of any other n is greater than 2 . This is the proposition which has never been proved in general terms. host of our correspondents attempt the proof to successive numbers. This is not formula required. One could not to all eternity complete the proof of a negative in this way. must be tested two by two, and eternity is too short for the task. What is required is a demonstration in general terms that there is no ossibility of finding any such numbers. Such figures denstration must be in letters, and not in the prize offered for the proof of the secure and would request the proof of the theorem, sent us on the subject. Any one desiring to submit anything in competition for this prize should send their articles directly to the German address given in the article in our paper.
(11004) J. T. M. says: I would like to know the best oil or the best method of oling ball bearings, or if it is absolutely
necessary to oil ball bearings or not. This information will be greatly appreciated, and I feel that coming from you it will be correct. il Theoretically it is not only unnecessary to which assists the ball to slip on either sur face reduces the static friction between bal he bearings nearly frictionless and if the ball bearings nearly frictionless, and if the bal
begins to slide it soon wears a small patch on it, which prevents its properly perorming its function. The better a ball bearing is made the less the necessity of oiling it, practice of oiling time the almost universa with solid lubricant) goes to show that it is cund to have practical advantages. The ex
cuse or oiling ball bearings is that if not cuse for oiling ball bearings is that if not
nerfectly fitted the balls may touch each other,
and if the front side of one ball comes in
contact with the hind side of another, both rolling in the same direction, the kinetic fric tion between them is double that between either ball sliding without rotating and the cone on which it slides. With which explana-
tion of the reasons pro and con we must leave you to judge whether
(11005) T. L. G. says: ${ }^{\top}$ You will do me a favor to decide in your Notes and Queries
the following: A holds that centuries are the following: A holds that centuries are marked at their termination, and cites Glad
stone for authority. \mathbf{B} holds that centuries stone for authority. B holds that centuries intellectual Gladstone as guilty of this preposterous statement. The last year of each hun dred gives the name to the century in which it is counted. We are now living in the 20th
century. The last year of the 19th century century. The last year of the 19th century
was the year 1900 . The first century began with the year 1 and ended with the year 100 , and each century has followed the numbering
of the first. This is exactly the same as counting other things. If you counted books, one hundred, and the hundredth book would complete the first hundred books. A is right,
although \mathbf{B} calls his statement "preposter(11006) G. M. says: Is the weigh of the earth always the same, or is it getting lighter or heavier and what is the cause? A.
The meteors which fall upon the earth in vast numbers every year add their weight to the earth. Thus the earth is increasing a minute
quantity in weight each year, but not enough to be perceptible in thousands of years. Ex cept for the escape of light gases from the the earth can lose weight.
(11007) G. W. M. says: Some time ago you published in the Scientific American acids and aluminium; the paper I had has been lost and I would like to get it again if you can get it for me; find inclosed price for the paper. The gas I mean is so it can be
lighted and made in a bottle. A. You can obtain hydrogen by means of aluminium in a variety of ways. The simplest method is to put chips of aluminium into sodic or potassic
hydrate, using a rather dilute hydrate for the purpose. The mixture should be heated some What at first to start the action, but when
the gas begins to come off the heat should the gas begins to come off the heat should be
withdrawn or the action will be too violent. witharawn or the action will be too violent
Another way is to pour hydrochloric acid upon the aluminium chips. This requires no heat The chemical action will produce a great deal of heat. The acids of fruit will dissolve
aluminium in the same way. For this reason aluminium cannot be used for cooking utensils. At one time it was thought that the
metal would be of great service in the kitchen, metal would be of great service in the kitchen, pounds harmful.
(11008) M. E. P. asks: 1. Give colors which have been adopted to indicate what a pipe is carrying. Ammonia pipes are painted
one color and steam another, etc. A. There has been, to our knowledge, no sort of stancate their contents, and such standardization does not seem to us readily possible, as, if a
list were made of all possible pipe contents of list were made of all possible pipe contents of
different plants, the colors most readily distinguishable from each other would be ex hausted long before each content was desig-
nated. For instance, one plant may have nated. For instance, one plant may have
steam, high and low. voltage electric wires, and high and low pressure hydraulic; another electric wires, and gas, and one system oin coloring to cover only those two plants will have already used up white, black, red, yellow,
blue, and three other colors less readily dis tinguishable from the latter. A system must therefore be adopted to suit each particular plant, and the only important feature to be
considered is that no two colors which may be considered is that no two colors which may be
mistaken for each other (as blue and green may be by lamplight) be used on adjacent by mistake for the other in emergency would connected by mistake in looking for a shor circuit in electric wires). For your case we
would suggest black for steam, white for water, red for fire pressure, blue for am monia, and yellow for brine circulation, or if
there is no object in distinguishing fire from other water lines, red might be reserved for
electric wire tubing, but in the foregoing you can probably invent a better system for your special conditions than we can
in ignorance of them. 2 . What is the wind pressure per square foot at a velocity of 10,
$20,30 \quad 40,50$ miles per hour, respectively? A. The following are the pressures per squar foot corresponding

hour given first:

10 miles per hour $=0.492$ lbs. per sq. ft. 20 miles per hour $=1.968$ lbs. per sq. ft.
30 miles per hour $=4.429$ lbs. per sq. ft. 30 miles per hour $=4.429$ lbs. per sq. ft.
40 miles per bour $=7.873$ lbs. per sq. ft. 40 miles per bour $=7.873$ lbs. per sq. ft .
50 miles per hour $=12.30$ lbs. per sq. ft . 3. How can I determine how much angle to give the blades of a propeller in order to get
a certain pitch? A. The pitch of a propeller blade is exactly the same as that of any other
screw, a propeller blade being only a section screw, a propeller blade being only a seccion
of the surface of a helix, that is to say, the
pitch of the propeller is the amount by which
any point upon it moves forward (in a direction parallel with the shaft) in one revolution of the propeller. Lay off a helix with the
required pitch and the angle which its edge equired pitch and the angle which its edge
makes with a plane at right angles to its axis will be the angle at which the blades of your propeller must be set to a plane at right
angles to the shaft to give the propeller the ngles to the
(11009) G. L. asks: What makes the arth move-not in regard to her three kinds move, or in other words, what makes the ter move in the universe? A. The force which causes the earth to move is called gravitation. What its nature is is not known. It acts as if the earth had at some time been hurled into space in a line not directly toward the sun,
but to one side of it, and had therefore moved but to one side of it, and had therefore moved
around the sun ever since. Of course we do not think the earth was hurled in this way, but the effect of the attraction of gravitation is such as would have been the result if the arth had been thrown into space by a giant ers. Books of astronomy treat of these malt Astronomy," which we will send for $\$ 1.75$ post-
(11010) H. L. W. asks: In the issue the Scientific American for October 3 1908, in replying to "M. M." (Notes and
Queries No. 10872), you say: "We do not know any reason why a person should be af-
fected by lightning striking the water in which he is swimming." Some years ago Worcester, Mass., during a heavy thunde torm. A very vivid fiash of lightning or curred, the thunder being heard at practically the instant of the fiash. Simultaneously with the fiash, all my limbs contracted strongly, somewhat after the manner of a frog in
Galvani's experiment, and I was conscious of distinct shock comparable to that given by strongly-charged Leyden jar. The shock was not painful, but was distinctly startling, so much so that I at once made my way back
to the fioat. A friend sitting in bathing runks on the wet fioat also said he felt. the had struck on quarter of a mile distant. My knowledge of electricity is quite limited and I should quickly "get over my head" in a technical dis-
cussion, but the following explanation of the above facts seems tenable: While, as you state, the earth is at 2,250 potential and of in nite capacity," would it not be true that a which is struck by lightning is at the earth potential than the surrounding points? The potential is immediately equalized by the dissipation over the surface of the condenser (the the dissipation be of electrity, and weake s the distance from the point of discharge is increased. Now a person submerged in a lake
is in very intimate contact with the earth, and the discharge current, if I may use the expression, would pass through his body, as not insulated from the earth's surface, and if
the current at this point were sulficiently trong, an at this point were sufficiently swimmer's body, evidenced in my case by muscular contraction. There is nothing in this
explanation except that you do not take cogniexplanation except that you do not take cogni-
zance of my assumption that at the instant of a discharge of electricity from a cloud to the earth, the zero potential of the earth is istarbed for an infinitesimal fraction from the point of discharge to be dissipated ver the surface of the earth. A. We have
ead with interest your description of what happened to you when the lightning struck the water near where you were bathing. It would not appear that you experienced much of a
shock from the electric discharge. Had you shock from the electric discharge. Had you
done so, you could not at once have made that wour jumping in the th seems to us due to the suddenness of the flash and the sound of the thunder as to any other cause Still we cannot say that it was so. If one discharge of a Leyden jar, the lightning wa very weak. We entirely agree with your dis-
cussion of the conditions of the earth beneath cussion of the conditions of the earth beneath
cloud at the instant of a lightning flash, but do not see that this alters what we said of the query referred to. That a certain degree would not give much of a shock. This is al ways experien
one's vicinity.
(11011) H. W. says: Why is it that, using the same eflort and force, a long screw be moved by a short screw driver? A. The
mechanical advantage gained is entirely and only due to the fact that the longer screw driver has the larger head, and consequently the greater leverage, i. e., the greater difference
between the "arm of the power" as represented by the radius of the head and the "arm the weight" as represented by the radius
of the screw head (or half the width of the screw driver point). The only other advantages of the longer screw driver are the usua
possibility of assuming with it a more com cortable position, using two hands instead of
ne, or throwing more weight against the crew driver to prevent the point jumping
ut of the screw head slot.

