

This Aeroplane is the First Dynamic Flying Machine to Traverse a Considerable Distance and Carry Two Men at a Speed of 45 Miles an Hour. A Similar Aeroplane to be Built for the United States Government by the Last of August Must Remain in the Air for an Hour and Cover 40 Miles in That Time.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845MUNN \& $\mathbf{C O}$.

- Editors and Proprietors

Published Woekly at

No. 361 Broadway, New York
Charles allen munn, president 361 Broadway, Now York
Frederick Converse beach, sec'y and treas. 361 Broadway, Now York

terms to subscribers.

 the scientific american publications.
Scientitic American (established 1845),

 ing Canaaa, will

MUN money order, or by bank draft or check.
MUN., 361 Broadway, New York.
NEW YORK, SATURDAY, MAY 30, 1908.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authintic, the contributions will receive speci tention. Accepted articles will be paid for at regular space rates.

gratifying decrease in railway accidents.

It has for so many years been our painful duty to record and deplore the steady growth in the number of accidents on our railroads, that we find great satisfaction in the latest Accident Bulletin of the Interstate Commerce Commission dealing with the last three months of 1907. The statistics show that there is a marked decrease, both in the number of train accidents, and the number of passengers killed or injured. There is a decrease as compared with the previous quarter and with the corresponding quarter in 1906. Out of a total number of 220 persons killed, only 21 were passengers, as against 110 passengers killed in the preceding quarter and 180 killed during the corresponding quarter of the previous year. These results prove that there has been a remarkable improvement in the safety of operating, the chief cause of which is not far to seek. A correspondent has recently asked us whether the greater danger of travel on American roads is not largely due to the frequent congestion of freight traffic, and its consequent derangement of train schedules. We believe that it is. Furthermore, the sudden reduction in accidents occurred simultaneously with the development of the recent panic and the extraordinary falling off which occurred in the freight business of the country. With between three and four hundred thousand cars laid aside, it has become possible for the rest of the freight traffic to be moved on schedule time and with those intervals of spacing which are so conducive to safety of operation. Moreover, the breaking up of the congestion has necessitated the laying off of thousands of employees, and those selected for discharge were, naturally, the inexperienced or incompetent men, taken on in the rush seasons, to whom a large number of the accidents must necessarily have been due. Lastly there can be no doubt that the gradual expansion of the block signal system, and the growing appreciation of the necessity for strict obedience to its mandates, are becoming potent factors in rendering railroad travel reasonably secure.

Mr. HILL ON OUR NATURAL RESOURCES

Particular value attaches to any statement by Mr. J. J. Hill on the subject of the natural resources of this country; for there are probably few, if any, men who have given the subject such deep study, or considered it from so broad and statesmanlike a point of view. As one of the principal speakers of the recent conference at the White House, after drawing attention to the fact that the sum of natural resources of a country is simple and fixed, he asks: How stands the inventory of property for our own people? And he answers his own question categorically, as regards the wealth that may be taken from the sea, the mine, the forest, and the soil to sustain the life of man. The resources of the sea furnish less than five per cent of the food supply of the United States. As to the forests of the country, the most reliable estimates reckon ests of the country, the most reliable estimates reckon
our standing merchantable timber at less than 2,000 our standing merchantable timber at less than 2,000
billion feet, yet we are cutting annually about 40 billion feet, and the amount of lumber cut rose from 18 billion feet in 1880 to 34 billion in 1905. Compared with other countries, we are using annually 500 feet of timber per capita as against an average of 60 feet for all Europe. The New England supply is gone; the Northwest furnishes only small growths; the

Southern production is declining; and on the Pacific coast alone is there any considerable body of standing merchantable timber. We consume yearly three or four times as much timber as is restored by the an nual forest growth. Some varieties will be gone in ten years' time, and unless reforesting is resorted to, other timbers will be exhausted during the present century. So also in the iron industry, the amount of iron ore mined in the United States doubles once in seven years. The figures as here given by Mr. Hill are truly startling. In 1893 less than $12,000,000$ tons were mined. This had risen to $24,000,000$ tons in 1899; $47,740,000$ tons in 1906, and óver $52,000,000$ tons in 1907. Our stores of coal are similarly threatened with early exhaustion. As to the only remaining resource, the soil itself, we are told that there are but $50,000,000$ acres of surveyed, and $36,500,000$ acres of unsurveyed land remaining unappropriated, and 21, 000,000 acres were disposed of in 1907. Fortunately, there are two well-established remedies for the already greatly exhausted soil, namely, rotation of the crops and the use of fertilizers. In the presence of these statistics, Mr. Hill may well say that the era of unlimited expansion on every side, of having but to reach out and seize any desired resources, provided for us by the hand that made the foundations of the earth, is drawing to a close.

LOWERING THE TRANSATLANTIC RECORD.

Now that the heavy storms of the winter are over, and the Atlantic is settling down to its comparative summer quiet, the two big turbine liners are beginning to reduce the time of the transatlantic passage with remarkable regularity. On her last westward passage to this port the "Lusitania" broke three ocean records, having made the highest average speed of the whole run, the longest single day's run, and the shortest time over the long summer course from Daunt's Rock to the Sandy Hook lightship. The winter course across the Atlantic is 2,781 knots and the summer course measures . 2,889 knots. Toward the close of last year the "Lusitania" covered the short course in 4 days 18 hours and 40 minutes, and the "Lusitania" in her recent run over the long course took only 1 hour and 42 minutes longer time than that, her total for the passage being 4 days 20 hours and 22 minutes. Her average speed was 24.83 knots for the entire voyage. The record run for a single day was made from noon on Tuesday until noon on Wednesday, when she covered 632 knots. The steadi ness of her running is shown by the successive days steaming, the total distances run on each entire day being 622, 625, 632 , and 628 knots. On the day that she made the record run, the "Lusitania" maintained an average speed of 25.42 knots, which is equivalent to over 29 land miles per hour. Had she traveled over the short course at the speed which she maintained during this trip, she would have covered the distance in 4 days and 16 hours, which would have been 2 hours and 40 minutes better than any previous record.

OUR RANK AS SECOND NAVAL POWER

When the leading naval annual in Great Britain in estimating the relative strength of the world's navies recently placed the United States in the second position, on the ground that she could put in the battle line more heavy, armor-piercing guns than any navy except that of Great Britain, the estimate was widely accepted both in this country and abroad. Our nearest competitor for second place is Germany, and this in spite of the fact that in her earlier ships that are still reckoned as effective, she mounted the 9.4 -inch gun as the main armament. It is the present activity of Germany in the construction of exceptionally powerful battleships of the all-big-gun type, coupled with her ambitious and systematic programme for the future which renders it certain that if any navy displaces us from second position in the next three years it will be that of our German friends.

As matters now stand the United States possesses twenty-five battleships of a total displacement of 334 , 146 tons; Germany twenty-three of 276,166 tons. Of armored cruisers the United States has fifteen of 186,545 tons, and Germany ten of 113,528 tons. The total tonnage of American armored ships now afioat is 520,691 tons, and Germany possesses 389,694 tons of armored ships. Of the 25 United States battleships none mounts a gun in the main battery of less than 12 inches caliber. Among the twenty-three German battleships ten carry nothing heavier than a 9.4 -inch rifie.
As we have often pointed out in these pages, the fighting strength of the navy lies in its battle line, and since the Japanese war it has come to be well understood that the strength of the battle line lies in the number of heavy armor-piercing guns that can be concentrated in a given length of that line. Al though the United States at present holds a decided lead over its nearest rival, the question of future preponderance, unless we maintain our recentlyannounced policy of building two battleships a year, seems to lie with the German navy, because of
the systematic plan of new construction covering a series of years which that country has adopted. By an act passed in 1900 and amended in 1906 the German navy in the year 1917 will contain thirty-eight battleships, all the newer ships to be of the "Dreadnought" type. Three of these are to be built this year; three in 1909, and three in 1910. Two will be built in 1911, and then one a year up to the year 1917. Three of these "Dreadnoughts" are now under construction, and one of them, the "Nassau," was recently launched. They are of 19,000 tons displacement, and are variously credited with carrying an armament of from twelve to sixteen 11 -inch, 50 -caliber guns of great power. Two other battleships of the mixed-caliber type, carrying each four 11 -inch guns, are also under construction.

Now had the question of future increase of our navy been left to be determined by the haphazard method of previous years, there might well have been some concern for our holding the position of second naval power. Fortunately, the United States Senate, in authorizing the construction of two more 20,000 -ton "Dreadnoughts," adopted for the future a definite naval policy of authorizing two battleships a year. If the United States maintains this programme, we shall have by the year 1917 forty-nine battleships, supposing, of course, which is not likely, that some of our earlier battleships will not have been struck off the list as non-effective. The German navy, unless some older ships be struck from the list, will in 1917 possess thirty-eight battleships. At the present time we have under construction four battleships of the "Dreadnought" type, namely, the "Michigan" and "South Caro lina," of 16,000 tons, carrying eight 12 -inch guns, and the "Delaware" and "North Dakota," of 20,000 tons, carrying ten 12 -inch guns. Congress has also recently authorized two additional "Dreadnoughts" similar to the "North Dakota." It was a wise step on the part of the Senate to accompany the authorization of these last two ships by an appropriation for their construc tion, since this will enable them to be put in hand at once, and will raise the number of the "Dreadnought" type under construction at the present time to six. In this connection it is gratifying to note that one of the new ships will be built by the government at the Brooklyn navy yard, a policy which the Scientifio American has earnestly advocated, on the ground that it will give us a most excellent ship, and will serve to maintain this our leading yard in a constant state of high efficiency.

SEVERE FIRE TESTS FOR SKYSCRAPERS.

There have been several fires in "skyscrapers" with in. the last few years, but few of them have afforded such a thorough test of modern fireproof construction as that which occurred recently on the eighteenth fioor of the Tribune Building in Chicago. It was one of the highest fires, worthy of the name, that has ever occurred in any building. That it was an exceedingly hot one is shown by the fact that it entirely destroyed the asbestos covering of a pipe. The Tribune Building is eighteen stories high, with storage rooms on the Dearborn Street side of the top fioor. The fire started, from some unknown cause, in one of these rooms, just under the roof. It had gained great headway before an alarm was turned in. The glass skylight, with reinforcing wire, melted in spots, and in others became so soft that it dropped down in fantastic shapes.
The significant feature of the fire, from the viewpoint of the constructor, was that it was confined to three small storage rooms. The firemen reported that it would probably have been confined to one, had it not been for small windows in the partitions of hollow terra cotta blocks. These partitions were not damaged by the fire, though there was nothing left, afterward, of the asbestos composition covering a six-inch water pipe that ran through the room. The pipe itself was heated to a cherry red, indicating the intensity of the fire. When the fire reached a hollow tile partition without a window, it could go no further. The terra cotta prevented any damage to the steel, and the partitions were intact after it was all over. The floor beams of the same material were found to be uninjured, though the wooden finish fiooring was burned entirely through at several places. In an adjoining room were stored the records of the auditing department and the files of the Tribune for the sixty-seven years that have passed since the paper was established Though the fire raged for some time on the other side of a partition from them, the records and files were not damaged.

A series of researches has been made by Prof. Theodore W. Richards, in conjunction with Messrs. W. N Stull, F. W. Brink, and F. Bonnet, on the compressibility of a large number of the elements. A very in genious apparatus was devised for making the measurements, and the results obtained show that the com pressibility of an element is a periodic function of the atomic weight, and probably associated with the same causes which determine atomic volume and volatility.

THE HEAVENS IN JUNE.

by henry norr. : RUSSELL, ph.d.

The faint object near Jupiter, discovered last winter at Greenwich, has turned out, as was anticipated, to be a new satellite. It has as yet been followed over so small a part of its orbit, that the exact form of the latter cannot be determined from the existing observations; but its general characteristics can be found, and these are sufficiently remarkable.
The satellite is much more distant from Jupiter than any previously known, apparently about 22 million miles, and its period of revolution is correspond ingly long-about three years and eight months. Mr. Crommelin, the English astronomer, who has calculated the orbit, calls attention to the fact that it is merely tentative, being based on the assumption that the orbit is a circle. It may actually be decidedly elliptical; but this, while it may change the figures for the mean distance and period, will still leave the satellite much farther from its primary than any other in the solar system. There is still more confidence to be placed in the other facts which appear from the tenta tive orbit.
Its plane is considerably inclined to that of Jupiter's orbit, about 30 deg., and, most interesting of all, it goes around backward, like the outer satellite of Saturn, Phœbe, but unlike all the other satellites of Jupiter, even the recent ly discovered sixth and seventh (which, however, are only one-third as far from the planet as it is).
It is a very faint object of about the sixteenth magnitude, corresponding to a diameter of perhaps thirty miles. As seen from Jupiter, it would be of the ninth magnitude-wholly invisible to the unaided human eye, and not as bright as a number of the asteroids look to us.
No previously known satellite has a period anything like as long in proportion to that of its primary.

During one revolution of Jupiter about the sun, the new satellite makes between three and four revolutions about him, as against thirteen for our moon, which comes next from this standpoint. The calculation of its orbit will therefore be very compl cated, for the perturbations, due to the sun's attraction, will be very large.
To add to the complications, it will usually be impossible to see the planet and satellite in the same field, for the latter may be field, for the latter may be as much as three degrees away from the former. The photographs which show the satellite will usually not include Jupiter at all. But it will be easy enough to find the position of the satellite, compared with nearby stars, from the photograph, and then to compare these with Jupiter in some other way.

the heavens

Our map shows the evening skies as they appear at the hour stated on its margin. Almost overhead is Boötes the Herdsman, with the splendid red star Arcturus, which fully equals any other that is now in sight. The rest of the constellation can be made out from the map. The star ϵ is a very fine double, observable with a small telescope.

South of this is Virgo, a large group containing one bright star, Spica, and another fine double star, γ, which is binary, the two components moving about one another in an elliptical orbit with a period of about 180 years. West of this is Leo, with another first-magnitude star, Regulus. The star γ in this constellation is again a fine double
Below these groups is the long stream of stars which belong to Hydra. They stretch out fully 90 deg. from the west to the south. The Cup (Crater) which stands on the Sea Serpent's back, is not prominent, but the Crow (Corvus) is a small but conspicuous group, in which the star δ is an interesting double.
Northwest of the zenith the Great Bear appears to advantage. The star (named Mizar) at the bend of the Dipper Handle, has a fifth-magnitude companion
visible to the naked eye, and another, at about $1 / 50$ the distance of the first, which, like those of the double stars previously mentioned, can be seen only with telescopic aid. Recent spectroscopic work has shown that both these companions, as well as Mizar, are themselves double, and in rapid orbital motion, though these pairs are far too close to be separated by any telescope
Between the Great Bear and Virgo lie two small constellations. The Hunting Dogs (Canes Venatici) have only one bright star (another fine double). Coma Berenicis, to the southwest, consists of a cluster of faint stars, just separately visible to the naked eye.
Cancer, Gemini, and Auriga are setting in the west and northwest. Jupiter is now in the first of these constellations, and Venus in the second. The two planets are not far apart, and they are by far the brightest objects in sight. Of the circumpolar constellations, Cassiopeia is low on the horizon, Cepheus cbove, and Draco and Ursa Minor above the pole.

In the northeast Cygnus has risen, and Lyra is above it. The latter contains the great white star Vega, which almost equals Arcturus in brightness. Between Vega and the latter are the constellations Hercules and Corona Borealis. The "keystone" formed by the stars ζ, μ, π, and ϵ in the former, and the semicircle which contains all the principal stars of the latter, are easily

Venus is likewise evening star, and is very conspicuous at the beginning of the month, when she sets after $10 \mathrm{P} . \mathrm{M}$. Later on, as she comes more nearly between us and the sun, she is less easily seen, and by the end of June she becomes practically invisible, to reappear as a morning star in a few weeks.
Throughout the month she appears telescopically as a narrow crescent, whose apparent diameter is greater than that reached by any other planet.
Mars is likewise an evening star, in Gemini, and sets at about $9 \mathrm{P} . \mathrm{M}$. in the middle of the month. On the 6 th he is in conjunction with Mercury. The least distance of the two planets, 19 minutes of arc, is reached near noon, when they cannot be seen, but they will still be very close that evening. Mercury, which at this time is moving eastward and overtakes Mars, soon turns back, and passes him again on the 17th, and Venus, which follows Mercury, passes Mars on the 22d. All three planets are close together for a week or more, and they will afford a very interesting sight. Jupiter likewise is an evening star, but is higher up than the others, and sets at about 10:30 P. M. on the 15th. Saturn is a morning star in Pisces, and is observable before sunrise. Uranus is in Sagittarius, approaching opposition, and Neptune in Gemini, too near the sun to be observed.

THE MOON.
First quarter comes at midnight on the 6th, full moon at 9 A . M. on the 14th, last quarter at midnight on the 20th, -and new moon at 11 A. M. on the 28th, during the eclipse The moon is nearest us on the 20th and farthest off on the 4th. She is in conjunction with Mars and Neptune on the 1st Venus on the 2d, Jupiter on the 3 d , Uranus on the 15th, Saturn on the 21st, and with Neptune, Mer cury, Venus, and Mars on the 30th (all being then too near the sun to be seen).
There is an eclipse of the sun on June 28, vis ible throughout the United States as a partial eclipse. In the line of central eclipse, where the moon appears exactly in front of the sun, the annular phase may be seen. At this time the sun, whose apparent diameter is greater than the moon's, sticks out as a narrow ring all around the latter. This phase is visible from the city of Mexico, Tampa, Fla., and Bermuda.
In the northern United States a large partial eclipse will be observed, the fraction of the sun's diameter covered by the moon ranging from about one-third for observers in Washington and Oregon to almost the whole in the Gulf States. At Washing on ton, D. C., the eclipse be gins at 9:27 A. M. and
recognized. South of these are Ophiuchus and Serpens The figures of the Serpent and his Bearer are not unnaturally much intertwined, but the map will help us to separate them.
Lower down is Scorpio, one of the finest constellations in the sky. The vertical row of three white stars, β, δ, π, is followed by a nearly horizontal row of three of which the middle one is the fine red star Antares. Below this is a long line of stars which form the Scorpion's tail, but have as yet only partly risen. Scorpio is full of fine double stars Antares has a faint green companion, too close to be easily seen unless the air is steady. The stars β and γ are also fine doubles, and μ, below Antares in the tall, is a fine naked-eye pair.
the planets.
Mercury is evening star throughout the month, and can be well seen in its early days about the time of his elongation, which takes place on the 7th. At this time he is in Gemini, and sets about 9:10 P. M. He is lower down than Castor and Pollux, which are the only objects for which he might be mistaken.
Toward the end of the month he gets quite close to Venus, within two or three degrees, and the two planets remain in apparent proximity for several weeks, during most of which time, however, they are too near the sun to be well seen.
ends at 12:41, and about three-fourths of the sun': disk is hidden, at the maximum phase. This eclipse while of little importance to the professional astrono mer, since the sun will not be completely hidden and the corona cannot be seen, will be of much interest to the amateur observer. A piece of smoked glass is all that is required to observe it.

