

SCIENTIFIC AMERICAN

 ESTABLISHED 184
MUNN \& CO.
 Editors and Proprietors
 Published Weekly at
 No. 361 Broadway, New York
 Charles allen munn, president
 361 Broadway, New York
 FREDERICK CONVERSE BEACH, Sec'y and Treas. 361 Broadway, Now York
 terms to subscribers
 the scientific american publications.
 Scientitic American (established 1845)
 The combined subscription rates and rates to foreign countries, includ- ing Canada, will be furnished upon application.
 Remit by postal or express money order, or by bank draft or check.

 MUNN \& CO., 361 Broadway, New York.
NEW YORK, SATURDAY, JULY 4, 1908.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles tention. Accepted articles will be paid for at regular space rates.

THE FASTEST WARSHIP AFLOAT.

The United States navy possesses in the scout cruiser "Salem" the fastest warship in the world. In the "recent government standardization trial over the measured mile course off Rockland, Maine, this handsome vessel was driven at a maximum speed of 26.88 knots, and at an average speed for five runs over the mile course of 25.95 knots. This result is particularly gratifying because of the fact that the "Salem" is equipped with Curtis turbines, a type which is distinctly American, having been developed entirely in this country. The "Chester," a sister ship driven by Parsons turbines, has the distinction of being the second fastest warship afloat, her official standardized speed, as determined by the government board, being 25.07 knots for five runs over the mile course, and 26.22 knots for her fastest mile. In claiming that these two are the fast est warships afloat, the term is restricted to ves sels which, because of their size, are entitled to rank in the cruiser class. The torpedo-boat destroyers, whose speed, of course, is very much higher, rank more in the boat than in the ship class, and should be considered by themselves.
Reports have been cabled from the other side of the Atlantic to the effect that the cruiser battleship "Indomitable", steamed at higher speeds than these; but the reports lack verification, and indeed a semi-official organ has stated that the builders were satisfied to secure the 25 knots called for by contract. The Parsons turbines were not pushed much beyond the 41,000 horse-power, which, it was estimated, would be sufficient for the contract speed.

In addition to the "Salem" and "Chester," the scout class includes the "Birmingham," which is equipped with reciprocating engines; and advantage is to be taken of the opportunity thus afforded to carry out competitive trials of the three boats under absolutely identical conditions. The trials will be made simultaneously, with the boats in close proximity to each other and using the same quality of coal. Several runs will be made off the Maine coast at different runs will be made off the Maine coast at different
speeds, when careful measurements will be taken of coal and water consumption, and much other technical data will be secured. The unrivaled opportunity thus afforded for testing the three leading types of motive power has never before been presented; and the results cannot fail to have a far-reaching effect in the field of marine engineering. In a subsequent issue, we hope to give the full official data secured during we recent run of the "Salem."

PRESENT CONDITION OF THE PAN-AMERICAN RAILWAY.

Attention is directed again to the ambitious project for a Pan-American railway, by a recent report on that subject. Apart from its sentimental interest, the plan of connecting North America with the countries of Central and South America is destined to have an exceedingly important effect, both in developing Central America and in increasing the volume of commercial business between the United States and South America. The enterprise, because of its magnitude, can never be undertaken in toto by any single corporation. In this respect, it is not unlike the proposed Cape to Cairo railway in South Africa. It has come to be recognized, on both continents, that a main artery of such enormous length can be commercially success
ful only if the individual states and countries through which it is to pass are opened up by means of feeder lines, for the development of the local territory which is to be traversed. If this be done, the main line, upon its completion, will find a considerable amount of traf fic already available. According to the report, about four thousand miles of the total ten thousand four hundred miles necessary to connect New York and Buenos Ayres have yet to be completed. At present, about four hundred miles of this gap are under construction, which leaves thirty-six hundred miles to be struction, which leaves thirty-six hundred miles to be ous governments are living up to their pledges of assistance, by making land grants and by giving financial and other support. There is to-day a continuous stretch of railway communication from the latitude of Hudson Bay to the southern line of Mexico; and in South America there is unbroken railway communication from Buenos Ayres to the Bolivian border line. Also, in South America, work is being done on the connecting links in Colombia, Ecuador, Peru, and Bolivia, while interoceanic lines are being constructed in Costa Rica and Nicaragua which, when the main line is completed, will act as important connections and feeders.

CONSERVATION OF OUR FUEL RESOURCES.

It would be a mistake to suppose that the recent gathering at the White House, to promote the conservation of the natural resources of the country, was the first official step taken by the government for that purpose. Everybody is aware, or should be, of the good work that is being done by the government in the Department of Forestry in the preservation of our timber supply; and equally, if not more important, have been the labors of the United States Geological Survey in the effort to conserve our natural supplies of fuel by the very simple expedient of teaching us how to use what we do consume, to better economical advantage. In carrying on its work of testing the fuels used by the government, the Geological Survey has gathered data of wide variety, which have proved to be of great economical value in the industrial world. The work of the department in the investigation of the gas engine alone, has been very valugation of the gas engine alone, has been very valu-
able in showing its high economy as compared with the average steam engine. It has proved, for instance, in its testing plant, that the gas engine will develop from two to three times as much power from a given amount of coal as is being developed to-day from steam engines of the same capacity-the degree of comparative economy depending, of course, upon the conditions under which the steam engine is being operated. In this connection, the tests which have been made of the fuel value of various coals have established the important fact that many coals, which are practically worthless for steam raising, are entirely serviceable for use in gas producers. The importance of this investigation in its bearing upon the fuel supplies of the West, can scarcely be overestimated; for the supplies of high-grade coal in the West are very limited, while there are millions of acres of the poorest forms of coal, known as lignites. It is largely due, furthermore, to the labors of the Survey, in making a general analysis of the coals of the country, that coal is now being purchased on the basis of its heating value, definite specifications being drawn up, covering this and kindred features. The beneficial effects of this system have been shown in the case of the State, War, and Navy Building in Washington, in which, under the new system, the government is said to be saving fifteen thousand a year in the coal bill alone.

POWER CONSUMPTION IN THE RAPID TRANSIT SUBWAY.

Striking evidence of the accuracy with which the electrical engineer is able to calculate beforehand the amount of power which will be necessary to perform a specified duty, is afforded by the statistics of operation of the New York Subway and by tests which were recently made by Mr. Stillwell, the designer of the electrical features of that system.
In determining the capacity of the motors for the subway cars, there was but little data available that was applicable to the case in hand. The Manhattan Elevated Railway, it is true, supplied some data; but the trains were lighter, were run at slower speed, and in the open. The results obtained with the electric cars in the London "tubes" were vitiated by the fact that the trains were lighter and slower, and particularly by the fact that, since they practically filled the tubes, the air resistance was of a different character from that which would be encountered in the rapid transit subway. It was finally decided to use, for express service, eight-car trains, of which five were to be motor cars, and for local service five-car trains, made up of three motor cars and two trailers. Each motor car was provided with two 200 -horse-power motors, thus giving a capacity of 2,000 horse-power for the expresses, and 1,200 horse-power for the local trains. The accurand with which electrical estimates of this character are
now made by competent engineers, is shown by the fact that in their daily service, the motors have given slightly better results than were called for by the specifications, and this in spite of the fact that, in the later months of service, heavier cars have been adopted than were originally planned.
When we bear in mind that in weight, speed, capacity, and rate of acceleration, this road is in advance of any current practice in the world, or at any rate, was so at the time of its design, these results must be admitted to be extremely creditable
The results of the tests show that although, during rush hours, the speed of the express trains sometimes falls below 25 miles per hour, this falling off is due to the increase in the length of station stops beyond tha average of 25 seconds per stop anticipated in the preliminary calculations.
As regards the possibility of increasing the capacity of the subway, there is little hope of any relief from an increase of the power of the motors. Under existing conditions of handling the traffic, faster runs between stations would simply mean longer stops by signal at the entrance to stations. We are inclined to think that the best means of accelerating the service is that offered by Mr. Arnold in his recent report to the Public Service Commission, in which he advocates the double-decking of the express stations, and the provision at these stations of two tracks for each express track-a provision which would enable two express trains running in the same direction to unload and load their passengers at the same time.

STEEL TIES ON ROADS WITH HEAVY TRAFFIC.

Apropos of the question of conserving the natural resources of the country, among which our timber supplies are those that are being the most rapidly depleted, the question of the use of steel in place of wooden ties becomes of increasing importance. Generally speaking, experiments made by various railroads with steel ties have not given the encouraging results that were looked for; but the failures have not been of such a character as to prove that the steel tie is inherently and essentially unfit for railway service. Rather, we are inclined to think the failures have been due to details of form and fastenings. This is borne cut by the fact that an important mineral road, the Bessemer and Lake Erie Railroad, which carries the heaviest mineral traffic of any system in the world, has adopted the steel tie as standard, using what is known as the Carnegie I-beam type. The road runs from Conneaut, Lake Erie, to Bessemer, Pa., a distance of 154 miles; it is full of undulating grades and a large amount of curvature, in which curves of four to six degrees are frequent, with a few of even sharper curvature. Last year the road carried twelve and a half million net tons of freight, and adding the passenger trains, the gross tonnage was over twenty millions The locomotives weigh 125 tons, and over 90 per cent of the freight cars carry from 55 to 60 tons of freight apiece; conditions which, as every railroad engineer will recognize, are very trying upon the track and roadbed.
The experiments with steel ties began in 1900 , when the company laid half a mile of track with inverte a^{i} trough-shaped steel ties. When these failed to give satisfaction, except so far as they proved in their eight years of service that corrosion of the metal was quite insignificant, four and a half miles of track was laid with a heavy I-beam tie. The results were so encouraging that an improved tie of this section has been adopted as standard on the whole road. The track construction consists of 100 -pound rails, 33 feet in length, with tion consists of 100 -pound rails, 33 feet in length, with
twenty steel ties to the rail. The ties are $51 / 2$ inches deep, $81 / 2$ feet long, with a top face $41 / 2$ inches and a bottom face 8 inches wide. The rail is held to the tie by means of a clip on either side bolted to the top flange. We understand that the company's engineers regard that portion of the tracks which is laid with steel ties as being superior, on every point of comparison, to that which is laid with wooden ties. The fastenings hold the rails absolutely to gage, even on very sharp curves; and they are more effective in preventing creeping of the rails-a phenomenon which, under certain conditions, has caused a large amount of trouble and expense. Moreover, the behavior of the ties under derailments is admirable, for they show merely a slight bending of the flanges, under conditions in which the wood ties have been completely wrecked. Finally, it has been proved by carefully kept records of the road, that the expense of maintaining the steel-tie track in level and alinement is 25 per cent less than it is on wooden-tie track.

The new Zeppelin airship, which is 426 feet long and 43 feet in diameter, and which has a carrying capacity of twelve men and a radius of action of 1,440 miles is about to be tried in Germany. Before purchasing it, the government has made the requirement that it shail be capable of landing on the ground safely instead of on floats on Lake Constance. It is expected to make a long-distance flight from Friedrichshaven to Mayence.
the irrigation of egypt and the success of the aswan dam.
Although frequent adverse reports have been circulated respecting the policy of the British administra tion in Egypt in sinking such a vast amount of money in the construction of the Aswan barrage, the official statements for the year 1907, which have recently been published concerning the results of the irrigation arrangements during that year, offer conclusive evidence respecting the foresight of the responsible authorities, especially of Sir William Garstin, through whose initiative the enterprise was carried to conclusion. During the past year the Nile reached the lowest level that has yet been reached in the history of modern Egypt since 1877, and it is pointed out that but for the existence of the vast volume of water impounded by the dam to supplement the low Nile during the season of drought, the country would have been plunged into the horror of a famine. The year under review constituted the eighth successive lean year so far as the river flood was concerned. On January 1 the gage reading at Wady Halfa presaged the impending state of affairs, since the record was 11.8 inches below the average of the preceding years. The low readings prevailed until the middle of March, when an improvement took place, and the river levels were well maintained until June 5 , at which date they were 7.8 inches above the normal. Then unfor tunately a rapid fall ensued for ten suscessive days.
On June 15 the annual rise of the river commenced but the date was very late, and the rise itself slow and feeble. The maximum height of water recorded at Aswan, and the duration of the period the river remained below the average level, were the worst in stances on record since the irrigation works were started in the country. It became imperative that every ounce of .water should be carefully husbanded and so black was the outlook, that the authorities were considerably perturbed. In the third week of September, however, a slight improvement took place. "Had it not been for this relief," states the consul-general in his latest report, "the results as regards flood irrigation would have been little short of disastrous.' The filling of the Aswan reservoir commenced on November 26, 1906, and eight weeks were occupied in the operation, which was completed by January 15 of last year. Discharge from the reservoir to supplement the volume of water in the river was begun on April 1, and by August 1 the reservoir was emptied. Owing to the adverse conditions prevailing, the work of regulating the water discharge so as to secure the most useful and economical results required a con siderable amount of study and calculation upon the part of the engineers in charge of the dam. The suc cess achieved, notwithstanding the poorness of the flood in providing a sufficient quantity of water for the summer irrigation of last year, the consul-general at tributes very. largely to the skillful management of the irrigation engineers. The result was that the area of unirrigated land was reduced to very small propor tions.
Some idea of the benefits that have accrued to Egypt by the realization of this barrage scheme, in addition to its salvation of the crops of last year, may be gathered from the steady diminution of unirrigated land that has been effected every year since the work was completed. In 1877 the low and poor flood resulted in over $1,030,000$ acres of land being deprived of its water supply. In 1907 the extent of this area was only 115,756 acres, showing that, as a result of the barrage, some 90 per cent of the area affected•by a low Nile thirty years ago has been definitely assured of a water supply during the summer.
As is well known, it has been decided to increase the height of the Aswan barrage by 16.5 feet, and the water level by 23.1 feet, the result of which will be to more than double the present capacity of the reser voir. The scheme has been severely criticised, but the fact that it will exercise considerable influence upon the country cannot be disputed. It will bring unde cultivation an additional $1,000,000$ acres of excellent land in the Delta, by insuring a summer supply of water just at the time when it is most urgently required by the crops. The works are now in active progress. At first it was suggested that public tenders should be secured for carrying out the enter prise, but wiser counsel prevailed, it being urged that under the peculiar circumstances greater advantage would be secured by intrusting the scheme to the original constructors, since they were familiar with the special difficulties that would have to be surmounted. Work has been commenced on the foundations, and it is estimated that the task will occupy five years. The total cost, including compensation for inundated property in Nubia, and the preservation of the Nubian monuments, will approximate $\$ 7,500,000$. Other irrigation works of large dimensions are in progress or having the preliminary surveys prepared. These will affect more particularly the Soudan, but it is held that Egypt should have first claim upon such works for storing the water of the Nile. The Esneb works for storing the water of the Nile. The Esneb
barrage is rapidly approaching completion, together
with numerous distributing channels and ditches Surveys of the Blue Nile are in progress in connection with the barrage that it is proposed to throw across the river at Sennar. This work cannot be taken in hand however until the railroad is pushed forward to that point for the transport of the necessary supplies. It is also proposed to remodel the White Nile together with the laying out of a complete canalization and drainage system of the country through which it passes, which will result in obtaining a considerable area of highly fertile land. This work, however, is considerably hampered by the high level of the river in autumn and winter months. Two years will have to elapse before it will be possible to prepare accurate estimates for the work projected.

SPECIAL SCHOOLS FOR EMINENTLY GIFTED PUPILS.
 Prof. Petzold has made the interesting suggestion

 of founding some special institution devoted to the education of the intellectual élite. He hopes thus to rear an intellectual aristocracy, which in his opinion would exert a far greater influence on the development of civilization than large numbers of moderately gifted individuals.It may be said that the pupils of the average college can be intellectually classified into three sets, the highest of which comprises the few eminently gifted (about. ten per cent of the total), the intermediate class of which constitutes the intelligent but less brilliant average pupils, who number about eighty per cent, and finally the lowest class which constitutes roughly about ten per cent of the total. $l i t$ is a pedagogic truism that all teachers endeavor to fit as many as possible for an upper class, and that they are compelled to devote most of their time to the moderately gifted and even to the less intelligent pupils, repeating over and over again the same rules of grammar and the same mathematical theorems to the intense weariness of the more gifted. Hence the students blessed with exceptional mentality are never trained fully to take advantage of their capacities, and dwell in intellectual semi-idleness. It may be said that practically all schools are intended mainly for the benefit of the moderately gifted, the interests of both the less gifted and best pupils being sacrificed.

