

Henry Farman making the tirst crossocountry flight that has ever been accomplished with an aeroplane. The 17 miles between the military camp at Chalons and the city of Rheims, France, were covered in abont 20 minntes.

SCIENTIFIC AMERICAN ESTABLISHED 1845

 MUNN \& CO. - - Editors and ProprietoreNo. 361 Broadway, New York
Charles allen munn, president
361 Broadway, Now York
FREDERICK
renms to subscribers
One copy, one year, TER tne United States or Mexico . $\$ 3.00$
One copy, one year, or tne United
One copy, one year, for Canada
One copy, one year, to
3.75
4.50
the scientific american publications. THE SCIENTIFIC AMERIC
Scientific American Supplement (established 1876)................. 5.00 a American Homes and Gardens.
Scientific American Export Edition (established 1888). 3.00 The combined subscription rates and rates to foreign countries, inclu ing Canada, will be furnished upon application.

MUNN \& CO.,, 361 Broadway, New York
NEW YORK, SATURDAY, NOVEMBER 21, 1908.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles on subbects ond thacts authentic, the contributions will receive special
shortion. Accepted articles will be paid for at regular space rates.
tention.

A MONUMENTAL BLUNDER.

And so it seems that our worst fears regarding the $\$ 24,000,000$ Blackwell's Island Bridge are verified; for we are now assured that this, the greatest engineering work of its kind in the world, would collapse, if it were subjected to the loads which it was designed to carry. A little over a year ago, that other great cantilever, structure, the Quebec Bridge across the St. Lawrence, crumpled up under its own weight and fell into the river below. Naturally, public attention was at once directed to the Blackwell's Island Bridge; and since it was designed on the same general principles which had been found to be faulty, in some particulars, as developed in the Quebec Bridge, the public demanded that an investigation to determine the actual strength of the structure be made by independent engineers. To this the Bridge Department consented; and Prof. Burr, of Columbia University, and Messrs. Boller \& Hodge, bridge engineers, of this city, were asked to make such an investigation. Their reports, which have recently been made public, show that if the bridge were opened and subjected to the loads which it was designed to carry, the strains, in some of the members; would enormously. exceed those for which the bridge was designed, the excess in the case of one member rising to 47 per cent above the safety point!
Very wisely, when the construction of the bridge was determined upon, the Bridge Department decided to make it strong enough to carry the greatest possible congested loading that could be put upon it; and it was found that, when so loaded, it would be carrying 16,000 pounds of moving weight upon every lineal foot of its length. Subsequently to the completion of the plans, it was decided that to meet the demands of the future it would be desirable to increase the strength of the bridge to accommodate four elevated tracks upon its upper deck, two extra tracks being added to the two already provided for. This, of course, involved a very large increase in the live loads, to say nothing of an increase in the strength and weight of the bridge itself, to carry this extra load.
Prudence would have suggested that at this point a complete recalculation of the bridge be made, and a new strain sheet drawn up showing the exact stresses which would occur, under the heavier loading, throughout the whole bridge. As far as we can learn no such sheet was prepared, the first strain sheet being accepted as correct, and a pro rata increase being made in the section of the various members.
When Messrs. Boller \& Hodge began their investigations, they wisely determined that the first thing to do was to ascertain what were the actual conditions of stress in the structure as built. Accordingly, they secured the shipping bills showing the weight of every secured the shipping bills showing the weight of every
piece of steel that had been built into the bridge, checking these weights by careful measurement of the various members! and from the weights as so received by them and checked, and upon the specification loading of 16,000 pounds to the lineal foot, they drew up a strain sheet, which the Editor recently had an opportunity to inspect, showing the actual conditions in the tunity to inspect, showing the
structure as it stands to-day.
The results are simply appalling. They mark this bridge as the most monumental case of faulty design in the whole history of the art of designing long-span bridges. Furthermore, our readers should understand that, when the maximum stress to which the metal in the bridge could be safely subjected was determined upon, no allowances were made for secondary stresses in the various members (due to tendency to distortion in the members themselves), or for snow load. The omission of snow load is simply amazing; for it
means that in the event of a blizzard like that of 1888, in which the vast floors of the bridge and all the huge members might be loaded deep with a heavy burden of snow, the stresses resulting in the structure from this load would not be represented by any corresponding increase of material in the members to carry the additional burden thus imposed. Nor is it an answer to this criticism to say that the bridge might not be congested with traffic at such a time; for it is certain that a heavy blizzard might in itself be the cause of a stalling of trains and cars, and a blockade of vehicular traffic.
That our estimate of the magnitude of the blunder committed in this bridge is not overdrawn is shown by the following facts selected from the two reports: Prof. Burr says: "The result of these computations shows . . . that some of the bottom chord panels of the island span would carry about 25 per cent more than is permitted by the contract specification. There would be also some similar overstresses in riveted tension members in the same parts of the bridge, rising above 33 per cent in a single instance." Prof. Burr exhibits here as elsewhere in his report a tender commiseration for the blunders committed; for he fails to mention that in this "single instance" the overstress rises, as shown by the strain sheet of Boller \& Hodge, to no less than 47 per cent above what is allowed by considerations of safety.
When Messrs. Boller \& Hodge had proved that the bridge, if subjected to the loading for which it had been calculated, or rather miscalculated, by the Bridge Department, must inevitably collapse into the East River, they set about the calculation of a strain sheet showing what loads the bridge actually could carry without exceeding the safe limits of stress in the individual members as called for by the specification and by all good engineering practice. And what did they find? That instead of being able to carry a congested load of 16,000 pounds per lineal foot, the bridge as it stands to-day can carry a load only of 6,000 pounds per lineal foot; and that even this live load can be safely allowed on the bridge, only if the traffic is carefully regulated by the police; that is to say, if a certain distance be maintained between the trolley cars. This last restriction, being interpreted, means that, if, through carelessness or connivance, the spacing between cars be not maintained, and, as in the case of a sudden accident or panic, the cars become bunched together, the safety of the bridge, even under bunched together, the safety of the bridge, even under
a live load nearly two-thirds less than that for which it was designed, wili be imperiled!
But how is the loading to be reduced to this extent? Boller \& Hodge in their report show that it can be done only by removing from the bridge the whole of the four elevated tracks which it was designed, or supposed to be designed, to carry. In other words, this $\$ 24,000,000$ structure, whose greatest usefulness ultimately would have consisted in its serving as a link between the heavy electric train service, whether subway or surface, of Greater New York, is found to be totally unfit for such a purpose, and must be limited to the service of trolleys, trucks, and pedestrians. No elevated trains on a bridge, for whose approaches nearly half a mile of elevated structure has already been built!
It is beside the mark for apologists, in the endeavor to lighten the gravity of the situation, to suggest that 16,000 pounds per foot is a loading which may never occur. That loading was adopted as a measure of safety and as a means of covering the inevitable growth of traffic in the future. As a measure of precaution, it does not lose its importance in our eyes, because someone has committed a costly blunder in the Bridge Department.

A NEW ERA IN AEROPLANE TRANSPORT.

After his failure to make satisfactory flights in this country last summer, and after losing to Wilbur Wright the prize of the French Aero Club for the longest flight up to October 1, Henry Farman has at last shown himself to be, after all, one of the world's most daring aviators, while at the same time he has opened a new era in aeroplane flight, an era in which the flying machine will be put to practical use in the transport of individuals from place to place.
After a 25 -mile flight above the camp at Chalons, France, on October 28, and a mile flight with a passenger the same day, Farman made some changes in his machine to improve its stability. Then, on the 30th, he again soared aloft above the camp; but this 30th, he again soared aloft above the camp; but this
time, after describing one or two circles, he flew straightaway across country at a height of 100 feet, and did not alight until some 20 minutes later, when he reached the outskirts of Rheims, after traversing a distance of 17 miles. Our frontispiece shows him passing over one of the intervening villages, before the astonished gaze of several spectators. It was his intention to return in the same manner; but owing to the late hour and the making of some small repairs, he took the aeroplane apart and returned it to Chalons by road.

Not to be outdone by his compatriot, M. Louis Bleriot the next day made a 9 -mile flight with his aeroplane across country from Toury to Artenay; and, after making a slight repair, returned to the starting point, making one stop en route. A photograph of the monoplane made during this flight appears on page 357.
These two remarkable performances have put France in the lead as far as practical cross-country flight is concerned. They have shown the possibility of winning the $\$ 50,000$ prize of the London Daily Mail for a flight in stages from London to Manchester, and also the prizes totaling $\$ 10,000$ for a flight across the English Channel. Furthermore, they have assured the holding of a cross-country aeroplane race next summer in France. A prize of $\$ 20,000$ has been put up by the Aero Club of France, and it is proposed to run the race from Paris to Bordeaux in five stages.
Had it not been for his unfortunate accident, it is probable that Orville Wright would have made the first cross-country aeroplane flight at least a month before Farman, as the government requirements called for a ten-mile flight of this kind in making the speed test. As no such performance was required by the syndicate which has bought the Wright patents in France, Wilbur Wright has contented himself with making lengthy flights above a level field, in windy as 'well as in calm weather, and also with teaching several men the operation of his machine. He does not favor such spectacular performances as that of Farman, which, he claims, could not have been made save under ideal weather conditions and with the running of an extreme risk of accident.

WILBUR WRIGHT'S RECORD FOR HEIGHT.
After lengthening the rail from which his aeroplane starts some 35 feet, in order to enable him to attain the necessary speed by means of his propellers alone, Mr. Wilbur Wright competed successfully on the 13th instant for the prize for height offered by the Aero Club of France. The rules forbid the use of a dropping weight for starting the aeroplane, so Mr. Wright was obliged to dispense with his usual starting apparatus. His machine, however, started readily under its own power. At the end of a 5 -minute flight, he cleared the line of small balloons. placed at a height of 30 meters (98.4 feet) by 49 feet, making a total height of 147.4 feet. In a second flight of 11 minutes' duration, Mr. Wright is said to have risen to a height of 196 feet above ground. These are the first official records for height that the American aviator has made.

THE HANDY MAN'S WORKSHOP.

Among the features which have contributed to the success of the Scientific American have been articles written for the benefit of the amateur mechanic-articles which told in a simple way how motors, dynamos, batteries, barometers, and a hundred other machines and instruments can be constructed at home without elaborate tools. These articles have been the means of giving to thousands of young men of technical inclinations an electrical and mechanical training, which because of its eminently practical nature, admirably fitted them for the more serious work of the machine shop and the electrical laboratory.
In order to broaden this department of the journal, and to render it even more useful than it has been in the past, we have decided to publish about twice a month shorter accounts, which will tersely yet clearly describe simple devices which can be made by anyone who is reasonably skillful in the use of simple tools, and which will be devoted to the description not only of experimental apparatus, but of utensils and implements for everyday use. The department bears the general title, "The Handy Man's Workshop," and we intend to include under the heading all that it implies. The articles will explain the construction of simple physical apparatus, as in the past, but above all they will be devoted to the making of contrivances that a will be devoted to the making of contrivances that a
"handy man" can use about the house. In next week's issue we intend to publish brief articles on the making of simple Christmas devices at home, which will be far more intimate and personal in their appeal than factory-made products. That issue of the Scientific American will be a very practical Christmas number. The reception thus far accorded to the innovation justifies us in assuming that "The Handy Man's Workshop" will prove one of the most popular departments in the Scientific American. Because it is still new, we shall be glad to receive suggestions from our read ers for its improvement-if improvement it needs.

Judiciously used, the automobile may offer a remedy for nervous and mental affections. Dr. A. Mounteyrat, a French physician, ventures the opinion that motoring is a cure for anæmia and sleeplessness. He conducted some experiments during several tours of eight days each and states that he found a decided increase in the number of red corpuscles. The average increase fig. ures out at 26 per cent. The effect of a week's touring is much the same as that of residence on high altitudes.

ENGINEERING.

Negotiations have recently been completed for the construction at Southampton of a large drydock capaconstruction at Southampton of a large drydock capaand "Titanic" of the White Star Line. The new dock is to have a depth of 40 feet of water at low tide, so that it can accommodate these vessels at any hour at which they may arrive.
It is reported that the engineers who will design the new Quebec Bridge are considering the question of placing the new structure 10 feet higher above the St. Lawrence River than the bridge that fell. The clearance of the fallen structure was 150 feet above high water. The change is designed to accommodate ships that make Montreal a port of call.
The Navy Department will shortly issue invitations for bids for the construction of a long-distance wireless station in Washington, which is to be of exceptional power and is designed to enable the Department to hold communication with vessels over 2,000 miles distant. Proposals will also be asked for a wireless equipment for ships, to have a radius of not less than 1,000 miles.
The announcement that the Japanese are about to open the railroad which they have built in Formosa is the latest evidence of the good work which they are doing in the island, which was acquired in 1895, at the close of the war with China. At the time of the transfer 62 miles of the road were completed. It now covers a total of 334 miles, and Japan has built the additional 272 miles at nearly $\$ 2,000,000$ less than the estimates.
The War Department is engaged in experiments to determine what can be done in the way of compressing coffee and sugar into tablet forms under condi-tions- which will preserve them for a lengthy period, with a view to including the product in the new haversack ration which has been adopted for the army. This ration includes hard bread, bacon put up in tins, and salt and pepper carried in stout separate envelopes.
The recent award by the Pennsylvania Railroad Company of a $\$ 5,000,000$ contract to the Westinghouse Company for the electrification of the New York terminals and tunnel connections, is one of the most encouraging signs of the present revival of business activity. During the past two years this railroad has been conducting an exhaustive series of tests, both of electric locomotives and of the different methods of generation and transmission, which have termin ated in the placing of this important order.
It seems likely that the first monorail passenger line to be installed on any scale in the United States will be built within the limits of New York city on the route of the old horse-car line from the New Haven Railroad tracks to City Island. The cars will be carried on two two-wheeled trucks, each pair of wheels running in tandem on a single rail, spiked to ties laid on the ground. Stability will be obtained by two overhead trucks, carried on flexible arms, each truck running on L -shaped overhead rails carried on standards. The guide rails will act as conductors, the current being taken through the flexible arms to the motors.
The report of the commissioners appointed by President Roosevelt to consider the question of mine explosions, attaches great importance to the employ ment for the handling of explosives only of men noted for their great prudence. To prevent the ignition of coal dust, they advise thorough wetting of the mine for a distance of 60 feet from the shot that is to be fired. They recommend that close attention should be given to the question of leaving such an amount of support to the roof of a mine that it cannot fall in in the event of an explosion, and thereby imprison the workmen. Equally important is the suggestion that employees be removed from the mine when a shot is to be fired. It is also urged that there should be strong co-operation between the government and the operators of mines in the maintenance of strict discipline, and that there should be careful periodic inspection by a corps of competent men.
It was inevitable that the proposals submitted to the Public Service Commission for the construction of a freight subway beneath the streets of New York city would result in a storm of protest from the trucking interests; and hence the opposition of the truckmen at the public hearing before the commission excites no surprise. From time immemorial the attempted introduction of improved means of transit has been fought bitterly by the older systems, whose inconvenience and expense they were designed to avoid. The guiding principle, however, in all such confiicts of private and public interests should be that of the greatest good of the greatest number. The obstruction of the city's streets and sidewalks by the present method of freight distribution has become intolerable; and it is certain that if the proposed subway can be shown to be commercially feasible it will prove to be one of the greatest improvements ever made in this city.

The Navy Department is considering the building of a long-distance wireless telegraph station near Washington which will have a sending radius of 3,000 miles. This station will supersede the present sta tions along the Atlantic coast. The Department also expects to call for bids on a pair of high-power ship equipments with sending radius of 1,000 miles each.
A movement is on foot in England to reduce cable charges to America and cut the rate between Eng land and the Continent to two cents a word. The idea is to have the various governments obtain control of the cables, and thus permit their use at the lowest possible figures. No doubt this movement will result in considerable complication, owing to the interna tional agreements that would be required.
According to a recent consular report, there is a total water power in Switzerland of $1,000,000$ horsepower, three-quarters of which may be exploited, though at present only one-quarter of this is utilized Steps have been taken to protect the use of the streams, with a view to prevent the transmission of current to foreign countries. A resolution was recently passed by the Swiss Congress, placing the utilization of water power entirely under control of the federal government.

Advocates of municipal ownership have received a serious blow in Chicago. The city has been lighting its street lamps, 7,647 of them, at $\$ 81.64$ each per year. At the same time, they have been renting lamps at a cost of $\$ 75$ per year. According to the report of Bion J. Arnold and the auditor, Arthur Young, the city has been wasting between $\$ 200,000$ and $\$ 300$,000 per year by endeavoring to manufacture its own electricity instead of buying it from private plants. The municipal plant has cost $\$ 3,639,031$, whereas its actual value to-day is but $\$ 2,353,869$.
The United States Geological Survey is recommending the use of electric power in mines. The electrical equipment, however, must be installed with great care, so as to guard against danger of fire or shock. The underground voltage should not exceed 650 for direct current, or 500 for alternating current, and lower voltages are preferable. Where a higher voltage is used, it should be transmitted by a completely insulated cable. No live electric wire should be permitted in any part of the mine in which gas is permitted in any part of the mine in
found to the amount of two per cent.
The new pay-as-you-enter cars of the Chicago Railways Company will soon be put into service. These cars are provided with very long vestibules, permitting two passengers to enter and leave abreast. The overhang from the center of the trucks is 14 feet, and a very strong construction is necessary to prevent sagging of the platforms. The interior of the car is provided with cross seats, except for a pair of side seats at each end. Each cross seat is provided with a push button, which operates a buzzer over the motorman's head. Special precautions have been taken to thoroughly insulate the wiring. The trolley circuit is incased in a metal conduit on the roof of the car.