Princeton University Observatory.

An official return recently issued by the Board of Trade shows that the total number of persons killed on railways in the United Kingdom in the course of public traffic during the whole year 1907 as reported to the Board of Trade was 1,117 , showing a decrease of 52 compared with the previous year, and the number injured 8,794 , an increase of 1,582 . The number of passengers killed was 120 , a decrease of 46 compared with the preceding year, and the number of passen gers injured was 2,663 , an increase of 83 . With regard to the servants of railway companies or contractors, the number killed was 454, an increase of 16 , and the number injured 5,804 , an increase of 1,439 . Trespassers (including suicides) accounted for 447 deaths, compared with 455 in the previous year, and 133 cases of injury, compared with 106.

AUTOMOBILE SLED FOR DR. CHARCOT'S EXPEDITION
by the paris correspondent of the scientific american.
The expedition which is headed by Dr. Charcot, the eminent French explorer, will leave for the Antarctic regions on the vessel "Pourquoi Pas" on the 15th of July. It will be remembered that the expedition is under the patronage of the French government and of the Académie des Sciences. Not the least interesting part of the outfit is the new type of motor-sled which was built for this special purpose at the works of the De Dion Automobile Company at Paris. Such a sled will be a great advantage, and the party expect to take three of them on board. The use of dogs for drawing the sleds is often a great disadvantage. Twenty-two dogs were taken on board the "Discovery" in a preceding expedition, and only three or four survived.
In order to make a practical trial of the sled, it was taken to the Lauteret Pass, in the heart of the Alps, and was run over hard and soft snow. A great speed is not desired, as crevasses are to be feared, and the sled must be quickly stopped. Dr. Charcot was greatly pleased with the results of the tests, which were carried out at 7,000 feet altitude.
The propelling machinery is mounted upon the ordinary type of Norwegian sled, such as is used by explorers and drawn by men or dogs. It is composed of two long flat runners about ten feet in length and four inches wide, with the axes of the runners spaced twenty inches apart. Above each of the runners is mounted a side-bar of the same length, which is supported upon the runner by short uprights, while a set of crossbars serve to connect the runners. It is essential that the ensemble of the chassis should be elastic in order to follow the irregularities of the ground, and this elasticity is obtained by the method which is used for attaching the different pieces of the framework, the assembly being made with tenons and mortises with out the use of glue or screws, and the pieces being held together by a flexible binding. At the points where there is the greatest strain on the framework, strips of chrome-leather, or, better still, of seal or of reindeer leather are used, and in other cases tarred cord is employed for the binding. Thus the chassis is extremely simple, and on account of the material used it is easily repaired. Such a frame can support a weight of 800 pounds.
On the frame is mounted the motor group and the driving wheel, which are the two essential parts of the mechanism. The power for driving the wheel is derived from a $23 / 4$-horse-power, air-cooled De Dion gasoline motor having a 3 -inch bore and stroke. The carbureter is supplied with warm air from a jacket surrounding the muffler. The speed regulation of the motor is effected by varying the ignition and by changing the air inlet of the carbureter. A speed changing box having gearing for two different speeds is combined with a special set of reduction gearing for the driving wheel. This wheel has spiked teeth which catch in the ice so as to drive the sled. The speed of the sled can be varied from one to six miles an hour. With the group are also mounted the gasoline and oil tanks, the lat ter being provided with an oil pump for lubricating the motor; other accessories in clude a spark coil and bat tery. To protect the parts from the snow, there is placed beneath them an apron of very solid leather and the sides and top are covered by a hood of stout canvas which is easily re moved. The motor group has a three-point support on the chassis so that it will not receive the deformations of the latter, and by taking off the screws the whole group is removed. It is quite necessary to have the parts thus removable owing to the great difficulty of working with the parts in these regions.

It was necessary to design a propelling device for the sled which should be able to work on ice or hard snow as well as upon soft
now. The driving wheel with paddle blades, which is sometimes recommended for this purpose, will only give good results upon ice and hard snow and on condition that there is no fresh snow upon the surface, for with this type of wheel the loose snow soon clogs up the space between the blades and makes it useless. After some trials, the designers decided upon a new form of driving wheel, taking into account the advice of Dr. Charcot. This new wheel is made up of two parallel rings 2 inches wide, which are mounted on the same axle and spaced about a foot apart. On

Fig. 1.-Side View of the Sled.

Fig. 2.-Plan View of the Sled.
these rings are fitted metal tires which are provided with steel projections of a special kind which allow the sled to be run upon the surface of ice or hard snow. These teeth, or small blades, are two inches long and are mounted in helicoidal fashion so that there is no continuity between them. They have somewhat of a cutting edge and are mounted at about a 45 deg. angle, though oppositely inclined in the inverse sense on each of the rings. This is an essential

Fig. 3.-Rear Elevation.
condition for securing a straight forward movement. It is necessary to have the blades mounted in the helicoidal system instead of having cross paddle-blades, for in the latter case the snow would remain between the blades and hinder the running, while in the pres ent case the snow lying between the blades is broken by each new contact with the surface.

Seven wood frames connect the two rings. These are covered with a cord network somewhat after the

DR. CHARCOT'S MOTOR-DRIVEN SLED FOR ARCTIC EXPLORATION
The eminent explorer is seen in his shirt sleeves in the chauffear's seat
manner of snow-shoes, and thus form a kind of cy linder which assures the propulsion when working upon soft snow. The driving wheel thus works on ice and hard snow by means of the toothed wheels, and upon soft snow by the "snow-shoe" frames. This wheel is mounted on a hinged frame so that it can follow all the irregularities of the ground or can be sunk below the surface to the right amount for giv ing the adherence. The latter is obtained simply by the weight of the wheel, excluding all springs, which are a complication and are likely to break in the cold On the front end of the whee frame is a slide which works in grooved piece mounted on the back end of the provision case so as to keep the frame straight
The trials which were made with the new motor-sled at Lau teret were quite successful Our engraving shows Dr. Char ot mounted in the rear back of the motor, while a second per on is seated in front upon the provision box. The sled could run very well upon hard snow, with the motor giving but two horse-power on account of the altitude and besides the two persons it carried a third drawn upon a sled which was hitched behind. Such a conveyance is not expected to make high speed, but in the present case it covered six miles an hour, which is a good figure. The total weight of the apparatus in running order is 460 pounds. It also made a very good performance when running upon soft snow. According to these results it cannot be doubted that a practical form of automobile sled has now been constructed, and it will no doubt prove of great value in exploring work.

Heat Stresses and Cracks

While cracks in cast iron, says Mr. Carl Sulzer, can usually be quickly seen, this is not the case with the tougher mild steel. There such cracks are only formed gradually, and frequently repeated action of these destructive stresses is necessary until finally the flexible material gives way. The writer investigated a typical case of this kind, where a fire-tube boiler failed. This boiler had been forced far beyond its normal capacity for a long time. Cracks appeared in the boiler plate which were not due to tensile stresses due to steam pressure. Assuming a difference in temperature of between 360 deg. and 720 deg . F., an elastic limit for the material for tension and compression of 22,000 pounds per square inch, and a modulus of elasticity of $28,400,000$ pounds, the expansion will amount to 0.00075 of the length. The sum of the expansion and contraction (0.0015 of the length) is equal to the linear expansion due to the difference in temperature. Since the coefficient of expansion of mild steel for the differ ence in temperature, 180 deg. F., amounts to about 0.0015 of the length, therefore when the difference in temperature reaches 180 deg. F., the boiler plates are stressed beyond their elastic limit for tension or compression. A higher difference in temperature causes a corresponding excess over the elastic limit and a frequent repetition of this occurrence, without doubt, leads to the gradual formation of cracks. The question arises whether steel makers cannot produce boiler plate which will bet ter withstand such an excessive strain. The forego ing facts show that better material in the sense of be ing better able to resist such stresses should have a higher elastic limit or smaller modulus of elasticity A de crease in the modulus of elasticity is equivalent to decreasing the tensile strength of a material which has a certain ductility or percent age elongation.

The Dominion House o Commons has unanimously passed the following resolution: "The government should, on account of the rapid development of West ern Canada and the con tinued inadequacy of the ex isting transportation facil ities, take early action toward the construction of a railway to Fort Churchill on Hudson Bay."

THE BRITISH "DREADNOUGHT" CRUISERS.
by percival a. hislam.
The three British "Dreadnought" cruisers of the "Inflexible" type are now rapidly approaching completion, and the first, the "Indomitable," has already carried out her gunnery trials under the supervision of the staff at Whale lsland. The "Inflexible" cruisers are the first vessels of their class to carry a onecaliber armament, and in other respects they differ widely from the standard type of their predecessors. Their displacement, 17,250 tons, is larger than that of any completed battleship with the exception of the "Dreadnought," and their designed speed of 25 knots is equal to that of any seagoing vessel with the exception of the American scout cruiser "Chester," which made 26.52 knots on her trials. In anything of a sea the heavier vessel would, of course, be at a considerable advantage over the "Chester," so that it may safely be said that the "Inflexibles" are the fastest sea-going ships in the world.
The "Indomitable" is the only one of the trio to be completed within contract time-which was thirty months from the awarding of the contracts in November, 1905-and the finishing of the "Inflexible" and "Invincible" will probably be still further delayed by the shipbuilding lockout which commenced in the north of England on May 2 last.
The "Indomitable" (the dimensions for all are the same) has a length between perpendiculars of 530 feet, and over all of 562 feet. The beam is 78 feet 6 inches, and the mean load draft 26 feet. At this draft the ship will be carrying 1,000 tons of coal or oil; the maximum fuel capacity is 2,000 tons, and the full load draft about 29 feet.
All three vessels will be driven by Parsons turbines, the estimated horse-power being 41,000. In the "Indomitable" this is obtained with natural draft, but in the others forced draft is to be applied. The contract speed is 25 knots. It is impossible to say what speed the "Indomitable" attained on her trials, as all the details are being very carefully guarded by the British Admiralty; but it is stated that 27 knots

The square structure below boat davits is a temporary tank for measuring water on trial trip.
Stern View. Note the Two Tripod Masts.
was maintained for eight hours on the full-speed run.
The armament of the "Indomitable" consists of eight 12 -inch Mark X guns, so disposed that all can be
fired on either broadside and six ahead or astern. Two of the guns are mounted in a turret forward on the forecastle deck; four are mounted in two turrets arranged diagonally amidships on the same deck. The other two guns are carried in a turret on the quarter deck. The freeboard forward is about 32 feet; amidships, 29 feet; and aft, 20 feet. In actual fire, therefore, the "Indomitable" is equal to the "Dreadnought," which has ten 12 -inch guns; but the battleship has the advantage of two guns in reserve as it were on the unengaged broadside, or available to. bring to bear against an enemy on that broadside. The weight of the broadside discharge is 6,800 pounds, with an aggregate muzzle energy of 318,774 foot-tons. The perfection which has been attained in the working and control of the gun turrets is remarkable. With the aid of an ingenious device the gun-layer can follow his object at a creeping pace, almost imperceptible, and yet in an instant can begin to run through the whole arc of training with great rapidity, without the slightest undue pressure on the turret system or the liability of sudden loss of control, even in the roughest seaway. A new motor system for turning the turret has proved a marked advance on the old type of turning engine.
Special attention has been paid to the facility with which the 12 -inch ammunition supply can be maintained under unfavorable conditions, and to the rapid replacement of damaged parts. The communication and control systems, which are invariably a source of trouble in warships, have been so designed as to give an application of directness rarely obtained, and which must tend considerably to minimize their chance of rupture, and greatly facilitate their rapid repair when the need arises.
The "Indomitable" is the flrst warship to adopt the "ring", system of wiring for electrical purposes, thereby effecting a considèrable saving of space and weight. By this method it is claimed many defects will be avoided, others partially remedied, and all cable faults more readily located and their repair more simply effected.

Length, 560 feet. Dieplacement, 17,250 tons: Speed, 25 knots . Coal, 2,000 tons. Side armor, 7 inches. Armament 8 Eight 12 -inch ; sixteen 4 -inch gung.
New 25-Knot British Cruiser ${ }^{6}$ Indomitable."
THE BRITIBH "DREADIFOUGHT" CRUISERS,

The anti-torpedo armament consists of sixteen 4 -inch 25 -pounder guns, disposed two on each turret and four on each shelter deck. In this respect the "Indomitable" is superior to the "Dreadnought," which has only 12 pounders for the purpose.
The gun trials of the "Indomitable" were by no means so severe as those to which the "Dreadnought" was subjected, the latter being, indeed, the most severe on record. The hull was, however, subjected to some very severe blast trials, and came through them un damaged. A wooden cutter, however, lying in the wake of the blast from one of the heavy guns was splintered into fragments. Three rounds with full charges and one with a reduced charge were fired from each 12 -inch gun, and each turret fired a simul taneous round from both guns at extreme elevation with the recoil shortened. The mountings stood this test very successfully.
The protection of the "Indemitable" consists of a wide belt seven inches thick, but the side above the belt is only one inch thick. The belt tapers to four inches at the ends. In these cruisers, as in the "Dread nought," the officers are quartered forward and the men aft.

Is Space Curved?
 by J. f. Springer.

The greatest monuments of scientific effort remaining to us from the ancient world are no doubt the Logic of Aristotle and the Geometry of Euclid. For more than two milleniums the latter has been admired and studied. Nearly all of our most modern text-books on the subject follow very closely the system and methods of the great geometrician of the third century B.C. What he assumed as fundamental and irresolvable is generally speaking, still so regarded. But in this most rigorous and exact body of ancient science are two serious defects. Of these, the eleventh axiom is very celebrated. It is to the effect that one, and but one, straight line can be drawn parallel to a given line through an exterior point. Even in ancient times it was felt that, while this was a true proposition, it was by no means obvious, as an axiom should be. Repeated and strenuous efforts have been made to supply a proof. Some of these attempts were made by men of very high attainment. But it would seem, none of these has been successful. In fact, it appears hopeless to expect a proof based merely on the other axioms and definitions. It would thus appear to be independent of them Finally, the axiom itself has been questioned. In 1829 Lobatschewsky made this bold step, denied the truth of the axiom, and developed upon this basis a system of geometry consistent with itself. But the truth of the axiom may be denied in more than one way. In stead of assuming-as Lobatschewsky did-that more than one parallel could be drawn to a given line through an external point, we may take the ground that no parallel at all is possible.
At first blush, this may appear preposterous. in the very highest degree. But let us examine more closely. Suppose a population of intelligent beings to be confined to a portion of the surface of a sphere. Further, we will assume that neither these beings nor their world has any appreciable thickness. The whole will constitute, then, a universe in two dimensions. Such beings would have no straight line in our sense. Nevertheless, within the limitations of their world, they would have a very exact substitute. For them, the shortest distance between two points would be the arc of a great circle-that is, of a circle whose plane passes through the center of the sphere from which their sur face is taken. This would be their "straight line." Euclid's eleventh axiom would to their minds be untrue, for parallels would have no existence in thei world.* With us the sum of three angles of a triangle is invariable, being always equal to two right angles. With them the angle-sum would always be greater than that amount, depending on the area of the trianglethe larger the triangle, the larger the excess. A corol lary of this is that similarity between triangles of different sizes would be impossible; the angles of the larger could not all be equal to the corresponding angles of the smaller one, for the angle-sum would have to be greater. This leads directly to the proposi tion that they would know nothing of sameness of shape combined with difference in size. In their world, children would differ frightfully from their parents. Such would be their universe and their knowledge. To us, their contention that the shortest distance between two points is what we know as the arc of a great circle would appear preposterous. And yet it would be the logical result of the limitations of their world. We know an infinite number of more direct, that is shorter, paths. For every circumference passing through the two points and whose radius is greater than that of the given sphere would yield such a path. None of these would, however, be within their world, and so all would be beyond their knowledge. If they could step *There would be, of course, parallel small circles, just as we have
parallels of latitude. But parallel "straight lines" would be impossible. parallels of latitude. But parallel "straight lines "would be impossible.
They would have the anomaly of a "straight line " having a parallel They would have the anomaly of a "straight line" having a parallel
which is not "straight.". Our equator and a parallel of latitude constitute an fluatration of this.
out of their limitations of an existence of two dimen sions into our world of three dimensions, they would perceive these other shorter lines. In fact, they would perceive that their "straight line" is curved in the direction of a third dimension, and that this curvature is invisible to those dwelling on the spherical surface Among these shorter lines, however, they would find one minimum-our straight line. Having experienced such results from the passage of their two-dimensional space into one of three dimensions, they might readily be excused if they considered whether there might no be a four-dimensional universe, the passage into which would disclose that this line which we so confidently call "straight" is in reality eurved, but in a direction invisible to our minds, limited to the experiences of but three dimensions. This would appear to be very strict analogical reasoning-not conclusive, of course nor having, it may be, a high degree of probability They saw how, in our world of three dimensions, we possessed an infinity of paths connecting the two given points, all of which lines are shorter than their mini mum line. They might infer from this, then, that in four-dimensional space there would be one single shortest line, absolutely straight-unless curved in a still higher dimension. If they made comparisons between the lengths of their "straight line" and ours, they might readily expect that in the space just higher than ours two of our points might be not önly nearer, but considerably so. Thus New York and Constantinople, which are distant, on the surface, about 5,400 miles, but by a straight line through the crust of the earth about 4,700 miles, might in reality be no more than 4,000 miles or even less from each other, if the measurement were made along a line which was the shortest path in a world of four dimensions.

