

Displacement, 13,200 tons. Speed, 18.5. Coal, 1,800 tons, and oil. Armor : Belt, 97/8 inches to 4 inches; deck, 3 inches; side, 8 inches; gun positions, 10 inches to $63 / 4$ inches, Armament: Four 11-inch; fourteen 6.7 -inch ; twenty-two 3.4 -inch ; eight small guns. Torpedo tubes, six submerged. Complement, 736. Date, 1906. Battleship "Deutschland." Class of Five Ships.

Displacement, 11,600 tons. Speed, 22.5. Coal Supply, 2,000 tons. Armor : Belt, 6 inches to $43 / 4$ inches ; deck, 2 inches; side, 6 inches to $43 / 4$ inches ; gun positions, $63 / 4$ inches. Armament : Eight 8.2 inch ; six 6 -inch; twenty 3.4 -inch ; twenty small guns. Torpedo tubes, four. Complement, 650 . Date, 1908.

SCIENTIFIC AMERICAN established 1845

MUNN \& CO.
Editors and Proprietors

Publishod Wookly at

No. 361 Broadway, New York
Charles allen munn, president 361 Broadway, Now York
FREDERICK CONVERSE BEACH, Sec'y and Treas. 361 Broadway, Now York

TERMS TO SUBSCRIBERS.

 THE SCIENTIFIC AMERICAN PUBLICATIONS.
Scientific American (established 1845),
 The combined subscription rates and rates to foreign countries, includ-
ing Canada, will be furrished upon application. MUNN \& CO., 361 Broadway, New York.

NEW YORK, SATURDAY, AUGUST 8, 1908.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles
short, and the facts authentic, the contribations will receive special atshort, and the facts athentic, the contribuion remar space rates.
tention. Accepted articles will be paid for at regular

THE RAILROAD SPIKE-AN ANACHRONISM OF THE TWENTIETH CENTURY.
In spite of the general excellence of the best modern American roadbed and track, with its deep brokenstone ballast, closely spaced ties, and heavy steel rails, it contains one important element, the railroad spike, which is so much out of date, so absurdly inadequate to the work it is expected to do, that it has no legitimate place to-day outside of a glass case in an American museum of railroad antiquities. The railroad spike was developed at a time in this country when the blacksmith's forge and anvil were more widely distributed and easier of access than the machine shop and the mechanic. The pioneer railroad builder in America built cheaply, not so much because he wished to as that perforce he had to; and when it came to the question of how to fasten the light 30 -pound rail of the early thirties and forties down to the wooden ties, it was easily obvious that the quickest and the cheapest way was to nail it down; and so a nail or staple, with a hooked head, was forged on the anvil, and nailed down upon the tie with its hook clasping the base of the rail, in the hope that it would hold the two strips of iron in line and to gage, and prevent them from turning over under the lurching of the locomotive and cars.
Although nearly three-quarters of a century have passed, and each decade has seen a steady growth in the weight and speed of railroad trains and in the cost and quality of the tracks which carry them, we are still nailing the rails to the ties. Hence we do not hesitate to say that in the whole field of mechanical and civil engineering it would be impossible to find a device which is such an astounding anachronism as device which is such an astounding anachronism as
that miserable little piece of 5 -inch-square iron known as the railroad spike, of which it may truly be said that it has absolutely no other qualifications to recommend it beyond that it can be cheaply made and quickly driven into place

In proof of the above statement let us suppose it were possible that some first-class engineer, of wide experience and what we might call strong meehanical instincts, had never seen a modern railroad, and that for the first time the nature of a railroad were made known to him-the roadbed, track, steel rail, and the 200 -ton locomotive hauling 60 -ton Pullman cars at a speed of 60 to 70 miles an hour; and after the functions of the steel rail, the wooden ties, and the ballast had been explained to him, let us suppose that he were asked to design some suitable method of fastening said rails to said ties. After he had carefully studied the nature of the stresses to which the rails would be subjected, both in a vertical and a lateral direction, the pounding, bending, twisting, pulling, and pushing stresses, is it conceivable that he would draft out a plan for a little $5 / 8$ or $3 / 4$-inch-square spike or overgrown nail with a short hook at the head of it, and offer that as being quite adequate to hold the rail in position? It is safe to say that the spike, as we are using it to-day, is about the very last form of fastening that would commend itself to him. Rather, he would place his rail upon some form of metallic plate or chair, wedging or bolting it securely thereon; and this fastening itself he would bolt down to the tie, either by some form he would bolt down to the tie, either by some form
of heavy lag screw, or by bolts passing entirely through the tie and held by washers below and nuts above.
The builders of European railroads, taught by ex perience, realized long ago the absurdity of nailing the rails to the track; and for many decades they have been in the habit of either placing the rail in heavy chairs, triple-bolted to the track, or using heavy lag chairs, triple-bolted to the track, or using heavy lag bolts, screwed down until the heads have drawn the
base of the rail snugly down upon the tie. The Eng.
ish for many years have used a heavy cast-iron chair, with three or four bolts to the chair. Of late years the best type of American track includes a steel tieplate, with two or three spike holes, one on the inside and two on the outside of the rail; and this device, apart from the increased bearing surface provided, has the advantage that before the rail can spread it must overcome the resistance of all the spikes that pass through the tie-plates. But, although this is a long step in advance, the spike still remains a poor constep in advance, the spike still remains a poor con-
trivance, since the vertical springing of the rails under trivance, since the vertical springing of the rails under
the passing traffic causes the rail base to partially pull the spikes and so decreases the security of the fastening. A combination of heavy lag screws with tieplates would provide an ideal fastening for the flatbottomed rail; and we observed, when examining the recent wreck of the White Mountain Express on the New Haven Railroad, that upon the local track adjoining that on which the wreck took place, the company has laid about a mile of experimental track of this character.
The wreck occurred on a track with two spikes to the tie and no tie-plate. The work of resisting the side sway of the locomotives fell upon the single outside spike, which proved, as it needs must, unequal to the task. But had that track been provided with tie-plates and lag screws, it is probable that the spreading would not have occurred. In justice to this road it should be stated that it is now engaged, and has been for some months, in tie-plating all the tracks on which the electric locomotive is used.
It will never be known what proportion of railroad accidents is due directly to the railroad spike. road accidents is due directly to the railroad spike. spreading of the track may be traced to this cause. We do not know of any feature of the physical characteristics of our railroads that is a more legitimate subject for investigation by such public bodies as the Interstate Commerce Commission and the Public Ser vice Commission than this question of providing a rational means for fastening the rails to the track and holding them in true gage and alinement.

A TALK WITH HENRY FARMAN.

Henry Farman, the best known and most successful of the group of aeroplane experimentalists in Europe, has come to America under the auspices of the Aero nautical Society of America for the purpose of stimu lating public interest in the aeroplane, by giving a series of exhibitions of flights in various parts of the United States.
The American public has long been familiar with Mr. Farman and his machine through the medium of the camera and the newspaper reporter. But there is a wide gap between the impressions received from the printed sheet and those gathered during an afterncon's trials, such as took place on Friday, July 31, in the presence of the Aero Club and its friends, preparatory to a public trial the following day, and the impressions of the man himself, as gathered by the writer of the present article during a tete-a-tete chat with Mr. Farman in his own private apartments later in the day. Mr. Farman's machine is so well known to the readers of the Scientific American through the many illustrated articles which we have published during the past ten months covered by his experimental work, that but little further description is necessary. It consists essentially of two planes, $61 / 2$ fcet wide by 32 feet long, the one placed vertically above the other with a space of 5 feet between; a above the other with a space of 5 feet between; a
rudder for horizontal control, in front; and a boxshaped tail, 10 feet to the rear, in the center of which is the vertical rudder for lateral control and for the prevention of lateral oscillation. The box tail is the distinctive feature of Farman's machine, and to this contrivance is largely owing its remarkable stability and evenness of flight. At the center of the planes, and between them, is carried a 50 -horse-power Antoinette engine, weighing about 400 pounds, which is a really beautiful specimen of the aeroplane motor builder's art. Farman sits on a low seat in front of the engine, with the steering-wheel shaft projecting horizontally forward, through two sleeves in which it retates. Keyed on the shaft, just in front of the wheel, is a drum to which the wires that control wheel, is a drum to which the wires that control
the rudder in the box tail are attached. To turn the the rudder in the box tail are attached. To turn the
rudder to the right, the wheel is turned to the right, and vice versa. The steering shaft is free to slide axially in its bearings, and is capable of being pushed forward or drawn backward at the will of the operator. At the farther end it is pinned to an arm attached to the horizontal rudders, through which, by moving the sliaft forward or drawing it back, the angle of the rudders, and the vertical course of the machine, may be controlled.

Mr. Farman is greatly hampered in his exhibitions in New York by the limited area of the field at Brighton Beach. For the reason that the width of the field is not sufficient to admit of turning at high speed, the flights must all be straight-away. Though the first trial flight, which took place on July 31, was short, it made a decided and very favorable impression upon
those who witnessed it. When the motor was started, the machine gathered headway, slowly at first, and then very swiftly, the aeroplane running on its four pneumatic-tired bicycle wheels. The tail lifted first very soon after the start. When a speed of about 25 miles an hour was reached the forward wheels very gradually left the ground; and the machine, at an elevation of about 20 feet above the ground, ran in a perfectly horizontal line, and without the least deviation, either longitudinally or laterally, until the power was shut off. It then alighted on an even keel and ran along for possibly 100 yards before it came to a stop. Under the conditions existing on that afternoon, with a wind of about 5 miles strength blowing diagonally across the grounds, the aeroplane gave evidence of being under perfect control. During Farman's stay in America the length of the flights, under fairly favorable atmospheric conditions, will be limited only by the size of the grounds and the capacity of the fuel tank. At its present stage of development, the aeroplane is so delicate a fabric that a smooth and level landing place is an absolute necessity; but given this, and a large enough field, and the present machine, according to Mr. Farman, would be capable of a two and one-half hours' flight at a speed of over 40 miles an hour.

When we bear in mind that Farman's practical experimentation commenced less than a year ago, or on September 1, 1907, his success has been phenomenal. On that day he first succeeded in getting off the ground, making a short flight of 20 yards. His first flight of any distance was made on November 21, when he covered 770 yards; and his longest flight was made when he won the French prize offered for the first machine that would stay in the air for twenty minutes. This successful flight, which occurred shortly before his start for America, was a notable performance. He was in the air for twenty minutes and twenty-five seconds, and flew in a circle of a little over a mile circumference, covering about 14 miles at a speed of over 40 miles an hour. The flight was terminated only by the exhaustion of his gasoline and oil supply. With his 9-gallon tank aboard, Farman is confident that he could remain in the air for two and one-half hours, completing a trip of 100 miles at a speed of 40 miles an hour; unless indeed the flight should be shortened by those motor troubles which are liable to happen in any form of gas-driven locomotion.

Farman, the man, has a decidedly interesting perscnality; and, although he is an artist by profession, it required but a few moments' conversation to realize that he possesses the essential qualities of the successful engineer and inventor to an unusual degree. The inventor should have a strong dash of the imaginative quality; but to be a sucessful inventor, this quality should be mated to a keen logical and discriminative faculty. The most successful engineers have been those who possessed in a strong measure the ability to pick out the essentials from the non-essentials, and Mr. Farman is gifted with this quality to an unusual degree. In his brief but brilliant career in aeronautics, he has always maintained a firm grasp upon the fundamental principles which govern successful aeroplane flight. His realization of the absolute necessity for stability led him to adopt his large box tail, and he did this, although he was well aware that it in volved increased weight and air resistance, and a somewhat slower response to control than is possible in the tailless type as used by the Wright brothers. For the same reason he uses large surfaces, larger than are actually necessary, and as a result he possesses to-day the steadiest flying machine in existence Lateral oscillation is counteracted by the use of the box-tail rudder. If the right wing is lifted by a puff of wind the rudder is thrown over to the right, the machine is "thrown into the wind," as a yachtsman would express it, and the aeroplane returns to the level position. The action is not so quick as that secured by the use of separate controllable tips to the ends of the planes, as used in the "June Bug," or by spring ing the planes, as in the Wright brothers' machine. In this respect the box-tail type is, perhaps, inferior. It is Farman's intention to experiment with the controllable wing tips and use them in connection with his rudder, gradually reducing the size of the latter, until if it be found advisable, the tail may be eliminated altogether. This is a conservative method of develop ment, which is in keeping with the policy which has governed all of his experimental work.
In the short trial trips of Friday afternoon, Farman made a speed through the air of about 35 miles an hour. In his longer flights he has made speeds through the air of over 50 miles an hour. The Wright brothers have driven their 900 -pound machine with a 25 -horse-power engine at 42 miles an hour, and Far man's claim that he has driven his 1,100 -pound machine, with an engine of twice the horse-power, at from 50 to 55 miles an hour is not unreasonable.
Langley, in his investigations of the principles of the aeroplane, showed several years ago that the higher the speed, the less the supporting surface required; and Mr. Farman's experience in driving at
his highest speed, has so fully confirmed Langley's nvestigations, that in his next machine he will cut down the width of his planes from $61 / 21$ feet to 3 feet, and greatly reduce the size of his box tail and of his horizontal rudders. With this machine he confidently expects to make speeds from 60 to 70 miles an hour. He believes that ultimately we shall come back to the model of the bird; the aeroplane of the future consist ing of a single plane and a tail of moderate dimensions. Farman believes that with a machine of this type a speed of 100 miles an hour would be entirely practicable, and that we shall see this speed realized within the next two or three years.

