

Filling in the adjacent lowlands at dam. Note tree growth to break force of current.


# SCIENTIFIC AMERICAN 

 ESTABLISHED 1845MUNN \& CO.

- Editors and Proprietors


## Publishod Woekly at

No. 361 Broadway, New York
Charles allen munn, president
361 Broadway, Now York
frederick Converse beach, sec'y and Treas. 361 Broadway, Now York

## TERMS TO SUBSCRIBERS.

ne copy, one year, for the United States or Mexico.. One copy, one year, for Canada.
${ }_{3.75}^{8.00}$
epaid, 188. 6d. •4.5
the sfientific american publications. Scientific American (estabished 1845)....................... $\$ 3.00$ a year
scientific American Supplement (established 1876)..........5.00 "، Scientrific American Supplement (established 1876).............. 5.00
A:nerican Homes and Gardens ....................... 3.00 A:nerican Homes and Gardens..
cientific American Export Edition (established 1878). The combined subscription rates and rates to foreign countries, includ
ing Canada, will be furnished upon application. Canada, will be furnished upon application.
Remit by postal or express money order, or by bank draft or check.
MUNN \& CO., 361 Broadway, New York
NEW YORK, SATURDAY, OCTOBER 31, 1908. The Editor is always glad to receive for examination illustrated articles
on subjects of timely interest. If the photographs are sharp, the articies on subjects of timely interest. If the photographs are sharp, the article
short, and the facts authentic, the contributions will receive special at short, and the facts authentic, the contributions will receive spect
tention. Accepted articles will be paid for at regular space rates."

## that newport conference.

Some few months ago a conference of leading officers and officials of the navy was held at Newport behind closed doors. Although the only fact positively made known to the public regarding this assembly was that its deliberations were to be held in absolute secrecy, the close of the conference was followed by the usual and seemingly inevitable leakage of infor mation. The latest statement of what occurred appears in one of the current magazines in the form of an anonymous article. The facts there presented agree fairly well with the whisperings which have gone abroad regarding the doings of the conference; and they may be taken, we doubt not, as fairly correct.
The Newport conference, it has been pretty general ly made known, was called by the President for the consideration of the alleged defects in our warships; and we are told that the whole of the charges made in a certain magazine article and reiterated in the subsequent controversy were carefully gone into. The members of the conference represented every branch of the service that has to do with the design, construction, and subsequent handling of our warships and their equipments. Members called to the confer ence brought with them elaborate statistics, drawings, etc., bearing upon the disputed points, and the opposing parties were given an opportunity to state their views, compare notes, examine into the supposed defects, and propose the proper remedies.
It will be remembered by those who followed the controversy in its early stages that the principal charge made against our battleships was that their armor belts were altogether too low, and that it was urged that in future ships these belts should be raised several feet. It will also be remembered that, in an investigation of the facts, as given in the Scientific American of January 25 of this year, it was shown that the armor belts of our ships are placed in the same relation to the normal water-line as those on the battleships of leading foreign navies. It was further shown that to raise these belts several feet, as the critics desired, would be to bring the unarmored under-water portion of the hull nearer the surface, and put the ships in that much greater peril, when they were rolling at sea, of being pierced in their vital parts and either sunk or permanently disabled.
It now appears, according to figures given by the anonymous writer of the article above referred to, that it was finally determined, not that the water-line belts were too low, but that they were not low enough; for in future warships the top edge is to be 4 inches higher and the bottom edge 12 inches lower, measured with regard to the water-line of the ships when they have two-thirds of their coal, stores, and ammunition aboard. In other words, the whole body of the armor belt is to be sunk in new ships 8 inches lower with regard to the normal water-line than it was the custom to place it before this Newport conference was held. For it must be remembered that the normal water-line under which our existing ships were constructed is the water-line (to quote the official designation) of the "ship as designed, fully equipped, ready for sea, with two-thirds of the coal supply, ammunition, and stores."
So much for the armor belt controversy.
The conference further voted that the broadside guns for defense against torpedo attack shall, in the future, bc mounted one deck higher than in the present ships; that is, they will be moved up rom the gun deck to the main deck. This decision was based upon the experience of the fleet under Admiral Evans in its
cruise to the Pacific, when it was found that the guns on the weather side of the ships, when they were steaming at speeds of over 10 knots, were so wet as to interfere with the gunners. It should be clearly understood that this change was not recommended because these batteries were carried at a lower elevation than similar guns in foreign navies (as a matter of fact these guns are higher in our ships than in the British, German, and Japanese navies), but because it was realized that the greater displacement and wider margin of stability of our ships of the "Dreadnought" type rendered it possible to carry these guns at a higher elevation than could be done on the smaller ships of an earlier date.
Another important change, the motive of which is to be found in the experience had during the RussoJapanese war, relates to the smokestacks of our future warships where they pass through the central box battery. In future this portion of the stacks is to be protected by armor. The Russians suffered great inconvenience from the penetration of the base of the smokestacks by shell fire, the furnace gases escaping into the battery and, in some cases, even into the turrets, and driving the men from the guns. It will, of course, be impossible to put armor of any great thickness around the smokestacks, nor will it be necessary. The shells that enter the broadside battery will be exploded by the 6 -inch armor with which it is protected. It will be their fragments only that will strike the armored bases of the smokestacks, and penetration will be unlikely.
Taken altogether, the information which has leaked out through the closed doors of the Newport conference indicates that the broad principles of construction upon which the modern ships of our navy have been built received the indorsement of a very strong majority of the officers present. Some details will be improved, but no sweeping changes will be ordered either by way of reconstruction of existing ships, or redesigning of those at present under construction.

## THE FORCE INVOLVED IN AUTOMOBILE COLLISIONS,

Every one who has witnessed the result of a serious automobile or railway collision must have been astonished by the evidence of the development of forces by which strongly built vehicles of iron and steel were almost instantly ${ }^{\text {transformed into shapeless heaps of }}$ splintered and twisted fragments. Not every collision is as destructive as this, but the possibility of such a result is always present where heavy vehicles are moving with great speed, and hence an analysis of the conditions which determine the magnitude and effects of the forces of destruction will be of interest.
An automobile or, for that matter, any very swiftly moving vehicle is, in effect, a projectile which differs in no essential respect from a shell discharged by a modern field piece. The kinetic energy which a projectile possesses in virtue of its mass and velocity is necessarily expended in destructive action when the flight of the projectile is suddenly arrested by an obstacle of any sort. The destructive effects are divided between the projectile and the obstacle in the inverse ratio of their respective powers to resist deformation. For example, a shot fired at a board fence perforates and splinters the wood without itself sustaining appreciable damage, but a lead bullet fired at a steel plate is flattened without indenting the steel. If the projectile and the obstacle are similar in material and strength of construction, both will be damaged. In automobiles and other vehicles the conditions are essentially the same as in the case of the projectile. If, for example, the brakes are applied to an automobile when it is running at full speed, the kinetic energy of the forward motion is gradually absorbed by the friction between the brakes and the wheels, and converted into heat, and the car is gradually brought to rest. Again, if the motor is stopped without applying the brakes, the energy of motion is gradually used up in overcoming the resistance of the air, the rolling resistance at the points of contact with the road, and the friction at the axle bearings. The car, therefore, comes to rest, after running a distance inversely proportional to the magnitude of these frictional and other resistances.

To continue the comparison with a projectile, let us suppose that the car, running at full speed, is steered against a light picket fence, and the motor is stopped. The car will shatter the fence and go through it almost unharmed and with little loss of speed, but if it encounters a succession of similar obstacles it will finally be brought to a stop. Nor would one solid board fence stop the automobile, though it would reduce its speed, but the car would probably dash itself to pieces against a rocky cliff or stout masonry wall, without materially affecting either of those obstacles. In short, the weaker of two colliding bodies sustains most of the damage caused by the collision.

The effect depends also on the distance run by the vehicle between the first moment of impact and its final stoppage. Other things being equal the intensity
of the destructive forces is inversely proportional to this distance, and the disintegrating effect of these forces depends more on their absolute intensity than upon the length of time during which they act. Hence a sudden stoppage, as in the case of collision with a stone wall, develops forces which the strongest materials cannot withstand.
At the moment of impact against an obstacle the moving car possesses a certain kinetic energy which is equal to the product of the force required to bring it to rest multiplied by the distance through which that force acts. This kinetic energy is also equal to the mass of the car multiplied by half the square of its velocity. For a car weighing one ton and running at a speed of 30 miles per hour the kinetic energy is equal to 60 foot tons, or the work done in lifting the car 60 feet. In other words, the velocity of 30 miles per hour is about equal to the velocity acquired in falling 60 feet, and if a car moving with this velocity strikes an immovable obstacle it will fare as badly as it would in striking the ground after falling 60 feet. The force of the impact is proportional to the square of the velocity, and the sudden stoppage of a car going 60 miles an hour is equivalent to a fall of 240 feet.
Now let us examine the conditions existing immediately after the impact. An automobile is an assemblage of many parts, of various degrees of strength. The shock is transmitted from the point of impact through all the parts, producing in each a tendency to break at its weakest point.
The work done in pulling apart a steel bar one foot long and one inch square is equal to nearly $41 / 2$ foot tons, but an automobile weighing one ton and running 60 miles an hour possesses energy enough to sunder 25 such bars, or 50 steel bars of the same cross-section and half the length either successively or simultane ously. The same amount of energy would suffice to shear off 2601 -inch steel bolts or rivets, $5003 / 4$-inch bolts, 2,500 oak pins one inch square or 25 oak beams 10 inches square. The energy of the car is one-fourth greater than that of the 12 -pound shot which leaves the muzzle of a 3 -inch gun with a velocity of 1,000 feet per second. Such a shot is crushed on striking an armor plate of hardened steel, although it is protected by a steel cap, and as a whole is stronger than any part of an automobile.
In a head-on collision between two cars of equa weight and speed the amount of kinetic energy destroyed is twice the amount involved in the impact of either car against a fixed obstacle, but the destruc tive action is divided equally between the two cars so that the effect on each is equivalent to the effect produced by running into a stone wall. In. a collision between a heavy and a light car, the latter suffers more severely than the other.

## THE 1908 VANDERBILT CUP RACE.

The fourth contest for the Vanderbilt Cup will be memorable because, for the first time, the famous tro phy was won by an American in an American-built car. It occasions no surprise that the honor should fall to a Locomobile; for those who were present at the race of two years ago will remember that it was a machine of this make, driven by Tracy, that made the fastest lap of the race; and that the uniformly fast running of the car would have probably landed it in the first position, had not continual tire troubles developed. This year, fortunately, there was only one tire mishap, which happened on the final lap and caused the loss of not over one minute. The fact that it was necessary to use non-skid tires the same as in 1906, shows that there has been a decided improve ment in American-made tires of this type.
The course, which is 23.45 miles in length, was laid out to include some twelve miles of the new Parkway, which has been finished with an excellent concrete surface. The grand stand is located at the center of this stretch of the course; and it was over this section that the fastest time was made. The race consisted of 11 rounds, making a total distance of 258.06 miles. Seventeen cars started. Eleven of these were American machines, while of the remain ing half dozen, one (the Isotta) represented Italy, two (a Hotchkiss and a Renault) France, and three Mer cedes cars Germany. Of the American cars, the two Locomobiles and two of the three Thomas machines were high-powered racers, while the remaining Thomas, the 6 -cylinder Acme, and Chadwick cars, and the two Knox and Matheson machines were more moderate powered stock chassis, as was also the Italian Isotta car. All the other foreign cars were high-powered machines. Robertson made the fastest lap of the race in the winning car in 20 minutes and 54 seconds, or at the rate of 67.32 miles an hour, and the race was won by 1 minute and $474 / 5$ seconds in 4 hours $481 / 5$ seconds, at an average speed of 64.28 miles an hour, the second place being taken by the 60 H.P. Isotta car. A gratifying feature of the race is the fact that it was run without any fatality, or even serious accident either to drivers or spectators.