Again, we may suppose that our surface dwellers had Again, we may suppose that our surface dwellers had
investigated their own world sufficiently to learn that investigated their own world sufficiently to learn that
their "straight lines" returned to themselves, so that an individual setting out in any given direction and pursuing it without deviation would come back to th starting point. Their expectation then, upon being awakened to our world, might reasonably be that our straight lines might have the same property. If their telescopes were sufficiently powerful in their space, they would be able, as I think some one has suggested, to see the backs of their heads. And so they might look for similar results with us. Notice, that

Deck Plan of the "Indomitable."
in order to secure this result it would not be necessary for them to know anything about a third dimension. A telescope pointed in any one of their directions would be successful, if powerful enough.
Now, while their "straight lines" cannot be parallel, still at a distance from their intersections they migh appear so to one possessed of means of measuremen somewhat inexact. This raises the question whether our parallel "straight lines" are absolutely so, in fact. If measuring instruments of an extreme degree of refinement should disclose that we have parallels which are not everywhere equally distant, then the troubles of geometericians as to the eleventh axiom of Euclid would, from the point of view, be over. It would be shown to be untrue.
Now, since on a sphere no two parallel "straight lines" can be drawn, if it shall hereafter appear abso lutely certain that we have some parallel straight lines, this would be sufficient to differentiate our space from the analogue of spherical space of two dimensions. However, there are different styles of bending, and while our space may not have a sperical curvature, it may possibly have a different sort.
Now, on the surface of the sphere the inhabitants might find out that more than one "straight line" could be drawn connecting two given points. They could scarcely have found out this, however, without having extended their experience to a complete circuit of their space-the second line being, of course, the remainder of the great circle. Supposing, now, that this had been ascertained, they would be surprised that with us but one straight line connected two points. They would, however, naturally expect that this was simply due to the incompleteness of our knowledge, to our space's not having been sufficiently explored. They would also be surprised, no doubt, that we regarded the anglesum of triangles as invariable. Since with them the triangle-sum increased with the size of the triangle, they would probably think that when we had investigated sufficiently large triangles we should find the sum of the three angles larger than two right angles.
It may be inquired right here, whether there hav been found in the course of scientific exploration and research any indications confirmatory of the hypothesis of space which is curved in a fourln dimension. To this must be answered, No. Tiiere are mysteries in science which four-dimensional space might conceiv-
ably tend to solve. But hard-headed thinkers will want something more convincing than this before their consideration becomes anything more than good-humored tolerance. However, one of these mysteries is as to the method of action of gravitation. The law of its action is well known. Schoolboys, in fact, know that it varies directly with the mass and inversely as the square of the distance. But this is merely descriptive, and gives no insight into the mystery of how the attraction is accomplished. How, for instance, does the sun, ninety-five million miles away, exert any force whatever upon the earth? This is the mystery of action at-a distance. But if, in reality, there is a fourth dimension in the direction of which our space is so curved that the sun and earth are actually in contact, the enormous apparent distance being due to our measurements being taken under the limitations of three dimensions, then this riddle of the action of gravitation would disappear

If one seeks for confirmation, he might suppose that this would be furnished by astronomy. Thus we might expect that in such an enormous triangle as would result from connecting the members of a group of three fixed stars, we should have reached the point where the angle-sum might be expected to vary from two right angles. But as we look into the methods to which astronomy is at present limited, we shall readily see that we can obtain no assistance here Thus, it would be possible to observe a star simultaneously from opposite sides of the earth, and ascertain the base angles of the triangla whose base connects the points of observation and whose vertex is the star. But the angle at the star is beyond direct measurement. The method, at present, would be to add the base angles and subtract from the angle sum (180 deg.). But this method assumes the invariability of this angle-sum. To determine the question, we should have to set up one instrument on the star itself, and make observation of the angle subtended by the ter restrial diameter. The obvious objection to this, that we could not distinguish the ends of such a smal length as the diameter of the earth, could be met by replacing the small base line by the 190 -million-mile diameter of the earth's orbit, taking our observations six months apart. But the difficulty of making the observation from the star itself could not be met.

Radio-Activity of the Leaves of Conifers

Costanzo and Negro discovered some time ago that leaves of plants placed in the cylinder of an electro scope used in researches on radio-activity gave to the air within the apparatus a certain conductivity, or in other words, ionized the air. They then undertook a more profound study of the phenomenon, using leaves of Cedrus deodara and Cedrus Libani. Their results are reported in the memoirs of the Accademia dei Nuovi Lincei. With the leaves of these species the ionization of the air, which is a maximum imme diately after their introduction into the apparatus, diminishes very rapidly. Dr. Russell had already proved that the wood and resins of conifers and vari ous other trees have the property of affecting photo graphic plates, and that one could thus obtain, by contact in the dark, very fine photographs showing the alternate light and dark rings and lines produced in the wood in spring and autumn. Nevertheless it is not evident that this effect is attributable to the radio-activity of the wood, for a thin sheet of glass or mica interposed between the wood and the sensitive plate prevents the action entirely. Carnazzi has undertaken a study of the ionization of air by resins.

The Current Supplement

There was successfully launched at the Brooklyn navy yard on May 19 the first collier to be built especially for the service of the navy. This vessel is described in the current Supplement, No. 1691, and her launch pictured. The nitrogen problem is once more agitated by George M. Heath. In an excellen paper he carefully summarizes all the attempts which have been thus far made to extract nitrogen from the air for agricultural and other uses. The eighteenth installment of Prof. Watson's "Elements of Electrical Engineering" is published. The subject discussed is current reorganizers. Some late improvements in compressive riveters art described by Chester B Albree. The Austrian coefficients for the transmission of heat through building materials are discussed by W. W. Macon. James L. Davis writes on the water proofing of cement structures. Many parts of this country have been generously endowed by nature with striking and curious natural monuments. Some of these are illustrated and described by Charles Goodman. Prof. Edmund Beecher Wilson sums up the researches which have been made by modern biologists and discusses with simplicity the work of Mendel and his school. The various forms of buoys and beacons used throughout the world are described by Max Buch wald. William P. Seal contributes an article on fishes in their relation to the mosquito problem.

Coxxexprondente.

A Very Simple Mode of Making Magic Squares.
To the Editor of the Scientific American:
I have just read in your issue of May 2 a letter from Mr. Albert R. Gallatin in which he illustrates the well known principle of "casting out the nines," as follows:

11 residue $=3$
11 residue $=2$
Product 1,221 residue $=6$
the "residue" being the remainder after deducting the highest multiple of 9 .
He ends his article by saying: "I should like very much to see an explanation of this remarkable prop erty"; viz., that the residue of the product of any two numbers is equal to the residue of the product of the residues of the said numbers.

We will take any two numbers; $m+x$ and $n+y$ m and n are multiples of 9 and x and y are the respec tive residues. Multiplying, we have:

Residue of $m+x$

$=x$

Residue of $m n+n x+n y+x y=$ residue of $x y$ Q.E.D. since the residue of each of the first three terms of the left side of the equation equals zero.

The rules of magic squares to which your correspondent refers as very abstruse may be very briefly stated and easily remembered; one of which I give herewith Start in the square next below the center, proceed diagonally downward and to the right one column a a time. When the last column is reached, begin afresh at the first (left or top, as the last happens to be the right or bottom, respectively). Whenever you find your next square taken, drop two squares below and proceed as before. This rule will work out a magic square of any number of odd figures, as $3,5,7,9$, to a billion and one. I give a few illustrations.

Adds 15 each direction.
$\begin{array}{rrrrr}11 & 24 & 7 & 20 & 3 \\ 4 & 12 & 25 & 8 & 16\end{array}$
$\begin{array}{rrrrr}4 & 12 & 25 & 8 & 16 \\ 17 & 5 & 13 & 21 & 9\end{array}$
$\begin{array}{rrrrr}17 & 5 & 13 & 21 & 9 \\ 10 & 18 & 1 & 14 & 22 \\ 23 & 6 & 19 & 2 & 15\end{array}$
$\begin{array}{lllll}23 & 6 & 19 & 2 & 15\end{array}$
Adds 65 each direction. $\begin{array}{rrrrrrr}22 & 47 & 16 & 41 & 10 & 35 & 4 \\ 5 & 23 & 48 & 17 & 42 & 11 & 29 \\ 30 & 6 & 24 & 49 & 18 & 36 & 12 \\ 13 & 31 & 7 & 25 & 43 & 19 & 37 \\ 38 & 14 & 32 & 1 & 26 & 44 & 20 \\ 21 & 39 & 8 & 33 & 2 & 27 & 45 \\ 46 & 15 & 40 & 9 & 34 & 3 & 28 \\ \text { Adds } & 175 & \text { each } & \text { direction. }\end{array}$

37	78	29	70	21	62	13	54	5
6	38	79	30	71	22	63	14	46
47	7	39	80	31	72	23	55	15
16	48	8	40	81	32	64	24	56
57	17	49	9	41	73	33	65	25
26	58	18	50	1	42	74	34	66
67	27	59	10	51	2	43	75	35
36	68	19	60	11	52	3	44	76
77	28	69	20	61	12	53	4	45

56	117	46	107	36	97	26	87	16	77	6
7	57	118	47	108	37	98	27	88	17	67
68	8	58	119	48	109	38	99	28	78	18
19	69	9	59	120	49	110	39	89	29	79
83	20	70	10	60	121	50	100	40	90	30
31	81	21	71	11	61	111	51	101	41	91
92	32	82	22	72	1	62	112	52	102	42
43	93	33	83	12	73	2	63	113	53	103
104	44	94	23	84	13	74	3	64	114	54
55	105	34	95	24	85	14	75	4	65	145
116	45	106	35	96	25	86	15	76	5	66
Adds 671							each direction.			

$\begin{array}{lllllllllllll}79 & 164 & 67 & 152 & 55 & 140 & 43 & 128 & 31 & 116 & 19 & 104 & 7\end{array}$ $\begin{array}{lllllllllllll}8 & 80 & 165 & 68 & 153 & 56 & 141 & 44 & 129 & 32 & 117 & 20 & 92\end{array}$ $\begin{array}{lrrrrrrrrrrrrr}93 & 9 & 81 & 166 & 69 & 154 & 57 & 142 & 45 & 130 & 33 & 105 & 21\end{array}$ $\begin{array}{lllllllllllll}22 & 94 & 10 & 82 & 167 & 70 & 155 & 58 & 143 & 46 & 118 & 34 & 106\end{array}$ $\begin{array}{llllllllllllll}107 & 23 & 95 & 11 & 83 & 168 & 71 & 156 & 59 & 131 & 47 & 119 & 35\end{array}$ $\begin{array}{lllllllllllll}36 & 108 & 24 & 96 & 12 & 84 & 169 & 72 & 144 & 50 & 132 & 48 & 120\end{array}$ $\begin{array}{lllllllllllll}121 & 37 & 109 & 25 & 97 & 13 & 85 & 157 & 73 & 145 & 61 & 133 & 49\end{array}$ $\begin{array}{lllllllllllll}50 & 122 & 38 & 110 & 26 & 98 & 1 & 86 & 158 & 74 & 146 & 62 & 134\end{array}$ $\begin{array}{lrlrrrrrrrrrrr}35 & 51 & 123 & 39 & 111 & 14 & 99 & { }^{2} & 87 & 159 & 75 & 147 & 63\end{array}$ $\begin{array}{rrrrrrrrrrrrr}64 & 136 & 52 & 124 & 27 & 112 & 15 & 100 & 3 & 88 & 160 & 76 & 148\end{array}$ $\begin{array}{rrrrrrrrrrrrr}149 & 65 & 137 & 40 & 125 & 28 & 113 & 16 & 101 & 4 & 89 & 161 & 77\end{array}$ $\begin{array}{lllllllllllll}78 & 150 & 53 & 138 & 41 & 126 & 29 & 114 & 17 & 102 & 5 & 90 & 162\end{array}$ $\begin{array}{lllllllllllll}163 & 66 & 151 & 54 & 139 & 42 & 127 & 30 & 115 & 18 & 103 & 6 & 91\end{array}$ Adds 1,105 each direction.

Louisville, Ky., May 1. $1908 . \quad$ F. L. Spfiden.

To the Editor of the Scientific American:
The square shown below is made up of the numbers 1 to 16 which are so arranged that their sums verti cally, horizontally, and diagonally equal 34 , and any four numbers forming a rectangle within the square sum up to 34. The numbers are arranged in pairs following the move of the knight on the chessboard: 1 and 2,3 and 4,5 and 6 , etc

The following are some of the various ways in which the numbers may be added to equal 34 :

Documents, which would have been of great impor tance at the time of the conference in London in regard to the Canadian boundary question, have been recently unearthed in Alaska by Leo Nebokoff, a friend of Count Leo Tolstoi. They are ancient Russian papers showing how Russia managed to lay claim to the entire northern coast of North America.
Nabokoff has forwarded some of the documents to the Governor-General of Canada and they will in all probability be exhibited in the Dominion building at the Alaska-Yukon-Pacific exposition, which will be held at Seattle in 1909, as they would have played an im portant part in the history of the countries the fair will be held to exploit had they been brought to light sooner.

It was while in Sitka, where he was sent by his government to put in order the archives kept by the Russian authorities, that Nabokoff discovered the papers. They were written in old Russian, which he had studied. One of the records was an order from the Russian government to the Czar's governor of Alaska to bury tablets bearing the Russian coat of arms at different points along the coast, which were to be carefully noted so that in after years when the country became valuable they could be dug up and used by Russia to claim the territory. This was done in part and the purport of some of the documents is that Russia appropriated the whole of the Alaska coast. Had these records been brought to light before the boundary decision some five years ago, they might have affected it, but now that the coast line is forever settled they are chiefly of interest as relics.

Nabokoff located some of the tablets and they will be secured for exhibition at the Alaska-Yukon-Pacific Exposition. They were buried as far south as British Columbia. Had they been unearthed and claim laid to that territory, the United States, by the purchase of Alaska, would now own the entire Pacific coast from Mexico to the Arctic Ocean.

The Use of Ozone in the Transportation of Live Fish. Ozone is an energetic oxidizing agent which is continually finding new industrial applications. This allotropic form of oxygen is a bluish gas of strong and characteristic odor. Its density is 1.5 times that of oxygen, its molecular formula being O_{3} while that of oxygen is O_{2}.

The oxidizing and germicidal power of ozone has been utilized in sterlizing air and water, aging liquors, preventing fermentation in fruit juices, refining sugar, and bleaching and preserving flour. It is also employed as an oxidizing agent in bleaching textiles, the manufacture of artificial camphor, artificial silk and dyestuffs, and in the preparation of certain oils. Ozone is usually obtained by the action of the silent electrical discharge on oxygen.

A new use for ozone has been found in the transportation of live fish. Fish decompose so rapidly after death that they cannot be transported to great distances without the use of refrigerator cars and great expense for ice or other refrigerants. Hence it is desirable to keep the fish alive during transit, but here arrother difficulty is encountered, for fish of the more delicate species soon die in tanks in which the water is not continually renewed.

In practical trials which have been made in France and other countries, however, it has been found possible to keep fish alive on long journeys by forcing a properly regulated stream of ozone into the water of the tanks in which they are imprisoned.

An international mining exposition will be held at Madison Square Garden from May 25 until June 20, 1908. One of the features of this exposition will be the installation of a complete mine, equipped with a cage, operated by electric motor, and those who desire can descend eighty feet and witness various "levels," "tunnels," "cross-cuts," "a stop," "winze," hanging and foot walls, and by an object lesson receive a lifelong impression of a very good representation of a gold mine. Another equally attractive demonstration will be the rock-drilling contest with hand drill and sledge. The miners in drilling for blasts become very proficient, as there are many existing conditions where there are no facilities to permit the use of power drills. These contests are so important, and such an exhibit of physical endurance and skill, that international rules are observed for governing them throughout the West. There will be exhibits in this line of downhole, backhole, and uphole, which last being overhead, naturally requires greater skill and endurance. A somewhat pathetic and interesting deviation in this line will be a team of drillers from Butte, Mont., miners who lost their sight in a mine accident, but who were so proficient in their calling that they are still able to support themselves, although both are positively blind. Moving pictures of mining scenes will be exhibited in the concert hall. Many of the mining States are exhibiting their mineral resources. Carloads of mineral representing nearly every county in Nevada are now en route to New York,

FIRST FLIGHTS OF THE AERIAL EXPERIMENT

 ASSOCIATION'S SECOND AEROPLANEAlthough in its first test the second aeroplane to be con tructed by the Aerial Experiment Association covered a distance of but 279 feet at a height of but about 10 feet, on May 18, this flight is considered by Dr. Alexander Graham Bell, and by Lieut. T. E. Selfridge, U.S.A., and the other members of the Association, to have been the first really successful flight of the second heavier-than-air flying machine of this particular pattern. A number of other aeronauts who are at Hammondsport, N. Y., where the tests are being conducted, and who are building other types of flying machines, gave praise to the new machine.
The Association's first aeroplane, the "Red Wing," which flew 818 feet above Lake Keuka on March 12 last, was illustrated in the Scientific American of March 21. This machine had a horizontal single-surface tail, which buckled in the first flight. The tail was changed to a double-surface box shape, like that used on the Farman aeroplane, and in a subsequent flight in the rain a few days later, the aeroplane tipped to one side and, crashing to the ice, was de molished.