The demand for a progressive individualization of instruction is now more keenly felt than ever, largely because of the uniformity in the curriculum of most schools and colleges. A step in attaining this goal would be taken if élite schools could be founded.

THE EMANATION OF SODIUM.

In a recent issue of Nature appears a description of the action of what appears to be an emanation or volatile vapor liberated by the surface of freshly-cut metallic sodium. The phenomenon was observed by C. E. S. Phillips during the course of some experiments upon the contact potential difference between the alkaline metals and glass. Freshly-cut sodium rapidly discharged an electroscope, the action occurring only if gold leaf was negatively charged, and ceasing completely when a membrane of celluloid was introduced, sufficiently thin to give interference colors. That the discharging action is due to a vapor would seem to follow from the fact that a small current of air, directed so as to carry the supposed gas away from the charged plate of the electroscope, enabled the leaf to retain its charge. All action ceases on the prolonged heating to the melting point of the metal. After some hours, if allowed to stand, the sodium shows signs of recovering its power. Inasmuch as all portions of the same block of sodium do not exhibit the action to the same extent, the effect may be due to some radioactive impurity. Experiments are now in progress for the purpose of concentrating the active parts, to decide whether or not the phenomenon may be thus explained, or whether sodium really has an emanation.

THE CURRENT SUPPLEMENT

The opening article of the current Supplement, No. 1696, deals with the disposal of New York city's re fuse. The author is Mr. H. deB. Parsons, a well-known civil engineer, who writes with authority on the subject. Mr. Pigg's exhaustive paper on locomotive cabsignaling devices is brought to a conclusion. A better review of the entire state of the art than Mr. Pigg has given can hardly be desired. Some sensible observations on mechanical flight are published, the burden of which is that slowness, and not speed, should really be the ultimate aim of flying-machine designers. Prof Korn's telephotographic apparatus will soon be introduced in this country in an experimental way. In view of this fact, a very complete description of the instrument, in which even the technical details are entered into, is published. The article is written by the Paris correspondent of the Scientific American, whose in formation has been obtained from a personal study of the machine during its construction in Paris. The vital necessity of preserving our trees from the rav ages of fungi is set forth in an article tellingly illus trated by several striking photographs.

SCIENCE NOTES.
Illness having followed eating oysters of a decidedly bluish green color, an analysis made by J. T. Willard disclosed the presence of copper to the extent of 0.212 per cent of the dry substance in one instance. Other tests of fresh and canned oysters on the Kansas mar ket showed copper to be present in every case. Twen-ty-six samples from various localities were secured directly from the shells, and copper found in every instance, the average amount in the dry substance being 0.059 per cent. Copper seems, therefore, to be a normal constituent of oysters, and it is probable that ome individuals may be affected by it when present in the larger amounts.
The method which has been worked out by A. De Quervain for observing air currents in the upper atmo sphere by means of small balloons is now used with success on the Continent. During moderately clear weather, the balloons are sent up at intervals, and they are observed by a special form of theodolite so that the azimuth and angular height of a balloon is always seen. To determine the exact position, a length must also be known, and this is given by the height o the balloon, by multiplying the ascending speed by the time which has elapsed since the start. It is found that the speed of rise can be taken as about constant for the greater part of the ascension. The instrument will follow the balloons for nearly forty miles distance and the height depends on the size of the balloon. It may reach six miles. The present method was used at Zurich in January of last year, during the period of unusual barometric pressures, which were extremely high in Europe. Balloons were sent up every day and were observed at a maximum height of 22,000 : feet From the 17 th to the 21 st , during which period the anti-cyclone center was shifted, while remaining near the English Channel, the observations showed a re markable fact in the existence of a north current above 13,000 feet altitude. It was also noted that during the period the direction of the currents turned from right to left as the altitude increased, which is contrary to the general rule. The Meteorological Institute of Switzerland intends to continue this work during the present year, and it will no doubt be a valuable aid in the observation of upper air currents.
A paragraph recently appeared in a contemporary pointing out that the ancient Assyrian records afford practically conclusive evidence as to the former exist ence of elephants in the Euphrates valley. Confirma tion of this is afforded by the discovery in Armenia during the Crimean war of fossil or sub-fossil remains of an elephant apparently intermediate between the living Indian species and the mammoth. Under the light of the new evidence there seems, however, little doubt that the Euphrates elephant was a western race of the Indian species, which was killed off during the early historic period. Mention of the mammoth re minds me that an American writer has recently given a restoration with the tips of the tusks curving down ward instead of upward. It is suggested that the tusks were employed somewhat in the fashion of rakes for digging in the snow. Unfortunately for the theory the skull of the Ilford mammoth in the British Mu seum shows that the upward curvature of the points of the tusks is correct. One other point connected with elephants has much interested me. A gentleman re cently brought to the British Museum about half a peck of stones asserted to have been taken from the stomach of an African elephant. The stones are quite angula and unworn. It was stated by the donor that othe instances of the same nature are known to hunters If such stones are habitually swallowed by elephants one wonders, in the first place, that they do not seri ously damage the molar teeth, and secondly, why it is that they do not become rounded. It may be adde that the same gentleman recently demonstrated the existence of the stone-swallowing habit in crocodiles.

THE OUTCOME OF THE LEMOINE CASE.

News comes from Paris that Judge Poittevin has been suspended from the bench for three years for allowing Lemoine, the diamond manufacturing swindler, to have his freedom after he was arrested, thus enabling him to escape.

Judge Poittevin justifies his action on the ground that the diamond industry and the diamond workers were threatened by Lemoine's pretensions to be able to manufacture the gems, and he deemed it the quickest way to establish quietude to allow Lemoine to prove himself a swindler.

The Appellate Division of the Supreme Court of the State of New York has decided that the Fifth Avenue Coach Company, which operates a coach line on Fifth Avenue, could not display signs or advertisements on the exterior of its coaches. The court held that the displaying of such signs is not a necessary incident of the plaintiff's business. When we consider the advertising which is carried on the omnibuses and motor boats of Paris and London, we may indeed be thankful that New York has been spared.

THE CURIOSITIES OF FEELING, HEARING, SEEING AND SMELLING.

by jacques boyer.

There has been in operation for some time, at the Sorbonne, a laboratory which is little known to the public but which is the scene of very interesting experiments in the measurement of hodily sensations. Nearly all of the ingenious apparatus employed in these experiments was invented by M. Charles Henry, the director of the laboratory.

Sensation is the state of consciousness which is produced when an organ of sense is affected by sound, light, heat, or any other physical agent. Sensations
to produce each sensation, in tracing the curve of results and in calculating therefrom the mathematical formula. The principal difficulty is to obtain the necessary precision and to extend the examination to sufficiently wide limits. This field of research has scarcely been explored and consequently it was necessary to devise new apparatus for every case.

For visual sensations Henry constructed a photoptometer based on the principle that the amount of light which passes through an opening in a diaphragm is proportional to the area of the opening. The rays emitted by the source of light traverse an oiled paper before they reach the diaphragm, and form an image
closed at its outer end by a disk of ground glass 4 inches in diameter, which is marked with concentric numbered circles. When the image of the pupil formed by the aqueous humor coincides with one of these circles the pupil is magnified 10 diameters. The iris is illuminated by light coming through the peripheral part of the ground glass, outside of the image. By applying to the ground glass rings of blackened copper and colored glass, with openings exactly equal in diameter to the image of the pupil, and suddenly removing these rings, the effects produced on the pupil by changes in the illumination of the iris can be studied by a method which makes no change. in the

Fig. 1.-Henry's Pupilometer, Used to Determine the Direct Effect of Light on the Iris.

Fig. 7.-Applying Alternating Currents In duced by Musical Vibrations to the Body.

Fig. 2.-Testing the Hearing with the Audiometer.

Fig. 5.-Dumb-bell for the Study of Fatigue.

Fig. 6.-Henry's Apparatus for the Stady of Mental Vision.

Fig. 3.-Henry's Olfactometer for Measuring Acuteness of Smell

Fig. 4.-An Experiment in Thermal Sensation.
the curiosities of feeling, hearing, seeing and smelling.
in fact, are all that we know directly and to them alone we owe our consciousness of the existence of the universe. Scientific men endeavor to substitute for crude sensations, depending on many circumstances and consequently difficult to observe with accuracy, purified sensations, agreeing with each other as closely as possible and thus appearing to be independent of the individual and his particular condition. Since, then, there is an evident connection between the action of the environment and the reaction of the senses, the task of the physiologist consists in determining with precision the intensity of the stimulus required
of the opening on a screen placed before the eye. By varying the size of the opening and the power and distance of the source any desired intensity of illumination can be obtained, and by noting carefully the sensations produced the law can be determined.
Henry's pupilometer (Fig. 1) is used in demonstrating the direct effect of light on the iris. The apparatus consists of a series of three cylinders. The smallest cylinder terminates in a diaphragm pierced by a small hole which is placed at the anterior focus of the eye (12.8 millimeters or about $1 / 2$ inch in front of the cornea). The outermost and largest tube is
illumination of the pupil itself. Experiments with this instrument prove that dilatation of the pupil almost invariably follows darkening of the iris.
M. Henry has also succeeded in measuring the acuteness of mental vision with the aid of a simple and original apparatus (Fig. 6). In other words, he has proved that the pupil can dilate under the influence of the brain. The experimenter views through a convex lens a card bearing a simple diagram and moves the card along a scale until the diagram is barely discernible. The diameter of the pupil is then
(Concluded on page 8.)

THE CALIFORNIA CONDOR.

by william l. finley.
The report that the California condor (Gymnogyps californianus) will soon become extinct is not with out foundation. It has a range more restricted than any other bird of prey. Since the time when the western part of the United States was settled, the breeding range has contracted, and the condor's numbers have greatly decreased; although it is still found in the wilder mountainous sections, it is nowhere common.

The main cause which has been given for the de crease in condor numbers seems to be that when stock raising became common in California years ago, in order to secure pasture during the dry months, the rangers were compelled to drive their herds back into the more remote mountainous parts. Here they invaded the retreats of panthers, grizzlies, and coyotes. These preyed upon calves and sheep and created considerable damage. The quickest and best way of get ting rid of these animals was by baiting the carcasses with poison. Since the condors came to feed on the
poisoned animals, numbers of the big birds were undoubtedly killed in this way. Almost any other bird might hold its own in the struggle for existence against these forces, but the condor is too slow in recuperating its numbers. Even under favorable circumstances, each pair of condors will raise but one offspring a year. Oftentimes a pair of condors are very irregular in nesting. One collector states that in a certain locality where a pair of the birds live, they have nested but three times in about twelve years. Under these conditions it is not surprising

Nest and Egg of the California Condor, Showing the Material Composing the Floor of the Nest Cave.

Condor Chick One Day 0ld. Weight Less Than One Pound. The Down is White ; the Head, Neck, and Feet Are Flesh-Colored.

Young Condor, Fifty-four Days 0ld. Weight About Seven Pounds No Feathers as Yet.

Photographs copyright 1907 by H. 'T. Bohlman and William L. Finley
"Engines Reversed." The Condor Is So Heavy and Its Momentum So Great That It Alights On a Tree With Difficulty.

Condors Are Very Affectionate. They Like to Nibble and Caress Each 0ther. These Birds Are the Parents of the Young Bird Shown at the Left.

In Their Demonstrations of Affection the Birds Sometimes Crowd Each Other Off a Perch.
that the condor numbers are decreasing, and unless the needed protection is given, this bird will undoubtedly follow the great auk.
The best early historical account of the California condor was published in Hutchings' California Magazine in the June, July and August numbers of 1859. It was written by Mr. Alexander S. Taylor. Although the bird had been known to the scientific world since mentioned by Shaw in 1779, yet neither the bird nor the egg had been properly described, except from hearsay. Both Douglas in 1827, and Townsend in 1837, as related in Audubon, failed to discover the nest or ever got to see the eggs. Douglas assumed and stated dogmatically that the color of the egg was "jet black," which information was secured from the Indians.
It is interesting to note that the egg taken at thi time, from which Mr. Taylor secured his description, is still in existence. This is very likely the oldest egg of the California condor, and is now in the collec tion of J. H. Gurney in England. The egg was secured from a hunter who took it the last week in April, 1859. Mr. Taylor recounts that the egg was laid in the hollow of a tall oak tree near the summit of one of the highest peaks in the vicinity of Tularcitos, near a place called Cunejos. This is the only record we have of the condor ever nesting in a tree, and although this record has been repeated in many books on ornithology, it cannot be regarded as completely authentic. It may safely be said that the nesting site of the California condor is always a pot-hole in the side of a cliff, a cave, or a recess in behind a large rock on the steep mountain side. There is no effort at nest building, but the single egg is laid on the bare ground.
The egg which Mr. Taylor secured weighed ten and a half ounces and the contents weighed eight and three-quarter ounces. A specimen that was killed on the beach at Monterey at this time was carefully meas ured by Mr. Taylor. It weighed twenty pounds; from beak to the end of tail feathers it measured four feet and a half; from tip to tip of wing it measured eight feet four inches; one wing, three feet three inches; tail feathers, twelve in number, fifteen inches long.
As to the size of a full grown California condor, Mr. Frank Stephens says: "I believe that a bird that measures full ten feet, laid on its back on the floor and marked at wing tips without really stretching the bird, is an exceptionally large bird." Mr. Stephens gives the measurements and weights of six different condors as follows, the first three killed at Julian, the fourth at Ballena, and the other two at Santa Ysabel, California.