CLOTHING FOR THE TROPICS

The question of devising a suitable fabric for wearing apparel suitable to tropical climates, which shall shield the wearer from the actinic rays of the sun, is one that has occupied conspicuous attention during recent years. A thin white material is generally selected for this purpose, preferably "white duck"; and although it promotes a certain degree of coolness and comfort, it does not succeed in fulfilling healthy conditions. Discriminating Nature has provided the native in the torrid belt with an effective protection against the sun in a skin pigmentation which absorbs the actinic rays, so that their dangerous effects upon the constitution are counteracted. Consequently, the native is able to continue his labors without the slightest signs of fatigue during the hottest time of the day, when the white man is practically prostrated, or at any rate refrains from carrying out his dutie from motives of self-preservation.
Investigation has shown that the piercing actinic rays striking the neck and back exercise a highly dan gerous effect upon the spinal column and the nerve centers, which react upon the organs of the stomach, promoting such maladies as indigestion, which in turn react upon the brain, and in time completely under mine the physical condition of the body, until at last collapse results. Experiments have proved that if only the natural pigmentation of the native is artificially produced in the clothing of the white man, he expe riences no more harmful effects than the former, since the long or heat rays in themselves are quite innocu ous, so far as effect upon the constitution is concerned The degree of protection secured by pigmentation has been decided by practical investigation, and it was found to have strong absorption qualities in regard to the actinic or short rays, the degree of pigmentation being proportionate to the intensity of the light pre vailing in the native's accustomed environment. A thin layer of the skin was obtained, and the spectrum of an electric arc between two iron poles photographed after the rays had passed through the layer. It was found that the dark brown skin of the Hindoo entirely absorbed all the rays of shorter length than 3,600 . From the result of these observations, it is obvious that the white man when in the tropics should wear black, red, or orange colored clothing owing to its preventing the passage of the short rays.
The white man, however, has a strongly developed aversion to wearing aught but white clothing, but this offers no protection whatever to the harmful actinic rays. Numerous efforts have been made to provide a non-actinic backing to such material, but the disadvantage to such a fabric is that its weight and thickness are unduly increased.
Recently, however, a British inventor has succeeded in devising a process in which the non-actinic material or threads are interwoven with the white and other colored surface of the textile and in such a manner that while the weight and thickness of the cloth are not increased, no evidences of the red material are observàble on its external surface. The prevention of the threads of the red material penetrating the outer face proved the most difficult task, but this has now been successfully. attained. The fabrics, to which the distinctive name "Solaro" has been applied, are eithe of wool, or cotton, or mixed, the former being most preferable for cold or moist climates, and the cotton where a dry heat prevails.
By means of this invention, the resident in the tropics has the same facilities in the choice and pat terns of textiles for clothes as those living in temper ate climes. All the various cloths and latest fashion able styles can be reproduced in "Solaro" with perfect success and comfort, and the facility is already much appreciated, as it enables one to secure a welcome re lief to the monotonous white. Moreover, the materia is also shower-proof and has a remarkable capacity for resisting heavy thunderstorms, mists, and so forth Waterproofing is not secured by means of rubber or chemical solution, but is due to a secret process in the manufacture of the yarns employed. In this way there is no interference with the ventilation of the cloth Although an excellent sun-repellent fabric, it is equal y applicable for winter wear, while it has a high standard of durability. It is suitable for all externa garments for either sex, and it compares in price with the best qualities of cashmere. Its hygienic properties have been fully appreciated by the examining board of
the British Institute of Hygiene, while, moreover, it is sealed at the British Colonial Office for officers appointed to the tropics.

THE JAPANESE EXPOSITION.

In reply to a communication concerning the protection of patents, trade-marks, and designs of Americans participating in the grand exhibition of 1912, Consul-General Henry B. Miller transmits the following comunication from the director-general of the exhibition:

According to the provisions of the present patent law, article 15; the design law, article 22 ; models of utility law, article 20, and trade-mark law, article 20 , when notice is given to the patent office, before installing such articles in the exhibition, if application for patent or registration has been made within six months from the day of receipt of said article at the exhibition, such application shall have the same validity as if it had been filed on the same day as the original notice. From this it will be seen that there will be no danger for any invention, installed in the exhibition, to ve regarded as "publicly known," which on that account will properly insure the right of the inventor, while with regard to designs, models of utility, and trade-marks, after one has given notice concerning them to the patent office, as aforesaid, he shall enjoy a prior right to them. So that by enforcement of these laws we feel that a proper protection for foreign exhibits is already assured. But in order to render the right of foreign exhibitors more secure, and also to make it easier for them to send articles for exhibition, the imperial government introduced in the present session of the Diet a bill bearing on the following heads, Which has already passed the House of Representatives:

1. A person having an article which is to be exhibited at the Grand Exhibition of Japan, who applies for a patent on his invention or for registration for designs, models of utility, and trade-marks before installing the same, and obtains patent or registration afterward, shall have the same protection as if such exclusive right had been granted on the day when the installation was made
2. According to article 38 of the present patent law, if the patentee, without proper reason, has not worked or exploited his invention in the empire within three years from the date of his patent, or discontinues working or exploiting the invention in the empire for more than three years, and has refused the offer of a third person to purchase or use the invention on reasonable terms, the director of the patent office may revoke such patent. But in case such patented articles are exhibited at the Grand Exhibition of Japan the patentee shall be regarded as if he had worked or exploited his patented invention in the empire during the time such articles are on exhibition.
3. In connection with the importation and exhibition of articles which are imported from foreign countries to be exhibited at the Grand Exhibition of Japan no suit prescribed in the laws and rules relating to patents, designs, models of utility, and trade-marks, or no prosecution can be brought against the exhibitor for infringement of the rights which are protected in said laws.

THE CALENDAR OF THE INHABITANTS OF VENUS.

At the April meeting of the British Astronomical Association, Capt. Grant read a very interesting paper on a subject which belongs to philosophy quite as much as to astronomy-the development of the idea of time and the evolution of the calendar from the most ancient epochs to the present day.

Although the fundamental division of time, the day, appears to us intuitive, we must remember that in the arctic regions the marking of this division is by no means easy. During several successive months the sun is either always below or always above the horizon and the only method-a very uncertain one-of distinguishing between day and night is to observe the times of high and low tide. We owe the months to the motions of the moon. To, this day the Malays, Polynesians, and Australian aborigines reckon time exclusively by months and days.
The greater unit of time, the year, characterized by the regular succession of the seasons, has presented the greatest difficulties to exact determination, partly because the seasons are not sharply distinguished in some regions, partly because of the universal desire to establish among the year, month, and day simple relations which find no support in the facts of astronomy.
Mr. M. Maunder, in commenting on Capt. Grant's paper, remarked that the inhabitants of Venus, if there are any such, must find it extremely difficult to establish units of time. If Schiaparelli's theory is correct, and Venus always turns the same face toward the sun, the planet has no day, and the lack of a moon deprives it of a month. Finally, it has no year, for its axis of rotation is perpendicular to the plane of its orbit and the latter is almost circular.

The problem of the rotation of Venus is yet unsolved. Stefanik and Hansky conclude from their recent
bservations, made from the summit of Mont Blanc that the planet rotates in its axis once in about 24 hours. This is the opinion that was generally held before the researches of Schiaparelli. Lowell, on the other hand, has brought forward fresh proof that Venus always presents the same face to the sun.

SCIENCE NOTES.

Dr. Flemming, of the German army, has been studying, by means of balloon voyages, the distribution of microscopic organisms through the atmosphere. He finds that the current assumption of the absence of germs from the upper. strata is entirely erroneous, and that bacteria attain, and continue to live at, elevations of more than 13,000 feet. Nor does the number of bacteria diminish in proportion to the increase in ele vation, as might be expected. On the contrary, it re mains nearly constant for the first 1,600 feet. Within this limit the number is 12.9 per liter (365 per cubic foot) while from 1,600 to above 13,000 feet it averages 0.37 per liter (10.5 per cubic foot). The number of germs is affected by the duration of sunshine, but no effect due to rain or snow could be detected. It is a striking fact that the organisms found in the upper strata are chiefly of species that secrete pigment. This is probably an effect of sunlight, the pigment being secreted as a protection against ultra-violet rays, and is analogous to the darkening of the human skin on high mountains.
M. A. Duboin, of Paris, has lately discovered two new compounds, these being the iodo-mercurates of thorium and of aluminium. In the case of thorium, he applies the method which gave him the iodo-mercurates of a number of the metals. He dissolves iodide of thorium in water together with mercuric acid, at a low heat. On cooling, the liquor deposits mercuric iodide, and then a crystalline mass in which large crystals are formed after some time. These crystals form the new body which is the iodo-mercurate of thorium. They are very deliquescent and are at once changed in the air, turning to a red color. Analysis shows that the body has the formula $\mathrm{ThI}_{4}, 5 \mathrm{HgI}_{2}, .18 \mathrm{H}_{2} \mathrm{O}$. The leading property of this salt is its easy decomposition by water. Another new compound of the same series has also been formed by M. Duboin, this being the iodo mercurate of aluminium. He indicated some time since that a saturated solution of mercuric iodide in a solu tion of aluminium iodide in the presence of dry air would deposit an oxy-iodide. He secured enough of this latter to be able to study its properties. Since that time the mother-liquor left to stand in a perfectly dry amosphere in the presence of anhydrous baryta, deposited crystals which had quite a different appearance. These are elongated prisms of a very great deliquescence, and he was only able to obtain a. very small quantity of them in spite of the long time of the evaporation. Analysis gives them the formula $\mathrm{AlI}_{3}, \mathrm{HgI}_{2}, 8 \mathrm{H}_{2} \mathrm{O}$. This body dissolves in water with out giving the least deposit of mercuric iodide, even after a long time. Its great deliquescence and the small amount obtained have prevented the author from making further researches as yet.

THE CURRENT SUPPLEMENT. -

One outcome of the prevailing tendency in naval construction for the all-big-gun warship has been the evolution of a new type of light armament for the pur pose of repelling torpedo attack. The latest weapon of this type has been designed by Vickers, Sons \& Maxim, and is described and illustrated in the opening article of the current Supplement, No. 1701. The action of turbine propellers is authoritatively discussed. C. Chabrié contributes an article on the electrolytical production of metallic sodium. The twenty-third installment of Prof. Watson's "Elements of Electrical Engineering" is published. The subject considered is that of switchboard arrangements. L. J. Lesh, who has done much experimenting on the action of plane surfaces in the air, contributes an article on the conditions of successful aeroplanes. A. Heaton tells how a thermometer can be made at home. W. F. Stanley contributes a most exhaustive paper on prehistoric man. The second installment of Austin B. Fletcher's paper on the construction of macadam roads is pub lished. Notes on motor-car design are contributed by F. W. Lanchester. In view of the world-wide interest aroused by the Olympic games recently held at London, an article on the Olympic Games of Ancient Greece ought to prove of interest. The Supplement publishes a most authoritative article by the late Watkiss Lloyd, who knew, perhaps, more about this subject than any other archæologist

OUR " NOTES AND QUERIES" COLOMN.

The attention of our readers is invited to the "Hints for Correspondents" which is published at the head of our "Notes and Queries" column in this issue. Considerable changes have been made, and a perusal of this notice will tend to prevent misconception as to the ature of our service

A MACHINE FOR PILING TIMBER.

The operation of piling beams, logs, planks and railway ties is usually performed by hand. The piles are built up by successive stages. Many workmen are required and the work is not free from danger. Hence the new piling machine or elevator invented by M. Josse, the director of the municipal wood paving establishment of Paris, will be found very useful, for it solves very successfully a technical problem that has baffied the ingenuity of more than one inventor.
The machine, which is shown in operation in the accompanying photograph, consists mainly of two vertical triangular frames stiffened by cross braces. The frames are joined together, at each of the three angles, by an arbor bearing two toothed wheels which move two endless chains in vertical planes parallel to the frames. The chains carry, at regular distances, hooks for the reception and elevation of the logs, which are brought on cars to the foot of the machine. At the back of the machine are two pairs of inclined arms which can be raised vertically, as the pile increases in height, by means of a winch operated by a small electric motor. Two men, standing at the foot of the machine in front, lay the logs or beams, one by one in the hooks attached to the lifting chains. When the log reaches the top of the machine it is tipped on to the two longer hooks which may be seen in advance of it. These long hooks, which are turned in a direction opposite to that of the lifting hooks, support the log in its descent down the back of the machine until it reaches the inclined arms. These arms receive the log from the hooks (which continue their downward course with the chains) and allow it to glide into the hands of a workman stationed on the pile. The man passes the \log to his companions who lay it in its place.

The operation of the Josse machine is continuous and its employment makes possible a considerable reduction in the working force. It will probably be promptly introduced in all large timber yards.

ARTIFICIAL SEA WATER.

by the enalish correspondent of the scientific \triangle merican
One of the most complex problems that confronts the governing authorities of our great cities is the preservation of a clean bill of health in the quarters occupied by the poorer classes of the community. No matter how stringent the hygienic regulations may be, congestion and overcrowding are inevitable, and though the evils arising from this condition of affairs may be reduced to the minimum, the difficulties of the health officers are considerably enhanced by the ignorance of the population in even the rudiments of hygiene. The prevailing conditions not only favor a high mortality more noticeable among the infant population, but also constitute an excellent propagating ground for epidemical disease. Under these circumstances the medical officers of the boards of health have to maintain an unceasing vigilance, and resort to drastic measures to maintain healthy environment. This can be accomplished to a great extent by the liberal use of disinfectants both for street cleansing
purposes and for use by the inhabitants, but unfortu nately efforts in this direction are somewhat handicapped by the generally utilized antiseptic, carbolic acid, since the cost of the same is beyond the resources of the people, while free distribution entails a heavy charge upon the civic expenditure.

THE JOSSE TIMBER-PILING MACHINE.

An eminently satisfactory solution of this problem, however, has been attained in the London borough of Poplar. Situated in the east end of London upon the northern low-lying bank of the river Thames, it is one of the poorest and most densely crowded areas of the English metropolis, the population of 170,000 being crowded within less than three square miles, and the density of population in one parish of 67,300 inhabitants averaging 111.23 persons per acre. With a view to increasing its healthy condition, which, despite its poor character, has always compared favorably with other metropolitan boroughs, Dr. Alexander, the medical officer of health, urged the liberal use of sea water as a disinfectant, the germicidal properties of which are well known. The natural product being unavailable, he advocated its synthetic production by electrolytic means as devised by Hermite, of Paris. The Hermite process which is in operation at Rolleville, near Havre, was in spected and being reported favorably a plant for the purpose was laid down in 1906.
The plant and process are both simple. There are two saturators containing respectively solutions of sodium chloride and magne sium chloride. The two solutions which are the fundamental constituents of natural sea water become combined in their correct proportions in a main tank at the top of the plant. Below this tank are disposed in descending rows, four double troughs or cells. Each trough is divided laterally by a partition and in each of the two divisions thus formed are five distinct elements comprising one positive and two negative plates. This represents ten cells

Saturators Containing Solutions of Sodium Chloride and Magnesiam Chloride Respectively.

THE MYSTERY OF COMETS.

bi J. f. springer.
There is, perhaps, no other astronomical phenomenon capable of stirring the minds of the mass of mankind so profoundly as the apparition of a great comet. The psychologic effects of a total eclipse of the sun have at times been extreme. The same may be said of those wonderful displays of meteors in 1833 and 1866, when for a time it seemed as if all the stars were plunging, or were just about to plunge, upon the earth. But eclipses and meteoric showers are very transient, and whatever the consternation they inspire, it is soon past. A comet, however, may hold a huge and brilliant sword of fire in the sky for days and weeks-appalling the minds of men with the fear of some impending and inevitable catastrophe.