The new aeroplane-the "White Wing"-is practi cally the same as the former one, save that it is

There are two distinctive features in the design. The first is the general principle and arrangement of the truss which supports the two surfaces, and the second is the shape of the surfaces themselves.
In this machine the truss differs radically from ordinary designs, being a double bowstring truss, which was found to have structural advantages over the flat bridge design commonly used. The other features which distinguish the machine from the usual type of double-deck machines lie in the shape of the supporting surfaces, which are very much like a bird's wing in plan, tapering toward the tips, and at the same time decreasing in curvature.
A wooden propeller is used, with an eight-cylinder 40 horse-power Curtiss air-cooled motor. The propeller's diameter is 6 feet 2 inches. The pitch is about equal to the diameter. At about $1,200 \mathrm{R}$. P. M., with the motor developing 25 horse-power, the propeller develops some 245 pounds thrust. The aeroplane is 42 feet 6 inches long from tip to tip and 4 feet deep at the outside panel. It has a total supporting surface of 408 square feet, while its weight is 431 pounds.

The flight on the 18th was an excellent one. The machine left the ground readily after a run of about 200 feet, and alighted at the end of the flight without
cellent flight which, although his first, is reported to have extended over a total distance of 1,017 feet, and to have been accomplished in 19 seconds, or at a speed rate of about $361 / 2$ miles an hour. During this flight the machine touched ground once after covering 615 feet, but it immediately rose again and continued in the air until the aviator caused it to land near the edge of a plowed field. Mr. Curtiss appeared to have excellent control of the aeroplane, which rose and fell during the flight, varying in height from 5 to 25 . feet.

Finding the Specific Gravity

The usual way of finding the specific gravity of an insoluble body is, as laid down in the text books and carried out in practice, to weigh the body first in air and then in water, find the difference in the two weights, and then divide the weight in air by that difference. Thus, a body weighing 10.32 pounds in air and only 1.25 pounds when fully immersed in water will lose $10.32-1.25=8.07$ pounds in weight when buoyed up by the water; its specific gravity will therefore be $10.32 \div 8.07=1.278$.
A better way is to weigh the object in air, then after immersing it in water and leaving the original weight untouched, to put in or on weights enough on

Front View of the Aerial Experiment Association's New Aeroplane.
The pointed wing tips have been made flexible so they can be twisted to aid in steering. The propeller and the frame of the box tail can be seen at the back, and the horizontal rudder in front.

The Aeroplane in Flight.
The "White Wing" making its first filght of 279 feet at a speed of about 30

The Motor and Propeller at the Rear of the Main Planes.
One corner of the rectangular box tail is visible at the end of one of the long bamboo poles which attach it to the aeroplane proper.

Three-quarter Front View of Aeroplane.
This view shows the horizontal rudder, the steering wheel, and the running wheels.

THE SECOND AEROPLANE OF THE AERIAL EXPERIMENT ASSOCIATION.
mounted upon pneumatic-tired bicycle wheels instead of runners. A rectangular box tail has been fitted. For experimental purposes, so that the machine could obtain a start before ascending, a half-mile track was built. By. running along on this track, proficiency in handling the steering gear and other mechanism was attained. In a trial on the ground the day previous to the successful ascent, a slight defect in the steering gear was detected and remedied. The experimenters had thought that the aeroplane could be guided by the rudder alone when running on the ground, but they found it was also necessary to turn the wheels. Besides the horizontal rudder in front for controlling the elevation of the aeroplane and maintaining its fore and aft equilibrium, there is the usual vertical rudder for side steering in the middle of the box tail, while in addition to this the wing tips are pivoted horizontally about their forward edges and made to move up and down slightly in turning a corner by means of a cord which runs through pulleys at the rear corners of the upper plane and which is attached to the aviator's body. The instinctive leaning to one side of the aviator in making a turn is thus used to set the wing tips properly.

The new aeroplane has double superposed surfaces.
serious shock. A good idea of its appearance in flight can be had from the photograph reproduced above, from which it can be seen that the transverse stability was apparently excellent. The propeller was slightly damaged during this flight, but repairs were soon made, and the following day two more short flights were executed. The first of these could hardly be called a test, as the machine remained in the air but two seca test, as the machine remained in the air but two sec-
onds and traveled about a hundred feet. When it descended on its wheels it ran 201 feet on the ground before stopping. In this run a guy wire broke, which impeded slightly the action of the propeller. In a few minutes the damage was repaired and the second ascent was made in a quite heavy rain. In a few seconds sufficient velocity was attained and a rapid rise was made to a height of 30 feet. The aeroplane then dipped slightly to the right, slowly dropped about 12 feet, and then came to earth. The front rudder wheel was broken considerably, and several hours were required to repair the damage. Notwithstanding this, Dr. Bell was pleased with the trial. Lieut. Selfridge acted as aviator on this day, while F. W. Baldwin piloted it on the first trial.
On May 22 Mr. G. H. Curtiss, after some changes had been effected in the new aeroplane, made an ex-
the same side of the scale, with the object of bringing back the even balances. The weight in the second pan, or in the second case-which weight will naturally represent the loss of weight in water-divided into the original sum, to obtain the specific gravity.

Where possible, it is still more simple to weigh out in the first case a given even quantity of the material to be tested-as of potatoes or beets in beet-sugar or potato-alcohol manufacture; there being used for this purpose two baskets, one above the other, of which the lower one is completely immersed in water. The material being weighed in the upper basket while the lower one hangs free in the water, is then transferred to the lower basket, and the weight added on that side of the balance to restore equilibrium is divided into the original sum, to obtain the specific gravity.
As an example: 100 pounds of beets are weighed out in the upper basket and then transferred to the under one; then 87.5 pounds are added on the same side with the beets to bring back the equilibrium; then the specific gravity is $100 \div 87.5=1.14$.
In handling such materials as beets and potatoes, any that swim should be thrown out before weighing, as they are hollow and contain air, and are useless for industrial purposes.

THE WRIGHT AEROPLANE TEST IN NORTH CAROLINA.

[Upon the return of the newspaper correspondents and photographers from North Carolina, considerable more information was obtainable regarding the recent flights made by the Wright brothers in testing their aeroplane than has hitherto been available. JUnfortunately, not one of these men is a qualified technical observer, for which reason we are little better off for details than we were before.
In addition to the frontispiece showing the aeroplane as it appears in flight, we are enabled, owing tothe courtesy of P. F. Collier \& Son, to show our readers two photographs taken at long range of the aeroplane in flight around Kill Devil Hill. These photo. graphs, while quite minute, neverthe less when magnified give some idea of the actual appearance of the machine in flight; but their greatest value lies in dispelling all doubt as to the ability of the Wright ma-
chine to fly and to make good its designers' claims. [All those who witnessed the flights agree that the performance of the machine was marvelous, and that the speed attained with the small motor of 30 horse-power was remarkable. As already noted in our last issue, the speed in question appears to have been from 45 to 48 miles an hour, although the last flight was timed in 7 minutes and 40 seconds, during which the life savers claim that the machine traveled slightly over 8 miles. The distances are said to be fairly accurate, since they were gaged by the known space between telegraph poles and the number of poles in the course. The probability is, however, that the speed of the machine did not at any time exceed 48 miles an hour In fact, the Wrights do not, claim a speed of much over 40 miles. Still[according to report,]they state that before the flights witnessed by outsiders, they made three ${ }_{\text {Alights }}$ of 18,24 , and 32 miles respectively. In their final flight they had intended to remain in the air an hour and twenty minutes, or a third longer

The imagination of the artist who drew this picture eighty years ago was prophetic and daring. He graphically foretold the modern department store, the elevator, the military airship, the pleasure and military automobile, and the heavier-than-arir trying machine.(drawn by birds.
hesitate to build a bridge between Calais and Dover or to draw vehicles along the ground with the aid of kites.
there is little doubt that more will be heard from them in the near future. Upon hearing of their flights, Henry Farman sent a challenge for them to come to France and fly in competition with him. The Wrights paid no attention to this challenge. Their confidence in their machine is such that they do not believe it necessary to make a public trial either here or abroad in order to interest the other governments, which may yet purchasema. chines from them. [Since their trial flights in North Carolina have been witnessed by newspa. permen, and photographs of these flights have been secured, there is no longer any doubt of the pre-eminence of America in aviation.] We hope that before the end of the year we shall be able to arrange for a public contest near New York, in which all the prominent for eign and American aviators will compete, and endeavor to win for the firs time the Scientific American trophy.

Casein cement consists of casein
machine is of the double- or triple-surface type. The vertical rudder also can be seen well out at the rear as well as the two propellers, half of each of which is in sunlight, and the other half in shadow. The aviator is seen sitting in the middle of the lower plane, while there are several radiating tubes for the cooling water of the motor running vertically upward to the upper plane from the motor, which is located in a fore-and-aft direction in the center of the lowe plane, and which drives each of the two propellers through chains. A second lever in front of the aviator operates the vertical rudder, and a third one twists the planes to aid in steering.

In the tests recently made, the Wright brothers were trying out their new form of steering and control by means of levers and with the operator in a sitting po sition. In their former flights in 1905, the operato lay prone, and the change to a sitting position necessi tated a different method of control. The brothers are quite satisfied with the results they have obtamed,' and
and tannate of lime A solution of tannin is first A solu in fater or ing Chinese gall-nuts in water and straining the fluid. Clear lime is gradually added to this solution till precipitation ceases and red litmus paper, dipped in the fluid above, is colored blue. The fluid is then decanted and the precipitate dried. The dried preduct, designated chemically tannate of lime, is then mixed with casein and the mixture ground and sifted. The proportion in which the ingredients are mixed depends upon the purpose to which the mixture is to be applied; as a rule, 90 parts of casein and 10 of tannate of lime are taken. When required for use, a sufficient quantity of water is added to the cement. A tenacious binding material of the requisite consistency is thus obtained. When completely dry, the cement is very hard and tough, and absolutely insoluble in water, petroleum, or oil; hence it is admirably adapted for a large variety of pur poses.

CHINESE PIGEON WHISTLES.

by dr. berthold laufer, columbia uni ity
Traditions imbibed in school, through education and by reading, are apt to sway our lives and our thoughts, and to influence strongly our judgment of other peoples. An almost fixed standard of attributes involuntarily arises in our minds when the names of French, Spaniards, Negroes, Indians, strike our ears, and it is often hard to see why such and such an adjective, expressing such and such a quality, became inevitably linked in our thoughts with the names of certain nations. Thus, we are wont to speak of the Chinese as a sober, practical, and prosaic people, and to view them throughout in that light. Immensely rational they are (this cannot be gainsaid), secular, and worldly-minded, bestowing all their efforts on useful temporal affairs; but nevertheless these people are by no means lacking in purely emotional matters of great attractiveness. It is needless to turn to their poetry and art, in which they are at their best, regarded from this viewpoint; even in affairs of minor importance their soul reveals to us traits of poetical quality of no small degree.
As early as the eleventh century one of their greatest poets sang:

Upon the bridge the livelong day
 I stand, and watch the goldfish play:"

The domestication of the goldfish, the first species of which reached England only in 1691, and of the wonderful paradise-fish as well, is justly ascribed to the Chinese; and it is remarkable to notice that their attempts in this direction and the amazing results achieved
so that when the birds fly the wind blowing through the whistles sets them vibrating, and thus produce an open-air concert, for the instruments in one and the same flock are all tuned differently. On a serene day in Peking, where these instruments are manufac tured with great cleverness and ingenuity, it is pos sible to enjoy this aerial music while sitting in one's room.
There are two distinct types of whistles-those consisting of bamboo tubes placed side by side, and a type based on the principle of tubes attached to a gourd body or wind-chest. They are lacquered in yellow, brown, red, and black, to protect the material from the destructive influences of the atmosphere. The tube whistles have either two, three, or five tubes. In some specimens the five tubes are made of ox-horn instead of bamboo. The gourd-whistles are furnished with a mouthpiece and small apertures to the number of two, three, six, ten, and even thirteen. Certain among them have, besides, a number of bamboo tubes, some on the principal mouthpiece, some arranged around it. These varieties are distinguished by different names. Thus, a whistle with one mouthpiece and ten tubes is called "the eleven-eyed one."
As to the materials and implements used in the manufacture of pigeon-whistles, there are small gourds that serve for the bodies; halves of large gourds (a particular species imported from Shantung to Peking for this industry), from which stoppers are made that fit into them; and four kinds of bamboo-cylindrical pieces of a large species that grows in the south, for making the mouthpieces of the large tubes; thin sticks for making those of the small ones; hard bamboo for

A New Italian Method of Preserving Eggs.
Consul D. I. Murphy, of Bordeaux, forwards the following synopsis from a French journal on a new method of preserving eggs, which, he says, appears to have the double merit of cheapness and simplicity. The article was based upon the experiments of Doctor Campanini, as reported by him in a bulletin issued by the Italian minister of agriculture.
Dr. Campanini, after reviewing the various known means of preserving eggs-by salt water, lime water, silicate of potash, vaseline, and cold storage-described his experiments, which showed better results than all others.
His theory is that to preserve eggs some system must be adopted that will absolutely prevent the exchange between the air outside and that inside the egg-for it is this continual exchange that causes putrefaction. Dr. Campanini selected perfectly fresh eggs and cov ered them with lard, so as to effectually stop up all the pores. The shells were thus rendered imperme able, the exchange of air was prevented and, the ob struction of the pores not permitting the evaporation of the water, there was no loss of weight. The whites and yellows of the eggs retained their color perfectly and the taste was not modified in the slightest degree. When properly coated with lard-not too thickly-the eggs are put in baskets or boxes upon a bed of tow or fine odorless shavings and so arranged that there will be no point of contact between them-otherwise a mold will develop and putrefaction result. The packing room should be perfectly dry, the question of tem perature not being important. By his process Dr Campanini kept a quantity of eggs for a whole year

a Pigeon With a Whistle Wired to Its Tail. The Whistles Look Clumsy But Are Very Light.

Pigeon Whistles, With the Gourds and Bambons From Which They Are Made; and the I'ools Used in Making Them.

chinese pigeon whistles.

were not prompted by any utilitarian views they had in mind, as neither fish is of any practical advantage. On the contrary, their skillful breeding, so eagerly pursued, is due solely and exclusively to the æsthetic tendency of the Chinese in their art of living, and to their highly cultivated sense of beauty, which delights in the bright coloration of the skin of these fishes, the graceful form of their bodies, and the restless motions of their long, flowing fins. This is the more worthy of note, as the only fish among us which has been placed within the range of domestication, the carp, is granted this privilege merely from its prosy connection with the kitchen.
While the almost Darwinian experiments to which Chinese breeders have subjected the goldfish, and their unbounded admiration of this little creature in its hundred and one forms and variations, illustrate well the intimate relation of the people to the element water, their friendly associations with the world of birds are no less close and sympathetic. The lover of birds does not permanently confine his pet in its prison-cage, but he takes it out with him on his walks, carrying it on a stick, to which one of its feet is fastened by means of a thread long enough to allow it ample freedom of motion. Where the shade of some stately tree bids him welcome, he makes a halt, and permits the bird to perch and swing on a supple twig, watching it for hours.
One of the most curious expressions of emotional life is the application of whistles to a flock of pigeons. These whistles, very light, weighing hardly a few grammes, are attached to the tails of young pigeons soon after their birth, by means of fine copper wire,
the large tubes themselves, and a soft kind for the smaller ones. The separate pieces are fastened together by means of fish-glue, which is applied with an iron nail. A razor-like knife is used for splitting the bamboo sticks, and a chisel to break the harder pieces. For the general work a dożen spatulas are required, and awls are used for drilling the small mouthpieces. There is also a whetstone for grinding the implements, the same as is employed in other industries and by professional knife-grinders, and a saw with a slightly curved blade for cutting the gourds. The smallest whistles are of course most difficult to produce. One workman is said to be able to turn out about three specimens a day, which shows that the work requires some time and skill.
The explanation of the practice of this quaint custom which the Chinese offer is not very satisfactory. According to them, these whistles are intended to keep the flock together, and to protect the pigeons from attacks of birds of prey. There seems, however, little reason to believe that a hungry hawk could be induced by this innocent music to keep aloof from satisfying his appetite; and this doubtless savors of an after-thought which came up long after the introduction of this usage, through the attempt to give a rational and practical interpretation of something that has no rational origin whatever; for it is not the pigeon that profits from this practice, but merely the human ear, which feasts on the wind-blown tunes, and derives æsthetic pleasure from this music. And here, again, it seems to be a purely artistic and emotional tendency that has given rise to a unique industry and custom applied to nature-life.
-through a very hot summer and a very cold winter -and they were perfectly preserved. He says that 4 cents' worth of lard suffices to coat 100 eggs, and that 'anyone-could easily prepare that number of eggs in one hour's time.

Wasting Water Assets.

California has learned, says the California Culti vator, not only that the ground may become water logged by over-irrigation, but that ill-considered drainage and the inconsiderate use of water from wells may so lower the underground water-plane as to threaten the reversion of large areas to unproductiveness.
The Geological Survey has demonstrated that al the subterranean waters of 775 square miles in south ern California are connected, and that every well taps a common supply; and on this the water-plane which was twenty-three feet below the surface of the soil in 1898, is now fifty feet below.
People can live beyond their means in respect to water, as well as timber, oil, natural gas, fish, and game.

The output of copper in the Ural district in 1906 amounted to 4174 tons, as compared with 3,610 tons in the preeeding vear, thus showing an increase of 564 tons. These figures cannot be considered as satisfactory from the Russian point of view, taking into consideration the high nrices which prevailed last year for copper. Moreover, on comparing the total output of copper in 1906 with that of the years 1904, 1903 and 1902, a decrease in the producion is noticer. de.

a new automatic violin player.