The increased use of electricity on the Pennsylvania Railroad has led to a study of the dangers of handling live wires, and the methods that must be employed in resuscitating those who have been stunned by an electric shock. A special pair of pliers has been designed, which enables a man to cut a live wire carrying 23,000 volts without danger to himself. To remove the wire from a body when no other means are at hand, a coat is placed under the wire, and lifted by the sleeves, to raise the wire off the body. This was found perfectly safe, even when the garment was damp. Experiments with fire streams showed that there was no danger of the current flowing down the stream of water even from a high-voltage line when the operator held the nozzle at a distance of between three and four feet from the wire. Experiments with chemical extinguishers showed that they were very dangerous where a solid stream was played on the wire.
A new rectifier has recently been brought out which is entirely mechanical in its operation. It consists of a cylinder of insulating material provided with a pair of metallic contact points. Mounted on a ring which surrounds the cylinder are two pairs of contact points and there are in addition four rectifying disks of carbon which with the cylinder are rotated by a motor. By means of a pair of condensers, sparks are made to leap between the points on the rotating cylinder and first one and then the other pair of contact points. The current flows across the gaps between the points and the rectifying disks when the resistance is broken down by the spark, and is 'conducted to the storage battery intermittently, but always in the same direction. When starting the rectifier, the motor is brought to synchronism by cranking. The rings on which the four points are carried may be revolved about its axis, so that the condenser will discharge at any point of the wave, and thus the voltage of the rectified current may be regulated.

SCIENCE.

The excavations at Pompeii have led to the discovery of two supulchral monuments, the first belonging to the Edile Vestorius Priscus, which is decorated with frescoes, and the second to a woman named Septima. The latter has a marble inscribed tablet intact and a semi-circular seat raised around a column surmounted by a sun dial, which is identified as an exact reproduction of the mosaic picture (so-called) of philosophers lately discovered at the same spot.

Artificial silk is very deficient in strength, especially when wet, but strong threads and fabrics which have the gloss of silk and are not affected by water can be made by subjecting cotton to various treatments. The oldest process, mercerizing or stretching the fibers in a bath of caustic alkali, produces an inferior gloss. In the newer methods, the cotton fibers are practically covered with a coating of artificial silk, either by dipping them into solutions of cellulose similar to those from which artificial silk is made, or by treating them with solvents of cellulose and thus forming the silky coating out of the fibers themselves. The imitations of silk produced by these methods are very glossy and very strong and durable, for exposure to moisture weakens only the coating and not the body of the fiber.
The distinguished seismologist Emilio Oddone has expressed the view that a great earthquake may, by agitating the whole mass of the earth, cause another great earthquake in a distant and unstable part of the earth's crust. For example, about half an hour before the great earthquake at Valparaiso, Chile, on August 16, the seismographs scattered over the globe registered an earthquake of which the center was located in the northern part of the Pacific Ocean: The hourly observations proved that from 31 to 32 minutes elapsed between the two quakes. This is, very approximately, the time occupied by the first derived wave to traverse the diameter of the earth, the length of which is nearly equal to the distance $(7,050$ miles $)$, in a straight line, between the epicenters of these two earthquakes. Hence the earthquake in the South Pacific may have been the determining cause of the earthquake at Valparaiso.
A consular report which, as might be supposed comes from Germany, states that the proper color for beer bottles is a matter of some Teutonic concern. It seems that the actinic or chemical rays of light affect beer harmfully. A German authority on brewing has now shown by an exhaustive series of experiments that no form of colored glass when used for beer bottles affords absolute protection against the effects of expo sure to sunlight, and that a wide diversity in degree of protection is observed when glass of different tints is employed. The highest measure of protection is yielded by dark, reddish-brown glass. Repeated ex periments have shown that while the chromatic changes in the test liquid take place much more rapidly than the alterations in taste and odor of beer under corresponding circumstances, still the retarda tion in both cases is proportional. Thus a glass bottle which reduced by 50 per cent the action of the actinic rays on the sensitive solution, as compared with a colorless bottle, would likewise involve double the time of exposure for bringing about a given amount of deterioration in the properties of the beer, if filled with that liquid.

Twenty years ago, the loss caused annually by smoke and fog in London was computed to be more than $\$ 22,000,000$, divided as follows: Waste of fuel (25 per cent), $\$ 5,000,000$; additional cost of laundering and wear and tear of garments, $\$ 10,750,000$; damage to outer garments, carpets, and other fabrics, $\$ 5,000,000$; loss occasioned by death and illness caused by smoke, $\$ 1,600,000$. To this must be added at least $\$ 5,000,000$ for the deterioration of mortar, marble, granite, and other stone in buildings, cleaning and painting walls, signs, and shop fronts, corrosion and perishing of metal work, cleaning windows, deterioration and re storation of "paintings, engravings, and books, loss of time by artists, photographers, and others whose occupations require abundant daylight, and damage to trees and plants. Further additions should be made for the cost of artificial light and heat made necessary by the darkness, cold, and humidity caused by the obscuration of the sun, the cost of cleaning chimneys, etc. Finally, the smoke causes the me tropolis to be shunned by the wealthy classes, and appreciably diminishes the value of real estate. Hence the total annual loss caused by smoke must be about $\$ 30,000,000$, or $\$ 5$ per capita. Mr. John Graham, who makes this compilation and estimate, appeals to every intelligent citizen of London to lessen his individua contribution to the smoke evil by every means in his power. Graham expresses the opinion that the majority of dwellings might be heated with coke or gas instead of coal, and that the smoke discharged by factories could be greatly diminished by the adoption of smoke-consuming devices that are already on the market.

A NEW FORM OF TELAUTOGRAPH.

by dr. robert gumshaw.
For more than half a century attempts haye been made to produce handwriting at a distance; for instance, Bakewell's apparatus of 1842, Caselli's "Pantelegraph" of 1856, Gray's of 1888, Amstutz's of 1893, and Ritchie's and Cerebotani's of later date; while much more recently both Prof. Korn and Herr Karl Grzanna (whom the Germans persist in calling "Gruhn," the name of his former assistant) have been active in this field. As far back as 1904 Grzanna published an account of an apparatus for producing written characters at a distance; and Korn brought out his first selenium cell apparatus in 1906.
Grzanna's apparatus (based on the German patent of the Dresdener Klein) as at present constructed consists essentially of the parts here illustrated. The principle of its action is the resolution of every desired stroke of handwriting into a horizontal and a vertical component on the surface on which it is made, and its exact reproduction in the form of the resultant of such components; on the receiving surface. The Cowper apparatus shown at the Paris Exposition of 1878 did the same thing, using a capillary ink tube to form the letters. But in Grzanna's apparatus mirrors are used at the receiving end which throw a beam of light on a sensitive tape. As one mirror swings up and down in the vertical plane, the other in the horizontal from right to left, in the same way as the analyzed movement of the writing, or drawing, point, the resultant of these two mirror movements corresponds to the path of the pencil, at the sender.

Referring to Fig. 1, which represents the principle of the sender, t is the writing point jointed to a lever arm a, which is easily movable in all directions in the plane of the writing. The other end of this lever is attached to an arbor p, which is also movable horizontally in the line $A B$, so that the pencil can write freely. A stationary electric resistance is indicated at r, and a movable resistance, s, is connected with the lever $\operatorname{arm} a$ by the link shown in the illustration These two resistances are electrically connected with a battery of eight dry cells. A small current collec tor, b, is attached to the movable rod, but is electrically insulated therefrom. At c is a stationary currentcollector. These two collectors are electrically connected with the line wires d and e respectively. One portion of the battery current flows through the collector into each line conductor; the amount varying with the position of the pencil t. At each point of the writing surface there are two different but definite current strengths, so that one can say that the movements of the writing operation are converted into changes of current strength. The current returns either through the earth or through' a third conductor. At the receiving station it enters the apparatus seen in Fig. 2.
In this there is a small electric lamp L, that casts its light through a bent tube, with a prism, p, and a lens, I, on a small concave mirror, h, swinging on a horizontal axis; and from this to a second concave mirror, s, which swings about a vertical axis. From this latter mirror the rays are reflected to a roll of photographically sensitive paper, F. The horizonta axis of the first mirror, h, is surrounded by a coil o copper wire in electric connection with the wire a from the sending station; the vertical axis of the mirror s being in like manner surrounded by a coil, g, in electric connection with the other wire, e. Current in these coils causes vibration of the mirrors, by acting on magnets attached to their axes.
The invisible photographic writing or drawing on the sensitive paper is automatically developed and fixed. After the message is received, the sensitive paper D is drawn off the roll $P h$, between the pressure rolls and under a yellow glass pane G, which shuts off the developing chamber of the apparatus. After developing the paper containing the now legible writing or picture passes out between two more pressure rolls. The lower front rolls are, rotated by means of worm-wheels in connection with a worm shaft driven by a small motor, M, the latter, as well as the lamp, L, being served with current from a small battery, B. The mechanism is so arranged that after the message is written, the under rolls are rotated until sufficient of the sensitive paper is drawn along toward D, under the developer-reservoir En. From this latter, two rubber tubes lead toward two glass strips, lying at an angle to each other on the paper above and thus forming a trough with a small slit below. Through the latter the developing liquid is evenly distributed over the paper D. The flow of liquid from $E n$ is automatically regulated, and when no paper is ready to be developed,
the rubber tubes are closed by the pressure of an iron plate. At the proper moment an electromagnet relieves the pressure on the tubes and thus allows the developing liquid to flow. The development takes about ten seconds.

Grzanna's telautograph in use.
The apparatus itself can be driven by a dry battery or by an accumulator; about 12 volts being sufficient. Each apparatus is arranged as both receiver and sender. The German post office department has tested the system on the following lines: Berlin-Potsdam, 30 kilometers; Dresden-Meissen, 27 kilometers; Dres-

Fig. 1.-Details of the sending apparatus.
den-suburban line, 4 kilometers; and Dresden-Berlin, 200 kilometers.

The remains of a Tyrannosaurus Rex; forty feet long and twenty-two feet in height, have been found in the Bad Lands, south of Glasgow, Mont., by Barnum

Fig. 2.-Arrangement of the mechanism at the receiving end.

Brown, of New York, connected with the American Museum of Natural History. The relic has been shipped to New York. It took sixteen teams to haul the fossil to the railroad. The skull alone weighs 4,000 pounds. The Scientific American hopes to publish an illustrated description of this "King of Lizards."

Written by hand.
A sample of the work done by Grzanna's telautograph. A IEW FORM OF TELAUTOGBAPH,

The Cullinan Diamond Cut.
The famous Cullinan diamond, the cutting of which was recently described in the columns of the Scientific American, has been successfully divided into eleven stones. When first discovered, and even before it was cut, the stone was valued at about $\$ 1,000,000$, and about that amount was paid for it by the Transvaal government. Fred Wells, the superintendent of the Premier Diamond Company, found the Cullinan diamond in January of 1905 . The diamond was a white elephant in its way. Too big and too precious to find a purchaser, the problem of disposing of it perplexed the company not a little. Finally it was decided to present the stone to King Edward, who has intrusted an Amsterdam firm with the splitting and polishing of the gem.
The London Times states that in the original state the Cullinan diamond weighed $3,2533 / 4 / 4$ English karats, or over 11-3 pounds avoirdupois. It is now divided as follows: (1) a pendeloque or drop brilliant, weighing $5161 / 2$ karats, dimensions, 2.322 inches long and 1.791 inches broad; (2) a square brilliant, weighing 309 3-18 karats, 1.771 inches long by 1.594 broad; (3) a pendeloque, weighing 92 karats; (4) a square brilliant, 62 karats; (5) a heart-shaped brilliant, $183 / 8$ karats; (6) a marquise brilliant, 111/4 karats; (7) a marquise brilliant, $89-16$ karats; (8) a square brilliant, $65 / 8$ karats; (9) a pendeloque, $49-32$ karats; (10) ninety-six brilliants, weighing $73 / 8$ karats, and (11) a quantity of unpolished "ends," weighing 9 karats.
The first and second of these stones are by far the largest in existence. Even the second is much bigger than the largest previously known brilliant, viz., the Jubilee, weighing 239 karats, while beside either of them so famous a jewel as the Kohinoor sinks into comparative insignificance, since its weight, $1023 / 4$ karats, is little more than one-third of that of the smaller, or one-fifth that of the larger. Moreover, the stones are not more distinguished for size than for quality. All of them, from the biggest to the smallest, are absolutely without flaw and of the finest extra blue-white color existing.
As regards the two largest, an innovation was made in the manner of cutting. Normally a brilliant has fifty-eight facets. In view, however, of the immense size of the two largest Cullinan brilliants, it was determined to have an increased number, and to give the first seventy-four facets and the second sixty-six. This decision has been abundantly vindicated by the results, for the stones exhibit the most marvelous brilliancy that diamonds can show. This fact is all the more remarkable and satisfactory because very large brilliants are apt to be somewhat dull and deficient in fire.

Mechanical Stoking.
Many attempts at mechanical stoking have been made in locomotive design, but for different reasons they must still be considered experimental. These at tempts have been answers to a crying need for better results than have been obtained from hand firing. Any devices which tend to improve the results of the present system of locomotive firing should, there fore, be well tried out. One of the greatest evils in connection with hand firing is the necessity for the opening of the firebox door, thus admitting large vol umes of cold air. In fireboxes which are arranged with baffle plates to protect the tube sheet, cold air from the fire door is not so destructive, but in those which do not furnish this protection, the damage is very great, both to the steaming capacity of the boiler and to the life of the sheets and tube ends. When the firebox door of a hard-working locomotive is opened by hand for the admission of each fire, the ag gregate amount of time in which the outside air has free play through the opening is probably as much as twenty-five per cent of that consumed by the trip. There is in use on some roads a device which should be applied to all locomotives of the heavier types, at least. This device is simply an air door opener and closer. It consists of an air cylinder, the piston rod of which is con nected to a lever on-the fire door Air is admitted to the cylinder by a valve operated by the fireman's foot; this drives the piston outward and opens the door. The return is effected by a spring as soon as the air is exhausted. The exhaust takes place automatically when the foot of the fireman releases the valves. The advantage in the use of this device lies in the fact that the time the door must be kept open is reduced. The fireman has the scoop full of coal ready to be discharged immediately the door is opened, and the closing is effected just as quickly.-Railway and Engineering Review.

CYCLONES ON THE SUN.

by prof. s. A. MTTCHRLL, COLUMBIA UNIVERSITT.
Important discoveries have been made during the past few months at the Carnegie Solar Observatory in California, where Prof. George E. Hale, its director, has gained valuable knowledge about the sun in showing the process whereby fuel is fed into the solar furnace. By improved methods of research, by careful diligence in closely observing the sun, aided by a little stroke of luck, photographs have been taken which show a mass of cool hydrogen gas being sucked into the vortex of a sun spot, the result of a terrific solar cyclone. These critical photographs, which are of excellent quality, speak volumes for the observers on Mount Wilson in regard to their ability in perfecting new lines of research, their hard-working methods in observing, and their genius in properly interpreting the results of these fine pictures. When related, these discoveries appear extremely simple and matter-of-fact, but the work that has led up to them required a series of brilliant discoveries which are probably equaled nowhere in any other science.

Mount Wilson near Pasadena in California was chosen for the observatory of the Carnegie Institution because its position offered the possibility of continuously observing the heavens for weeks at a time unhampered by clouds. The talented director of the Yerkes Observatory of the University of Chicago, chosen as its head, decided to limit observational work to the sun, for the reason that the sun is a typical star, and in closely studying it we are not only gaining information about the body which is of most importance to us on earth, but we are also shedding considerable light on the great and important problem of astronomy, the study of stellar evolution. While still a young man in 1893, Prof. Hale invented the spectroheliograph, and since that time much has been expected from him in astronomic research. His present discoveries are a fitting crimax to a long series of brilliant discoveries rendered possible by great genius and remarkable enthusiasm.
If astronomers of the present day had only the photographic camera to assist with their eye observations at the end of a telescope, very little could be known of the sun or its surface. The photographic plate has been of enormous value in giving a permanent record of fleeting phenomena on the sun's surface, and without it the great advances of to-day would have been impossible. Since 1868 the spectroscope has given its aid to solar investigations. In that year Janssen of gations. In that year Janssen of
France and Lockyer of England almost simultaneously pointed out that the red flames or prominences, which formerly could be seen only during the few minutes of a total solar eclipse, were now an everyday phenomenon. By a peculiar use of the spectroscope it is now possible to see these red flames in broad daylight when they are on the sun's edge, in spite of the fact that the light from the sun is a thousandfold more powerful than the light from the prominences. Another from the prominences. Another field of fruitful research was thus opened, and in the capable hands of the late Prof. Young of Princeton, a long list of discoveries were added to the science of astrophysics. Flames could be seen shooting to enormous distances from the sun's edge at a speed greater than one hundred miles per second! The end of all research seemed nearly reached when it became possible to photograph and obtain a permanent record of these gigantic eruptions, as was possible by Prof. Hale's invention of the spectroheliograph. As the name signifies, the sun is photographed by means of its spectrum. A powerful grating or prism train at the eye end of the telescope spreads the sun's light out into its spectrum. By allowing the light from one line of the spectrum, as H or K, to pass through a secondary slit, a photograph of the sun and its surroundings can be taken in \dot{P} or K light alone. Over-
coming the mechanical difficulties involved in this, gave Prof. Hale the spectroheliograph. At first on his 12 -inch telescope, later on the 40 -inch of the. Yerkes Observatory, were photographed wonderful pictures of the prominences at the sun's limb, the sun on the original plates with the 40 -inch being seven inches in diameter. With the new spectroheliograph it became possible to photograph not only the prominences but also the face of the sun, and if the secondary slit were set at the center of the K line at the violet end of the spectrum, a plate of the sun was obtained in the light of glowing calcium vapor. This photograph was decidedly different in appearance from that of a straight picture taken in the ordinary way.
In experimenting with the spectroheliograph, it was found that the solar image looked different according as the second slit was set directly on the center of the K line or a little to the red or the violet side.