1. March 13, 1888; length, 44.1 inches; spread, 102.4 inches ($1,120 \times 2,600$ millimeters) ; female, not quite ma ture; weight, 16 .pounds.
2. May 11, 1888; length, 45.7; spread, $112.2(1,160 \mathrm{x}$ 2,850 millimeters) ; adult male; weight, 19 pounds, eviscerated.
3. June 2, 1888; length, 43.1; spread, 110.7 ($1,095 \mathrm{x}$ 2,812 millimeters) ; weight, 21 pounds.
4. June 25, 1888; length, 44.3 ; spread, 110 ($1,125 \times$ 2,794 millimeters); adult male; weight, 20 pounds.
5. May 10,1899 ; length, 44 ; spread, $112(1,118 \mathrm{x}$ 2,848 millimeters); female, not quite mature.
6. May 24, 1899; length, 45 ; spread, 112 ($1,140 \mathrm{x}$ 2,845 millimeters) ; adult male.
In some of our works on ornithology, the authors seem to think that the California condor lays two eggs, although there is no authority for such a statement, except by analogy with the turkey-buzzard.
One collector states, 'I know positively of three instances where they laid but one egg and no instance where they laid more than one. I have talked with other men that know and they say they lay only one egg at a setting, which I am satisfied is right." An other collector gives these facts. "A condor never lays a second egg in the same season. I have taken eight of them, and never more than one in a nest. Most people think that the bird lays two eggs. I have investigated several such stories and always found them to be buzzards' nests."
Fourteen different eggs of the California condor show the following measurements in inches: 2.48×4.08, $2.53 \times 4.28,2.55 \times 4.39,2.58 \times 4.57,2.53 \times 4.52,2.60 \times 4.30$, $2.62 \times 4.38,2.62 \times 4.44,2.62 \times 4.52,2.65 \times 4.40,2.68 \times 4.28$, $2.68 \times 4.50,2.70 \times 4.50$, and 2.73×4.22.
The size and strength of the condor have often been exaggerated. There have been many absurd stories about these birds killing sheep and other animals. A short time ago I saw an account in a daily paper of where a hunter claimed he saw a condor sailing away with a hind quarter of venison in its talons. Mr. Alexander Taylor makes the statement that this vulture has been known to kill and carry off a hare in. its claws. It is extremely doubtful that one of these birds would ever attack a living animal. The habit of this vulture is to wait till after death. As to the condor's carrying its prey, this is easily discredited by a study of the condor foot. The claws are blunt and weak, and the foot is not adapted for grasping or carrying as an ordinary bird of prey.
In regard to the range of the California condor, it
is sure to be somewhat vague as long as we have wide stretches of rough mountainous regions in the West where little or no study has been given. We find a few scattered in the San Jacinto Range, which is a small range about forty or fifty miles from the coast extending through Riverside and San Diego counties. A few have been noted in the lower end of the San Bernardino Range during recent years. Where the San Gabriel Mountains cut through Los Angeles County, condors are a little more numerous, and from this district throughout the mountainous regions of Los Angeles, Ventura, Santa Barbara, San Luis Obispo, and Monterey counties, the largest number of these birds are found, but they are nowhere common. There have been a few straggling records of the condor north of Monterey County in California, but none of recent date. The most striking record on the present range of the California condor is one from Douglas County in southern Oregon. This seems very unusual, as we can find nothing else in recent years of the bird living between the San Francisco region and this place, although it is a stretch of several hundred miles.
The Oregon records were given by Mr. George Peck and his son Mr. Henry Peck, who are both reliable ornithologists, and who were both well acquainted with the bird in southern California. Mr. Henry Peck informs me that on or about.July 4, 1903, he and his father saw two California condors. at Drain, Douglas County, Oregon. They were quite high in the air and were sailing about over the mountains. The elder Mr. Peck saw them several times after that. He states the birds were instantly recognized by both of them. Again in March, 1904, Mr. Henry Peck writes, "I saw four condors which were very close to me, almost within gun shot. I recognized them first by their size, and second by the white feathers under their wings. The birds were all flying very low, as there was a high wind blowing." Mr. Peck also gives the record of a wind blowing." Mr. Peck also gives the record of a
condor that was killed on the coast of southern Oregon a number of years ago.
These records seem to show that if the California condor was formerly found in the region of the columbia River, the numbers have decreased and the last of these northern birds seem to have taken refuge in the rough mountain region of southern Oregon, while the range of the condor in California has contracted to regions from Monterey County south through the mountains of the Coast Range and the extension of the San Bernardino Range into Lower California.
The accompanying photographs were made by Mr . Herman T. Bohlman, who accompanied me in 1906 on an expedition for the purpose of studying and photographing the condor in its native haunts. The splendid pictures herewith published testify to the success of the expedition. In the columns of the current issue of the Scientific American Supplement will be found a more or less detailed account of my observations.

THE LABORATORY OF THE PHYSIOLOGY OF SENSATION

 AT THE UNIVERSITY OF PARIS.(Concluded from page 6.)
noted. The experiment is then modified by suppressing the lens and receding from the diagram until it again becomes indistinguishable. The pupil is then found to have dilated more or less, according to the character of the object viewed. As the quantity of light received by the eye was the same in each case and only the distance of the object varied, the dilatation of the pupil must have been the result of a cerebral reflex action excited by the idea of distance. In some persons this reflex is related to the acuteness of vision.

For auditory sensations Henry has devised an instrument based on the principle, analogous to the optical principle already mentioned, that the intensity of a sound which reaches the ear through an orifice in a sound-proof screen is proportional to the area of that orifice. Henry's audiometer (Fig. 2) consists of a copper tube divided by a transverse diaphragm into two chambers. Of these, one communicates with a rubber bag which incloses the source of sound (a watch), and the other with a rubber tube which is watch), and the other with a rubber tube which is
inserted into the ear. The intensity of the sound perceived can be varied by introducing perforated disks of ebonite between the watch anid the diaphragm. In order to prevent the sound reaching the ear through the air or the metal of the tube the rubber bag is made double with an air space between the outer and the inner bag, and the copper tube is lined with cardthe inn

The perception of odors is measured with the olfactometer (Fig. 3). This instrument consists of a glass jar containing three concentric tubes, of which the intermediate one is made of paper and the others of gläss. Perfume is put into the outer glass tube. The experimenter inserts the upper end of the innermost tube, which is graduated in millimeters, into one of tube, which is graduated in millimeters, into one of
his nostrils, the other nostril being plugged with cotton. He then raises the inner tube with a uniform motion and inhales normally, causing the vapor of the perfume to pass through the paper, enter the inner glass tube and ascend to his nostrils. As soon as the
odor is perceived, he stops raising the tube and records its height and the time occupied in the experiment. With these two elements, in combination with certain constant factors, the weight of vapor corresponding to the minimum perceptible sensation is computed.
For the study of sensations of heat, two glass jars, wrapped with flannel, are filled with water at different temperatures. The hands, alternately crossed and not crossed, are plunged into these vessels, the tempera ture of one of the baths is changed gradually and the smallest difference of temperature that can be perceived is recorded.
Muscular sensations are studied with the aid of dumb-bells to which weights can. be added. These dumb-bells are lifted in the usual manner, the maxi mum effect which can be exerted on the dynamometer being determined before and after each experiment In this way the fatigue caused by lifting various weights is estimated.
It is impossible, in this brief review, to describe fully the varied work of the laboratory, but mention must be made of a novel process of musical electrification which may prove valuable in therapeutics. The advantages claimed for D'Arsonval's method of elec trification by alternating currents of strictly sinusoi dal character, over the usual method employing an ordinary induction coil, are well known. In particu lar, sinusoidal currents are more efficient than ordinary induced currents in increasing internal combustion, without causing pain or violent muscular contraction. Now, as every musical sound, in accordance with Fourier's theorem and the experiments of Helm holtz, may be regarded as the effect of a series of simple sinusoidal vibrations of frequencies propor tional to the numbers $1,2,3,4 \ldots . n$, Henry thought that interesting results might be obtained by "transforming into alternating currents the melodic and harmonic successions which exert, through the sense of hearing, so varied and profound an influence upon the nervous system." For the realization of this idea he devised the apparatus shown in Fig. 7. The source of electricity is a Gülcher thermopile of $6 \dot{6}$ elements which furnishes a constant current equivalent to the electrolytic evolution of 170 liters of water gas per hour. The source of sound is a "Polyphone" music box. This is an instrument with interchangeable disks and is remarkable for the uniformity and long con tinuance (20 minutes) of its action. The velocity of rotation of the disk is measured directly and the pitch of the sound is determined with the aid of resonators. On the sounding board of the music box is placed a Hughes microphone, which is connected in series with the thermopile and the primary circuit of a Bert D'Arsonval telephone transformer. The currents in duced in the secondary circuit of the transformer are introduced into the human body by the electrodes commonly used in electro-therapeutics. The strength of the primary current is controlled by a rheostat As the microphone performs the function of the inter rupter of an ordinary induction coil, the alternating currents which traverse the muscles form, so to speak a literal translation of the musical phrase, as may be proved by substituting a telephone for the human body. In order to estimate the physiological effects of rhythm and time, a siren producing simple sus tained tones is frequently substituted for the music box. Both instruments are placed at a distance, so box. Both instruments are placed at a distance
that the sound cannot be heard by the subject.

A soothing and rhythmical effect is produced by music thus transformed into electricity. A loud sound is felt more strongly than a feeble sound of the same pitch, but high notes have less effect than low notes.

A New Method of Thoracic Surgery.

Prof. Ernest Sauerbruch, of the University of Mar burg, Germany, recently read a paper before the surgical section of the American Medical Association, in which he described a new method of performing opera tions on the organs of the chest without subjecting the patient to possible death by lung collapse. Prof. Sauerbruch performs his operations within a cabinet from which part of the air has been exhausted, the object being to preserve so far as possible the balance between the air pressure in the lungs and that without the body. Normally, the air within the lungs is lighter than the air of the outer atmosphere because of the difference in pressure. When the lungs are exposed, they are subjected to an increased pressure which flattens them, with the result that the patient is exposed to much danger. Prof. Sauerbruch demonstrated the efficiency of his method by operating on a dog. Only the patient's body is confined within the cabinet, so that he may breathe the outer air. The operation is said to have been successfully used in twelve instances.

A celluloid factory in Vienna, Austria, where several hundred persons were employed, was completely wrecked on June 6 by an explosion due either to the ignition of celluloid dust or to the action of some of the powerful chemicals which are used in the process of manufacture. It is known that at least seventeen persons were killed.

(Toxxexprondente.

More Curiosities of Numbers.

To the Editor of the Scientific American :
In the current issue of your valued periodical a correspondent points out that the last figure of the fifth power of any number is always the same as the last figure of the number. By considering the last two figures, however, some much more interesting properties may be brought out. Let us first divide all positive whole numbers into four classes: (1) Odd multiples of 5 ; (2) even multiples of 5 ; (3) other odd numbers; and (4) other even numbers. Write down the fourth powers of the first ten or twelve numbers, and it will be seen that fourth powers of class (1) have the last two figures ("two-figure ending") 25 , of class (2) the ending 00 , of class (3) one of the endings $01,21,41,61$, or 81, i. e., 1 preceded by an even number, and class (4) one of the endings $16,36,56,76$, or 96 , i. e., 6 preceded by an odd number. It is also easily shown that all fourth powers of class (3) are larger by unity than some multiple of 80 , i. e., are of the form $1+80 f$, where f is an integer, and similarly all fourth powers of class (4) are of the form $16+80 f$. Now raise these formulas to the fifth power by the binomial theorem; since they already represent fourth powers, the answers will give formulas for the twentieth power. It. will be found that in each formula every term after the first ends with at least two zeros, and so does not affect the last two figures of the answer. That is, all numbers of class (3) and all numbers of class (4) have the same two-figure ending at the twentieth power, being respectively 01 , and 76 ; the corresponding endings for classes (1) and (2) are 25 and 00 ; and no other endings but these four can occur at the twentieth power of any number whatever.

These "two-figure endings" have very many other interesting properties; but I shall not speak further of them here, except to say that some of them have been discovered at very tender ages by some of the mathematical prodigies, and used in mental calculation. They are especially useful in finding by inspection the factors of numbers, or the roots of perfect squares and cubes; and they were so used by Zerah Colburn, for instance, when he was about seven or eight years old, and by-other precocious calculators at still earlier ages. In fact, it is just because these curious properties of numbers are so easily discovered by a little practice in mental arithmetic, that so many children have become mathematical prodigies; it is the interest in these numerical properties that stimulates the children to practise counting and calculation until amazing proficiency is attained, at ages when they are not supposed to be able to count beyond ten. Incessant practice in mental counting, stimulated by the constant discovery of these peculiarities of numbers, seems to me to afford the complete exof numbers, seems to me to afford the complete
planation of these precocious mental calculators.

> Frank D. Mitchell.

Ithaca, New York, May 23, 1908.
[P. S. In the current issue, by a typographical error, 8^{5} is given as 31,968 , instead of 32,768 .]

Railway Accidents.

To the Editor of the Scientific American:
I have read with great interest the communications and other articles relating to railway accidents and their causes, which have appeared recently in your valuable columns. For many years past it has been a matter of wonder to me that with all the ingenuity of appliances which have been devised to improve railroad travel, there is still absolutely nothing, when once a single wheel of a rapidly-moving train leaves the rail, to prevent the whole of that train going headlong and without hope of salvation into the ditch, even though that ditch may be over the side of an embankment fifty feet high. I have noticed that on nearly all bridges I have seen there is a rail running parallel to the track rail, generally a couple of inches outside of it on each side of the track. This I made out to be a guard rail, as I could see no other use for it, and explained its presence on these bridges by supposing that a derailment at those places would necessarily be much more disastrous than at other places, and the absence of such a rail throughout places, and the absence of such a rail throughout
the whole length of the track was evidently due to the whole length of the track was evidently due to
the expense such a rail would mean. No doubt it would be possible theoretically to build a track that would make it practically impossible for cars to run over an embankment, by providing deep groves or troughs, that the wheels could run in in case they left their proper places upon the rails. This would be very expensive in practice, but it seemed a strange thing to me when I thought of the matter if there were not some way of providing an equivalent of this by a construction of the under side of the cars or trucks upon which cars rest. In looking over some old copies of the Scientific American, my eye was arrested by the words "Derailment Guard," and lookarrested by the words "Derailment Guard," and look-
ing over the article I discovered that it was even
so as I had supposed, that such a device had been invented and patented several years ago. Now, is it not a fact that the Patent Office is full of good devices which are never put into practical use? And is it not also true that this is very often due to the item of expense? But is there any justification in the of expense? But is there any justification in the
world for leaving unutilized a system or device which world for leaving unutilized a system or device which
probably would not add more than three or four per probably would not add more than three or four per
cent to the cost of rolling stock, but which might save hundreds of lives annually? I have never seen any practical tests of such a system or device, but I give it as my opinion, as one who has had some practical mechanical experience, that such a system could be worked successfully, and we might see an end to this extraordinary business of having whole trainloads of living human beings going over fifty-foot embankments when even a single wheel or rail fails to do its duty.
I shall be pleased if you will give this letter publicity, and for any information as to what may have been done along this line. Charles E. Hand.

Dundas, Ont., Canada, June 15, 1908.
[The Interstate Commerce Commission has recently appointed a board of experts, which is prepared to examine all railway safety appliances which may be submitted to it. The great difficulty presented by devices of the character of those suggested above has been their expense. Their desirability is unquestioned. -Ed.]

Lobsters on the Pacific Coa

by arthur inkersley

As the only crustacean found to the north of Point Concepcion, Cal., that has any commercial value is the large crab (Cancer magister), the introduction of the common lobster of the North Atlantic coast (Ho marus Americanus) is highly desirable, for the sake of fishermen and of the public generally. Several attempts have been made to transplant the lobster to the western coasts of the United States, but, so far as can be ascertained, the attempts have been unsuccessful. Since fishermen on the Pacific coast do not employ lobster pots, it is only by accident that they catch lobsters; so that there may be some off the coasts of California, Oregon, and Washington. It is supposed that the waters off the coasts of California and Oregon are too warm for the lobster, which thrives in waters whose temperature varies from freezing point to 60 deg . The average temperature of San Francisco Bay is 51 deg . to 61 deg . F.
The first attempt to plant lobsters in the Pacific Ocean was made in 1873 under the joint auspices of the Federal government and the State of California, the well-known pisciculturist Livingstone Stone hav ing charge of a shipment of 162 lobsters. When Omaha was reached, only forty lobsters were alive, and soon after leaving that place the car was wrecked and the attempt ended. In 1874 the California fish commis sioners provided the funds for a second attempt. The lobsters were packed in straw and sponges kept wet and cool by occasional sprinkling with sea water, but only four out of 150 reached the Pacific coast alive. In 1879 a third attempt was made, 22 female lobsters with eggs attached being shipped in three large tanks of sea water in a baggage car. All but one survived, and were planted near Point Bonita, at the entrance to San Francisco Bay. As there were no males, it is believed that the colony did not thrive.
In June, 1888, a large shipment consisting of 250 males, 350 females, and 15,000 loose eggs was made under favorable conditions. They were packed in open trays in loose, moist rock weed kept at a temperature of 42 deg . to 45 deg . The trays were 22 by 18 by 13 inches, of zinc, and were placed in wooden boxes large enough to leave a space of five inches on all sides between the tray and the box, this space being packed with fine ice. On the third, sixth, and ninth days of the journey a quart of sea water was sprinkled over each tray. Under this treatment the lobsters did well, being apparently in perfectly good condition on the eleventh day. A second lot which was wetted with sea water only once in nine days also arrived in good condition. When the shipment reached Sacramento, Cal., it was found that 282 had died. Examinations of the water of San Francisco Bay by Prof. Leslie Lee and Lt.-Com. Z. L. Tucker, commanding the Fish Commission's vessel "Albatross," showed that its salinity is only 1.01988 in the most saline parts, while normal sea water is 1.0274 . The waters in the vicinity of San Francisco being considered too fresh, Monterey Bay was decided upon. One hundred and sixty-two lobsters were planted in the bay between Pacific Grove and Monterey in twelve fathoms; 95 were planted in water thirty fathoms deep one mile off Point Lobos, and 30 were taken to a spot $11 / 2$ mile off Trinidad lighthouse. The eggs were hatched, 2,000 of the young crustaceans being deposited in San Francisco Bay and the rest in Monterey Bay. Several were placed in a crate in Monterey Bay and became so lively that 45 escaped when the crate was opened for examination. Though their escape was regretted, it was believed that they would do well.