One fiche cobrespondent of thescientif arerican. musical instruments devised within recent years is now on exhibition in England. This is the Mills automatic violin player, which, as may be seen from the accompanying illustration, is a delicately constructed and remarkably designed automatic violin, in which the fingers of the player are supplanted by mechanical agency. The instrument is the result of several years' experiment and scientific research, and although played by electro-mechan ical agency, the rendering ical agency, the rendering
of the music is so deliof the music is so it is difficult to cate that it is difficult to
distinguish it from that of a master hand. The sweet ness is remarkable, as are also the harmony and volume of tone.
The instrument, as may be seen from the accompanying illustration, comprises the ordinary type of violin, complete in every detail, with the usual strings and facilities for tuning. The instrument is held firmly at the neck, to secure the same position as if held under the chin, while the opposite end is held by a solid support. Above the strings is mounted an intricate and elaborate mechanism, with lever rods, which act as fingers, and by depression upon the strings in the correct positions give the required notes. The bow, or rather series of bows, since there are many in order to secure full chord effects, is represented by a number of revolving disks, which in their rotating passage strike the strings as they are depressed upon them according to requirements, and in conjunction with the mechanical fingers sound the required notes. There is a complete absence of harshness, such as might natưrally be expected in a mechanically-operated instrument, while the diminuendo and crescendo effects are faithfully reproduced. The mechanism is operated by a small but powerful electric motor driven by batteries; the control is effected by means of an ingenious arrangement of elec-tro-magnets. The whole of the mechanism is in motion at one and the same time, each composite part performing its allotted function in accordance with the musical score, at the correct moment.

Reading a Telegraphic Message by Taste.

Every person familiar with the instrument is fully acquainted with the difficulties attending its mastery, and the many musical impressions peculiar to violin playing. Yet all such, as staccato, legato, pizzicato, arpeggio, shake, trill, thirds, fourths, octaves, tenths, portamento, are marvelously produced. It renders with complete accuracy and striking execution the most difficult classical passages as readily as the more simple popular airs.
Moreover, it exceeds the capabilities of the human player. Duets and even quartets are given with as

an automatic machine for playing the violi

much facility and delicacy as solos, it merely being a matter of coupling up the mechanical actions. In this manner a single instrument can render the full effects of a stringed orchestra, while moreover, in order to complete its possibilities, it will play its own accompaniments. to solos, and very often the four strings are brought into requisition at the same time
The automatic player has been investigated by many of the leading violinists, who have listened to its renditions of the most intricate and difficult music, and have pronounced them to be musically perfect, while time, melody, harmony, and expression are produced with such distinctive skill às to testify to the precision of the mechanical arrangements. The invention has aroused the greatest interest in England and Europe, since it is to the violin what the pianola is to the piano, and demonstrates to a striking extent the musical qualities of the instrument when deve'oped to its fullest extremity.

AN ORAL SYSTEM OF TELEGRAPHY.
by gustave michaud, costa rica state college.
We are accustomed to think of the tongue as a transmitting instrument, but it serves very well as a receiver in the novel system of oral communication described below. With the exception of the wire, all that is needed for this oral telegraph may be had at the dinner table. The battery, two senders, and two receivers are made up, ready for use, in less than one minute. The apparatus works well, and does not get out of order. After dinner it will afford a pleasant pastime, and may prove useful to those teachers who have to teach with few or no apparatus.
Lay two parallel wires from one room to another avoiding contact between them. At each end of the telegraph line, place an operator holding two spoons
one of the two wires, and keeps both ends in his hands. To send a dot of the Morse alphabet, he brings into contact, during a short time, both ends of the broken wire. A long contact is a dash. At the other end of the line, dots and dashes are perceived as short or long spells of a strong, pungent taste, which ceases at once when the current is interrupted. There is no uncertainty in deciphering the message; on the contrary, most operators will say that, so far as their own taste is concerned, they would rather have a weaker current. After sending his message, the operator twists the ends of the broken wire together and waits for the answer.
The current is the result of the chemical action of alkaline saliva over the aluminium. The two cells are connected in series, and the E.M.F. is twice greater than in the case of a single cell. So is the internal resistance, but that of the wire is not, and the current strength is therefore somewhat increased.

A New Chinese Steamship

 Line.According to the Board of Trade Journal, the Registrar of Imports and Exports at Singapore (Mr. A. Stuart) reports that a new steamship company, with a capital of $3,000,000$ ticals (about $\$ 1,125,000$) is being organized by Chinese and Siamese merchants with the object of entering the carrying trade between Bangkok, Singapore and Hong Kong in opposition to the North German Lloyd, who have recently come to an agreement with the Japanese owners of the vessels on the Bangkok, Hong Kong and Swatow service. As the promoters include several large rice merchants who have usually done a chartering business on their own account, the company's success, says Mr. Stuart, seems to be assured. Meantime six vessels will be chartered and new boats built in England or Japan.

Europe has demonstrated that a country can be prosperous and develop on a very small amount of lumber. Practically speaking, there is not a wooden shingle in the whole of Europe, while frame houses are rare. Lumber yards in some countries of Europe hardly exist

Sending a Telegram With Current Generated in the Mouth.

INCANDESCENT GAS LAMP WITH SELF-GENERATED FORCED DRAFT.
The light of a gas flame is due to imperfect combustion. The heat of the flame liberates some of the carbon in the gas, and the particles of carbon are heated to incandescence by the combustion of the rest of the gas. If air is mixed with the gas, as in a Bunsen burner, a more perfect combustion takes place and a greater heat is generated, but the flame loses its luminosity to a corresponding degree.

Twenty-three years ago it occurred to Baron Carl Auer von Welsbach that instead of depending upon unconsumed carbon for light, better results could be obtained by generating all the heat possible in the gas flame, and using this heat to render incandescent some mineral substance that would not be consumed by the flame. Thus, the Welsbach mantle was evolved.
Unfortunately, the ordinary Bunsen burner does not furnish sufficient air to produce a perfect combustion of the gas. The air is drawn up into the burner mainly by the injector action of the gas. The chimney of the lamp also produces a draft, due to thermal expansion of the air about the mantle, but most of this air plays upon the outside of the mantle instead of being intimately mixed with the gas before burning. It is stated that to obtain the highest temperature of flame, the mixture should consist of one part gas and five to six parts of air, whereas the ordinary burner furnishes less than three parts air to one of gas. A larger volume of air is sometimes furnished by using a forced draft, but heretofore this has entailed the use of special apparatus to compress the air which, aside from encumbering the lamp, increases the cost of maintenance.

Recently a German inventor, Herr Paul Lucas, of Berlin, has devised a new type of gas lamp, which operates automatically to supply the requisite forced draft. The lamp gives a very brilliant light. A small electric motor at the bottom of the lamp drives a fan, which draws the air into the mixing chamber of the lamp. No expense is involved in driving this motor, for by an ingenious arrangement the lamp is made to generate its own current from the excess heat, which goes up the chimney. The heat is directly converted into electricity by means of a thermopile placed in the upper part of the lamp. The thermopile is shown in one of our engravings. It consists of a series of elec tropositive and electronegative metal strips, joined in pairs and radially disposed about a common center. The lamp heats the inner ends of the couples to a high degree of temperature, while the opposite ends project out of the lamp, and are kept comparatively cool by radiation. There are about seventy couples in the thermopile we illustrate, and the combined current produced by the difference of temperature in each couple is ample to operate the electric fan of the lamp at a speed of 2,000 revolutions per minute. Ordinarily thermo-elec tric couples are made of bismuth and anti mony, or sometimes of tin and an alloy of an timony and zinc. But in this lamp, where the elements are subjected to a high temperature, it is found necessary to use such heat-resisting metals heat-resisting metals as copper, aluminium and nickel. This form of electrical generator is admirably suited to the lamp, as it contains no moving parts, and hence is not liable
to require any repairs or other attention. Not only does it make use of the waste heat of the lamp, but it cools the lamp as well; thus at the same time overcoming and putting to service an objectionable feature of the ordinary incandescent gas lamp.
One of our illustrations shows a section of the lower part of the lamp, revealing the motor and fan and the mixing chamber. : The current generated by the thermopile is conducted by means of brushes A to the armature B of the motor. Permanent magnets C are used for the field magnets of the motor. Beneath the armature proper is a plate, on which the fan blades D are formed. The fan is thus an integral part
of the armature, and turns with the motor. The armature is mounted on a spindle, which rotates in a socket in the lamp frame, and is kept well lubricated by means of the oil cup E. As the motor rotates, and the fan serves to draw air through openings F in the lower part of the casing. A sleeve G is mounted in such manner that it may be adjusted to open or close the openings, and thus regulate the volume of air sucked in by the fan. The supply of gas is fed into the mixing chamber H, through the tubes I and the air drawn in by the fan is also forced with the gas into this chamber. Projecting into the mixing chamber is a perforated cup K, through which the

The Thermopile Which Generates the Current for the Electric Fan.
combined air and gas must pass before issuing out of the screened top L of the burner. In passing through the perforated cup the air and gas are intimately mixed, and thus produce an ideal combustion, which heats the mantle M to a far more brilliant incan descence than is obtained with the ordinary burner.
The lamp here illustrated burns 33 cubic feet of gas per hour and to enable one to adjust the gas șupply properly a small regulator N is provided. When installing the lamp this regulator is attached to one of the gas supply pipes I, and the gas issuing from the tube of the regulator is ignited. The gas cock is then adjusted until the flame of the regulator just reaches the gage wire O, which indicates that requisite amount of gas is supplied to the lamp. The gas cock may
 velop, the divers can descend without risk.

successful Cultivation of Mexican Pearls Carried On

 in Lower CaliforniaConsul W. D. Shaughnessy, of Aguascalientes, transmits an article to the Department of Commerce and Labor from the Mexican Herald, of February 16, 1908, wherein it is claimed that the honor of being first to discover and put into successful operation the secret of cultivating pearls belongs to a Mexican company. The following paragraphs are taken from this article:
"Under the old system the pearl industry was an uncertain one. Bushels of shells might yield but a few gems or possibly none at all. But this company, which is working under a concession from the Mexican government, has taken up the cultivation of pearls as a practical industry, and is now operating the largest pearl farm in the world, employing in the harvesting season more than 1,000 people. They are operating in the Gulf of Lower California. The present markets for the company's products are Paris, London, and Berlin, and Hamburg and Bremen for the mother of pearl, which is exported in large quantities.
"Two years are required for the growth of an ordinary shell, which forms slowly in layers, like an onion. After two years the shell loses its gem, and, unless opened at the proper time, there is nothing of value within. Mr. Vives, who spent twenty-five years in studying and experimenting, discovered this fact, and thereupon he devised the system whereby the shells are cultivated until the proper time and then opened.
"In the first place, the shells are gathered in the season when the eggs are being deposited. These eggs are carefully placed in little artificial channels like the natural bottom of the sea, care being taken in these channels to protect the little animals from their natural enemies. At the proper stage they are transplanted into deeper water, where larger boxes continue to protect them. The stock is also inspected and the dead ones removed and replaced by live shells. In the deeper channels the shells are left to develop, and at the end of two years the harvest is ready. In the deep-water cages, where the pearls de
"Three distinct kinds of pearls are produced in the California Gulf, the most valuable, black pearls, ranging close to $\$ 300$ per carat gold. The next in point of value are the white pearls, about $\$ 250$ a carat, the price varying with the size and perfection of the gem. The yellowish pearl, although ranking third in value, is, as a rule, first in favor among the fem inine admirers be cause of the brilliancy of the gems. These prices are for the rarest and most per fect pearls."

Vice-Consul Ernest Santi, of Milan, send a report on the correc way to introduce Am erican soldering pre parations in Italy. He states: Many differ ent mixtures are used ent mixtures are use n Italy at the presen time for soldering pre-
parations, but they are parations, but they are
nearly all primitive. There are some patented articles on the market, but they do not seem promising as the Italian user in general would rather use a mixture contain ing muriatic acid which he has alway used, than risk novel ties. The success of the American article depends on its price and its results, and to andoit it corr, and to the Italian market the American firms must send a full line of samples to each use with directions for
then be locked at this adjustment because further regulation will not be required. The lamp is adapted particularly for use in large stores and for street lights. It measures three feet over all, and has a reflector two feet in diameter. It gives a light of from 1,250 to 1,300 candle-power, and as it consumes but 33 cubic feet per hour, its cost per hour is but little more than three cents. The lamp is being exhibited by Mr. F. A. Imandt of 27 West Thirty-third Street, New York, N. Y.

It is estimated that South America furnishes about 63 per cent of the world's supply of India rubber.
use, together with prices and terms of sale. Italian hould be induced to try the article at the expense of he American firm, and instructions for use should ald be given.
The Italian consumption of these goods is not great but it is large enough to be worth while for some American firm to establish a good business in Italy after the various consumers have tried the soldering prepar ations and they have proven satisfactory in every way.
Solder wax in sticks pays $\$ 1.93$ duty per 220 pounds entering Italy, and wrappers or cardboard boxes con taining them pay separately $\$ 13.51$ per 220 pounds.

RECENTLY PATENTED INVENTIONS

Pertaining to Appare

GARMENT-CLOSING DEVICE.-IdA J. CALHoun, Tampa, Fla. The purpose in this cas a device which will enable the quick and con venient closing and separation of opposin edges on a body, or a waist of a woman's dress
or any garment that requires a detachable con nection of its lapped edges when donned.
Skirt.-B. Cohen and W. Epstein, New York, N. Y. In this patent the invention has reference to wearing apparel, and its object
is to provide a new and improved skirt ar ranged to properly and accurately fit women having different sized waists, at the same
insuring the proper hang of the garment.

Skirt.-W. Epstein and S. Epstein, Ne York, N. Y. The object of the improvement is to provide a skirt or petticoat, provided with
a waistband having an expansible and cona waistband having an expansible and con
tractible portion, arranged in such manner that the waistband readily fits different sized waists and at the same time insures a proper han of the garment.

Electrical Devices

Electrical CUT-OUT.-P. T. McNally Mandan, N. D. The device is for use in branch lines of electric lamps whereby th current may be cut-in or cut-out in said branch lines either from the power house or any re mote station, thus controling the current on rent in the main line leads.

Of Interest to Farmers.
threshing-machine.-T. S. Haynes, Bay City, Texas. The machine is especially grain, as rice and the like, and is so constructe as to perform its functions satisfactorily when the grain is wet as well as when dry, as also
to work well in marshy and water-covered flelds, which is essential to a practical rice threshing machine
STALK-CUTTING ATTACHMENT FOR VE HICLES.-R. B. Human, Chickasha, Okla provide an attachment complete in itself, and which can be applied to the forward or rea axles of an ordinary farm wagon, or simila vehicle, and to provide means for raising and lowering the cutter, and means for counter acting the rebound of the cutter when in use thus preventing severe injury to the blades of the cutter
in its path.

Of General Interest.

CUSPIDOR, DRAINAGE-BOWL, OR THE IKE.-A. R. CANDY, Urbana, Ill. The in age bowls, or other like devices of the type that occupy a fixed position in the floor and are connected with a sewer or other suitable drainage or discharge into the open, especially
designed for cars, hotels, and public places. designed for cars, hotels, and public places.
Trestice-M. White, Portsmouth; Ohio. The invention relates to improvements in tre tles such as are used by plasterers, carpenter nd other artisans, and has for its object to
provide a trestle that can be made at a smal cost and one which can be quic
set up, moved, and taken down.
NAME-HOLDER FOR UMBRELLAS OR OTHER PORTABLE ARTICLES.-W. N. REYolds, Litchiela, Conn. One purpose invention is to provide a name plate adapted or attachment to an umbrella handle or stick,
cane or other portable object, and to so a cane or other portable object, and to so
construct the device that a card bearing the name and address can be readily introduced into the device in such manner that desired the card can be quickly released.
GAS ANALYSIS APPARATUS.-J. F. Simw. 17 Ravenscourt Park, Chiswick, Londo London, E. C., England. According to the present invention the gas or gaseous mixture to be tested (whatever the pressure at which
it reaches the apparatus) is always and autoit reaches the apparatus) is always and auto-
matically brought to the same pressure, so that a series of volumetric tests, if performed unsults having a uniform d gree of accuracy and value
AMALGAMATOR.-F. B. SANFORD, North as means for treating auriferous wash by gravit unaided by mechanical force, and without reducing the ores to a finely pulverized pulp, as is ne
CLOTHES-HOLDER.-S. S. Smith, New York, N. Y. The more particular intention in or supporting garments, bed clothes, and othe articles made of cloth, so as to facilitate the beaching of such articles by aid of the dew and grass, yet without allowing the articles to rest directly upon the ground.
TYPE-CASE--J. G. Gallemore, Washing-
ton. Mo. The object of this inventor primarily the provision of a case in which no oppor tunity is presented for the type to work or
slide under the partitions from one compartslide under the partitions from one compart-
ment of the case to another, or to be in any
wise caught or lodged under the partitions The bottom of each type receptacle, is prefer ust to sift the for the purpo thus prevent it accumulation in the several type compart ments.
WELL-BUCKET DUMP.-H. R. ANDERSON Gainesboro, Tenn. Broadly stated the inven tion consists of a hollow stock or tubing, wit its interior providing passage-way for ordinar form of bucket, having a gravity, or other
suitable form of downwardly seating discharge alve in its oftom means whereby to he bucket down the well, to be filled with ater, and also adapted for use in elevatin the bucket of water and whereby to draw it upward on the stock, and when so elevated,
permitting closure of the passage-way through permitting closure of the passage-way throug
the stock, by adjustment of a slide-valve.

Hardware.

WRENCH.-H. N. Rothweiler, Seattle Wash. The object of the inventor is to pro vide a tool, which shall not only be novel
in its general makeup but improved over simin its general makeup but improved over sim-
ilar wrenches as hitherto constructed, and at lar wrenches as hitherto constructed, and a the same time render the parts adapted no
only to be cheaply constructed, but with the wearing parts interchangeable,
vorn part may be readily replaced.
mower.-t. m. Crepar and rosetta w. Crepar, Fargo, N. D. The object here is to provide a mower for the cutting of lawns grass-plots, and the like, and having a clipper
arranged to be operated by the movement of arranged to be operated by the movement of
the mower itself. Also to provide a mower aving an automatically operated clipper which an be adjusted to cut to any degree of close frame and co-operates with a brush similarly perated by the mower, for advancing the evered grass to a receptacle.
DEVICE FOR DRESSING SAWS.-T. W. Roscr, Lyman, Wash. The purpose of the or which Letters Patent were formerly granted Mr. Roach, to the extent that the device rendered more simple and will be more ac device may be used indeflnitely without loss action.