## ENGINEERING

We are not surprised to learn that the engineers of the special commission appointed to examine the new Blackwell's Island Bridge, over the East River, are reported to have found that the structure is not equal to carrying the full number of proposed tracks and roadways. It will probably be suggested that two of these tracks be omitted.
It is gratifying to learn that the rapid rate of construction of the Panama Canal continues. The grand total of excavation during the month of September was $3,158,886$ cubic yards, all of which, except 69,035 cubic yards, was excavated from the canal prism. Of the grand total, $1,374,856$ cubic yards was taken out by dredgers, and the remainder was dry excavation.
The good and bad qualities of a street paving block made of iron slag may be summarized as follows: It has a hard and durable surface, does not absorb moisture, and may be readily cleaned. The abrasion being but small, it makes very little dust or mud. When it is properly laid it presents a true surface, and consequently the traction is easy compared with that of some other types of paving. On the other hand, experience has shown that it wears to a slippery surface, making it hard on horses, and there is a tendency to flake off at the surface, in which case hollows are worn, and the street presents an unsightly appearance.
Among the facts of interest brought out at the International Road Congress in Paris is the extremely small per cent of public roads in the United States that have been improved and rebuilt on modern lines. Out of a total of $2,151,570$ miles of public road only 7.14 per cent, or 153,662 miles, have thus been improved. Most of the papers were agreed that the ideal road of the future should have a hard, unyielding foundation, with a surface of suitable broken-stone ballast, treated with some preparation to prevent the stripping of the top dressing. There is a consensus of opinion that treatment with tar has proved the most efficacious in shedding water and in keeping down the dust.

Railway travelers will have noticed the curious and apparently complicated valve mechanism which is being adopted quite generally on recent locomotives in this country. It is what is known as the Walschaert gear, which has been used for several decades in Europe, but has only recently made its appearance in this country. Its adoption is due to the increasing size of our locomotives and the difficulties experienced with the Stephenson link motion from the heating of the eccentrics. In the Walschaert gear the place of the eccentrics is taken by a return crank on the out side of the crankshaft. The gear being placed exterior to the frames renders it readily accessible for inspection and oiling.
It will be remembered that some eighteen months ago two Holland sleeping cars were put in service ex perimentally on the Illinois traction system; and we note with satisfaction that they have been so well patronized as to prove a paying investment. It has developed, however, that in future, because of the noise and vibration which they occasion, both motor cars and air pumps should not form the equipment of a sleeping car. Consequently, the two additional sleeping cars which the company has ordered will be trailers. The company believes that ultimately a profitable, low-fare sleeping car service will be established over the entire system and that it will prove to be profitable.
Because of their well-known fuel values, the immense deposits of peat have been the subject of considerable experimental work. Much money has recently been spent on the moors of Dartmoor and the Goss and Tregoss moors in England, in the attempt to convert peat into a marketable commodity on a large scale; a new Swedish invention is about to be tried in which the peat is first worked into a homogeneous pulp, and then heated, under pressure, to over 150 degrees Centigrade; after which the water is pressed out and the residue formed into briquettes. It is claimed that six pounds of the briquette will give as much heat as four or five pounds of good coal, and that the product will be considerably cheaper than coal.

A generating unit of novel design is being built for the Interborough Transit Company by the General Electric Company. One of the present 5,000 kilowatt reciprocating compound engines will be arranged to deliver its exhaust to a 5,000 kilowatt low-pressure turbine of the Curtis type. The turbine will be directly coupled to an induction generator, which will be connected to the leads of the reciprocating engine governor. There will be no governor on the low-pressure turbine, which will be controlled in speed by the generator, the latter being controlled by the governors on the reciprocating engines. It is expected that a far larger output will be obtained from this triple-expansion combination, as compared with that obtained from the reciprocating engine alone.

## ELECTRICITY.

It is reported that the Erie Railroad will soon begin the electrification of its main line between Jersey City and Suffern. The plans are being drawn up and it is expected that electric trains will be run over this 32 -mile section within a year.
A company has been formed to bore another tunnel connecting Switzerland and Italy. This tunnel will run through Mt. Blanc, starting at Martingly, in Switzerland, and coming out at Courmayeur, Italy. It will be 28 miles long and it is expected that it will be completed in three years.
One hundred thousand gallons of water sterilized by electrically-generated ozone are used daily by the Pittsburg Homeopathic Hospital. Dry air is passed through the ozonizers and the ozone produced is mixed with the water by means of aspirators. Three ozonizers are used for sterilizing water, while two provide ozone used for sterilizing instruments and bandages.
At the recent meeting of the American Street and Interurban Engineering Association of Atlantic City, a new system of street railway construction was proposed. The idea was to form the car wheels without flanges, but instead to place the flanges on the rails. The new construction was ably presented and many good arguments were brought forward to show the superiority of such a system over the present one.
A new process for making an insulator, according to the Electrical Review, has appeared on the Continent. It resembles ebonite and consists of a mixture of $\tan$ bark with one-third of sulphur. The whole is heated until the sulphur melts. The mixture is well stirred and then cooled, when it takes the form of small black grains. These are put in a pressure mold and heated, the result being a .block of insulating material of any form.
According to the Electrical Journal there are twenty-eight single-phase roads in America, with 691.8 miles in operation, and 274.5 miles under construction. Abroad there are thirty-six single-phase railroads covering 771.05 miles with 57.75 miles under construction. The total number of single-phase locomotives in this country is fifty-seven and the number of cars 240, as against forty-three locomotives and 222 cars abroad. The total horse-power here is 137,400 , while the total of foreign roads is 64,160 .

Recent experiments have been carried out in the German Reichsanstalt to show the effect of rolling on the magnetic properties of steel. The steel was found to be magnetically more efficient at right angles to the direction of rolling than parallel to the direction of rolling. The difference was quite marked. The investigations also showed that samples of sheet steel which had been annealed underwent great changes in a period of six months. The steel appeared to have deteriorated as far as its magnetic capacity was concerned.
The value of electricity for heating purposes is illustrated in a new electric glue pot which has recently been placed on the market. The economy of the device lies in the fact that the maximum amount of heat may be applied instantly when needed, while the glue may be kept warm at all times by a reduced flow of current through the heating coils. The glue pot consísts of a cup in which the glue is placed, and which is set in a casing filled with water. The electric heater is attached to the pot immediately below the water. A hot-water receptacle is provided in which the brushes may be kept.
Electric generators were first adapted to be coupled to reciprocating engines, and hence were designed for comparatively slow speed. When it came to coupling the generator to a turbine it was necessary to operate it at a lower speed than was economical, so as to accommodate it to the slow-speed electro-generator, Recently generators adapted for high-speed service have been designed and a speciai type of turbine, known as the double-flow turbine, is used to operate these generators. There are several 10,000-kilowatt two-pole machines now under construction adapted to operate at 1,500 revolutions per minute.

The quartz lamp represents the latest development in mercury vapor illumination. It has been found that the mercury arc increases in efficiency up to a certain degree with the rise of temperature when incased in a glass tube. When a quartz tube is used instead of glass the temperature may be raised still higher because the quartz resists a higher degree of heat than does the glass. The new lamp consists of a tube from $21 / 2$ to 5 inches long and from 0.4 to 0.6 inch in diameter. The arc is started by tilting the tube so that the mercury will connect the two electrodes. The tilting is accomplished automatically by an electromagnet. Instead of the bluish light given in the glass tubes the quartz lamp yields a yellowish green light of much greater intensity, and a glass globe must be used over the quartz tube to protect the eyes from ultra-violet light. At the start the lamp absorbs 25 to 30 volts, but as the pressure increases the voltage rises to about 180 .

## AERONAUTICS

Now that the Aeronautic Society has secured such a splendid place for aeroplane races as the Morris Park race track, the Aero Club of America (which is the chief aero-sporting organization of this country) should raise a large cash prize for an international aeroplane race, which could be held next spring, or some months before the race in France. This would keep America in the lead from both a practical and sporting point of view, and would be of the greatest beneflt to the new science.
A considerable number of new cash prizes for aviation performances have been offered of late, the largest and most recent of which is one of $\$ 20,000$ given by the Aero Club of France for a big aeroplane race to be held next fall in France. At Nice a cash prize of $\$ 2,000$ will be put up for a similar race in the summer. In addition to the $\$ 50,000$ cash prize for an aeroplane flight of 180 miles from London to Manchester, the London Daily Mail offers $\$ 2,500$ for the first flight across the English Channel.
After making an excellent flight of nearly 3 miles in 4 minutes on the 3d instant. with his monoplane, in the course of which he demonstrated his ability to make sharp turns, M. Bleriot once more suffered a fall from a height of some 60 feet on the 22 d of October, when he was competing for a prize for height of flight. Too much gasoline fed to the motor caused it to lose speed and finally stop, after which the monoplane glided to earth. M. Bleriot managed to incline it so that the tail struck first and cushioned the shock. The machine was badly damaged, but the viator was unhurt.
The Aero Club of America will conduct a contest for the Scientific American Trophy in connection with motorcycle races and the aeronautic exhibition and tournament of the Aeronautic Society at Morris Park during the afternoon of November 3, provided the weather permits, and also provided one or more machines capable of flying are entered. The Michelin prize of $\$ 4,000$ for the longest flight in the year can also be competed for by any machine at this time. It is expected that aviator Curtiss will be present with the new tailless aeroplane of the Aerial Experiment Association, and that he will attempt to win both the Scientific American Trophy and the cash prize.
Less than three months ago Count Zeppelin's fourth airship was destroyed, yet so quickly and generously did the entire German nation come to his aid- $\$ 750,000$ was raised-that he has already built the "Zeppelin V.," which made its initial flight above Friedrichs haven on the 23 d instant. The press reports indicate that a successful flight was accomplished. The new airship carried 10 passengers and maneuvered for $31 / 2$ hours. It rose to a height of 600 feet and attained a speed of $291 / 2$ miles an hour. On the same day the "Parseval" military dirigible of Germany is re ported to have dropped suddenly some 6,000 feet, owing to the bursting of the rearmost compart ment of the envelope. A safe landing was made, and no one was injured. Our own government dirigible is being patched up at Fort Myer, the plan being to make some more practice flights with it before packing it away for the winter.
The net result of the three great balloon races held abroad on the 4th, 11th, and 12th instant has been the loss of two lives and the breaking of but a single record-that for length of time in the air. The Grand Prix race of the Aero Club of France, in which there were eighteen contestants, was won by the "Centaure," piloted by Georges Blanchet, which cov ered a distance of but $3411 / 2$ miles. In the international race for the Bennett trophy (which, together with the endurance race the next day, was held at Berlin), there were 23 competitors. Four of these came down in the North Sea, and two balloons burst. The British "Banshee" was declared the winner, with a distance of but 270 miles. The Swiss bailoon "Hel vetia," piloted by Col. Schaeck, broke the endurance record by 20 hours, remaining aloft 74 hours, and only landing when it was towed six miles to the island of Kristiansö, near Norway, against the will of its pilot. This island is only 210 miles in an air line from Berlin, but the balloon altogether traveled nearly 800 miles, as it made a trip to Russia and back first. The Belgian "Belgica" covered 262 miles, and the French "Conōor" 248. The American "St. Louis" came down in the North Sea some 238 miles from Ber lin, and the French "Ile de France" and "Brise d'Autome" at a point 226 miles distant. Besides four balloons in this race, two of those in the endurance contest came down in the North Sea. The two men in each. balloon were rescued in every case save in that of the German "Plauen," which was found drifting about occupantless, Lieut. Foertsch and his compan ion evidently having been drowned. Most of the bal loons traveled around Berlin in circles for a day or more, after which they were blown north above the German Ocean. As a result of the failure of these races, and the dangers that developed, it is believed that next year dirigibles will be used.