Photographs showing the sunspot on May 29 and June 2, 1908.
Note the long, dark mass of hydrogen and the marked whirling structure.

The sunspot on June 8 at 4:58 p. m. and 15 minutes 88 seconds later. The hydrogen mase is rapidy moring toward the spot.

8 mins. and 6 secs. after last photograph.
Hydrogen mass is being sucked into the vortex.

View on the following morning.
Note radial lines. Whirling stracture has disappeared.

Photographs by Prof. Hale.

CYCLONES ON THE SUN.

This had led to the discovery of fiocculi by Prof. Hale, masses of luminous gas floating at different elevations above the sun's surface. Still later investigations led Prof. Hale to the conclusion that it was now possible to take photographs representing the condition of the sun's atmosphere at different elevations. When we think that remarkably little is known of our own atmosphere at a height of five miles above the earth's surface, we get a slight idea of the power of the astronomer in photographing the sun ninety-three millions of miles away, and gaining a knowledge of the condition of the sun's atmosphere at different levels! This work was of far-reaching importance, and it became more and more necessary to photograph the sun daily. But at Yerkes and at all observatories in the eastern part of our country, daily work on the sun is often interrupted by clouds, and the advan-
tage of a location in California was recognized by the Carnegie Institution. Work there progressed along the same lines which had brought so much success at the Yerkes Observatory; and Prof. Hale planned to carry out researches on a grander scale than was possible even with the 40 -inch telescope.

In carrying out the work on the fiocculi, the greatest success had been obtained in the use of the calcium H and K lines of the solar spectrum. The hydrogen lines $H \beta, H \gamma$, and $H \delta$, were also used to photograph these interesting phenomena, and it was found that there were great differences in the appearance of the sun as the calcium lines were employed or as the hydrogen lines were made use of. In fact, there were marked variations as the sun was photographed in the light of each of these three hydrogen lines. Consequently, Prof. Hale desired greatly to learn what would be the results when the $H a$ line of hydrogen was employed. The Ha or the C line of the solar spectrum is the one exclusively used in visual observations of prominences. But unfortunately this C line is far in the red, and the ordinary photographic plate is not sensitive to red light, a fact of which we are all aware, since photographs are ordinarily developed in red light. If a plate sensitive to red light could be obtained which would not require too long an exposure, it might then be possible to photograph the sun in the light of glowing hydrogen gas, the C line. Experiments to make red-sensitive plates rapid enough for use had not met with much success until within the last year Mr. Robert James Wallace of the Yerkes Observatory showed a method of doing this by bathing ordinary plates in a certain solution. With this new weapon of research photographic work on the sun was undertaken at Mount Wilson with renewed energy. Seed's "Gilt Edge" plates bathed according to Wallace's directions proved to be splendidly adapted to the purpose. The first experiments with the new plates were tried about the middle of March, 1908, though the first satisfactory photograph was that of April 30. The new plates showed a great improvement in detail over the old. Not only were prominences seen better, but the spots on the sun's surface took on an added interest, for it was at once seen that they are centers of attrac tion which draw toward them the hydrogen of the solar atmosphere. It became necessary now more closely than ever to observe sun spots, for discoveries would fol low each other in rapid order.
On May 26, 1908, a spot reached the east limb of the sun at $8: 16$ A. M. and the looked-for opportunity was at hand. On May 25, before the spot turned the edge of the sun, evidences of activity could be seen in the shape of prominences which were undoubtedly connected with the spot group. On May 28 at 6:58 A. M. with the spot very close to the eastern limb, traces of a cyclone could be seen near the spot, matter there being in rapid whirling motion, and likewise was seen what proved later to be especially interesting, a flocculus of dark cool hydrogen. (The spot remained on the face of the sun until June 8.) The splendid series of photographs taken show the cyclones continuing on a gigantic scale around the spot. The dark mass of hydrogen-the flocculi-showed changes here and there, giving evidence of great agitation on the sun. Suddenly on June 3 a catastrophe happened; the cool hydrogen gas, which had been continuously in the same location since the spot came around the edge of the sun on May 26 , was quickly set whirling and was rapidly sucked into the great maelstrom on the sun. Prof. Hale was lucky enough to have this great solar cyclone-the first of its kind ever seenrecorded on a series of nine photographs all taken within ten minutes. We congratulate Prof. Hale on his energy and his great fortune. The speed at which this cool hydrogen rushed into the center of the spot was about sixty miles per second-rather faster than
any motions we know of on the earth-a velocity comparable with that at which prominences are thrown off from the sun.

The photographs showing the solar cyclone were taken about 5 P. M. June 3. At 6 the next morning quite a change was evident around the spots. Bright masses of heated hydrogen gas began to appear, and this heated gas kept on increasing in amount for the next couple of days. Thus we become aware of the manner in which relatively cool matter is subjected to the heat of the solar furnace, tracing a mass of hydrogen gas before and after being treated by the solar fire. These are the beginnings of a new set of discoveries which will give us much knowledge regarding our great sun. Spots are thus the centers of disturbances on the sun. But how much disturbance is centered there? And what connection have sun spots with other phenomena? The scientific world has known for more than fifty years that sun spots closely affect the amount of terrestrial magnetism; spots on the sun are connected with "electric storms," and with displays of northern lights, but how related? The sun is evidently the seat of a great electro-magnetic field, whose lines of force stretch outward even as far as the earth. In fact, the appearance of the hydrogen flocculi on the new photographs of Prof. Hale recall to the mind the appearance of iron filings in a magnetic field; and one wishes to know what kind of an electro-magnet the sun is, how it displays its force, and whether sun spots are the centers of lines of force running out. We shall expect Prof. Hale to tell us whether the lines of the spectrum of a sun spo show the Zeeman effect, and how it is that the lines of force from the spot alter the appearance of the spectrum lines.
These discoveries emphasize strongly the great im portance of a close and careful study of sun spots for they are somehow connected with a variety of phenomena such as electric storms, aurora borealis, prominences, flocculi, faculæ, corona, and possibly with conditions of temperature or weather here on earth.

More Curious Facts About Numbers
 by J. f. springer.

Those who read attentively the writer's article on numbers in the Scientific American for March 28 1908, may have wondered how such groups of num bers as $(3,4,5),(5,12,13),(8,15,17)$, and $(7,24,25)$ may be obtained. These groups have the property that if their members be squared the sum of the first two squares is equal to the third. Thus $3^{2}+4^{2}=5^{2}$. These few cases were, perhaps without exception, found by observation. But the writer has devised a method whereby an unlimited number of such groups may be obtained with quickness and certainty. Consider the equation
[1] $\quad\left(x^{2}+y^{2}\right)^{2}=(2 x y)^{2}+\left(x^{2}-y^{2}\right)^{2}$.
Now this equation is true irrespective of the particular values that x and y may have. This may be seen by actually carrying out the operations indicated. Thus, squaring as directed, we have,

$$
x^{4}+2 x^{2} y^{2}+y^{4}=4 x^{2} y^{2}+x^{4}-2 x^{2} y^{2}+y^{4}
$$

Returning now to equation [1], and remembering that it is true whatever the values of x and y, we may obtain groups of numbers having the desired property by simply selecting any values we choose for x and y Thus, by making $x=2$ and $y=1$, we obtain (using dot for multiplication)

$$
\left(2^{2}+1^{2}\right)^{2}=(2.2 .1)^{2}+\left(2^{2}-1^{2}\right)^{2}
$$

That is, $5^{2}=4^{2}+3^{2}$. This j_{y} one of our old groups. Making $x=5$ and $y=2$, we obtain

$$
\left(5^{2}+2^{2}\right)^{2}=(2.5 .2)^{2}+\left(5^{2}-2^{2}\right)^{2}
$$

yielding

$$
29^{2}=20^{2}+21^{2}
$$

Again, making $x=8$ and $y=3$, we get

$$
73^{2}=48^{2}+55^{2}
$$

Or; if $x=7$ and $y=4$
$65^{2}=56^{2}+33^{2}$.
Finally, if $x=13$ and $y=8$,
$233^{2}=208^{2}+105^{2}$.
By performing the operations of squaring, one may convince himself that these results are correct. Thus, in the last case $233^{2}=54,289$. The squares of 208 and 105 are 43,264 and 11,025 , which upon being added yield 54,289 . The reader should use formula [1] and devise groups for himself. By carrying out the squaring operations he may satisfy himself of the correctness of his work.
An interesting property of numbers is the fact that if we add the squares of two consecutive numbers together, we shall obtain a new number such that if we multiply it by 2 and subtract 1 , we shall obtain a square number. Thus, suppose we add the squares of the consecutive numbers 2 and 3 . Multiplying the new number (13) by 2 and subtracting 1 , we get $25-$ which is a square number. Again, adding the squares of the consecutive numbers 12 and 13 , we get 313. Multiplying this by 2 and subtracting 1 , we obtain 625-a square number. Indeed, the square number obtained finaily is the square of the sum of the two consecutive numbers. Thus, in the first case, 25 is
the square of 5 , which is the sum of 2 and 3 . So, also, 625 is the square of 25 , which is, in turn, the sum of 12 and 13. If we desire to see the reason for this, we may represent the two consecutive numbers by x and $x+1$. Squaring and adding, we obtain $x^{2}+(x+1)^{2}$, which equals $2 x^{2}+2 x+1$. Multiplying this by 2 and deducting 1 , we get

$$
4 x^{2}+4 x+1
$$

But this is a square number, being in fact,

$(2 x+1)^{2}$.

This may be written

$$
[x+(x+1)]^{2}
$$

from which it may be seen that it is the sum of x and $x+1$ which is squared. That is to say, by adding the square of the two consecutive numbers, multiplying the result by 2 and subtracting 1 , we get the square of the sum of the consecutive numbers.

In the preceding article, a method was given whereby any cube could be expressed as the difference between two squares. That method utilized the formula
[2] $\quad x^{3}=\left(\frac{x^{2}+x}{2}\right)^{2}-\left(\frac{x^{2}-x}{2}\right)^{y}$
Anothēr method will now be shown, by which we may differently express a cube as the difference between two squares:

Assuming

$$
x^{3}=y^{2}-z^{2}
$$

we have to determine y and z. Instead of factoring x^{s} into x and x^{2} (as in the former article), we factor into 1 and x^{3}. Putting these equal to the factors of $y^{2} \rightarrow z^{2}$, we have,

$$
\text { and } y-z=1
$$

and we obtain for y and $z: y=\frac{x^{3}+1}{2}, z=\frac{x^{3}-1}{2}$.
We may now write,
[8] $\quad x^{3}=\left(\frac{x^{3}+1}{2}\right)^{2}-\left(\frac{x^{3}-1}{2}\right)^{2}$.
This equation is true, whatever the value of x, as may be readily shown by performing the operations indicated. As formula [3] stands, it is applicable only to odd values of x. For, if x is even, then x^{3} is also even. This would make $x^{3}+1$ and $x^{3}-1$ odd numbers. Consequently $\frac{x^{3}+1}{2}$ and $\frac{x^{3}-1}{2}$ would remain fractions. If x be taken equal to 13 , we shall have

$$
13^{3}=\left(\frac{13^{3}+1}{2}\right)^{2}-\left(\frac{13^{3}-1}{2}\right)^{2}
$$

That is $13^{3}=1,099^{2}-1,098^{2}$. Again,

$$
7^{3}=\left(\frac{7^{3}+1}{2}\right)^{2}-\left(\frac{7^{3}-1}{2}\right)^{2}
$$

or,

$$
7^{3}=172^{2}-171^{2}
$$

As formula [2] is good for all numbers, whether even or odd, it will be interesting to express by its means the cubes last used (13^{3} and 7^{3}) as the difference between two squares.
Thas, $\quad 13^{3}=\left(\frac{13^{2}+13}{2}\right)^{2}-\left(\frac{13^{2}-13}{2}\right)^{2}$
And $\quad 7^{73}=\left(\frac{7^{2}+7}{2}\right)^{2}-\left(\frac{7^{2}-7}{2}\right)^{2}$
These give, $13^{3}=91^{2}-78^{2}$
And,

$$
\begin{array}{r}
13^{3}=91^{2}-78^{2} \\
7^{3}=28^{2}-21^{2} .
\end{array}
$$

An interesting property of the natural numbers is that if we add any number of these together beginning with unity, double the sum and subtract the last of the numbers, we shall have the square of this final number. Thus, suppose we consider the numbers from 1 to 9 . Adding, $1+2+3+4+5+6+7+8+9$, we get 45. Doubling this and subtracting the final number (9), we get 81 , which is the square of the final number. To understand the reason for this is not difficult. Thus, we write
$S=1+2+3+4+5+6+7+8+9$
And, $S=9+8+7+6+5+4+3+2+1$.
Adding we get $2 S^{\circ}=9(9+1)$.
Expressed more generally, n being both number of terms and last term, we have

$$
2 S=n(n+1)=n^{2}+n
$$

We have therefore

$$
2 S-n=n^{2}+n-n=n^{2}
$$

We will now pass to some theorems which, so far as the writer is aware, appear now for the first time. The first theorem is to the effect that if we have the fifth power of any number (not itself a multiple of 11), we may, by the addition or subtraction of unity, make this number divisible by 11. For instance, the fifth power of 921 is $662,671,283,348,601$. By adding 1 , it is divisible by 11. Search as you may, you will find no number (unless it itself is a multiple of 11) which upon being raised to the fifth power will not become divisible by 11 upon the addition or subtraction of 1 .
In order to establish this result generally, let us represent any number (not containing 11 as a fac tor) by x. Now this number x upon being divided by 11, will yield a remainder less than 11 and more than 0 (as it is supposedly not divisible by 11). We may write, therefore,
$x=11 y+z$,
where z may have any integral value from 1 to 10 (inclusive). We now write,

$$
x^{5}=(11 y+z)^{5}
$$

This gives, by ordinary algebra,
$x^{5}=11^{5} y^{5}+5.11^{4} y^{4} z+10.11^{3} y^{3} z^{2}+10.11^{2} y^{2} z^{3}$ $+5.11 y z^{4}+z^{5}$.
If we attentively observe the right-hand side of this equation, we shall see that 11 occurs in all the terms except the last. We may write, then,
[4] $\quad x^{5}=11 . R+z^{5}$.
Now, as before observed, z is limited in its range of values. Let us examine these

$$
\begin{array}{rll}
\text { For } z=1, & z=1 & =11 \times 0+1 \\
z=2, & z^{5}=32 & =11 \times 3-1 \\
z=3, & z^{5}=243 & =11 \times 22+1 \\
z=4, & z^{5}=1,024 & =11 \times 93+1 \\
z=5, & z^{5}=3,125 & =11 \times 284+1 \\
z=6, & z^{5}=7,776 & =11 \times 707-1 \\
z=7, & z^{5}=16,807=11 \times 1,528-1 \\
z=8, & z^{5}=32,768=11 \times 2,979-1 \\
z=9, & z^{5}=59,049=11 \times 5,368+1 \\
z=10, & z^{5}=100,000=11 \times 9,091-1
\end{array}
$$

It will be seen, from an examination of the last column, that z^{5} may always be expressed as a multiple of 11 plus or minus 1 . That is, we may write

$$
z^{5}=11 . M \pm 1
$$

Consequently, equation [4] may now be written

$$
x^{5}=11 . R+11 . M \pm 1
$$

From which is easily obtained,

$$
x^{5} \mp 1=11 .(R+M) .
$$

That is to say, either the addition or subtraction of unity will cause any fifth power to become divisible by 11, unless the number raised to the fifth power is itself a multiple of 11 , when the addition or subtraction of no number is needed to make it divisible by 11.
This seems to be a very curious result. Another apparently new proposition affirms that if we subtract a number from its seventh power the result is divisible by seven. Thus 128 is the seventh power of 2 . Subtracting 2, we get 126 , which is divisible by 7. Again, 279,936 is the seventh power of 6 . Subtracting 6 , we obtain 279,930, which upon trial we find to be divisible by 7. As a final illustration, consider the number $62,748,517$. This is the seventh power of 13 . Subtracting 13 from it, we get $62,748,504$, which is divisible by 7 .
In order to establish this proposition generally, let x represent any number not divisible by 7 . It is superfluous to consider multiples of 7 , as the proposition is obviously true in their case. So then, we have to prove that

```
x
```

is divisible by 7 , when x is a non-multiple of 7. As \approx is not divisible by 7 , we may write
$x=7 y+z$, when z varies from 1 to 6 (inclusive). We have, then,

$$
x^{7}-x=(7 y+z)^{7}-(7 y+z)
$$

Now, upon expanding the right-hand side of this equation the number 7 appears in every term except z^{7} and - \boldsymbol{z}. So that we may write
[5] $\quad x^{7}-x=7 . Q+z^{7}-z$.
Let us consider the possibilities of $z^{7}-z$ for the six possible values of z (1 to 6).

For | $z=1$, | $z^{7}-z=$ | 0 |
| ---: | :--- | ---: |
| | $z=2$, | $z^{7}-z=$ |
| $z=3$, | $z^{7}-z=$ | 126 |
| | $z=4$, | $z^{7}-z=164$ |
| | $z=5,380$ | |
| | $z=6$, | $z^{7}-z=78,120$ |
| | | $z=279,930$ |

Examining the column on the right hand, we find every number to be divisible by 7 . Consequently, whatever value it is possible for $z^{7}-z$ to possess, each and every one is divisible by 7. So that the right-hand side of equation [5] is divisible by 7, throughout-which establishes the proposition.
A similar proposition, and one apparently new, is to the effect that if we subtract a number from its thirteenth power the resulting number is divisible both by 7 and 13 , and consequently by 91 (since $7 \times 13=91$). As an example, consider the thirteenth power of 2 . This is 8,192 . Subtracting 2, we obtain 8,190 , a number divisible both by 7 and 13. Again, the number $2,541,865,828,329$ is the thirteenth power of 9 . Subtracting 9, we have, $2,541,865,828,320$. This number, upon trial, we find to be divisible both by 7 and by 13. These seem to be pretty striking results. But perhaps some one may question whether they are not mere matters of coincidence.