It may be said that the progress of science justifies the lay. ing aside of apprehensions of calamity from this source. This is, in part, true. But not altogether. The probability of a collision is quite remote, it is true. Still it is within the range of possibility. It may be said that a collision would work no great effect. One justification for this lies in the fact that even the central portion of some comets appears to be extremely tenuous, permitting faint stars to be seen through thousands of miles of the cometary material. comets in general. In fact, the mass of no ever been accurately determined. So, for aught we know, there may be comets whose nuclei are not only large but massive. A collision with such a visitor from the abyss of space would be disastrous in the
highest degree. The most striking thing about the typical comet is the appendage known as the tail. This is a streamer of light originating at the head and extending, in some cases in a straight line, in others in a curve, until lost in the depths of space. In fact, a single comet may have several tails at once. Thus the comet of 1744 possessed a multitude of tails differ-

The Comet of 1882, as Seen from Streatham, November 4, 4 A. M.

Coggia's Comet, as Seen on June 10 and July 1, 1874.
time an appendage which stretched out into space the monstrous distance of $60,000,000$ miles. This was exceeded, however, by the comet of 1811 with a tail of $100,000,000$ miles and still further by the comet of 1843, which displayed a tail which possessed a length of $200,000,000$ miles or more.

What are these tails? That has been a great mystery. They are not permanent. In fact, they only come into evidence during the period of comparative nearness to the sun. Some comets, indeed, seem never to attain to this distinction. Whatever the tail is, it would seem pretty clear that it cannot be a solid, or even a gaseous appendage which continues composed of the same material for even a moderately brief time. This will be readily granted when certain facts are weighed. In the first place, the tail always extends away from the sun. There may be a projection from the head in the direction of the sun. But this is comparatively of slight extent and is merely an additional phenomenon. Secondly, some comets have approached so near the solar surface and have been possessed of such incredible velocity at the time of close approach that their tails have been revolved through vast extents as the heads swung round our luminary. If we suppose that the tail is always of
ing from each other in curvature. A more recent case is that of Donati's comet (1858) which exhibited both straight and curved appendages, as may be seen in the engraving.
That the tail of a comet may be of enormous extent has been recognized from Newton's time. He calculated that the great comet of 1680 possessed at one
the same material, then in the case of a comet which has changed from approach to recession in the course of a few hours the exterior end of the tail has reached through space with a velocity that is beyond all reason. The comet of 1843 accomplished a complete reversal of its direction of movement in the short space of 131 minutes. That is to say, it swung its tail of

The Tail of a Comet is Always Directed Away from the Sun.

The Multiple-Tailed Comet of 1744.

Tails of the Comet of 1858.

T.he Two Views of Brook's Comet Superposed, One upon the Other, to Compare Deflection of the Tail.-Photographed by Barnard.

Brook's Comet on November 2, 1893. Note Direction of Tail.

Brook's Comet Twenty-four Hours Later ; Tail Deflected 15 Degrees.
say $100,000,000$ miles through a semi-revolution in this time. This means that the particles at the end performed a journey of 314 million miles at the rate of 40,000 miles per second. This appears incredible, and besides, the disruptive effects of the centrifugal force set up would be such that no material would conceivably be able to endure them. The gigantic flywheel would surely burst. This difficulty has been more or less realized and felt by astronomers for a long time.

In fact, it must have been considerations of a similar character that led Kepler to propound at the beginning of the seventeenth century (1619) his theory of tail formation through repulsive action of the sun's light. Conceiving light to be due to the radiation of minute particles of matter, it was not at all preposterous to imagine that these corpuscles should sweep along with them material found in the comet itself and thus generate a tail. So long as the corpuscular theory of light was held, it was possible perhaps to maintain this view. But with the advent of the wave theory which teaches that light does not consist of material particles at all, but of waves of energy, the hypothesis of Kepler dropped from view.

In 1811 a very great comet appeared which awakened in the mind of Dr. Olbers, a distinguished amateur German astronomer, a very keen interest. Accordingly, he made a profound study of it, and proposed a theory to account for the phenomena connected with the tails of comets in general.
He conceived that an electric repulsion was set up between the comet and the sun arising from their comparative proximity. This would have the effect of driving off cometary particles in a direction away from the sun. Likewise he thought an electric repulsion would be generated between the nucleus and portions of its substance giving rise to one or more enveloping masses of material, thus explaining appearances observed in some comets. It seems possible that he was right in postulating electric repulsion as a cause at work in connection with comets. Another theory has, quite recently, come to the front which is scarcely able to furnish a complete explanation of all the observed phenomena. However, it seems not unreasonable to expect that all the facts may be accounted for between the two hypotheses.
That the tails are to be explained as somehow due to the sun has been evident to astronomers for very many years. Sir John Herschel perceived this very clearly. A couple of years ago (1905), Prof. E. E. Barnard pointed out this same requirement, expressing the view that a repellent influence of some sort proceeded from the sun. To this, however, he added two other requirements. Certain comets have, in addition to the main appendage which sweeps away from the head in the general direction of a line drawn from the sun to the comet, one or more smaller and divergent tails. For this he asks an ejecting force proceeding from the comet itself. Again, he thinks that at times some resisting influence in addition to repellent forces of the sun and comet must be postulated. Thus in Brook's comet of 1893 phenomena were present which pretty clearly demand the presence of some sort of resistance in the portion of space traversed. We publish herewith a view of this comet on November 2, displaying stars in the vicinity. The general direction of the tail corresponds pretty closely with the radius vector drawn from the sun through the comet's head. Another view shows the comet twenty-four hours later. The tail appears here as deflected about 15 deg . from the radius vector. The deflection was in a direction the reverse of that of orbital movement. A third view sbows these views superposed, the stars of the two being made to correspond. The two positions may now be compared. The direction of orbital movement is from the lower to the upper. The tails should be approximately parallel, as the radius vector was changing its direction but slowly at the time. It is as if, in moving from the lower to the upper position, the tail had been retarded, especially at its outer extremity. Prof. Barnard conjectures that perhaps a stream of meteors was encountered. At the same time, he points out, as an alternative possibility, that some other current of retardation may be circulating about the sun of whose nature we are ignorant.
As to just what repellent influence may proceed from the sun and result in the formation of certain cometary tails, Prof. Svante Arrhenius, president of the Nobel Institution, has formulated a definite theory. More than thirty years ago Prof. Clerk Maxwell, the great Scotch physicist, arrived by means of mathematical considerations at the conclusion that rays of light do exert a pressure, notwithstanding their noncorpuscular character. The formula for the calculation of the amount of this light pressure shows that it is very feeble. But so is gravitation feeble when compared with molecular forces as we see them dispiayed in dynamite explosions. Prof. Arrhenius ap plies this light pressure to the generation of streams of matter flowing from the comet's head. In order to understand how it is that light may be conceived as driving away from the sun-in opposition to both the solar and the cometary gravitative influence-par
ticles of the substance of the comet, while at the same time the comet itself is obedient to the solar control, it will be well to compare the two forces.
Gravitation acts on every particle of matter in a body, whether the particles be exterior or nof. Light pressure, on the contrary, acts only upon the surface exposed to it. Thus, in the case of a cannon ball every minute particle whether in the interior or not feels the gravitative influence. But only the surface of the hemisphere turned toward the light feels the light pressure. And even this cannot be counted fully. Ir. fact, only the amount of surface exposed perpendicularly to the light rays-that is, a circle of the same radius as the sphere. Suppose we take a ball whose radius is 4 inches. Its gravitation is so much. If now we decrease the radius to 2 , then to 1 , and so on, the gravitations of the balls will be proportional to
$64,8,1,1 / 8,1 / 64$, etc.
Now, the light pressure will be proportional to
$16,4,1,1 / 4,1 / 16$.
It is evident that the first series is decreasing much more rapidly than the second, so that, whether light and gravitation exert absolutely the same strength of influence, we shall sooner or later arrive at a point, in gradually reducing the radius, where the gravitation is precisely equal to the light pressure. To go below this point is to have the light pressure exceed the gravitation. The result of a contest between the two for control of such small particles can only result in their being driven in the direction of the light radiation and against gravitation. Now this is what Prof. Arrhenius conceives to happen frequently in the case of comets. As the comet approaches the sun, his heat so acts upon the cometary substance as to produce quantities of exceedingly minute particles of such size as to be subject to control by the luminous rays from the sun in opposition to his gravitative influence. Consequently, multitudes of them are driven

The Parabolic Path of a Comet.
off in the direction of the radius vector and away from off in the direction of the radius vector and away from
the sun. Light shining on this stream of infinitesimal bodies gives it the appearance of a luminous streamer.

This theory that light (and heat) exert pressure may seem almost incredible. And inquiry might justly be made whether there is any direct evidence to support it. In reply, it may be said that there is experimental corroboration of Maxwell's mathematical result.

Indeed, about the middle of the eighteenth century an experimental effort was made to determine whether light exerted pressure. The result was doubtful. But, in quite recent years, more successful experiments have been made. Lebedew, a Russian scientist, who was perhaps the first to suggest the light pressure of Maxwell as a cause of cometary tails, and the Americans Nichols and Hull have attacked this problem afresh and attained results confirmatory of the general proposition of the existence of a radiative pressure exerted by light rays. The accompanying illustrations, with the exception of the three photographs of Brook's comet, are reproduced from Sir Robert Ball's "Story of the Heavens."

According to the Electric Railway Review, experiments are being made under commercial conditions in Pittsburg, with a 5 -ton electric delivery, which can be propelled either by its own batteries or, when running along tramway routes, by taking current from the overhead line by means of an ordinary trolley. The vehicle is provided with four $21 / 2$-horse-power motors, which are used in series on the trolley line or in parallel on the 42 -cell battery. The gearing permits of a speed of 22 miles per hour when on the tramway track, which is fast enough not to interfere with the tramway traffic, and the battery can propel the car at 8 miles per hour. A smaller car on the same principle has been in use for parcel delivery for two years.

ARTIFICIAL SEA WATER.

(Concluded from page 88.)
The difference in the temperature readings of the two thermometers indicates the rise in temperature attributable to the electrolyzing_action, which is found, when the apparatus is working properly, to be under 30 deg. F. The inclusion of the small feed tank is necessary to keep the flow into the electrolyzers constant. When the plant was first installed and without tbis subsidiary tank it was found that the fluid used to become unduly hot, owing to the reduction of the flow due to the decrease in head of the solution in the levated tank.
The fluid in the large supply tank has to be agitated at frequent intervals in order that it may be kept at an even density throughout, more especially as a certain quantity of magnesium hydroxide solution is added. This end is fulfilled by means of a large gal vanized iron plate freely perforated, normally resting upon the flooring of the tank, and connected at either end to chains passing over a pulley above the tank. When one end of this plate is lifted the other acts as the fulcrum so that the operator in order to stir the liquid has simply to pull either of the chains from a convenient point alongside the electrolyzer in order to keep the contents of the tank stirred.
Owing to the numerous modifications that have been effected and the elimination of complicated details in operation combined with the utilization of automatic action, the plant does not require any skilled attention. The Poplar installation is supervised by two intelligent workmen, whose duties comprise for the most part the stirring of the contents of the carboys during charging and their removal when filled, testing of the liquid from time to time, and general supervision to see that the apparatus is working, though owing to its simplicity breakdown is a very remote liability. The renewal charges are practically nil since the positive electrodes being of platinum are indestructible, while two years' constant wear of the zinc negative electrodes has failed to show any appreciable signs of wear, so that their renewal, provided proper attention is bestowed, is only requisite every few years.
When the plant was first installed great difficulty was encountered in preserving the stability of the disinfectant thus produced. For instance, the solution as it left the electrolyzer would show a proportion of 4.8 grammes of chlorine per liter, but immediately a deterioration in the quantity of chlorine would set up so that after a few hours the proportion of the former would only be 2 grammes per liter. The over coming of this depreciation constituted one of Dr. Alexander's great problems, for obviously a disinfectant produced by this process which showed such a heavy drop in its efficiency was of little commercial use. The action of the electric current upon the combined solutions of sodium and magnesium chlorides decomposes the last-named chloride as well as the water. At the positive poles nascent chlorine and oxygen or ozone are formed which instantly combine and form an oxygenated compound of chlorine. This, though of great oxidizing power, is unstable, and is soluble in the fluid in which it is formed. The hydrogen set free by the decomposition of the water and the magnesium released at the negative pole results in a production of magnes ium hydrate, part of which combines with the oxygenated chlorine compound, while the remainder rests in suspension in the tank. The sodium chloride acts as the conductor for the electric current. The chlorine compound solution obtained in this manner has only a slight smell of chlorine, in fact is nearly neutral, and its strength can easily be tested by the general arsenious acid test. In order to fix the chlorine Dr. Alexander carried out experiments with caustic soda added to the electrolytic solution, which resulted in the formation of a white precipitate hydroxide of magnesium which fell to the bottom of the carboy. He found that if the carboy were then well agitated this white precipitate became diffused throughout the fluid, giving it a milky appearance, and the more milky the liquid the more stable was it rendered. As a result of these investigations he adopted the principle already explained of adding a small quantity of magnesium hydroxide to the electrolyzed fluid as it falls into the carboy, thereby combining with the unstable oxygenated chlorine compound and converting them into a stable hypochlorite of magnesium which is stable for all practical purposes when kept in non-actinic bottles, well stoppered with paraffine corks and away from the light. By this simple addition of magnesiun hydroxide we!1 stirred in a milky fluid is gained and the surplus hydroxide mag tcm.
During the two years the plant has been in operation 32,586 gallons of disinfectant have been produced with a strength ranging from 4 to 4.5 grammes of available chlorine per liter and at a manufacturing cast of about 4 cents per gallon.
The disinfectant is supplied to the members of the public in pint bottles from the various depots dis-
tributed throughout the borough, free of cost, and it is similarly furnished gratis to the various public institutions governed by the municipal authorities such as the sick asylums, workhouses, schools, public baths, hospitals, and so forth. Moreover, it is utilized for the fiushing of the streets, market and other public places, for which purpose 13,656 gallons have been used during the past two years, the Works Department, to whom this duty is deputed, paying at the rate of 2 cents per gallon.
As an antiseptic it compares very favorably with carbolic acid. Immediately the fiuid is brought into contact with such decomposing matter as meat, fish, fæces, or other decaying refuse, the evolution of chlorine is observed, and the loathsome odor attached to such decay disappears almost instantly and does not reappear if sufficient disinfectant is used. It is obvious, therefore, that after the first rapid. reaction a slow continuous evolution of chlorine results so long as there is an excess of either oxidizable substances or hypochlorites. It is the presence of organic matter that sets the reaction going and commences the evolution of nascent chlorine.
The fact that the disinfectant is greatly appreciated $\mathrm{b} j$ the inhabitants of the borough is evident from the huge bulk that is disposed of. Precisely what its introduction means to the economical advantage of the municipal authorities may be gathered from the great saving that has attended the introduction of the process in comparison with the cost of formerly dis tributing carbolic acid, which saving is now over $\$ \bar{y}, 030$ for the two years.