THE KNUDSEN WIRELESS TYPEWRITER.
by the enalish correspondent of the scientific american. An interesting development in wireless telegraphy has been perfected by Mr. Hans Knudsen, whose wireless system of telephotography was described a few weeks ago in the pages of the Scientific American. The feature of this latest appliance is that not only can it be operated in connection with any system of etheric communication, but it can be applied to any description of typewriter, whether having the full keyboard of 72 keys or the single keyboard with shift keys. The general design of the apparatus may be seen in the accompanying illustrations.
Taking the transmitter first: On the deck of the glass-paneled case in which the accumulators and driving mechanism are installed, is a table mounted on four columns, in the well of which the keyboard is placed. As for ordinary communication purposes, for which this invention is designed, only one vention is designed, only one
type of character is absolutetype of character is absolute-
ly necessary; the lower-case type is omitted, though it can be incorporated if required. By resorting to one case, however, the keys can be disposed in either one or two rows, together with the space key. The letters are alphabetically arranged.
The keys are somewhat similar in design to those of a piano, being about eight inches in length, and are mounted in the same manner in the frame upon pins. At the back of the keyboard frame is a crossbar formed with circular slots to receive vertically movable contact pins actuated by the rear ends of the type keys. There are as many slots and contact pins as letters. When a letter is depressed, it causes the other extremity of the key lever to rise and lifts the corresponding contact pin so that it projects about $3 / 16$ of an inch above the level of the bar, thereby offering an obstacle to a traveling contact piece which passes longitudinally across the keyboard. The pins are held in their raised position by springs, so that they cannot return to the "off" position until struck by the traveling contact piece.
The four columns shown in the illustration serve as bearings to two rotating shafts at the front and back of the machine respectively, driven by an electric motor in the case. At each end of each shaft a small drum is mounted. Over each pair of drums travels an endless flexible steel band. This band is pierced at regular intervals by small perforations, into which mesh projecting points on the periphery of the drums, so as to secure a modified pinwheel drive. Upon this endless band are rigidly mounted two transverse carriages, from each of which projects downward the contact piece. These transverse contact carriages are so disposed that as one has completed its journey across the table, the other is just commencing to travel thereover, the direction being from left to right. As one contact bar is crossing the table the other is returning to the starting position under the table, and reappearing at the left-hand side as the other bar is disappearing at the right.

As these bars pass over the table, the small projecting contact piece strikes the elevated contact pins corresponding to the depressed keys, thereby completing the electrical circuit, and the impulse is transmitted through the coil and antennæ to the receiving station, where the letter corresponding to that contact pin is printed by the typewriter. When the carriage strikes a contact pin, it releases the holding-up spring, so that the pin returns to its normal or "off" position.
which task is considerably facilitated by the momentary stoppage of the traveler directly its journey across the table is completed, for synchronization. Suppose, however, the word boyish is to be transmitted. It will be observed here that after the $y$ (twenty-fifth letter) has been struck, the operator has to return to $i$ (ninth letter) followed by $s$ (nineteenth letter) and lastly $h$ (eighth letter). Should the whole word be written straight away, owing to the sequence of the pins and letters the resultant word bhiosy would be an unintelligible assembly of letters due to the printing of the letters in alphabetical sequence. To overcome this, the operator, after depressing the $y$ (the final letter of the first syllable) allows the traveling bar to pass across the table; and before the second trav-


Transmitter, showing contact piece which strikes pins of letters below.

As soon as the traveling carriage has passed over the keyboard, it is momentarily arrested by a contact. This is the synchronizing arrangement, by means of which it is possible to keep the transmitter and receiver in perfect synchrony, as will be explained later.
The operator depresses the keys in the time available between the two bars passing a given point,


Receiver, showing traveling carriages and brush contact.
the operator continually works from left to right and never depresses a_ letter to the left of that last touched, until the traveling contact ber has passed over the table. As the speed of the traveling motion can be varied within very wide limits, the operator can trans mit messages at a speed compatible with his ability. In its general appearance and dimensions the receiver is very similar to the transmitter. There is a contact frame corresponding to the pin frame of the transmitter, only in this instance there are no projecting pins. Instead, the board comprises an insulated strip, into which are inserted narrow strips of metal, the surface of which is flush with the board. These contacts are spaced in precisely the same manner as the contact pins on the transmitter, and from each extends a wire communicating with the magnets of the corresponding type key of the typewriter keyboard. There is a similar endless band system carrying two traveling carriages. These are spaced precisely the same as the transmitter, only instead of a contact piece they carry a small brush, which sweeps over the inlaid contact pieces on the contact frame. The two instruments are in absolute synchrony. When the contact piece of the transmitter carriage strikes a pin, the brush of the receiver carriage is sweeping over the corresponding letter contact, and the impulse received by the coherer closes the circuit of the corresponding magnet, energizing the key on the typewriter, and thus printing the char actėr. When the carriage of the receiver has passed across the table it is arrested, as is the carriage of the transmitter, and when the two are synchronized in position, an electrical impulse is automatically dispatched, releasing the carriages of the two instruments simultaneously. This system of synchronization constitutes the most important feature of the apparatus. The means by which it is accomplished are very simple. A countershaft is fitted to the electric motor mechanism of the transmitter, on which is mounted a magnetic clutch and braking gear. When the traveling contact carriage of the instrument has reached the extreme limit of its trav el to the right, it strikes a ball and socket contact stop. This passes a current through the magnets, releasing the magnetic clutch, and at the same time applies a brake to the countershaft and traveling carriage, bringing it to an instantaneous dead stop and holding it firmly there, so that it cannot slip. The main driving mechanism however, is uninterrupted. The traveling carriage of the receiver has similarly been brought to a standstill at exactly the same point of its travel. By an automatic device an electrical impulse is transmitted from the trans mitter to the receiver, and simultaneously the two car riages resume their travel. Under actual working circumstances this stoppage is merely momentary; but should the operator wish to prolong the stop, he can easily do so by the movement of a switch, which exercises precisely the same effect without stopping the main drive. The automatic make and break is effected by means of a small fiber disk mounted on a small counter shaft in the driving motor This fiber disk carries a small contact, while on either side of its flat surface a thin brass flat spring presses.

When the disk revolves and brings the contact into connection with the metal springs, the current is dispatched through the synchronizing circuit, energizing the magnetic clutch gear and brake, the circuit being
interrupted again directly the revolving contact has passed the flat springs.
Upon the keyboard of the typewriter itself is placed a small box carrying the magnets by which the keys are actuated. A wire extends from each contact of the contact frame of the receiver to its corresponding letter on the typewriter keyboard. The magnets are of special design, having long cores, and this mechanism being incased within a small box can be easily and instantly withdrawn from the typewriter keyboard when desired.
By means of a magnetic clutch and a ratchet the typewriter is automatically moved forward the desired

## SALVING THE WRECKED BRITISH CRUISER

 "GLADIATOR."by percival hislam.
After five months of almost uninterrupted work, the British protected cruiser "Gladiator," which was run down by the American liner "St. Paul," has been raised and towed into dock. The disaster occurred on April 25 last in the Solent, during a blinding snowstorm, the cruiser proceeding at a speed of about nine knots and the liner, according to the evidence of Capt. Passow, at about 14 or 15 knots. Two courts were held in England as a result of the wreck. In the civil court it was decided that the "St. Paul" was
prevention of collisions at sea, and also taking into consideration that all possible steps were taken by the prisoner to prevent loss of life and the high state of discipline of the officers and men under his command, adjudges him to be reprimanded and dismissed H. M. S. 'Victory'" (to which ship he had been appointed on the loss of the "Gladiator"). It should be mentioned that the articles referred to deal with the signals to be made by ships during foggy or misty weather-the blowing of sirens, etc., and with the speed at which they should proceed.
The wrecked cruiser was a vessel of 5,750 tons, built in 1896 at a cost of $\$ 1,500,000$. Her armament con-


The "Gladiator" righted. The derrick, now nearly horizontal, may be seen on the left, and the ${ }^{6}$ camels" on either side.


General scene during the attempt to right the ${ }^{6}$ Gladiator." On the extreme right a tug is supplying compressed air to the "camels" after the water has been pumped out. The "camels" are lashed to the under side of the wreck.


Preparing for the final effort to right the wreck. Powerful tugs hauled on the derrick, which can be seen projecting. vertically from the side of the wreck.


A deck view of the ${ }^{6}$ Gladiator" after she was righted. The pumps were working almost continuously up to the time she was docked


Bow view of the wrecked cruiser, taken in the basin at Portsmouth dockyard.

SALVING THE WRECKED BRITISH CRUISER "GLADIATOR."
distance, and the carriage returned to the left to commence a new line.

We understand that a contract has been made for raising the cruiser "Yankee," which recently went aground at Spindle Rock, by the same system which was used in the salvage of the large steamship "Bavarian" of the Allan Line. The method consists in rendering the lower deck watertight and driving out the water by forcing air into the lower hold.
in no way to blame for the accident; but the naval court martial which tried Capt. Lumsden, the commander of the "Gladiator," decided that there were extenuating circumstances. The court found "that the charge was partly proved, and that the prisoner hazarded his ship by default, and not by neglect." "The sentence passed by the court was as follows: "The court, having found the charge against the prisoner partly proved, and taking into consideration the difficult position in which he was placed by the 'St. Paul' not complying with Articles 15a and 16 for the
sisted of ten 6 -inch and fourteen smaller weapons, and her speed, obtained with engines of 10,000 horse-power, was 19.1 knots on trial. She is not, it will be seen, a very useful vessel, judged by modern standards, particularly in the matter of speed. Her nominal complement is 23 officers and 424 men ; but at the time of the accident she was attached to the home fleet, and manned with a nucleus crew of 13 officers and 257 men. One officer and 28 men were lost in the collision, some being thrown overboard and drowned ky the force of the impact, some being drawn down ex
hausted in an attempt to swim ashore, and a few being caught by the bows of the liner as they crashed into the cruiser's side.

Immediately after the collision the "St. Paul" went astern, and the captain of the "Gladiator," seeing that his vessel was listing heavily to starboard-on which side she was struck-headed her for the shore of the Isle of Wight. Here she was safely beached, but almost immediately turned right over until she lay, with masts and funnels completely submerged, at an angle of about 93 degrees with the vertical.