To prove the fact generally, let us denote the number, whose thirteenth power is to be taken, by x. We have, then, to show that $x^{13}-x$ is divisible both by 7 and by 13. As the proposition is self-evident, as far as 13 is concerned, if x is a multiple of 13 , we shall consider that x, upon division by 13, yields a remainder less than 13. That is,

$$
x=13 y+z
$$

Where z väries from 1 to 12 (inclusive). We write now,

The entire right-hand side of this equation contains 13 as a factor except

Let us consider the possible values of this expression For $z=1, z^{13}-z=$
, or sleeper. Photographic birds eye vie have therto been obtain Dr. Neubronner has discovered that they may also be taken with the aid of carrier pigeons. The necessary apparatus is described and illustrated.

A $\mathbf{\$ 5 0 0}$ Prize for a Simple Explanation of the Fourth

 Dimension.A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a prize for the best non-mathematical explanation of the Fourth Dimension, the object being to set forth in an essay the meaning of the term so that the ordinary lay reader can understand it.

Competitors for the prize must comply with the folowing conditions

1. No essay must be longer than 2,500 words
2. The essays must be written as simply, lucidly, and non-technically as possible.
3. Each essay must be typewritten and identified with a pseudonym. The essay must be inclosed in a plain sealed envelope, bearing only the pseudonym. With the essay should be sent a second plain sealed envelope, also labeled with the pseudonym, and containing the name and address of the competitor. Both these envelopes should be sent to "Fourth Dimension Editor, Scientific American, 361 Broadway, New York, N. Y."
4. All essays must be in the office of the Scientific American by April 1, 1909.
5. The Editor of the Scientific Ameriçan will retain the small sealed envelope containing the address of the competitor and forward the essays to a Board of Judges, who will select the prize-winning essay.
6. As soon as the Board of Judges have agreed upon the winning essay, they will notify the Editor, who will open the envelope bearing the proper pseudonym and containing the competitor's true name. The competitor will be notified by the Editor that he has won the prize, and his essay will be published in the ScIentific American.
7. The Editor reserves the right to publish in the columns of the Scientific American or the Scientific American Supplement three or four of the more meritorious essays, which in the opinion of the judges are worthy of honorable mention.
The Editor of the Scientific American is now engaged in selecting the judges who will award the prize. They will be three in number, and all will be eminent American mathematicians. The names of the judg nal.

Substitute tor Chromate of Silver

Running short of Lord Kelvin's glass tubes for deepsea soundings, and finding the prices charged in Am-erica-40 cents each-rather high, Mr. John Martin of the S. S. "Akershus" informs us that he tried to find some substitute for chromate of silver, and succeeded. He bought a $1 / 4$-inch (inside diameter) watergage glass of the same length as Lord Kelvin's tubes, closed one end with a flat piece of cork, a small rag over it and some sealing wax. Next he cut a sheet of drawing paper into narrow strips at a bookbinder's. Along the middle of the paper strip. he drew a line with a copying pencil. The paper slip was then shoved up the glass tube, forming a blank scale. The lower end of the strip was turned around the edge of the tube and tied with a. piece of cotton thread to prevent the paper from being displaced by the water as it rose in the tube. The tube was used in the same way as Lord Kelvin's. The depth was read off from the boxwood scale. The ink pencil line distinctly indicated how far the water reached. The guard tube containing, the gage glass was made from an old condenser tube.

The Death of William Edward Ayrton.

William Edward Ayrton, the distinguished English. electrical engineer and inventor, died in London on November 8 in his sixty-first year. He was educated at University College, London, and after graduation entered the Indian Government Telegraph Service. In 1873 he was appointed to the chair of natural philosophy and telegraphy at the Imperial College of Engineering, Japan. Here he remained for five years. In 1884 he was made professor of electrical engineering at the Central Technical College, South Kensington. He was president of the Physical Society, 1891-2, and president of the Institution of Electrical Engineers in 1892.

The Death of John Fienry Mills.

John Henry Mills, a pioneer heating engineer and inventor of heating boilers, of Boston, Mass., died at his home in Faneuil, a suburb of that city, on Tuesday, October 6, in his seventy-fifth year. He was an authority on heating, and his work, "Heat-Its Application to the Warming and Ventilation of Buildings," is one of the standard books on the subject.

Corxempandente.

USEFUL ARTIFICIAL WATERWAYS

To the Editor of the Scientific American:
The proposition to retain water at the heads of large ful consideration, as it will aid in retaining moisture not only on the surface, but to great depths, replenishing old-time underground rivers and furnishing water for wells in the surrounding country. Such reservoir can be used to keep machinery running during the dry season too, thus adding millions of dollars valuation to power plants, by steadying business, in regulating production so as to secure equal results throughout the whole year
Yet still
Yet still all the water that can be retained will prove to be an infinitesimal quantity in checking the over ers, such as the Mississippi and the Amazon
The best possible command of the Mississippi River can be secured by dredging a deep and broad channel for several hundred miles inland at a proper distance from the river channel on both sides of the river. The channel on the west side should extend from Atchafalaya Bay, keeping west of the extremely trousas and Alexandria, La and passing east of Opelou to the head of White River, across the line of Mis to the head of White River, across the line of Mis sippi River, and Van Buren on the Iron Mountain Rail way. This will drain large tracts of wet, unproductive flat lands, which will be of excellent quainty and most of them fertile and productive when properly drained There are hundreds of thousands of acres of flat, we land along the proposed course of this west side canal The east side channel should begin at Bay St. Louis, extending north, crossing the Pearl River, to a point above Lake Pontchartrain. There bending west should cross the Illinois Central Railway, near the town of Amite, reaching the Mississippi Valley a few miles below Natchez, on into the Yazoo Valley, then on up
that valley, passing near and east of Memphis and on to the Ohio River Valley. There bending east follow the course of that river as far as the land formation makes it desirable. At certain po its, it may be neces sary to leave off one side of a river and take up con struction on the other side. This being a question of easy decision for any competent engineer.
fulness: First, as channels of dreainage purpose of use fulness: First, as channels of drainage, they will add several hundreds of millions of dollars value to the drainage of swamps and farm land in general. For such an outlet there is a burning necessity which should have been provided for long years ago.
Second, for relieving the strain upon the levees of the Mississippi and the other rivers and bayous in cluded in the districts traversed by the canals, also to prevent overflow by letting surplus water into thes channels, through intersecting canals a any point of greatest strain. This can be done at any poin Third, if set free to the traffic of all who own suit able crafts, the value for purposes of navigation alon will eventually pay the cost of construction and fa dividends besides.
These main channels can be: constructed a libera width in the beginning and shallow, to be deepened by dredging until, if found desirable, seagoing vessels o the highest tonnage can pass each other with ease On the east side of the Mississippi River beginning about 30 miles above Cairo and extending up to St Louis, is miles above Cairo and extending up to St would be tripledin: value by a canal of sufficient capa ity to carry off the local surplus water, and aid id relieving the Mississippi whenever a threatened over flow at that part of its course created a call for an extra outlet.
Between Omaha, Neb., and St. Joseph, Mo., a good deep and broad canal would aid greatly in preventin the destructive overfiowing and changing of channe of the Missouri River.
At Kansas City, too, relief from inundations, of the lower portions of that city can be secured by one or surplus water whenever a surplus for drawing off the its threatened consequences.
On the middle and upper Ohio, along the rivers, of Kansas, wherever there is a necessity in localities men tioned or others not named; wherever are found large rivers or threatening streams subject to extraordi nary floods, in any part of the world, this proposed plan will bring security from ordinary ensing disas means.
From the northwest corner of Lake Pontchartrain a cypress swamp extends north for many miles. Thi swamp has water nearly all over its surface, for the greatest part of the year. If drained, it would soon become farm land of great value on account of its fer tility. This can all be drained by one canal and a levee along the shore of the lake, then pump the wate over the levee into the lake.
Many other similar localities can be reclaimed in like manner. The above proposed system is of vast and far-reaching importance, and should be carefully investigated at the earliest possible opportunity aforded to those upon whom the responsibility de
volves, and whose duty it is to have this work of altogether unprecedented importance performed.
Whose duty should it be, if not the unbounded duty of the people, all the people, of the great republic, the United States of America? Every citizen of this whole country should be interested. This work will benefit
all of them, both individually and collectively.
Spokane, Wash., November 2, 1908.

From the returns compiled by Lloyd's Register, it ap pears that, excluding warships, there were 319 vessels of 733,378 tons gross under construction in the United Kingdom at the close of September, 1908.

AN AEROPLANE FACTORY

 by Jacques boyer.The construction of aeroplanes is the latest new industry to be started in France; and the exploits of Santos Dumont, Bleriot, Farman, Delagrange, and the Wright brothers, by focusing public attention upon aviation, have aided in its development. As a result,
are of the same material or of poplar. The main longitudinal pieces are cut from very dry wood. They are about 32 feet long, and are selected so that the grain runs from one end to the other, in order to give a maximum resistance for a given 'section. They are planed down and grooved in certain places, and then fitted together by means of uprights that are mounted
in aluminium sockets attached to them. The framework thus formed is suitably braced by means of steel piano wire, drawn taut and fastened to eyelets in the aluminium sockets. In the aeroplanes of the Farman type constructed by Voisin, the finished body framework has a total length of $91 / 2$ meters (31.16 feet), weighs 55 kilogrammes ($1211 / 4$ pounds), and is

Covering the frame of a plane with cloth.
A waterproof cloth having pockets for the ribs is used to form the planes.

Farman's aeroplane, showing some of the recent changes in its construction.
Vertical partitions have been placed half way between the center and ends, and also at the ends of the main planes. They prevent the machine from skidding sideways when turning a corner.

The Goupy three-decker. This machine was tried withont encouraging results.
The use of three superposed surfaces makes it possible to reduce the spread of the planes considerably.

Assembling the "Flying Fish," Farman's untried following-plane machine. This arrangement of following planes also makes possible the reduction of the wing spread.

so rigid that it will support a weight of over 1,000 pounds at its front end.
The body framework tapers at the front and terminates in a steel and aluminium plate, in the center of which is fastened the bearing for the propeller shaft. The motor is mounted on a metal frame, and the seat of the aviator consists of a board with a back attached.
The cells or wings, which are attached to each side of the body framework, consist, in the case of a double or a triple-surface machine, of two or three superposed surfaces, connected together by poplar uprights mounted in the aluminium sockets, and braced by steel wires in order to make them sufficiently rigid These surfaces are made up of a frame consisting of two strips of wood (one in front and one at the back) connected by curved ribs of poplar, and covered with rubber-impregnated cloth, which is nailed to the strips (Concluded on page 358.)

Interior of the Voisin factory, showing finished aeroplanes and others in course of construction. tHE CONsTRUCTION OF AEROPLANES.

As noted in our issue of October 31, Count Zeppelin, on the 23d ultimo, brought out his fifth airship for its first trial. One of our illustrations shows this huge air craft undergoing its first trial. The new airship is the remodeled "Zeppelin III." of 1906, which,
before the building and operation of the fourth airship last year, had shown remarkable results. It has been lengthened out 8 meters ($261 / 4$ feet), and, because of its smaller diameter than the No. 4, Count Zeppelin has used two 85-horse-power motors in place of the 110 -horse-power engines that were on the later airship. The remodeled No. 3 has the same inclined
stabilizing planes attached to its sides at the rear that were first tried out upon it and afterward used in a modified form upon the No. 4, but in place of the very large vertical rudder the latter had at its rear end, small triple vertical rudders only appear to be used between the stabilizing planes on each side. A three-surface horizontal rudder is used on each side

Farman's aeroplane flying across country. Note the vertical partitions connecting the planes. These have been added recently.

Bleriot's monoplane on its nine-mile cross-country flight. Despite numerous accidents, this machine has proved its worth by its

The latest Zeppelin airship--the remodeled No. $\mathbf{3}$-in flight above Lake Constance. The large vertical rudder at the rear has been dispensed with and replaced by small triple rudders on each side.

Three-quarter rear view of the Witzig-Liore-Datilleul aeroplane.
Note the step-like arrangement of the surfaces, with the horizontal rudder in front and the twin vertical

The Clement dirigible sailing over the Madeleine in Paris on its initial trip.
Note the aluminium cabin in the body framework.

The new Clement airship, showing the peculiar tail, the propeller, and the horizontal and vertical rudders.
During its maiden voyage on October 29 , 1 ! is new airship, piloted by M. Kapferer, carried seven people from Sartrouville to Paris and back at a speed of between 25 and 30 miles an hour.
of the bow also. Among the new features is a telegraph line connecting the two cars.

A few of the recent flights of the remodeled airship are enumerated below. The first was made on October 23, when the airship flew over Lake Constance and the city of the same name about four hours. On the next day a flight of two hours was made, and on Sunday, the 25th of October, another two-hour flight much more remarkable than the one of the previous day was carried out. According to experts, the remodeled vessel operates even better than the "Zeppelin IV." On the 26th of October a three-hour flight was made, but one of the motors did not operate satisfactorily. The following day, Count Zeppelin took Prince Henry of Prussia with him for an extended flight, which lasted six hours. A trip was made to the Falls of the Rhine, and the airship developed a speed of 50 kilometers (31 miles) an hour. Several days after, on November 7, Crown Prince Frederick William accompanied the Count, and made a trip to Donaueschingen, Baden, where the Emperor arrived by rail shortly after the arrival of the airship. The Emperor conversed with his son through a megaphone, and afterward the Crown Prince returned in the airship to Friedrichshafen. Emperor William himself expected to make a trip in the airship on the 10th instant, but instead he watched it from the lake, and at the termination of the flight he conferred upon Count Zeppelin the order of the Black Eagle, in recog. nition of his achievement. At the present time there has been raised by popular subscription in Germany, for the construction of Zeppelin dirigibles, $\$ 1,378,334$. This gives a good idea of the decided success Count Zeppelin has finally met with among his countrymen.
The other dirigible which we illustrate is the "Clem-ent-Bayard" of M. Clement, the well-known automobile manufacturer of Paris. This airship has been constructed for the personal use of M. Clement. It is 56 meters long (183.6 feet) by 10.58 meters (34.7 feet) in diameter, and it has a capacity of 3,500 cubic meters (123,602 cubic feet). The body framework is $281 / 2$ meters ($931 / 2$ feet) long, made of steel tubing. A triple-surface horizontal rudder is placed at the forward end of the body framework, and a 5 -meter ($161 / 2$-foot) propeller is at the extreme front end. The 120-horse-power Bay-ard-Clement motor is mounted on springs, and drives the propeller 380 . . P. M. by reduction gearing. Every conceivable kind of indicating apparatus has been fitted. For example, there is a tachometer which gives the number of revolutions of the mo tor at every instant. For the convenience of the passengers a closed cabin of sheet aluminium has been provided. A specially noticeable feature of this dirigible is the peculiar tail, which consists of four club-shaped gasbags placed beside the reduced rear end of the main envelope. This form of tail has been found to work quite satisfactorily, and to give the balloon a considerable degree of stability. M. Clement expects to use this airship in making excursions to his country place.
Two of the photographs reproduced herewith show Farman's remodeled aeroplane and the latest Bleriot monoplane in full flight. The Farman machine has been changed by the placing of vertical partitions at the ends of the main planes and by the moving of the partitions that were formerly on each side of the center part to points about half way. between the center and the ends of the main planes. M. Farman has also fitted horizontal auxiliary planes or shutters to the rear edges of both the upper and lower planes. The angle of these shutters can be varied to tilt up the machine when turning a corner. After making the sensational cross-country flight mentioned elsewhere, Farman, on October 31, won the "Prix de la Hauteur" of the Aero Club of France by fiying over a line of captive balloons placed at a height of 82 feet. The Bleriot monoplane has not been changed very much of late. The movable wing tips are still used on the ends of the plane, and there is but a single horizontal rudder below the rear end of the body framework. A small additional plane is fitted above the body framework toward the rear. These rudders and movable wing tips apparently work very well, since M. Bleriot was able, on October 22, to drive his machine against a strong wind of between 25 and 30 miles an hour. The speed of the machine itself is about 37 miles an hour.

Nide view of Witzig-Liore-Dutilleul aeroplane, showing step-like arrangement of the following planes. SOME NEW AND IMPROVED FOREIGN AEROPLANES AND AIRSEIPS.

The Are of Peru.