Heating and Lighting. W . S . RYaN, Viola, ill

LaMP.-W. S. RYaN, Viola, Ill. It is orm of a street lomp post, which in the with a small feed tank for supplying the lamp for a predetermined length of time. By this construction the feed tank can be filled from the reservoir to feed the lamp for any period,
and when the fuel is consumed in the feed tank the lamp will automatically go out.

Household Utilities.
DEVICE FOR OPERATING WINDOW The object of the present invention is to si plify the construction and provide in connec tion with the principal bearing thereof, a stop which is adjustable relative to the shutte whereby the latter may be prevented from ing movement. It is desired point in its open ng movement. It is an improvement in shut scribed in Letters Patent formerly granted to Mr. Lonergan.
window-cleaner. - o. Caesar, New York, N. Y. In the present patent the object proved window cleaner, arranged to permit conenient and thorough cleaning of the window sash, both on the inside and outside, and
without the slightest danger to the operator Trap.-P. Ayres, Ocean Side, N. Y. The object in this invention is to provide a trap, arranged to permit the plumber to quickly consoil or waste pipe, and to make a perfect joint with the soil or waste pipe without requiring the tedious and expensive work of wiping a joint.

Machines and Mechanical Devices.

Steering-gear.-C. J. Schoening, Hono ulu, Hawaii. The object here is to provide gear, more especially designed for use on automobiles, motor boats, air ships, and other vehicles, and arranged to bring the steering heel io position for convenient manipu to allow of adjusting the steering column, to permit convenient
meat-cutting machine.-e. w. Rusk, Callaway, Neb. In the slicing of meats for retail, the butcher uses his knife to slice the arding the the bone is reached and then disthrough and then, resuming the knife, proceeds to sever the still connecting flesh. Rotary machines have been devised, but for various rea-
sons the knife and saw are still used. This sons the knife and saw are still used. This ing the work without constant change of im plements.
Speed-indicator.-J. G. Field, Thompson, Iowa. The invention has in view the provision of suitable mechanical means for indicating the relationship between the speed of
the device of which the speed is to be deterthe device of which the speed is to be deter-
mined, and the speed of means, as a motor, mined, and the speed of means, as a motor,
moving at a predetermined velocity.

SAMPLE-TAKing maChine.-A. Fenstertion relates to mechanism for taking samples rom time to time, of a manufactured materia or product, and is especially useful for the pur pose suggested in connection with the manufac ure of granular or pulverized material such as powder or flour. Th may be used to effect the aking of samples through a number of spouts, arrying. different materials, by simply duplicat and the operating lever connections controlling the valve thereof.
MACHINE FOR MOLDING PLASTIC MA TERIAL-J. L. Campbell, Roebuck street Cest Adelaide, South Australia, Australia. Mr or use in molding plastic material into lengths of any desired section, and it has been de signed especially for manufacturing lengths of core as used in foundry work and
clay adapted to be cut into bricks.
VARIABLE FLOAT-SHAFT BEARING FOR COTTON-SEED-LINTING MACHINES.-J. L. osson, Athens, Texas. The inventor provides variable shaft bearing for use in regulating
and maintaining the density of the roll cotton seed carried by the float shaft of the linting machine. The machine is provided with a float drive shaft, the latter being provided with a fluted drum for drifting the cot AUTOMATIC ASSEMBLER.-W. L. Ainslie, Jacksonville, Fla. The machine makes fruit packages, such as crates and the like. Th age-making machine and is arranged to automatically assemble the several members of the side or top in such manner that the assembled members can be readily fastened together in the machine by the use of
or like fastening devices.
WORK-BOX FOR SEWING - MACHINE Tables.-Annie H. Daniel and R. P. Danibl cabinets of the drop type, and the aim is to provide a work box for removable attachment to a sewing machine table, and arranged to equire no remodeling of the machine cabin
to allow of readily placing it in position removing it therefrom without injury to the cabinet, to blend harmoniously with the other wood-work when in use, a
STEaming apparatus.-J. hall, Fresno, cal. The object of this inventor is to provide steaming apparion in which the struit is subected to the action of dry steam for a suitable period, and from which the same is subse-
quently discharged in a proper condition for quently discharged in a p
removing the seeds or pits.
Prime Movers and Their Accessories.
Pressure-regulating valve. - S Ybarra, St. Louis, Mo. Fluid admitted to th age into a ress thus acting to force th plunger upward. Since the passage connecting the oppositely arranged recesses is restricted only a certain amount of motive fluid may pass, and excess of pressure acts upon the bottom of the plunger to move it upward against resistance of the spring. Means regulate the pressure through the passage between the recesses. Pressure remaining constant, the
plunger is not acted upon, a spring retaining in lowermost position. On material in rease of pressure the plunger is moved up-
ward to partially cut off inlet and outlet, thus reducing pressure in the casing.
rotary engine.-G. H. Tuttle and E. A Kent, Atlanta, Ga. The object here is to produce a prime mover economical in steam consumption and efficient in operation. More pecifically, the invention concerns itself with an abutment which projects into the piston to allow the piston head to pass.
ROTARY MOTOR.-A. SAUER, Pittsburg, Pa. This invention relates to improw on that piston is driven by the impact, and reactionary force of steam or other motive fluid. It is for which Mr. Sauer formerly received Letters Patent. The inventor has put into successful use several improved features of
tion and obtained superior results.

Railways and Their Accessories

SWITCH MECHANISM.-C. F. GAY, Spo sane, Wash. The invention refers to improve tongues of railways, and the object is to pro vide a mechanism which shall be simple in construction and that may be moved from inoperative position to a position for moving the witch tongue into its positions.
STATION-INDICATOR.-C. F. Billings, Zion City, Ill. One purpose here is to proand an indicator so constructed that the upper and lower rollers carrying the apron upon by independent mechanisms, so that operated which roller is operated a so that no matter at the display opening in the indicator at each complete operation of the mechanism brought into action.

Pertaining to Vehicles.
VEHICLE-BRAKE. - H. M. Vanderbilit
primarily as an emergency braking means for motor vehicles, especially avoiding undue wear flexible band or other connection adapted to be fexible band or other connection adapted to be
drawn under the wheel of the vehicle when the shoe is thrown into engagement with the tire. Means are provided to automatically tive position after the braking action has accomplished and the vehicle backed to rees them.
TRACE-SECURING MEANS FOR SWIN-GLETREES.-T. Morcom, Graham, N. C. The object in this case is to provide details of venient manner secure traces on the ends of swingletree, and permit a release of the eing impossible unless the parts are broken. ATTACHMENT FOR DIRT PUSH-CARS.J. W. Grubbs, Shenandoah, Va. The patentee secures a frame to a car body in mounts at ach side of inclined adjustable deflecting boards
on which the dirt is dumped from the hoppers mounted on the car the arrangent being such that the deflecting boards can be adusted so that the dirt will be carried beyond the track ballasting.

Designs

DESIGN FOR A COVERED DISH.-A. PARdad, New York, N. Y. The design includes dish and a cover for the same capped witb ornamental lifter in the form of an olive
 ery gracefully bal
base configuration.
Note.-Copies of any of these patents will e furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of invention, and date of this paper.

> HINTS TO CORRESPONDENTS nd Address must accompany all
and Address must accompony all letters or
attention will be paid thereto. This is for

the same.
Special Writiten
rather than
Information on onal interest matters of personal

$\begin{array}{c}\text { price. } \\ \text { Minent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(10779) G. A. D. asks: Will you kindly mail me the answer to the following question,
which is a branch of electro-plating? I wish know the color termed "verdigreen" s produced on the surface of brass, or, in other words, how I am to produce a color
which looks as though brass has been buried and verdigris has formed thickly on the same. have a number of brass wall plates on which are set electric push buttons. The coating 6 inches by 10 inches. A. A green coating is obtained upon brass by the use of
verdigris, which is called in chemistry acetate of copper, or by carbonate of copper, or by a mixture of the two in the tint desired. This plied to the article with a brush and the high parts are immediately wiped off with a rag wet with the liquid in which the varnish was dissolver. This may be alcohol. A smooth coating should be left. A coating of clear
lacquer is put over the whole when the varnish is dry. There is no need of electricity in doing this. It is a process in lacquering.
It is more fully described in Van Horne's a \boldsymbol{N}^{2} m Electroplating," which we send for $\$ 1$. (10780) H. F. W. asks: In thinking of the power of gravitation and the resultant weight of objects and incidentally of the power in my mind: "How is weight affected by distance from the earth?" I wondered if this what is the proportionate loss of weight of objects carried to the greatest height attained by
balloons, say approximately five miles of balloons, say approximately five miles. Of yards could not be used; but spring scales probably could be used so as to determine the loss of weight and the percentage thereof. A. fully investigated the action of gravitation, and determined the law of the weight of bodies at all distances from the center of the earth. It is that the weight decreases at the same rate as the square of the distance from the center of the earth increases. If anything weighs 100 pounds at the level of the sea on the of the earth that body will weigh only oneearth as 4,000 miles in round numbers from the center, twice as far weuld be 8,000 miles ; at 8,000 miles from the center of the earth,
the weight which was 100 pounds at sea level
will have decreased to 25 pounds. At 5 miles equally in all direetions, is sufficient to greatly
above the surface of the earth, the change ${ }_{4,0055^{2} \text {. This decrease is very slight for short }}$ istances. As you say, it cannot be detecte with a steelyard. A spring balance would giv A pendulum is, however, the instrument actually empioyed for the purpose, since its time
of swing depends upon the force of gravitation.
(10781) W. H. D. asks: Have you Supplement which fully gives the cubical diference in pipes and their capacity for deliver 10 feet to 100 feet to run? I confess the mos abject ignorance of a principle, and I know here is one; for instance, the difference in the carrying capacity of a $\%$ and $1 / 2$ pipe, $7 / 2$ and
$3 / 4$, etc. I notice my pipe, $3 / 8$ new lead, 35 rods, 67 feet fall, gave measure) 1 quart. in 19 seconds; the declin
 same fall, only favors me about 5 second A. We refer you to an article on the flow of
water though pipes, in SUPRLEMENT No. 791, water though pipes, in SUPPLEment
price ten cents mailed. The question of deter nining a quantity of water which will flo under a given head from a long pipe is a very omplicated one, because the coefficient of fric
tion is not constant, but varies with the of the pipe and the velocity of flow. The wich is usually used of the pipe the velocit

Where $h=$ the head in feet
$v=$ the velocity in feet per second.

$g=32.2$. $l=$ the

$d=$ the diam of the pipe in feet. $f=$ the coefficient of friction
The value of f varies from 0.008 to 0.006 fo 3 -inch pipe, as the velocity of flow in the to 20 feet per second; while with a half-inch pipe it varies from 0.0150 to 0.006 under the ame circumstances. From the above you can roughly estimate the proper coefficient of fric
tion for a given pipe and a given velocity ubstitute this coefficient of friction in th ormula given above, and determine the velo ty with which the water will issue from your pipe at the further end by solving the equa
tion for v. When the velocity is known, the quantity may be determined by the formula: $Q=0.78 d^{2} v$.
Where $Q=$ the flow of water in cubic feet per secon
feet.
(10782) M. H. H. says: Will you please inform me through your "Notes and Queries" column, whether or not glass can be
sensitized so as to print upon it from a nega tive, and how to sensitize it? A. A glass photographic plate may be used for making positive from a negative just as it is for mak ng the original negative. The sensitive ma collodion. Glass itself cannot be made sensi ive so
directly.
(10783) M. M. says: Will you kindly nswer by letter the address of all the trade schools outside the one at First Avenue, 67th
and 68th Streets, New York, which is filled A day school where plumber's trade is taught. Please answer as soon as possible. A. The
New York Trade School is the only trade school hat we are certain has a day course in plumbing. We would advise you to write for
catalogues, however, to Pratt Institute, Brooklyn, N. Y.; St. George's Evening Trade School New York; McAlpin Trade School, New York Baron de Hirsch Trade School, New York city Highland Falls Trade School, Highland Falls N. Y.; North End Trade School, Boston, Mass. Charitable Mechanics' Association Trade
School, Boston; Williamson Free School of Mechanical Trades, Williamson, Pa.; California School of Mechanical Arts, San Francisco, Cal. Wilmerding's
(10784) H. J. H. says: In the physics lass recently a discussion arose concerning plosive power of dynamite is exerted. The plosive power of dynamite is exerted. The
teacher contends that the explosive force is exerted equally in all directions; the students, that the greater part of the force is exerted
in a downward direction. Will you please decide which is correct? If force is exerted in a downward direction, why? Students base says: "Dynamite placed and exploded on says: "Dynamite placed and exploded on a our question, we would say that your teache one caused by a large volume of gas suddenly liberated, and a gaseous pressure is always exerted equally in all directions. The opinion which you hold is a very common one, which
arises from not fully understanding the nature arises from not fully understanding the nature of an explosion. When a large amount of gun-
powder placed on the surface of the earth is exploded, a very large volume of gas is suddenly liberated by the burning of the powder. In this case, however, the liberation of the gas is not instantaneous, and there is sufficient
time for the gas to escape upward into the time for the gas to escape upward into the
atmosphere before the pressure, which acts
affect the surface on which the gunpowder wa
set off. If the powder could have been burne ten times as rapidly, the same amount of gas would have been liberated; but because it was been many times greater, and sufficient in al probability to scatter the earth or rock beneath it in all directions. When dynamite is exploded exactly the same effect takes place excepting that in the case of dynamite, the gas is liberated almost instantaneously. In this
case there is not time for the gas to escape ase there is not time for the gas to escap xerted in all directions that whateve
(10785) J. K. says: 1. I want to make sounding box 10 inches in diameter and inches high. What material should I use, and A. A sounding box may be made of any kind of wood, excepting the part which gives the ine resonant side may be from an eighth to quarter of an inch, depending upon the kind of instrument upon which it is put. No gen-
eral answer can be given. The back and belly ral answer can be given. The back and belly
of a violin are not usually as thick as an ighth of an inch. 2 . What is meant by ten is expressed in feet, which is meant-squar r cubic feet? A. Tensile strength is the force equired to pull open a wire any given material, when the piece has a sec tion of a square inch. When lumber is given in feet, the square foot or superficial foot with
a thickness of one inch is understood. Thus a a thickness of one inch is understood. Thus a
plank two inches thick has twice as many feet plank two inches thick has twice as many feet
in it as a piece one inch thick. 3. Why is it
that a more horse-power can attain a speed of 80 or 85 miles an hour, with a train of 250 or 300 tons, whereas a racing automobile with 90 horse-power and weighing about 3,500 pounds, which represents a much greater power per pound of rieight moved, attains onl, some cases as smaller? A. The stand in ome the speed of automobiles hardly represents he latest records. However, the locomotive has the momentum of the heavy train to help it. A light weight cannot be given so great
velocity as a heavy one. A very light ball velocity as a heavy one. A very light ball
annot be batted so far nor sent so fast as cannot be
(10786) S. F. B. asks: Please be so sind as to inform me what alteration should e made in the winding of the 8 -light dynamo in order to make it suitable for lighting 110 volt 16-candle-power lamps. Also which of
the two armature cores is the better, and do you consider this dynamo a practical electric or machine, and do you have the plan lighting of about the same capacity? A. The 8 -light dynamo is a practical machine, even
now, twenty years since it was designed. now, twenty years since it was designed.
Many of them are in operation and doing their work well. We have not published the plans for any other machine of this size. The arma ture composed of sheet iron disks is much to Some very good alterations have been made in this dynamo by certain parties who have built it. These are described in answers to queries No. 8250 and 8316 . These you ma have if you have kept the back numbers of
the paper. To make a 110 -volt shunt-wound machine from the same castings for the arma ure use No. 22 B . \& S. cotton-covered magnet B 25 turns each; for the field wire, 3,640 turns on each magnet. A resis-
tance box to regulate voltage should have tance box to re
about 200 ohms.
(10787) H. G. R. says: Can you tell me what is generally considered to be the dwelling house? The hygrometer in my house varies from 20 to 40, even when I evaporate water on the registers. The house is heated
by a hot-air furnace in which is a receptacle for evaporating water, but this does not seem od of getting the right degree of moisture in the air and of maintain ing same? A. There is no recognized degree of humidity which is regarded as better than
any other. It is usually considered that a very dry atmosphere is more healthful than differ regarding the value of increasing humid ity in dwelling houses during the winter by the evaporation of water. The only ground on which the practice can be justified is that it may tend to make the variation of humidity in the atmosphere of the dwelling less from day to day than would otherwise be the case. (10788) C. K. K. asks: I want to sil-ver-plate on wood or other substances. Have
you any reasonably-priced book on this subect? Electro-plating, I presume it is termed . Electro-plating on wood does not differ from plating on any other material electrically. material impervious to water, and then cover it with plumbago to render the surface a conductor of electricity. Soaking the woo in hot paraffine may close the pores so that
it will not soak water, and the paraffine will take the plumbago very well. The plating process is well described in the book "Mod-
ern Electro-plating," by Van Horne, which
surface for $\$ 1$. Another method for coating quite fully in answer to Query No. 8661, Vol. (10789) J. E. W. asks: Would you please explain through your columns how an ncandescent lamp is made, and what mat ials are used in electric lamps, and how of an incout in the globe? A. The makin great many processes. The glass bulb blown, and the several parts which can be see rom the outside are each made by differen hands and fastened in their several places, thus forming the lamp as it is finally used of glass tubing by which the lamp is connected o an air pump, and the air in the bulb i fnally pumped out, thus producing the vac but the vacuum is made in the lamp by re boving all the air. A full description of the making of a lamp may be found
LEMENT No. 1377, price ten cents.
(10790) G. W. N. asks: Will you findy inform me if there is a non-freezing solution for cooling gasoline engines? I have $4 \frac{1}{2}$ horse-
power with 25 gallon tank. Also what chemcal effect, if any, same has on the castings A. There are three common methods of keep ing water in the cooling coils of automobiles from freezing. 1. Use a mixture of four part culty with this method is alcohol. The difil ol tends to evaporate out from the water an has to be replaced from time to time. 2 Use a. nearly' saturated solution of calcium
carbonate. The difficulty with this solution is that it has a slight tendency to corrode th metal it comes in contact with. 3. Use a mix ture of four parts water and one part glycerhe, to which should be added about one pound of the mixture; to correct a slight tendency toward acidity from the glycerine. It is po sible to freeze any one of the above mixture
 ature above about zero Fahr. Any one of the hree mixtures will give satisfactory results but in our judgment perhaps the third is the ature below zero degree we would recommen adding wood alcohol to the third mixture While we have had no experience with this, we believe it would give good results.
(10791) D. L. G. asks: Being a subcriber to your paper, I will ask a few quesevery week, and a bundle of paper here electrified, it attracts other paper. How does this become electrified? Where does it get its
electricity? Does the turbine wheel resemble lectricity? Does the turbine wheel resemble
Pelton wheel? Are the turbines they use in boats like the Pelton waterwheel? A. Paper is easily electrified by friction in cold and dry weather, so the paper bundle by being tosse comes electrified. It does tricity from anywhere outside of itself. There is electricity in everything, and anything we do to produce electricity, as we call the operation,
only causes the manifestation of electricity, only causes the manifestation of electricity, manifest itself. We do not call any electricity into existence we can only make visible the presence of electricity which was not visible before. The steam turbine acts on exactly the same principle as the Pelton waterwheel, the only difference being that the steam tur bine has a very large number of small buckets, and ther steam which acts on them enters the to the axle of the wheel, and at as many different points as there are buckets in the cir cumference of the turbine. Also with the steam turbine there are a number of rows of buckets mounted on the same shaft, and the steam after leaving one set of buckets passes fixed vanes which alter its direction before it reaches the second row of buckets. In this Pelton wheel having a number of wheels-par allel with one another on the same shaft ranged in such a way that the water passes through one after leaving another.
(10792) G. C. E. asks: Have you any back numbers telling how a telephone transwhich is counted the best, and induction, and line, and why? Same in regard to receiver. Could a battery be used in place of magnet for call, and how many cells with twelve gal-
vanized line wire? Same with copper wire? Ianized line wire? Same with copper wire?
Is metallic circuit necessary, or can one wire grounded at each end do? I mean for the telephone. Are both receiver and transmitter poses for that distance? Also, I wish to know how to make a microphone, or number of paper describing same. A. We have published
in our Supplement, No. 966 , and in the in our Supplement, No. 966, and in the
Scientific American, Vol. 72, No. 4, full descriptions for the making of a carbon tele-
phone transmitter and induction receiver. The two are not used at present, interchangeably; the are not used at present, interchangeaber can be used as a transmitter, but the action is so poor that no one would think of relying upon it in regular service. A bell well as to ring the bell by a magneto. The number of cells will depend upon the manner in which the line is put up. Probably four
to six will ring the bell; if not, add more.