In this position the ship offered no obstruction to traffic; but the British authorities decided at once to salve her. At first it was thought possible that this might be effected with the appliances at the disposal of the Admiralty; but after two or three days' work, curing which the light guns, boats, and all the port able fittings were removed from the deck, it was decided to give the work to a private company: The contract was awarded to the Liverpool Salvage Company.
The first thing done was to send divers down into the ship to close as many watertight doors as possible, in order to isolate the damaged portion. The salvage company sent two special ships, and several tugs and lighters were supplied by the Portsmouth dockyard authorities, with the result that in a short time nine pumps, capable of pumping from 600 to 850 tons of water an hour, were at work on the wreck. Those furnished by the company were the most powerful, and these can be seen in some of the accompanying photographs. They were of the motor type, operated by gasoline.
The next difficulty encountered was that of the tides. These flow at a very rapid rate through the Solent, and round the shores of the Isle of Wight, where the "Gladiator" lay, often reaching a speed of five knots. As the ship lay at right angles to the shore, stern foremost, the full force of these currents was felt, and it was therefore decided to get the vessel broadside on. To this end, two powerful steam winches were erected on shore, special concrete foundations having to be laid for them. Strong wire hawsers were laid to the bows of the ship, "but at the first attempt at hauling, they gave way under the strain. Before another effort was made, a number of steel "camels" were constructed in the dockyard to assist in the work. These are huge water-tight cylinders, 100 feet long and ten feet in diameter. They were sunk round the bows of the wreck, the water was pumped out, and a supply of compressed air was kept up, enabling them to exert a lifting force of 200 tons each. With these camels giving such great assistanco it was not long before the ship was brought into the desired position, and the salvage party were then able to proceed with the work of getting the ship on an even keel.
This proved to be the most difficult task of all, for the ship had been lying so long that she had made a bed for herself in the muddy bottom. The divers had not been able to prevent the ingress of water, with the result that the pumps had to be kept continuously at work; indeed, they scarcely ceased from the time the operations were commenced to the moment when the vessel was lying safely in dock. Bad weather, too, interfered considerably with the work, and it was only after a dozen unsuccessful efforts that the vessel was at last got upon an even keel. The difficulties attending the operations will be appreciated from the photographs accompanying this article. The camels played a very important part in this phase of the work, which was assisted by powerful derricks hauling on the top-sides and on the masts of the wreck.
After the righting, the rest was comparatively simple. Divers were able to construct a wooden cofferdam round the damaged parts, and the pumps. were thus able to keep the water well under. The camels were then sunk again and made fast to the ship by 8 inch hawsers, and the pumps were transferred to the deck of the ship.
The final efforts to get the vessel clear of the bottom were commenced early on October 1, but ended in disappointment, as by the end of the day she had developed a dangerous list, and seemed likely to collapse into her original position again. However, the operations were resumed on the following day, and on October 3 the ship came up and was finally towed off the bank on which she had so long rested.
Needless to say the ship presented a sorry spectacle. Her funnels and topmasts were gone, and her deck, although clear of the usual impedimenta of a warship, was a scene of chaotic confusion. Astern, the name was out of the water, but amidships there was only about eighteen inches clear, while the hull was begrimed with mud, and huge cascades of water were pouring over the sides, ejected from the interior by the powerful pumps. She still had a slight list to starboard, and on that side four of the camels were attached. Two tugs were lashed to either side. It was dark before the procession was able to get under way and head fer Pertsmouth harbor, and it was a
sight never to be forgotten by those who saw it. A government tug led the way, and a cable's length behind her came a swarm of small craft with the disabled hulk of the wrecked cruiser in their midst. The moon was shining brightly, and several of the tugs had powerful searchlights at work to illuminate the ship for the benefit of those at work on her. Thus the cruiser was taken into the harbor.

She was allowed to settle down in the mud for the night, and two days after she was raised again and taken into the basin, and finally into the dock. It was then possible to see the extent of the damage. It had been thought the "St. Paul" struck her an almost direct blow, but this was at once shown to be impossible. From a little forward of amidships the entire side plating from the upper deck right down to the keel has been cut away for a length of over forty feet, most of the plating being folded back against the side abaft of the aperture. All the decks are left bare, but the decks themselves have not been crushed in, but are intact right up to the aperture. It is obvious, therefore, that the liner must have struck the cruiser a glancing blow, and not a direct one.

The intentions of the Admiralty with regard to the future of the "Gladiator" have not yet been made known. A detailed report will be forwarded, and from this they will decide what is to be done with her. As the reconstruction will cost at least half a million dollars, it is not thought that she will be brought forward for service again, as her small fighting value would not justify such an expenditure. She will probably be broken up.

## Prizes for lmprovements in the Manufacture of

 Ferro-boron.The committee of the Society of Chemical Industry, consisting of Messrs. Isakovics, Roeber, and Baekeland, appointed to draw up the regulations governing the competition for the award of the Pacific Coast Borax Company's prize of $\$ 500$, have submitted the following report:
The sum of five hundred dollars has been paid to the American Electrochemical Society, and deposited in trust, as a research fund, to be awarded as a prize for improvements in the commercial method of manufacturing ferro-boron, by a direct process, from colemanite.

It is essential that the process should be sufficiently economical and suitable to be applied on a large scale, so that the finished product may be available for commercial purposes. (Commercial ferro-boron, as now made, contains 20 per cent or more of boron, less than 3 per cent of carbon, and sulphur and phosphorus are practically absent.)

Competitors are notified that they must comply with the following conditions:

1. The treatise must be typewritten, and accompanied by a sample produced by the process described in same. It must be inclosed in a plain, sealed envelope, not bearing the author's name, but identified by a pseudonym. The outside of the envelope, containing the paper, must be labeled with the pseudonym, and with it should be sent another plain sealed envelope, also labeled with the same pseudonym, which should contain inside the envelope the name and address of the competitor: Both these envelopes should be sent to Prof. Morris Loeb, 273 Madison Avenue, New York.
2. All papers competing for the prize must be in the hands of Prof. Loeb before October 1, 1909. Prof. Loeb shall retain the small sealed envelope, containing the address of the competitor, and forward the large envelope containing the treatise, as well as the sample of the product, both merely labeled with the pseudonym, under cover, to the secretary of the American Electrochemical Society, to be submitted to the board of directors, who will award the prize. The competitors for the prize forfeit none of their property rights in the process submitted.
3. As soon as the board of directors has agreed upon the best treatise, it will request from Prof. Loeb the address of the author thereof, who will then be re quired to demonstrate his process, before the prize will be finally awarded.
4. The Pacific Coast Borax Company, 100 William Street, New York city, has offered to supply anyone who desires to compete for the prize seriously, with all the crude colemanite that the parties making the experiment may require, provided that the request for this colemanite be accompanied by a letter signed by one member of the board of directors of the American Electrochemical Society, indorsing the application for the material. Information will be furnished to pros pective competitors on application to the American Electrochemical Society.

Barcelona has, perhaps, one of the best and most complete electric tram services in Europe, some 156 miles of line being worked by the different companies within the boundaries of the city and suburbs; none of these concerns, however, are British enterprises, the whole system being controlled by German and Belgian syndicates. During the past year about $121 / 2$
miles of new rails have been laid, mainly in completion of small branch lines in several of the more important streets. The overhead trolley system is the only one employed. A service of motor omnibuses has been started running from the suburb of Gracia to the central square, "Plaza de Cataluña," by a Catalan company, but as yet the "taxicab" has not made its appearance.

## Telegraphic Cables Endangered by Moder <br> Fishing Methods.

In the last few years a great change has taken place in the methods of fishing with trawls or drag nets. Small nets drawn by fishing boats have given place to great machines towed by steamers. Steam trawlers originated in England. They have multiplied rapidly and now France possesses a fleet which, after having been tried in French waters with remarkable success from the fishermen's point of view, though not from that of persons interested in the preservation of ma rine fauna, has extended its field of operations to Iceland and Newfoundland, where it is rapidly destroying the time-honored industry of fishing with hooks and lines. This is not the only damage done by the steam trawlers. Their heavy nets become en tangled with telegraphic cables and either break them or drag them to the surface, where the fishermen often cut the cables in order to free their nets. The hooks of the old Newfoundland fishing boats never inflicted any such damage, for they were not dragged along the bottom, and if a hook happened to foul a cable, the line simply parted and the hook was lost, while the cable remained uninjured.
As the steam trawlers mark wide furrows on the sea bottom in every direction they cannot fail to encounter the cables and break them, to the great injury of the cable companies and their service. It has cost the Commercial. Cable Company $\$ 100,000$ to repair the damage caused by trawlers in three months. In May last there was an almost daily interruption of service on some one of the thirteen cables which con nect America with Europe, and these interruptions occurred 40 miles from shore in the waters frequented by the trawlers.
The cable companies demand laws prohibiting trawl ing in the vicinity of their cables, and the fishermen complain that the cables interfere with their work and damage their nets.

## Death of Dr. F. A. C. Perrine.

Dr. Frederic Auten Combs Perrine, well known as a consulting engineer and authority on electrical science died in his home in Plainfield, N. J., after a long illness. He was forty-six years old.
Dr. Perrine was born in Manalapan, N. J., and was educated in the Freehold Institute. He was gradu ated from Princeton in 1883, and later received a diploma from the scientific department. After holding the positions of manager of the insulated wire de partment of the John A. Roebling's Sons Company and treasurer of the Germania Electric Company he be came a professor in electrical science at Leland Stanford University. From 1898 to 1900 Dr. Perrine was chief engineer of the Standard Electric Company of California, and in 1900 he was made president of the Stanley Electrical Manufacturing Company, in Pitts field, Mass. He retired in 1904 to become a consulting engineer, with offices in this city. He was editor of the Journal of Electricity, in San Francisco, from 1894 to 1896, and also of Electrical Engineering, in Chicago, from 1896 to 1898. He wrote "Conductors for Distribution."

## The Current Supplement.

The current Supplement, No. 1713, opens with an article by the English correspondent of the Scientific American on the "Flip-Flap," a new amusement appa ratus which was one of the sensational side show at the Franco-British Exhibition. George E. Lynch writes on the operation of coal-cutting machinery The production of high-frequency oscillations is dis cussed by no less an authority than William Duddell, to whose indefatigable investigations we owe so much Edward Hausbrand contributes an article on a new method of desiccation, in which he describes an appa ratus which has demonstrated its efficiency in the condensation and desiccation without injury of milk and many pharmaceutical substances easily decomposed by heat. Perhaps the most important article in the Supplement is an elaborate account of the Wright aeroplane, in which the construction of that wonderful flying machine is described in detail. Many illustrations elucidate the text. Monsignor Talon in a little work entitled "The Marvelous Story of the Tra. ditional Picture of Jesus," gives an interesting version of a tradition which dates from the time of the Apostles. The tradition is in part translated in the curret. Supplement. Illustrations of early portraits of Christ are published. Among the minor articles may be mentioned those entitled "Stereoscopic Projection," "Artificial Silk," "The New Map of Greenland," "Apparatus for Measuring the Heat of the Sun," and our Losses by Fire.'