NEW BOOKS, ETC

The Boy's Book of Steamships. By
R. Howden. New York: The M R. Howden. New York: The Mc
Clure Company, 1908.
12mo.; pp Clure Company,
285. Price, $\$ 2$.
The author has proceeded along very prac tical lines in the preparation of this admirable
book, which will be welcomed not only by boy but by their elders. There is something fascinating about the modern steamship, and the
admirable frontispiece, showing the "Adriatic" at Cherbourg, will bring back pleasant mem-
ories to many. Of all the works of man's hand ories to many. Of all the works of man's hand
and brain, nothing is quite so impressive or and brain, nothing is quite so impressive or
fascinating as a ship. Imposing as she may appear when in port, her hull is such a tiny appear when in porr, her hul great and wide sea across which she ventures, that it seem by men's hands could possibly endure the great force of the ocean waves, still less make it a unerringly as a ferryboat across them a purposed destination. The author has
tried to unveil to his readers the secret which lies behind it all, the secret, namely, of "fre dom within the bounds of law"; that man is only permitted to control natural forces for
his own ends by obedience to the laws which control them. A recapitulation of the chapters control an admirable idea of the scope of the book. After an introductory chapter, we come
"Principles of Ship Design," "The Coming of Steam," "Down in the Stokehold," "The Engines," "Propelling Machinery," "The Devel-
opment of Type," "The Comfort of the Passen ger," "Navigating and Engineering Depart ments," "Steward's Department,"
"Ocean Steamships," and Coasting Steamers," "Ocean Steamships." There are many exceed book These tables are so valuable that the book. These tables are so valuable, that one
almost wishes that the author had called it The Man's Book of Steamships."
Biology and Its Makers. By William A
Locy, Ph.D. New York: Henry Holt
\& C., 1908. 8vo.; pp. 439. Price,
The author has been frequently in receip f letters from students, teachers, ministers, edical men and others, asking for informaren on topics in general biology, and for ref-
rene to best reading on the subject The increasing frequency of such inquiries and the wide range of topics covered have created the impression that an untechnical account of
the rise and progress of biology would be of the rise and progress of biology would be of
interest to a considerable audience. This the interest to a considerable audience. This the
author gives as his reason for writing this book. This admirably fills a comparatively empty niche in the literature of science. The
author has attempted to bring under one view the broad features of the biological progress, and to increase the human interest by writing the story around the lives of the great leaders, naturally the practical execution in the past resolving itself largely into the question of
what to omit. The aim has been to keep in mind a picture sufficiently diagrammatic not to confuse the general reader. The book is
divided into two sections. In the first are considered the sources of the ideas-except thos ond the steps by which they have been biology into a unified science. The doctrine of organi evolution, on account 'of its importance, is re served for special consideration in the second section. The portraits with which the text is
illustrated embrace nearly all the founders of biology.
The Strugale for American Inderend ENCE. By Sydney George Fisher
pany, 1908.2 vols. 8 vo .; pp. 573
585 . Price, $\$ 4$. The present work is a continuation and an
largement of ""The True History of the merican Revolution," published some year ago in one volume. That work, while being a brief general account of the contest, dwelt
more particularly on certain phases of the ruggle which have been omitted or ignored did not ho far enough became obvious that did not go far enough, that the original plan
should be extended and carried out in more detail, and that the whole mass of original evidence in libraries and historical societies should be made accessible, revealed to the public in as complete and ample form as pos-
sible. Our people have little or no conception of what the Revolution really was, no concepion of the nature of the original evidence; and tory to set forth that evidence keeps it a sealed book to the people. Our national feel importance of such an event, which was the foundation of our nationality and of the political and social principles by which we are still is possible to obtain. Although our Revolution is said to have changed the thought of the world, like the epochs of Socrates, of
Christ, of the Reformation, yet no complete history of it has ever been written upon the lan of dealing frankly with all the contemmportance that is found in the original re ords. Our histories are able rhetorical efforts, enlarged Fourth of July orations, or pleasing literary essays on selected phases of the condelve in the original sources of information
and reveal them to the reader, as has been and reveal them to the reader, as has been
done with the history of England, of France
and of other countries. In view of these facts,
Dr. Fisher has written the admirable history which we are now reviewing. There is no one better qualified as a sound and accurate historian than Dr. Fisher, whose writings have
been received with respect by all the reading coen receive
How it is Done, or Victories of the ENGINEER. By Archibald Williams. New York: \quad Nelson \& Sons,
12mo.; pp. 484 . Price, $\$ 1.25$.
In these pages the reader will find an ac ount of the great bridges built and in course of construction, and other great railway enterprises during the past few years, including
tunnels and car ferries; also the story of the Florida East Coast Railway built story of the Ample space is given to the description of the new Croton dam and the Panama canal. The book is excellently illustrated by numerous well-executed engravings, a number of which
have already appeared in the Scientific american.
In Viking Land. Norway, Its Peoples, Its Fjords, and Its Fjelds. By W. S. 1908. 12 mo.; pp. 332 . Price, $\$ 3$.

The present work is the result of two vacation trips to Norway and rather wide reading of the extensive literature of the country. The ists some notion of the benefits to be derived from a visit to Norway, and to inform readers Who prefer to travel within the covers of a may serve to refresh the memories of those who have already traveled in Norwas. In any country so rich in mountains, ice fields, and waterfalls and fjords, it is altogether easy to devote the chief part of a book to those forms and forces. This is precisely what most writers on Norway have done. The present
volume, on the other hand, gives prominence o matters of human interest-the people their habits, customs, and traditions, to the
developed and developing civilization of the country. The viking age appeals strikingly the imagination of readers and travelers, and the imagination of readers and travelers, and chronicles of the old Norse sagas and the existing historic objects which have visible con nection with the past such facts as may aid in the construction of a fairly vivid picture o this stirring period. The author has produced a most interesting volume, which has been beautifully illu

Bridge Engineering. Roof Trusses. A Manual of Practical Instruction in tural Steel Truss and Girder Bridge for Railroads and Highways. Includ ing also the Analysis and Design of
Roof Trusses and Other Details of
Rill Building Construction. By
Published by the American School of
Correspondence, 1908. 8vo.; pp. 384
40 illustrations; half morocco; mar bled edges. Price, $\$ 3$.
The fact that this work by Prof. Dufour has been officially adopted as a textbook at the vidersity of Minois, is in itself conFincing iterature of structural engineering. It is ad mirably adapted for the general practical use of the engineer. The problems involved in the calculation and design of modern steel struc-
tures are complicated, yet are adequately compassed here in a handy volume of moderat proportions. The treatment is exceedingly clear and concise, and free from the abstruse athematics that ordinarily overburden other Bridge Engineering treats fully both Bridg Analysis and Bridge Design, embracing the bridge piers and abutments, bearings, and other Every detail is clearly explained by the aid of diagrams, while graphical methods are chiefly used in the computations. The same practica and concise treatment marks the section on
Roof Trusses, which covers all details of the analysis, calculation, and design of the various ypes of roof trusses used for buildings of various spans, the methods of securing good details of mills, shops, etc. Photographs of ypical modern structures are shown, with full design, and in some cases statements of cost.