Rebuilding the Quebec Bridge.

The Canadian government, says the Iron Age, will assume all the assets and franchises of the Quebec Railway and Bridge Company under a resolution which will be introduced at Ottawa, and the reconstruction of the Quebec bridge will be undertaken as a government project, under the supervision of the Trans-Continental Railway Commission. The oversight of the construction work will be in the hands of a board of prominent engineers, one from Canada, one from the United States, and the third from Great Britain. It is stated that the Canadian government will assume the loss of all expenditures made by the Quebec Bridge Company under the bond issue guaranteed by the government up to the collapse of the bridge, the amount being between $\$ 5,000,000$ and $\$ 6,000,000$.

The Bells of the Metropolitan Tower.
A Westminster peal of bells weighing 7 tons is to be hung in the uppermost gallery of the great tower of the Metropolitan Life Insurance .Building, which is now fast nearing completion in New York city. The gallery in question is on the forty-sixth fioor. The bells will be placed between white marble pillars, against which the deep rich bronze of the bells will be visible. Instead of suspending the bells in the usual. way upright supports will be used. Automatic clappers will strike the quarter hour. The largest of the bells will weigh 7,000 pounds, and will measure 70 inches across its mouth. It will be toned to B 70 inches across its mouth. It will be toned to B
fiat, and will be used to strike the hours as well as to fiat, and will be used to strike the hours as well as to
take part in the general choir. The second bell, an E fiat, will weigh 3,000 pounds; the third, an F natural, will weigh 2,000 pounds, and the fourth a G, will weigh 1,500 pounds. The bells will be rung at rather more than twice the height of any other peal in the world.

Concrete Railway Ties Not Found Satisfactory.
After years of thorough testing and experimenting, the officials of the Burlington Railroad have come to the conclusion that the use of concrete for ties is not satisfactory, and that the most satisfactory solution of the tie problem is to treat wood so that it will withstand the action of the elements. Accordingly they have decided to construct a large plant for treating ties, bridge timbers, etc., with creosote. This plant will be the largest and most complete of its kind in the world. It will cost about $\$ 270,000$.

Transval stope Drill Competition.

The Transvaal Chamber of Mines has forwarded a number of copies of the rules governing the stope drill contest to the American Institute of Mining Endrill contest to the American Institute of Mining En-
gineers. Those who desire to compete for the prizes gineers. Those who desire to compete for the prizes
can obtain copies of the results from the secretary of the Institute at No. 29 West 39th Street, New York.

According to a consular report the electric railway departments in the German electric works were very active during the year 1907. In the first place, Berlin and Hamburg gave them continuous occupation in the further extension of their elevated and underground railways. The Prussian State, which introduced electricity for the Hamburg suburban traffic, also became a customer. Bavaria, too, decided to apply electricity as a motive power for railway traction on the Berchtes-garden-Salzburg line.

III.-THE GERMAN NAVY OF TO-DAY.

Continuing our series of articles on the leading navies of the world, of which the first, on the American navy, was published on December ${ }^{\text {7 }}$, 1907, and the second, on the British navy, March 7, 1908, the present article deals with the German imperial navy, which, in point of strength and efficiency, is entitled to rank as third, the United States navy taking the second position.

With one important exception, the German navy, in respect of its physical characteristics, or materiet, is thoroughly up-to-date, both in design and workmanship. That is to say, the ships of each period were well abreast of naval development at the time they were designed. The one exception, which relates to the armament, seriously affects the efficiency of all battleships completed previous to 1903, and in a less degree those completed between 1903 and 1908. We refer to the comparative weakness of the main armament; for in none of the German battleships afioat to-day is there a gun mounted that is heavier than the 11 -inch, 40 -caliber piece, which constitutes the main armament of the ten latest ships of the "Deutschland" and "Braunschweig" types. The earlier battleships, of the "Wittelsbach" and "Kaiser Friedrich" classes, ten ships in all, carry only a 40 -caliber, 9.4 -inah gun $i: 1$ the main armament. The 40 -caliber, 11 -inch fires a shell of 595 pounds weight, which is capable of penetrating 6 inches of modern armor at 8,000 yards (the probable battle range of the future). The 9.4 -inch, 40 -caliber gun fires a shell of 309 pounds weight, which can penetrate only $41 / 2$ inches of armor at 8,000 yards. The lack of power in these guns will be evident if they are compared with our 12 -inch gun, firing an 850 -pound shell, which is good for 11 inches of armor at 8,000 yards range.

The weakness of the main armament did not attract much attention until the advent of the "Dreadnought" type of warship, armed exclusively with 12 -inch guns of great range and penetrating power; and the German nation is entitled to great credit for the eharacteristic nation is entitled to great credit for the eharacteristic
energy with which they have recognized the defect, and set about what is practically the creation of a new navy. "Dreadnoughts" of great size and power were at once laid down, and the work upon them pushed with such energy that two of them, the "Nassau" and "Westfalen," are afioat; two more are on the eve of launching; three others will be laid down this year, and another three next year; and all will be completed in the spring of 1912. Furthermore, the Germans are building three "Dreadnought" cruisers. One of these is launched, another is about to be, and a third, to be laid down this autumn, will be completed in the same year, so that early in 1912 Germany will possess thirteen ships all mounting heavy long-range, armor-piercing guns exclusively. The new gun, by the way, although it is an 11 -inch piece as compared with the 12 -inch carried by the "Dreadnoughts" of other navies, will have the great length of 50 calibers, and will deliver its 760 -pound shell with a velocity of 3,250 feet a second, and will be capable of piercing 9 inches of Krupp steel at 8,000 yards. This is a slightly more powerful gun than our 40 -caliber, 12 -inch, which is good for $83 / 4$ inches at that range; but it is not equal to our 45 -caliber, 12 -inch, whose penetration for that distance is, as stated above, 11 inches.
Summary.-In the present series of naval articles, we are following a method of classification which includes under the head of first-class battleships all those which are less than twenty years old and of 10,000 tons displacement or over. It may seem-somewhat absurd to include in the same class as the modern "Dreadnought" a vessel twenty years older. But since it is impossible to find a system of classification which will satisfy everybody, perhaps the best method is to arrange the ships on this plan, and leave each individual to make his own subdivision to please himself. On the twenty-year-old, 10,000 -ton basis, then, we find that Germany possesses twenty-eight battleships, either built or nearing completion, of a total displacement of 355,738 tons; and of older battleships now relegated to coast defense, it possesses eight of 33,200 tons. Of first-class cruisers, ranging in displacement from 8,760 tons to 19,000 tons' and of from 19 to 25 knots speed, she has built, or now has under construction, eleven ships of an aggregate displacement of 131,000 tons. All of these vessels' are of the armored cruiser type, with a continuous belt from stem to stern. Of second-class cruisers, Germany possesses six vessels of a little under 6,000 tons displacement and $191 / 2$ to 21 knots speed, aggregating. 34,245 tons. These are of the protected cruiser type, with no waterline armor, but a complete protective deck of considerable thickness. Of the third class of the protected type, Germany possesses a large number of ships, most of them $\mathrm{o}_{2} 21$ to 25 knots speed. The displacement varies from 2,600 tons to 3,740 tons, which is the displacement of the pair of 25 -knot scout cruisers recently laid down. The aggregate displacement of these ships is 88,947 tons. The torpedo-boat destroyer fieet includes ninety-three vessels, of from 280 to 670 tons
displacement, and from 21 to 30 knots speed. As
yet, Germany has given but little attention to submarines, and she possesses but four boats, built or under construction, concerning which but little information is obtainable.
Battieships.-The German navy is essentially modern; that is to say, it includes fewer obsolete ships in its list of effectives than any other navy, unless indeed the light armament be considered to render them so. It was not until early in the nineties that the government built its first group of battleships of the modern type; that is to say, ships embodying a sufficient number of the elements that go to make up a first-class modern battleship to enable them to remain on the active list at the present day. Early in 1890, five ships of the "Brandenburg" class were laid down. They are of about the same displacement (10,060 tons) as our own' "Oregon" class. They were designed for a speed of 17 knots, which they attained on trial, although the speed is, of course, somewhat on trial, although the speed is, of course, somewhat
lower to-day. They carry a complete waterline belt lower to-day. They carry a complete waterline belt
of compound armor, 12 inches thick at the ends, and 15 inches amidship. They were remarkable in their day for the fact that they carried two more heavy guns in their main battery than the contemporary battleships of other navies, the main armament consisting of four 40 -caliber, 11 -inch guns and two 35 caliber, 11 -inch, carried in three turrets on the axis caliber, $11-\mathrm{inch}$, carried in three turrets on the axis
of the ship; two forward on the forecastle deck, two amidships, and two astern on the main deck. The secondary battery was light, consisting of eight 4.1 inch guns, so that in respect of armament the "Brandenburgs" were an anticipation of the modern "Dreadnought." The barbettes were protected by 12 inches, and the turrets by 5 inches of compound inches, and the turrets by 5 inches of compound
armor. The effectiveness of the main battery is armor. The effectiveness of the main battery is
limited, as in the case of most other battleships of that period, by the fact that the turrets had to be swung around to the end-on position, between every round, before loading. The freeboard, also, as in the case of our own "Oregon" class, is low, except forward, where the 11 -inch guns are carried upon a forecastle deck, which should give these ships an advantage over the "Oregon" in steaming to windward.
Following the "Brandenburg" class came the five ships of the "Kaiser" class, which includes the "Kaiser Friedrich III.," "Kaiser Wilhelm II.," "Kaiser Wilhelm der Grosse," and "Kaiser Karl der Grosse." These vessels marked a decided advance in everything, except the main armament, over the "Brandenburg" class. They are of about 1,000 tons greater displace ment and 30 feet longer on the waterline, while the speed realized on trial was, in every case, 18 knots or over. They carry 1,050 tons of coal, and also 100 tons of liquid fuel, the latter in the double bottom. For some reason which has never been stated, the German government decided that the 9.4 -inch Krupp gun was a sufficiently powerful piece to mount on modern battleships; and this was chosen for the vessels of this class. But if the main armament was light, the secondary armament of eighteen 6 -inch guns was unusually powerful for a vessel of this displacement The secondary battery is, moreover, exceedingly well mounted, six of the pieces being carried on the up per deck in six single turrets protected by 6 -inch armor, the other twelve being mounted in casemates eight on the upper and four on the main deck. The protection of these ships was in advance of that of contemporary battleships, consisting entirely of the then new Krupp armor. It includes a 12 -inch belt, a 3 -inch deck, 10 -inch protection for turrets and barbettes, and 6 -inch protection for the secondary bat tery. In this class of ship the government intro duced, for the first time, triple-screw propulsion, a system which has been maintained in all the later battleships. The "Kaiser Barbarossa," of 10,790 tons displacement, 17.5 knots speed, launched in 1900 and reconstructed in 1907, should, strictly speaking, be reckoned in the "Kaiser" class, from which she differs chiefiy in the removal of four 6 -inch guns from the main deck, and in the removal of top weights in the way of bridges, superstructures, and military masts.
The "Wittelsbach" class of five ships shows the gradual increase in displacement, which reaches 11,830 tons in these ships. The speed is 18 knots, and the coal supply was increased to 1,400 tons, with 200 tons of liquid fuel carried in the double bottom. The freeboard was improved by maintaining the upper deck fiush throughout the whole length of the ship. The main battery consists of four 9.4 -inch guns; the fcrward pair carried at the forward end of the super structure deck with a lofty command of 30 feet above the water. The after pair is mounted on the upper deck with a command of about 25 feet. An impor tant change, as compared with the "Kaiser" class was made in the mounting of the secondary battery of eighteen 6 -inch guns. Fourteen of these are emplaced behind $51 / 4$-inch armor, in a central two deck battery, ten guns on the main deck, and four on the upper deck in casemates. The other four guns are mounted forward in casemates, two abreast and two ahead of the forward 9.4 -inch guns. Great at-
tention has been paid to securing heavy end-on fire, which ahead consists of two 9.4 and eight 6 -inch guns, while the astern fire is two 9.4 and six 6 -inch. In the "Wittelsbach" class, the thickness' of the belt as compared with the "Kaiser Friedrich III." was reduced from 12 inches to 9 inches. With this is associated a deck 3 inches thick on the slope; while from main turret to main turret the side of the ship is protected from the belt to the gun deck by $51 / 2$ inches of armor. The barbettes and turrets have 10 inches protection, and the casemates of the secondary battery 6 inches.
In 1901-2 the Germans laid down another class of five ships known as the "Braunschweig" class. As

5,000 yards, as against a penetration by the 6 -inch guns at the same range of $31 / 2$: inches. It should be mentioned here that the "Braunschweig" class, liko the two that preceded it, carries an unusually powerful torpedo armament, consisting of six torpedo tubes, 17.7 inches in diameter; five of them submerged, and one at the stern above water, the stern torpedo being protected by armor. Four of the submerged tubes are mounted in broadsides, and the fifth is built into the bow of the ship, just below the ram, an arrangement not found in ships of any other power. In the "Braunschweig" class the Germans remedied the unquestionable weakness of the main battery in their earlier ships, by mounting four 40 -caliber, 11 -inch
laying down of five ships of the "Deutschland" class. These vessels differ from the "Braunschweig" only in the armor protection, which is increased. It consists of $9.9 / 4$ inches at the waterline, 11 inches on the barbettes and turrets, and $61 / 4$ and $63 / 4$ inches on the batteries and casemates; while the side protection was improved by increasing the thickness of armor on the lower deck from 5 inches to 8 inches. The armament consists of four 11 -inch and fourteen 6.7inch guns, the secondary battery being mounted as in the "Braunschweig," with the difference that the four guns on the main deck are emplaced in casemates instead of in turrets. The coal supply was increased to 1,800 tons, and the speed remains at 18.5 knots.

Displacement, 9,050 tons. Speed, 21. Armament : Four 8.2 -inch ; ten 6 -inch guns. Armor : Belt, 4 inches; deck, 3 inches; gun positions, 4 inches. Armored Cruiser " Prinz Friedrich Karl." Class of Three Ships.

"Nassau." Class of Seven Ships of Dreadnought Type.