The committee of the French Academy of Sciences having scientific control of the French geodetic operations on the equator has reported the completion of the remeasurement of the historic arc of Peru.
This arc was measured by the French (1736-1743) and used in connection with a similar arc in the Arctic regions, also measured by the French, to decide a question in regard to the form of the earth which had arisen as the result of Cassini's surveys in France.
In 1889, the question of remeasuring this arc was brought before the International Geodetic Association by the delegate of the United States, Prof. George Davidson, who suggested that France should have the prior right to execute the work.
Circumstances prevented any active work until 1898, when the association voted in favor of the proposition to remeasure the arc, and the French delegates undertook to have the work done.
Officers of the Geographic Service of the French army left Paris for Ecuador in May, 1899, and the work was continued until completed.
The arc extends from Tulcan, Ecuador, Lat. +0 deg. 48 min .25 .6 sec. , to Payta, Peru, Lat. - 5 deg .05 min . 08.6 sec . and the work accomplished in the remeasurement may be summarized as follows, viz.: Seventyfour geodetic stations. Three base lines measured.
Eight differences of longitude determined between stations at Tulcan, Piular, Quito, Latacunga, Riobamba, Cuenca, Machala, and Payta. The first five of these stations are distributed along the northern section of the arc, the sixth at the middle of the southern section, the seventh on the coast at the same latitude as the sixth, and the last at the end of the southern section, on the coast. The comparison of the differences of longitude, geodetic and astronomic between the stations at Machala and Payta and the station at Cuenca will throw light on the form of the geoid, as the first two stations are on the coast and the third is in the inter-andine region.
Six azimuths were determined, namely, at Tulcan, Piular, Quito, Riobamba, Cuenca, and Payta.
Sixty - four determinations of latitude were made
The forty-eight magnetic stations were distributed all along the arc.
Of the six pendulum stations, one is at Machala, on the coast, at the point where observations for longitude were made; one at the foot of the western Cordillera, near Chimborazo; one, at an elevation of 4,150 meters in the western Cordillera; two, in the inter-andine region at Riobamba and
possible of the different light metals and their alloys. Ordinary steel tubing is used for the planes, while for the propeller shafts and the blades nickel steel, offering the greatest resistance for the least weight, is employed. All pieces working under compression are made of aluminium, in order to diminish the weight. The propellers, in particular, are very carefully constructed. The hub is made of cast steel, and to it are clamped the steel arms, which are forgings of very high resistance. To these arms are secured aluminium blades. When one notes that this mass of 2.3 meters ($71 / 2$ feet) diameter revolves at from 1,000 to 1,400 revolutions a minute, one can see that it must be exceptionally strong. At 1,335 revolutions per minute the end of one of the blades travels through space at the rate of 525 feet a second (350 miles an hour) and the blade itself is constantly under a centrifugal force of nearly 9,000 pounds, tending to project it outward.
The motor is one of the most important parts of the aeroplane. Heretofore Voisin brothers have used only the Antoinette motors of the 8 -cylinder V type; but lately they have adopted the "Vivinus," or the motor of the Belgian Société Metallurgique. This latter motor, which is the; one used on the Goupy, Florio, MooreBrabazon; Farman ("Flying Fish" for two passengers), and De Caters aeroplanes, is a 50 -horse-power, lightweight, automobile motor weighing about 300 pounds. Whatever motor is adopted, the installation of it requires only a few days. In fact, a complete aeroplane can be constructed in about a week's time. The cost of one of these machines in France is $\$ 4,000$, half of which is represented by the motor. Very probably, however, the cost will be reduced as the machines come into more general use, for in reality, the materials used and the work necessitated in their construction are less than in the case of an automobile.

Quito; and one at an altitude of 1,800 meters in the plain of the Amazon on the eastern slope of the east ern Cordillera.
Of the two lines of levels of precision, one runs from the Riobamba base line to Guayaquil and to the tide gage at Salinas on the Pacific coast and the other from the southern base line to the tide gage at Payta, the two lines covering a distance of 410 kilometers.
The preliminary computations are far enough advanced to assure the value of the observations. The closure of the triangles and the agreement of the computed and the measured lengths of the base lines compare well with the results obtained in the revision of the meridian of France.
The publication of the results of the work will be regarded as an important event by geodesists through out the world.-Abstract from Science.

A new and peculiar use for electricity has been found. The city of Zittau possesses extensive and beautiful forests, in which such depredations have been made by the larvæ of the "nun" moth that it has been found necessary to cut down all the trees over large tracts. Last summer the electric light was en listed in the warfare against the insects. On the roof of the city electrical station were mounted an exhaust blower and two powerful searchlights, the beams of which were directed to the forest five miles away The hoped-for result followed. The moths flew by the thousand toward the searchlights but, before they could reach these, they came within the field of action of the blower and were carried away to destruction In one night 66 pounds of moths were destroyed in this way, in addition to the great numbers of moths which found death in the electric arcs of the street lamps, from which the globes had been purposely re moved.

The Editor of Handy Man's Workshop will be glad to receive any hints for this department and pay for them if available.
Christmas Hints for the Handy Man will be pablished in next week's issue.

HANDY METHOD OF REPAIRING A PUNCTURED TIRE.

 by george f. linkeThe accompanying sketch shows a handy device for mending punctures in bicycle tires. It consists of a common darning needle of a large size and with a

a tool for repairing punctures.
large eye, with its point inserted into a wooden handle. There are two pins also in the handle, projecting from opposite sides, and the top of the needle is cut off, leaving the end of the eye open.
To mend a puncture, stretch elastic rubber bands over the pins and through the slot in the end of the needle as tightly as possible until judgment shows that there is onough rubber to fill the puncture. Then insert needle and rubber through puncture in tire, throw the rubber off the pins and withdraw the needle. The rubber being tightly stretched will contract when released, filling the puncture and leaving a small lump inside and outside of tire. This will wear off outside in a very short time. It is advisable to ream the hole smooth before applying the rubber. This can be done by heating the needle with a match and then searing the edges of the hole.

EJECTOR MADE OUT OF PIPE FITTINGS.
 ву в. \boldsymbol{A}. JонNs.

A simple ejector may be made out of ordinary pipe fittings, which will compare very favorably with some of the ejectors on the market. It may be used in draining a flooded cellar, in which case it may be attached to the ordinary water faucet for motive agent. It can also be used for emptying cisterns or in excavations for new work where water is struck. (Of course, in this case, steam will be used as motive agent.)
Some time ago I was engaged in building a reservoir, and at a depth of 15 feet a spring of water was struck. Having no means at hand to get the water out of the excavation, I decided to make an ejector out of some old pipe fittings I had in the tool chest. I succeeded in making four that kept the water level down while the work was being done. One of these ejectors worked night and day for nearly three weeks until completely worn out, owing to the fact that a great amount of sand and gravel was carried through.

These ejectors can be duplicated as follows: First take a $11 / 4 \times 6$-inch nipple; screw on each end of same any kind of fitting so as to preserve the threads. Heat same in the middle to a white heat. Then swedge down until outside diameter is about $3 / 4$ inch. When cold remove the fittings, and the cone is made (see Fig. 2). Now take a $1 / 2$-inch pipe, heat one end to a welding heat, and swedge down to a long point. A

THIS EJECTOR CAN BE USED FOR DRAINING FLOODED CELLARS.

3/16 rod may be inserted in the end to give the hole the right dimension, as it may be drilled out afterward. When cold, thread the pipe about 4 inches and screw on a jam nut (see Fig. 3). On the "rim" of a $11 / 4$-inch tee attach the cone above described and then a $11 / 4$-inch elbow into which screw a close nipple. On the other end of the nipple screw another elbow, forming a kind of step or stop. To this elbow may be attached either a hose or a pipe to carry off the water. On the opposite end of the tee attach a reducing bush-
ing, into which insert the nozzle shown in Fig. 3. Care should be taken to get the nozzle in perfect alinement with the cone, and when in proper place, screw up the jam nut with some packing behind it, to make it air tight. In the other opening of the tee attach a pipe or a very heavy hose, preferably "ironclad," as the suction will have a tendency to close it up.

STORAGE BATTERY WITHOUT CHEMICALS.

An experimental storage battery, having qualities of interest, and at least remotely suggestive of commercial possibilities, may be constructed at a cost of a few cents, as follows:
Provide four strips A, B, C, D, of thin cloth (calico will answer), the strip A being 20 feet long and 4 inches wide, the strip $B 18$ feet long and 3 inches wide, the strip $C 10$ feet long and 4 inches wide, and the one designated as $D 9$ feet long and 3 inches wide. Procure an ordinary battery jar E of cylindrical form, a pound of commercial flake graphite, a few gum bands, and two pieces of No. 30 bare copper wire, one (G) being 20 , and the other $(H) 10$ feet in length These parts and materials, together with a carbon rod F of the kind used for arc lighting, comprise everything needed except water and enterprise.
Spread out the strips B and D, shower them liberally with water, and dust the graphite upon them. Then stroke them off with the hand. This will remove all excess of graphite, and leave them shining like strips of new tin plate. A single coating of the graphite upon one face of the cloth is sufficient.
Spread out the strip A, which remains uncoated, and lay the strip B centrally upon it, so as to leave exposed all margins of the strip A, its ends extending equally and in opposite directions beyond the ends of the strip B. Extend the wire G along the strip B from one of its corners to the opposite corner, the wire thus being slightly oblique relatively to the strip, and extending a couple of feet beyond one corner. Next place in position the strip C, which remains uncoated centering it lengthwise in relation to the other strips, and bringing its longer edges flush with those of the

STORAGE BATTERY WITHOUT CHEMICALS.
strip A. Place the strip D on the strip C, leaving all margins equally matched. Stretch the wire H along the strip D, from one corner to the corner opposite, the wire being slightly oblique to the strip, so as to cross the wire G and leaving a foot of the wire H projecting.

Wind the projecting end (2 feet long) of the wire G tightly around the carbon rod F, and lay the rod squarely across the adjacent end of the strip B, so as to make good contact with the graphite. This will leave a foot of the strip A extending from the rod F. Bend this extending portion back over the rod so as to cover it, and then, using the rod F as a spool, roll it along, pressing it down hard; and thus wind tightly upon it all of the strips and both of the wires, so as to form a hard roll having generally the appearance of a solid white cylinder. Stretch two or three rubber bands around the roll, so as to hold all of its parts rigidly in position. Find the projecting end of the wire G, and leave it exposed. Set the roll into the jar, so that the exposed portion of the wire G and also a portion of the carbon rod F extend upwardly. Now fill the jar with water, preferably submerging the roll to within half an inch of its top.
This completes the battery. In some instances it may be improved by making the strips $A C$ of cloth thicker than that above designated.
The battery may be charged from an ordinary dry cell, by connecting the zinc shell of the dry cell with the carbon rod of the storage battery, and the carbon of the dry cell with the protruding wire of the storage battery. After being thus charged for fifteen or twenty minutes, the storage battery may be disconnected, after which it will yield, for a few minutes at least, a current not differing greatly from that with which it was charged, and adequate to operate a telegraphic sounder or an electric bell. If the energy of the battery be conserved by leaving the circuit open, the charge may last for several days. Like other storage batteries, this one, after being partially exhausted, will recuperate to some extent if the circuit be left open, though of course the total energy it gives out can never exceed that with which it is charged.

This device is in every sense a true "gas" battery as well as a storage battery. While it is being charg-
ed, the current sent through it disintegrates a portion of the water into its two component gases. The hydrogen, being disengaged throughout the entire length and breadth of the graphite coating carried by the strip B, is simply absorbed or occluded within the pores of the cloth, and thus effectively held as a free gas in a state of captivity. The oxygen, being in part in its allotropic form of ozone, is similarly collected and held in the strip C. The strip A holding the hydrogen, being twice as long as the strip C holding the oxygen, is adapted to hold twice as much gas, thus compensating for the difference in volume between the hydrogen and oxygen. Both gases, being freshly liberated, are in their nascent state and eager to recombine. After the charging is completed, therefore, and a conducting path is established from one of the coated strips to the other, the gases recombine, forming water, and in so doing they generate an electric current flowing in a direction opposite to that of the current previously used for breaking up the water and forming the gases.
It is a fact not generally known that if a quantity of hydrogen and a quantity of oxygen be subjected as nearly as practicable to the same physical conditions, they will present relatively to each other a difference of potential of about a volt and a half.

CONVENIENT HOLDER FOR SANDPAPER.
 by edward j. tiede.

In sandpapering irregular shaped woodwork, the paper is laid over a stick of wood and used practically as a file. For holding the paper I have often used a simple holder for different kinds of work with satisfactory results. The holder consists of a stick, preferably of pine wood, of the required shape and size and tapering slightly toward one end. Into the narrow end saw a slot in the center to about two-thirds its length. Cut off a piece of sandpaper wide enough to go around the stick, allowing a liberal margin to fit into the slot. Fold the paper so it can be slipped

GONVENIENT HOLDER FOR SANDPAPER.
into the slot and around the holder from the end; pull it down until it fits snugly, when it is ready for use. Emery cloth can be used in the same way for polishing parts of machines and the like.
In the drawing the holder is shown at A, and the paper folded ready to apply at B. The sections C to F suggest some shapes that may be used.

THE CONSTRUCTION OF A WORKSHOP

by i. c. bayley.

The interest taken by the boy in a shop that is his very own, particularly if he is allowed to build it himself, will be very manifest, and the good derived, by keeping him off the street, if nothing else, will well repay the small outlay of the first cost.
Fig. 1 shows the inside view of a workshop good enough for any boy, no matter what his station in life may be. The framework was put up by a firstclass mechanic, but the furnishings are all home-made, such as any boy will be able to construct. Such a shop as this is hardly necessary for the average young mechanic, the object of the sketch being more to show how a shop can be fitted up inside. The lathe, and also a jig saw, not shown, will be described, in a later number, as will also the bench, drawing table, and other accessories.
A shop about 9 feet by 12 inside dimensions will be ample enough, and if it is made as an addition to the house, but three extra sides will be necessary, or if built in a corner, as is sometimes convenient, then but two extra sides will be needed.
The ground must be leveled, and prepared for the six piers, which can be of concrete, brickwork, or timber. If of timber, let them be 6 to 9 inches square by 2 feet long, buried in the ground about 18 inches. Holes should be dug of suitable depth and the stumps dropped in, care being taken to get them the proper distance apart, 9 feet by 12 , out to out, so that the sides of the building, when erected, will be flush, and not have to be cut around the piers, or offset in an
unworkmanlike manner. The first pier can be permanently set by ramming broken bricks and earth into the hole with a piece of heavy timber brought down on end. The remaining piers are leveled up from this one, by means of a builder's level.
Since it is a very important matter that these piers should be true and level with each other, it will be well to make a suitable straight-edge, or leveling board, for this purpose. This can be 12 or 16 feet in length, cut from a 1 -inch board, and shaped as shown in the cut. A hand-hole is formed in the center, at the top, and a small shelf, upon which is placed the spirit level, is nailed to one side, immediately below. The leveling edge must be planed very true, while the small shelf on the side must be made exactly parallel with it. Place the level upon the shelf, and, holding the leveling board on the tops of each pair of piers successively, commencing with the permanent one, level them all by raising or lowering them in their respective holes, when they should be permanently set, as was the first.
The wall plates or bottom framing are made from 4×6 timber, half jointed at each corner, and secured to each pier with tenpenny nails driven in from either side. The four corner piers being 9×12 feet out to
and the door lintel. Rails and door lintel are 2×3 inches.

The rafters are made of 2×4-inch timber, notched where they rest upon the plates, which are 2 inches by 3. One rafter can be cut to the proper length and notched, using it for a templet, or as a guide for cutting the others. The two end rafters should be secured to the plates first, by driving in tenpenny nails through the sides, as in the case of the floor joists,

Laying out a square corner.

then the others may be evenly spaced from end to end, about 2 feet apart.
The framework of the building is now complete, as shown in Fig. 2. A detail of construction is shown to the right. Rough boards, with a space between them of about one inch, are laid across the joists for
on one side only, are cut to fit close up to the sides, and around the studding or posts, and mailed to the joists with eightpenny nails. The joists are 2×4, notched 1 inch, as shown.
lt will be noticed that the first board of the sides, nearest the house; is notched all the way down, to fit up snugly against the weather boards. This is done by means of a pencil and a small stick, held as illustrated. The stick is traced along the outline of the weather boarding, while the pencil, being held against the upright board of the shop, makes an exact copy of the outline, as a guide for the saw. Narrow boards, sometimes called plates, are nailed all around the top of the sides, under the eaves of the roof, notching them out where the joists of the roof come through.
The door can be made of the same stuff as the sides, strengthened with battens as shown in Fig. 1. A diagonal batten can be put on also, letting it bear top and bottom against the horizontal battens, and taking care to let it slope in the right direction, the lower end being near the hinges. Hinges and a latch, also a draw-bolt, are all the furnishings necessary for the inside, and a padlock for the outside. A plain narrow frame can be put around the outside of the win-

A model workshop for the amateur.

Exterior view of the finished building.

Setting up the frame of the shop.

Temporary bracing for corner posts. THE CONSTRUCTION OF A WORKSHOP.
out, one pair of the 4×6 timbers will be 12 feet in length, and the other 9 feet. The framework must form a perfect right angle àt each pier, which can be tested by means of the carpenter's square or laid out in the following manner:
Along the inside edge of the framework lay off a line 3 feet in length on one timber and 4 feet on the other, when the two timbers must be closed, or opened, until the distance between these two points measures exactly 5 feet, as shown in the sketch
The posts, or studding as they are sometimes called, are made from 3×4-inch timbers. Two are cut 10 feet 6 inches in length, and three are made 7 feet 6 inches long. The ends are cut true and square, to get a good bearing, when the posts are set up. The rear posts can be secured to the side of the house, after being tried with a plumb bob, or level, and can be secured to the bottom plate or framing by toenailing; but the two front corner posts, after being erected plumb, and secured to the framing, must be held temporarily, in the manner illustrated. The top plates and rails are next put up. Make a half joint at the front, and nail the other ends to the rear posts with nails driven through either side. The other door-post is erected, then the intermediate rails
the roof, and secured with eightpenny nails. The sides can either be made of tongue-and-grooved boards, or ordinary boards like the roof, only built close, with narrow strips of wood nailed over the joints.