Textrook on Roads and Pavements.
By Frederick P. Spalding. New By Frederick P. Spalding. New
York: John Wiley \& Sons, 1908 Ymo.; Pp. 340 ; 51 figures. Price
122 net. The methods employed in the construction nd maintenance of highways have changed so hat in the pre irst publication ofition been found necessary to practically rewrite the entire book. An effort has been made to briefly epresent the best recent practice in highway work, and the book has necessarily expanded book contains chapters on "Road Economics and Management," "Drainage of Streets and provement and Maintenance of Country Roads," "Broken-Stone Roads," "Foundations for Pavements," "Brick Pavements," "Bituminous Pave ments," "Wood-Block Pavements," "Stone-Block
Pavements," and "City Streets,"

The Campaign Against Tuberculosis in He UNitED STATES. Including a Directory Dealing with Tuberculosis
in the United States and Canada. Compiled under the Direction of the ational Association for the Study and Prevention of Tuberculosis by ities Publication Committee of the National Association for the Study and Prevention of Tuberculosis. 8vo. pp. 467. Price, $\$ 1$.
This book has been made possible by the generous co-operation of the Russell Sage Foundation, which has supplied the nece
for its preparation and publication.
Centennial of Religious Journalism. Edited by the Rev. J. Pressley Bar
rett, D.D. Dayton, Ohio: Christian Publishing Association, 1908. 12mo. pp. 656.
Constructive Drawing. A Textbook for Home Instruction, High Schools, nical Schools, and Universities. A ranged and published by Herman Hastein. Chicago, 1908. Oblong 4to.; pp. 33; 33 plates. Price, $\$ 1$.
The author, who is a practical instructor in drawing, has applied an excellent series of
problems, which will be found a great help or home instruction. This work represents the first year's course that has been followed the past twenty-five years in Chicago high Chicago Moch thics, Institute perience of seventeen vears in the office ex shop, and his occupation as teacher during the past thirty years, has given the author such judgment as to select only problems of prac tical importance to those who follow architectural, mechanical, and engineering vocations, as well as problems which are indispensable to manufacturing and industrial pursuits. The book is worthy of a good sale.

Secrets of the Rocks, or the Story of Hills and Gulches. A Manual of Hints and Helps for the Prospector and Miner. By S. M. Frazier. Den ver: Hall \& Williams, 1908. 12mo.;

There are prospectors handbooks by the mining by the hundreds, but on miners and mining by the hundreds, but have you ever seen a book which contained all the facts of which was truly a story of the hills and gulches, told in such a way as to be full of he most intense interest, even to those who are not prospectors and miners? Such a book "Secrets of the Rocks." Its author has been a practical prospector in the mountains and during west for more than three decades, o dearn the "secr that he has been striving observation and exhaustive study of the renal earches of ethers He has any of the re sults of his work in this book. The facts can be relied upon, for they are gleaned from actual experience.
Graphical Determination of Earth By Charles Prelini New Yobams Van Nostrand Company 1908. 8vo.; pp. 129. Price, $\$ 2$.
A large part of this work consists of graphical methods of solving problems con
cerning the slopes of earth embankments lateral pressure, earth against the wall, and the thickness of retaining walls and dams. These pages are intended for students, and not or professional engineers. Simplicity and clearness have been the main objects in view, and the experience of the classroom makes he author believe that this little work. wil the same time it may be of some help to the practical engineer.
Audel's Gas Engine Manual. New York: Theo. Audel \&
469. Price, $\$ 2$.

A practical work dealing with all phases of the subject. There are 156 engravings. Among the interesting chapters are Gas Pro ducer Systems, Ignition and Igniters, Instal lation and Operation of Ma Ne Engines, In of Lubricants, Hints on Management and Sug gestions for Emergencies, The Automobile and Useful Rules and Tables
Verzeichnis Saemtlicher Publikationen Von Prof. Dr. Otto Lehmann. Frank Druckerei, 1908. Pp. 13
Zur Geschichte der Flüssigen Kristalle Von O. Lehmann. Leipzig: Johann Pp. 852-860
Künstliche Zellen. Mit Flüssig-kristal inischen Wänden. Von O. Lehmann Braunschweig. Druck von Friedrich Vieweg und Sohn, 1908. Pp. 407-410
Flüssige Kristalle. Ihre Entdeckung Bedeutung und Ahnlichkeit mit Lebe rankfort-on-the-Main. C. Naumann' Frankfort-on-the-Main: C
Druckerei, 1908. Pp. 35.
Die Wichtigsten Begriffe ond Gesetze der. Physik. Von Dr. O. Lehmann Berlin: Verlag von Julius Springer 1907. Pp. 58.