## Corxegpandente.

## COLOR BLINDNESS.

To the Editor of the Scientific American:
May I call attention to a sentence from the article on Color Blindness in your issue of August 15, as bearing on some work done by me in the course of my color investigation? The sentence is as follows: "When you see that stream of red in the sky, what does he see at the same place? Something beautiful, no doubt, something he calls red as well as you. But is his red your red?"
You further say: "These are questions which cannot be answered now, and perhaps science may never be able to do so."
The difficulty which has hitherto blocked the way has been the want of a mechanical standard color scale correlatable to color sensations in such a way that the sensation can be recorded in terms of common understanding.
The difficulty is now entirely solved by means of a series of graded colored glass standards, which are made mechanical by being brought into color accord with such physical color constants as definite percentages of given thicknesses of potassium bichromate, potassium permanganate, copper sulphate, etc. Two feet of distilled water is suitable for the very light shades.
It follows that when one gives a name to the sensation excited and matched by a given standard, it is at once comparable with the name and value of the standard itself, which has been already correlated to a physical color constant, and can be recovered by its means.
The method of applying this system of defining a color sensation to the quantitative measurement of color blindness can be best illustrated by actual examples. The following five have been selected as typical from twenty-eight cases tested in my own laboratory:

It is evident that the value of this method depends on the true division of the color scales, and the correlation of their unit values to physical color constants, which enables their verification in any laboratory. In support of this, the international juries of the St. Louis Exposition in 1904 awarded a silver medal for the scales, and two bronze medals, one for pathological and the other for chemical research. They are also in use in over one thousand laboratories without their accuracy being questioned.

Joseph W. Lovibond.
The Color Laboratories, Salisbury, England.

## FIRE-CONTROL MASTS.

To the Editor of the Scientific American:
In reading naval articles in the Scientific American and other papers, I notice a general satisfaction and pride over the fact that the United States has stolen a march on the other powers with respect to the new spiral tubular masts for fire control, which we are about to place on all of our ships both in commission and building.
No one denies that the day of the heavy military mast with fighting tops is past, and that in the future the masts of warships are to be only for the purpose of signaling, and perhaps for the fire-control station. Also this spiral tubular basket mast, which was so thoroughly tested under fire on the monitor "Florida" (now "Tallahassee") is conceded to be a success by naval officers. But before we rush blindly ahead, and place a lot of these lattice affairs on our ships, why not question the policy of other powers? England has been using a tripod mast on her new ships, beginning with the "Dreadnought," for two years. This type of mast, with one vertical and two slanting steel tubes, appeared, with differences as to height, on the old Peruvian battleship "Huascar." Now the British naval constructors have doomed the tripod mast, the last ship carrying it being the cruiser-battleship "Indomitable." The masts now in use will not be removed, but on all future vessels there will be only a
of our new ships, and on old ones too if any tearing down is to be done; and I would certainly like to know the reason for this spiral mast policy and the disadvantages, if there are any, of the British and Japanese type.
Masts, like all top hamper, are at their best undesirable, but until a method is discovered of placing the wireless and fire-control range finders under cover while still commanding the entire horizon, the pole mast and, as I think, probable midship bridge of the British "St. Vincent" are infinitely superior to the large, costly, spiral-tubular masts of the American "Delaware", Harold M. Kennard.
Brooklyn, N. Y., October 5, 1908.
[We do not agree with our correspondent in his statement that a bridge amidships would afford a better location for the fire-control platform than an open-work mast of the kind used in the "Florida" tests. In the long-range fighting of the future, the gunners will aim as near as possible at the center of the ship, where our correspondent proposes to place the bridge. The lattice mast would stand more hits before being wrecked than a bridge built upon the superstructure. One shell might wreck a pole mast; it would take several to bring down a lattice mast -Ed.]

## CURIOUS FACTS ABOUT NUMBERS.

To the Editor of the Scientific American:
In an article which appeared in the Scientific American, March 28, 1908, page 522 , under the heading "Curious Facts About Numbers," quite an importance was attached to the fact that any cube may be expressed as the difference between two squares.
In two particulars the teaching (by inference) seems to be misleading, first, in that the article would almost certainly lead to the conclusion that this is a property of numbers which is peculiar to cubes only. This is not so stated, but seems to be implied. The fact is that any number (or all numbers) can be expressed by the difference between two squares,
fixamples of five quantitative measurements of color blindness.


The standards are selections from my color scales, and the intensities used by me are of $1,5,10,15$, and 20 unit values in the six spectrum colors-red orange, yellow, green, blue, and violet. These color depths range from a very light to the darkest shade. The color names on the table are of medium depth (about 10 units). The exact language used by the examinee in describing the colors submitted has been written in full as being of suggestive value.
The apparatus consists of a frame with six windows, which can be filled with the color standards, either single, together, or in contrast at the will of the examiner. They should, however, never be submitted in their order of rotation.
The number of examples is insufficient for a scheme of classification, but admits a preliminary division into three classes, viz., normal, abnormal, and color blind.
The normal and color blind need no comment; they speak for themselves. The abnormal is here of two varieties; first, those having a faint perception, such as $B$ for green, and $D$ for red; second, those who cannot distinguish between two colors, but are normal for one of them, such as B for yellow and the whole five for blue and violet. I am now at work on a plan of determining which is the true sensation.
Referring to your sunset method of illustration, the sunset reds or the color of any other meteorological pheromenon can be measured, recorded, and reprodaced.
couple of pole masts for the signals and wireless. I have not heard what type is to be placed on the German, Brazilian, and French "Dreadnoughts," but Italy is to have only the pole mast, and even the Japanese battleships "Aki" and "Satsuma" are equipped with two of this type.
Now the question arises, Where is the control station to be located? The vessels must have a central fire-control station; and although I have heard nothing about this important point, I think it likely that a bridge will be erected running breadthwise between the funnels or at any commanding point on the superstructure. This will, I think, serve as a station even better than a mast; for while it will command the whole horizon without interference, and be high enough above the water, owing to the greater freeboard of future ships, it will not be subjected to such heavy fire, or be in danger of being destroyed, as it would if located on a mast of any kind. What, then, is the use of the United States spending so much money over this new mast, when other nations are getting the same results with a safer and cheaper type? The time to check this is now; not after the masts are built. It is as foolish as the act which authorized the "Mississippi" and "Idaho," obsolete before launching, a clean waste of over $\$ 12,000,000$, and now these two ships are to be the first to receive this latticework mast. Better leave bad enough alone, and let the military masts stand, than put up this expensive basket mast. We ought to place pole masts on all

$$
\text { as } \begin{aligned}
129 & =23^{2}-20^{2} \\
132 & =34^{2}-32^{2}
\end{aligned}
$$

Second, it is misleading in that the conclusion is almost inevitable that the pair of squares indicated by the formula is the only pair whose difference is the cube desired. The truth is that most cubes, and in fact nearly all numbers, can be expressed in this way, by any one of several pairs of squares,

$$
\text { as } \begin{aligned}
& 129^{3}=1073345^{2}-1073344^{2} \\
& 129^{3}=24983^{2}-24940^{2} \\
& \mathrm{i} 29^{3}=8385^{2}-8256^{2}
\end{aligned}
$$

The explanation of the fact that any number is the difference between two squares, is so simple that it would seem to be almost useless to give the proof. Probably you are acquainted with the fact.
In the article referred to, at the conclusion of the argument, you state that $129^{3}=16770^{2}-16512^{2}$. This is an error probably caused by failure to follow all the steps indicated in the formula. It should read $129^{3}=$ $8385^{2}$ - $8256^{2}$.

Beeville, Texas, September 21, 1908.

Remarkable changes have occurred in Morehouse's comet. The tail has become greatly condensed. On October 1 the comet was faint and without a tail. Yet on September 30 and October 2 it was distinctly visible. On the later date the tail was broad, fanshaped on one side, with three shorter tails below it.

## THE MANUFACTURE OF INCANDESCENT GAS MANTLES.

 by jacques boyer.The original Welsbach mantle was produced by incinerating a cotton or woolen fabric impregnated with solutions of the nitrates and acetates of lanthanum, yttrium, and zirconium. The inventor soon added to these salts the oxide of thorium, which enormously increases the luminosity. This invention marked a notable advance in the art of illumination, but the mantles, being mere gossamer tissues of ash, were exceedingly fragile. In recent years many attempts have been made to improve the texture and composition of
ric of the Hella mantles is made from ramie fiber on knitting machines of the usual type. It comes to the Paris factory thoroughly washed, in lengths of 7 or 8 inches. These are first placed in perforated jars of coarse earthenware, which are plunged into vats containing a solution of the nitrates of thorium and cerium, and the vats are put into an oven in which, in the final stage of the process, a vacuum can be established, in order to force the solution into the fibers.
After impregnation the mantles are passed through a wringing machine composed, essentially, of two rollers covered with ebonite and soft rubber and adjusted
nclined plate of glass, from which a second operative takes them up and lays them in a porcelain dish. On leaving the wringer each mantle still contains about 5 grammes ( 77 grains) of the impregnating solution. It goes next to an operative who reinforces the upper end by brushing it with a solution of nitrate of zirconium, aluminium, glucinium, or magnesium. The reinforced mantles are laid on wooden gratings to dry, and are finally stretched over conical glass forms mounted, in groups of 20 , on boards, which are placed in large chambers heated to 122 deg. F., where they remain until the mantles are completely desiccated.


Fig. 4.-Capping machines.

Fig. 50-Shaping machines.


Fig. 6.-Incinerating machine.


Fig. 1.- Impregnating the mantles with colludion.


Fig. 3.-Reinforcing the mantles.


Fig. 2.-Wringing the mantles to remove the excess solution.
incandescent mantles, in order to diminish their fragility. The latest improvements in the manufacture of these delicate contrivances are described and illustrated in this article
The modifications adopted by the Hella Company, of Paris, are designed especially to increase the strength of the mantles. For this purpose the top of the mantle is surrounded by a metallic cap, which offers great resistance to fracture. The result is a great increase in the life of the mantle. Furthermore, as the photographs show, nearly all the operations of this new establishment, which controls the patents of M. Was muth, are performed by machinery. The tubular fab
to give any desired clearance by means of a system of screws and spiral springs. The solution which is pressed out of the mantles is caught in shallow earthen dishes placed under the rollers, which are turned either by a hand crank or by power transmitted by a belt and wheel. The wet mantles are carried to the rollers by an endless belt, on which they are laid, snugly, by the girl attending the machine. The pressing or wringing must be performed in a smooth and regular manner in order to prevent the formation of wrinkles, which would cause inequalities in strength and speedy fracture. As the mantles emerge from between the rollers, on the opposite side, they fall on an

From this stage onward the manufacture of the Hella mantles differs radically from the ordinary process. Instead of sewing the top of the mantle to a fiber of asbestos, for the purpose of fixing it to the nickel support, it is attached to a metallic mounting consisting of two parts, the head and the netting, both of which are composed of an infusible alloy. The mounting is attached with the aid of the "capping machine" shown in one of the photographs. The operative places the netting, and then the mantle, on a mandrel, and raises the latter until the top of the mantle is at the level of a set of needles which, on being brought together, "gather" the fabric. The hear
is then put on, and the mantle is clamped between two metal rings by pressing a lever. With this machine one woman can cap, or mount, 2,000 mantles in a day of nine hours.
The mounted mantles then go to the shaping machine, where they are put on forms and brushed by revolving brushes, which stretch them uniformly and
dipped in a trough of collodion about six feet long. The mantles then go to a drying room heated to about 110 deg. F., through which they are carried on endless chains in a circuitous path. The journey occupies half an hour, and terminates at a clipper which, operated by a woman by means of a crank and a lever, trims the mantles at the bottom to the desired length.
dountain, about 1,000 feet high and four or five miles in circumference, a huge mass of granite similar to the Mt. Airy quarry lands, with the same scant vegetation.
The fact that these masses of stone show no ledges or bed planes whatever, and split readily and in straight lines in any direction, is taken advantage


The die for the Washington monument, Brooklyn, in the rough. Weight over 60 tons. Cored out to reduce the weight.