Space must be left in the sides for the windows and doorway; the latter should measure 2 feet 6 inches by 6 feet 6 inches. The windows had better be double sliding, on three sides of the building, to get a good light. If 10×8 glass is used, the framework or sash will be about 2 feet $418 / 4$ inches by 1 foot $115 / 8$ inches high. The window openings in the sides of the building, therefore, should be 1 foot 11 inches high by 4 feet 8 inches long for a double sash. They should be centrally located in the sides and front, the boards being cut flush with the top of the middle rails, to which they are nailed. The boards at the top of the opening are nailed to an inside strip, $21 / 2$ by $11 / 4$ inches, detailed in one of the sketches, which sketch also shows the grooves in which the sash moves. A tongue-and-groove connection should be made where the two sashes meet, or a strip of wood should be nailed on either, to overlap the other, and keep out the wind and rain.

The flooring, which can be made of ordinary boards or a cheaper grade of tongue-and-groove boards, planed
dows, and a sill made from 1 -inch stuff, for the door and windows, will improve the appearance. A door step can be made from the same stuff as the sides, or from 1-inch boards, nailed to the front of the shop, before the tread is put on. The ground should be made level, and a large stone, or bricks, put under the bearing edge.
The roof is covered with tar paper, which can be made of sheets of brown paper, covered with pitch and sanded, or it can be purchased already prepared. Commence at the eaves, allowing enough to tuck under the eaves on both sides and in front. The next layers are allowed to lap over by about 2 inches, and the last one is tucked under the weather boarding, on the side of the house. Large-headed galvanized nails are used to hold the tar paper or felt covering to the roof; or barbed wire nails with tin caps will do. Space them not less than 2 or 3 inches apart, all along the edges of the laps, and under the eaves of the roof.
The shop should be given two coats of paint on the outside to match the house or surrounding buildings. A small stove, either oil, gas, or coal, will nicely heat the shop in cold weather, a chimney connection being made in the roof or one of the sides if a coal stove is used.

RECENTLY PATENTED INVENTIONS.

Pertaining to Apparel.

Shoulder-brace.-M. W. Ferris, South Orange, N. J. The braces tend to hold the
body of the wearer in proper upright position body of the wearer in proper upright position,
with a view to insure an upright, healthy car riage at the same time allowing sufficient riage at the same time allowing sumcient against perspiration, preventing the shoulder
straps from accidentally sliding off the shoulstraps from accidentally sliding off the shoul ders, and allowing con
pOCKET FOR SHirts.-S. Elbadm, Bayonne, N. J. The invention relates to outer
shirts for working men, mechanics and other persons, and its object is to provide a pocket or shirts, which is provided with separate compartments, one for general storage purposes, one for the safe housing of a watch,
and one for containing a lead pencil, rule or the like.

Electrical Devices.

AUTOMATIC FIRE-ALARM SYSTEM.-C . Fox, 11 Queen Street Place, London, England. The invention consists of a combined
electric bell service and automatic fire alarm system; that is to say, a system in which
the leads for the electric bell installation secve the leads for the electric bell installation serve
also as leads for the fire alarm thermostat also as leads for the fire alarm thermostat
circuit, so that the leads appertaining to the thermostat in any apartment will be tested each time the electric bell in said apartment is used.

Of Interest to Farmers.

CHURN.-A. Barber, Watsonville, Cal. More particularly the invention relates to
churns such as are provided with improved churns such as are provided with improved
dashers whereby a more effective action is dashers whereby a more effective action is
brought about in churning. The device is proided with a dasher having three vertica lades, the intermediate blade serving pivot facilitate its rotation.
COTTON-COMPRESS.-T. B. Lee, Charlotte and uniform bale and completes it before re and uniform bale and completes it before re-
leasing any pressure. It provides means for leasing any pressure. It provides means for
neatly and conveniently covering the bale with bagging and securely hooping the same with tie wires or bands. It also provides bale which can be sampled at any part of th same, so as to show the character of the cot-
ton in the entire bale, leaving no chance for on in the entire bale, leaving no chance for alse packing.
BALE-TIE.-
bale-TiE.-D. Margolius, Norfolk, Va. The improvement is more especially in such proved feature residing primarily in the conproved feature residing primarily in the connection between the ends of the tie. The tie is made so that the tie will not catch in the ends of new ties, but also in joining one r more pieces of an old tie together
COTTON CHOPPER AND CULTIVATOR.R. H. Purnell, Rosedale, Miss. A special fea-
ture of this machine lies in the means for ture of this machine lies in the means for
preventing stubble, weeds, or trash of any kind proventing stubble, weeds, or trash of any kind revolutions, whereby the latter would become clogged and its work rendered imperfect. An-
other is the rotary bevel disks that when set in one position serve to throw dirt toward in one position serve to throw dirt toward ranged at an opposite inclination they serve to scrape the sides of the cotton row. It is
an improvement upon the machine for which Mr. Purnell formerly obtained Letters Patent.

of General Interest

METHOD OF TREATING HIDES.- D. J WARD, West Philadelphia, Pa. This invention refers to the treatment of hides or leather, purpose of removing hair and grease, and of ultimately improving the quality of the leather to be made. The method makes plumper Sarety pope grip C. Sin. SAFETY ROPE-GRIP.-C. F. Sinclair, Jer sey City, N. J. The object in this instance
is to provide a rope or grip for attachment is. to provide a rope or grip for attachment
to the wrist of a person and for connection with one of the guide ropes of the bathing place, to allow the user to safely venture into the water for bathing and swimming purpo
and to aid the user in learning to swim. PROCESS OF MAKING CANDY.-L Hirschfeld, New York, N. Y. This process is designed to impart to pulled candy a pe-
culiar consistency, rendering the candy less culiar consistency, rendering the candy less
strenuously tough than ordinarily and perstrenuously tough than ordinarily and per-
mitting the candy after a time to completely mitting the candy after a time to completely
dissolve in the mouth, and a further purpose is by means of the process to obtain a progreat length of time.
LOGGING-JACK.-C. D. Moore, South Bend, Wash. In this patent the improvement is in that class or type of jacks in
which a rack-bar is raised by means of a pivoted lever provided with a pawl adapted to engage a rotatable ratchet which is in turn connected with the
dium of a pinion.
display-receptacle.-M. Gianini, New York, N. Y. Candy boxes are often arranged with trays or divisions for different kinds of
candy. but they are not all in view. A box candy. but they are not all in view. A box is especially useful for this purpose, as the
box may be opened out to expose the contents
of all its divisions. While intended especially o be used as a candy box, it may be used for ther purposes.
FASTENING DEVICE.-A.C. Goddard, New York, N. Y. The invention relates to metallic oor casings, base boards, chair rails and the like, and its object is to provide a device for fastening the metallic parts in position with out the use of screws, nails and the like and

without showing the fastening means ex| $\begin{array}{l}\text { without } \\ \text { teriorly. }\end{array}$ |
| :--- |

EiASEL Guna Boin New
EiASEL.-Genevieve Booth, New York, N.
Y. The invention relates to improvements in Y. The invention relates to improvements in
devices for use in supporting pictures, pamparticularly to that type of holder formed sheet metal and serving not only to suppor the picture, pamphlet, book, or copy, in a substantially upright position, but also serving to hold it in an open position.
horseshoe.-P. W. Carney, Norfolk, Va In this patent the invention is an improvement in horseshoes having for an object the provision of an attachable and detachable at-
tachment having calks, and which can be readtachment having calks, and which can be read-
ily applied to ordinary horseshoes when necesily applied to ordinary horseshoes when neces
sary and removed therefrom when the necessity or calks no longer exists.
vaginal syringe.-O. Katzenberger, San Antonio, Texas. The purpose of this in or a syringe, which adapt it for a very con venient service, and enable the internal application of a suitable medicinal liquid or powcation of a suitable medicinal liquid or pow-
der for the disinfection or cure of diseased tissue, the said liquid or powder being preferably employed as a remedial agent.
HOOF-PAD.-D. T. Barber, Gustavus, Ohio. In the present patent the invention is an improvement in that class of hoof-pads which are formed of elastic material and are arranged beneath a metal shoe and are secured to the
animal's hoof by the same nails that hold animal's
the shoe
Can-opener.-C. E. Sands, Palatka, Fla In operation the pointed end of the long arm is inserted in the can top, at approximatel
the center thereof, and bent downwardly unti the cutting wheel is in contact with the tin The arm is now revolved around the edge in contact therewith, thus severing the cent of the top from the margin.

ANimal-Trap.-L. Horinko, New York, N. \mathbf{Y}. The purpose here is to provide a device
for catching small animals, such as mice, rats, for catching smant animals, such as mice, rats,
etch embodies in its construction a cage an auxiliary cage open at both ends and hav ing means adapted to hold the bait, and a
trap door in the top of the cage, forming the trap door in the top of the ca
bottom of the auxiliary cage.

Heating and Lighting

CLEANING DEVICE FOR FEED-WATER heaters.-T. V. Elliott, New York, N. Y In this case the object of the inventor is to provide a new and improved cleaning device,
more especially designed for effectively cleaning feed water heaters whenever desired, with out requiring shutting off the feed water from the boiler.

Household Utilities.

WASTE FOR BATH-TUBS, BASINS, AND LIKE FIXTURES.-P. F. Gothrid and T Hayes, Nutley, N. J. The object of the in basins, and like fixtures, arranged to preven contaminated water rising into the fixture when filling the same with water. It relates to wastes such as shown and described in
the Letters Patent of the U. S., formerly granted to Messrs. Guthrie and Hayes.

Machines and Mechanical Devices.

BOAT-HANDLING DEVICE.-L. TANNIN and W. J. Ryan, New York, N. Y. The invention pertains to boat-handling devices, the carried on shipboard, to be readily raised from carried on shipboard, to be readily raised from
the chocks, normally supporting it, and otherwise made ready for immediate action upon the water.
APPARATUS FOR COALING SHIPS AT ferring is done by placing a collier in tow of
fer the vessel and providing one or more traveling cables between them, on which the coal or other material is carried, said cables having means to maintain them under constant and
equal tension during rolling and pitching, the equal tension during rolling and pitching, the
tension on the cables being maintained irretension on the cables being maintained irre-
spective of the tension on or slackness of, the spective of the tension on or slackness of, t
hawser connecting the two boats together. StOKER.-T. V. Elliott, New York, N. Y The object of the present invention is to pro-
vide a new and improved stoker for use in automatically feeding coal and like fuel to a automatically feeding coal and like fuel to a to insure at all tim.
bustion of the fuel.
ATTACHMENT FOR KEY-OPERATED MA CHINES.-J. V. Y. Diaz, Habana, Cuba. The invention relates to improvements in type-
writers or other machines having a plurality of keys adapted to be manually operated, and the object of the invention is to provide means for locating and defining the keyboard by other
than the sense of direct sight, whereby the operator instinctively retains the hands in the
while reading copy and operating the machine
simultaneously.

Railways and Their Accessories

MOLD.-J. Wilson, Rochester, N. Y. Thi mprovement is for use more especially fo a molding flask by which the variation at pres ent experienced in the thickness of fiange and the weight of the wheels, will be elimin-
ated, and a uniform and well balanced wheel ated, and
produced.
MAIL-HANDLING APPARATUS.-M. M Miller and G. S. Steinberger, Allentown, Pa The invention relates more particularly to ap paratus which is used with mail or other rail
road cars for securing and delivering mail road cars for securnng and delivering mall to a rairrod adapted to anranged adjacen receiving mail bags from a train while the latter is in motion.

Pertaining to Recreation.

AQUATIC MERRY-GO-ROUND. - H. E Riehl, New York, N. Y. The invention refer
to amusement apparatus, such as are used in arks, exhibition grounds, pleasure resorts, and vide like. The object of the inventor is to pro round, arranged to provide an exceedingly novel and highly interesting ride.

Pertaining to Vehicles.

SWINGLETREE AND DOUBLETREE.-G. SImpson, Marysville, Idaho. The invention rokes and similar constructions. The con struction is simple, easily applied, reinforces and strengthens the body and protects the rear side of said body when the latter is used as a wingletree against injury from coming in contact with the wheels or oth
running gear of the vehicle.

Note.-Copies of any of these patents wil e furnished by Munn \& Co. for ten cents each Please state the name of the patentee, title of the invention, and date of this paper.

Notes anderies. and Queries.

the head of this column in the issue of Novem
(10994) G. L. P. writes: H. J. F
sks if a piece of paper 8 by 8 inches square can be cut so as to make 65 square inches, Now you will find enclosed a piece of pape 8 by 8 inches, which you are to cut on the ines and put together as lines shown on the maller piece, and then measure. I think you win
equals 65 square inches. I am unable to ex plain where the square inch comes from, but it is there. A. No, friend, it is not there We exceedingly regret that any of our corre
spondents should think us capable of believing that a square of eight inches on a side can be cut into pieces and put together in another way so that its area shall be increased 1 square inch. We are having a deluge of let ters on this point, of which we print one, many cricising us more or less severely fo it cannot be done. We repeat it-No. by no conceivable means. It transcends common sense to ask it. Try it with pennies, or kernels of corn, or any convenient similar pieces,
Lay out 64 in a square of eight on a side Then change them to a figure of 5 rows of
13 on a side. There will be a missing kerne on a side. There will be a missing kerne
or coin. You cannot complete the second fig ure. It is the same if you cut a piece of paper of the same dimensions; 8×8 canno
be anything but 64 , and can never be 65 . Why not settle one's self first upon simple 1ounda dent correspondent does, "But it is there." That begs the question. It is not there, and here somewhere. Now, this is no new trick It has been traveling around for an unknown period of time, and has been shown up a often as it appears. The ScIENTIFIC AMERICAN
had it a generation ago. Still, apparently, had it a generation ago. Still, apparently have never seen the exposure. Hence we wil ment not following the usual mode of the falsity of the proposition. This is not a puzzle, for a puzzle should have a rational
solution, and this thing has no such solution solution, and this thing has no such solution It is a trick, to make the false seem true
The proper attitude of mind toward it is to seek for the reason of its falsity, since it can noten suggests that it cannot be true when you see a juggler perform an impossible thing such as cutting a man's head off, pulling great quantity of dry goods out of a hat, or doing the curious box trick, you do not imme
diately demand that all these shall be accepte diately demand that all these shall be accepted
as realities; on the contrary you seek th method of the deception. That is the right attitude of mind toward a physical impossi-
bility, and is applicable here. Perhaps the
asiest way to show the falsity of the ques5×13, divide it into squares and draw a
5 diagonal line across the figure as in Fig. 2.

ur Fig. 1 shows the square of 8 inches vided for the purpose of the puzzle. Draw $H E$ and $B G$ do not fall at the corners of squares. They cannot. Yet the so-called soluhows the same thing-that the lines $E G, B F$, $E, B F$, which should be 3 inches long, are