The last attempt to colonize lobsters on the Pacific coast was made in 1906. A large proportion of the lobsters survived the railway journey and were planted in various spots. Though great hopes were entertained of their thriving and multiplying, no satisfactory results were achieved. It was reported several times that lobsters had been seen in shallow water, but it was not certain that the observers were well enough informed to recognize a lobster when they saw one, or to distinguish it from the crayfish called the California spiny or rock lobster, which is not related to the lobster found on the Eastern coast.
Notwithstanding these various disappointments, it is said that the California Fish Commissioners feel satisfied that the Eastern lobster can be acclimatized in Pacific waters. Another shipment will be made after the molting season is over. From 1,000 to 1,200 lobsters will be shipped from Maine in a refrigerator fitted with everything that will make their journey easy and safe. Many of the specimens selected for shipment will have spawn attached to them, and it is expected that millions of young will be liberated soon after they reach the Pacific coast. The lobsters will be packed in wet rock weed, which will be sprinkled every two or three days with sea water. They will be kept at a temperature of 35 deg. to 40 deg., those that die on the trip being thrown out. The journey will be made in a car specially constructed for the transportation of fish, and they will be taken to Puget Sound, where the waters are cooler than off the coast of California, and hold out better hopes for successful culture of the lobster.

The Cowper-Coles Process of Making Tubes and Sheets

 Directly from the Ore by Electro-deposition.It has been found impossible to obtain by electrodeposition iron articles such as tubes or sheets of a quality to render them of commercial value and at a cost which compares favorably with ordinary methods at present in use. The chief difficulties encountered have been the slowness of the process due to the necessity of employing a very low current density and in obtaining iron of a quality suitable for commercial purposes. Iron electro-deposited under ordinary conditions is porous and spongy, is difficult to anneal and has a tendency to flake off the cathode during deposition unless deposited at a very low current density, which makes the process and the plant too costly for commercial purposes. The well-known English engineer, Mr. Sherard O. Cowper-Coles, has discovered that iron can be deposited in a form suitable for the production of tubes; sheets, and wire with a bright smooth surface resembling that of very highly polished iron by maintaining the solution from which the iron is deposited charged with iron oxide.
In a suitable way of carrying out the invention the iron oxide is kept in suspension in the electrolyte by means of stirrers or by moving one or both of the electrodes or by any other suitable means, the effect of which is to reduce the acidity and effect a burnishing action on the iron deposited. Excellent results have been obtained from-a solution containing 20 per cent of sulpho-cresylic acid saturated with iron, the current density being 100 amperes per square foot of cathode surface, the voltage 3.25 at the terminals of the iron electrodes, these being $1 / 2$ inch apart and the temperature of the electrolyte 70 deg. C. The temperature of the electrolyte considerably affects the quality of the iron. If it is much below 70 deg. \mathbf{C}. the iron becomes laminated and flakes off; if it is much above 70 deg . C. the surface becomes covered with ridges or stream lines and cannot be used for commercial purposes without further treatment.

Iron produced from the sulpho-cresylic solution is exceedingly hard and when it is desired to produce soft tough iron, ferrous sulphate solution should be employed.

Iron articles produced as described are said not to pit or corrode like iron which has been cast or wrought into the desired form. This is probably due to the purity and uniformity of the metal.

When steel articles are to be produced carbon is depositerl with the iron and after removal from the mandrel they are heated to a high temperature to convert the iron into steel.

It is well known that potassium-sodium alloy and the alkali metals generally sealed up in vacuo exhibit marked photoelectric effects permitting the escape of negative electricity but not positive when the surface of the metal is illuminated. In an experiment made by Dr. J. A. Fleming before the Royal Society a sample of such alloy was prepared for this purpose. The alloy was inclosed with an insulated platinum plate in an exhausted tube. When illuminated by an arc lamp negative electricity supplied by a battery leaked from the surface, and by the interposition of colored films of gelatine and glass it was shown that the leak was due to the most refrangible rays of the spectrum. The effect of polarizing the light in various planes was also exhibited.

THE GREAT ROOSEVELT IRRIGATION DAM

by day allen willey.
The. irrigation dam in construction on the $\$$ lt River in eastern Arizona is one of the greatest projects of its kind which has been as yet undertaken by the United States Board of Reclamation. The Roosevelt dam, which is to create the Tonto reservoir, will be with one exception the highest constructed by the Board's engineers, while exceeding all other of their works in other capacities. The dam, of which preliminary information was given in a previous issue,* will form a storage basin holding sufficient water to fiood $1,300,000$ acres to an average depth of one foot. This quantity is much larger than the volume held in storage by the greatest Nile reservoir. The supply will be secured from the Verde and the Salt rivers, which drain a watershed of 6,260 square miles. The average yearly rainfall over this drainage basin is not over 20 inches. The annual rainfall upon the territory to be irrigated ranges from 3 to 10 inches; and the rapid evaporation of moisture is indicated by the fact that the temperature in summer ranges as high as 120 degrees, although the elevation varies from 1,000 to 1,300 feet altitude. The dam will impound sufficient water to fully irrigate 270,000 acres of soil. This soil is known to be fertile when water in sufficient quantities is applied; the Department of Agriculture having tested a few experimental tracts, with the result that the crops have been remarkable for their quality and yield.
A feature of the undertaking is the power canal. Water power or electric current has before been secured from dams intended for irrigating purposes by utilizing the waste water. Such power, however, is only available when the fiow of water into a reservoir is more than sufficient to fill it. The power at Roosevelt is obtained independently of the irrigating scheme, the canal being separate from the reservoir and one of the first works completed. The head of water secured by means of the canal actuates waterwheels connected to electric generators at present developing over 1,500 horse-power. From the power station extends a transmission line conveying current to the plant for the manufacture of cement, the stone-crushing plant, for lighting, operating the aerial railway, and for other purposes. Under a head of 250 feet, hydraulic jets with nozzles of 11 inches have been used to wash away the loose formation and accumulation of sump above the bedrock upon which the dam proper is being built, and have greatly facilitated progress. Much of the gravel thus secured has been utilized for construction material. To remove the gravel, elevators have been placed in service.
This canal, which is twenty miles in length, is one of the permanent works. Most of it is lined with concrete, and it includes several extensive tunnels, aggregating nearly 10,000 feet in length. It is carried over gulches by concrete pipes. The dams used for diverting the water to the power canal represent a cost of $\$ 40,000$, while the canal, including its pressure pipe and auxiliary structures, represents a total of nearly $\$ 1,000,000$. When all of the generating sets to be installed are in service, it will develop no less than 4,400 horse-power, which will be used for pumping water for irrigation.
A cement mill has a capacity for manufacturing 10,000 barrels a month when the machinery is working to its complete capacity. Much of the raw material necessary for cement has been found in abundance locally, and cement is manufactured at a cost of $\$ 2.25$ per barrel, less than half the cost of cement from the outside. The mill is operated entirely by electric power, as already intimated, the current being transmitted from the power house at the end of the canal.
Work upon the construction of the dam proper has been in progress only since September 20, 1906, owing to the immense amount of labor required in making the excavations to bedrock. When it is remembered that the height of the dam above the rock is 284 feet, the length at the bottom 235 feet, and the length at the top 1,080 feet, the time and labor required in preparing the site for the wall do not seem excessive. The work is what is technically known as a masonry arch dam with a gravity section arising from the foundation. It wili range in thickness from nearly 175 feet at the bottom to 16 feet at the top-sufficient to provide a highway for vehicles.
As soon as the blocks of stone are quarried, they are carried to the site and placed in position by boom derricks, while the aerial tramway conveys the cement in which they are set. An enormous quantity of rock, set in concrete, is required for filling in behind the face, and bowlders as large as can be handled are used. Nearly 400,000 cubic yards of masonry will be placed in position when the dam is completed, and the reservoir which it will create will form a lake $251 / 2$ square miles in area. As soon as the dam is finished, the cement mill and other construction plants will be stripped of all machinery which can be profitably removed, and the buildings abandoned, as they will be many feet under water when the reservoir fills.

* Scientific American, December 16, 1905.

An Open Section of the Power Canal.
A Gre

The Permanent Power Station Which Will Furnish Power for the Irrigating Pumps.
One of the Entrance:

A General View of the Granite Reef Diversion Dam.

The Stones of the Dam ; Their Great Size is Indicated by the Men at Work.

Power Canal.
The Dam as Seen from Above the Pòwer House.

The Stream to be Impounded; a View in Flood Time.
RIGATION CANAL.

An interesting feature of the work is an outlet, which has been constructed through the walls of the canyon a distance of 500 feet. This tunnel will not only carry off much of the surplus water, but also the silt which is brought down the channels in such large quantities during flood height. The question of removing this silt was solved by the engineers by planning the tunnel in question. The current through it will be so rapid, that it is believed the sediment will thus be removed without difficulty. The tunnel con tains no less than six gates, which will be required to regulate the flow of the water. They are built to be operated under a pressure of 100 pounds to the square inch, and including their operating mechanism will weigh in the aggregate nearly 400 tons.
Considering the extent of the project, rapid progress has been made. On June 1 of last year but three per cent of the construction had been completcd. At the end of 1907, however, the great wall had reached a point nearly 20 feet above its base and extending from side to side of the canyon. This work has been accomplished in a climate where the temperature reaches 120 deg., and operations have been carried on during the intense heat of the summer.
The diversion dam to be constructed 30 miles from the main dam is almost as important in connection with the reclamation of this section of Arizona as the construction at Roosevelt. Work has been in progress upon this for over a year. It is intended to keep the water of the Salt and Verde rivers at a certain level, and will increase their depth to the extent of 15 feet over the present low-water average. An idea of the dimensions of this dam can be gained when it is stated that it will be nearly 1,300 feet long, and will require 40,000 cubic yards of concrete before it is completed. A distributing canal is being built in connection with regulating gates, which will have a flow of at least 2,000 feet per second. This is located upon the north side of the dam. Another canal with the capacity of 1,000 feet per second is being constructed on the south side. The site of this operation is at what is known as Granite Reef, about thirty miles from Phœnix. It will furnish the water which will be served by the electric pumps already referred to, the service covering 40,000 acres.

The Electrolytic Purification of Sewage.

The installation has just been completed at Santa Monica, Cal., of the first electric plant for the purifica tion of sewage to be erected in the United States. The system is known as the Harris magneto-electrolytic process. It will be ready for operation just as soon as the necessary outfall pipes can be laid. The plant consists of two wooden tanks, each thirty feet long two feet wide, and eighteen inches deep. Each tank is equipped with ten sets of electrodes and ten electromagnets weighing three hundred pounds each. The electrodes are fitted with steam pipes for use in cleansing them. The electric energy is supplied by a direct current generator of special construction, equipped with a notor and separate exciter. A generator of this pattern is required to obtain perfect results, as the requisite is low voltage and high amperage, in opposition to the requirements for power and light.
The plant is located in a concrete chamber which is equipped with two compartments sealed tight, into which the sewage is pumped from the receiving basin. The purpose of these chambers is to secure an equalized flow through the electric tanks, and their combined capacity is one million gallons per day. After leaving these sealed chambers, or forebays, the sewage is allowed to flow into the tanks in sufficient volume to cover the electrodes and the magnets to a depth of three inches. The current is turned on as the sewage flows steadily over the wires and enters the outfall pipe. By that time it is supposed to be odorless and perfectly harmless.

What actually happens as the sewage passes through these charged tanks has not been scientifically determined; but experience has demonstrated that as the electric energy required for the operation of the plant is held, the effect is to immediately release the hydrogen, and as it leaves the water the oxygen is released. The constituents of water being oxygen and hydrogen, the releasing of the latter precipitates all of the inorganic matter, and the releasing of the former forms an ozone, which is responsible for the burning or oxidation of the organic matter. The result is that the sewage becomes immediately purified, and if passed through sand or other filter appears as pure sparkling water.

Experiments have demonstrated that the cost of the electric energy required for the operation of the plant will not be in excess of fifty cents for each million gallons treated. The plant is being installed by ${ }^{\prime} \mathrm{C}$. P . Chandler and L. G. Lautzenheiser, who have contracted to operate it during a period of sixty days to the satisfaction of the city council. At the end of that test period, should the system prove to be a success, the city will purchase the plant, the approximate cost of which is $\$ 12,000$.

THE GERMAN BATTLESHIP "BRAUNSCHWEIG." by prank c. perkins.

There is no doubt that the German warships are, in workmanship and efficiency, the equal of any in the worid. In design they are what might be called strictly conventional. The later battleships are of the standard type, whose genesis may be said to date from the appearance of the ships of the "Royal Sovereign" class of the British navy. The distinguishing type features are the mounting of four heavy guns in turrets, one forward and one aft, supplemented by a numerous secondary battery of guns of 6 -inch caliber, distributed either in a central casemate redoubt or emplaced in secondary turrets.
The "Braunschweig" is one of a class of five vessels completed between the years 1904 and 1906. The others are the "Hessen," "Preussen," "Elsass," and "Lothringen." She measures 410 feet on-the waterline, 72 feet in breadth, and her mean draft is 2534 feet. Over all the vessel measures 430 feet. She has an ample freeboard of about 20 feet throughout her entire length. The waterline is protected by a continuous belt of armor, increasing
in thickness from 4 inches at the ends to 9 inches amidships. Associated with this is a 3 -inch protective deck, which slopes at the sides to a junction with the lower edge of the waterline belt.

The 11-inch guns are mounted in turrets of 11 -inch armor, above barbettes of the same armor thickness. Between the main barbettes, the lower deck is protected by 5 inches of armor, and the main deck by 6 inches. The 6 -inch armor wall is pierced by ten casemates, five on each beam, in which are emplaced ten 6.7 -inch 40 -caliber guns. On either beam, also, are two small turrets protected by $63 / 4$ inches of armor, in each of which is emplaced a 6.7 -inch gun. For protection against torpedo-boat attack the ship carries twelve 24 -pounder guns of 3.4 -inch caliber. Forward, and firing through the forefoot of the vessel, is a submerged 17.7 -inch torpedo tube, and there are two other

Sick Bay on the German Battleship "Braunschweig," Showing the Swinging Cots.
losing their color, provided the specimens are given a previous treatment, according to the author's process. Other methods which have been brought out for this purpose appear to modify the histologic structure and also the reactions with certain coloring substances, and besides their use is expensive from the large amount of glycerine which enters into their composition. M. Fornario had occasion to observe that specimens which had been preserved in formol and had lost all of their color, would take a bright color and almost like that of a fresh specimen when they were placed for a short time in a solution of picric acid to which acetic acid is added. He finally arrived at the following method of treatment: The specimens, not washed, or washed in a $0.71 / 2$ per cent salt solution, are placed in a 4 per cent solution of commercial formol, and after 48 hours they are placed in 90-deg. alcohol for 24 hours. One-half of this time will answer in the case of small animals or fragments of organs. Then the piece is placed in fresh $90-\mathrm{deg}$. alcohol, into which is dropped a variable quantity of a solution composed of 100 parts saturated solution of picric acid and 4 parts concentrated acetic
vertical triple-expansion engines, driving three propellers. The designed horse-power for a speed of 18 knots is 16,000 . The "Braunschweig" carries a normal supply of 700 tons of coal, and a maximum supply of 1,600 tons. Two hundred tons of oil, also, are carried in the double bottom. The radius of the vessel is 5,500 miles at 10 knots. She can do about 3,000 miles at 17 knots, and over 2,000 at her full speed of 18 knots an hour. The equipment throughout is of the highest class, and, as illustrating this, we present a view of the interior of the sick bay, showing the swinging cots, the excellent means of ventilation, and the sanitary furnishings.