German answer to the "Indomitable,"
Gisplacement, 19,000 tons. Speed, 25 . Armament : Twelve 11-inch guns.
"F." Class of Two Ships of Cruiser-Battleship Type.
compared with their predecessors, their displacement was increased from 11,830 to 13,200 tons, and the coal supply from 1,400 to 1,600 tons, with 200 tons of liquid fuel. The designed speed was the same, or 18 knots, with 16,000 horse-power. The system of armor protection is practically the same, except that the side armor was carried, unbroken, from main barbette to main barbette up to the main deck, and the barbette and turret armor was increased to 11 inches. The main armament is more powerful, and a considerable increase was made in the power of the secondary battery, the 6 -inch gun being replaced by a more powerful piece of 6.7 inches caliber, which is capable of penetrating $53 / 4$ inches of Krupp steel at
guns. Although this piece is weak in comparison with our 45 -caliber, 12 -inch piece as mounted in the "Connecticut" and "Kansas" classes, its penetration being but 6 inches at 8,000 yards, as compared with 11 inches of our 12 -inch piece, it marked a considerable advance over the 9.4 -inch of preceding battleships, whose penetration at 8,000 yards is only $41 / 2$ inches. The secondary battery was greatly strengthened by substituting a new 6.7 -inch, 40 -caliber gun for the 6 -inch used in previous ships. Ten of the fourteen 6.7 -inch guns are mounted in a central battery on the gun deck, and four in turrets on the deck above.

In 1903-5 the battleship fleet was increased by the

But if Germany had fallen behind the other powers in respect of the size and gun power of her battleships, when once she had adopted a policy of building all-big-gun, high-speed "Dreadnoughts," she put it into execution with characteristic German thoroughness. In July and August, 1907, she laid down four "Dreadnoughts" of about 18,000 tons displacement and 19 knots speed. Much doubt has existed as to the armament of these ships, and it has been variously given as including ten to sixteen 11 -inch guns. As a matter of fact, they will carry twelve such pieces, all of the new and powerful 50 -caliber pattern. The hulls of the ships will follow the general "Dreadnought" lines, the general freeboard being about 18 to 20

Displacement, 11,643 tons. Speed, 18. Coal, 1,450 tons, and oil. Armor: Belt, 9 inches to Displacement, 11,643 tons. Speed, 18. Coal, 1,450 tons, and oil. Armor: Belt, 9 inches
4 inches; deck, 3 inches ; side, $51 / /$ inches ; gun positions, 10 inches to 6 inches. Armament : Four 9.4-inch and eighteen 6 inch guns. Torpedo tubes, six (five submerged).

Complement, 715. Date, 1902.

Displacement, 12,997 tons. Speed, 18.0. Coal, 1,600 tons, and oil. Armor: Belt, 9 inches isplacement, 12,997 tons. Speed, 18.0 . Coal, 1,600 tons, and oil. Armor: Belt, 9 inc
to 4 inches ; deck, 3 inches ; side, 6 inches; gun positions, 10 inches to 6 inches. Arma4 inches; deck, 3 inches ; side, 6 inches; gun positions, 10 inches to 6 inches. Arma
ment : Four 11-inch ; fourteen 6.7 -inch; twelve 3.4 -inch; twenty small guns. TTorpedo tubes, six submerged. Complement, 660. Date, 1904. Battleship "Braunschweig." Class of Five Ships.
III.-THE GERMAN NAVY OF TO-DAY.
feet, with a forecastle deck of 28 feet freeboard. Forward and aft will be a pair of two-gun turrets mounted, as in our own "South Carolina" and "Michigan," the guns of one pair firing above the roof of the adjoining turrets, and the two other turrets will be placed diagonally athwartships. The concentration of fire by this arrangement will be very powerful, consisting of eight 11 -inch dead ahead and dead astern, and twelve 11 -inch on either broadside. Compared with our own "Dreadnoughts," the "Nassau" class is inferior in speed, but possibly superior in gun power. The 50 -caliber, 11 -inch gun delivers its 760 -pound shell at the enormous velocity of 3,250 feet per second, and it
is capable of penetrating $181 / 2$ inches of Krupp

Displacement, 10,914 tons. Speed, 18.0. Coal Supply, 1,050 tons, and oil. Armor: Belt, $113 / 4$ inches ; deck, 3 inches; gun positions, $93 / 4$ inchesand 6 inches. Arma-
ment : Four 9.4 inch; eighteen 5.9 inch; twelve 3.3 inch;
twenty small guns. Torpedo tubes, six (five
submerged). Comple

Battleship "Kaiser Friedrich III." Class of Five Ships.

of the navy has been put into armored cruisers, of which, at present, the navy has but eight, with three of the all-big-gun type under construction. The earliest of this class is the "Fuerst Bismarck," of 10,700 tons and 19 knots, and 1,200 tons coal capacity. She has an 8inch belt and 4 -inch deck, and

Displacement, 8,930 tons. Speed, 20.3. Coal, 1,500 tons, and oil. Armor: Belt, 4 inches ; deck, $21 / 8$ inches; side, 4 inches; gun positions, 6 inches to $\mathbf{4}$ inches. Armament: Two 9.4 inch; ten 6 inch; ten 3.4 inch;
fourteen small tubes, four (three submerged). Complement, 528 . plement
Date, 1902 .
Armored Cruiser " Prinz Heinrich."
Displacement, 11,643 tons. Speed, 18.1. Coal Supply, 1,450 tons, and oil. Armor: Belt, 9 inches to 4 inches; deck, 3 inches; side armor, $51 / 8$ inches; gun positions, 10 inches and 6 inches. 5.9 inch ; twelve 3.4 inch; twelve 5.9 inch; twelve 3.3 inch; twelve
1.4 inch; eight machine guns. Torpedo tubes, six (five submerged). Complement, 715. Date, 1903.

Battleship " Mecklenburg." (6 Wettin" Class.)
mounts four 9.4-inch guns in barbette turrets, protected by 8 inches of Krupp armor The secondary battery consists of twelve 6 -inch, mount ed either in casemates or turrets, four on the gun deck, six on the main deck, and
respectively, of penetration for our 45-caliber, 12inch piece. In addition to the four "Dreadnoughts" laid down last year, the Germans are commencing three this year, and three more will be laid down in 1909. For the present, however, they have seven ships of the "Dreadnought" class in hand.
Armored Cruisers.-The strength of the German navy lies in the number and homogeneity of its battleships, and relatively little of the total displacement
two on the forecastle deck. She has a high freeboard good gun command, and was an excellent ship of her day. Following the "Fuerst Bismarck" came the "Prinz Heinrich" of 8,930 tons and 20 knots. She has a 4 -inch belt, 6 -inch protection to the turrets, and 4 inches on the central battery and casemates. She is armed with two 9.4 -inch and ten 6 -inch 40 -caliber guns, and can stow 1,500 tons of coal and 200 tons of liquid fuel. From 1901 to 1904, there were launched and $221 / 2$ knots speed, the increased dimensions permitted of a considerable all-around improvement in the protection. The belt is from 6 inches to $43 / 4$ inches in thickness; the barbettes and turret hoods are protected by 6 and $63 / 4$ inches, and the lower deck side and the upper battery by $63 / 4$ inches of Krupp steel. Two thousand tons of coal can be stored in the bunkers, and 200 tons of oil in the double bottom.

As an answer to the British armored cruisers of the "Indomitable" class, the Germans have three all-big-gun cruisers under construction. One, the "Bluecher," of 14,760 tons displacement and $221 / 2$ knots speed, has been launched. She will carry eight 11inch, 50 -caliber guns, mounted in four turrets, one forward, one aft, and one on each broadside. Two other cruisers of this type are under construction, each of which will displace 19,000 tons, and carry a battery of twelve 11 -inch guns mounted similarly to

Displacement, $12, y y$ tous. Speed, 18.6. Cous, 1,600 tons, and oll. Armor: Belt, 9 inches to 4 inches; deck, 3 inches; side, 6 inches; gun positions, 10 inches to 6 inches. Armament : Four 11-inch ; fourteen 6.7 -inch; twelve 3.4-inch; twenty small gans. Torpedo tubes, six (five submerged). Complement, 660. Date, 1905.
those of the main battery of the battleship "Nassau." These two ships are designed to steam at 25 knots, and they will probably be driven by turbine engines.

Protected Cruisers.-The protected cruiser, except in its latest development as a fast, lightly-armored scout, may be said to have had its day. Too slow for sccuting, and too lightly protected to be able to encounter the armored cruisers of the enemy, it is difficult to say just what its field of operations will be in the next naval war. Germany possesses thirty-four ships of this class, ranging in displacement from 2,603 up to 5,956 tons, and in speed from 19 to 25 knots. The larger ships of the "Freya" class carry two 8.2 inch and eight 6 -inch guns. The smaller cruisers are armed chiefly with the 4.1 inch. The latest vessels range from 3,200 to 3,740 tons in displacement, and the speed has been gradually increased from 23 to 25 knots, the last four ships of this class to be built, the $241 / 2$-knot "Ersatz-Pfeil" and "Dresden," and the "Ersatz-Greil" and "Ersatz-Yajd," of 25 knots speed, being cruisers of the scout class, corresponding to our own "Salem," "Chester," and "Birmingham."

Destroyers.-The fleet of torpedo-boat destroyers calls for no special mention. The speeds are moderate, the Germans never having attempted to go above 30 knots except in the case of one vessel known as " G 137," a 572 -ton boat which made about 34 knots an hour. The earlier boats, built in the late eighties and early nineties, were of 21 to 23 knots speed. In 1900 the speed had been raised to 27 and 28 knots; and in 1905 it reached $281 / 2$ knots. The boats authorized in 1906, 1907, 1908, a dozen in each year, are to show 30 knots an hour. The German navy is only now entering serious ly upon the construction of submarines; the one completed ship of which any details are known, is about 130 feet in length, dis places 190 tons, and is credited with a speed of 12 knots on the surface and 9 submerged. The particulars of the later boats are not available.

PROGRESS OF EXCAVATION OF CULEBRA

 CUT.In recent issues of the Scientific AmerICAN we have kept our readers informed of the rapid rate of excavation which has been attained in cutting the Panama Cana through the low range of mountains which forms the divide through the Isthmus. A mere statement of total quantities, however, unless one is used to thinking in engineer ing figures, may fail to give an adequate representation to the mind of what is being done. We publish, therefore, the ac companying typical cross section of the Culebra cut, in which the relative amount of material taken out by the French and by the United States government is shown, together with the total amount which must be removed to complete the canal to its full depth. It will be seen that the width of the cut at the original surface of the ground is about 450 feet, and that the highest point of the cut is 200 feet above mean sea level. For the first 105 feet of depth the sides of the cut have a slope of 2 to 3. At an elevation of 95 feet above sea level there is on each side of the canal a berm, or roadway, 45 feet in width, for the accommodation of railroad tracks or

Cross Section of the Culebra Cut, Showing Progress of Excavation June 1, 1908.

Diagram Showing Work Done at Culebra Cut by the French and the United States Engineers-
such as the Chicago drainage canal and the heavier work on our main steam railroads. By the lavish use of this machinery it has been possible to remove in a given time an amount of yardage which could never have been taken out with the lighter machinery used from fifteen to twenty years ago. As soon as the ma: chinery was installed and set to work, the rate of progress increased very rapidly. The amount of material removed under American administration up to June 1 of the present year was $18,445,426$ cubic yards, and
been removed before another three years has elapsed, and many months, if not a year or two, before the huge triple flight of locks at Gatun has been completed.

Producer Gas for Steam Generation.
The use of producer gas in place of solid fuel for steam generation has as yet made little headway, although there is much to be said in its favor from the point of view of convenience and cleanliness. A paper by J. H. Lester, M.Sc., published in the issue of the Journal Soc. Chem. Industry for May 15,- describes a remarkable experimental form of gas-heated steam boiler which, if it can be copied on a large scale, will be likely to revolutionize the present methods of steam generation.
As an example of the high duty obtainable in steam production with this form of boiler, Mr. Lester states that a series of his gas-heated tubes built up into a block occupying only one cubic yard of space, would evaporate as much water as a Lancashire boiler measuring 30 feet by 8 feet diameter and that the efficiency of the new boiler would be as high as that of the Lancashire boiler when worked with economizers.

The experimental boiler designed by Mr. Lester consisted simply of a copper tube of $3 / 16$ inch internal diameter, and 20 inches in length, surrounded by a jacket allowing $1 / 16$ inch space between the two tubes.
The gas and air mixture entered at the top of the inner tube, and by careful regulation a flame 7 inches in length, showing less than 0.50 per cent of free oxygen, and less than 0.50 per cent of carbon monoxide in the exit gases, could be obtained. The water entered the annular space between the two tubes, and flowed upward, in the opposite direction to that of the gas mixture. The cooling of the gas by the adoption of this principle of counter-current circulation was so effective, that the latent heat of condensation of the water produced by the combustion of the gas was recovered; and the total loss of heat at the base (or chimney end) of the combustion tube never exceeded five per cent. Mr. Lester, in fact, believes that by lengthening his tubes he could recover 100 per cent of the caloriflc value of the gas in the water, and thus convert his boiler into a calorimeter.

The steam passed away by an outlet in the side of the upper part of the outer tube. The restricted space available for water was purposely adopted, in order to prevent any downward current of water in the annular space.
The burning of the gas with the minimum of oxygen supply, of course increased the final temperature attained by the gas mixture, and therefore the efficiency of the boiler. It was found experimentally, that the production of a rapid series of gas explosions, or musical notes, appeared to be coincident with the conditions required for this perfect combustion; and that the mixture giving the highest musical note when ig. nited, gave the most satisfactory results as regarded low percentages of free oxygen and carbon monoxide in the exit gases.
A boiler constructed upon this principle, using producer gas, might therefore convert 95 per cent of the heating value of the gas into the thermal energy of

The canal extends from the 40 -foot line on the Atlantic to the 40 -foot line on the Pacific, a distance of 50 miles. The first 8 miles is a sea-level channel ; next is 24 miles of lake navigation at 85 feet above sea level; then $71 / 2$ miles of narrow canal_through the Culebra hills; then 5 miles of lake navigation at 55 -foot level ; and, last, 41/2 miles at sea level.

PROFILE OF THE PANAMA CANAL.

roads for vehicles. This brings us to the top of the canal prism proper, the walls of which have a slope of 1 to 10 to the bottom of the canal, which is 45 feet deep and in the section here shown has a bottom width of 200 feet. In other parts of the canal, outside the Culebra cut, the width will be increased according to conditions, up to 500 feet.
The amount of material taken out of the cut during the French administration is shown by stippled shading. During the old French régime of from 1881 to 1899, 12,600,000 cubic yards were removed; under the
over $11,000,000$ cubic yards of this was taken out during the last twelve months, representing an average of 932,624 cubic yards per month. On June 1, 1908, there remained to be excavated, in order to complete the Culebra cut, $39,652,822$ cubic yards. These figures show that the great cut through the divide is about one-half completed.
So rapid is the rate of progress at Culebra, that its excavation is no longer considered to be the controlling factor as to time of the completion of the canal. In all probability, the last shovelful of material will have
steam; and as Mr. Lester remarks, the construction of such a boiler does not offer insuperable difficulties.