PATENT CAUSES

Munn \& CO., 361 Broad to communicate with to securing valid patent protection for their in.

vention ventions.
regisered. Trade-Marks and Copyrights
Design Pacents and Foreign Patents secured.
We undertake all Patent Trade-Mark and Copyright Practice, both before the Paten thice and the Courts. and we have special facili
tion handing Infringement and other suits in State and Federal jurisdictions.
bility of an invention will be readily give patenta inventor furnishing us with a model or sketch, and a brief description of the device in question. Al
communications are strictly confidential. Our communications are strictly conadential. Our
Hando-Book on Patents will be sent free on
request.
it was es
361 Broadway, New York City
INDEX OF INVENTIONS
For which Letters Patent of the for the Week Ending November 17, 1908.
AND EACH BEARINGTHAT DATE See note at end of list aboat copies of these patents.]
 agricultural products and the like, drying
apparatus for, H. $\begin{aligned} & \text { von Schutz } \\ & \text { Air } \\ & \text { Air compressor, H. }\end{aligned}$ Baile. ir of living rooms, apparatus for thera-
if peutic treatoment of the, Fotter.

 perial for sce...............................
Atomizer

Arack for, E. E. Robinson \quad.
Awning, Buscemeyer
Bag support, feed, E. J. Cospari
Colgan.
${ }_{\mathrm{Bag}}^{\mathrm{Bar}}$

Boot and shoe last corn and bunion
attachment, J. o. Stivers, reisue.
Border calculator, C. E. Schindler..

Bowling alley, C. B. Brenner............
Box covering machine, F. R. Harris....
Brake beam safety hanger, T. E. Buck.
Brick, interlocking, J . Soss
Brus
Brus
Buck
Bug

 Christmas trees, etc., stand for, E. E.
Rice maniacturing machine, \ldots.......ii.
Circuitte controller, drawbridge, F. A. WendCigarette manufacturing machine, D. Weil.
Crcuit controller, drawbridge, F . A. Wend.
ircurts oo electrostatic. reaction currents,
method of and apparatus for relieving

 Clothes drler, L. Duncan......
Clothes peg,
Clothes washer, G. B. Whe wiison

\section*{| 904,348 |
| :---: |
| 903,939 |}

${ }^{\text {Clock or }}$ or wateh tadicator, A. E. Aesechll-

Concroesmer

Engine vaporizing device, tion, J. S. de Roos
Envelop, W. C. Jones ${ }^{\text {Envelop, novelty }}$
Exerciser, physical, J.
Exhaust head, G. C. Rit
Expansion wheel, \mathbf{R}.
$\underset{\text { Explosion }}{\text { Kritzler }}$ petroleum engine,
Eyeglasses, G. J.
Fabrics and other ma
or silky effects on, Fastener, J. J. Wallis..
teet, 'w. H. Kilbourn
ucet, G. R. Hohman
ding machi
Fence and
tiliz
rous material, morda

Engine and Foot Lathes MACHINE SHOP OUTFITS, TOOLS AND
SUPPLIES. BEST MATERIALS. BEST
WORKMANSHIP. CAT WORKMANSHIP. CATALOGGE FREE
SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati.

IN VENTIONS WANTED

candle power or more. Iamps. Must be struny and durable. An improved Blue Flame OILSTOVE: An ICE MAKINC MACHINE for home use that can We want to hear from Han ufacturers and Importers of new and useful inventions in

A Home=Made 100=Mile Wireless Telegraph Set

 from
MUNN \& CO., 361 broadway, New York

Din Duryea's Buggyaut The winter rencile
Fers parta, fee troulles

TYPEWRITEFSMALS

Visible Writers or oterwiwe. Prilce sir

Concrete, Reinforced Concrete Concrete Building Blocks

Scientific American Suplement 1543 contains an
article
ant
The The article clearly, describes the proper com-
position and mixture of concrete and gives
Scientific American Supplement 1538 gives the
proportion of gravel and sand to be used in

 tical notes on
crete are given.
 Scientific
critical
review reinforced concrete.
Scientific American Supplements 1547 and 1548

 $\substack{\text { artitele } \\ \text { merle } \\ \text { analy } \\ \text { and } \\ \text { befed }}$
defects of reinforced concrete are
 Webb.
 an article by Lowis Ho Gibson on the prin-
cinles of stress in concrete block manufac-
ture ill Bcientififo American Supplement 1574 discusses
steel for reinforced
concrete. Scientifo American Supplements, 1575,1576 , and
1577 contain a paper by Philip LL Wormley

 Each number
Fentach number of the Supplement costs 10 Abet of papers containing all the artcles
above mentioned will be mailed for ${ }^{\text {\$1. }}$, 80 . Order from your newsedealer or from
361 Bruadway, New York City

 Slieighasko
Small
Smıle

Spoo
Spir
Sprin
Sprin
Sprin
Sprin
Spren

80
4
4
4
4長黄

Infinite Variety

Of classic and modern statuary, motifs and designs, correctly and faithfully
designed and worked out in sheet bronze and copper. $\mathbf{M u l l i n s}$
Art Architectural Sheet Metal Work and Statuary

> Architects and contractors seeking information about Cornices, Panels, Friezes, and all Ornamental Work, should haveour large 120-page catalog--it is free. Also ask for separate catalog of Mullins Sheet Metal Statuary, which is as durable and aristic as cast bronze or scalpured work, and costs less. Please specify whether Metal Work or Statuar y catalog is desired. W. H. Mullins Co. 203 Franklin St., Salem, - - Ohio.

ELECTRO MOTOR. SIMPLE, HOW TO make- -By G. M. Hopkins. Description of a small elec-
tric motor devised and constructed mith a view to assist
ing ammaterns ing amateurs to nake a motor which might be driven
with advantage by a current derived rom a battery, and
which would have suffient power to operate a foot
Wich

American Homes and Gardens

gives its readers the experience of experts in solving the most difficult HOME PROBLEMS. It is a thoroughly practical magazine, having the word "Home" for its keynote.

HOW TO BUILD THE HOME

Floor plans and details of construction of houses of moderate cost as well as more pretentious mansions are a feature of each issue.

HOW TO DECORATE THE HOME

The most experienced decorators in the country describe how the best and most artistic results are attained from the point of expenditure, and the more important one of satisfaction.