Preservation of Anatomical Specimens.

According to the researches of G. Fornario, anatomical specimens can be preserved in alcohol without
acid. The primitive color of the specimen reappears in a few minutes. The quantity of the latter solution to be added depends on the size and thickness of the piece, and does not exceed one per cent. In this solution the specimens can be kept indefinitely, but it is better to take them out after a few days and preserve them finally in strong alcohol. The color remains bright and does not seem to be modified with time.

The record of muscular strength was held until re cently by two professional athletes, named Viard and Empain; who lifted with one arm weights respectively of 244 and 250 kilogrammes (about 538 and 551 pounds). This record has now been surpassed by a M. Verhaert, not a professional athlete, but the director of a Belgian glass factory, who raised a weight of 253 kilogrammes (about 558 pounds).

THE : "JUNE BUG" AEROPLANE-A COMPETITOR FOR THE SCIENTIFIC AMER̉ICAN TROPHY.
About two months ago we illustrated the second aeroplane to be produced by Dr. Bell's Aerial Experiment Association. This machine made a number of successful flights, the longest of which was made with Mr. G. H. Curtiss acting as aviator, and in the course of which a distance of 1,017 feet was covered. The chief novelty of the second machine consisted in the application of movable triangular tips to the ends of the arched aeroplane surfaces. These tips were pivoted
to 1,266 feet, the aeroplane, which has been christened the "June Bug," on June 25 made the two longest flights that have ever been publicly accomplished by a heavier-than-air flying machine in America at any accessible place. These flights were both in a nearly straight line. The distance covered in the first flight, which was made in the morning, was 2,175 feet in fortyone seconds. This corresponds to a speed of 36.17 miles an hour. In this test, the aeroplane rose to a height estimated at about 40 feet, which is quite a considerable height for one of these machines, being
air propeller. The construction of the machine in this manner is a great advantage, since it can readily be taken apart and packed for transportation when desired.

AN AERONAUTIC SOCIETY FOR INVENTORS.

A new society to be known as "The Aeronautic Society" has just been incorporated in New York State for the purpose of exploiting aeronautics in general and the heavier-than-air flying machine in particular. This society will take the place of the Aviation Sec-

Side View of the " Jane Bag " Aeroplane.
on their forward edge and connected by a cord to the body of the aviator, so that, when making a turn, by inclining his body toward the center of the circle, he would give the inner tips a greater angle, and thus tend to turn the machine by making more resistance at the inner end. The aeroplane had pneumatic-tired wheels and was fitted with a horizontal rudder in front in a similar manner to most of the foreign aeroplanes. It was also fitted with a rectangular box tail which, however, was much smaller than the tails ordinarily used on the Farman and Delagrange aeroplanes. The motor-an 8-cylinder air-cooled Curtiss-was mounted in the center of the aeroplane just back of the aviator, and it carried a six-foot propeller on the rear end of its crankshaft. This second aeroplane was demolished when a flight was attempted in it by one of the members of the association. The construction of a third machine was immediately started. This was recently completed, experiments having been made with it last week.

Our illustrations show this machine on the ground and when in flight. The changes which have been made in the general outline and design are few, the chief of these being the fitting of a rather smaller tail and the arching of the surfaces of this tail from end to end in the same manner as was done with the main surfaces. Another new point in the design is the construction of the surfaces so that they can readily be detached from the main central chassis, a view of which is shown in one of the illustrations. The for-wardly-projecting members of this chassis are no
about four times as high as they usually fly abroad.
In the afternoon, another flight was made with Mr. Curtiss again acting as aviator. In this, the seventh flight the machine had made, and the eighth time Mr. Curtiss had been in the air in an aeroplane, a dis tance of 3,420 feet was covered in a slightly-curved course in exactly one minute. This is a rate of speed of 38.86 miles an hour. Thus, in his eighth flight and his second or third attempt at flying a kilometer (3,280 feet) in a straight line (which is the distance required in the first contest for the Scientific American trophy), Mr. Curtiss succeeded in covering 140 feet more than the required distance over a slightly curved course, which certainly speaks well for the machine and for its aviator. Notice has been filed with the Aero Club of America for a trial for the trophy. The Fourth of July aind Hammondsport, N. Y., have been appointed as the time and place for the trial. It is to be hoped, also, that this machine will be developed sufficiently so that it can fly in competition with Delagrange and the Wright and Herring aeroplanes in August, when it is proposed to have a competition for the trophy either in the vicinity of New York or Washington.
As we have no particulars of the conditions under which these two long flights were made, we can only say that according to report the aeroplane surfaces were thoroughly varnished and made airtight before the flights were attempted, and that this varnishing of the surfaces increased the lifting capacity of the aeroplane and made it possible to fly with less power

Front View, Showing Movable Wing Tips.
tion, which the Aero Club of America started to form last spring, but which was subsequently dropped. The main idea of this new society is to help the worthy inventors to try out their ideas in a practical way. It is proposed to have a suitable ground within a convenient distance of New York city where experiments in aviation can be made; to furnish a gasoline motor for the conducting of such experiments; and to aid the members of the society in every way possible to test their ideas. Full particulars can be had from the Secretary of the Society, at 2 E . 29th Street, New York.

The society expects to bring Leon Delagrange to America, about the 20th of August, and to have him make a series of flights in the vicinity of New York. It is believed that this will stimulate aviation to a.great extent in this country.

Aeronautical Notes.

On June 22, at Milan, Italy, M. Delagrange circled nine times around the Piazza d'Armi in $161 / 2$ minutes. The distance covered was $91 / 2$ miles, and the rate of speed $341 / 2$ miles an hour. The following day he remained in the air 18 minutes, but touched the ground slightly while making one of the rounds. After some further flights at Turin, it is expected that he will visit America.

The huge new Zeppelin airship, which is 426 feet long and 43 feet in diameter, and which has an envelope constructed of thin sheet aluminium stretched upon a rigid framework, made a successful trial trip on June 23, for the purpose of testing its new steering

The Central Chassis with the Planes Detached.
The horizontal rudder is carried on a forwardly-projecting bamboo frame. The motor and propeller are
back of the aviator. The center part of the upper plane is seen at the top.

The Aeroplane in Flight, Just After Leaving the Ground.
Note the cloud of dust rassed by the machine; also its apparent stability.

THE "JUNE BUG"-THE THIRD AEROPLANE OF THE AERIAL EXPERIMENT ASSOCIATION.
longer covered with cloth. They simply form a bamboo skeleton frame which supports the horizontal rudder. This rudder is cut away in the center so that it can move on either side of the frame. A long rod is attached to its forward. edge at right angles to the surface of the rudder and connected by wires to a lever for the purpose of operating it. A steering wheel is used for working the vertical rudder in the tail at the rear, while the movable tips connected with the aviator also assist in steering.

After several preliminary flights ranging from 456
than had been required hitherto. In the first long flight the machine is said to have tipped sharply to one side shortly after it rose in the air, but the aviator was able to right it again by means of the movable wing tips, and from then on he managed to keep it level. No difficulty was had in rising from the ground after running along on it a distance of about 100 feet.
The center part, or chassis, of the aeroplane, which is shown in one of our photographs, developed a speed of 45 miles an hour when driven along the road by the
gear. The airship remained in the air 2 hours and 13 minutes, maneuvering above Lake Constance and several of the towns on its shore. The steering apparatus worked perfectly, and Count Zeppelin was quite satisfied with it. After a few more tests have been made, it is expected to make a long flight.
The new 328 -foot French military dirigible "La Republique" made its first flight on the 24th ultimo. The flight lasted 35 minutes. The airship traveled at a height of some 300 feet, and carried a dead weight of 2,800 pounds.

RECENTLY PATENTED INVENTIONS. Pertaining to Apparel.
Shoe-sole attachment.-J. F. Mitchell, Topeka, Kan. The invention embodies in its ing heel, the same being designed to neatl spring heel, the same being designed to neatly
conform to the under surface of the foot, conform to the under surface of the foot,
whereby the pressure brought to bear thereon whereby the pressure brought to bear ther
will be substantially uniformly distributed.
COLLAR-SUPPORT.-M. J. Topr, New York, N. Y. Mr. Topp's invention relates to collar supports and the like, his more par-
ticular object being the production of a type ticular object being the production of a type
of stay for the purpose of stiffening the collar. of stay for the purpose of stiffening the collar.
It further relates to means whereby the stay is rendered more easily extensible.

Electrical Devices.

Spark-plug Protector.-C. H. Stuart, Newark, N. Y. The object in this case is to
provide improved means for protecting spark provide improved means for protecting spark
plugs on internal combustion engines from plugs on internal combustion engines from
rain, spray, or moisture which would tend to rain, spray, or moisture which would tend to
short circuit and prevent a proper spark. It short circuit and prevent a proper spark. It
is especially useful in connection with spark is especially useful in connection with spark
plugs used in boats, automobiles, and in other exposed positions.

of Interest to Farmers.

CATTLE-GUARD.-E. J. York, Houston, Tex. One purpose here is to provide a guard
that can be readily and quickly applied to any track, and which does not require in its application any extra timbers, ties, or excava-
tion, and further to so construct the guard that it can be easily dismantled and replaced when the track is to be repaired
Plow.-W. H. Goldtrap, Cotulla, Tex. This plow is for use more particularly in
growing onions and other vegetables, and the growing onions and other vegetables, and the
like. The wheels are adjustable to the width like. The wheels are adjustable to the width
of the rows to be plowed, and the contrivance of the rows to be plowed, and the contrivance
presents handles by means of which the plowpresents handles by means of which the plow-
shares can be moved into inoperative posi-BEET-HARVESTER. - C. M. McCormick, of use in removing the tops from the roots, of use in removing the tops from the roots,
dig the latter from the ground, and convey them to a hopper whence they are removed
to a wagon or the like. The object of the to a wagon or the like. The object of the
inventor is to provide a harvester, which is provided with an efficient plow for digging the roots without injury thereto.

Of General Interest.

TURPENTINE-SCRAPER.-G. S. Petteway and L. W. Duval, Ocala, Fla. The object of
the improvement is the provision of means for the improvement is the provision of means for
scraping pine trees in order to secure the accumulated resin and pitch, and to avoid the loss resulting from the scattering of the material on the
cheaply made.
TRUNK.-W. G. Winans, Spokane, Wash. In the use of the ordinary trunks, it is necessary to provide trunks of different sizes for different purposes. By Mr. Winans's improvement any number of sections may be employed,
and the immediate sections supplied as necesand the immediate sections supplied as necesunited directly when a small trunk is deunited
sired.
REINFORCING-BAR.-G. N. Wilson, Philadelphia, Pa . The bar is imbedded in concrete Cor the purpose of strengthening the same. If
made of steel or iron, its coefficient of expansion is substantially the same as that of concrete. Various bent portions present either are a plurality of projecting portions both and these are alternated with the strengthening and these are alternated with the strengthening
portions, displacement of the bar in any direction is impossible
expansion-bit.-C. A. Butler, Bartlesfille, Okila. The bit is more especially designed ventor's object primarily is to provide a bit which is adapted to drill a hole of sufficient diameter at a single operation for receiving the well casing, and to permit of the latter being inserted in the hole as the drilling proceeds.
ENVELOP.-C. B. Stillwell, Jacksonville,
Fla. More particularly the invention relates Fla. More particularly the invention relates
to a construction adapted to facilitate the open to a construction adapted to facilitate the open
ing of the envelop after it has been sealed. The ing of the envelop after it has been sealed. The
envelop is so constructed as to present a tab by means of which an opening may be torn ready insertion of the finger, a lead pencil, or the like, in opening up the envelop along one
SCREENiNG APPARATUS.-EE. H. NUtTER, Telluride, Col. This apparatus is for use in screening and separating crushed ores, broken
stone, ground cement, and similar substances into grades of varying degrees of coarseness One object of the invention is to provide a movable or a rigid screen, provided with means for forcing impulsive air currents or curre
of other gases than air against the screen. Crate.-F. L. Mary, Chehalis, Wash. purpose here is to provide a crate especially adapted for the shipment of poultry, but it may
be used for other purposes, and to so be used for other purposes, and to so construct
the crate that it can be quickly and conthe crate that it can be quickly and con-
veniently folded flat so as to occupy but little venien tly folded flat so as to occupy but little
room and be locked in folded position, and so room and be locked in folded position, and so
that further, the crate can be as quickly set up
for use.

LETTER-HOLDER. - H. Heintz, Elkton,
S. D. The invention is an improvement in S. D. The invention is an improvement in
devices for tying or binding together bundles of letters or parcels of any kind and has for an object to provide a simple construction
which may be readily utilized for securing which may be readily utilized for securing
bundles or letters or other parcels varying in bundle
size.
hand-stamp.-T. J. Robison, Curwens ville, Pa. The purpose of this improvement is hand stamp, which adapt it for special service for stamping dates or other printed matter in books used by beneficial societies, wherein weekly accounts are kept, and that is also avai able for general use as a dating stamp.
PEN-SUPPORT.-H. Priester, New York, N. Y. This attachment is adapted to be se cured to fountain pens or the like, and com-
prises supporting means so designed as to be prises supporting means so designed as to be
readily folded to a position adjacent the pen readily folded to a position adjacent the pen
body while the latter is carried in a pocket body while the latter is carried in a pocket
or is being used, or to be moved to a position an angle to the general direction of the pen body to support the body with the pen poin book, or other surface.
SChOOL DESK and SEAT.-J. E. Ament, Indiana, Pa . A purpose in this invention is to provide a combined school seat and desk, of such construction that the seat together with any manner interfering

GROUND-ANCHOR FOR POSTS OR POLES -E. R. Hobbs, Buhl, Idaho. The construc tion for a ground anchor affords an inexpen sive device that may be readily buried in the ground and caused to automatically disten the flukes thereof as it is forced downward,
thus inserting the plate-like flukes into the solid earth laterally, and effecting a very reliable, s
therewith.
BOTTLE-STOPPER.-E. H. Speece, Beatty, Nev. In use when the stopper is placed a
spherical elevation engages the inner surfac of the neck and the neck portion of the stop-
per closely encircles per closely encircles the neck of the bottle,
the annular shoulders being received in depressions that maintain the stopper in posi tion. To remove the stopper it is grasped a the upper part and drawn upwardly. This pressure tends to loosen the edges of the stop-
per neck and also the spherical elevation from the interior of the neck.
loose-leaf binder.-F. h. Caump, Los Angeles, Cal. The device readily binds tobe readily removed without disturbing the rest and also for temporarily binding books, periodicals, magazines, etc. The aim is to provide
simple, cheap, and efficient means for securely simple, cheap, and efficient
binding the articles named.
DRIVING-HEAD.-F. P. Freeman, Dominion, Yukon, Canada. The head is particularly for employment in pipes in mining operations and driven into the ground to admit steam
for thawing earth, gravel, and the like, the for thawing earth, gravel, and the like, the
object being to provide a head that may be
removably removably and adjustably placed on a pipe
and that when in position will rigidly the pipe during the driving.

Hardware.

BENCH-DOG.-C. H. Krogh, Lincoln, Neb.
BENCH-DOG.-C. H. Krogh, Lincoln, Neb. In practice the groove in the bench is dethe carrier so that only the dog will project ing device is lowered to set the dog in engagement with the work.
LINK CONNECTION.-A. C. Dowse, Taylor Pa. - In this patent the invention is an im-
provement in link connections adapted for use in any relation where a secure but easily detached line, chain, or such other device, is
desired, such for example, as in harness, vehidesired, such for example
cles, on shipboard, etc.

Heating and Lighting.

GAS-VALVE.-A. Jarmolowsky, New York, N. Y. In this instance the invention refers
to gas valves adapted to be used with fixtures having a plurality of branches, each provided with an individual burner, and has for its predetermined number of burners by a single operation.

Household Utilities.