The tallest chimney in the world is now under construction at the Great Falls, Mont., smelter of the Amalgamated Copper Company. It has a foundation 74 ft . in diameter and 506 ft . high, with a 54 -foot diameter top. Connections with the furnaces will be made by a flue 20 ft . high. 48 ft . wide, and $1,800 \mathrm{ft}$. long. The tallest chimney hitherto built is that of the Halsbrucker Hütte, near Freiberg, Germany, 460 ft . in height.

THE OPACITY OF BONES TO ROENTGEN RAYS AS AN INDICATION OF AGE.

by jacques boyer.
According to the law of Flourens, the duration of the period of growth bears a definite relation to longevity and, in particular, the time occupied by any animal in attaining its maximum stature is a definite fraction, constant for all the individuals of the species, of the duration of the animal's life. Now, the
third joint of the middle finger. Finally, one of the films was taken as a standard, the aluminium strip of that film being compared in the photometer with the aluminium strip of each of the other films. The source of light for the photometer measurements was an Auer burner, the light of which was diffused by a ground glass screen. The opacities of the bones were expressed in thickness of aluminium.
From his examinations of subjects of various ages

Physicians, however, will derive useful information from Prof. Henry's radiographic studies, for the determination of the percentage of mineral salts in the bones of a patient should facilitate both diagnosis and treatment.

Memory of Time Exhibited by Pigeons.
M. Xavier Raspail, who has ascertained that the period of incubation of the common dove is 18 days.

Radiographs of Hands of Persons of Varions Ages.
The second and fourth pictures show the radiograph of the graduated aluminium standard; in the first and third pictures this standard and a finger joint have been cut out for photometric measurements.
maximum stature is attained simultaneously with the maximum development of the skeleton and, as the weight of the skeleton is a function of the amount oi mineral salts which it contains, the law may be expressed in a more mathematical form by saying that the percentage of mineral salts in the bones of all arimals of the same species may be represented by similar curves of growth and decline, which will differ solely in the values of individual constants.

Prof. Charles Henry, taking advantage of the possibility of determining, indirectly, the mineral content of bones in the living subject, by means of their opacity to Roentgen rays, has been examining the hands of a large number of human subjects of various ages in order to verify the law of Flourens.
Henry used a Roentgen tube with a aouble anode, a Carpentier coil and Lumière Sigma photographic plates. In order to eliminate the infiuence of variations in the tube and the coil, simultaneous radiographs were made of the hand and of a strip of aluminium foil of varying thickness, which served as a standard. After the plates had been developed, the films were stripped from the glass and the degree of transparency of certain parts was measured with a D'Arsonval diaphragm photometer. As the films are negatives, the transparency of the film is evidently proporticnal to the opacity of the bone. The portions of the film selected for photometric measurement were the image of the aluminium foil and, usually, that of the

Prof. Henry has deduced a maximum opacity at from 30 to 32 years (the age at which the height and weight normally reach their maxima), and a minimum opacity at 45 years. Tribob has supplemented these radiographic results by analyzing the ash of bones of deceased persons of various ages and both sexes, with special reference to the percentage of calcium phosphate. The results of the chemical analysis confirm those of the radiographic examination, but appear to indicate a second minimum of opacity at 65 years of age.
The measurements that have already been completed are too few to warrant the drawing of more definite conclusions. A great many determinations will be required in order to establish the mean curve, and find the positive or negative deviation corresponding to any given age. After all this has been done it will be possible to draw conclusions with respect to mean longevity and to calculate the "expectation of life" of a person of given age and measured opacity. It will then be possible, also, to calculate the personal coefflcient of correction and from this to establish life insurance premiums on a more equitable basis than is furnished by tables of mortality. But it would be a waste, perhaps, to ask insurance companies to change a system which they have found so profitable, or to endeavor to induce the insured to submit to an examination which would result in condemnation to death at a more or less distant date.
has seen brooding doves and pigeons abandon their nests on the 18th day leaving eggs which showed no turbidity. M. Raspail is convinced that in these cases the female abandons the eggs because she knows that the period of incubation has expired and further brooding would be a waste of labor. If she were able to take cognizance of the absence of turbidity in the eggs she would have abandoned them at an earlier date. The common dove, although endowed with an acuteness of perception which immediately informs her that her eggs or her young have been touched by human hands during her absence from the nest, and causes her to desert them forthwith, is not able to distinguish fertile from sterile eggs, but is compelled to wait until the normal period of incubation has expired in order to be convinced of the hopelessness of her task. The hen, on the contrary, has no notion of the proper time of incubation and will, if permitted, continue to sit on infertile eggs until she is completely exhausted. This is a fresh confirmation of the law that domestication blunts the senses and faculties of animals.

Evidence of the industrial progress of Germany is given by the increase in its coal consumption which, according to the Mechanical World, increased nearly 40 per cent between 1902 and 1907. In 1907, the increase in the coal consumption over that of 1906 was 9 per cent.

Radiographing a Hand. The Aluminium Standard Lies by the Side of the Little Finger.

Measuring the Transparency of Films with D'Arsonval's Diaphragm Photometer.

RECENTLY PATENTED INVENTIONS. g to Apparel.
DRESSING-SACK.-L. M. Anderson, New York, N. Y, The invention relates to women's
wearing apparel, and its object is to provide a wearing apparel, and its object is to provide a
new and improved dressing sack, which is simple in construction, ornamental in appearance and easily put on or removed whenever desired. It will fit nicely on the body, and the weare manipulations.

Electrical Devices.

GENERATOR.-K. Kishi, 1 Shiba-KanasugiShinhamacho, Shiba-Ku, Tokyo, and M. NAEAMURA, 3 Shiba-Kita-Shimmonzencho, Azabu-Ku, Tokyo, Japan. The present invention relates to
an electric generator, especially to an alternating current generator. Since the revolving part of high speed electric generator, such as directly
coupled to steam-turbine shaft, revolves with coupled to steam-turbine shaft, revolves with enormous velocity, the invention pays such par-
ticular attention to the construction of coil securing device as well as field magnet of such machines, as to make them strong enough to resist
parts.
SPark-PlUG.-C. T. Van Woert, New York, N. Y. By means of the construction in this
case it is practically impossible for oil to accumulate at the terminals of the electrodes, as both of them are so constructed as to bring about an immediate shedding or draining of the oil or liquid. Any drops which may accumulate at the annular drip edge or at the lower
or bowed portion cannot in any way interfere or bowed portion cannot in any
with the passage of the spark.
DISTURBANCE - OPERATED
DISTURBANCE - OPERATED CIRCUIT breaker.-L. D. Hass and E. G. Derbidge, cuit-breakers, and the more particular object is to produce a type of circuit-breaker in which action while not automatic is brought about by some unusual disturbance, such, for instance, as an earthquake, a cyclo

Of Interest to Farmers.

CULTIVATOR.-A. C. Lodwig, Oxnard, Cal One object of this invention is to provide cultivator adapted for use in tilling the soil in
agricultural operations, in which the knives or agricultural operations, in which the knives or
blades can be adjusted to adapt the cultivator for use under different conditions and in which the operator can control the knives to prevent injury to the vegetation when the
used upon fields of growing crops.

Of General Interest

MEANS FOR VENTILATING AND EXPEL LING WATER FROM MINES.-P. H. DURACK, El Paso, Tex. This inventor provides a sys-
tem by means of a circulating body of fresh tem by means of a circulating body of fresh
air, and air locks so arranged as to permit the work to be progressively carried on without interruption, allowing the mine to be devel-
oped and worked with greater safety than with oped and worked with greater safety than with
the appliances heretofore used, eliminating the the appliances heretofore used, eliminating the
danger of explosion from foul air, gases, or dust, and protecting the miner day and night
while the work is carried on continuously without the delays incident to blasting, etc.
SURGICAL APPLIANCE.-L. G. Scarpa, Via
della Zecca N. 37, Turin, Italy. The mode of della Zecca N. 37, Turin, Italy. The mode of
working of the devices of this appliance for the treatment of pulmonary troubles is understood when one considers that by means of the
inflation of the pneumatic cushion which is maintained in contact with one of the two thoracic halves or of the basilary part of the bility of the lining forming the exterior surface, the space which is occupied by the air may be gained only at expense of a depression on the
whole part of the thorax which must necessarily take its position of expiration.
EYE GUARD AND SHIELD FOR SPEC The object of the invention is to provide a de vice which may be quickly attached to the rim of a spectacle frame that supports. a lens for spectacles, be readily removed therefrom, and
when in position afford a lateral guard for the eye, or if desired, a non-transparent or colored eye, or if desired, a non-transparent or colored
disk for covering the eye, and co-acting with the lateral guard to screen it from the light cold, or wind.
VENTILATOR.-A. M. H. De Bruyceer, Now York, N. Y. The aim of this inventor is especially designed for use on chimneys, and arranged to insure a proper draft at all times by causing a suction in the chimney, irrespec-
tive of the wind blowing up or down in the entilator.
ORE-CONCENTRATOR-G. H. DAVIDSON, Morenci, Ariz. Ter. In this concentrator the
material carried on an endless traveling apron material carried on an endless traveling apron is subjected intermittently to sheets of water, a sheet undisturbed, to permit them to pass the
impact line of the water undisturbed, the concentrator being washed forward by the water and the latter being free to flow back smoothly, to produce an effective washing of the onwar moving material, and hence the very fine ma-
terial is not disturbed or washed away with terial is not disturbed or washed away wit
the tailings, thus insuring a complete saving o centrates.
adjustable mirror.-B. L. Harris, los Angeles, Cal. This invention pertains more par-
ticularly to mirrors such as are adapted to be
supported upon the body of the user, so that the lates to sawmills, and its purpose is the pro
mirror will always be in position. It is adapted vision of a recorder, forming a permanent fea mirror will always be in position. It is adapted
to be hung around the neck of the user. The
device has means for adjustably holding the device has means for adjustably holding the
mirror upon the body in front of the face, so that it can be used in shaving or other similar operations.
STAMP.-B. Kiam, New Orleans, La. This invention is particularly useful in connection
with hand printing stamps. The printing stamp is manually operated and has means whereby it can be identified instantly without necess
tating the examination of the printing tating the examination of the printing face
thereof. It has a resilient body which renders the making of an impression with the stamp, easy and positive, and which carries a remov the card are visible.
AQUARIUM ATTACHMENT.-H. A. Rogers, Pagosa Junction, Col. The attachment will act to revitalize the water whereby to add to the it practicable to keep more fish in a healthy condition in a given quantity of water than i they were compelled to subsist only upon the
oxygen thrown out by the plant life emoxygen
ployed.

Hardware.

LeVel.-W. G. Fuessel and F. W. Fuessel Hicksville, N. Y. The invention relates mor inclination of the horizontal, of different sur faces, and comprising a plurality of spirit tubes one of which is annular and which encompasses a plurality of radially disposed spirit tubes, and a scale graduated in annular degrees and ar-
ranged to co-operate with the annular tube for ranged to co-operate with the annular tube for
the determination of the inclination in de-
WrENCH.-J. M. Bort, Leadville, Col. The
invention relates to wrenches having fixed and invention relates to wrenches having fixed and slidable jaws, and its object is to provide a
new and improved wrench, to allow a quick and accurate adjustment of the movable jaw
relative to the fixed jaw, and to securely hold the movable jaw in adjusted gripping position. HANGER.-J. J. Ronan and J. F. Barry, Jersey City, N. J. Aral is adapted to be used in public places, such as clubs, hotels, restaurants and shops, and the object of the inventors is to provide a coat and hat hanger, with means for
detachably holding other articles, such as cane and umbrellas.

Heating and Lighting.

heating and Ventilating system. H. A. Wernecke, Manitowoc, Wis. The inven tion refers to certain improvements in heating and ventilating systems adapted for use in
school-rooms and the like, and relates more particularly to the means for automatically establishing the desired circulation of the air, the
withdrawal of the foul air, and the supplying fresh air
HEAT AND PRESSURE REGULATOR.E. J. Ryan, Danville, Ill. By means of the im-
provement, the pressure of the water in the boiler may be maintained constantly at a predetermined amount; the pressure being restored automatically when it passes above this predetermined point or below it. The arrangement of the spiral blades on the valves prowides fo
a turning movement of the valves whereby to provide a constant renewal of the valve surfare aces between the valve and its seat.

Household Utilities.

ROUND EXTENSION-TABLE.-L. Ponet, New York, N. Y. The invention has reference table having and the purpose is to provide a piece, and segmental sections, capable of being
folded under the fixed center or extended flush folded under the fixed center or extended flush
with the latter, to increase the size of the table with
top.

Machines and Mechanical Devices.
BOOK TOOLING AND LETTERING PRESS. -M. Kalaba, New Rochelle, N. Y. The object is adapted to readily print entire panels or combinations of characters or lettering on the and to make the impressions even and uniform, at the same time avoiding the expense and dis-
advantage arising from the small tools operated advantage

CHECK - ROW - ATTACHMENT. - W. B. Hampton, Fremont, Mo. The invention relates ject being to produce a check row attachment or use in connection with a planter for the purpose of paying out or taking in a wire, as
the case may be, as the planter moves along. The application is a division of one filed formerly and
Hampton.
Pin-holder.-E. W. Forney, Galena, Kan. trip in which the invention a paper roll or the usual way is coiled within a holder that is hinged, and supported by a spring in such manner that it may be depressed manually,
hich movement operates mechanism that ad which movement operates mechanism that ad-
vances the pin strip step by step and simultaneously projects a single pin from the top
of the holder, where it may be conveniently eized and removed
RECORDER FOR SAWMILLS.-J. W. P.
UURDINE, Lake Arthur, La. The invention re-
vision of a recorder, forming a permanent fea-
ture of a sawmill, and arranged to form a per mare of a sawmill, and arranged to form a perure co
mill.
MACHINE FOR MAKING WOOD-CARPET squares.-C. M. Krebs, New Albany, Ind. Each square is composed of wood laid edge to
edge and glued onto a web of fabric, the slats or each square being formed from a single cessively feed such strips to saws for cutting each strip into a plurality of slats, to stack the slats cut from one strip, to trim the side edges of the stacked slats, to feed them to an assem alongside the other, to glue the uniting web to he assembled slats for forming a continuous piece of wood carpet, to cut the
individual squares, and stack them.
FEED-GEARING.-J. B. Hart, Clarksburg, W. Va. In a patent formerly granted to Mr ing re employed in connection with an operat operation by the operating rocker through the aid of an arm extending from the operating ocker over the intermediate rocker which car ries an intermediate friction. pulley operated by me operating rocker. In the present the inter which is operated directly instead of through
the aid of the rocker carrying the first or main the aid of the r
friction pulley.
CONTROLLABLE POWER-TRANSMITTING MECHANISM.-E. F. Jewett, Newtown, Ohio This improved mechanism is adapted for use in it is desired to achnery of any kind in which mover to a drive shaft, and in which it is desired to control the speed of the shaft in respect
to the speed of the engine and reverse the direction of rotation of the shaft. It relates more reversing apparatus, brakes and clutch.