HOW TO PLAN AND LAY OLT THE GARDEN

The frame of the House-picture is the garden, and success in its treatment means that each tree and shrub is correctly placed as well as properly grown, hence this department will be found most helpful.

OUTD00R LIFE AND AMUSEMENTS, ARTICLES ON HOUSE INDUSTRIES,
every phase of country life is authoritatively discussed from month to month in its pages. "American Homes and Gardens" is conceded to be the handsomest magazine published in America. Its beautiful cover printed in colors changes each month, and is always a work of art. Subscription price, $\$ 3$ per year. If we receive your order for a year's subscription now we will send you the November and December, 1908, numbers free; in other words, fourteen months for price of a year's subscription.

MUNN \& CO., 361 Broadway, New York City

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on
READ THIS COLUMN CAREFLLLY.-You will find inquiries for certain classea of articles numbered in
consecutive order. If you manufacture these goods write us at order. and we will send you the name and address of the party desiring the information. There
is no charge for this service. In every case it is necessary to give the number of the inguiry
Where manufacturers do not respond promptly the nquiry may be repeated. MUNN \& CO.

BUSINESS OPPORTUNITIES.
 Inquiry
No. 86611.
light power purposes.
 send us sample or description and state terms. Ad
dress Hagstrom Brothers, Lindsbork, Kansas machiniry. No. 8650.-Wanted to buy fle cutting

PATENTS FOR SALE.
FOREIGN PATENTS for meritorious and valable
inventions negotiated upon aconatingent basis. Ab-
And
 Inquiry No. 866\%.-Wanted to buy needle, pin and THE AUTOMATIC REVOLVING FLY TRAP-
Oneor the most universally needed bousehold articies
and will beamoney maker R. L. Ramsey. Bardwell, Texas.

No. 13 to 18 tempered spring steel. to buy $11 / 8$ to 2 -inch
 will sell outright or on rovalty, For particulars ad

PATENTS WANTED.

 Gishes wo seal ourright or on rovalty basis, need answer
Give rice and bries decription. L. Darbyshire, Box
390 A , Inquiry No. 868\%.-Wanted to buy motor plows.

AGENTS WANTED.
STR ANGE INV ENTION. Making agents rich, Mak.

 bath room for s5, Energizes water. Prolongs life
Cleanses amost antomatically
ing fast Inquiry
soldered wire for heddies.
N69.-Wanted to buy two-stranded

FOR SALE.

A GRAY IRON FOUNDRY, fully equipped and in
operation. On account of the death of the managin
 the adars address Mr. W. W. Ninistratrix, New York

Inquiry No. 8701.-Wanted to buy solar engines. MANNGFACTURERS ATTENTIN, -For sale, state
rights. Thbe best automatic scales on the market. Two
to six thosand dollars. A fortune in it for the right
party. Address J. H. McLeod, Marietta, Kans.

SAFETY RAZOR SHARPENED. ALLSAFETY RAZOR BLADES SHARPEND bet-
 Inquiry
the purpose of extracting alcoloil from saw-dust.

MOTION PICTURES

LISTS OF MANUFACTURERS.

 stinquiry also of ther ty42.-For manufacturers of water

miscellaneous.

 Inquiry No. Sy49.- For makers of very large
springs, used for running machinery.
 Inquiry No. 8yO. For partles who make short Ingniry No. Syy1.-Wanted to bay tune sheets bags from sisai hemp.
Inquiry No, Sy75.-Wanted to buy stock novelty
or jeweiry cataiogues.

Inquiry No. 883\%.-Wanted to buy folding um-
brellas.
Inquiry No. 8837.-Wanted to buy folding um-
brellas.
lnquiry No. 88838 .- Wanted to buy metallic tar-
gets similar to clay birds used in shot-gun shooting. Inquiry No. 8839.-Wanted to buy cheap auto-
mobiles.
Inquiry No. 8840. Inquiry No. 8840.- . Wanted to bay portable hydro
carbon pressure lamps. Inquiry No. 8841.-Wanted to buy lunch counter
and restaurant fixtures.
Inquiry No. 8842.-Wanted to buy annealed glass. Inquiry No. 8843. - Wanted to buy cigarette mak-
ing machine. Inquiry No. 8844.-Wanted to buy inkstands. Inquiry No. 8846. - Wanted to buy an electric
butcher hand saw. Inquiry No. 8847.-Wanted laundry tubs. Inquiry No. 8848. - Wanted to buy rust proof Lnquiry No. 8849.-W anted addresses of Canadian Inquiry No. ©850.-Wanted to buy machinery for
making canvas gloves or mitts. Inquiry No. 8851 .- Wanted to buy machine for
weaving wooden lath and wire together. Inquiry No. 8852.-Wanted to have made a con-
cave brass or copper refiector with focus of foar or five
feet.
Inquiry No. 8853.-Wanted to buy wafer safety
razor blades. Inquiry No. 8854.-Wanted to buy air compressor
puressure up toi,500 ihs., the capactit ranging 500 to 3,000 Inquiry No. 8855.-Wanted machine to punch
holes. feed and set automatically solidi copper rivets
and mashers and rivet together harness done with one sinquiry No. 8856 . - Wanted a machine or grinder
for reducing soft wood refuse to a fine dust. Inquiry No. 885\%. Wanted addresses of shoe
string manu facturers. Inquiry No. 8858.-Wanted to buy comb cleaning
machine. Inquiry No. 8859.- Wanted to buy steel gray
paint suitable for gasoline engines. Inquiry No, 8860 .-Wanted to buy machinery for
grinding, washing and drying gum chicle. Irquiry
cutting out mittens. 8861 . - Wanted to buy machine for Inquiry
pillow ventila. 8862. Inquiry No. 88863 .-- Wanted to buy machine to Inquiry No. 8864.-Wanted manufacturers of meInquiry No. 8865. - Wanted to buy fireles wanquiry No. 8866.-Wanted to buy instantaneoua Inquiry No. 886\%.-Wanted to buy plant for dry
cleaning. Inquiry
buttons. 1nquiry
machinery.
No. $8869 .-W a n t e d ~ t o ~ b u y ~ s t r a w ~ m a k i n g ~$
 Inquiry No. 88y1. -Wanted to buy chimneyles
kerosene burners.
Inguiry No. 8872 .-Wanted to buy a ball nozzl Inguiry No. 8882.-Wanted to buy a ball nozzle
puzzie.
Inquiry No. 8893.-Wanted to buy a portable