his is so. You should be sharper than to draw a figure like that and send it to us if
you are to convict us of error. There is an error, but you are in error. The diagonal of your long figure, 5×13, must be a straight
line, if you are correct, but the four pieces of ne, if you are correct, but the four pieces of traight diagonal, as any one can see who ill put the pieces together, then use his eyes and look for himself. If your eyes will not how it to you, take a straight ruler and it
will disclose the truth for you. The long, loping line of the pieces of paper is not traight. The four pieces of paper is not not cover the area which they seem to cover. There is a long, narrow strip in the center
which is not covered. The area of this strip is just one square inch, the square inch you think you gain. You put your rulers on and draw a long straight line sweeping from one corner of the 5×13 figure quite across to the
other corner, and say "There it is, I have ade 64 square inches into 65 square inches." Great act! But you have not. Now turn to he square of 8 . inches on a side, our Fig. 1. neh in 1 inch. The line $G H$ slopes 2 inches in inches, or $2-5$ of an inch in 1 inch. And you ask us to believe that a line whose slope
is should form a straight line with one hose slope is $2-5$. We cannot do it. The
eason anyone is deceived is that the pieces eason anyone is deceived is that the pieces
re rarely cut with a high degree of accuracy hey are often cut out of thin paper, and will ot lie flat. When they are put together they seem to cover the space as well as could be expected and so the deception takes effect. If
he trick were approached from the other side, hat is, cut the pieces from the piece which is 13, and put upon a square carefully rawn to be 8×8, the pieces would then more
than cover the square figure and deception wan cover the square figure and deception
(10995) G. R. M. asks: Will you kindly nswer the following through the columns of Notes and Queries in your valuable paper,
and oblige a faithful reader: 1. What causes nd oblige a faithful reader: 1. What causes
he changes of the moon? A. The phases of the changes of the moon? A. The phases of
the moon are produced by the moon's revoluion around the earth. The sun shines upon moon all the time. When the moon in its un and the earth, the sun is shining upon the ide of the moon which is farthest from the arth. The dark half of the moon is toward he earth. That is the time of new moon. about two weeks later the moon has traveled round so that it is farther from the sun than he earth is, and the earth is between the moon and the sun. The lighted side of the
moon is toward the earth. That is full moon. As the moon has changed from showing no lighted surface to the earth to showing the entire lighted surface to the earth, there was time when she showed half her lighted surface to the earth. That was first quarter. nd new moon, when she will show half her ighted surface to the earth. That is last, or ird quarter. If you will look up this matan read about it, and see the illustrations of in the books, which will give you a much etter idea than mere description in words. Ask the librarian about it. 2. Why does the mercury in the barometer stay higher when torms come from an easterly direction than does when they come from any other direcion? I have noticed this time and again and ome of our largest and worst storms come rom the east, and still the mercury will stay nything to do with it. As regards the power of a telescope, what is meant when manufac turers say they magnify 20,33 , or 50 diamers? A. We were not aware that a storm ming with an easterly wind was charactermes with higher barometer than one which torms alwass wind from a southerly quarter. Storms always travel from west to east around
he world. In crossing our country the paths
curve considerably because of the mountain ranges, plains, and rivers. In inward toward the center, an the storm as a whole rotates from east to
north, west and south, as we say, opposite north, west and south, as we say, opposite
to the hands of a clock in the northern hemisphere. This causes the northeast winds in the northern front quarter of such a storm The ocean has little influence on these storms from an easterly direction, but from the west and the wind in its whirling in the storm blows from an easterly quarter in the front and from a westerly quarter in the rear of the storm as it goes away. It clears off with (10996) A. W. Jsks: 1. What
(10996) A. W. asks: 1. What is meant by "polyphase", as applied to electric machines; and by "cycle" as applied to gas engines? A A varying quantity passes, including all its values, and it fluctuates through these changes periodically. Thus a cycle of an alternating current of electricity is the successive values
of the E. M. F. through one series of changes from zero to its highest value, and down zero. This succession of values the current will have as many times per second as ther are cycles, ordinarily 30 , 60 , or 120 . Poly-
phase currents are those whose E. M. F.'s differ phase currents are those whose E. M. F.'s differ
from each other by a fraction of a phase Thus three currents a third of a cycle apart will furnish a three-phase current in the lines with which it is connected. See Sloane's
"Electrician's Handy Book," price $\$ 3.50$. A "Electrician's Handy Book," price $\$ 3.50$. A
cycle is like a complete succession of the heights of one tide in about twelve hours at the seashore. A phase is any single value or
height of the water. If two or three tides come together by different channels in the same place or bay wc have a two-phase or three-
phase current of the tide. 2. What is mean by jibing a sail-boat? A. A sailing vessel is tacked when in changing from one course on
the wind to another it presents its bow to the wind; it is jibed when it is turned in the the wind; it is jibed when it is turned in the oppo
site direction so that it presents its stern to the wind. In a high wind the latter is always a difficult and sometimes a dangerous opera tion. 3. Is a catboat so called because the
mast stands straight up at one end of the boat like a cat's tail from its body? A. We are its mast stands straight up like a cat's tail The mast is at the front end of the boat, and tails set at the stern end. We do not know the it was given becaus of the quickness with which these boats wil come about. 4. Does an electric motor diffe in structure from a dynamo? Can they be in terchanged? A. There is no theoretical dif ference between a dynamo and a motor. In general, each may be used for either service There are, however, many structural differences can be easily told to which class any particu lar machine belongs. 5. How can a steady effective current proceed from a dynamo giv ing an alternating current? The curren changes polarity each instant, as understood A. A steady current is not produced by an
alternator. An alternating current can, howalternator. An alternating current can, how
ever, be changed to a steady direct current by means of a rotary converter. 6. What ligh form of motor would you recommend for driv-
ing a dirigible balloon? A. Probably some form of gasoline motor
(10997) O. E. G. asks: 1. Is the speed of radiant heat (whose medium is the same a latest science does not make any such distinction as between radiant heat light, electricity wav. They are all the same radiation. If the nerves we feel them as heat; if they can affec the eye we see light. 2. Is the difference be tween light, electricity, and radiant heat due to the difference in wave-length? A. The sole difference between the several effects is due to
wave-lengths. See the "New Knowledge", by wave-lengths. See the "New Knowledge," by
Prof. Duncan, price \$2. 3. If light moves in Prof. Duncan, price $\$ 2$. 3. If light moves A. In all vibratory motions it is the wave over a field of grain is the very best illustra tion of this one can have remote from th ocean. Water waves on the ocean are good
illustrations of a transverse wave with an on ward motion of the wave form. It is not
light which moves, but a wave form. The matter which vibrates moves to and fro, th wave advances. 4. Please expla from a particle moving in a certain direction to the next parti cle in exactly the same condition of motion In a water wave, the wave-length is from a drop on the crest, for example, to the nex drop exactly on the crest, also. the wave-length of electricity, and does it vary with the amperage? A. There are all sorts of wave-lengths of electricity down to very short waves, but not so short as those which
produce light. Those used in wireless telegraphy with a single wire as an aerial are very closely four times as long as the height of aerial wire from which they are radiated into space. When a capacity is in the circuit this affects the wave-length. The wave-length va ries with the rapidity of the oscillations the discharge. 6. Does a heated conductor of
electricity retard the current? A. A hot metal
mperature, and so reduces the current which reas through it. Carbon, however, has a much greater ele
(10998) E. G. asks: Kindly give me clear definition of adia ing fully the-difference between a gas adiabatically heated and one heated by mechanical compression. A. The word "adiabatic" is de rived from the Greek and has three parts. A
means without; dia means through; batio means without; dia means through; batio "without going through." Applied to heat, the "without going through." Applied to heat, the
sense is that no heat passes through to affect the temperature of the gas under test, be it噱 a boiler or any other gas in any as which is compressed without any he leaving it becomes hotter, and a gas which is expanded without any heat coming into it grows colder. Both of these are adiabatic hanges. The gas which is heated by mechan al compression is heated adiabatically. Adia batic changes are of great importance in the ing of a given latitude to sea level, the average emperature of the air must be known. Is this verage obtained by taking the average of the dry thermometer readings at the A. M. and . M. observations, or by taking the average of the day? A. The average temperature of the ir in the problem of the reduction to the sea evel is the average of the temperature of the to the altitude of the observation. This can be ince only with considerable probable error, tude varies greatly in different regions, and any error in this causes an error in the weight of the air column to be calculated. The actual temperature at the place at the time of ob
servation is the only temperature to be em loyed in the reduction of that observation Is water vapor properly classed as one of vapor is on the constituents of the at mosphere. No percentage value can be given for it, since it varies very much, from a mere race to as much as five per cent of the amount of dry air. The chemical composition of air as ordinarily given is usually that of dry air.

HEW BOOKS, ETC

Canadian Types of the Old Regime
New York: Henry Holt \& Co., 1908.
8 vo .; pp. 366. Price, $\$ 2.75$
This handsomely made book is illustrated by well chosen engravings. Some idea of the conents may be gained from the chapter headings, which are as follows: "The Historical Back round of New France," "The Explorer, Cham plain," "The Missionary, Brébeuf," "The Colo Coureur du Bois De Lhut," "The Intendant Talon," "The Bishop, Laval," "The Governor rontenac," and "The woman." The chapters f this book represent lectures which were reently delivered in Ottawa. It is extremely well written, and conveys an immense amount in special libraries.
Scientific Ideas of To-day. By Charles
R. Gibson. Philadelphia: J, B LipR. Gibson. Philadelphia: J. B. Lip-
pincott Company, 1908.
12mo.; pp. 344. Price, $\$ 1.50$.

This book is so fascinating that the reader most feels like neglecting the author's warnrandom, no matter how interesting they are. This warning is fully justified, in any work
of this kind, for it would be quite impossible of this kind, for it would be quite impossible
to make each chapter complete in itself without a wearying repetition of facts. In the explain the scientific ideas of to-day without using language beyond the reach of any reader. His explanations demand no previous knowl-
dge of science whatever and no acquaintance with mathematics. It is the most admirable ook on amateur experiments that we have
een in years. Among the chapter headings re: "What Things Are Made Of," "The Stuff hat Atoms Are Made Of," "The Construction is the Æther?" "What is Magnetism?" "More About Electrons in Motion," "What is En-
ergy?" "Waves in the Æther," "What is Light?" "The Explanation of Color," "Ideas Ob tained from the Spectrum," "The Birth of a
Star," "The Age of the Earth," "Whence Came Life?" "What Are the X-Rays?" "How from Radium?" "Is the World Going to Pieces?" "The Cause of Radio-activity," "What is Gravitation?" This is a book that it will would make an admirable Christmas gift.
St. Botolph's Town. An Account of Old
Caroline Crawford Boston: L C Page \& Co., 1908. 12mo. Price, $\$ 2$. The author has produced a most delightful interesting book of this nature in a very long time, making one understand a little better the part New England, in the person of its
chief town, has played in the mighty drama chief town, has played in the mighty drama of nations made up of thinking. feeling men
and women. $U p$ to the time of the Revolution of course Boston was the biggest place in all of course Boston was the biggest place in all
the colonies, as well as the chief settlement in

Massachusetts. This numerical prominence
needs to be borne in mind if we would understand many acts on both sides of the ocean To understand the America of to-day, too, we
must needs know the Boston of the forefathmust needs know the Boston of the forefath
ers. The book is beautifully illustrated, print ers. The book
ed, and bound.
Lathe Design for High and Low Speed Steels. John T. Nicholson, D.Sc.
and Demster Smith. London and New York: Longmans, Green \& Co 1908. 8vo.; Pp. 402. Price, \$6.

Until the advent of high-speed steel the
necessity for a theoretical treatise was unfelt necessity for a theoretical treatise was unfelt;
but the new conditions imposed by the general but the new conditions imposed by the general
adoption of the high-heat steel were found to adoption of the high-heat steel were found to
have rendered obsolete the long-treasured experience and accumulated data of the too involved in lathe desion, and an attempt to solve them on a basis of experimentally ascertained fact, had consequently become imperaappeere in the book has alread Engineer, and has already awakened wide spread interest. The tool designers will be glad to have such valuable matter in boo
form. The work is excellently illustrated a large number of engravings, which are exe cuted on a good-sized scale.
> ssige Kristalle, Myelinformen und
Muskelkraft. Von O. Lehmann Braunschweig: Druck von Friedric
> Flüssige und Scheinbar Lebende Kris
> talle. Von. O. Lehmann. Leipzig: 10.

> INDEX OF INVENTIONS
> For which Letters Patent of the United States were Issued
> for the Week Ending November 10, 1908.

AND EACHBEARINGTHAT DATE

鞎

${ }_{81}^{96}$

con

\%Hitiol

$\stackrel{\text { D }}{\substack{\text { D } \\ \text { D } \\ \mathrm{D} \\ \hline}}$

,

 ${ }^{803,5130}$

กixiz

Cla
cio
co
co
co

Cof

Corere
Coke
Coke
Coid

An Income for Your Wife

$\underset{\text { mime }}{\substack{\text { mice }}}$ Payable to her Monthly for pina twenty years or for life, if you should be taken from her; or
$\underset{\substack{\text { fenor. } \\ \text { nem }}}{ }$ An Income payable to Yourself ${ }^{\text {panam }}$ Monthly for twenty years or for life, to support you in your declining years, if you liveare the great features of the

New Monthly Income Policy

 issued byThe

Prudential

A Monthly Income coming with absolute certainty will enable the mother to keep the family together and the children at school.

Engine and Foot Lathes
MACHIE SHOP OUTFITS, TOLLS AND
SUPLILS.
BEST MATERAS. BEST SEBASTIAN LATHE CO.. 120 CuIvert St., Cincinnati. 0
 STEAM TURBINES. - THEIR CON

Mo

 A simple, compact motor of strong,rigid construction, comprising the
latest desirable features in gas enROYAL EQUIPMENT CO. Machines shallow wells in any kind of soil or rock, Mounted
on wheels or on sills. With engines or norse powers. erate them easily. Send for catalog.
WILLIAMS BROS.. Ithaca, N. Y.

THE
 MOVING
 PICTURE
 WORLD

ALL THE NEWS OF motion pictures

Best Medium for Advertisers moving picture world

SPARK COILS
Their Construction Simply Explained
Scientific American Supplement
160 describes the making of a 11 -inch spark scientific American Supplement 1514 tells you
engine ignition
Scientilic. American Supplement
522 explains fuliy the 1522 explains fuly the construction of a
Scientific American Supplement sark coil Scientific American Supplement an alternating current coil giving a 5 -inch Scientific American Supplement
1527 describes a 4 -inch spark coil and conscientific American Supplement 1402 gives data for the construction of coils The above-mentioned set of seven papers will be supplied for 70 cents.
Any single copy will be mailed for 10 cts . MUNN \& COMPANY. Publishers 361 Broadway

arind

 Linotye machine, J. R. Rogers........
Liquid delivering machine, H. Ho Johnon.
Liquid dispensing apparatus, Mayo \& HouleLiquid drawing and measuring apparatus,
Jiquids T. Tond gase gas, apparatus for mixing,

 Lubricating device, J. H. A
Lubricator, E. Mccoy
Lubricator, B. E. Pinili
Lunch box or bag, s. Bie

 Moldings, machine for applying liquid to,
C. Pranett
Mop wringer, J. Weil
 Motor controling system, C T. Henderson.
Motors, ssstem for controlling one or more

 Nozzle, rotary, A. Schmid
Nut Hok, M.' M. Wilkin
Nut lock, J. F. Lachman

Package tie, C...... Hoover
Packing for pipe joints,
Hogue
Packing, metalic, s. Redfern \ldots.
Packing or shipping box, J. T. Ferre...
Padlock, permutation, J. A. Cowie

American Homes and Gardens

gives its readers the experience of experts in solving the most difficult HOME PROBLEMS. It is a thoroughly practical magazine, having the word "Home" for its keynote.

HOW TO BUILD THE HOME
Floor plans and details of construction of houses of moderate cost as well as more pretentious mansions are a feature of each issue.

H0W TO DECORATE THE HOME

The most experienced decorators in the country describe how the best and most artistic results are attained from the point of expenditure, and the more important one of satisfaction.

HOW TO PLAN AND LAY OUT THE GARDEN

The frame of the House-picture is the garden, and success in its treatment means that each tree and shrub is correctly placed as well as properly grown, hence this department will be found most helpful.
OUTD00R LIFE AND AMUUSEMENTS, ARTICLES ON HOUSE INDUSTRIES,
every phase of country life is authoritatively discussed from month to month in its pages. "American Homes and Gardens" is conceded to be the handsomest magazine published in America. Its beautiful cover printed in colors changes each month, and is always a work of art. Subscription price, $\$ 3$ per year. If we receive your order for a year's subscription now
we will send you the November and December, igo8, numbers free; in we will send you the November and December, 1908, number

MUNN \& CO., 361 Broadway, New York City

F.or Draughtsmen
 ble to any dore of angles. It is is instantly adjutaminutes. litis so, and has a vernier reading to five GOODELLL-PRATT CO., Greenfield, Mass.

Concrete, Reinforced Concrete

Cmacrete Building Blocks

Scientific Amarican Supplement 1548 contains an
inticle on Concrete, ${ }^{\text {by }}$ Brysson Cunningham. article on Concrete, by Brysson Cunningham.
The article clearly describes the proper composition and mixture of
results of elaborate tests.
Scientifio American Supplement 1538 gives the
proportion of gravel and sand to be used in proporte.
concrete.
Soientific American Supplements 1567 , 1568,
1569,
157, cussion by Lieut. Henry J. Jones of the
various systems of
reinforcing concete, concrete construction, and the trir aperetica, contions.
These articles constitute a splendid text book on the stibject of reinforced concrete. Noth-
ing better has been published.
Scientifio American Supplement 997 contains an
article by
tical notes on the Newberry proper preparation of prac-
concrete are given.
Scientific American Supplements 1568 and 1569
present a helpful apten account of the making of
concrete blocks by Spencer Newberry. present a helpful account of the making of
concrete blocks by Sencer Newberry. Scientific
critical
reinforced concrete. $\begin{gathered}\text { Amerioan } \\ \text { reve }\end{gathered}$ Supplement $1534 \begin{gathered}\text { gives }\end{gathered}$
 of reinforced concrete construction are dis-
cussed and illustrated. Scientifle Amerrcan Supplement
article by Lewis A.
Hicks, in
in merits and defects of reinforced concrete are
analyzed.
Scientific
the $\underset{\text { principles }}{\text { Amarican }}$ of $\begin{gathered}\text { Supplement } \\ \text { reinforced }\end{gathered}$ concrete $\begin{gathered}\text { contains } \\ \text { with }\end{gathered}$ the principles of reinforced concrete with
some practical illustrations by Walter Loring
Webb
Scientific American Supplement 1573 contain an article by Louis Hy. Glbson on the prin-
cippees of sucess in concrete block manufac-
ture, illustrated. Bcientifio American Supplement 1574 discusses steel for reinforced concrete.
Soientific American Supplements 1575, 1578, and
1577 contain a paper by Phillp L. Wormley Jr., on cement mortar and concrete, mley preparation and use for farm purposes. Then The
paper exhaustively discusses the making of
mortar and concrete depositing of concrete mortar end concrete, depositing of concrete,
faclag
concretente, wood forms, concrete side
detalis. walks,
concrete posts.
Wach number of the Supplement costs 10 A set of papers containing all the articles
above mentioned will be mailed for $\$ 1.80$. Order from your newsdealer or from MUNN \& CO.
361 Broadway, New York City
 Paperg chip, G..............iif
Paper clip, D. Jobnono
Paper drier

 Pen, Yountan, Wertheimer
Pen nib, C. Wer
Pencil, E. L. Schmitz Pencil, E. L. Schmitz
Petticoat, E. J. Segrell
 paratus for, C. F. Aurich
Photographic printing machine, E. ©

 Plastic ornaments, making, A. A. M. Hoistin.
Platen operating mechanism, A. Schneeloch
 Pore cross arm support, E. C.
Portable gate,
Portiere, rope,
Post
Post brace,
W. Taben
T.
 Pousse cafe machine, J. Kriwanek
Power generating system, H. Lemp
Power generator, c. J. Low. .i.t.

 Pump, bicycle, J. S. Robinson..
Pump, centrifugal., L. Bellot
Pump couplin, \mathbf{L} (. C. Hamel
Pump operating mechanism, Pis

Rail joint supportere, L. Farrell. Railway brake shoe, \mathbf{i}. Angins.

 Railway rail, fastening clip, A. M. Gaines.
Railway ratils. device for preventing spread-
ing of, J. Larivee

 Railway trains, automatic control for, J
Railway trainans, combined signal and spee

 Rotary engine, W. F. Bheecker, reisyene.
Rotary explosive engine, E. O. Hoell.... Running gear, D. W. W. Connell.
Sad iron, W. B. Simpson.....

 Segregation, A. Junghans................
Self-lubricating wheel, w. M. Duncan..
Separator, C. J. Reilly......