One would not put up a copper line for so vice. In the country, away from other electric lines, a return wire is not needed; but if the line passes near other electric lines, is made by arranging two pieces of microphone is made by arranging two pieces of carbon so
that they are loosely in contact. A current of electricity sent through the poor joint is varied by the changing pressure of the pieces of carbon upon each other. A great many forms of this have been devised. Supplement No. 163 gives figures and description of several forms. Scientific American and Supplement
copies are mailed on receipt of 10 cents each.

NEW BOOKS, ET

The Story of Iron and Steel. By J. Russell Smith, Ph.D. New York: pages, illustrated. Price, 75 cents net.
This handy little volume is an attempt to ng so the main facts of iron and steel makconditions of the complex technical phenomena of the industry, without even having to meet made intelligibl Every paragraph has addition to presenting an understanding of the main technical facts, the major object has been to point out the economical significance of iron and steel, and lay the fundamentals of the present industrial state. To combine and condense in a small volume gist of a subject of the magnitude of the making and, to feat worthy of no small praise. The hisory of the subject alone provides material from which books to fill a library might be written. The author, by judicious selection of matter, gives a very good view of the art without burdening the reader with an overwhelming mass of facts.
How to Make and Use Induction Coils.
By Edward Trevert. Revised by B Edmunds. Lynn, Mass.: Bubier Publishing Company. Illustrated.
16mo.; cloth; 74 pages. Price, 50 cents.
A great deal has been written on induction onst nature. Although this work contains nothing tartling it does contain directions and draw ings, together with expositions of principles, and space devoted to batteries, by a thorough assimilation of which any one should be able to make and intelligently operate an induction
coil of such spark-producing size as he may soe fit to build.

Hydraulic Engineering. A Treatise on the Properties, Power, and Resources of Water for All Purposes. By
Gardner D. Hiscox. New York: The Norman W. Henley Publishing Company. 8 vo.; cloth; 300 illustrations, Price, $\$ 4$.
The need of a general yet compact treatise nized by students and engineers. The writer supplies such a volume, presenting first, a brief technical sketch of the development of hydraulic engineering from the earliest times. A systematic and progressive statement of the mechanics of water and fluids in general follows, including hydrostatics or the equilibrlum laws of liquids in motion, and hydraulics; in which the motion of water in pipes and canals is considered. The writer makes every detail perfectly clear, and cites the necessary formulas in their simplest expression, explaining them meth by air-lift method of raising water has been allotted an entire chapter for its complete presentation, Lift, which is fully described, including single and multi-stage applications, with illustrations showing the arrangemens, of air and water pipes, rules for calculating the vir and water required for raising the water being also included. A number of tables, some thirty-six in all, will be found useful for reference, including the properties of water, coefficients for
hydraulic grades, discharge of water from hydraulic grades, discharge of water from fire hose, velocity, discharge and horse-power of nozzles, and volume of water over weirs,
loss of head by friction of water in pipes, etc. Profit Making in Shop and Factory Management. By Charles N. Car ing Magazine. 12mo.; cloth; 146 pages. Price, $\$ 2$.
Profit Making in Shop and Factory Management" is a concise expression of the methods constantly uses in his own practice. The head of a great manufacturing plant, the Herat his position through various steps, holding in the course of his promotion, the position of supervisor, manager, and head of the labor Compans. of the National Cash Re book has been compiled appeared first in the Engineering Magazine during the year 1907 in the presented, they have been carefully revised.

The division of chapters has also been intro
duced. All alterations are only in details, duced. All alterations are only in details, more effectively adapting to permanent form the sections which previously were produced
serially. The methods will be found to be marked throughout by the clear sight, the fair mind in dealing, and the strong vitality of the author.
Decoration of Metal, Wood, Glass, etc ics, Painters, Decorators, and al Workmen in the Fancy Trades
Edited by H. C. Standage. New York:
cloth; 228 pagn Wiley \& Sons. Price, $\$ 2$. Although, quite naturally, we have not tried in in fact any of the recipes contained in解 best results for the purpose for which the particular recipe is desired. The various methods of browning iron and steel, such a gun barrels, and of gilding upon metal or sil ering glass are all useful, and it seems, for the practical man, that this work should period of use.

Lectures on Science Philosophy
Art. A series of twenty-two lecture
the present status of science, philoso
phy, and art, as concepts of human knowledge, delivered at Columbia University during the academic year to rop, by the several dopartment of instruction. New York: Columbia University Press. Price of each lecture, 25 cents.
The lectures in this series which naturally interest us most are those delivered by Prof. C. J. Keyser on Mathematics; Prof. Ernest
Fox Nichols on Physics ; Prof. Charles F Chandler on Chemistry ; Prof. Harold Jacoby on Astronomy ; Prof. James Furman Kemp on
Geology ; Prof. Edmund B. Wilson on Biology Geology ; Prof. Edmund B. Wilson on Biology ; Herbert Maule Richards on Botany; Prof Henry E. Crampton on Zoology ; Prof. Franz Boas on Anthropology; Prof. James Rignal Wheeler on Archæology; and Prof. Robert S . Woodworth on Psychology. Every subject is treated much in the same way. That is, each starts with the currently accepted definition o a short historical review of the science's devel opment, and finally presents a concise state ment of its present status and its possible give one a swift glance of the present status of modern science.
Secondary Stresses in Bridge Trusses
By C. R. Grimm. New York: John
Wiley \&
pages, illustrated.
Price, $\$ 2.50$. A comprehensive treatise on secondary volves an extraordinary amount of time and labor in its preparation, so the writer confined circumstances thater field. It is owing to thes ary stresses, namely, those which are due to riv eted joints in trusses, are discussed principally In substance four principal methods of calculation of secondary stresses, which the reader may study separately and apply, are given The principle of least work leads also to the shortening the labor is iar removed from shortening the labor. The nature of the sub stresses, and definite rules or formulas cannot be given. The problem of secondary stresses has been put in the proper light and the theories worked out entirely by German authors, who have furnished also the greates and best part of the contributions to th literature of this subject.
Stationary Engineering. A Reference and Text-Book Written Expressly for Stationary Engineers and Firemen
Also Mechanical Engineers, Consult ing Engineers, Electrical Engineers
G. Branch. Chicago: Rand, Mc Nally \& Co Three volumes, 1057
pages; 325 illustrations; cloth bound
pages; $\$ 7$.
Not long ago we reviewed the first edition of this work, giving a brief statement of its
merits. As we have not the first edition at hand we can make no accurate comparison of
the two, so all that we have to say is based upon the three volumes that are now before us, In completeness, in thoroughness, and in clear There can be no requirement of the practical man along the lines to which it is devoted that it does not cover, and we feel that we can
recommend it to anyone desiring a good treatise on stationary engineering.
The Transmission of Military Informa
Tron. By Lieut.-Col. George
Scriven,
U. S. A.
Governors Island, 1908. 8vo.; pp. 153. These papers, which were originally prepared
for the Journal of the Military Service Institution and republished by order of the Chie Signal Officer of the Ariny, present a survey of he field opened by modern science to that corps technically known as intrusted with what are far as the numbers and completeness of the
organization, both of signal troops and armie
in the field, and of all future systems of coas t in are concerned, the conclusions arived deal than the probable conditions. They out ine the whole from which a necessary part, agreeable to existing conditions, may be subracted. No branch of the military art offer wider field for development than that of th Service of Intelligence; and this work is subitted to signal officers and all others inter sted in the subject, in the hope that they may work is in four parts. Part I deals in general with the importance of the transmission of military information; Part II treats of the Signal Corps and the Mobile Army, duties, line of information, organization, and the use o wireless telegraphy; Part III is a continuation Part II, dealing similarly with the Signal Corps and the Mobile Army, but under the hea IV is devoted to the Signal Corps and th oast Defense, and deals with the coast patro and the relation of the Signal Corps to the coast Artillery. This work will be found to be n important and very practical contribution to

Tolhausen's Technological Dictionary
in English, German, and French
Containing all of the Technica
Terms Used in Industries, Crafts Arts, and Sciences. Fifth edition New York: The Macmillan Company
Size of single volume, $67 / 8 \times 51 / 2 \times 21 / 4$ inches. Vol. I. French-German-Ens Vol. III. German-English-French. Price, $\$ 2.75$ net per volume.
This valuable work by Alexander Tolhausen Ofice of Great Britain, first published in 1877 , s now issued in a fifth edition revised and brought down to date by Louis Tolhausen, for ner consul-general of France to Great Britain he new industrial era inaugurated during the 19th century, especially among the nations using ted an ever-spreading technological literature in these languages, to which the need of a dic ionary-guide and a memory-aiding manual soon became apparent, and for the preparation o his, the high attainments of the author espe cially fitted him. The.chief aim of the autho in his long labors and patient research was nite in the smallest space, and at the mos echnical terms used in the three languages, elonging to the subjects enumerated in a given classified list of industries and crafts. In this he succeeded admirably. Each volume contains
over 75,000 such terms with their equivalents in three languages and includes a valuable bibliography of the principal works consulted its compilation, a classified list of the in ustries and crafts dealt with, and a large sup pressions used in electricity, telegraphy and elephony. The value of such a work to all scientific institutions, trade schools, industria aboratories and establishments, cannot be to highly estimated, while it should find a prominent place on the reference sh
library throughout the country.
A Scrap-Book of Elementary Mathe
matics, Notes, Recreations, Essays
By William F. White, Ph.D. Chi
cago: The Open Court Publishing
Company, 1908. 12mo.; cloth; 128 pages. Price, $\$ 1$.
Pure Arithmetic, that is, arithmetic for its provides the mind with recreation which strengthens and sharpens its powers at the same time that it furnishes rest and amusement. Although by no means deep or con-
tinuous, the Scrap Book contains short statements of fact and of interest, making it eadable and suggestive work
le Perou D'Aujourd'hui et le Perou de
Demain. Par Em. Guarini. Paris:
H. Dunod et.E. Pinat, 1908. 816 pp. les Meilleures Recettes Pratiques Recettes des Arts et Metiers. Paris:
B. Tignol. 16mo.; 176 pages. Price 2 francs.
Nephilim. By William J. H. Bohannon. New York: Reeve A. Silk. 12mo.;
NDEX OF INVENTIONS

For which Letters Patent of the

 United States were Issued for the Week Ending May 19, 1908.AND EACH BEARINGTHAT DATE [See note at end of list about copies of these patents.]
 Advertising and other a ar ship, J. C. Curneil
ddvertising device, W. D. Butt. . . erial apparatus, C. J. A.
ir shield, J. H. Kons.
ir ship, J. C. Sandrik
 Amusement apparatus. J. Henzi...
Amusement device, F. Johnon...
Amusement device, J. De la Mar.

Engine and Foot Lathes SACHINE SHOP OUTFITS. TOOLS AND
SUPLIES. BEST MATERIALS BEST
WORKMANSHIP. CATALOGUE FREE SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati. 0

 "Porox" Ignitor Storage High Capacity. Light Weight. High Capacity. Light Weight.
Proved as tha best for botb igi.
tion and light Notos of current.
lis ato
 jars. No danger ort breakage jike
hard rubberg liates and jars are
guaranteed for one year. Albert Muller, 145 West 49th St., New York

Cancrete Bulliding Blates

Scientiflic Amerioan Supplement 1543 contains an
article on Concrete, by Brysson Cunningham The article clearly describes the proper com.
position and mivzure of concete and gives
results of elaborate tests. results of elaborate tests.
Scientific American Supplement 1538 gives the
proportion of gravel and sand to be used in
 cussion by Lieut. Henry J. Jones of the
various systems of reinforcing concrete, con-
 Scientiflo American Supplement 997 contains an
articie by
Spencer Newberry 10 crate are given.
Scientific American Supplements 1568 and 1569

 Scientific American
give a
resume in which the various systems giv a resume in which the various systems
of reinforce concete construction are dis-
cussed and illustrated.
 analyzed.
Scientific Amorican Suplement
the principles or or reinforced
some proncrete
practical illustrains some practical illustrations by Walter Loring
Webb. Scientific American Supplement 1573 contains
an article by Louis H. Gibson on the prin-
ciples of success in concrete block manufacciples of sucess in concrete block manufac-
ture, illustrated. Scientifio American Supplement 1574 discusses
steel for reinforced concrete.

 concrete posts.
Each number of the Supplement costa 10 A set of papers containing all the artlcles
above mentioned will be malled for $\$ 1.80$. Order from your newsdealer or from

MUNN \& CO.
361 Broadway, New York City

Lubricating device, L. $\begin{aligned} & \text { S. Watres.... } \\ & \text { Lumber, artificial, K. }\end{aligned} . \begin{aligned} & \text { Hengerer } \\ & \text { Magnet' winding, field, J. A. Stratto }\end{aligned}$ Magnet winding, field, J. A. Stratton........
Mrail bag catcher and crane, Rogers \& Kane
Mail bag atcer and deliverer, H. H. Akers
Mail bag catching and delivering apparatus

 Nos
Nut
Ore
Osc
Ove
Ove
or

Ehrlich
Paper tube

 Pianos, sis
Davis
Picture a
Mante

 Pie pan, B. C. Sabin....................
Pililing, metal, J. J. Haroiad..........
Piling, metal sheet, R. B. Wodwort.
Pipe coupling, automatic train, N. F.

Pnematic drill. M. Hardsocg......
Poomand shaft for vehicles, combined,
Martin

Engineering News

The leading weekly Engineering paper of the world, devoted to the interests of Civil, Mechanical,
Mining, and Electrical Engineers. 100 to 125 pages weekly. Send for free sample copy.

Scientific American Index of Manufacturers

NEWLY REVISED EDITION of 1908 64 PAGES, 2500 ENTRIES, FREE

COME ten years ago the publishers of the SCIENTIFIC AMERICAN issued an index of leading manufacturers. This book has proved so popular that the demand has warranted an entire new edition. This invaluable list tells where to buy almost any article, and buyers who fail to find the information they desire can have their wants specially looked up without charge, and if necessary we will advertise their wants in our inquiry column without expense. The first edition of this index is only 15,000
copies, so that early application is necessary.
MUNN \& CO., Publishers Scientific American Office 361 Broadway, New York

Important Books

The Scientific American Cyclopedia of Receipts, Notes and Queries

15,000 RECEIPTS
 This splendid work contains a careful compilation of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in together with mang vaiuable and important additions. collected, nearly every branch of the useful arts being represented. It is by far the most comprehensiv ume of the kind ever placed before the public.
 Industrial Alcohol

 A Practical 'Treatise based on Dr. Max MaERCKEL's"Introduction to Distillation " as revised by Drs. Del-
Britck and LavGe. Comprising Raw Materials, Malt-
ing, Maihinr Dist, Ma:hink and Yeast Preparation, Fermentation Alcoholometry, the Value and Signitfcance of a Tax
Free Alcohol, Methods of Denaturing, Its Utilization Free Alcohol, Methods of Denaturing, Its Utilization
for Light, Heat and Power Production, a Statistical United States Law.