T produce, w. J. Holp, trea
Threshing machine, Soughenin

 Inquiry No. X8, Inquiry No. 8825.-For manufacturers of a new
device to split wood. lnquiry No. 8826 . - Wanted to buy small fuel com-
pression machines both manual and ongine power. Inquiry No, 882\%.-For manufacturers of annealed Inquiry No. 8829.- Wanted to buy machinery for
making pins, hair pins, hooks and eyes. Inquiry No. 8830.-Wanted to buy machinery for
making brushes and baskets. chines. Inquiry No. 8832 .- Wanted addresses
rrade label weavers, preferably in New ork. Inquiry No. 8833.-Wanted to buy a peanut snell-
ing machine. Inquiry No. 8834.-Wanted to buy a 2 -horse-
power gasoline engine for spray wagon working on
aill ground. hilly groun

chinqui

Inquiry No. 8836 Wanted to buy
 Inquiry No. 8880.- For parties who make kasolit
Inquiry No. 8784.-For manufacturers of alcohol Inaniry No. 8888.- For parties to manufacture ands to the square inch of steam pressur
Inquiry No. 8787.-For parties who manufacture
cat-gut.
Inquiry No. 8790. - For the manufacturer of
Brooks improved hand pump."
Inguiry No. \&za.2.-For a frm that manutactures
tass holders made of glass,
 Inquiry No. Xy98.-For manufacturers of mitero
 Inguiry No. \&800.-Wanted complete data in re-

 Inquiry No. ©805.-Wanted to buy outats and lnquiry No. 8806.-For manufacturers of drawIn uniry No. 880\%.-For dealers in second-hand Inquiry No. 8815 .-Wanted to to buy carriage and
wagon hardware coal, iron and steel. Inquiry No. 8819.-For manufacturers of kxeelInnairy No. 8821 .-Wanted to buy machinery for
natian arouh composition board, something like a
traw boara. Type
Type
Typ
Typ
Typ
Typ

 operating gas or other, A. Hare.........
Vegetable grating devie, A . R . Keliey
Venicle brake lever and ratchet, M. Potter.
Vebicle cases, drain cock for motor, R .

 Vent een nding machine, coin controlled ticket

$W a$ $W a$ $W a$

Wrench, Haldorsen \& Seem
Wrench, A. W. Aeschlimann
Wrench, G. W. Johnson
TRADE MARKS.

Popular Books

 HOME MECHANICS FOR AMATEURSBy GEORGE M. HOPKINS. Author of "Experimental Science";
12mo. 3y0 Pages, 3•20 Illustrations Price, $\$ 1.50$ Postpaid
The book deals with wood working, household ornaworking; making model engines, boilers and water motors; making felescopes, microsocopes, and weteoro-
logical instruments, electrical chimes, cabinets, bells, ight lights, dynamos and motors, electric light, and an electrical furnace. It is a thoroughly practical book

Experimental Science

 By GEORGE M. HOPKINSRevised and Greatly Enlarged.
Z Octavo Volnmes. 1,100 Pages. 900 Illustra
Cloth Bound. Postpaid, $\mathbf{\$ 5 . 0 0}$ Owing to the amount of new matter added the book
is now published in two volumes, handsomely bound in buckram. Of the additions which have been made amone the most aimportant are: A falli ilusen madrade, de-
acription of 3 H. P. Electric Motor, prepared expressly scription of 14 H. P. Electric Motor, prepared expressly
cor this edition of "Experimental Science"; chapters on Alternating-current Machinery, and clear, concise
Explanations of Wireless Telegraphy and Telephony, Explanations of Wireless Telegraphy and Telephony,
Electrical Measuring Instruments, the Electric Clock, Electrical Measuring Instruments, The Electric Clock,
the Telegraphone. High Tension Currents, the Nernst, Lamp, and methods of measuring the heat of the stars
No other work contains such a fund of trustworthy up No other work contains such a fund of trustworthy up-
to-date scientiffc information. presented in a clear and
simple style.

Scientific American Reference Book

12mo, 516 Pages, Illustrated, 6 Colo
Plates. Price, $\$ 1.50$ Postpaid The result of the queries of three generations of
readers and correspondents is crystallized in this book Which is indispensable to every family and business
man. It should be found on every desk. It is extensively used by government officials. It has been revised more complete and exhaustive than has ever been at tempted. It is profusely illustrated with engravings,
many of them imparting the information by means of nany of them imparting the information by means
comparative diagrams.