Household Utilities.
Stool.-C. A. Burns, New York, N. Y Each leg of the stool is provided with a succession of blocks hinged thereto and to each
other, each block having projecting portions at opposite ends fitting into counterpart portions of adjacent blocks, and a seat adapted to rest directly on the legs or rest on the
corresponding blocks of the legs. The improvement is more especially designed for piano stools.
WINDOW.-S. U. Barr, New York, N. Y. The object of the present invention is to pro-
vide a window, completely dustproof and air vide a window, completely dustproof and air tight, and arranged to permit easy opening
and closing of the sashes without danger nticking, and to allow convenient removal of a sash for repairs or other purposes and without requiring detachment of the pane or other as described in Letters Patent of the United

Fresh-air inlet.-J. L. Fruin and J. J.
Crotty, New York, N. Y. Crotry, New York, N. Y. The improvement low of fresh air, from the street, through pipes and fittings of a plumbing system comined with means preventing the expulsion at ach fresh air intake of foul air and gas due harges through the system.

Machines and Mechanical Devices.
HANDLE-LATHE HEAD.-O. W. Stith, Ada, Ohio. A cutter works with the timber rain without gouging it, and prevents tear the corners of the square blanks fed into the machine and a reducing bit takes the rounded material and reduces it to the largest diam-
eter of handle to be turned. A sliding collar eter of handle to be turned. A sliding collar
controls the operation of the finishing bit to better osuit the reception of end thrusts of the quare blank fed to the machine, and whereby and free control to the finishing bit
CAN CAPPING AND COMPRESSING MA CHINE.-H. L. GUENTHER, Ilwaco, Wash. The invention relates to machines such as shown and described in Letters. Patent of the
United States, formerly granted to Mr. Guenther. The present invention provides a machine wholly automatic in operation, and arranged for capping and compressing the heads on can bodies and double-seaming the flanges to render the can perfectly air-tight, without
the use of solder or other fastening means, the use of solder or other fastening means,
packings or the like, to permit use of can in packings or the like, to permit use of can in
packing food products. This inventor has patented another can capping and compress the former Letters Patent of the United States first mentioned. The object is to provide machine, arranged to automatically place a
can head in position on the can body, to crimp can head in position on the can body, to crimp
and compress the flanges of the can body and head, with a view to form an air-tight double seam without use of solder, packings or the viceable for packing food products.
Lathe-dog. - J. mcCarthy, Plainfleld, N. J. The object of the inventor is to pro of this tool, but which will have such a construction as will enable it to be used as a tool holder in performing certain lathe operations. An arrangement is provided that will oper
to feed the tool automatically to the work.
Plating-apparatus. - C. G. Backus New York, \mathbf{N}. Y. The invention relates to
apparatus used for electroplating articles and materials in large quantities. One object is to nable the plating operation to be continuous be added from time to time while the mechan ism is in motion, the finished charges being removed as rapidly as the plating is completed Another, is to render the apparatus automatic in its action, and especially to enable the charges to be removed without special atten-
tion of the operator and after they have been eposed to electrolytic action an adequate ength of time
SHUTTLE-MACHINE EMBROIDERY Frame.- H. Hochreutener, West Hoboken N. J. A purpose in this case is to provide a frame or one or a number of shorter pieces and to provide means whereby the changes in lengths of fabric may be simply and expeditiously made.
ADVERTISING APPARATUS.-W. J. SAWyer, The Gables, Wembley, Middlesex, England. The invention relates to apparatus for the dis-
play of advertisements and the like in the form more particularly of transparencies artificially illuminated, the principal object being to promay be exhibited automatically in succession he same space
hemp-brake.-F. O'Neill, Jr., Paris, Ky The improvement relates to machines for sepa
rating the flber from the hemp, flax, sea grass and the like, its principal object being to pro vide an efficient apparatus of this character. The hemp brake is entirely automatic in its action, and there is no danger in its use of
tangling or injuring the fiber and choking is tangling or injuring the fiber and choking
positively prevented. MACHINE FOR GATHERING COTTON-SQUARES.-K. S. Bunting, Moulton, Tex.
The machine is driven through the fleld with The machine is driven through the fleld with
the mouths of the branches of the supply pipe adjacent to the ground. The movement of th machine puts the fan in motion, creating
draft through the pipe, which picks up the draft through the pipe, which picks up the
punctured squares, and the current of air passes them through the fan casing and into the perforated container, from which the air escapes. The squares are forced out between
the rolls, which press and kill the eggs and insects.
ABRADING-MACHINE. - A. V. WALKER, provide a mass. The object in this case is to surfaces of wood-work means of which curved dered smooth, or finished, rapidly and easily and which is adapted for the application of the abras
surfaces.
MOLDING-MACHINE.-T. H. Keller and J. A. Hass, Lancaster; H. B. Keller, Phila delphia, and J. H. Keller, Lititz, Pa. This
invention relates to bread-making machinery and its object is to provide a shaping or mold
ing machine designed to give a desired prede termined shape to a lump of dough or a like material and arranged to render the material
homogeneous by pressing out any air or gases homogeneous by pressing out any air or gases
contained in the material, then forming it into contained in the material, then forming it int shape and maintaining the same during th subsequent rising and baking process, to precracking, and to provide the lump with cracking, and to provide the lump with
smooth exterior surface. This result is obtained by the provision of rolling devices for rolling a sheet of dough into a roll, one of the devices rolling the sheet in one direction and the other subsequently rolling the sheet in th opposite direction, to unroll the twist given to the sheet by the first rolling devic.
WASHING-MACHINE.-E. Eisemann, New York, N. Y. The inventor contemplates a ma chine embodying an endless belt movable within a tank containing the wash water and having
means for squeezing out the feathers applied means for squeezing out the feathers applied
to the belt as they repeatedly pass through the to the belt as they repeatedly pass through the
tank, together with means for rubbing the feathers transversely to the movement of the

BRICK-HANDLING MACHINE. - W. H年ancis, Cherryvale, and C. Francis, Inde Mr. W. H chine, the machine handled bricks in bulk, whereby a pile of bricks, stacked up in accor dance with a pre-arranged order may be picke without breaking bulk. The present invention comprises novel means for doing this same work.
WATER FLUSHING DEVICE.-G. H Holmes, New York, N. Y. One of the purflushing streets, so constructed that the hose is carried beneath a wheel-supported platform with the nozzle close to the ground at the forward end, and to provide means whereby the nozzle can be given a sweeping horizontal movement upon the arc of a circle to throw water over the greatest possible area, and also a rocking movement in a vertical direction to

Prime Movers and Their Accessories ENGINE:-J. Weisen born, Quincy, Ill. The
invention has reference primarily to internal invention has reference primarily to internal
combustion engines of the two-cycle type, and combustion engines of the two-cycle type, and
has in view the provision of an engine conhas in view the provision of an eng of all
struction by which perfect lubrication of struction by which perfect
working parts is effected. During the running of this engine, lubrication may be continued, a small quantity of lubricant passing into the circumferential g.
plete stroke of the piston.
COUNTER.-F. C. Howe, Globe, Arizona Territory. The invention pertains more particularly to counters used for ascertaining the piston strokes made by steam or explosive provide an efficient counter by means of which the total number of strokes made by a piston umber number
tained.
TWO-CYCLE INTERNAL-COMBUSTION engine.-H. S. Hart, Madison, Wis. One object of this inventor is to provide means, whereby a fuel charge is compressed by the is delivered to the working chamber of the next successive cylinder of the series. It is
very much lighter in weight than the engine very much lighter in weight than the engine of the same horse-power constructed along
customary lines, the reduction in weight being argely due to the elimination of the fly wheel nd all valves, springs, levers, and gears for

Railways and Their Accessories.
RUNNING-SWITCH AND GUIDE.-T. J. Driver, Holualoa, Hawaii. The improvement refers to elevated railways for the transpor-
tation of field products, merchandise and the tation of field products, merchandise and the
like. The switch and guide is arranged to permit an uninterrupted transportation over rehandling of merchandise at the point of diergence in the route, and thereby reducing the cost of operation to a minimum.
RAILWAY SIGNAL SYSTEM.-A. WILhelm, St. Johns, Ore. In this patent the invention relates to railway signal systems, the more particular object being to provide
for effectively signaling trains in a predetermined relation according to the condition of he track, the signal being controlled by move-
ments of the train and partially by will of an ments of
operator.

Pertaining to Recreation

DRUM.-A. D. Converse, Winchendon, Mass. The purpose of the invention is to
provide a construction of toy drum wherein he body constitutes a portion of the hoops the hoops being offset from the outer face of the body and made hollow of sheet material but having the appearance of being solid.
HOLDER FOR FISHING-TACKLE.-M. M. Schaney, Dubois, Pa. The holder is for use curely and without pressure or injury, but
cor may be easily and quickly detached, also a and compartments and supports for snelled hooks, minnow hooks or gangs, trolling spoon,
and artificial minnows.

RRESPONDENTS

(10799) H. Z. L. says: Which of the pairs of wheels, inner or outer, leaves the
ground when an automobile turns a sharp corner at high speed, under these conditions: (1)
Road level, (2) machine evenly balanced on both sides, (3) corner sharp enough to rais one pair of wheels. This question came up in
class, and as I said that the inner wheels left the ground, if any, I was laughed at by the rest of the class, including the professor. come to the highest court of appeal, so as t avoid all misunderstandings. A. In the cas
stated by you of an automobile rounding a stated by you of an automobile rounding
curve on a smooth level road, provided the wheels could not skid sideways (which is what
generally happens) the machine would be tilted upward on the base of the outer wheels as a fulcrum, thus lifting . the inner wheels centrifugal force acts on the center of gravity of the machine to project it horizontally out ward, which it cannot do, as we have presup-
posed that the wheels cannot skid. Therefore it must swing the center of gravity about the
base of either the inner or oute wheels as a fulcrum. Since the center of gravity of the fulcrum. Since the center of gravity of the
machine is above the base line of the wheels, and since centrifugal force tends to project it outwara, it is impossible for said center of
gravity to move about the base of the inner wheels as a fulcrum without causing the outer wheels to sink into the ground. Consequently, the base of the outer wheels must act as a ful crum and the inner wheels be raised in the air as there is nothing but the force of gravity to
prevent them from so doing. In the case of prevent them fuspended tho doing. is the case of the center of gravity would be below the base ine of the wheels, and it could not move cen trifugally around the base of the outer wheel to sink into the track. Consequently, it would
have to move about the base of the inner have to move about the base of the inner
wheels as a fulcrum, and the outer wheels
(10800) J. V. asks: Will you kindly sunrise? Is it when the disk of the sun is first seen above the horizon or when the entire disk is above the horizon? The same would apply also as to the setting of the sun. A. Th times of sunrise as given in ordinary almanacs
are the local mean times when the upper are the local mean times when the upper
edge or limb of the true sun, as corrected for refraction, is in contact with the sensibl horizon of the place, or of any place of equa
latitude. This is Todd's definition as given in his "New Astronomy," a valuable book which we can send for $\$ 2$.
(10801) V. E. M. asks: 1. Two cars start from a power-house on an electric road,
the last car using 1-3 of the power; how does the current get to the car ahead after som Please explain in full. A. The E. M. F. rent for all the cars which will be on a sectio of the line at one time. Feeders run from th bus bars of the station to the beginnings of the sections of the line, and each feeder en
ters and supplies current to its own section If the motors require 500 volts the E. M. F.
at the dynamo will be perhaps 10 per cent drop of the line. A booster allow for keep the pressure at the remote ends of the ines up to the necessary point. As to the car ahead gets current when a car behind taking current also, there is no difficult in understanding this if you understand how a house further along the street can get water while you are drawing water in your house
from the same main in the street. The main rom the same main in the street. The main
is large enough to supply all the houses which re connected to it, and so is the feeder for a is the method of making an Edison Lalande cell (fluid battery)? A. The negative plate of the Edison primary battery is made from copper oxide prepared by compressing it. It canme made without heavy presses. The
ther parts of the cell have no particular method of manufacture, different from making
other zinc plates by casting them. The other zinc plates by casting them. The
caustic potash is the potash of commerce. (10802) W. T. J. asks: A person would sit on a chair and two people stand on either
side. Then they would all take three deep breaths simultaneously. At the third breath the persons on the sides placed two fingers
under the knees and arms of the one in the under the kneess and arms of the one in the
chair, and while inhaling raised the one in the chair fully five feet off the floor without any effort whatever. This was done to half a
dozen different people, and as some of these weighed 150 pounds, it seems impossible to account for it. A. We have stated our view
of the feat of lifting a person while inhaling of the feat of lifting a person while inhaling
breath or otherwise preoccupied, in answer to Query 8856 in Vol. 88 , No. 9 , to which we
would refer you. A_{S} the writer used to lift would refer you. As the writer used to lift
more than 100 pounds with his little finger when a boy, he does not think it an impossible eat to lift 75 pounds with two fingers of man weighing 150 pounds in the manner you describe. The four girls who lift a lady weighing nearly 200 pounds only lift 50 pounds each, and this again is not a very heavy weight mind by breathing in unison and the intent ness upon the effort of lifting at the same in-
stant as the rest enable one to do much more stant as the rest enable one to do much more
than if not so preoccupied.
(10803) J. E. G. asks: If $1 / 8$ cubic inch of rifle powder were confined in a cham-
ber of 1 cubic inch square and ignited, what vould the pressure be on each of its six sides Vould the pressure remain any length of time which would be produced in a rifle chamber if $1 / 8$ of a cubic inch of powder were ignited in quantity of gas would be generated, but the pressure of this gas would depend upon its emperature, and the maximum temperature which is attained in such circumstances depends on the rate of combustion and the character of
the chamber in which it is confined; so that is impossible to form any accurate estimate of it. If the chamber were airtight, the rated gas cooled. After it was cooled to the temperature of surrounding objects, the the perature would remain constant, and the pressure of the confined gas would then remain constant. It is roughly estimated that gunpowder al volumed expands to 2,600 the the pressur in the problem you give would be about 325 atmospheres, or approximately 4,800 pounds
per square inch.
(10804) C. H. asks: 1. I have a quan tity of No. 16 copper wire in pieces of from
2 to 3 feet in length; would it do to wind the rmatures and field magnet described in Scien ific American Supplement No. 641, if the A. If a good soldered joint is made you can ng a field or armature. These joints will however, be larger than the single wire and will, if, there are many of them, cause the
winding to be more or less irregular, and unightly. A neat job cannot be made with splices in the wire. 2. Why is the sodium
salt better than the potassium salt for use in bichromate cell? A. Sodium bichromate is easily dissolved in water, cold or hot. Potas
sium bichromate requires hot water to it to sufficient strength for battery use. When sulphuric acid is added to the potassium bihromate solution an alum crystallizes out
pon cooling, and crystals are liable to form in the cell also. Neither of these things occurs with the sodium salt. Chromic acid
is now to be procured from dealers in chemical and is to be preferred to either of the bi hromates
(10805) C. L. V. asks: Please explain n your Notes and Queries column why a dispassed you by another person, in a house whicl is wired for electric lights. I have noticed
this a number of times in this house, but never in any other. A. An electric charge is easily generated in cold, dry weather by walking along a woolen carpet, especially if one scuffs
the feet a little on the carpet as he walks In this way one may light the gas without a match by presenting the tip of a finger to the gas jet. A spark will pass from the finger
to the tip of the burner, and a slight shock to the tip of the burner, and a slight shock
may be felt. It is obvious that the same shock
may be given to another, by reaching out the
hand to him. A piece of metal is not needed, nor is it necessary that the house should
electric lights in it. It can be done anyw
(10806) C. M. F. writes: We wish to build a ferryboat for crossing a slow-running (fresh) stream, the Bolf River near here, and wish your charges, if any, for either a plan or
specification which will enable us to build it so specification which will enable us to build it so substantial. We plan to pull it across by mean of a slack No. 10 iron wire. The distance across is about 100 yards. This is a hardwoo country with plenty of oak and gum at our
hand. It must be about 18 or 20 feet long and hand. It must be about 18 or 20 feet long and carry 5,000 pounds (a team and load). A. We
would suggest your hauling the boat across the would suggest your hauling the boat across th
river by one of the arrangements shown in th sketches. Have the boat supported (i. e, kep ing block attached to the boat running on