View of an enormous ledge, showing the seam at the bottom made by the ${ }^{6}$ lifting process.9
press them closely to the forms, while their metallic heads are forced into hoods which compress and tighten them.

Ten mantles at a time are lifted from the ten forms of the shaping machine by a rod and conveyed to the incinerating room, which, from the technical point of view, is the most interesting and original part of the establishment. By the employment of cams the

During the entire process of manufacture, the Hella mantles are never touched by the hands of the operatives. Even after they have been trimmed, they are lifted with rods for conveyance to the packing room, where a simple machine suspends each mantle in its carton in such a manner that it is perfectly protected from shocks, and can be shipped with safety to any distance. In use also these mantles appear to be stronger and more durable than those hitherto employed.

THE "LIFTING PROCESS" IN THE QUARRYING OF GRANITE by L. b. WARD.
Rocky masses in great abundance are to be found in North Carolina, some of its mountains being -almost solid rock. The sec-
of to create artificial beds to work on. Large laminations or sheets of granite are separated from the mass at a single "lifting" operation, by successive use of powder and compressed air.
The "lifting process" is causing much interest and attracting attention throughout the world.
This process is applicable to quarries of large horizontal areas and in solid masses, and such conditions being almost ideal at the Mt. Airy quarries, the "lifting process" is altogether used. The tremendous advantage afforded by "lifting" can be readily understood, as by means of a "lift" granite of any desired area and of definite thickness can be made available for surface work and drilling.
The largest stone required for any possible construction could be produced thus; the weight of the larger stones now produced has to be reduced to the capacity of the largest equipment furnished by the railroads, by coring.
At the central power station in the quarries are two huge water-tube boilers, each of 210 horse-power. These supply steam to the air compressor, which has a capacity of 2,000 cubic feet of free air per minute. This air is conducted by six-inch pipe lines running the entire length of the quarries. Lead lines distributing it to all parts of the quarries, make it available at all points for "lifting," as well as for use with pneumatic tools.
In the center of the area to be lifted, a drill hole two or three inches in diameter is sunk six or eight feet in depth (according to the required thickness of the stone). The bottom of the drill hole is enlarged into a pocket by


A "litt" being split and drilled into required widths and lengths. the "lifting process" in the quarrying of granite.
exploding a half stick of dynamite; a handful of powder is then exploded in the pocket thus formed. This starts a horizontal crack or cleavage across the greater diameter. The charges of powder are now increased in size, and are exploded in the cavity, the drill hole being plugged at every blast to confine the gases and cause constant force upon the stone, until the crack has extended 75 or 100 feet in all directions from the lift hole. A pipe is then cemented into the hole, and connected with the air pipe line of the air compressor by means of a globe valve, and is used gradually to admit compressed air at between 70 and 80 pounds pressure until the crack or cleavage extends until it becomes visible in a thin edge out on the hillside.

Sheets of several acres and of any required thickness can be so "lifted," thus affording a bed plane to which quarrymen can work, drilling and splitting the stone into proper sizes for the purposes required.
It can readily be seen that a great deal of time, labor, and expense are saved by this unique process.

## THE HEAVENS IN NOVEMBER

## by henry norris russele, ph.d.

Morehouse's comet, which at the time of writing is visible with the naked eye, and conspicuous in a fieldglass, will continue in sight throughout November, though diminishing somewhat in brightness as it recedes from us. Its apparent path is almos directly southward through Lyra and Aquila. On October 25 it is close to the star $\gamma$ Lyræ, on November 7 near $\zeta$ Aquilæ and on November 30 near $\lambda$ Aquilæ. These three stars are shown on our map, and with their aid it will be easy to find the comet.

At present it shows a nebulous head, without any well-deflned nucleus, and a long, nearly straight tail, brighter in comparison with the head than is usually the case. At least this was its telescopic ap pearance two nights ago. Last night (October 15) the tail was conspicuously distorted and bent. Whether this remarkable change is due to some change in the emission of the fine particles of which the tail is composed, or to inter ference with their motion after leaving the head, or some such thing as collision with a swarm of meteors, no one can say yet. It is to be hoped that many photographs of the comet will be obtained at this interesting time, for their study may help us to explain these strange phenomena.
The comet is still ap proaching the sun, and if it follows the usual behavior of such objects, we
may expect that its tail will increase in length and brightness. It will be well worth the careful study of both the amateur and professional astronomer as long as it remains visible in our skies.
By the end of December it will be apparently very near the sun. Indeed, it will very nearly pass behind it about January 1, and after that date it will be visible only in the southern hemisphere, where it will probably be observable for some time.
the heavens.
The great square of Pegasus, whose acquaintance we made last month, is now almost overhead. Its western side points downward toward the bright star Fomalhaut, far below, near the southern horizon. On the way we pass by Aquarius, west of which is Capricornus, with its pretty double star $a$. The eastern side of the square, carried down, but not so far, points out the planet Saturn, which is in Pisces only a few degrees from the vernal equinox, the point from which the right ascensions of all the stars in the sky are measured.
Below Saturn, about as far again, in the same line, is an isolated star of the second magnitude, $\beta$ Ceti. The rest of the constellation to which it belongs may be identified upon the map. The variable Mira has now passed maximum, but is still visible to the naked
eye, though fading steadily. In the east the forerun ners of the winter constellations are in sight. Taurus is pretty well up. The cluster of the Pleiades, and the more extensive group of the Hyades, which includes the bright star Aldebaran and the V-shaped group near it, once identified, cannot be mistaken.
To the left of Taurus is Auriga, with the very bright yellow star Capella. Below these Orion and Gemini are rising, and above them are Perseus and Aries. Andromeda is still higher, and the great nebula (shown on the map) is almost exactly over-head-not the most convenient place for observation, though theoretically the best.

Cassiopeia and Cepheus are between the pole and the zenith. Ursa Minor and Draco are below the pole on the left, and the Great Dipper lies close along the northern horizon.

In the west Cygnus is high up, with Lyra below it, and Hercules setting in the northwest. Farther south is Aquila, with the small groups of Delphinus and Sagitta above it. This is at present the most interesting region of the sky, for it is here that we may look for the comet-as already described.
the planets.
Mercury is morning star in Virgo and is well placed for observation around the time of his greatest elonga-
 up to see.
Princeton University Observatory.

THE MOON.
First quarter occurs at 9 A . M. on the 1st, full moon at $3 \mathrm{~A} . \mathrm{M}$. on the 8 th, last quarter at $7 \mathrm{P} . \mathrm{M}$. on the 15th, new moon at $5 \mathrm{P} . \mathrm{M}$. on the 23d, and first quarter again at 5 P . M. on the 30th. The moon is nearest us on the 4 th and farthest off on the 16th. She is in conjunction with Saturn on the 4th, Neptune on the 12 th , Jupiter on the 17 th , Venus and Mars on the 20th, Mercury on the 22d, and Uranus on the 26 th.
It may be added that the Leonid meteor shower is due as usual on the mornings of November 15 or thereabout. But there is no reason to expect much of a display this year, so it will not be worth sitting

## THE YUMA IRRIGATION DAM.

by day allen willey.
Within the next year, one of the most notable projects connected with the reclamation of arid lands in the Southwest will probably be entirely completed. While the work includes the storage of water on a large scale, and its distribution by means of irrigating canals, the extraordinary difficulties encountered by the engineers in building the necessary dam and in restraining the rivers in the vicinity, have made the undertaking unique among the irrigation enterprises In a recent issue, a feature of the Yuma project as it is termed was described in the extensive levee work required to confine the channels of the Gila and the Colorado rivers during high water, to prevent the reservoirs and canals from overflowing during floods, also to check the movement of sediment carried in such enormous quantities when the streams are at high-water mark. The formation of the embankments by means of abatis made from young trees and brush wood holding the earth embankments, also the jetty system for retarding the flow of the water, were detailed and illustrated. Another problem necessary to be solved, however, was how to create a permanent reservoir of sufficient size for irrigation purposes, strong enough to resist flood action, and so con structed that it would no be shallowed or filled with the sediment. The great variation of the volume of water in the Colorado and the depth of the mud and other detritus on its bot tom above rock strata add ed to the difficulty. A dam across the river was essen tial, but the question was how to build it so that it would not be washed out or at least partly demolished. Could it be erected on a solid foundation and could its ends be se
tion on the 13 th . At this time he rises about $5 \mathrm{~A} . \mathrm{M}$. and is well clear of the horizon before dawn. The bright star Spica is about 10 deg . west of the planet, and rises forty minutés earlier; but Mercury is much the brighter of the two, and may be distinguished by this, as well as by his position.
Venus is also a morning star, and in Virgo, but rises earlier, not far from 3:30 A. M. She is now more than 100 million miles from the earth, but is still brighter than anything else in the sky.
Mars is likewise a morning star and is not far from Venus. She is moving eastward faster than he, and on the 30th she overtakes him, and passes north of him, distant little more than one degree.

Jupiter is in the morning sky too, but rises earlier than the others-about $1 \mathrm{~A} . \mathrm{M}$. in the middle of the month.

Saturn alone of the conspicuous planets appears in the eqvening sky. He is in Aquarius, and comes to the meridian about 9:30 P. M. on the 1st and 7:30 on the 30 th.
Uranus is in Sagittarius, too far south and ton near the sun to be observed, though technically he would be called an "evening star." Neptune, which is in Gemini, comes to the meridian about 3 A . M. and mạy be observed in the morning.
curely anchored in the formation on either side?
Preliminary surveys for the general project were made early in 1904. Several different locations were also examined to determine the best.place for this structure, and a search was made for bedrock with diamond-core drilling machinery, at all possible dam sites between Yuma and Picacho. As a result of these explorations, the Laguna weir site was selected as the most desirable one for the construction of a weir to serve the lands near Yuma, a high dam and high-line canal being considered impossible. The type of weir selected is one that has been tried during the last fifty years at numerous places in India and Egypt under similar conditions, three dams having been constructed on the Nile River within the past fifteen years, on practically this same plan, all having serveu their purpose efficiently and being in operation to day. This type of weir consists of a loose rock structure with a paving of stones $11 / 2$ feet in thickness on the downstream slope, the structure being tied to gether with three parallel walls of steel and concrete run longitudinally between the granite abutments on the two sides of the river, the entire structure being further made secure by an apron of loose rock pitching 10 feet in thickness and 50 feet in width at the lower toe of the dam below the sloping pavement. The
height of this weir was to be 19 feet above low water, and the slope of the downstream side 12 feet horizontal to 1 foot vertical, with 50 -foot apron below. The design called for the upper core wall of concrete to rest upon a row of sheet piling driven into the bed of the river.