The Scientific

 American Boy 12mo. B20 A. Rages. 340 BOND Price $\$ 2.00$ PostpaidThis is a story of outdoor boy life, suggesting a large
number of diversions which, aside from affording ennumber of diversions which, aside from afearive spirit.
In eactainment will stimulate in boys thate complete practical instructions are given for building the various articles.
The needs of the boy camper are suplied by the The needs of the boy camper are supplied by the
directions for making tramping outfts, sleeping bags
and tents; also such other shelters as tree houses and tents; also such other she
straw huts, log cabins and caves.

Diversions, including Trick Photography The illusions are illustrated by the highest class of engravings, and the exposes of the tricks are, in many cases, furnished by the prestidigitateurs themselve Conjuring, large stage illusions, fre-eating, sword Canjuring, large stage illusions, fre-eating. sword Conallowing, ventriloquism, mental magic, ancient magic automata, curious tops, menal eftecest, photographic tricks and the projection of moving photographs are By A. A. Hopkins. 568 pages. 420 illus. Price $\$ 2.50$
 A Complete Electrical Library

By Prof. T. O'CONOR SLOANE
An inexpensive library of the best books on Electri-
city. Put up in a neat folding box. For the student, the amateur, the workshop, the electrical engineer
chools and colleges, comprising five books, as follows: schools and colieges, comprising ive books, as follows:
Arithmetic of Electricity, 138 pages................. \$1.00
Electric Toy Making, 140 pages............... .1 .00

 O var GREAT SPPECIAL OFFER.-We will
send prepaid the above five volumes, handsomely bound send prepaid the above five volumes, handsomely
in blue cloth with silver lettering, and inclosed in a neat
for for the complete set. The regular price of the five
ver
ver

The New Agriculture

By T. BYARD COLLINS
12mo, 374 Pages, 160 Illustrations
Cloth. Price, $\$ 2.00$ Cloth. Price, $\mathbf{\$ 2 . 0 0}$
This valuable work sets forth the changes which
have taken place in American agricultural methods have taken place in American agricultural methods
Which are transforming farro life, formerly so hard, into
thie mone the most independent, peacefol, and agreeable exist-
ence. Farm life to-day offers more inducements than
at any previous period in the worlds history, and it is calling millions from the desk. The present work it one
of the most practical treatises on the subject which has of the most prach
ever been issued.
The latest and best book on the subject. Contents: Irrigation.-III. The New Fertilization.- $\mathbf{I V}$. The New
Transportation.-V. New Interests.-V. New Crea. Transportation.-V. New Interests.-VI. New Crea-
tions.-VII. New Varleties.-VIIL. New Practice.-IX.
New Machinery.- \mathbf{X}. The New Inspiration. ME Special circular of contentsof these volumes sem York

CENTER-FIRE

SPARK PLUGS
The Racing Machine Plug. Guar
anteed to add
10 Per Cent Power
to engine. Fire charge in center o compression, causing perfect com-
bustion. Soot proof. Samples bustion. Soot proof. Samples
$\$ 1.00$, or six for $\$ 5.00$. Regular price $\$ 1.75$ Guaranteed. Give name of car and year.
Agents wanted. Write
general accumulator \& battery co.
128 Second St., Milwaukee, Wis.

The smallest and newest PRISM GLASS made. Has not its Equal
sharpness and clearness.
Descriptive catalogue
C. P. GOERZ AMERICAN OPTICAL CO Curecoo, ILL.
514 Heyworth Building

THE BRISTOL CO. Bristol's Recording Instruments and Electricity,
The Wm. H. Bristol Electric PyroThe most conmplete line of Recorder
in the world for all uses. THE BRISTOL CO. Waterbur

By Rail to Boyville

EVERY boy in the country can easily OWN

 illustrated-quoting low prices- Cent FREE
THECARLISLE \& FINCH CO.
CRUDE ASBESTOS
PREPARED
ASBESTOS FIBRE R, H, MARTIN,

| for Manufacturers use | |
| :--- | :--- | :--- |
| | 220 B'way, New York. |

We say that "clothes don't make the man"-
but, except his hands and face, they're all we see of him during business hours; and they reveal a good many things in his habits and character.

OLD HAMPSHIRE BOND

doesn't make a letter; but it is the special thing we see, and it helps us to read a good many things between the lines.

Your letters, like yourself, should be well dressed always, whether seeking new business or declining it, for your character and individuality should be main-
tained at all points of fortune's compass. Let us send you a specimen book showing letterheads and other business forms, printed, lithographed and engraved on the white and fourteen colors of Old Hampshire Bond.
Hampshire Paper Company Souly paper makers in the world making bond paper exclusively

The Latest and Best A. W. FABER

Engineering

Direct to İTALY
in 8 Days
by the S.S. Deutschland Leaves New York Feb. 6. '09, for NAPLES A splendid opportunity to reach the famous winter resorts of the Mediterranean and Southern Eu Our booklet, "An Ideal Voyag HAMBURG-AMERICANLINE Phila., Boston, Chicago, St. Louis, San Fran.

COSTS LESS THAN STEAM
ECONOMICAL USES
Coal, Lignite, Charcoal, Cokre, save fuel.
Results guaranteed. Sizes 30 to
Uot
Unit. Units. for brochure 58 .

WEBER GAS ENGINECO

Send for 232 pape catalog No. 18-B.
THE L. S. STARRETT CO., Athol, Mass., U. S. A.

 You USE GRINDSTONES? keptin stock. Rememoer. we make gepeialtof sel enting sonentor talspe cial purposes. send for catalogue "? The CLEVELAND STONE CO 2d Floor. Wilshire. Cleveland. 0.

 THE BERKEFELD FILTER

plenty of running water

Niagara Hydraulic Ram

HEMETOIL ANYIHINESSIND -