 Sharpener, lawn mower, J. H. Frey..............
Shearing and punching machine, C. J. Rei

Shoe,
Shoulder brace, Quici \& Armstrong.
Sign receptacle, C. D. Platt.......

Skeins and their holders, machine for ma
Skip dump, J. Angove.
Sled propeler, C. Kibat
Sle

Sodium arylamins, manufacture of, ol. Lie
Sole protecting plate for shoes, J. Edman.
Sound reinforcing relay, J. H. Christensen.
Speed indicator. \mathbf{R}. Shipman.

.903

903,542
9030,672
9036,662
:---:
03,523
03,758
03
:---:
903,288
:---
903,820
903,526

 \mathfrak{c} $\begin{array}{r}93,744 \\ 903,574 \\ 903,751 \\ \hline\end{array}$
 $\underset{\substack{\text { gon } 312 \\ 90,5 i t y}}{ }$

 903,304
903,252
903,360 903,414 oueq 903,321
963,685
903,828

903,222 | 903,650 |
| :--- |
| 903,168 |
| 93 |

 903,456
903,80
903.631
903.548
90
 903.39
$9_{903.62}^{903.51}$
903.61
90.6 903,71
903,549
9031
90341 903.755
903,609

903,59 | 903,369 |
| :---: |
| 903,439 | 903,749

903,22 903,498 903.301
903.764
903,371 903,773
903,370
903,386
9 903.403
903,768 903.78
903.350
903.525
903,486

903 \begin{tabular}{l}
903,610

903.263

903.287

903.540

.037

\hline

903.54

903.710

903.705

903510

\hline
\end{tabular}

 . $\begin{gathered}903.74 \\ 903.73 \\ 903037 \\ 903.61 \\ 90.51\end{gathered}$

The Gillette is Pratical for You

 thing in emergencies to be able to
shave himself-and to have the tools shave himself-and to ha
handy with which to do it.
If he buys a GILLETTE just for emergencies he will find himself using it every day, because it is so simple-no stropping, no honing-it is easy and it is safe.
We advertise that a man can have a clean, satisfying shave with the GIL LETTE in five minutes. We will warrant that the average GILLETTE user does not take over two minutes-and furthermore, that he has a better shave he can give himself with the old-style razor, in half an hour. razor, in half a
Nearly every GILLETTE owner becomes so attached to his razor that he makes a pet of it-thinks more of it than almost any other of his personal belong-ings:-it's just that kind of a little device. A beautiful piece of mechanism. A fine tool in every sense. No trouble to keep in condition and dependable at all times.

THERE are ten fundamental mechanical reasons for the GILLETTE doing the work it does. They apply to no other razor in the world. That's action of the GILLETTE by using any action of the GILLETTE by using any The GILLETTE idea is basic all the The GILLETTE is kind to the face t does its work with any beard and any skin. It is the only razor that can be adjusted for a light or close shave. New process GILLETTE blades are paper-thin, flexible, with a hard mirrordurability.
These blades are packed in handsom nickel-plated boxes, hermetically sealed, sanitary, damp-proof, anti-rust and anti-
septic.
Price per set or 12 new blades (24 cut-
ting edges) $\$ 1.00$. ing edges) $\$ 1.00$.
bades and GILLETTE razor with 12 blades and triple-silver plated handle, in
velvet lined full leather case, $\$ 5.00$. Combination sets, $\$ 6.50$ to $\$ 50.00$. The GILLETTE is sold almost everywhere. If your dealer can't supply you Send for illustrated book to-day.

GILLETTE SALES COMPANY NEW YORK 207 Kimball Bldg., BOSTON CHICAGO Gillette Factories: Bóston, London, Berlin, Paris, Montreal

Guileche Safety/

For ninety-nine years the Hartford has insured against loss by fire and in that time has built up the largest fire insurance business in America. It has not only promptly paid every individual loss, but has given safety and satisfaction to its policy holders in all the conflagrations of American history.
The Hartford stands to-day with large assets and ample financial resources the leader among fire companies. But its proudest asset is its reputation for commercial honor and good faith. It will sell you honest and safe insurance. Losses paid "Cash Without Discount." Is not this the Company you want?

INSURE IN THE•HARTFORD

AGENTS EVERYWHERE

Classified Advertisements
Advertising in this column is 75 cents a line. No less
than four nor more than ten lines accepted. Count than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on request.
READ THIS COLUMN CAREFCLLY.

- You will finc READ THIS COLUMN CAREFCLLY.-You will find
inquiries for certain classes of articles numbered in consecutive order. If you manufacture these goods
write us at once and we will send you the name and Write us at once and we wing send you the name and
address of the party desiring the information. There
is no charge for this service. In every case it is is no charge for this service. In every case it is
necessary to give the number of the inquiry.
Where manutacturers here manufacturers do not respond promptly the
nquiry may be repeated. MUNN \& CO.

BUSINESS OPPORTUNITIES.

WANTED.-Man with small capital to take charge of
territory for marchat
ticulars. Pope Automating businessi Corn Exchange Bank Building, Chicago.
Jnquiry No. $\mathbf{~ X 6 1 1 .}$. Wanted to buy springs for
light power purposes. WANTED.-Parties to manufacture and sell on a roy-
alty a splendid household article. Requires only
capital capital to make 810,000 or
Royalty,
Rox 773,
New York.

PATENTS FOR SALE

FOREIGN PATENTS for meritorious and valuable
inventions negotiaced upon
\mathbf{a} contingent basis. inentions negotated upon a contingent basis. Ab
solutely no fees aceopted Referencengiven and re
quired. L. Henry, 141 Broadwa, New York. machiniry.

 Inquiry
pen mochinery.
866\%.-Wanted to buv needle, pin and
 guisher. For full particulars address Louls Wendnage Inquiry No. 8685 . - Wanted to buy $13 /$ to $^{2} 2$-inch
No. 13 to 18 tempered spring steel.

PATENTS WANTED.

Inquiry No. 868்\%.-Wanted to buy motor plows.

FOR SALE.

A GRAY IRON FOUNDRF, fully equipped and in operation. on account of the death, or the managing partner, is for sale. The foundry is $50 \times 150 \mathrm{ft}$. solid

 Minn. For particulars address Mr. W. Lir Chapinois,
torney for ite administratrix, New York Life Bidg.,
St. Paul, Minn. Inquiry No. 8699 .- Wanted to buy two-stranded
soldered wire for heddies.
 party. Address J. H. MoLeod, Marietta, Kans.
Inquiry No. 8701.-Wanted to buy solar engines.

LISTS OF MANUFACTURERS. COMPLETEE LISTS of manufacturers in all lines sup.
plied at short notico tat onoderate rates. Small and
special lists complied to order at various prices. Ess
 Inquiry No. 8y, N1.-Wanted unwelded tubing that
is used for structural work.
 Inquiry No. 8y35.-For parties making a still for
the purpose of extracting alcohol from saw-dust.

MISCELLANEOUS.

UNITARIAN IUTERRATURE, including sermons and
weekJy publications. sent free. on application to Miss
Peek, 106 George Sreet, Providence, RI, Inquiry No. 8yst, -For manufacturers of machin-
ery for manog matcies, also machinery for making
purses and hand baga.
 Inquiry No. \&y42.- For manafacturess of water Inquirs
quered'brass in sheets
N9 Inquiry No. 8y 49.-- Hor makers of very large
springs, used for ranning machinery. Inquiry No. Nitcis.- For manufacturers of an ap.
pliance to attoch to the old style razor blade to make
same a safety razor.
 Inquiry No. 87 71. - Wanted to buy tune sheets
for Criterion music boxes. Inquiry No. 88\%4. -For machinery for making
bag from sisal hemp. Inquiry No. 8y75.
or jewelry catalogues. linquiry No. 8779.- For partios manufacturing
 stoves. Inquiry
burners for lights and stoves.

- For
 inch hole throngh the center, should holl about 200
pounds to the square inch of steam pressure.

Cat-gut.

"Bnquiry No. 8790. - For, the manufacturer of
Inquiry No. Gy 9 gici-For a arm that manuractures

Inquiry No. 8796.-For concorns manufacturing. Inquiry No. Ny98- For manufacturers of micro
 Inquiry No. SSoo.-Wanted complete data in reInquiry No. \$802. Whanted tobuy machinery for
cuting and poilshing oilstones, whitestones or घrina-
stones.

 Inquiry
supples for bor brink. 805.-Wanted to buy outats and Ingairy No. 8806.-For manufacturers of drawIngniry No. D80.
cotton machinery. TInguiry No. S815. - Wanted to buy carriage and Inquiry No. 8819.-For manufacturers nf Excel-
 Inquiry No. X8:2.-For manufacturers of dredg-
ing machinery
io Inquiry
device to spit
wood. 885.-Yor manufacturers of a new 1nquiry No. 8826 .- Wanted to buy small fuel com-
pression machines both manual and engine power. Ilasq. Inquiry No. 88:29.-Wanted to buy machinery for
making pins, hair pins, books and eyes. Inquiry
masting brushes and 8830 . - Wanted to chinquiry No. 8831. -Wanted to buy knitting maInquiry No. 8832.-Wanted Addresses of high-
grade label weavers, preferably in Now York. Inquiry No. 8833.-Wanted to buy a peanut snell.
 lnguiry N

Inquiry No. 8837.-Wanted to buy folding um-
 Inginiry No. 8839.-Wanted to buy cheap antoInquiry No. 8840.--Wanted to buy portable bydro Inquiry No. \&841.-Wanted to buy lunch counter
and restaurant Hitures.
Inguiry No. 8842.-Wanted to buy annealed glass Inquiry No. 8843.- Wanted to buy cirarette mak-
ing machine.
Inquiry No. 8844.-Wanted to buy inkstands,
Inguiry No. 8846. - Wanted to buy an electrio
Inquiry No. 884\%.-Wanted laundry tabs.
Inquiry No. 8848 . Whanted to buy rust proor
netal for parts of wasi iubs. IInquiry No. . 8849.-Wanted addresses of Canadian Inquiry No. SE850.-Wanted to buy machiuery for
making canvasgloves or mitts.
Inquiry No. S851--Wanted to buy machine for Inquiry No. D852.-Wanted to have made a an-
cane. brass or copper retiector with tocus of four or tlve
feet. Inquiry
razor blades.
N853. Wanted to buy water safety Inquiry No $8854 .-$ Wanted to buy air compressor
proserseup
cublc feet.
 stroke.
Inquiry No. 885fi. -Wanted a machine or grinder
for reducing sort wood refuse to a fine dust. Inquiry
Notring mantacturers.
B87. - Wanted addresses of shoe Ingniry
machine.
 Inguiry Noo 8860. - Wanted to buy machinery for IBquiry No. S861. -Wanted to buy machine for
cutting out mitiens. pillowiry ventilator. $\mathbf{8 8 6 2}$. Wanted to buy a feather Inquiry No. S863,--Wanted to buy machine
separate pecan nuts into sizes and dust the diric oft Cbanquiry Noi. ns novelites. - Wanted manufacturers of me-
Cookquiry No. 8865. - Wanted to buy freless water hiriry Noser . 8866.-Wanted to buy instantaneous Ileaniniry. No. 8867.-Wanted to buy plant for dry Inquiry No. 8868. - Wanted to buy nickeloid for lngiriry
machinery. No. 8869.-Wanted to buy straw making Inquiry
zerogene burners.
No.
S870 Inquiry
verosene
Nurners. 881. punguiry No. 8872.-Wanted to bay a ball nozzle Inquiry
ebower bath.

 Thre
TTice
Tile
Tle

Tob
$\substack{\text { Tool } \\ \text { Too } \\ \text { To }}$

rray, or Hebestreett...............

 $\frac{\text { Tu }}{\text { Tu }}$
Tu

 Val
Val
Val
 Va

 Plate, prikm, 9.

TRADE MARKS

Ale, portor, and brown stout, Robert Smith

 PRACTICE
by oscar e. perrigo, m.E.
Price $\mathbf{8 2 . 5 0}$

By JOSEPH V. WOODWORTH

Modern Plumbing Illustrated

Sy	

$\xrightarrow{\text { The Cushman }}$ "MOOOR OF MERTI" | $\begin{array}{c}\text { Honestly } \\ \text { Honilt } \\ \text { Honestly } \\ \text { Sold } \\ \text { Sold } \\ \text { They are made for } \\ \text { The man who wants }\end{array}$ |
| :--- |

We Start You in the Jewelry Business wris

English Manufacturing Sites

How to Build a 5 H.P. Gas Engine at Home

In Scientific American Supplement I641 and 1642, E. F. Labe describes simp4

 gas engine can be built at home. Complete working eraming ore part. Pricewith exact dimensions of

LABELS.

\qquad
\qquad
PRINTS

 courage fade, And if in net a lemon,
Just make the lemon-aid," for lemonade.. 2,

[^0]Cork.
Cadian patents may now be obtaind by

[^1] DONPT BUY GASOLINE ENGINES

THE MASTER WESTIGATE,
two-cylinder ERSoline kerosene or MUNN \& COMPANY
Publishers 361 Broadway, New York

WRITE FOR THIS BOOK ON THIS FULL $18-20$-Horse
CAR ther highest type Chassis carrying powerful water-cooled motor. Speed 1 t
gallon of gasoline.

[CF
MODELS $\underset{\text { Invent }}{\text { EXPERIMENTAL WORK }}$ RU818ER $\begin{gathered}\text { Expert Manufacturer } \\ \text { Fine Jobbing Work }\end{gathered}$
 HOEFT \& COMPANY
 MODELS \& EXPERIMENTAL WORK VENTRILOQUISM
 - S Model\& Experimental Work Telegraphy \qquad

Scientific American

New York, 1898-1908

Engineering Number
Issued December 5, 1908 Forms Close Nov. 25, 1908

0N December 5, the publishers of the Scientific American will issue a most comprehensive monograph number relating to the engineering achievements and possibilities of the great City of New York. Never in the history of the world have such extensive and costly improvements been contemplated and begun Never have such difficult transit problems come to such a speedy and successful completion, while the projects under way or in contemplation will make New York the wonder of the Twentieth Century. The remarkable success of our special issues will be duplicated and exceeded by this issue which will be the most important of them all. Notwithstanding the increased circulation there will be no increase in rates. 【I There will be no extra charge for choice positions such as the inside cover pages. [I Orders for space will be filled in the order of their receipt. U Have strong copy ready and this number cannot fail to benefit the advertiser. II Secure a reservation of space at once.

MUNN \& COMPANY, Publishers

Scientific American Office, 361 Broadway, New York Western Office: 1009 New York Life Building, Chicago
New England Office: 43 Tremont Street, Boston

Calendar Watch

 Price, ${ }^{5} 7.45$

 DECARBONIZER chenicalls remores
chirino n from
cyinders, piston ron rins and varves. INCREASES POWER 20 PER CENT
Volatilizes acrbon, in which form itpasses

The "Eleciro" Static (Wimshurst) Machine

MFKIN
 TAPES AND RULES
 LUFKIN RULE CO.

The Howard Watch

The accuracy of his recorded time is a matter of lifeand death to Peary in his dash for the Pole

 It is not the occasional performance of t $\begin{array}{ll}\text {-his only means, after leaving his ship, of tak- } & \begin{array}{l}\text { but its accuracy under all conditions-heat, cold } \\ \text { ing his longitude or knowing where he is in re- }\end{array} \\ \text { vibration, change of position and the jar and }\end{array}$ Peary depends solely on the Howard Watch on this expedition, as on his former one. The last thing before sailing Peary telegraphed:E. Howard Watch Co., Boston.
Get three your new 1 1 tize extra-thin watches to me Sidney,
Cape Breton, Nova Scotia by Monday sure. Shall use them in A Howard watch is always worth what you pay
for it. The price of each watch-from the jewel in a fine gold-filled case iguaranteed for Get three your new 12 size extra-thin waatches to one Sianer, gold case at $\$ 150$-is fixed at the factory, and
Cape Breton, Novo astatia by Monday sure. Shall use them in
dddition to

Find the 110 OARD jeweler in your town and talk to himt-he's a man worth
knowng. Drop us a postal card, Dept. I', and we will send you a
HOW ARD book, of value to the watell bujer.
E. HOWARD WATCH COMPANY. Boston. Mass.

Engineering News

The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers 100 to 125 pages, $9^{n} \times 13^{n}$, weekly. Send ten cents for sample copy. THE ENGINEERING NEWS PUBLISHING CO., 214 Broadway, New York \qquad

New British Patent Act
RESPONSIBLE manufacturing firm copper rolling mills in Birmingham, Eng. land, is open to receive proposals from
owners of American Patents protected in Great Britain, for the production of any of
the under-noted articles or machines:

Blanking Machines.
Cupping Machines.
Power Stamping. Machines.
Cartridge Piercing Machin.
Cartridge Piercing Mac
Heading Machines.
Bullet Machines of every de
Cutting aorf Machines.
Automatic Feeds.
Automatic Feeds• for the whole
of the above.
Machines for the Manufacture
of Explosives. Machine for Rolling Machine for
Papoting Case Work. Paper Tube Poolishing Machines Retonator Machinery.
Dire Covering Machinery
J. H. LA \cup \& \subset P. 0. Box 580, New York City, New York
 free if you mention this paper when writing.

CYCLOPEDIA OF

FREE 5 DAY OFFER

TECHNICAL WORLD MAGAZINE a regular 81.50 magazine, full of special articles and inter-
esting photographson technical topics
writen in popular form. Nachine Shop Warke of conterts

 AMERICAN SCHOOL OF CORRESPONDENCE

[^0]: in print issued since 1863, will be furnished from
 this office for 10 cents, provided the name and
 number of the patent desired and the date be be
 riven. Address Munn \& Co,, 361 Broadway, New

[^1]: Canadian patents may now be obtained by the in-
 ventors for ary of the inventions named in the fore-
 poing