The handling of the silt of the Colorado is one of the most difficult features of this undertaking. It is known that its amount is very large. The river is on a grade of approximately one foot to the mile above the Laguna weir site, so that this weir will make a settling basin of relatively quiet water approximately ten miles in length above it. At each end of the weir, and constructed in solid granite rock, is a sluiceway 200 feet wide excavated to the depth of low water in the river. These sluiceways are closed by large gates operated by hydraulic machinery. The diver sion canals for irrigation take their water above these gates from the sides of the sluiceways. The area of the sluiceways being so great, the water movement toward the canal is slow, and most of the sediment is deposited. It is estimated that the capacity of the deposited. It is estimated that the capacity of the
sluice gates will be approximately 20,000 cubic feet per second each. This great volume of water passing through the sluiceways when the gates are open, will

The headworks as designed are of rock, concrete, or steel, with the exception of the sheet piling, which is driven entirely below the water level, and so will not decay. Every portion of the weir is of what is known as permanent construction
The accompanying photographs show the enormous proportions of the Laguna dam and the variety of work required in the preparation of the foundation and later construction. While 4,780 feet, or nearly a mile, in length, its width is especially noticeable, the maximum dimension being no less than 272 feet, although the height as stated is but 19 feet. These proportions are necessary, however, because of the great force of the flood current, and to prevent the water from forcing its way beneath the dam and thus undermining it. The capacity of the canals at their intakes is 1,200 cubic feet per second on the Arizona side, and 200 cubic feet per second on the California side. The amount of the silt that would be daily delivered into the Arizona canal, if diversion were made directly from the structure, would approximate 17,000 cubic yards of wet mud by volume.

Careful study was made of the existing canals in the vicinity of Yuma and Imperial, to determine the shape that they naturally assume, and the roughness
water in the ground so near the surface, it was considered necessary, for their permanent safe irrigation, to supply a drainage system. A main drainage canal has been designed to run through the central portion of the areas to be irrigated, and when possible the natural drainage lines of the country have been utilized, deepening them with a stream dredger to such depth that they will carry off the water returning from irrigation or seeping through the levees during the high-water stage of the river. When lands in any district tend to become alkaline they may be connected, by means of local drainage canals, with this main drain, and in this manner they can be kept free from alkali by holding down the level of the ground water. During the greater portion of the year, when the river is low, this drainage water is discharged into the stream; but when the river is.in flood, its elevation is such as to prevent the discharge into it from the drains. A pumping plant has, there fore, been designed to lift the drainage waters from the levees during the flood period of the river to pre vent the lands becoming waterlogged.
The total cost of the works will be about $\$ 3,000,000$, but they will irrigate 100,000 acres all told by means of 26 miles of main canals and 138 miles of laterals.


Dam partly completed. Note top of core wall, and, in right foreground, the stone paving. THE YUMA IRRIGATION DAM.
carry out with it the sediment deposited above the intake of the canals. The ordinary low-stage flow of the Colorado River is from 3,000 to 4,000 cubic feet per second, so the capacity of each of these sluiceways will be about five times the low-water flow of the river. The figures are given for purposes of comparison only.

As the result of a number of experiments, it has been found that the principal quantity of silt is carried along near the bottom of the river, and that the surface water is relatively free from sediment. It was planned, therefore, to take the water into the canals by a skimming process over a long row of flashboards, so that the entire capacity of the canal can be furnished by drawing but one foot in depth of water from the surface of the river. As a still further pre caution, it was decided to construct the first 3,000 feet of canal on each side of the river of such size that the movement of water through it will be slower than one foot per second. These settling basins, as they are called, will be either excavated from granite, or, where the section is in earth, they will be paved. At the lower end of the settling basins, gates were planned to discharge into the river, so that the water could be drawn down to the level of the stream.
of the bottom and sides, which tends to retard the velocity. Based upon these data, the new canals have been so designed as to carry water at a higher velocity throughout than will be found in the settling basins above their head, and at such velocity as will permit of a minimum loss by seepage and evaporation. The gates and drops of these canals and the Yuma bridges are steel concrete structures. One of the most difficult problems in connection with this project was the crossing of the Gila River. It was considered necessary to make this perfectly safe, and for this purpose a structure was designed that crossed beneath the bed of the river, the top. several feet below the lowest point of the stream bed. This structure is of steel and concrete, and some 3,000 feet in length.

The shape of levee adopted was one that has been developed by years of experience along the Mississippi River. It has a slope of three feet horizontal to one foot vertical on the water side, it is eight feet wide on top, and built five feet above the highest water marks of the year 1903. These levees are 4,000 feet apart (one on each side) along the Colorado River, and 3,200 feet apart along the Gila River.

Because the lands are so flat, and the level of the

The most interesting feature, however, from an engineering point of view is the successful control of a stream whose volume of water may rise and fall to the extent of thirty feet in a week, flowing through a channel of soft silt which it has been accumulating for centuries.

## Cement from Blast-furnace Slag.

An invention which should have far-reaching effect upon the Portland cement industry, and which incidentally will enable a hitherto useless product to be turned to commercial advantage, has recently been perfected. by Mr. Sherard Cowper-Coles, the well-known English electro-metallurgist. This invention consists of the direct production of cement from blast-furnace slag. The latter is taken when still molten as it issues from the furnace, and conducted to an electric furnace, where its temperature is further increased During this period a predetermined quantity of chalk is added to the slag, and the whole then subjected to electrolysis, which brings about certain reactions producing a Portland cement equal in strength and quality to the best grades obtained by the existing methods, at a very small cost as compared with the generally adopted process and in practically one operation

## RECENTLY PATENTED INVENTIONS.

 RECENTLY PATENTED INVENTIONS.The Inventions described in this DeScientific American Patent Agoncy.

## Electrical Devices

Kehl and A. F. Wright, Tacoma, Wash. The device is designed to put into operation a firealarm box by pulling down its operating lever electromagnetic devices forming part of the invention. It is designed more especially to be used in connection with sprinkling systems and such fire protection systems as are employed in large factories where it is important that the fire department shall be apprised of the fire at the earliest possible moment in addition to the protection afforded by the sprinkling system.
ELECTRIC BURGLAR ALARM.-S. B. Hess, New York, N. Y. The invention relates to an improved alarm which is sounded whenever a person attempts to break into a room through the windows, doors, and transoms, or if he attempts to interfere with the alarm bell. The bell will continue ringing anti a possessing a proper switch key arrives to stop it.

## or General Interest

POST HINGE FOR TATER CLOSET SEATS, COVERS AND THE LIKE.-G. A. ides an improved post hil.ge for water closet eats, covers and like articles, arranged to hold the seat normally in a raised position The construction allows of swinging the seat or cover to a closed position, but $w$
it to normal position when released.
WINDOW.-W. J. Summerbell, Chicago, III. The frame of this window is constructed of a number of layers of material, an outer
and an inner layer of fireproof material, pre ferably hard asbestos board, and an inter-
mediate layer of reinforcing, ordinarily sheet mediate layer of reinforcing, ordinarily sheet
metal, the whole being seeured together by metal, the whole being secured together
bolts with the nuts located on the inside.
PNEUMATIC CUUSHION INSOLE.-W.
Gordon, Deal, N. J. This pneumatic insole is designed to provide a good cushioning effect at the heel and operates at the same time to
ventilate the forward portion of the shoe. ventilate the forward portion of the shoe.
When pressure is brought to bear upon the heel air is forced forward under the toe of heel air is
the insole.

## Heating and Lighting.

 DRAFT FOR FIREBOXES.-G. F. PanNe baker, St. Louis, Mich. The purpose of this invention is to provide an attachment for the frebores of stoves, furnaces, grates, etc., whict
will operate to create a draft within the body of the fuel whereby the latter will be com-
pletely consumed, and the heat will be thrown from the center of the stove outwardly to the sides.

## Machines ańd Mechanical Devices.

CLUTCH.-F. M. Nichols, Chillicothe, Ohio This invention is an improvement in clutches,
consisting of a construction which is easy to operate and which can readily the moved into tion of the device is aided by the provision of anti-friction mechanism.

AGITATOR FOR WASHING MACHINES. -J. St. C. James, Hiafwatha, Kans. The agibodies open at their outer ends and connected together at their smaller or inner ends. These are attached to a shaft which is so mounted that it may be rotated and lifted or lowered at will. In operation, as the agitator is lowered the water is moved toward the center of
the tub, and when the agitator is lifted the the tub, and when the agitator is lifted the Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please the invention, and date of this pape

## INDEX OF INVENTIONS

For which Letters Patent of the

## United States were Issued

 for the Week Ending October 20, 1908,$\qquad$ [See note at end of list about copies of these patents.]



## Leave Your Wife a Regular Income Through the New Monthly Income Policy

 of
## The

 Prudential

The one kind of Life Insurance Policy of most practical value to the woman. It is the policy your wife would like, because it gives her a sure monthly income such as she is accustomed to.

## This is the Safest Way

to leave your life insurance. The monthly income cannot be encumbered or depreciated. The principal cannot be lost. All worry about safe investment is eliminated.

## THE COST IS LOW

Write for Rates at Your Age and Learn How You can Provide an Absolute Guaranteed Income for
Your Family. Address Dept. 121

Cost of insuring an Income of $\$ 10$ per month for 20 years.

|  |  | ${ }_{\text {cer }}^{\text {cost }}$ YEAR |
| :---: | :---: | :---: |
| 25 | - | \$29.41 |
| 30 | - | 33.47 |
| 35 | - | 38.76 |
| 40 | - | 45.76 |
| 45 | - | 55.20 |
| 50 | - | 68.11 |

Other monthly sums up to $\$ 500$ in proportion.

The income is paid for not less than 20 years.

The income can be made payable for life of beneficiary at slightly higher cost.

## The Prudential Insurance Company of America

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more than ten lines accepted. Count
geven words to the line. All orders must be accom. than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on read this column carefclly.-You will find nquiries for certain classes of articles numbered write us at once and we will send you the name and address of the party desiring the information. There 18 no charge for this service. In every case it i
necessary to give the number of the inquiry.
Where manufacturers do not respond promptly the inquiry may be repeated not rect

## BUSINESS OPPORTUNITIES

 surplus \$133,468.0.33. Washington Bldg., Seattle, Wash. $\underset{\text { light power purposes. }}{\text { Inquiry }}$

PATENTS FOR SALE. FOREIGN PATENTS for meritorious and valuable
inventions negotiated upon acontingent basis. Ab-
solutely no fees accepted. inventions negotiated upon a contingent b
solutely no fees aceepted. Refereneen pive
quired. L. Henry, 141 Broadway, New York. lnquiry
machinery. FOR SALE.-Patent No. 892.834. An imp roved nut
lock or triangle detaining washer that is deatined
to fill a long-fett want. Very cheap and simple. Ask to fill a long-felt want, Yery cheap and simple. Ask
tor sample
939 Leon Place, Memphis, Tlars address J. F. Hufmman, Inquiry No. S66i\%.-Wanted to buv needle, pin and
pen machinery.



## PATENTS WANTED

 wishes to sell outripht or on rovalty nasis, need answer.
Give rrice and brijef description. L. Darby shire, Box
390 A , Rochester. N. Y .
Inquiry No. 8687.-Wanted to buy rnotor plows.

## HELP WANTED.

 Inquirv No. © $699 .-$
soldered wire for heddles.

## PRINTING.

PHOTO-GELATLNF: PRINTING for art, advertising
and scientific work. effective and lasting. Also artistic


MOTION PICTURES.
THE MOVING PICTURE WORLD, weekly, 10 cents
per copy yearly subcripion, \$2. The only paper dee
voteo to the moving picture, iliustrated sonk and lantern lecture feld. Moving Picture World, Box 450, N.Y. Inquiry Yo. 88.21.-Wanted unwelded tubing tha
is used for structural work.