52S Pages 105 Illustrations Price $\mathbf{\$ 4 . 0 0}$
GAS, GASOLINE and OIL ENGINES
Including Gas Producer Plants by GARDNER D. HISCOX, M.E. Price $\$ 2.50$
The only complete American book on the subject for
Gas Engine Owners, Gas Engineers, and intending pur Gas Engine Owners, Gas Engineers, and intending pur-
chasers of gas engines, treating fully on the construc-
tion, installation, operation and maintainance of gas. gasoline, kerosene, and crude petroleum engines.
The new rewritten, enlarged, and revised 15 th edition of this work has been prepared to meet the increasing of this work has been prepared to meet the increasing
demand for a thorourh treatise on the subject. Its 450 pages give general information for everyone inter-
ested in this popular motive power, and its adaptation to the increasing demand for a cheap and easily man-
aged motor requiring no licensed engineer. It is fully aged motor requiring no licensed enginee.
illustrated by 351 engravings and diagrams.

Modern Machine Shop Construction Equipment and Management By OSCAR E. PERRIGO, M.E.
Nearly 400 Large Quarto Pages. Illustrated
by over 200 Engravings Specially Made by over the Engravings specially
A work designed for the practical and every-day use
of the Architect who designs. the Manufacturers who of the Architect who designs, the Manufacturers who
build, the Engineers who plan and equip, the Superintendents who orkanize and direct, and for the informa-
tion of every Stockholder, Director, Officer, Accountthe Modern Machine Shop and Manufacturing Plant of

American Tool=Making and Interchangeable Manufacturing

by J. v. woodworth	
4 Pages 600 Illustrations Price $\mathbf{8 4 . 0 0}$	
clical treatise on the Art of Amer	sm
Making and System of Interchangeable Manufacturing	
	Souna
illustrate	Sjuark ar
aud metal-working estabishments where economy,	Sp
capacity, and interchangeability in the production of	sp
ng methods and assisting in reducing the expense	
increasing the output and the income.	
gines and Producer=	sta
Gas Plants	Sta
by R. e. mathot	Stia
ges Fully illustrated Price \$2.50	Ste
ractical treatise setting forth the principles of	Steam Steium
nes and Prod	and
Producer Gas	
of Gus Fnrines and Producer-Gas Plants, with a	sto
ter on Volatile Hydrocarbon and Oil Engin	Stove, l (id.
Thoroughly up-to-date in its treatment of the subject, the work discusses at considerable length the genera-	
of woducerses and it	
No other book in Enel1sh presents anything like as fuil	Street
${ }^{\text {a }}$ discussion of this most important phase of the pas	
ines of high power.	
	Swingletee a tatacizacert
MUNN © COMPANY	
Publishers of Scientific American	
Broadway New York	

[^0]

Proven Pemmanant Profits

Gen'I Compressed Air \& Vacuum Machinery Co 4479 Olive Street, Dept. "D," ST. LOUIS. MO.

Keystone Well Drills

no rineane

Classified Advertisements Advertising in this column is 75 cents a line. No. less
than four nor more than ten lines aceepted. Count
seven words to the line. All orders must be accom. panied by a remittance. Further information sent on
request. request. THIS COLUMN CAREFULLLY-- Tou will find
REquiries for certain classea of articles numbered in consecutive order. If you manufacture these good
write us at once and we will send you the name and
address of the party desiring the information. There is no charge for this service. In every case it is necessary to give the number of the inquiry.
Where manufacturers do not respond promptly the
inquiry may be repeated.

BUSINESS OPPORTUNITIES. START A MAIL ORDER BUSINESS of yourown, bu
 Inquiry No. 8594.-Wanted spring suitable fo
 peing. vacking or branding goods. Address B. \& S. Co
Box Ti, New York City. Inquiry No.
tops f.ar sofa piliows.
WE HAVE A LARGE FACTORY and are looking for
somentin to manufacture. Prefer to buy ane stablish
ed busines, at arasobable price. Louis Rastetter \&
Sons, Fort Wayne, Ind.
Yurnace to heat a hot water system. to buy an alcoho WANTED.-Chemist with blast furnace and cupola
experitence, to manage esest department in addition to
 Inquiry No. 8598. - N anted to buy water turbines
 Inquiry No. 859
per cylinder Lead.

PATENTS FOR SALE. Hoboken, N.J.

 Inguiry No. 8607.-Wanted to buy an electric
 chinguiry Yo. 860s-Wanted to buy broom ma-

 light powiry por purposes.

HELP WANTED

CAPITAL WANTED.

BOOKS AND MAGAZINES

mangiry
machinery.

GRE-SOLVENT.

HOUSEHOLD NEEDS.
 Inquirs No. 8616.-Wanted to buy for export to Porto Rico pertorated metal sheviving.
 BUNGALOWS

 Inquiry No. 861\%-Wanted to bu, for export to
 Inquiry No. 8620.-Wanted to buy aluminium IIquiry No. 86:21.-Wanted to purchase coal bri- queting machiners. Inguiry No. N629. Wanted to buy automobile enininesand supples. ingniry No. © 691 - Wanted to buy for export British Guiana alcocol motors. Inguiry notors Nor S692.-Wanted to buy kerosene oil Iquiry No. 8694. - Wanted to buy ly wheels a ballibearings. Ing. Inquiry No. 869.5.-Wanted to buy buthing suts. Inquir No. 8 S66. Wanted o buy tov ballons. Inquiry No. 8697.-Wanted to buy zinc can sceew tops. Inquiry No. 8698. -Wanted to buy a hydrochloric acid pantr. No. 8699.-Wanted to buy two.stranded solderear wirceror heddies. soldered wirefor hedales. Inquiry No. $\mathbf{8 7 0 0}$. Wanted to buy burglar proof Inquiry No. 8701.- Wanted to buy solar engines. Inquiry No. 8703.-Wanted to learn address of music irycers. Inainy Inquiry No. ©705.- Wanted to buy double shaft Inquiry No. vacuin cleaner.

Inqui
heaters.
Inquiry No. 862.5.-Wanted to buy smal sized

 Inguiry No. 86.28.-Wanted to buy paving blcck ciantioiry Nat 8629.-Wanted to buy rubber speInquiry No. 8631.-Wanted to buy fruit evapor-
 Inquiry No. $\mathbf{8 6 3 3 . - \text { Wanted to buy shm cases. }}$
Inquiry
 Inquiniry No. 8636.-Wanted to buy household
bushes. Ingniry No. 8637.-Wanted to buy lawn mower Inguiry No. (638.-Wanted to purchase mica or Inquiry No. 8639- Wents stencils for decorative
borders such us are used around half tones. Induiry No. 8640 .-Wanted to buy alcohol lamp
for 1 Ighting Inquiry No. 8641.-Wanted to buy a self-lighting
gasuruer
Inquiry notiry No. $642 .-$ ananed
 Inquiry No . S644.- Wanted address of glass tube
manufacturer. Who does bendina. Inguiry No. 8645. -Wanted to buy parts for
curling irons.
Inging
 Inquiry No. 864y- Wanted to buy steel hat pins
Sinches ointed at both enas.
 Incuiry No. $\mathbf{8 6 4 9 \text { 9.-Wanted to buy non-inflamma- }}$ magniry No. 8650.-Wanted to buy fle cutting

 In
Inquiry No. 86.5 . Wanted addresses of case-
hardeners in New York.
 Inquiry Nois 8656.-Wanted to buy parts of models Jnaniry No. 8657.-Wanted to buy a
moronuiry No. 865s.-Wanted to buy coi
Ing
Inquiry No SG5.-Wanted to buy ground corn
cobs in inarge quantities. Inquiry
ing maching
mat

Inquiry No. $\mathbf{8 6 6 4}$.-Wanted to buy game boards.
Inquiry No. 866.5.-Wanted to buy comb making
machinery
maciry
macininery.
Inquiry No. 866\% - Wanted to buy needle, pin and
pen machinery. Janquiry No. 8668.-Wanted to buy water power

 ga Ing.
cultiry No. 8674.-W Wanted to buy machinery for Inquiry No. XG75.-Wanted to buy machinery for
making sawdust int bricks for the.
 Inquiry No. S67\%.-Wanted to buy model safety
razors.
Inuiry machinee. No. S68.--Wanted to buy cheap guns. Inquiry Ne. 8680.-Wanted to buy cheap watches.
Inauiry No. 8681.- Wanted to buy envelope makInquiry No
Inguiry. No. 868\%. - Wanted to buy model of old

 Ingniry No. ©686.-
nquiry No. 8687.-Wanted to buy notor plows.
Inquiry No. 8688 .

Inquiry No. 8i89.- Wanted th buy alcohol en-
gines for same amount of power as 8688

Toor
Trae
Track
Track
Tas

 Vehice seat, auxiliary, H. A. Schermerhoring, M. M. MeItrye.........
Vehicles from dust, aparatur for shield-
 v V wa

 Wa
Wa
Wa

 Wheobaserow,
Wheelbarrow
When

DESIGNS.

 Glock case
Glass vesse
Ring, wa L. V. Aronso
or. simpr antie
. Carey. .unde TRADE MARKS

 Beverage, carbonated, H. Mauss, $\ldots . .69,04$
Beverages, carbonated, J. M. Aschenbek.
Beverges, carbonated, D. Bernhard $\&$ ©

 Brooms and brushes, Amsterdam B................

 Carpets and rugs, fiber, W. \& J. Sloane....
Cement, Portand, Coplay Cement Manufa
turing Cond.

Home-Made Experimental Apparatus

In addition to the following articles, the
Scientific American Supplement has published innumerable papers of impeense practical value,
of which over 17,000 are listed in a carefully prepared catalogue, which will be sent free of
charge to any address. Copies of the Scientific
Col American Supplement cost 10 cents each.
If there is any scientific, If there is any scientific, mechanical, or en-
gineering subject on which special information gineering subject on which special information
is desired, some papers will be found in this
catalogue, in which -it is full catalogue, in which it is fully discussed by
competent authority competent authority.
A few of the many valuable articles on the
making of experimental apparatus at home are given in the following list:
The article tellis how a small and simple experimental installation can be set up at home.
Scientific American Supplement 1551 . AN ELECTRIC CHIME AND HOW IT MAY
BE CNSTRUCTED AT HOME, is deseribed in
Scientific American Supplement 1566 . THE CONSTRUCTION OF AN ELECTRIC
 AUR STMPLE TRANSFORMER FOR AMA-
TEUR USE Is so plainly described in Soien:
 THE CONSTRUCTION OF A SSMPLE PHO-
TOGRAPHIC AND MIGEOPHOMOGEAPHIC
APPARATUS is simply explained in Scientific APPARATUS is simply
American Supplement 1574
 RUBBER BAND is the subject of a
Scientiff American Supplement 1578 . HOW TO MAKEE AN AEROPLANE OR GLID,
ING MACHINE is explained in Scientifio American Supplement 1582, with working drawings.
EXPERIMENTS WITH A LAMP CHIMNEY. In this article it is shown how a lamp chimney
may serve to indicate the pressure in the in-
terior of a liquic to explain the meaning of
capillary elevation to capiliary elevation and depression; to serve as a
hydraulic tournique, an aspirator, and intermit-
tent siphon; to demonstrate the ascent of liquids tent siphon; to demonstrate the ascent of liquids
in exhautive tubes; to illustrate the phenomena
of the burating blader and of the expansive
force of gases. 1583.
HOW A TANGENT GALVANOMETER CAN
BE USED FOR MAKING ELECTRICAL MEAS-
UREMENTS IS described in Scientific American
 actual dimensions are published. Soientific
American Supplement 16515 .
AAN EASILY MADE HHGH FREQUENCY AP.
PARATUS WHIL CAN BE USED TO OB.
 Supplement 1618. A plunge battery of six cells,
a two-ingh spark induction coil, a pair of one
pint Leyden jars, and an inductance coll, and all
the apparatus required, most of which can be the apparatus required, most of which can be
made at home.
sIMPLE WIRELESS TELEGRAPH SYSTEMS
are described in Scientific American Suppleare described in scientific American Supple
ments 1363 and 1381. THE LOCATION AND ERECTION OF A 100
MIIE WIRELESS
clearly
explained, with the help
of diagrams, clearly explained, win the help of diagrams,
in scientific American suplement 1622.
THE INSTALLATION AND ADIUSTMENT
OF AOO-MILE WIRELESS TELEGEAPH OUT FIT, illustrated with diagramel Scientific Ameri-
can Supplement 1623 . THE MAKING AND THE USNG OF
WIRELESS TELEGRAPH TUNING DEVICE.
illustrated with diagrams, Scientific American Supplement 1624 .
HOW TO MAK MAGIC LANTERN, Scien THE CONSTRUCTION OF AN EDDY KITE.
Scientific American Supplement 1555. THE DEMAGNETIZATION OF A WATCH is plemenghly 161. desibed in Scientific American Sup
HOW A CALORIC OR HOT AIR ENGINE HOW A CALORIC OR HOT AIR ENGINE
CAN BE MADE AT HOME is well
with the help of illustrations, in
Scientific THE MAKING OF A RHEOSTAT is , outlined
in Scientific American Supplement 1594 . Good articles on SMALL WATER MOTORS
fre contained in Scientific American Supplement
i494, 1049, and 1406. HOW AN ELECTRIC OVEN CAN BE MADE
is explained in Scientific American Supplement the building of a storage battery 1433. described in Scientinc American Supplemen A SEWNING-MACHINE MOTOR OF SIMPLE
DESIGN is described in Scientific American Bup
plement A WHEATSTONE BRIDGE, Scientific Ameri-
 the coils can readily be made by anyone. in Sow TO MAKE A TELEPHONE is described A MODEL STEAM ENGINE is thoroughly de-
scribed in Scientific Americun Suphlement, 1527 . HOW TO MAKE A THERMO日TAT is exANEROID BA ANEROID BAROMETERS, Scientifl America
Supplements 1500 and 1554 .
A WATER BATH, Scientif AWATER BATH, Scientific American Supple
ment 1464 . A CHEAP LATHE UPON WHICH MUCi
VALUABLE WORK CAN BE DONE FHOM the
subject of an article American Supplement 1562 . Each number of the Scientific American Sup plement costs 10 cents by mail.
MUNN \& CO., $\quad 361$ Broadway, New Yor

BARGAINS-New and Second-hand Automobiles

itallan labor SUPPLIED FREE of CHARGE

kinds of construction work by
THE LABOR INFORMATION OFFICE FOR ITALIANS, Inc. 59 Lafayette (formerly EIm) St., N. Y. City No charge send for circulars and application blanks.

HOW

Manufacturers
Can Increase
Their Business

Read carcfully, every week, the
Class: d Advertising Column

SCIENTIFIC
 AMERICAN

Some week you will be likely to find an inquiry for something that you manufacture or deal in. A prompt reply may bring an order
Watch it Carefully

Garden Hose

Rubber Belting Steam Packing

 Rubber SpecialtiesN. Y. BELTING \& PACKING CO.

91 and 93 Chambers Street NEW YORK
Write for Catalogue

CRUDE ASBESTOS DIRECT FROM MINES
 Second-Hand Bargains Wivin
 ans miers
les, Plepre, Pope-Toledo, Rambler, Ford, Reo.
Cadilac and many other makes. Every car RuarCadillac and many other makes. Every car Ruar-
anteed. shipped on approval. $\{$ \&pecial p roposi-
tionto tion to good agents. Complete Catalogon request.
MISSISSIPPI VALLEY AUTO CO., Dept. B S. Louis, Mo.
 DESIGNS Anyone sendIng a sketch and descripts \&c.
 sent free. Oldest agency for securing patents.
epatent taken throuk Munn \& Co. recelve
special notice, without charke, in the
Scientific American.
 MUNN \& Coisi inawne New York

The Actual Worth
Of an adding and listing machine is in what it
does, how it does it, and how long it will do it The Universal Adding and Listing Machine will The Universal Adding and Listing Machine will
produce the maximum of nice, clean, clear-cut, produce the maximum of nice, clean, clear-cut,
accurate work with the least effort, and it will last
longer under any kind of use than any other longer under any kind of use than any other
adding and listing machine ever built. The Universal always adds what it prints and prints what
 The key action is light; the handle pull is smooth and
easy; the adding reistser is in plain view just above the
keyboard; items to be added are printed in black keyboard; items to be added are printed in black, blue or
pupple, and the totals and sub-totals are always printed in
 There are som many other important features on the Uni-
versal that are advantageous for you on your work that you ought to write and antell uous about your on your work that you
outhat and and leant
what the Univeral will do for you and how it will do it
easier and faster than you are doing it at pow what the universal will do for you, and how
easier and faster than you are doing it at present.

FOR SALE
One American Well Works Air Compressor, $13 \times 12 \times 51 / 4 \times 12$. compound air, 500 pounds air pressure. Machine is in good order. Reason for selling, deep well played out. The machine will be sold at a snap. CITY OF WEBSTER L. $\mathcal{\&}$ W. Dept. Webster, S. D

Vanadium Steel Castings

 VANADIUM STEEL CASTINCS

 New Process Steel Co., 100 River Street, Marshall, Mich.

City Conveniences in Country Homes All the comfort of hot snd cold water in the house, ano
running wate si the barn, now possible for country
residens Niagara Hydraulic Ram

 BULD YOUR OWN SMALL ENGINE

 to \&l.0. or or order amounting Contractors
for ing mat machinery of every
fescription. $\underset{\text { sipp }}{\text { ELECTRIC }} \begin{gathered}\text { AND } \\ \text { Keene Street, Paterson, }\end{gathered}$

[^0]: 361 Broadway New York