fixed cable fast to posts in the banks, and hau to posts in the banks and with two or thre turns passed a round the drum of a slow hand power winch on the boat, or double (endless) running through a pulley on one bank and around the drum of a winch on the other, the bight being kept fast to the boat. The operato could travel with the boat with the forme arrangement, or remain on the bank with th plans and directions for building such a ponSupplement No. 25, of which the scow plan could be easily modified as regards dimension for the size of pontoon you require.
(10807) I. M. K. says: Will you please tell me the difference between what Lodestone is magnetic iron ore which has the property of coming to rest pointing north and south, as the magnetic needle points, and thu guiding the voyager or traveler on his way. It is not spelled load, to carry, but lode, to lead
or guide. All magnetic iron ore is not mag that is, much magnetic iron ore is not mag
(10808) R. T. D. asks: In the March 21 number of the Scientifle American, query
10687 , W. S. asks for a cheap non-conductor of heat. The answer is a vacuum. 1. Would net? And does it mean just a dead air space A. While a vacuum is the most perfect non practical method of insulating a refrigerator A dead air space filled with sawdust, with wood for the outside covering, is far preferable since the wood is itself a non-conductor of hea and the space between the outer and inner of the box. For small refrigerators a meta of is ordinarily used on the inside, because metal will not absorb water and odors and can ing pipes carrying cold brine from gettin frosty and sweating? Have covered them with paper and cloth, then painted them with plas ter of Paris, and over that a coat of minera paint. But they still sweat. Would paraffin to apply? A. You cannot prevent pipes from sweating. The moisture comes from the air of
the room in which the pipes are, and not from
the pipes. It is condensed on the pipes becaus they are colder than the air of the room, just
as dew forms on the grass in the evening 3. Is there any cheap way of recovering salt from brine? A. Salt may be recovered from brine by allowing the brine to evaporate in th (10809) will cost nothing.
(10809) I. L. C. says: Will you brief ly explain to me how ordinary series stree arc lamps are tested to determine their candle
power? Or tell me where I will find detailed power? Or tell me where I will find detailed
instruction in this matter? A. The candlepower of an arc lamp may be measured in The mean horizontal candle-power is the aver age of all horizontal measurements. The mean hemispherical candle power is measured at al
directions and angles below the horizontal, thus giving the mean value of the light sen down from the lamp. The mean spherical can-
dle-power is the average of measurements at all angles above and below. It is therefore the average candle-power in all directions. Th maximum candle-power is the greatest candle below the horizontal direction, usually 40 deg an arbitrary rating. A lamp using 450 watt gives 2,000 candles, and one using 300 watts
gives 1,200 candles. We can supply you with gives 1,200 candies. We can supply you with
Stine's "Photometric Measurements," with
especial reference to arc and incandescent
lamps, price $\$ 1.75$ by mail.
(10810) J. L. says: I have an electric light outfit which I made, using a knife ight, using for a carbon plain battery carbons, nd apart, and a move the points together C. P. lamp. 1. In throwing in the switch, the nd then burn out one of the fuse plugs; there is no short circuit anywhere, so what do I ith your reostat or what? A. The trouble that your arrangements he line, and blow the fuse. An open arc light requires 50 volts. Any more than this must be isposed of by a rheostat or other device. If
the line voltage is 110 , you will need about the line voltage is 110, you will need about
5.5 ohms of No. 12 wire, iron or German silver What is a Leyden jar? Will it supply power for one of these lamps, and how do you make one? A. A Leyden jar is a glass jar coated half way from the bottom to the top. It does not generate electricity and cannot light a
(10811) O. S. D. says: In your note and query department of May 9, under Query 10748, information was asked regarding the fact that a little fat, butter, cream, or any-
thing of that kind dropped into a kettle of boiling maple syrup would prevent its boiling over and the answer was that the effect of the
grease was the same as the effect of oil grease was the same as the effect of oil on
water, which prevented the breaking of the waves. I do not believe the party who anWhen the syrup boils up it boils large bubbles, which will very quickly rise to the top of the kettle and run over, but as quickly as the grease touches the surface these bubbles immediately break up, and instead of the large nubbles that appear before there are a large
number of very small bubbles which break uickly and do not rise. My understanding is that the small amount of grease serves to weaken the film of the bubble and make it answer. Will you look this matter up further? A. We regret to be obliged to shake your belief hat the writer of the note upon the use of oil in boiling maple syrup had never seen the phenomenon described, but the fact is that he did the trick more than fifty years ago. Many the bubbles. He did not understand it then He is quite sure that he does now. There is no doubt whatever that your statement is correct that the oil weakens the film of the syrup and thus permits the steam from the
water to pass off more readily. The super ficial viscosity off more readily. The super ugar is in c. g. s. units 3.067 , while that of ard oil is only 0.146 . The figure for water is The action of oil in preventing the breaking of waves is due to its increase of surface vis cosity; in the prevention of foaming its effect is produced by the reduction of surface vis-
cosity. The effect is the same, the mode of producing that effect is different
(10812) R. S. asks: I am interested in lightning rods, and should be glad to have regard to same, and also answer the following Would a $1 / 2$-inch seven-strand galvanized iron cable hold right if well grounded? How far above the roof should the points be? Would it be all right if at the end the wires were sourated and sharpened to a point, and if so would it be necessary to have such points
plated, and if so, with what? Could I get good ground by driving into the ground an nch galvanized iron pipe and running the cable into same? If so, to what depth should pipe go? Is a metal roof any protection? A. able will make an excellent lightning rod. It ill serve also as points, carrying the ends a oot or so above the roof at corners and gables. Put a bow over the chimney tops, perhaps two
bows across diagonally. Since the acids of the moke will rapidly corrode the metal it will be necessary to replace the corroded parts fre quently. Fasten all parts firmly to the building. A good ground may be made through
driven pipe, if the lower end of the pipe eaches a permanently wet stratum or ends in water. A metal roof will form a good pro tection from lightning if connected to a good
earth at the lower corners by good rods or earth at the lower corners by good rods or
wire cables, as you propose. The Department wire cables, as you propose. The Department
of Agriculture issues reliable instructions for otecting buildings from lightning.
(10813) G. B. says: Which wheels of n automobile leave the ground when turning or outside ones? A. The wheel on the inner side of a curve leaves the ground when the vehicle goes around too fast. The automobile
veround whe the (10814) J. O. says: Please let me now through your columns or otherwise what is electrochimie, and what can be produced is electrochimie, and what can be produced for electrochemistry. It is a branch of chemi-
cal science embracing the processes of chemical manufacturing in which electricity is the force mployed to bring about the reactions. Arrhe nius's "Text Book of Electrochemistry," price subject, and Blount's "Practical Electrochemis try," price $\$ 3.25$, is a reliable guide. We can

NEW BOOKS, ETC.

The Insect Book. By W. Percival Wes tell, F.L.S., M.B.O.U. Illustrated with don: John Lane, The Bodley Head. 16mo. cloth; 120 pages. Price $\$ 1$
That practical series, The Country Hand books, is extended by this charming brochure.
Without being a complete treatise the book is helpful as far as it goes. The photogravures add much to its value. The entertaining text should induce sufficient interest to make the reader pursue the studies even beyond the limits presented. Thirty-six photographs illustrate the contents and we hardly can see how any process outside of that of colors could have been so well chosen for obtaining such crisp yet delicate results. The in side, of the woodland, of meadows, heaths, lanes, and households relates to British species, and is described by one of the best of entomological writers. The index is ample.
Paradoxes of Nature and Science. Things
Which Appear to Contradict General
Experience or Scientific Principles,
How and Why. By W. Hampson, M.A.
Oxon., L.S.A. New York: E. P. Dut-
ton \& Co., 1908. 8vo.; pp. 304 . Price, $\$ 1.50$
Mr. Hampson has published a very interest ing and readable book on the tricks which nature sometimes plays us. The volume is divided into four parts. In the first such mechanical paradoxes are discussed as a carriage which
on level ground is more easily drawn loaded than empty; throwing balls around a corner; and solids defying gravity. In the second part devoted to paradoxes of the physical state, Mr Hampson explains how ice is cut without severing the parts and how it may be melted without heat or cold; how water may be boiled by cold instead of by fire or flame; a vessel too hot to boil water; freezing produced by boiling; and the perpetual motion fallacies. The third part, on chemical paradoxes, explains how fire
may be a source of water and water a source of fire, among other interesting phenomena Among the physiological paradoxes constituting the fourth part are discussed certain peculiarities of vision and hearing as well as of bodily structure. The explanation of the problem of Achilles and the tortoise seems rather labored. It might have been somewhat more simply explained in the usual algebraic way rather than by the philosophical method of non-continuity
of space upon which the author relies. For all of space upon which the author relies. For all

Mines and Minerals of the British Empire. Being a Description of the His torical, Physical, and Industrial Features of the Principal Centers of Mineral Production in the British Dominions Beyond the Seas. By Ralph S. G.
Stokes, late Mining Editor Daily Mail, Johannesburg S. A LonDaily Mail, Johannesburg, S. A. Lon cloth; 403 pages. Illustrated. Price $\$ 4.20$.
The author deals in an intimate and no over-technical manner with material industrial features of various producing sections, and methods of exploitation with excellent descriptive force. The work is not a guide practice and, but those interested in the practice and science of mining metallic and of gold, silver, tin, coper, lead, pig-iron, steel of gold, silver, tin, copper, lead, pig-iron, steel, and comprehensively. The author has written with equal clearness on the labor, methods, and geological and industrial conditions of the various mineral industries. The chapter contents and a copious index are well adapted for facilitating the reader's progress. The illustrations are numerous and clearly represent the actual life, operation, and machinery of mines in South Africa, Ceylon, India, Burma, Canada.
The American Practice of Gas Piping
And Gas Lighting in Buildings. By
sulting Engineer for Hydraulic and
Sanitary Works, Etc. New York: Mc-
Graw Publishing Company, 1908. 8vo.; cloth; 306 pages. Price, $\$ 3$ net
This book is an addition to the author's valuable list of works on plumbing and house
drainage. Leaving out the treatment of the numerous processes of production and distribution of illuminating gas and the lighting of streets, alleys, and public areas, he practically enters into the subject where installation and utilization reaches the consumers' premises. Before expounding how gas fitting should be done for interior work, a foregleam of the in the attack through the first two chapters on prejudices against and popular fallacies about gas. The parts devoted to extra technical matter, such as specifications, rules, style that prevents the need of the lighter chapters as resting islands, those for instance, on the advantages of and the arrangements for the use of gas for light, heat, and power; practical hints for consumers; lighting of coun-
try houses; discussions of hygiene, meter try houses; discussions of hygiene, meter
velopment. A large index and a remarkable
bibliography on gas lighting are furnished. In cluded in the latter are the titles of English, phlets, reports and articles and various articles on gas, by Mr. Gerhard.
The Romance of the Reaper. By Her bert N. Casson, author of "The Ro mance of Steel." New York: Double
day, Page \& Co., 1908. 12mo.; cloth 184 pages. Illustrated. Price, $\$ 1$ net The author in spite of the title and the pet
vord "magical" as applied to mechanism, has given a comprehensive history of the very prac tical reaper. The debt the world owes to
McCormick and the useful inventors and business men who have developed the grain ma and fractional waymarks of the little work pointed out in chapters full of research in in vention, harvestry, biography, and statistics The last are not tabulated and this fact helps to make the book appear without a dry page to the average reader, adult or youth. Th illustrations are good and of the broadest terr torial range as the reapers, binders, etc., are portraits are presented of those eminent in the business of having made all that the farme chinery in the cultivation of muscle to ma title page bears an error in the publishing firm's name.
Questions and Answers in Electrical Engineering. Being a Compilation o Guilds of London Institute in the Pre liminary Grade of Electric Lighting from 1899 to 1907 inclusive, with So lutions to all Questions. By A. E Moore, A.M.I.E.E., and Frank Shaw London: Longmans, Green \& Co. New 12mo.; cloth; 151 pages. Price, 90 cents.
This small work is a valuable addition to the published by Longmans, Green \& Co. It is an excellent example of the question and answer form of preparing students for examinations In this case it is intended for those who, while understanding the subject matter of the ques tions, are deficient in expressing themselves An admirable line of accommodation of the an hat the solutions are amplified, but in such manner that they can be adapted to the pur solved problems are fully illustrated by dia grams, and one of the features of the question section is that on practical wiring.
Astronomy with the Naked Eye. A New Geography of the Heavens. With De
scriptions and Charts of the Constel lations, Stars and Planets. By Gar rett P. Serviss, Author of "Astronomy with an Opera Glass. New York and London: Harper \& Brothers, 1908. 12mo.; cloth; 247 pages. Price, $\$ 1.40$ net.
This issue is at a time when astronomy un der the advantages of scientific instrument
and institutions of learning is increasingly neglected. In the common schools, even the constellations are not taught, and the autho shows that the few mathematical formulas in the best seats of learning, are studied only to be soon forgotten. If the higher means a tronomy without artificial aid to the eye may be welcome, as it is well planned to show the scheme of the constellations in a way to make
the subject become popular. The purpose the subject become popular. The purpose oc of astronomy which is within easy reach. Four teen charts are used, and every month is con stellated on a double page plate with the outlines of the symbols and their names in color All clusters and their features are beautifully shown and the orderly march of the stars can be clearly followed through the year. Constel only on the two or three exceptions are forma is necessary to enable the amateur to rela tively associate the celestial bodies easily and definitely in the heavens. The last four chap ters are given to the Southern Constellations the Zodiacal Light, the Milky Way, and the Moon.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued for the Week Ending June 23, 1908.

AND EACH BEARINGTHAT DATE

[See note at end of list about copies of these patents.]

\qquad Brasson
Travers.
Hasneder
 chins
Heier
Heisey
Governing
S.

 Hay,
Heat
r
Heat
Heel,
Heell
Hide
Hing
Hing
Hoo
Hoi
Hoi
Hol
Hoo
Ho
Hot
Hot
Ice

\qquad
\qquad

Engine and Froot Lathes
 SEBastan Larte co.. 120 culvert st., Cincininati.

The Cllpper Cuip
 Best \& Cheapest. All At Atationers.
CLIPPER MFG. Co

Tois! Tools! Tools!

We keep all kinds. Send your name
on a postal and get our 88 -page Booklet
Montgomery \& Co., 109 Fulton St, New York City
JAGER Marine 4-Cycle Engines

 281 Cranklin, cor. Bater co

$$
\frac{281 \text { Franklin, cor. Batterymarch St. }}{\text { Boston, Mass. }}
$$

 G. H. CURTISS MFG. Co., Hammondsport, N. Y.

High Speed Automatic Power Hack-Saw

r

 your fucuan kin

shoe
Shoe

sint spmoter , winw

WIRELESS TELEGRAPHY.-ITS PRO

Write for particulars and our booklet, "What Owners Say About Their Nationals"

The National Motor Vehicle Co. 1019 E. 22d Street, Indianapolis, Ind.

Engineering News

The leading weekly Engineering paper of the world, devoted to the interests of Civii, Mechanical, Mining, and Electrical Engineers. 100 to 125 pages weekly. Send for free sample copy.
Mider
$\left\{\begin{array}{l}\text { Science for the Evenings } \\ \text { A MoVING PICTURE 0F THE UNIVERSE }\end{array}\right.$

Classified Advertisements

 Advertising in this column is 75 cents a line. No lessthan four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on request.
READ THIS COLUMN CAREFULLY.-You will find inquiries for certain classes of articles numbered in
consecutive order. If you manufacture these goods write us at once and we will send you the name and
address of the party desiring the information. There address of the party desiring the information. There
is no charge for this service. In every case it is
necessary to give the number of the inquiry Where manufacturers do MUNN \& CO.

BUSINESS OPPORTUNITIES. TRAVELING SALESMEN earn from $\$ 2,000$ to $\$ 20.00$ mail at your tome in eight weeks and assist you to se
 Trainoing Asssin, Chicano, H11., Kansas City, Mo..or Min
neapolis, Minn. Write nearesi oftice. Mention this paper Inquiry No. 86 . 6 . - -Wanted to buy a cutting
Winding machine for narrow fabric bias binding.