LISTS OF MANUFACTURERS. COMPLETE LLTY of manufacturers in all lines sup.
plied at short notice at moderate rates. Small and
special ists compiled to order at various prices.
 Tnquiry No. 8735.-For parties making astill fo



## miscellaneous.












 Inguiry No. © ©775.-Wanted to bus stock novelty




 Inguiry No. 8787..For parties who manufacture



 Inquiry No. E799--Wanted to buy new or recond
hand box nalling maicine for smal packing cases.




 Inguinry No
nn materals.
sso6.-For manufacturers of drawInguiry No. f807.-For dealers in second-hand
 Inquiry No . 8811 -W Whnted to buy electric tattoo.
nn needes, inks and



Inguiry No. Sxis.-W anted io buy carriage and
wagon hardarare coal, iron and stee.l Inquiry No. sisis,-For manufacturers of Excel-

 Inguiry No. s8:25.- - or manufacturers of a new
 Inguiry No. 85:2\%.-For manufacturers of annealed
glass. Inquiry No. $8829 .-$ Wanted to buy
making pins, bair pins, hooks and eyes.

Jhquiry No. 8531. - Wanted to buy knitting ma-
chines.
 Inquirr No. No. 8833 .-Warted to buy a peanu snell.
ing mactine.
 lnquiry No. S835.-Wanted to buy toothpick ma-
chinery chinery.
Inquiry No. ©836. - Wanted to buy decorticating
machines for sisal. Inquiry No. 883\%.-Wanted to buy folding um-
brellas. linquiry No. © XB3.- Wanted to buy metallhc tar
gets similar to clay birds used in shot-gun shooting. Inauiry No. S839.-Wanted to buy cheap auto-
mobiles. Inquiry No. 8840.
carbon pressure lamps. Inquiry No. X841.-Wanted to buy lunch counter
and restaurant Hixtures. Inquiry No. 884\%. - Wanted to buy annealed glass. Inquiry No.
ing machine. Inquiry No. S844.-Wanted to buy inkstands. Inquiry No. S846. - Wanted to buy an elect Inquiry No. ©847. - Wanted laundry tubs. Inquiry No. Si488. - Wanted to buy rust proof Inquiry No. $8 \times 49$.
makers of rifle sights.
Inquiry No. ©sis.
making canvasgloves or mitus.
Inquiry No. 8851. - Wanted to buy
weaving wooden lath and wire together.
Inquiry No. 88.52.- Wanted to have made a con-
cave brass or copper reflector with focus of four or five
feet.
Inquiry No. 8853.-Wanted to buy wafer safety
razor blades. Inquiry No, S854.- Wanted to buy air compressor
pressure up to $\mathrm{i}, 500$ lbs., the capactity ranging 500 to 3,000 Inquiry No. 88. 85 .-Wanted machine to punch
holes. fied and set automatically solid copper irvets nd washers and rivet together barness done with one
stroke. Inquiry iNo. 8856 . Wanted a machine or grinder
for reducink soft wood refuse to a fine dust. Inquiry No. 8855\%.-Wanted addresses of shoe Inquiry No. 8858. - Wanted to buy comb cleaning
machine. Inquiry No. X859.- Wanted to buy steel gray
paint suitable for gasoine engives. inguiry No. 8860. - Wanted to buy machinery for
grinding, washing and drying gum chicle. Irquiry No. N861. -Wanted to buy machine for
cutting out mitens. Inquiry No. 8862 . - Wanted to buy a feather
pillow ventilator. Inquiry No. $\mathbf{8 8 6 3 3}$.-- Wanted to buy machine to
separate pecan ruts into sizes and dust the dirt off? Inquiry No. Ns64. -Wanted manufacturers of me-
chanical noveties. Inquiry No. 8865. - Wanted to buy Areless
cookers. Jnquirv No.
water heaters.





## 





Engine and Foot Lathes
MACHINE SHOP OUTFITS, TOOLS AND
SUPPLESE BEST MATERALS. BEST
WORKMANSHIP. CATALOGE FREE
Foot and Power and Turret hathes. Ram.


SPECIIL TO AUTOMOBLLLSTS:-
 quantities and sell by mail only; we have over 10,000
customer. We seli anthing fom an automothe ond
oil can. Send fro our monthlo bargain sheet ; it will
interest you and save you money.
 Hae Yousean The Perfection Wrench?

 THE PERFECTION WRENCH COMPANY
BOX 426 G, Port Chester, N. Y. PLATING DYNAMOS. - SCIENTIFIC A MERICAN SUPPLEMENS gho and g93 describe
their construction so learly thatany amateur canmake
them. Price 10 cents each by mail. Munn Company,
 Send for Drill Catalogue.
F. \& JNO. BARNES $\mathbf{c o}$ (Established 1872)
Ruby St. Rockto YOU USE GRINDSTONES ?
 The CLEVELAND STONE CO.
2d Floor. Wilshire. Cleveland. 0.
Robert Pocket Meters





"Porox" Ignitor Storage




Duryea's Buggyaut The winter rehicle.
Few parts, few troubles Chas. S. DURYEA, Reading, Pa. VENTRILDQUISM

How to Build a $5 \mathrm{H} . \mathrm{P}$. Gas Engine at Home
In Scientific American Supplements
1641 and 1642, E. F. Lake describes simply and thoroughly how a five horse power gas engine can be built at home. Com-
plete working drawings are published plete working drawings are published,
withexact dimensions of each part. Price by mail for the two Supplements, 20 cents.

Order from your | $\begin{array}{c}\text { Order from } \\ \text { newsdealer or from }\end{array}$ | $\begin{array}{c}\text { MUNN \& COMPANY } \\ \text { Publishers }\end{array}$ |
| :---: | :---: | :---: |
|  |  | 361 Broadway, New York



Wr르둠
 right; run right. Buy from the builders direct and
save money. 25 years of success in every Engine. save money. ${ }^{25}$ years of success in every Engine.
Weber Gas Engine Company, Box 423 KANSAS CITY, MO.




## WANTED

WANTED
A Practical, Patented Hose Supporting Device
Address with full particulars
SUSPENDERS, Box $7 \boldsymbol{7 3}$, New York

Adress with full particulars
SUSPENDERS, Box gr3, New York


MASON'S NEW PAT. WHIP HOISTS

 K Magical Apparatus.




 cured. Easy terms. sent fend for catudying. Posit.
st. Locis Watcimaking school, $\mathbf{s t}$. Loule, Mo


## Scientific Anerícan

New York, - 1898-1908

Engineering Number

## Issued December 5, 1908 Forms Close Nov. 25, 1908

0N December 5, the publishers of the Scientific American will issue a most comprehensive monograph number relating to the engineering achievements and possibilities of the great City of New York. II Never in the history of the world have such extensive and costly improvements been contemplated and begun $\quad$ I Never have such difficult transit problems come to such a speedy and successful completion, while the projects under way or in contemplation will make New York the wonder of the Twentieth Century. TI The remarkable success of our special issues will be duplicated and exceeded by this issue which will be the most important of them all. II Notwithstanding the increased circulation there will be no increase in rates. II There will be no extra charge for choice positions such as the inside cover pages. II Orders for space will be filled in the order of their receipt. IT Have strong copy ready and this number cannot fail to benefit the advertiser. IISecure a reservation of space at once.

## MUNN \& COMPANY, Publishers

Scientific American Office, 361 Broadway, New York Wostorn Offico: 1009 Now York Life Building, Chicago
Now Ensland Office:
43


## CENTER-FIRE

## SPARK PLUGS

The Racing Machine Plug. Guaranteed to add

10 Per Cent Power to engine. Fire charge in center of compression, causing perfect com-
bustion.
Soot proot.
Samples bustion. or soot proon. Samples
$\$ 1.00$, or six for $\$ 5.00$. price $\$ 1.75$ Guaranteed. Give name of car and year.
Agents wanted. Write general accumulator \& battery co. 128 Second St. Milwakee, wis.


THE BRISTOL CO.
Bristol's Recording Instruments for Prassure. Temperature
and Lieurecticty,
AIso



By Rail to Boyville



 | THE CARLISLE © FINCH CO. |
| :--- | :--- |
| 233 E. Clifton Avo., Cincinnati, Ohio |



CRUDE ASBESTOS



The Development of the Remington
is the History of the Writing Machine

NEW MODELS, io and in NOW READY
MODEL 10
MODEL 11
With Column Selector With Built-in Tabulator
Remington Typewriter Company -



When Other Leather Belts Fail

Sea Lion $\begin{gathered}\text { Guaranteed Water- } \\ \text { proof Leather Beiting }\end{gathered}$
 knocks out a belt in short order. That's because an
absolutely waterpoof cement is used in the cone con.
struction and the leather treated to a wateproof
dressing. We also make Reliance belting and
det dressing. We also make
several other brands equal
kood for speciffc purposes.



AMERICAN EAGLE ROADSTER

 EaGLE AUTOMOBILE CO., Dept. B, St. Louis

## Engineering <br> News

The Leading Engineering Paper of the World. For Civil, Mechanical, Mining and Electrical Engineers 100 to 125 pages, $9^{n} \times 13^{n}$, weekly. Send ten cents for sample copy,
THE ENGINEERING NEWS PUBLISHING CO., 214 Broadwasj; New York

If you haven't read our page "ads" in current magazines, send for catalogof the self-starting, six-cylinder
WINTON SIX $48 \mathrm{H} . \mathrm{P} . \$ 3000$
$60 \mathrm{H} . \mathrm{P} . \$ 4500$ 60H.P. $\$ 4500$ Goes the route
like coasting down hill



Things You Ought to Know About the Atlas Car!
FIRST-You are once and for all re lieved of the unnecessary expense and annoyance incidental to motoring.
BECAUSE of the two-cycle principle of the Atlas Engine. Five moving parts only. Think what that means. No complicated valves-no bother- no disappointment-no
delay. delay.
Then the wonderful ease of control, permitting of from 4 to 40 miles an hour on superior and unexcelled feature.
And there are many other points you should know about before you purchase a car See your agent or write to us for catalog of valuable automobile information.

ATLAS MOTOR CAR CO.
84 Birnie Avembers $A \cdot$. M. C. M. A. A.
Cut Down Insurance Cost
and make the building absolutely safe MULLINS
Fire=Proof - Storm=Proof - Dust=Proof WINDOWS
The most effective fireproof windows made,
Entirely lock-seamed metal, no soldered joints in frame, sill or sasl. Their perfect construc-
tion does not admit of warping or buckling, and tion does notraction or
heat contren
expansion does not af expansion does not af-
fect them in any way.
Mullins Fireproof Mullins Fireproof
Windows are manufactured under su-
pervision of Under priters'
waborase
tories, Inc., according tories, Inc., according
to the latest specificato the latest specifica-
tions of the'National
Board of. Fire UnderBoard of Fire Under=
writers, and every window is inspected, approved and labeled
with their official with th
label.
Send
catalog.
W. H. Mullins Co

203 Franklin
Salem, 0.


CROBET Swiss Files in catalog 27. Sent free if you mention this paper when writing Mree if you mention this paper when wring.
MO C0., 109 Fulton Street, New York Cit


THE L. S. STARRETT Cu., Athol. Masas., U. S. A.
GAS ENGINE DETAILS.-A VALUA ble and fully illustrated article nn this subject is con-
baaned in SUPPLLEENT No. 1292. Price 10 cents. For
Bale by Munn \& Co. and ail newsdealers.