Railways and Their Accessories.

MAIL-BAG CATCHER AND DELIVERER.. Bubb, Estabutchie, Miss. The improvement efers to the handling of mail bags, the more tion whereby mail bags may be readily delivered oo or from a moving car, or in other words, however, for other purposes.
RAILWAY-TIE AND CONNECTION.-G. H Shane and R. E. Foresman, Denver, Col. The metal tie possessing strength without being unduly heavy and having the requisite amount of elasticity; together with means for assemling the rails with the tie in such a manner that the gage of the track is correctly arrived
at in the assemblage of parts and will perat in the assemb

TRACK-RAIL FASTENER FOR RAIL-ROADS.-J. T. West, Bowling Green, Ky. The purpose of the improvement is to provide for struction of a new railroad, or for repairing a track as may be required, it being adapted for quick application, and in service is very reliable and effective as a means for holding track
rails secured upon cross ties of the railroad.
SWITCH.-J. L. Bailey, St. Augustine, Fla
n object of the invention is to provide a switch for use in connection with railway lines and the like, which has movable switch points, and a winging switch rail or frog which can be locked in a plurality of positions from the ocked or closed in position to avoid pounding hammering and excessive wear when a train is passing over the switch.
METALLIC RAILWAY-TIE. - A. Miller, Cape Girardeau, Mo. The object of the invention is to provide a tie, which is simple and nd arranged to permit of quickly and securely fastening the rails in place, and to allow convenient removal of the same whenever it is de sirable to do so.

Pertaining to Vehicles.

VEHICLE.-W. N. SNow, Snowville, N. H. One object of the inventor is to provide an
efficient vehicle in which the body is resiliently mounted upon supports constituting runners wheels, and the like, and in which the body is constantly maintained parallel to the supports,
regardless of the point of the body at which the oad is applied.
DUMPING-WAGON.-J. W. Hobson, Bayonne, N. J. The invention is an improvement in eral respects be of ordinary construction, the novelty consisting in the construction of the and in the means for operating the dumping ve
nd C. and C. I. Dupont, Plaquemine, La. The aim of
the invention is to provide details of construc tion for the running gear of wheeled vehicles, which will adapt the vehicle to be turned in an arc or circle of very short radius, in a per
fectly safe manner, and avoid excessive friction between working parts of the running gear.

Note.-Copies of any of these patents will
be furnished by Munn \& Co. for ten cents each be furnished by Munn \& Co. for ten cents each
Please state the name of the patentee, title o Please state the name of the patentee,
the invention, and date of this paper.

INTS TO CORRESPONDENTS.

 free on request. A careful reading of these
"Hints to Correspondents" will prevent any
misconception as to the uses and will prevent
abuses of this column.
(10822) K. W. says: What is the composition of the compound used for making oxygen without heat, simply by pouring water
on it? A. The chemical which evolves oxygen on it? A. The chemical which evolves oxygen
by putting water upon it is sodium peroxide. an be bought from any dealer in chemicals. can be bought from any dealer in chemicals.
The manipulation of this process is described in Benedict's "Chemical Lecture Experiments," which we will send for $\$ 2$.
(10823) E. M. H. asks: An empty 10-gallon metal air tank weighs 10 pounds. ink it in fresh water? Charge the same tank with 100 pounds of air, would it hold up more weight than if not charged? Could you pump the air out of the tank so that it would sink
of its own weight? A. A tank of 10 gallons its own weight? A. A tank of 10 gallons
capacity will hold about 11.3 cubic feet, and when this is sunk in fresh water it will be when this is sunk in fresh water it will be
buoyed up by a force equal to the weight of 1-3 cubic feet of water. This is very nearly 83 1-3 pounds. Since the tank weighs 10 pounds, an addition of $73 \quad 1-3$ pounds in the
ank will sink it. If 100 pounds weight of air are pumped into it, it will sink the same as f 100 pounds of lead were put into the tank. nd aire now 110 pounds total weight of tank water. The difference, or $262-3$ pounds, will be the force with which it will sink. Pumping air out of the tank will make it lighter, and o it will float better. You cannot make a
thing sink by pumping air out of it. Air eighs under ordinary pressure about 11-4 eigh 1 ounces less when the air is pumped out of it than it did when full of air. You cannot pump 100 pounds of air into such a tank. The
pressure would be about 9,000 pounds per
square inch, and no tank of this size and pump 100 pounds of air into such a tank. The
pressure would be about 9,000 pounds per
square inch, and no tank of this size and pump 100 pounds of air into such a tank. The
pressure would be about 9,000 pounds per
square inch, and no tank of this size and
weight could withstand any such pressure. (10824) A. W. D. asks: For some time I have been trying to find out what the tem-
perature of the oxyhydrogen flame is, but ave been unable oxyhydrogen flame is, but ell me if there is any other way, as by the use of a furnace, whereby a person could in
the laboratory get a heat equivalent to that the oxyhydrogen flame? A. The temperaiously given oxyhydrogen flame has been va$3,600 \mathrm{deg}$. F. to $4,400 \mathrm{deg}$. F. A recent writer ives the latter figure. The temperature of the electric arc is much higher than this, pospon reaching 7,000 deg. F. A valuable book Measurements," which we send for $\$ 3$. The material "thermit" is considered to give a higher
fame.
(10825) W. F. asks: Would you please tell me what the liquid is, that is used in the er 31, 1904, Scientific American, for detectgh positive or negative poles in any source? Would the receipt in Query No. 7,484 be all right to use in the tube? A. The solution
given in Query 7,484 would work in a tube given in Query 7,484 would work in a tube
for a polarity indicator; but the following is etter, and is used in all the indicators on the market now: Dissolve 15 grains of phenolrains of sodium sulphate in a pint of water, and add the alcohol solution to this. You will have enough to fill hundreds of tubes. The negative pole turns red with this indicator, and upor shaking up the liquid the color
disappears, and the tube may be used indefidisappea
nitely.

Queries from this vicinity not answered with-
fourteen days should be repeated in full.
Queries from points more remote will require longer time.
We do not make chemical analyses ; but we
e always pleased to give the names of min-
als which are submitted to us, whe it is
als
ssible for us to do so. The minerals should nent, marked distinctly with the name of the
Buyers wishing be sent fully prepaid.
vertised in our columns any article not advertised in our columns will be supplied with
the addresses of the houses manufacturing or
carrying the same, as soon as possibe, or if
we are unable to do so, their queries can be we are unable to do so, their queries can be
dvertised in our special classifed column.
Ant books on any scientific or tehnical sub-
ject can be furnished. We solicit requests. for

NEW BOOKS, ETC.

Hydraulics of Rivers, Weirs, and Sluices. The Derivation of New and
More Accurate Formulæ for Dis More Accurate Formulæ for Dis-
charge through Rivers and Canals Obstructed by Weirs Sluices, etc According to the Principles of Gustav Ritter von Wex. By David A. Moli tor, C.E., Mem. Am. Soc. C.E., Designing Engineer Isthmian Canal Com mission, etc. New York: J. Wiley \& Sons. London: Chapman \& Hall, Ltd., 1908. 8vo.; cloth; illustrated; 135 pages. Price, $\$ 2$ net.
The production of a treatise of the caliber needed to fill the neglected field of river hy draulics is due to the engineering zeal and experience of Mr. Molitor. To the theories of technical authority on water power develop ment. With scientific care, mathematical ac curacy and literary clearness, the principles of the "Hydrodamik," Von Wex's remarkable work, are wrought into practical chapters on overfall weirs; sluice weirs and sluice gates; backwater conditions; flow in rivers and canals; and empiric coefficients. By this pubication, the status of the mechanics of fluids may no longer be considered as unsatisfac tory. The presentation of the "new formulæ" is a technical achievement of immense interest he appendix there is a paper "On the Flow Over a Flight of Panama Canal Locks," and also a tabulation of the new formulæ arranged or ready reference. The illustrations are in the form of diagrams.
insomnia and Nerve Strain By Henr S. Upson, M.D., Professor of Dis Western Reserve University, Attend ing Neurologist to the Lakeside Hos pital, Cleveland, Ohio. With Skia graphic Illustrations. New York and London. G. P. Putnam's Sons, The cloth; 142 pages. Price, $\$ 1.50$
In this little volume on mania, dementia, and melancholia, the author's argument is that the nerve strain generally associated with leeplessness is neither degenerate nor incura ble. Of the most direct causes of the more obscure cases of nervous and mental derange ments, the teeth are the most important. A large section is given to the discussion of
dental diseases and these are almost of uni dental diseases and these are almost of uni-
versal occurrence, often painless and localized only by skiagraphy.
Reinforced Concrete. A Manual of Prac-
tice. By Erinest McCullough, M.W.S.
E., Civil Engineer. Chicago: Ce
ment Era Publishing Company, 1908. Price, $\$ 1$.
The service in this book is adequate for the requirements of all manner of work that does not call for the use of the larger stan ahis
treatises on reinforced concrete. Even at this restriction, the ground covered needed the experience of a highly practical engineer, one who instructs in a way that leaves the student advancing into the art of designing and con structing greater structures, nothing to un earn. The manual is timely, as nothing in the the subject chosen. The chapters are on Strength of Beams, Loads on Beams, Col umns, Walls, Tanks and Footings, Design and Cost, Forms, The Conduct of Work, Tools. These are illustrated with numerous diagrams.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending July 28, 1908.
AND EACH BEARINGTHAT DATE [See note at end of list about copies of these patents.]

Abrasive composition, Dreessen \& Hutson.... 894,371	
Accordion, mouth, M. H	
Advertising	
Advertising d	
Air brake system,	
Alarm, E. Pfeifer	
Animal	
Apparel rack, C. L. Wood	
Automobiles and other vehicles, folding shield for, F. Jackson	
Bag, parcel, and box fastener, F. H. Sterling	
Baling Iress automatic bale wiring mechanism, R. C. Redpath	
Batteries, means for charging storage, w.	
aring w	
Bedstead,	
Belt, F. R. Batchelde	
Belt fastener, \mathbf{F}. M. Lin	
Billiard	
Binder, loose leaf, A. Chronik. \quad..............Blinds to spring rollers, means for securing,	
J. L. Thompson $\cdots \ldots \ldots \ldots$	
${ }_{\text {Bloar }}^{\text {Bloam }}$ handling means,	

Broom, dust laying, L. G. Anthony
Broom, holder, L. Li.
Brush, dust, C. Johnson
Buckle, clam-shat
Buckle, I . Blum
Builde,

Hater and and chest, combination,
Camp taton tin or other metai, E. H.

Cart
Carts
Cash
Cement block machine, down face, G . F

 Clamp rib for ironw
Clasp, L. Parenti
Cleaner.
See Flue

orset, H. H. Treffer
Coton choper
Cotton chopper, S. Vance
cotton ginning machinery, J. B. Cornwail
Crank stitching machine, J. Schroeder

Cu
Cu
Cu

 Doo
\qquad

Dry
Dy

5
 6

894,488
894,651

894,367
894,539

Classified Advertisements Advertising in this column is 75 cents a line. No less
than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on
read this column Carefllly.-You will find inquiries for certain classes of articles numbered in
consecutive order. If you manufacture these goods consecutive arder. If you manaracture the nate and
Write us at once and we will send you the name
address of the party desiring the information. There address of the party desiring the information. There
is no charge for this service. In every case it is is no charge for this service. Tn every case it is
necessary to give the number of the inguiry.
Where manufacturers do not respond promptly the necessary to give the number ond promptly the
Where manufacturers do not respond
inquiry may be repeated.

BUSINESS OPPORTUNITIES. WANTED.-Useful Novelties, practical tools, labor
saving devices for use in shippinp and packing departments. Any nood articles which will paoillate bitip-
ping packig or brending oood. Adress B. S. S. Co.,
Box 733 , New York City. Inquiry
incubator.
A PARTY with ample building and water power, con-
veniently located to post office and rallroad, wishes to manufacture some small article for inventor or other
conerran not havin alplatt. Adress D. H. Landis,
Windom, Lancaster County, Pa. Windom, Lancaster County, Pa
Jnquiry No. 861
light power purposes.
A CORPORATION of highest standing having large
well equipped factory had selling organazation and
ample capital. desires to manufacture and marke me chanical inventions of unquestioned merit.
pondence solicited. Address
$K$$A$., Box 773 , Y . Y . City. Inquiry No. 86, 88 . - Wanted to buy paving block
machines for use with partly fuid substances. WANTED.- Party to manufacture frst-class dental
instruments. Address Box 413, Mayville, Wis. lnquiry No. 8632 . - Wanted to buy machine for
perforating music rolls.

PATENTS FOR SALE.

 FOR SALE. -A sash lock and ventilator, recentlypatented. wil sel
Racker, Inquiry No. X646.-Wanted to buy cheap small
motor from 34 to 1 horse power, single phase 60 cycle, 110
 Saranac, N.
Inquir
ble celluloic
FOR SALE.- Patent No. 887.747. Match-delivering nformation addreps. E. J. Anderson,
Street, Worcester, Mass. machiniry.
 Inquiry No. S65 $2 .-$ Wanted address of manufac-
turers of drop forged wrenches.
 biouli Binition, on

HELP WANTED.

ENGINEERS WANTEE familiar with air compressor
to study a new machine being put on the marke and
help in sale of patent riphts Liberal commision.
Address B. H., Box Inquiry No. 866\%.-Wanted to buy needle, pin and Tnquiry machinery. ${ }^{2}$

WANTED—MISCELLANEOUS.

BOOKS AND MAGAZINES. WIREELESS TELEGRAPHY.- Send 10 cents for spe-

 mechanical books free. Sampson 1151 Beacon Building, Boston, Mass. Lnquiry No. 8681.-Wanted to buy envelope mak
ing machines.

LISTS OF MANUFACTURERS.

 Inquiry. No. 868\%. - Wanted to bus model of old

Inquiry No. 8685.-Wanted to buy $11 / 8$ to 2 -inch Inquiry No. 8691. - Wanted to buy for export to
British Guiana alcohol motors. Inguiry No. 8692. -Wanted to buy kerosene ou Inquiry No. 8694.-Wanted to buy fly wheels and Inquiry No. R699.- Wanted to buy tro-stranded
soldered wire for hediles. Inquiry No. 8y01.-Wanted to buy solar englines.
Inquiry N. Inquiry No. 8Y 13 . - For manufacturers and dealers Iuquiry No. X716.-For manufacturers of fower
arden and light frame tools for cultivat ng, etc. Inquiry No. 8719.-For manufacturers of safes. Inquiry Yo. 8Y! 1.-Wanted unwelded tubing that Inquiry No. 8y22.-Wanted manufacturers of Inquiry No. Sy95.- For manufacturers of a needla
threader, not the thimble and needle combination. Iuquiry No. Ny, Metal - For parties who make "Yan Inquiry No. 8y28.-Wanted the address of The
Frear Novelty Co. facturing berry. Nrates. - Wanted a macaine for manuTnquiry No. 8y 31.- Wanted a rice mill or huller
thatil delivers the rice entire and separate from the
hill

Thequiry Noo. 8735.- For partleg making astill for

Inguiry No. Sy39-Wanted machinery to make

 Inguiry No. 8yid. For makers or very large

 Pinearifo No. S766.-For parties making pressed

 Inaniry No, styit

Toodiry No. Szs. Fror manut

 canguir

Ingiiry No. 8794-1

 Inairy No. 8797.- For manu factarers of fiber.

 Ingirys. No. 88.12 .2 -Wanted to by outats for

 Ingairy No. SSy2. For manfacaturers of dreag.

 Maniry No . 882

Engine and Foot Lathes MACHINE SHOP OUTFITS, TOOLS AND
SUPPLIES. BEST MATERIALS. BEST
WORKMANSHIP. CATALOGUE FREE SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati, 0.

Manufacturers of small articles
in any quantity. Send sample
CHAS. E. DRESSLER \& COMPANY Established 1884
AUTOM OBILES (new), high grade, can be
ought from us positively cheaper than manufacturers' prices. We buy for spot cash; wonderful what ready
money will do. We apply and carry out the same argument relative to secondi-hand carrs. You cannot argord
to overlook our offers. Send for list. Also ask for our

The BUGGYAUT

How to Construct An Independent Interrupter
 coil. This article should be read in connection with
Mr. Coling articlin icleviri AMEEICAN SUPPLE
MENT, 1605, How to Construct a 100 -Mile Wireless Telegraph Outfit, ents; 20 cents for the
twach
two. Order from your costs newsdealer or from MUNN \& CO., 361 Broadway, New York LEARN WATCHMAKING

 Industrial products examined and working
formulas provided, processes improved, coun.
orpert evidence. Assay of ores, alloys, water sel and expert evidence. Assay of ores, aloys, water
and uell, etct..etc. IIventors assisted: Instruction.
Established 1882. Monadnock Laboratory, Chicaon.

HOW

Manufacturers Can Increase Their Business

Read carefully, every week, the

Classified Advertising Column

in the

SCIENTIFIC AMERICAN

Some week you will be likely to find an inquiry for some thing that you manufacture or deal in. A prompt reply may bring an order.

Watch it Carefully

Home-Made
 Experimental Apparatus

In addition to the following articles, the Scientific American Supplement has published ion prepared over 17,0 catalogue, charge Ameri If t American Supplement cost 10 cents each. If there is any scientific, mechanical, or en- gineering subject on which special information is desired, some papers will be found in this is desired, some papers will be found in this catalogue, in which it is fully discussed by competent authority.
 A few of the many valuable articles on the making of experimental apparatus at home are given in the following list ELECTRIC LIGHTING The article tells how a small and simple perimental installation can be set up at home. Scientific American Supplement 1551. AN ELECTRIC CHIME AND HOW IT MAY BE CONSTRUCTED AT HOME, is described in Scientific American Supplement Scientific American Supplement 1566. THE CONSTRUCTION OF AN ELECTRIC THERMOSTAT is explained in Scientific American Supplement 1566 . HOW TO MAKE A 100-MILE WIRELESS TELEGRAPH OUTFIT is told by A. Frederick A SIMPLE TRANSFORMER FOR AMA- TEUR's PSE is so plainly described in Soien- tifio American Supplement 1572 that anyone can

 make it.A $1 / 8$-H.-P. ALTERNATING CURRENT DY-
NAMO.
 APPARATUS is simply exp A SIMPLE CAMERAA-SHUTTER MKADE OUT
OF APASTEBOARD BOX, PINS, AND A
RUBBER BAND is the subject of an article in Scientific American Supplement 1578.
HOW TO MAKE AN AEROPLANE OR GLIDING MACHINE is explained in SCientifio Ameri
can Supplement 1582 , with working drawings. EXPERIMENTS WITH A LAMP CHIMNEY. may serve to indicate the pressure in the the in-
terior of a . .inuid; to explain the meaning of
capillary elevation' and depression; to serve as capillary elevation and depression; to serve as a a
hydraulic tournique, an aspirator, and intermit-
tent siphon; to demonstrate the ascent of liguids tent siphon; to demonstrate the ascent of liquids
in exhaustive tubess, ot illustrate the phenomena
of the bursting bladder and of the expansive
of force
force
1583. HOW A TANGENT GALVANOMETER CAN
BE USED FOR MAKING ELECTRICAL MEAS BE USED FOR MAKING ELECTRICAL MEAN-
UREMENTS is described in Scientifio American
Supplement 1584. DENT INTERTVUTER. Clear AN Iiagrams giving actual dimensions are published. Scientiflo
 TAIN EITHER D'ARSONVAL OR OUDIN CUB-
RENTS is described in Scientific American
Supplement 1618. A plunge battery of six celle Supplement 1618. A plunge battery of six cells,
a towinch spark induction coil, a pair of one-
pint Leyden jars, and an inductance coil, and all
per pint Leyden ars, and an inductance coil, and all
the apparatus required, most of which can be SIMPLE WIRELESS TELEGRAPH SYSTEMS
are described in
Scientifio American Supplements 1363 and 138
THE LOCATION AND ERECTION OF A $100-$
MILE
clearly clearly explained, wELEGRAPH STATAON is
in Scientific American Supplement of diagrams,
in22. THE INSTALLATION AND ADSUSTMENT
OFAA 100 MILE WIRELESS TELEGRAPH OUT-
FIT, illustrated with diagrams, Scientific AmeriFIT, illustrated with
can Supplement 1623 .
THE MAKING AND THE USING OF A illustrated with
Supplement
1624. HOW TO MAKE A MAGIC LANTERN, Scien-
tific American Supplement 1546 . THE CONSTRUCTION OF AN EDDY KITE.
Scientiftc American Supplement 1555 . THE DEMAGNETIZATION OF A WATCH is
thoroughly described in Scientific American Sup-
plement 1561. plement 1561 .
HOW ALORIC OR HOT AIR ENGINE with the help of illustrations, in Scientifio
American Supplement 1573 . American Supplement 1573 .
THE MAKING
THE MAKING OF A RHEOSTAT is outlined
in Scientific American Supplement 1594. Good articles on SMALL WATER MOTORS fre contained in Scien
1494, 1049 , and 1406.
HOW AN ELECTRIC OVEN CAN BE MADE
is explained in Scientific American Supplement is explained in Scientific American Supplemen
1472.
THE bUILDING of a STORAGE BATTERY THE BUILDING OF A STORAGE BATTERY
Is described in Scientifio American Supplement
1433. A. SEWING-MACHINE MOTOR OF SDMPLE
DESIGN is described in Scientific American Sup-
plement 1210 . A WHEARATSTONE BRIDGE, Scientific Ameri-
can Supplement 1595. Good articles on INDUCTION CoILS are con-
tained in Scientific American Supplements 1514 tained in Scientific American Supplements
1522, and 1527 Ful details are given so that
the coils can readily be made by anyone. HOW TO MAKE A TELEPHONE is described
in Scientifio American Suplement 966 . A MODEL STEAM ENGINE is thoroughly de-
 plained in Scie
ANERROD BAROMETERS, Scientific American
Supplements 1500 and 1554 . A WATER BATH, Scientifio American Supple-
ment 1464 . A CHEAP LATHE UPON WHICH MUCH
VALUABLE WORK CAN BE DONE forms the subject of an article contained in forms the
American Supplement 1562 . American Supplement 1562.
Each number of the Scie
Eleach number of the Scientific
plements 10 cents by mail.
Order from your newsdealer or from
MUNN \& CO., - 361 Broadway, New York

HOW TO MARE AN ELECTRICAL Furnace for Amateur's Use.-The utilization of 110 volt
electric circuits for small furnace work. By N. Monrne Hopkins. This valuable article is accompanied by de tailed working drawings on a large scale, and the furnace can be made by any amateur who is versed in the use of tools. This article is contained in Scientipic
American Supplemment, No. 1182. Price 10 cents. Ameridin SUPPLEMENT, No. 1182. Price 10 cents,
For sale by MUNN \& Co., 301 broadwar. New York City or by any bookseller or newsdealer.
 TRADE MARKS.

Coal, anthracite and bitu
vania Coal \& Supply. Winifred Coal Co..
Coats Wive

nvelops, Gopher Envelope Company...........
Fabrics for protection against insects, open
mesh, I.

Flour, wheat, Kansas Milling C
Your, wheat and rye, G. Why W. Wert.......
Hood, blended and mixed dairy, J. W. Biles

rubber, Crawford, McGregor \& Canby Co.
Gas mantles, inverte, Brock Light Company
Harrows, E. M. Kramer Co.............

 Pails, buckets, tubs, kegs, and barrel.......
ster,
Panitary oyster Carrier Company
Paper, L. H. Reuter.

 Tools, certan, Butler Brothers.
Tools,
cettan, Simmons Hardwa Tools, certain, Simmons Hardware Co......
Tracing cloth, Winterbottor Book Cloth Co

 D. Streett

LABELS.
"Dixie Freckles," for candy, National Candy
Company

A printed copy of the specification and drawing in any patent in the foregocing listion or and drawing
ing print issued since 1863 , wrill be furnished from
onts office for 10 from th1s office for 10 cents, provided the name and
number of the patent desired and the date be
fiven. Address Munn \& Co., 361 Broadway, New Canadian patents may now be obtained by the in-
ventors for pay or the inventions named in the fore-
going list.

SEALED PROPOSALS.

 Notice to Contractors.

LET US BE YOUR FAGTORY

Magical Apparatus.
55e. Parlor Tricks Catalogue, free.
MARTINKA \& CO.. Mfrs., 433 Sixth Ave., New York

STEAM TURBINES. - THEIR CON-

MASON'S NEW PAT. WHIP HOISTS

CTMACHINS
 MODELS E EXPERIMENTAL WORK:
 PARKER, STEARNS \& CO., 228.229 South Street, New York

 HOEFT \& COMPANY Die Maker, Mochnite

The Scientific American Cyclopedia of Receipts Notes and Queries revised edition

15,000 Receipts
734 Pages
Price $\$ 5.00$

MAILED TO ANY PART OF THE WORLD

THE SCIENTIFIC american cyclopedia of receipts, NOTES AND QUERIES has had an unprecedented sale. It has been used by chemists, technologists, and those unfamiliar with the arts, with equal success, and has demonstrated that it is a book which is useful in the laboratory, factory or home. It consists of a careful compilation of the most useful receipts, and information which have appeared in the SCIENTIFIC AMERICAN for more than half a century. Over 15,000 selected formule are here collected, nearly every branch of the useful arts being represented. Many of the principal substances and raw materials used in the arts are described, and almost every inquiry relating to formule will be found answered. It is more than a receipt book, as in most cases it gives all the standard and special formulæ, thus enabling the reader to find a receipt which fits his peculiar need. An alphabetical arrangement with abundant cross references makes it an easy work to consult. Those who are en gaged in any branch of industry will find this book of the greatest practical value, and we especially commend it to those who are in search of an independent business, as they will find many formulæ for the manufacture of salable articles which will be worth many times the cost of the book. The Appendix contains the very latest formulæ as well as 4 I tables of weights and measures, and a Dictionary of Chemical Synonyms.

Send for Full Table of Contents Mailed Free on Request

MUNN \& COMPANY, Publishers

 363 BROADWAY, NEW YORK
Garden Hose

Rubber Belting Steam Packing Rubber Specialties
N. Y. BELTING \& PACKING CO.

91 and 93 Chambers Street NEW YORK
write for Catalogue

CRUDE ASBESTOS DIRECT FROM MINES PREPARED
ASBESTOS FIBRE H. MARTIN,

(8)
Pou USE GRINDSTONES?

 The CLEvELAND STONE CO
2d Fioor. Wilshire. Cleveland. 0 . PLENTY OF RUNNING WATER
 Niagara Hydraulic Ram

THE RACING MACHINE SPARK PLUG
 Agents Wanted. Sample Plugs, \$1 each. GENERAL ACCUMULATOR Q BATTERY CO., 128 Second St., Milwaukee, Wis.

No Rapid is ever an experiment. Every car is built according to specifications which have And I am in a position where 1 can show you, according to your needs if you will write me
fully, what a practical improvement the use of Rapids will be to you-if you are using horses and
I prefer to communicate direct from the factory with prospective purchasers of Rapids in order
to see that fullinformation is supplied promptly in every case. However, we bave representative agents in many leading centers, to whom I will refer you for prompt and satisfactory demonstrations
of Rapids. I shall also be glad to hear from agents who own a garage and are prepared to properly
H. G. HAMILTON, Treas. RAPID MOTOR VEHICLE CO. 507 Rapid Street, Pontiac, Mich.
 the Latest and Best A. W. FABER

DRAWING PENCILS

Engineering News
 The leading weekly Engineering paper of the world, devoted to the interests of Civil, Mechanical, Mining, and Electrical Engineers. 100 to 125 pages weekly. Send for free sample copy.

The HOLSMAN Automobile goes anywhere

 THOUSANDS OF SATISFIED USER Repairs Average Under $\mathbf{\$ 3 . 0 0}$ per Month sures going the journey." A blacksmith or waronnaker can make ail ordinary repairs splendid hill climbing power. Send for complete free ill thill Splendid hill-cli mbing po free illustrated catalugue.
 The Oldest and Largent Manufncturers Carriage Automotiles Bin the World THE HOLSMAN AUTOMOBILE CO. COLD GALVANIZING

16 Ft. Steel Launch with

 8 mix

Pipe Cutting and Threading Machine ofves
For Either Hand or Power