PATENTS FOR SALE

FOR SALE. PENCIL AND FOUNTAIN PEN RE manufacture. simple, made of one piece. spring wire
W, $1 / 1$ selit che chap.
tor particulars address A . Mikulich Incuiry No. 8610 . -Wanted addre FOR SA LE, reasonable, all or part Patent No. 882.998, orting sins. Ad 61 Notey, Black Rock, Ark IInquiry No. S61
PATTERN LETTERS AND FIGURES (White Metal
and Brass) for use on paterns for castings Large va-
riety prompt shipments and Brass) for use on patterns for castings, Large va-
riety prompt shipments. Send for catalo. B. W
Knikht \& Son, Senecarails, N. Y. Inquiry No. ©620. - Wanted to buy aluminium
cans.
WANTED.-To sell outright or on rosalty, high
 Address Ed ward Biythe, Decatur.
Inquiry No. ©623. - Wanted
ing stoves with battery attached. $\underset{\text { FOR }}{\text { Sttachment to to }}$ 1908. Attachment to telephone. Notities occepants
Manuf'd and in actual use. M.L. Murdock, Elmira, N.
Inguiry No. $\mathbf{8 6}$. Inquiry No. 86:4.- Wanted to buy portable rive
heaters.

HELP WANTED.

BRAIN BROKERS.-Twelve offices serving 25,000
employers. Office, Sailes and (Techntical positions open.
Ambitious. men write for information and particulars, Hapgoods, ; 055 Broadway New York. Inquiry No. 86:28. WWanted to buy paving block
machines for use witu partly fuid substances. WANTED.-A partner to have wy patent for "Ex-
erciser", patented in fore:gn coutries and manufac-
tured in the U.S. Alfred Limozes, Verner, Ont., Canada. Inquiry No. 8632.-Wanted to buy machine for WANTED-An expert engineer on air-designing and
developing pressure and vacuuer aqchines. For further
paruculars address Engineer, Box 773 , New York. Incuiry No. ©633. - Wanted to buy shnw cases. WANTHD. Mentoimprove spare time by studying
engineering. Best bookson easy terms. Write for par-
ticulars. Harry A. Bush, Waite St., Malden, Mass. Inquiry No. $\mathbf{8 6 3 4}$
and china noveltiee.

BOOKS AND MAGAZINES
BUILD MISSION FURNITURE. Send 20 cents for
three designs of easily made pieces of funniture fo

 Sampson Publishing Company, 1151 Beacon 1suilding
Boiton, MIass
Inquiry No. 863\%.-Wanted to buy lawn mowe

HOUSEHOLD NEEDS.

BU TCHER'S BOSTON POLISH is the best finish made
for Hoorzand interior woodwork
sorat brittle; will not
scratcor deface like shellac or varnish. scratch or deface like sheliac or varnish. Send for free
bokelet. For sale by dealersin Paints. Herdware and
House Funishings. The Butcher Polish Co., 356 A1-
lantic Avenue, Boston, Mass. Inquiry No. 8639 .- Wants stencils for decorativ
borders such is are used around half tones.

MANUFACTURERS' AGENCY WF SELIL SPECIALTIES WHICH PEOPLE NEED. Mrinufactures or inventors who desire a wide market ivitato send samples. innited Mercantile Exchange

ISTS OF MANUFACTURERS. COMPLETE LISTS of manufacturers in all lines sup-
 $\underset{\text { Inquiry }}{\text { Ino. }}$ (64y.- Wanted

Inquiry No. 8643.-W Wanted to buy concrete post
machines. Inquiry No. S644.- Wanted address of glass tube
manufacturer who does bending. Inquiry No, © 64 . - Wanted to buy cheap small
motor frum 34 to 1 horse power, single phase 60 cycle, 110 ble celluloid. No. 8649.-Wanted to buy non-inflammaInquiry
macfinery
Inquiry
turers of drop forged wrenches. Inquiry No. 86.53. - Wanted addresses of dealers
in sheet steel, New York city preterred. Inquiry
hardeuers in
No.
New
N.5.54. Inquiry No. 8656. - Wanted to buy parts of models
and gear wheels. Inquiry No. S660.-Wanted to buy creosote mak-
ing maceininery. Inquiry No. 8661. - Wanted to buy machinery for
making cutlery. Inquiry No. 8666°.- Wanted to buy small nachine
for drawing trimead from cotton and machine for mak-
ing lozenges.

$\underset{\substack{\text { Inguirs } \\ \text { mactines. } \\ \text { Innuir }}}{ }$ Inguiry No. 8666.-Wanted to buy screw making

Indiry No. 8672 :-

Inguiry No. \$675.- Wapted to buy machinery for
Indury No. S678.--Wan:ed to buy cheap sewin.

Inauiry No. 868\%.-Wanted to buy notor plows. Indiry No. Sighi- Wanted to buy tor export to

 ball boartys. Jnquiry No. 8696.-Wantea to buy toy ballons. , Inaniry No. 6699 -
Inqui iry No. 8701, Wanted to bus solare eng Inyuiry No. 8704.-Wanted adadress of konilin
 cinquiry No. N706i-Wanted to buy ink and muInguiry No. 8707.- Wanted to buy hand power

 Ingiry No s776-For manfactirers of

Susuiry No. 8722.-Wanted manufecturess

Jnairy Do, S7. 4 - Wanted to buy sam.

 Inquiry No. ©. ©29.-Wanted a machine for manu-

 Indyry No. 8733

 Tnanury No. 8738.-For parties manufacturng Inquiry No. Sy 3 Sa.-Wanted machinery to make IIndinve No. 8740 .- For manufacturess of Chicaaga
typewiter. colikeris

Inginiry No. S750-,
Ingniry No. thys1-For manufactures of bras Inquiry No mill matinerif
wapping paper.

 Ingury No, anduiny

 In nupiry Na . 87
manutacur

\qquad

 Windows, antirattier for, A. . Leger.....
Windrowing attachment, W. Gaterman...
Wood preserving compound. H. Fermerciv.
Wood trimming machine, E. P. Werster.
Weol

DESIGNS.

TRADE MARKS

 to Caniol Boiles and Radiaior arace equall y yuluable United States Heater Company. detroit, mich.

STEAM TURBINES. - THEIR CON

THE'BEST'LICHT

MILLS FOR ALL MATERIALS

WELL ${ }_{\text {matames }}^{\text {pilum }}$
and
in wheels or on sill. Sill . With engines or horse powers.
Strong, simple and durable. Any mech
operate them easily. Send for catalo.

Good Books

Practical Pointers for Patentees

The Sale of Patents
An Elucidation of the Best Methods Employed by
the Most Successful Inventors in Handling Their
By F. A. CRESEE, fi.e.
144 Pages. Cloth. Price $\$ 1.00$.
Mechanical Movements Powers, Devices and Appliances By GARDNER D. HIScox, ri.e. scriptive Text. Price $\$ 3.00$.

```
A DICTIONARY of Mechanical Movements, Powers,
```

trated description of the greatest variety of me
chanical movements and devices in any language

Mechanical Appliances Mechanical Movements and Novelties of Construction $A^{N} \begin{gathered}\text { Encyclopedia of Mechanical Movements and } \\ \text { Mechanical Appliances, including many Novel }\end{gathered}$ ties of Construction used in the practical operation
of the Arts, Manufactures, and in Fngineering
For Engineers, Draughtsmen, Inventors, Patent For Engineers, Draughtsmen, Inventors, Patent
Attorneys, and all others interested in Mechanica

By GARDNER D. HISCOX, M.E. Being a Supplementary Volume to the Author's Work entitled Mechanical Movements, Powers
and Devices. Contains 1000 Special Ilade Engravings. 400 Pages. Cloth Bound. Price $\$ \mathbf{3 . 0 0}$.
The above two volumes sold together for $\$ 5.00$ Postpaid.

Electrician's Handy Book By PROF. T. o'CONOR SLOANE, A.M., E.M., Ph.D.
Handsomely Bound in Red Leather, with Titles and Edges in Gold. Pocket Book Style. Price $\$ \mathbf{3 . 5 0}$
A THOROUGHLY practical reference book of 768 the point and can be easily understood by the student, the practical worker and the everyday work-
ing electrician. The advanced electrical engineer
will also receive great benefit from its perusal and

Modern American Lathe Practice
By oscar E. perrigo, m.E.
A AmpLErT book of too pages on rhe Modern

Modern Steam Engineering in Theory and Practice By Gardner d. hiscox, m.E. Price $\$ 3.00$
 of Boilers, Engines, Pumps, Superheated Steam,
Refrigerating Machinery, Dynamos, Motors, Eleva-
tors, Air-Compressors, and all other branches with tors, Air-Compressors, and all other branches wit
which the modern Enginer must be familiar.
Nearly Two Hundred Questions with their Answers on Steam and Electrical Engineering likel.
to be asked by the Examining Board are included
Th to be asked by the Examining Board are included
These if studied by you will help you to procure
license. It is fully illustrated with detail engrav license. It is fllly illustrated with
ings, not to be found elsewhere.
Punches, Dies and Tools for Manufacturing in Presses

Price $\$ \mathbf{4 . 0 0}$ ACTICAL, work of 500 pages Making, Punch Making, Die Working. and Making of Spe ing, Cutting, Bending, Forn and also Articles of other M described and fully illustrate dern Plumbing Ill By R. M. STARBUC Price $\$ 4.00$ MPREHENSIVE and up-to-d of Dwellings, Apartments, an etc. The very latest and Adopted by the United States pines, and by the principal bo United States and Canada. 300 illustrations. A special circular describing the Any of these books sent prepaid on MUNM \& C

LABELS.

A printed copry of the specitication and drawing

 Canadian patents may now be obtained by the in
ventors tor any of the inventions named in the fore

WINCHESTER


```
SELF-LOADING REPEATING RIFLES When selecting a recoil operated rifle, don't buy complication and bulk. Winchester Self-Loaders are neither complicated nor cumbersome. They are the only riffes made which will shoot a series of shots faster than an ordinary repeater. Made in \(\cdot \mathbf{3 2}, .35\) and .351 High Power calibers, they handie modern cartridges less costly
and less bulky than old - style ammunition no more powerful. and less bulky than old - style ammunition no more powerfl.
```

```
winchester repeating Arms Co., . - New haven, conn
```

```
winchester repeating Arms Co., . - New haven, conn
```


METAL STAMPINGS
TOOLS, DIES
and
EXPERIMENTAL
WORK
work
LET US BE YOUR FAGTORY

COM

MODELS $\underset{\text { Inventions }}{\text { EXPReioped. Special Wachnery }}$ WORK.

$\underset{\text { PARKER, STEARNS\& CO., }}{\mathbf{R}} \mathbf{2 2 8 . 2 2 9} \underset{\text { Fouth Street, New York }}{\text { Fine }}$
Experimental \& Model Work

MODELS G EXPERIMENTAL WORK:

FOR SALF.-Compound Rail Patent. for railrouts
ard street car lines. Cromer \& Banker, Linden, Texas
HOEFT \& COMPANY $\begin{gathered}\text { Me , Makera, Machingizt } \\ \text { und }\end{gathered}$

A Home Made Alternating Current Motor

Telegraphy 를․․․
(2) Do Your Own Printing

ELECTRIC LAUUNCH MOTOR. - THE

Bliss Electrical School

Rose Polytechnic Institute

$\mathbf{R}_{\text {clear article }}^{\text {EAD SUPLT }} 1688$ for a good, $\mathbf{R}^{\text {clear article by F. E. WARD, E E., }}$ alternating current motor. The motor can be constructed by anyone of ordinary skill in the use of tools, who has access to a screw-cutting lathe with a swing of 9 inches or more. The motor is designed to run on alternating current circuit, now in widespread use for the lighting of dwellings.
The motor will drive a I6-inch brass fan small lathe, or a 50 -watt dynamo for generating direct current for charging storage batteries, and in fact will do almost any kind of work that can be done by one-man Order from your newsdealer or from
MUNN \& COMPANY, 361 Broadway, New York. N. Y.

Garden Hose

Rubber Belting
Steam Packing
Rubber. Specialties

N. Y. BELTING \& PACKING CO.

91 and 93 Chambers Street NEW YORK
write for Catalogue

DECARBONIZER chemically removes carbon from
cylinders, piston rings and vaives. NCREASES POWER 20 PER CENT
Volatilizes carbon, in which form it passes olatilizes carbon, in Which form it pass
out thry exaust Injury to metal
mpossible. A A. mpossibe. A\&entswant ca
localties. .amplequart ant
Vrite to-das for particulars. General Accumulator \& Battery Co
128 Second Street, MIlwaukee, Wis.

GOERZ

BINOCULAR
"PAGOR'
The smallest and newest PRISM GLASS made. Has not its Equal. Possesses extraordinary Descriptive clearness.
Descriptive catalogue sent on request
C. P. GOERZ AMERICAN OPTICAL CO. 52 Union Square, E., New Yor Chica or ILL
Hewworth Building

Gaylor
 Automatic Stroppers Safety Razor Blades Quicker and Better than any

 In case with barbers' genuine Horse Hide Strop, $\$ 2.00$ In case with barbers' genuine horse hide Sirop, \$2.00 Order through your dealer. Or will send postpaid onreceipt of price. Be sure to state for what make of Blade.
Write for descriptive circular.

Everything for the Automobile SUPPLIES AND PARTS
 NEUSTADT AUTOMOBILE AND SUPPLY COMPANY

TAPES AND RULES ARE THE BE
For sale everymere.
Catalog No. LUFKIN RULF LUFKIN RULE CO.
 DESIGNS
PYRIGHTS \&C Anyone sendfng a sketch and description rasy
quickly ascertain our opinion free whether an

Scientific American.

A Judicial FURNACE Verdict

SAVING SATISFACTION are two words in the English language that have a sweetly soothing sound. They are delightfully melodious to the one who pays the bill. To thousands who are kept busy during the cold months satisfying Topfeed appetites for high-gre Furnace sounds like an echo from Joe Miller's Joke Book. Whole regiments people have profited by the combination. They know that the
Peck-Williamson UNDERFEED Furnace Saves One-Half to Two-Thirds of Coal Bills

Palmer Motors

 Numben

Hand Knurling Tool

 GOODELL-PRATt CO., Greenfield, Mass.

—ORDNANCE EXPERTS—
1908 Model Lewis Depression Position Finder

The One Oil For Your Car car or runabout, air-cooled or water-cooled-there's a special grade eof

MOBILOIL

is the right oil for your car under all conditions. As a safe and scientific
fubricator for every style and type of automovile engine it has no equal. Send for Mobiloil booklet which lists every make of automobile and tells what grade of Mobiloil to use for each. It's free.
Mobiloil in barrels, and in cans with patent pouring spout, is sold by al

VACUUM OIL COMPANY, Rochester, N. Y.

[^0]COLD GALVANIZING

ROTFWELLER

THE WRENCH WITH A GRIP

wing
The Rothweiler is vastly differ ent from the old style pipe
${ }^{\text {wrench- }}$
And as much superior as it is different-
More powerful-
More powerful-
Has fewer parts
Has fewer parts-
Will give better servic
And will last longer than any
other pipe wrench on the other pipe wrench on the
market-
Made of the finest quality tool steel-
Eight sizes-
Eight sizes-
Houshold size $\$ 2.00$, express prepaid.
Write to-day for Illustrated Booklet
Crescent Forgings Company 1203 Railroad St., Oakmont, Pa.

PIERCE $\underset{\text { maxions }}{\operatorname{mon}}$

Send stamps for catalog.
Satisfaction guaranteed or money refunded. PIERCE ENGINE C0., West Street, Racine, Wis.

ELECTRICAL APPARATUS REPRE sented by Conventional Diagrams in Drawings.-Fifty
diagrams showing the usual method of tilustrauing elec

Make Your Own CONCRETE BLOCKS

[^0]:

