
NEW YORK, DECEMBER 14, 1907.

The Mounted Skeleton of the Allosaurus Standing Over the Vertebre of Its Prey.

From a painting by Charleo K. Knight.
Allosaurus was a flesh-eating dinosaur that preyed upon the larger vegetarian dinosaurs. Thus the great unwieldly brontosaurus, seventy feet long, was exterminated by the smaller and more active allosaurus. Probable Life Appearance of the Allosaurus. The Creature is Here Shown Feeding on the Remains of a Brontosaurus.

SCIENTIFIC AMERICAN

MUNN \& CO. - . Editors and Proprietors

No. 361 Broadway, New York

CHARLES ALLEN MUNN, President 361 Broadway, Now York
FREDERICK CONVERSE BEACH, Sec'y and Treas.

NEW YORK, SATURDAY, DECEMBER 14, 1907.
The Editor is always glad to receive for examination nllustrated articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions
will receive special attention. Accepted articles will be paid for will receive special attention. Accepted articles will be paid for
at regular space rates.

SEPARATE ENTRANCES AND EXITS ON CARS

If we were asked to name the one measure which would do the most to facilitate rapid transit on congested lines of suburban and city travel, we would unhesitatingly suggest the provision of separate entrances and exits on cars. For all our boasted alertness and freedom from tradition we are, even in America, very much the creatures of habit. The typical American car, of great length, provided with a central aisle, and having a door at each end; was admirably adapted to the necessities of the day in which it was invented; and, indeed, even at the present time, for continuous journeys where long runs are made without a stop, and communication throughout the length of the train is desirable, it still remains, all things considered, the best type of car. Three quarters of a century ago there was less congestion and greater leisure, and the delay of several minutes incidental to the exit of passengers, one by one, from the ends of the car, and the equally slow admission of the passengers who were boarding the car, was a matter of small moment. Cer tainly it worked no such hardship upon the public as it does in these times of strenuous haste. But the phenomenal growth of our cities, the equally remarkable increase in the percentage of people that travel and in the frequency of trips per individual, have rendered the once-useful end-door car about the worst possible type of conveyance for rapid transit.

The spectacle of the whole of the traffic on the splendid subway system of this city being held up, as it is, at Forty-second Street to allow twenty or thirty people to file, one by one, through a narrow door, and then twenty or thirty other people to file in through the same door, is one of the most ridiculous anomalie to be found in the whole field of transportation to day. Here was a case in which forty millions of the city's money was expended in producing what is, with out exception, the very finest system of city rapid transit in the world. It was built of the best materials and equipped throughout with the most up-to-date plant available. No expense was spared in the purchase of costly real estate at street corners, in order to reduce the curves and allow the fastest possible speed to b made by express trains. And yet, when the subway was turned over to the operating company, its engi neers deliberately proceeded to throttle down the system to about seventy per cent of its proper maximum capacity, by equipping it with the worst possible form of car that could be used. We smile contemptuously at the ox-car of the Hindoo, the jinricksha of the Japanese, and the passenger wheelbarrow of China; yet the conservatism which maintains these curios in existence is not one whit more hidebound than the perverse stupidity which put the end-door passenger car in our Subway.
However, there is an end to all things, and there may be to this; for we are encouraged to note that the Hudson Companies are making provision, by the use of center doors and separate loading and unloading platforms, for the proper separation of passengers; and the Metropolitan Street Railway Company are about to achieve the same end, by placing on the streets cars with wide end-platforms, each of which has a separate entrance and exit door. It is but fair to the reputation of the last-named company, however, to state that, according to their own admission, they have been impelled to this momentous change by purely financial considerations, the primal object being the gathering in of a large number of nickels which at present are lost to the company. Be that as it may, the operation of the cars will be accelerated, and the many discomforts attending the present single entrance will be a voided.
To the Illinois Central Company and its former sagacious president is due the credit for the introduction into this country of what is unquestionably the best
car for the rapid handling of passengers. We refer to what is known as the "side door" car; that is, one in which the seats are arranged transversely, with a door in the side of the car adjoining each seat. The advantages of this system are obvious; for on the arrival of a loaded train at a station the time of unloading is simply that occupied by four or five persons in passing out at one exit, as compared with thirty or forty persons, which must be discharged through each end door of the old type of car. Figures recently elicited from the management of the Illinois Central Railroad in answer to a request from the Merchants' Association of this city, show the time of stops at suburban stations has been reduced in some cases to one-fourth of that occupied when the old cars were in service.

COMPREHENSIVE SCHEME FOR NATIONAL WATER-

 WAYS.The labors of the Inland Waterways Commission have resulted in the proposal to construct a vast sys tem of improvements, which, because of recent pub lic utterances upon the subject, is pretty certain to receive the indorsement of those interested in the improvement of our inland waterways. An effort will be made to secure from the coming Congress the necessary legislation for making a beginning of the work. The Commission recommends the construction of a network of canals, river improvements, and channel deepening which will unite the great lakes with the rivers of the Mississippi Valley; and that will connect these river with each other. This will secure unbroken water con nection from Hudson Bay to the Gulf. It is proposed to connect the mouth of the Mississippi by the "western inner passage" with all the ports on the Texas coast and with the Rio Grande. Connection is also to be made of the Mississippi with Mobile Bay by the "east ern inner passage,'" and with the Atlantic seaboard by way of the Suwanee River and a canal across Florida. Another part of the scheme contemplates the connec tion of Delaware Bay with Chesapeake Bay to the south, by improving the present Delaware and Mary land canal; and with Raritan Bay to the north by cut ting a canal across New Jersey. Finally, it is proposed to cut through the Isthmus of Cape Cod, and provide a direct route from Long Island Sound into Massachusetts Bay and Boston harbor.
The plan includes the improvement of the lower and upper Mississippi; of the Red River of the North-this last in conjunction with a canal into Canada and to Hudson Bay; the improvement of the Illinois; of the Ohio to Pittsburg and the Monongahela above Pittsburg; of the Cumberland and Tennessee into Alabama; and of the Arkansas and Red River to Texas. It is not proposed to execute the whole of this vast work at once. Some of the Commission are in favor of a bond issue large enough to furnish funds for starting the work; and they are of the opinion that, although the total cost will be enormous, the scheme must inevitably pay its own way as traffic develops.

THE LOSS OF THE FRENCH AIRSHIP "LA PATRIE."

 Believers in heavier-than-air flying machines the world over are at present enjoying a good laugh at the discomfiture of the French over the loss of their first government dirigible "La Patrie," which, despite the efforts of 200 men who were holding it while some repairs were being made to the machinery on Novem ber 30 last, was driven aloft by a sudden gust of wind: and went on a voyage to Great Britain on its own account. Only the week before, the airship, which has been maneuvering about Paris successfully all summer was driven from Paris to Verdun, on the French rontier-a distance of about 147 miles-in seven hour and five minutes (21 miles an hour) ; and it was in tended to use it for the protection of the French frontier. The easy way in which it broke loose from the trained soldiers of the aeronautic corps who had charge of it, was laughable in the extreme. Despite the fact that one of the valves is said to have been opened just before the airship ascended, it does not seem to have come to earth in less than four days The start was made on Saturday morning, and on Sunday it was reported as being seen passing over the northeast coast of Ireland. The following day it was sighted above Scotland; while on Wednesday, accord ing to cable dispatches, it had drifted back above the Emerald Isle, where it is said to have come to earth knocked off some of the machinery, and again ascended immediately. This rather improbable story is verified in a way from the fact that the loss of a propeller when the airship was making a trip on October 26 ast, caused it to immediately rise a distance of 1,200 feet, after which, in this instance, the men on board were able to drive the airship, by means of its single propeller, back to its shed. Whether the airship will come to earth or will land in the ocean, is at presen a matter of conjecture. As far as is known, at the tim of our going to press, it is still floating about with the winds-a derelict of the air.The demolishment of the British military airship by a storm last October, and the easy loss by the French soldiers of their first national military dirigible, has
strongly brought out the fact that any nation which is to have a fleet of dirigible balloons, or airships, must provide suitable sheds to house them at all places where they are likely to stop, and also that they must be well protected when undergoing repairs. The fact that "La Patrie" remained aloft for four days speaks well for the tightness of its envelope. Had there been anyone on board the airship, it could, of course, have been brought to earth at once. With an aeroplane or other heavier-than-air machine such a mishap could not occur; for although the machine might possibly start and soar aloft, as soon as the power gave out it would come to earth. The loss of "La Patrie," therefore, has brought out another distinct advantage of the flying machine over the dirigible balloon. It is gratifying to note that our War Department expects to experiment with both types in the near future.

ARCHEOLOGICAL WORK IN WYOMING.

Harlan I. Smith recently returned from a superficial archæological reconnaissance of the southern half of the State of Wyoming. This region is near the center of a vast neglected field for archæological research, to which Mr. Smith called attention in his contribution to the Boas Anniversary Volume of 1907.
The neglected area extends from the Arctic regions on the north to the Mandan remains of Dakota and the well-known archæological remains of the Missis sippi Valley on the east; to the Cliff Dwellings on the south and the rich archæological finds of the Santa Catalina Islands, the Sacramento Valley to California, and the plateau culture of Washington and British Columbia on the west.
The region is so vast and the problems are so numerous that no one institution, much less any individual, might hope to more than begin the work. The museum has done this through the preliminary trip of Mr. Smith. He endeavored to interest not only the local educational institution, but all the great museums in the country to co-operate in the work.

Among the problems to be solved, the following may be mentioned: When did man first appear in the region? Judging from the results of exploration in other places, it may take many years of the combined efforts of all who are interested before extensive evidence on this point is discovered. What was the culture of these first inhabitants? Was there more than one culture in the area, either at various places or during different periods? How was the culture affected by the introduction of the horse? No doubt the coming of the horse to a people whose only beast of burden was the dog caused a great advance in their general culture, as it would enable them to travel farther in search of food, to possess and transport more property, and to become somewhat more independent of the scanty water supply.

The larger part of the area was inhabited by tribes of Indians belonging to the Athabascan, Algonquin, Siouan, and Shoshonean groups. An examination of the archæological remains will throw light upon the early history of these people and their migrations.

The central portion of the area was the home of the American bison, upon whom the Indians, when first met by the whites, depended for not only their food, but for the material for their clothing, mocca sins, covers for their tipis and ferryboats or rafts, backgrounds upon which to paint their calendars, and other things of like character. The horns and bones furnished them with material for various articles and implements, among which may be mentioned spoons, bowls, skin scrapers, etc.

After all the vaunted superiority of the white race, our people to-day are holding the cattle much as the Indians held the buffalo. For instance, the Indians held the herds at the North Platte River in order that the tribes living north of the river might be able to get buffalo all through the year, for if left to themselves, the herd would have traveled farther to the south in winter. Our round-up and general treatment of the cattle of the plains resembles to-day and always has in.wildness and cruelty the buffalo hunt of the red men.
In the eastern part of Wyoming, some extensive quarries, where the prehistoric people found quartzite and jasper, out of which to make chipped implements, have been known for some years. Mr. Smith visited these, securing specimens and photographs, and also discovered other extensive quarries, some of them covering acres in the same general region. Besides these, notes were taken of still other quarries known to the local ranchers. Nearly everywhere in Wyom ing, but more in the eastern part, circles of stones marking the sites of ancient tipis were found. They may be counted by the hundred in the southern part of Converse County. These stones were no doubt used to hold down the skin covering of the tipi. Stones are still employed for chis purpose by the Blackfeet In dians in Montana, only a short distance to the north.
Pictographs painted in red and black and petro glyphs cut or pecked on the cliffs are noted, especial ly in the vicinity of the Wind River Mountains. A number of these were photographed. Some of them
represent horses, proving them to have been made since the white man brought horses to America; others represent the buffalo
Steatite pots in the form of an egg, with the tip of the larger end cut off, and apparently of a type unknown in other parts of America, were noticed, especially in western Wyoming. True pottery was rare. Less than a dozen sites were found to have been located where it occurred, and these were all well toward the southern part of the State. They probably mark the northern limits of pottery in this portion of the area.
In the vicinity of Hammond in the Algonquin area, caves into which the wolves had dragged bones of cattle, sheep, and other animals, and in front of which are much village debris and a large number of tipi circles as well as some petroglyphs, probably contain many remains, and this vicinity, as well as the eastern slope of the Wind River Mountains, would probably repay detailed exploration. Several months' work in the latter region would be sure to enable the explorer to secure a collection of photographs illus trating the art of the vicinity, as executed in the form of petroglyphs.

It would seem to be the duty of the students of the Cliff Dwelling and Pueblo region to explore northward into this vast neglected area, in an attempt at finding the northern limit of that culture. The students of the archæology of the Mississippi Valley have a similar duty to perform in determining the western limits of the archæological culture of that valley. While the students of California owe it to the world to investigate the eastern portion of California and Nevada, the eastern limits of the plateau culture of southern British Columbia and Washington should also be defined.

THE MYSTERIOUS RAILWAY DISASTERS IN ENGLAND. If Sherlock Holmes were a character in real life instead of a novelist's puppet, he would find just now a more profitable field for his talents in the investigation of accidents than in that of crimes. The mind of the British public has been made seriously uneasy by a succession of railway disasters for which no adequate explanation has hitherto been forthcoming. The last of the series was the derailment at Shrews bury on October 15 of a London \& North-Western express from Crewe to South Wales, with the result of several deaths and a large number of injuries. What makes this accident especially alarming is its close likeness to the two most serious disasters of 1906-the dcrailment of an American boat express at Salisbury on July 1 and that of a Great Northern express at Grantham on September 20.
The points of similarity are as follows: In each case the accident occurred at night to a fast express train when traveling, at a higher speed than normally permitted, around a curve close to an important station where switches and signals are abundant. In each case, also, the engine driver was a steady and experienced man, and both he and his fireman were instantly killed, so that it has been impossible to gain any first-hand testimony as to why the signals and the speed regulations were ignored. At Salisbury and Shrewsbury the derailment occurred on the curve itself, but at Grantham on a straight piece of line immediately following it. The Shrewsbury driver was running at sixty miles an hour over a portion of the track where ten miles was the official rule and twenty the highest speed consistent with safety
This apparent neglect of definite orders has naturally directed much attention to the "human factor." May it not have happened, people are asking, that the driver was seized with some sudden illness which rendered him incapable? This theory has been generally pooh-poohed by railway men themselves. At the Board of Trade injuiry at Shrewsbury both a locomotive foreman and a locomotive superintendent declared emphatically that they had never known an instance of a driver collapsing while on the footplate It so happened, however, that only a few days after this evidence was given, a Midland driver actually died on his engine, though apparently in good health at the beginning of his journey, and two or three other instances of paralysis, etc., under similar conditions have since been published. After the Shrewsbury accident Mr. Lloyd George, the president of the Board of Trade, took the unusual course of ordering an autopsy to be performed on the body of the driver, and the surgeon's report showed that in this case, at any rate, there was no physical failure.
Another suggestion is that the engine driver, while far short of an entire collapse, may have had his wits temporarily dulled by an insidious drowsiness. The editor of the automobile column in the London Times lays great stress on this possibility. At least one serious automobile accident, he says, has been due to the chauffeur's falling asleep. He has himself over and over again, when rushing rapidly through the air, felt not so much a desire to sleep as a physical inability to remain awake. It came over him with an irresistible force, which he could not stop by changes of position, or violent shakings of the head, or even
ain deliberately self-inflicted. Other motorists, he declares. have confessed to him a similar experience. Quite independently, a railway man of many years' standing offers a similar explanation in the Pall Mall Gazette. When working as a fireman on a fast train, he has many a time looked up and seen the driver standing as it were in a dream, quite oblivious of any signals. On hearing the fireman's voice of warning, the driver at once came to himself and everything was all right. In the judgment of this correspondent, it is significant that in these recent disasters the driver, an elderly man, had as his companion on the engine a man who was not his ordinary mate. Now a strange, and especially a young, fireman is not in touch with his driver. He is likely to be attending more closely to his own particular duties, and if his driver goes "wool gathering," he has no opportunity of noticing it. At the same time, the staying power of the average driver is decreased by reason of his having to take longer journeys than formerly. One may add that the risk of such a lapse is all the greater when the journey is at night, and when, as at Shrewsbury, a heavy rainstorm causes the signals to stand out less clearly than usual
It must also be recognized, in connection with the "human factor," that a driver has often a strong temp-tation-too strong a temptation, some say-to run at excessive speed in order to make up for lost time. The Shrewsbury train, however, was so nearly on time that this explanation scarcely fits the present instance. We now turn to the theories which explain these disasters as due to some mechanical defect. It was the unanimous opinion of the jury at the coroner's inquest upon the victims of the Shrewsbury accident that the brake power of the train was insufficient. There can be no doubt, according to the evidence, that the brake was actually applied. The guard testified that at Crewe Bank, where the danger signal was passed, he found the train traveling too fast. He went to the hand brake, and found the vacuum brake already full on, but with little diminution of speed. A Board of Trade inspector who examined the wrecked engine found that the brake had been fully applied, with no appearance that it had been in any way inoperative. Railway officials, in commenting uporr the catastrophe, will not admit for a moment that the brakes can have been out of order, and declare that their experience gives no confirmation to the possibility of any such cause. A very different position, however, has been taken by several drivers who have communicated their views to the press. They affirm that they have known many instances in which serious disasters from brake failure were averted by a very narrow margin. "Some years ago," says one of them, as reported in the Manchester Guardian, "I slightly overran the place that I should have stopped at, owing to this cause. When the official came to investigate it, I told him the brake did not go on when applied. He said, 'You must not say that; if you do, you will be discharged.'" It is stated by other drivers that instances of the delay or failure of brakes to act are never reported because "the bosses will never admit the brakes are wrong-it's always the driver." And a passenger in a signed letter to the London Tribune relates the following experience: "About two years ago, while I was waiting for a train at Harrogate station, an express train came in on its way to King's Cross. When the time came for the train to resume its journey it did not move, and in answer to the superintendent the driver said the automatic vacuum brake would not act. After twenty minutes' delay the train started on its journey. Is not the conclusion inevitable that these brakes get out of order more frequently than we read of?"
It may perhaps be as well to mention here, for what it is worth, a theory that the heavy downpour of rain kept the metals covered with a film of water upon which the locked wheels glided so that the train ran away. It has also been suggested that, while there was no fault with the brakes, the driver found it impossible to shut off steam; that the valve spindle, under the high working pressure, had expanded or even broken. The brakes alone could not stop a train traveling at sixty miles an hour under steam. Realizing his helplessness, the driver then resorted to the only method left of checking his train, namely, reversing his gear, which, according to the evidence, was done just before the crash.

In the course of the correspondence on this subject, publicity has been given by the Yorkshire Observer to a theory of Mr. T. H. Brigg, formerly of Bradford, England, but now of New York. His opinion, in brief, is that accidents of this kind are largely due to the modern type of railway car with its double bogie, as compared with the old-fashioned ear, with four or six wheels and a rigid wheel base. Although the bogies give flexibility to a train in rounding a curve, the long bodies of the cars remain rigid, and the buffers on the inside of the curve are all tightly compressed, while those on the outside may possibly not even touch one another. When the driver opens the vacuum brake, the wheels of the engine and tender are power-
ully retarded, but the rear cars crowd-forward for time. If the train is on a curve, the inner buffers only are compressed, and the sixty-foot frame of the car becomes an enormously long and powerful lever, operating upon the inner buffer of the car in front to force that car off the track toward the outside of the curve, the fulcrum of the lever being the pivot on which the front bogie turns. Some confirmation is given to this theory in the Shrewsbury case if the brake, as previously suggested, although put on a mile or two back, did not begin to act until the train was actually on the curve. Mr. Brigg's theory, it should be added, is quoted as applicable to the accident which occurred not long ago on an elevated track in the Bronx.
Another mechanical explanation has been offered by Mr. James Keith, a London engineer. He believes that no derailment would have occurred in any of these cases if the wheels had had "the proper depth of guide flanges so called, instead of the little halfbeads which usually keep the wheels on the track at moderate speeds." He maintains that the only thing which keeps fast trains from derailment on curves under these conditions is the great weight of modern locomotives and cars bearing on these wheels. This weight, "though a safety at high speed when every point is carefully attended to, becomes a real danger when the train has the slightest inducement to leave the track, as, for instance, on the too sudden putting on or taking off the brakes, or the failure of the brakes to act, or the sudden reversing of the engine, or with one of or all these together and the metals, say, 'greasy,' and because of the axtreme oscillation of the present-day huge locomotives and coaches." No change, he points out, has been made in the guard margin of the wheels during the last fifty or sixty years, though the speeds of all trains are on an average at least twice what they were when the said wheels were originally designed.
With so many theories to account for these disasters, it is not surprising that numerous suggestions have been offered for their prevention in future. Among the principal reforms recommended are the more frequent medical inspection of engine drivers; the limitation of the journey to shorter runs; the provision of an extra man on the locomotive or of some better means of communication between the engine and the guard's van; the repetition of signals in the cab of the locomotive by a mechanical contrivance; the use of detonators as warnings at dangerous places at night; and the straightening of curves. The lastmentioned suggestion has been strongly supported by Mr. Andrew Carnegie, writing as an ex-railway superintendent to the London Times. No regulations, he says, can insure safety on such sharp curves, which therefore should not be allowed to exist.

SCIENCE NOTES.

The New York Forest, Fish, and Game Association has published a report dealing with the work of its fish hatcheries. During the past year more than $100,000,000$ marine fry have been placed in the sea, and in addition great numbers of trout and other game fishes have been hatched and placed in suitable streams. The association states that year by year it becomes increasingly difficult to obtain a proper supply of water, so widely are both streams and shore waters polluted.
Karatagh occupies a small inclosed basin shut in by high hills. On one side of it rises the Karatagh Mountain, while on the other side flows a river. The recent earthquake, the exaggerated reports of which stated that 200 people were killed, broke away a great section of the mountain, causing it to slide down upon the town. The force of the shocks was already toppling houses when the landslide added to the destruction. Many of the inhabitants were killed in the narrow streets by the falling dwellings, no building in the town being left standirg.
M. Georges Urbain, a young assistant professor of the Paris University, claims to have discovered a new metal by separating the element ytterbium into two parts. For some time he has been carrying on experiments in the class of rare earths, and more recently undertook a fractional treatment of ytterbium. This led him to separate a hitherto undiscovered element from the latter, which was supposed to be a simple body up to the present. To the new element he gives the name of lotherium, from the county of Lorraine. As to the details of the operations which led him to this important result, he declines to make any information public before presenting a complete memoir upon the subject before the Académie des Sciences. The present experiments were carried out in one of the laboratories of the Sorbonne, to which M. Urbain is attached. He states, however, that he has already made a number of researches regarding the new element, observing its different characteristics by chemical tests and also by spectrum analysis, and comes to the conclusion that it possesses some new properties which will make it of great interest from a scientific standpoint.

NEW EXPERIMENTS IN RADIO-ACTIVITY

by jacques boyer.

The apparatus herewith illustrated have been designed for the purpose of demonstrating the principal properties of radium salts and other radio-active bodies, and exhibiting their luminous, phosphorescent, elec tric, and thermal effects. Most of the experiments were designed or modified by M. Daune, Mme. Curie's assistant at the Sorbonne, for the exhibition of radioactive phenomena to a class.
The electrical conductivity of the air which is induced by the presence of radium is illustrated by means of the apparatus shown in Fig. 1. Adjustable spark gaps with micrometer scales are connected to the poles of a Ruhmkorff coil. A Geissler tube is connected in series with one pole and its spark gap, and the resistances are so adjusted that sparks pass in the other spark gap only. If a glass tube containing a grain or two of radium is brought near the inactive spark gap the resistance of the air is diminished so that sparks pass and the Geissler tube glows brightly.

The apparatus for the study of the radio-activity of mineral waters (Fig. 2) is composed of an electroscope surmounted by a glass cylinder which contains a cen tral electrode connected with the rod of the electro scope. The gas dissolved in the mineral water is ex pelled by a current of air which is forced through the container by compressing a rubber bulb. The gas traverses drying tubes containing sulphuric acid and phosphoric anhydride, and then enters the tube that surmounts the electroscope. If the gas possesses radio active properties due to the presence of radium emana tion the electroscope will be discharged. In this man ner radio-activity has been detected in the waters of Spa.
M. Daune has devised for these experiments a sim ple electroscope which is very sensitive to radio-active influences. The gold leaves are suspended from a glass rod which terminates above in a knot and is inclosed in a glass tube, to which it is attached by a metal frame. The radio-active effect on the conductivity of air is manifested at distances of several yards from the radio-active substance, and through paper, wood, metals, the human body, and other objects. A screen of lead 4 inches in thickness diminishes the effect very slightly.

I have seen in the laboratory of the De Lisle establishment at Nogent a remarkable apparatus for the demonstration of the evolution of heat by radium This apparatus (Fig. 3) consists of a very sensitive thermometer, the bulb of which is hollow and surrounds a thin-walled glass tube which is prolonged beyond the bulb opposite the stem. The thermometer is inclosed in a wide glass tube which is exhausted of air to a "Crookes vacuum" and is sealed around, but not over, the end of the little tube that penetrates the thermometer bulb. If a bit of radium is introduced into this little tube and pushed up into the bulb, the heat evolved by the radium will cause the mercury to expand. The vacuum between the thermometer and the outer tube almost prevents loss of heat by direct thermal radiation from the thermometer itself, but a certain quantity of heat is conducted from the thermometer by the walls of the outer vessel, and thence radiated or conducted away. The rate of this loss of heat increases with the elevation of temperature and when it becomes equal to the constant flow of
heat received from the radium the end of the column of mercury ceases to advance. One decigramme (1.4 grains) of radium produces a movement of about four inches, and if the instrument is standardized it may be used as a calorimeter for the measurement of the heat evolved by radium. The most curious of M

Fig. 4.-" Perpetual Motion" Due to Radio-activity.
Daune's devices is a novel "perpetual motion." The apparatus (Fig. 4) consists of a glass tube containing a small axial glass tube closed at the bottom and open to the outer air at the top, which is fused to the wall of the globe. The lower part of the tube is surrounded by a tube of brass which rests on an insulating post of quartz supported by a brass rod below. The brass tube bears a gold leaf which forms an electroscope.
If a Crookes vacuum is produced in the globe and

Fig. 8.-Apparatus Showing Evolution of Heat by Radium.
a little tube containing radium is dropped into the open mouth of the central tube, the negative rays, or β particles, emitted by the radium, traverse the two thin glass tubes and communicate their charge to the enveloping brass tube. The gold leaf diverges until it touches a platinum wire connected to earth, which discharges it and the brass tube to which it is attached. But a new negative charge at once begins to accumulate and when it has attained a certain value
the gold leaf again touches the platinum wire and a second discharge takes place. These alternate charges and discharges and to-and-fro movements of the gold leaf are repeated indefinitely under the influence of a very small quantity of radium.

Ramsay's Work on the Degradation of Copper to Lithium.

In a recent lecture delivered at Johns Hopkins University, Prof. Ira Remsen remarked that it is an easy matter to explain the work of Sir William Ramsay to any one who is familiar with chemistry. It is correspondingly difficult to make it clear to those who are not familiar with chemistry. In a few words, Ramsay: has made it appear probable that when radium emanation is allowed to stand in contact with a water solution of copper sulphate, a very minute quantity of lithium is formed. He believes that this lithium is formed from the copper. If this be true it is evident that the elementary form of matter known as copper, which has hitherto been regarded as unchangeable, is capable of change. It should be emphasized that the extent of this change is very slight indeed, the quantity of lithium formed being too small an amount to be weighed.
Sir William Ramsay is one of the most skillful experimenters in chemistry to-day, and whatever he says is worthy of the most careful consideration. He believes that' this transformation has been effected. In a letter dated September 16, received by Prof. Remsen from Sir William Ramsay, in which he tells of his work, there is nothing to indicate that his belief has been shaken. At the same time, in his published article he is cautious and uses the following words: "These experiments must be considered as preliminary. It is necessary first to find out where to search for the unknown before proper experiments can be made." He further says: "It is evident that the research of which the foregoing is a description, is merely a preliminary survey of the field to be explored, and that much work must be done before the tentative hypothesis which has been put forward can be substantiated."
To the chemist and physicist, Ramsay's results are of special interest because they promise to throw light upon that great problem-the constitution of matter. Those who are looking for practical results, using this expression in the ordinary sense, will be disappointed. There would be little advantage to the world even if copper could be transformed into lithium on a large scale, for as has been stated, the change is extremely small, and there is little or no probability that the extent will be markedly increased. There is nothing whatever in Ramsay's results to suggest the possibility of making copper from lithium, and even if this were possible, its manufacture on a commercial basis would be entirely out of the question, for copper is very much cheaper than lithium
Sir William Ramsay is continuing his experiments, and in the course of time we may pxpect to learn from him whether his present views pect to learn from him whether his present views case, physicists and chemists will have food for much thought. One of the fundamental problems presented to scientific men is the nature of the elementary forms of matter and their relations to one another Anything that throws light on this problem is of im portance.

Fig. 1.-Demonstrating the Conductivity of Air Under the Influence of Radium.

Fig. 2.-Testing Mineral Water for the Presence of Radium Emanation.

SATURN'S TORES.

, LOWELL observatory, flagsaff, arizona.
So much misconception exists in regard to the new discoveries about Saturn, that it may prove useful as well as interesting to the readers of the Scientific American to have the facts at first hand. For, to begin with, there is a lack of knowledge of what has just been seen, strikingly exemplified by the portrait of Saturn given in the Scientific American of Novem ber 23, which is not only not "a portraiture of the planet as it now appears," lacking indeed every one of the present features, but bears a strangely familiar resemblance to Saturnian pictures of thirty years ago
In the next place, there seems to be a sad igno rance of celestial mechanics prevalent on the subject both professional and profane. Perhaps as a mathe matician I may be allowed to explain the matter, as think its general points can be made comprehensible to even a non-mathematical reader. For not only is it perfectly certain that the rings are in process o falling in upon the planet, but this is an inevitable consequence of the mechanical principles involved

There is an ingrained conservatism in most people to prolong the present;•an inertia of mind akin to the inertia of matter, of which it is indeed but a form The stability of Saturn's rings is an interesting instance in point. Astronomers of the eighteenth cen tury had no misgivings on the subject. Not until Laplace took up the question was there any doubt tha Saturn had been eternally aureoled, and solidly at that. Since then, the idea has known one long chroni cle of crumbling down. First, Laplace showed that if the rings were of the breadth they seem to be they could not endure, as the tremendous strains to which different parts of them would be subjected by the attraction of Saturn must end in disruption. He ac cordingly supposed them subdivided into a series of very narrow ones, which would greatly diminish the stress. Peirce then showed that Laplace's supposition was not enough; that for stability the rings must be fluid. Lastly, Clerk-Maxwell took up the subject, and proved that even fluidity was fatal; the rings to be stable must be composed of separate particles, "brick bats," he called them. But some time before this, in 1848, Edward Roche had pointed out that the rings lay within the limit discovered by him at which satellite could revolve without disruption from tidal action by the planet. It is amusing now to see dis creteness withcut discretion taken as a last word on the subject, in view of the fact, if my memory serves me rightly, that Clerk-Maxwell himself pointed out that the particles must, in time, some fall in upon the planet, some be driven off to form a satellite. The proof of this is as neat as it is cogent, and not beyond every-day comprehension

A swarm of particles-particles like our meteorites, these probably are-traveling round a planet is in stable motion only in the absence of collisions. For the moment one of the neighbors collides with an other, unless both be perfectly elastic-a condition not fulfilled with any substance-a part of the energy of motion is converted by the impact into heat, and thus lost to the system. Now, the energy of motion, or vis viva, as it is called, is expressed by $1 / 2 m v$, where m is the mass of the body and v its velocity
The effect of the collision is thus to slow down one of the bodies without adequate compensation to the other, to shorten its orbit in consequence, and so bring it nearer the planet than it was before. The next col lision helps on the work, and so it continues until a last some particles fall upon the surface itself, while others pushed outward collect beyond Roche's limit into a new satellite. So much for the inevitable effect of collision.
But collisions are certain to occur in a swarm of the sort, unless the particles are so far apart that no possible perturbation from one another or from out side bodies can cause them to touch. Now, the bright ness of the chief rings of Saturn shows that the parti cles are not at great distances apart, on the contrary are relatively crowded. So that even from their mutual pulls upon one another, still more from the action of the satellite, collisions must be common, and thus the stability of the system is certain to be wrecked But there is nothing catastrophic about it. The system was doomed to die from the moment of its birth, has been breaking up in fact from the instant it began to be. That it will outlast our grandchildren is a safe prophecy, but that it is in process of dissolution is as assured as the law of gravitation itself.
The interest of the new observations consists in no such simple spectacle as a catastrophe, but in a much more subtle and satisfying thing-in the proof they afford, not only of the fact but of the manner of the disintegration of the rings. For they turn out to give evidence of a very pretty case of celestial me chanics, which, though too abstruse to be popularly appreciated, can nevertheless be so put as to be gen erally understandable.
The ring system of Saturn is composed, beginning from the outside, of ring A, about 10,000 miles in
breadth, which extends to Cassini's wide division and is itself divided about half way by Encke's narrow one; from Cassini's division stretches toward the planet, ring $B, 16,000$ miles, to where the crepe ring, known as ring C, begins, which in its turn continues in, according to the latest previous measures, up to 7,400 miles from the planet's surface. I say previous because the measures just made at Flagstaff show that it extends nearly 4,000 miles farther in.
Now then, for the facts of recent observation.
The first new and interesting circumstance connected with the present appearance of the Saturnian system was the detection at Flagstaff on June 19 1907, by the writer of a very fine black line threading

the rings of saturn viewed edgewise.

the central part of the much less dark shade that banded the (approximate) equator of the planet. The detection of the phenomenon speaks for the definition at Flagstaff, thus supporting the space penetration there shown for stars; for at the Yerkes Observatory, Prof. Barnard had not caught it, as he told the writer a few days ago, and it has not been reported from the Lick, though it was visible to all the observers at Flagstaff who examined the planet critically. (The photograph presented above of a drawing made on November 13 shows this detail of the band.

This core to the shadow of the rings is the first point of interest about the new appearances, and proves in a sense anticipatory as well as corroborative, as the reader will presently see, of the explanation about to be given of the much more easily seen phenomena in the rings themselves.
To begin with, it is at once evident that the dark medial line is the shadow of such part of the ring as is plane. Its observed width, 0.10 sec., makes it prob able that it is the shadow of the ring \mathbf{A} only which is here concerned, and that that ring is therefore practically plane. The dusky band on both sides of it one might at first suppose its penumbra, but calcula tion shows that it cannot be such, because that penum bra would be only 0.05 sec . wide, whereas the meas ured breadth of the band is 0.46 sec . Nor can it be due to the shadow of the whole ring system regarded

DIAGRAM ILLUSTRATING DR. LOWELL'S THEORY OF SATURN'S RINGS.
as a plane, for that would only measure 0.26 sec. across. Thus the observed shadow is too wide to be accounted for, unless parts of the rings are out of the general plane of the system. In that case, however the phenomenon is just what we ought to see. The dusky fringe on both sides of the dark core becomes explicable when we so consider it, and only then The shadow as seen at Flagstaff thus tells us that certain parts of the ring system are not flat, but of the nature of tores, a tore being a sort of flattened anchor ring. Tores then are certain portions of the rings, symmetrical all round the planet.
Passing now from the shadow to the appearance presented by the rings themselves, the reader must realize that they are now viewed almost edgewise to the earth, for the elevation of the earth above the
plane of the rings was only 40 min . N . on November 3 and 50 min . N. on November 13. For the most part, the rings showed only as the finest of lines of light stretched on either side the disk like golden threads, but in two places upon them brilliant star-like beads stood strung, symmetrically placed on either side the disk and of easy perception. (All six observers saw them instantly.) Detection of agglomerations of the sort is not new. Herschel, Wray, Struve, Bond, etc., perceived such long ago, and the present ones were seen some months since by Barnard at Yerkes, and later by the Lick before they were looked for at Flagstaff, as thc planet was not then an object of special study. But the careful measures made at the latter of their position, when reasoned on, prove to negative the old explanations and to lead to a new one of some curiosity. Figures here become necessary.
In radii of Saturn the agglomerations lay at 1.10 1.46 , the inner, $1.72-1.92$, the outer, from the center of the planet, while a conspicuous gap occurred at 1.58 . The inner tore is thus much broader than the outer one.

Now Olbers's explanation, adopted by Seeliger and recently advanced again as if it accounted for the present phenomena, consists in attributing the agglomerations to the piercing by the line of sight across the widest presented breadth of the several rings' supposed plane. It puts the maxima at 1.60 and 2.00 , or exactly where the minima now fall, and the observational maxima where the theoretical minima lie. This explanation therefore fails. We must, then, have recourse to another, and the only one which presents itself to answer satisfactorily the requirements is this: That at the points of agglomeration the eye is looking through particles outside the ring plane at the points where these swing into greatest perspective at their ansæ.

So much for the evidence afforded that certain portions of the rings are not flat, first by their shadows and second by themselves. But when we consider the character of the witnesses, we perceive that each tells its story from a different standpoint, since in the one case we are looking athwart the rings transversely, in the other longitudinally, and in consequence the phenomena are different, though the conclusion is the same. Each thus greatly strengthens the testimony of the other.
So much for the direct deductions from observation. Now, can this state of things be accounted for? It can, and the answer is one of the prettiest applications of celestial mechanics. It is a consequence of the disturbing effect of the nearer satellites of the planet upon certain particles of the ring, for all are not equally affected. Not only does proximity to the satellite play a part in all disturbance, but commensurability of periods between particle and satellite comes in for a curious role in the performance. To conceive it , let the reader imagine two bodies revolving round a third with different angular speeds. At some points in their orbits the two will approach closer to one another than anywhere else, and here the disturbing pull of the outer upon the inner will be greatest. If the periods of revolution of the two bodies are not commensurate, the two will return to conjunction at a different part of the orbits, and a certain compensation in the deformation of the orbits be effected. But suppose the periods bear a simple ratio to one another, two to one for instance; then conjunctions will occur in the same place over and over again, and the disturbances instead of being compensated will become cumulative and finally very great.
This action is exemplified in what is called the great inequality of Jupiter and Saturn, by which the place of Saturn may be out by as much as fifty minutes of arc; it is also shown by the gaps in the zone of asteroids due to commensurability of period with Jupiter; and lastly, it is instanced in the divisions of the rings of Saturn, Cassini's division and Encke's division being both due to this cause.
Now conceive a particle thus acted on by Mimas let us say, and to collide in consequence with a neighbor. The centers of the two will not probably be in the plane of the rings, because, however thin the ring, there are many particles in any cross section of it. There will therefore be a resultant throw out of the plane, and the particles winl thenceforth travel above or below it. Such tossing of the particles out of their original level by satellite action will be most pro nounced just inside the point where the perturbations are greatest. For at each collision there must be, as we saw above, a loss of vis viva, and the disturbed particles will eventually be found in consequence chiefly inside the line of maximum action.
According to this principle, let us see where we ought to find tores. For the analytical treatment of the subject, too technical of course to be given here, shows us which ratios are the most important, and these turn out to be the very simplest. The greatest disturbing ratio is when the periods of disturber and disturbed are as 1 to 2 . This occurs in the case of Mimas, the most potent perturber of the particles of the rings, at Cassini's division. The first tore, then,
should lie just within this or in the outer part of ring B. This is precisely where we find it. The nex most powerful proportion is 1 to 3 , also due to Mimas This occurs at the boundary of B and C . The next tore then should be in the outer portion of ring C This is where the second observed tore actually begins. But we saw that it was very broad, much broader than tore B. Now, the third most effective ratio is 1 to 4. And this in the case of Mimas takes place about two-thirds way in along ring C. Here then is a rea son why that tore should be so broad. The only other case of commensurability of like importance is with Enceladus, the next outer satellite, and is as 1 to 3, and its action falls in Cassini's division, so that it helps Mimas to cause tore B. Here then is a very elegant exemplification of a case of celestial mechanics, that of commensurability of period. The tores in Saturn's rings observed and measured turn out to lie where deduction from the law of gravitation leads us to infer that they should be found.

Recent Flights by Farman and de La Vaulx.

by our paris correspondent.
On November 18 M . Farman made a formal trial for the Deutsch-Archdeacon $\$ 10,000$ prize for the kilometer in a closed circuit, and while he did not succeed, the results were promising. He easily reached the turning post at 500 meters distance ($1,640.4$ feet), but he was not able to make the turn around it. On the last trial he made the turn, but he had touched the ground several times while doing so, although he succeeded in returning to the starting line while in flight. In this attempt the motor did not seem to be working well, attempt the motor did not seem to be working well,
which, according to M. Farman, accounts for the irrewhich, according to M. Farman, accounts for the irre-
gularity of the flight. Darkness stopped further gularity of the flight. Darkness stopped further
trials for the day. Among the assembled crowd were noted Santos Dumont, Senator Henri Deutsch, Capt. Fer ber, Messrs. Tissandier, Jacques Faure, Charron, Besancon, the secretary of the Aero Club, our correspondent, and one of the members of the editorial staff. Among the persons present.was Mr. Orville Wright, who has been persons present. was Mr. Orvilie wright, who has been
in Europe with his brother negotiating for the sale in Europe with his brother negotiating for the sale
of their aeroplane, which is kept as close a secret as of their aeroplane, which is kept as close a secret as
ever. Mr. Wright did not think it apropos to give his ever. Mr. Wright did not think it apropos to give his
opinion at length as to M. Farman's performance, although he considered the flights as excellent and believed that Farman is in a fair way to win the DeutschArchdeacon prize, while being easily ahead as far as Europe is concerned. He has a high opinion of M. Farman's ability and thinks that his experiments are doing much to advance the progress in aeroplane work. doing much to advance the progress in aeroplane work.
M. Farman would be glad to compete for the ScienM. Farman would be glad to compete for the Scien-
tific American trophy, as he thinks he has already practically won it, and regrets that it cannot be competed for in France. On the same afternoon the airship "Ville de Paris" made its appearance, sailing over the grounds in fine style, and this, of course, added to the interest of the event. It was piloted by the aeronauts Henri Kapferer and Paulhan. After sailing nauts Henri Kapferer and Paulhan. After sailing
about in several curves, it descended on the grounds about in several curves, it descended on the grounds
during M. Farman's flights. Toward dark it rose up during M. Farman's flights. Toward dark it rose up
easily in the air, and returned to its headquarters at Sartrouville.
On November 23, for the third time, M. Farman once more competed for the Deutsch-Archdeacon prize. He was unable to make more than one attempt on this date, however, owing to a violent storm of wind and rain, which came on in the midst of the trial. After leaving his shed, in order to reach the starting point, he was obliged to make a flight across the field. Start ing with the wind he crossed the field, described a semicircle, and landed against the wind, having covered a distance of 900 meters ($2,9523 / 4$ feet). While preparations were being made for the flight for the prize, the wind suddenly veered and increased in intensity until it was blowing from 12 to 18 miles an hour. M. Farman, nevertheless, started his machine, and rose Farman, nevertheless, started his machine, and rose
in the air at a high rate of speed. As the wind threatin the air at a high rate of speed. As the wind threat-
ened to carry him beyond the limits of the field, he decided to descend and wait for better weather. The fact that he was able to maneuver the aeroplane and keep it on a fairly even keel under such adverse conditions, is another evidence of the inherent stability of this type of machine.
On November 19, while experimenting with his new aeroplane, Count de la Vaulx had an accident, which fortunately was without serious results. The aeroplane, which is of the monoplane type and has a total surface of 40 square meters (430 square feet), was being driven at about 30 miles an hour by its two propellers actuated by a 50 -horse-power Antoinette 8 -cylinder engine when suddenly one of the wings gave way, and the machine fell over upon the other wing. The front part of the machine dug into the ground, and the entire aeroplane turned upside down. Count de la Vaulx was hurled to the ground with great force, the motor falling on top of him and pinning him to the ground. To add to the danger, some of the gasoline caught fire, but the flames were quickly extinguished by onlookers. The Count fortunately escaped with a few cuts and bruises, though his machine, which he was trying for the first time to fly, was demolished.

The Experiments of M. Bordas in Producing Gems by Means of Radium.

An interview with M. Bordas, who has been reported as having produced various gems by the use of ra dium, is published in Le Temps of Paris. The New York Tribune summarizes the interview, showing that M. Bordas's work is not such as will revolutionize the jewelry trade
The material of which a certain class of gemsrubies, sapphires, amethysts, and emeralds-consists is corundum. What M. Bordas has effected is merely an alteration in the color of the specimens with which he experimented, the change being attributed to the action of radium placed in close proximity to the stones. In this manner, it is announced, a white crystal was made to assume a yellow hue, a sapphire was turned from blue to green, and the tint of a pale ruby deepened. It was noticed, moreover, that if the exposure to radium was sufficiently prolonged the color of a ruby would change in succession to violet blue, green, and finally to yellow: The interviewer shows that there is nothing in the transformations thus far observed which threatens to afford a supply of jewels produced inexpensively. He remarks reassuringly: "Let us rid our minds of the idea that M. Bordas has taken cheap stones-corundums and to-pazes-and elevated them to the dignity of gems-sap phires, emeralds, and rubies. Quite the reverse."
Though no intention of deceiving his hearers can be imputed to M. Bordas, the report of his recent ex periments to the French Academy of Sciences was un fortunate in one particular. It was entitled "A Contribution to the Synthesis of Precious Stones." By "synthesis" the chemist means the putting together of certain elements for the manufacture of a substance having entirely different qualities. A molecule of grain alcohol, for instance, contains one atom of oxygrain alcohol, for instance, contains one atom of oxy-
gen, two of carbon, and six of hydrogen. If man could gen, two of carbon, and six of hydrogen. If man could
persuade these ingredients to unite in the proper propersuade these ingredients to unite in the proper pro-
portions and undergo the transformation which nature alone is able to bring about he would call the product "synthetic"• alcohol. M. Bordas, it will be observed, makes no pretence of having effected a combination of materials for the production of something unlike the original elements. In each instance, according to his own statements, he began with corundum and ended with corundum. The only change he made was one in color. He has apparently not thrown any light on the synthesis of gems.
It has been supposed that the characteristic hues of the ruby, sapphire, amethyst, and topaz were due to the presence of metallic dyes in diminutive quantities. M. Bordas dissents from the accepted theory He infers from his experiments that the differences represent differences in the degree to which the stones have been acted upon in the earth by substances pos sessing the properties of radium. All gems of the corundum class, he holds, were originally red. Those which by circumstances were well shielded from the influence of radio-active minerals retained their color The amethyst, sapphire, and emerald indicate succes sive alterations, according to M. Bordas, while the topaz might be regarded as the ultimate product of the magic agency.
Though there is enough in this ingenious hypothesis to invite examination by persons who make a study of nature's processes, the practical importance of the work on which it is based is evidently small. The utmost which a jeweler could hope to do with the aid of radium apparently is to alter slightly the tint of a gem, but apparently an attempt to do so would be attended with uncertainty as to the result. Where there is a chance that a precious stone may be damaged, instead of being improved, the wisest policy would seem to be to let it alone.

The Death of Prof. Asaph Hall.

Prof. Asaph Hall, best known for his discovery of the two moons of Mars, died at Annapolis on the night of November 22. Prof. Hall was born in Goshen Conn., in 1829, where he acquired a common school education. Surmounting great difficulties, he pursued his studies somewhat further, at Central College and at the University of Michigan.
In 1857 he began work under Prof. Bond in the astronomical observatory of Harvard, staying there until 1862, in which year he went to Washington to take the examinations preliminary to acquiring a post in the Naval Observatory. He passed these examinations, and was made an assistant professor of mathematics in the United States navy, being raised to the position of full professor in the January following. For thirty years he was attached to the Naval Observatory.
Many government astronomical expeditions were headed by Prof. Hall, and many important discoveries made by him, notably of the two moons of Mars in 1877. He was a member of the National Academy of Sciences, a foreign member of the Royal Astronomical Society of Great Britain, and held membership and offices in many other learned bodies.
Both Yale and Harvard universities conferred upon
him the degree of Doctor of Laws, while Hamilton College made him a Doctor of Philosophy.

Retired from the navy in 1891, he was in 1895 ap pointed professor of astronomy at Harvard University

Recent Awards of Scientific Prizes and Medals.
The American minister at Stockholm has advised the State Department that the Nobel prize for physi cists has been granted to Prof. Albert A. Michelson, of the University of Chicago, because of his invention of an improved method of measuring the velocity of light.

The above mentioned honor comes almost on top of the Copley medal for optical investigation, which was awarded to him some three weeks ago by the Royal Society of England. Prof. Michelson is head professor of physics in the University of Chicago, of which faculty he has been a member since its founding in 1892. He received the Rumford medal from the Royal Institute of Great Britain, which made him an honor ary member in 1829.
His first notable invention was an instrument for measuring the velocity of light, for an improved meth od of which he has now received the Nobel prize He is also the inventor of a spectroscope that has a higher resolving power than any other instrument in use, and of several instruments for measuring distance by means of light waves. One of his most famous inventions is an interferometer, that not only measures light waves, but counts them as well.

The Nobel prize for chemistry has been awarded to Sir William Crookes, of London, while according to a dispatch to the Petit Parisien from Stockholm, it is stated that Dr. Laveran, of Paris, who is well known for his investigations of the propagation of tropical fevers by mosquito-conveyed microbes, has received the same prize in medicine.
The chief of the department of health and sanitation of Havana, Dr. Carlos Finlay, was recently presented with the Mary Kingsley medal in recognition of his discovery of the transmission of yellow fever by the mosquito. The Liverpool School for the Study of Tropical Diseases awards this medal in memory of Miss Mary Kingsley, the African traveler. Governor Magoon made the presentation at the University of Havana, before a large assemblage of officials and scientists, in his address congratulating the Cuban people on the great services that one of their countrymen had rendered humanity by remarkable researches in a field that entailed no mean personal danger.
The Davy Medal, founded one hundred years ago in honor of Sir Humphry Davy, has been awarded to Prof. Edward M. Morley, of West Hartford, because of his excellent determinations of the atomic weight of oxygen.

Changing Tints of Autumn Foliage.
The common idea regarding autumn coloring is that frost causes the brilliant color of the leaves. This popular fallacy is without any foundation in. fact; frost has absolutely nothing to do with tinting of the leaves except that it hastens their fall. Autumn coloring is due to oxidation, which is caused by the action of light and heat, somewhat similar to the rust on iron. With leaves it is due to the fact that in fulfilling their mission they become choked by their own excretions, and the acids thus formed are acted on by the oxygen.

In extremely moist atmospheres the colors are not usually very bright, as in England, for example. And in very dry climates the leaves dry up suddenly, and their skin, which is very thick to prevent the escape of moisture, is not sufficiently transparent to allow of the color being seen beneath. In the regions where the autumn foliage is most vivid we find that an average season produces the finest colors. Neither a very dry nor very wet summer and early autumn will result in much brilliancy.

The extraordinary range of colors in trees of a single species is very noticeable, particularly so with the sugar maples; and it is remarkable that an individual tree will continue the same colors year after year; not only that, but the same branch will show the first tinge of color year after year.-Retail Druggist.

The Discovery of Ether Anarsthesia.

Active steps are being taken to honor the memory of Dr. C. W. Long, of Jefferson, Ga., the discoverer of ether anæsthesia. An act has been passed authorizing his statue to be placed in the statuary hall, Washington, D. C., and steps are being taken to have a suitable statue in position without any unnecessary delay. A marble statue forty feet high will be erected to his memory in Jefferson. The unveiling ceremony is to be performed by the president, for the time being, of the Georgia Medical Association, and is fixed for April, 1909. A suitable memorial building bearing a bronze tablet will be erected at Athens, Ga., on the site of Dr. Long's residence. The tablet will be inscribed with the date of Dr. Long's first operation and tell of his arduous and beneficent work in Athens.

(forxedarandente.

Saliva as Antiseptic.

To the Editor of the Scientific American:
I would add a few lines to the observations of Charles A. Nash relative to the sterilizing effect of saliva. Surely one must indeed be blind who has not taken note of the tongue-lapping treatment our dumb animals give their wounds and lacerations, and with no other care such wounds heal in a remarkably short time. I have long since concluded that the bes treatment for a wound is a liberal and frequent appli cation of saliva taken from the glands under the tongue. This is a "home remedy" always resorted to with a cut or bruised finger; and while it may not appeal to our refined senses, nevertheless it is Nature's only salve, and may always be applied in the right place at the right time
Tracy, Minn., November 25, 1907.

The Marent Companys Reply to Pror. Feserder

To the Editor of the Scientific American:
With reference to an article which appeared in your esteemed issue of November 16 last, over the signature of Prof. R. A. Fessenden, I am directed by Commendatore G. Marconi to inform you, for publica tion in your journal, that beyond denying generally the statements of Prof. Fessenden and dissenting from assertions made and conclusions arrived at.in said article, he regrets that exigencies of business preven him from entering into controversy on the subject but that he simply invites reference to actual state ments made by him before British and Italian scien tific societies, for which statements he holds himself fully and solely responsible.

Com. Marconi desires me further to state that he in tends to reserve detailed information respecting transatlantic wireless telegraphy for inclusion in papers which he has promised to read during this coming winter before American and British scientific societies Marconi Wireless Telegrapii Company of America.

By J. Bottomley, Vice-President
New York, December 3, 1907.

An Inventor Who Claims to Have Anticipated

 Mr. Edison's Concrete House Idea.To the Editor of the Scientific American:
In No. 20, vol. xcvii, November 16, 1907, of Scien tific American, I saw an article bearing the heading "Edison System of Concrete House." After reading over the article I notice that this system consists in the use of concrete pumped into adequate molds. same being spoken of as a new invention.
I must state, however, that the said process is not novel, as under date of December 14, 1901, patent No. 2498 was granted to me by the Mexican government covering a new process of manufacturing and build ing houses or the like in one piece, by means of specially designed molds that let the air escape. The same patent was improved on the 23d of March, 1903, under No. 3503 bis.
My system is still simpler than Mr. Edison's, as the mixer is suppressed.
I therefore claim as my own the prime idea of manufacturing cencrete with a pump into adequate molds, this process being useful for the making of in dustrial products of every kind and description as well as for building houses, etc.
This invention might cause a revolution in the art of building, as construction may be carried out by the use of small pieces of material inwrapped in a semi-fluid mass playing the part of cement, with the object of uniting said material. The addition of iron bars or armature is a factor of security to the rigidity of the products thus obtained.
I am still further improving my process so as to make it more practicable.

Mexico, November 26, 1907
Sustained Flight at High Speed.
To the Editor of the Scientific American:
I read with considerable interest Mr. F. E. Stan ley's letter concerning recent descriptions and data of flying machines which have appeared in your paper. For the most part I heartily agree with the writer, and it would seem that if the same sort of hard headed common sense logic had been used by more of the flying machine inventors, less money would have been wasted and the art of flying would be much fur ther advanced. Toward the end of his letter, how ever, he makes two statements which are substantially as follows: That with equal powers the speed of a flying machine will never be so great as that of a wheeled vehicle. Also that a flying machine can never carry a given weight of pay load as cheaply as a wheeled vehicle for a given distance
His arguments to prove the first statement are based on the comparatively poor efficiency of the air propeller as compared to that of the driving wheels of a wheeled vehicle, and also on the supposition that the air resistance of a flying machine must necessar ily be greater than that of a wheeled vehicle. The
argument is good and rather hard to refute. The real weakness of Mr. Stanley's argument lies in the fact that he has apparently overlooked the possibilities of soaring, or gliding flight, as practised by most of the
larger birds. This phase of aeronautics has from time to time been discussed in your valued paper. Perhaps one of the most exhaustive treatises on this subject is a paper by Octave Chanute which appeared in the Aeronautical Annual of 1896 and 1897. I feel sure that a careful consideration of this subject will convince any thinking person that it is at least possible to fly long distances at high speeds with little or no to fly long distances at high speeds with little or no
expenditure of power except that which is external to expenditure of power except that which is external to
the machine or bird. I would also cite in support of the machine or bird. I would also cite in support of
this assertion the gliding experiments of Lilienthal, Herring, and the Wright brothers. As to the second of Mr. Stanley's assertions, relative to the comparative cost of aerial transportation, I must say that to at tempt to refute it at present would be rather a hard task, although if we admit that less power is required to propel a flying machine at a given speed than a wheeled vehicle, we have quite a point in favor of the flying machine.

Harold H. Brown.
Boston, December 2, 1907.

AN EASILY MADE MICROMETER.

by dr. thomas r. baker, rollins college, florida. practical worker to find the thickness of material so practical worker to find the thickness of material so
thin, or inconvenient to measure, that the thickness thin, or inconvenient to measure, that the thickness
cannot be found by means of a foot-rule, or other cannot be found by means of a foot-rule, or other
common measuring device. A simple, fairly accurate, and easily-made apparatus of the micrometer form may be constructed as follows:
Get a common iron or brass bolt about $1 / 4$ of an inch in diameter and about $21 / 2$ inches long, with as fine a thread as possible, and the thread cut to within a short distance of the head of the bolt. A bolt with

A HOME-MADE MICROMETER.

a cut in the head for a screw-driver should be used Clamp together two blocks of wood with square corners about 1 inch wide, $3 / 4$ of an inch thick, and $21 / 2$ inches long, with their narrower faces in contact (the width of the clamped blocks being two inches), and bore a $1 / 4$-inch hole through the center of the blocks in the 2 -inch direction. Now remove the clamp, and let the nut of the bolt into one of the blocks so that its hole will be continuous with the hole in the wood, then glue the blocks together with the nut between them. Cut oùt a piece from the block combination, leaving it shaped somewhat like a bench, and glue the bottoms of the legs to a piece of thin board about $21 / 2$ inches square for a support. Solder one end of a stiff wire about 2 inches long to the head of the bolt at right angles to the shaft, and fix a disk of heavy pasteboard with a radius equal to the length of the wire, and with its circumference graduated into equal spaces, to serve in measuring revolutions and parts of revolutions of the end of the wire, to the top of the bench; put the bolt in the hole, screwing it through the nut, and the construction is complete.
The base is improved for the measuring work by gluing to a central section of it, covering the place where the end of the bolt meets it, a small piece of stiff metal; and it is convenient to have the graduated disk capable of rotating, so that its zero line may be made to coincide with the wire.
Find the number of threads of the screw to the inch by placing the bolt on a measuring rule, and counting the threads in an inch or half an inch of it length. The bolt in making one revolution will descend a distance equal to the distance between the threads.

To use the apparatus, put the object whose thick ness is to be measured on the base under the bolt, and screw the bolt down until its end just touches the object, then remove the object, and screw the bolt down until its end just touches the base, carefully noting while doing so the distance that the end of the wire moves over the scale. The part of a rotation of the bolt, or the number of rotations with any addi tional parts of a rotation added, divided by the number of threads to the inch, will be the thickness of the object. Quite accurate measurements may be made
with this instrument, and in the absence of the ex pensive micrometer, it serves a very useful purpose. I have used it in the beginning classes in electricity for measuring the diameter of wire, for finding the numbers of wires from reference tables, and for making various other measurements.

The Current Supplement.

Prof. George Lunge opens the current Supplement, No. 1667, with a thoughtful article on the problems of applied chemistry. An apparatus for electrical vision is described under the title of the "Senlecq Telectroscope." A most helpful and practical article is one entitled "Some Soldering Appliances." Particularly timely at this season of the year is an article on preventing frost on show windows, in which article various methods of keeping glass clear in cold weather are described. William Mayner writes on some Prussian railroad tests made near Oranienburg, the object leing to determine the best track. Frederick C. Coleman contributes a very interesting and excellentlyillustrated article on a new cable ship, and describes the machines which are used for laying submarine cables. The action of sea water on concrete is discussed. The defects of the first British airship are enumerated in an article in which the need of harbors for aerial craft is dilated upon. For many years past pottery models of houses occasionally found their way into museums from the illicit digging of natives in Egypt, but nothing was known as to their original positions and dates, and they were so scarce that not even the National Museum at Cairo had any sample. Prof. Flinders-Petrie explains the meaning of these houses which, it would seem, had a peculiar religious significance. Few persons appear to be acquainted with the proper meaning of the word "coney" used in the Bible. Mr. R. Lydekker tells just what the coney is. Arthur Stentzel writes on the climate of Mars, and notes its effects upon the habitability of the planet.

Official Meteorological Summary, New York, N. Y., November, 190%.

Atmospheric pressure: Highest, 30.55; lowest, 29.16; mean, 30.04. Temperature: Highest, 60; date, 2d; lowest, 33 ; date, 30 th; mean of warmest day, 54.5 ; lowest, 33 ; date, 30 th; mean of warmest day, 54.5 ;
date, 6 th; coolest day, 36.5 ; date, 14 th ; mean of maximum for the month, 50.1 ; mean of minimum, 40.4; absolute mean, 45.2; normal, 43.8; excess compared with the mean of 37 years, +1.4 . Warmest mean temperature of November, 50, in 1902. Coldest mean, 37, in 1873. Absolute maximum and minimum of this month for 37 years, 74 and 7. Average daily defi ciency since January 1, -1.0. Precipitation: 5.05; greatest in 24 hours, 1.90 ; date, 6th and 7th; average of this month for 37 years, 3.50 . Excess, +1.55 . Accumulated excess since January 1, +0.19 . Greatest November precipitation, 9.82 , in 1889 ; least, 0.82 , in 1890. Wind: Prevailing direction, west; total movement, 8,699 miles; average hourly velocity, 12.1 miles; maximum velocity, 52 miles per hour. Weather: Clear days, 8; partly cloudy, 9 ; cloudy, 13 ; on which 0.01 inch or more of precipitation occurred, 11. Snowfall: Trace. Mean temperature of the past autumn, 55.17; normal, 55.20. Deficiency, -0.03. Precipitation for the same season, 16.87; normal, 10.89. Ex cess, +5.98 .

A New Anæsthetic

Mr. F. W. Malvin, United States consul at Nottingham, sends to the Bureau of Manufactures at Wash ington some particulars concerning the new anæsthetic, stovaine. It appears that it produces paralysis of the body below the point of injection and removes all sensation from the limbs, so that it has been found possible to amputate a man's leg while the patient re tained consciousness, and could, had he been allowed to do so, have even witnessed the operation. The patient could feel no pain, and after the operation and when sensation returned experienced nothing but the sense of bruising, which is one of the sequels of grave operations. The curious name of the anæsthetic, "stovaine," is due to its discoverer, M. Fourneau. M. Fourneau was anxious to perpetuate his own name in connection with it, but as the anæsthetic was of the nature of cocaine and no compound resembling that could be contrived out of "Fourneau," he translated the name into its English equivalent of "stove" and added the necessary termination.

As the accuracy with which drill bits are formed and sharpened has a great influence on the capacity of a rock drill, and also as the maintenance of drill steel is one of the most important items in the cost of rock drilling, experience has shown that all mines using a considerable number of drills should include one or more drill-sharpening machines in their equipment. Drills sharpened by machinery are more perfect than those sharpened by hand, and the saving in cost will in a short time pay for the machine. The saving in labor alone is estimated as amounting to at least 65 per cent,

 any Asiatic country. Its geographical situation as a
nd of buffer state between the two great European untries with large Asiatic interests has given it a
ortain importance in the political world; and general ertain importanee in the politital worlu; and general
interest has seen excited by
ne ne nure of the land nd the character of its natives, both of which have
momed to keep out explorers. For the land is a igh plateau-much of it hirgrer than the sund is at or ont Blanc-cold and arren; and the people regard
as as amost
aprat of of their religion to keep the fortigner anay. Exxplorers have from time to to time trav
esed parts of the country, and some of the istricts bor ded parts of the country, and some of the iststicts bornever been trodden by the foot of ony European, until

In spite of the British expedition of 1994, the cour
try is in some respects more exclusive than before, for
 both goveruments. To penetrate it from the east
extremely dangerous and dififult, owing to the natue of the long stretch of country to be traversed, and
of only possibility of entering the country is by the the
northern route from Russian territory.
This routr This route eas been oflolianed by y viennese zoologist
Dr. Erich Zugmayer, who last year undertook an expe Dr. Erich Zugmaer, who ast year undertook an expe
dition of discovery to western Tibet, and to whoss
curresy the writer is indebted for many of the facis courtesy the writer is indebted for many of the facts
exposal in this article, as well as for the reproduction exposes in this article, as well as for the revroduction
of som photographst taken by him. The northern prov
inces of the country throug inces of the country, through which Dr. Zugmayer had
to pass on his way from siberia and Turkestan are to pass on his way from siberia and Turkestan, are
sparsely opulated, while the Chinese frontier is oper
to anybody. In those tracts, which have hardly to anyboay. In those tracts, which have haraly ever
been visted by Europan travelers, one is at liber
to carry out any scientict to carry out any scientific investigations, unhampere
by any foe other than Nature, which indeed is an ex
encountered. show a most obstinate passive resistance,
due partly to the fear of authorities and partly to their
 scriptions of many travelers, the national character
Sistise of Titetans are very far from sympathetic, ex
treme haubtiness on the istics of Tibetans are very far from sympathetic, ex
treme hauhtins on the on hand and great servility
on the other being their most striking traits on the other being their most striking traits.
These nomads, forced to wander to tind scanty pas These nomads. forced to wander to find scanty pas-
turaze for their cotle are an unprepossesing people.
In in its exclusiviveness Tibet seems to anve withorawn In its exclusivenss Tibet sems to have withdrawn
even from tisents and its people are divided into many
tribes or clans, neighboring viluges often having a tribes or clans, neighboring villages often having a
widily differing dialect. The people are swarthy, with widely difering dialect. The people are ewarthy, witi
coal-blak eyes and hair, and as the men walk about
halt naked when the a alys are warm, with enormous half naked when the days are warm, with enormous
spears slung over their backs and often a rusty fint
 The womenen anin many mapaeger cowaritasary and and filthy
and soon lose any comeliness which they mar hery
and and soon olose any comeininess which they may have
when young. Tea, butter, and barley meal are staple
the coarse grass, tamarisk leaves, or lichens, which it it
gathers on its way. It is fis furthermore an excellent climber, and is practically insensitive to sterm and
cold. However, there is nothing this animal is less cold. However, there is nothing this animal is less
able to stand than sudden changes of climate, and in
this respect it is said to be in this ressenct it is said to be inferior to sheen.
Good pasturage is rarely encountered in the elevate Good pasturage is rarely encountered in the elevated
northwestern parts of Tribet. When it is ofund, the people camp. and a day's journey is from oasis to oasis,
the more so as some water and fuel (consisting mainly of the excrements of wild yaks and antelopess are
nearly always found in these spots, which are often nearly always found in these spots, which are often
fairly well protected against winds.
Throughout western Tibet the region of everlasting
snow sis son reached in ascendinimountain opasses,
shich are permanenty covered with deep layers of
snow is soon reached in ascending mountain passes,
which are permanenty covered with deep layers of of
snow. At somewhat lower altitudes, however, the heat

 No one at home or abroad has shown so much energy water navigation as Santos Dumont. The rapidity with hich he changes from experimentation with an aer
plane to skimming the water with a hydroplane plane e to skimming the water with a hydroplane, an
then back again to an aeropplane, is truly amazing. the hydroplane does not succeed, or if the aeroplala
gets smashed, he is soon afloat or afield again with gets smased, he is sonan afoat or afiel again with
new and improved apparatus. Only a short time a we illustrated his hydroplane, and now we take plea
ure in showing our readers his latest aeronlane, wit ure in showing our readers his latest aeroplane, witl
which he has signified his intention of competing to
the Scorevtuc This latest aeroplane, which is Santos Dumonts
Thinterenth machine is the lightest
nind ninetenth machine, is the lightest and simplest flye
which h h has thus far produced, which accounts for its
whid he

Curious Tibetans Waiting to See the Forelgner

The Garrison of a Tibetan Town on Parade.

Typieal Monastery Perched on a Commanding site.

One of the Safer Roads of Tibet.

Tibetan Girls.

The Camp Pitched on an Oasis.

"Pillars of Faith" Which Usually Contain Some Relic.

A Nomad Family and Their Tent.

Frovier Pase at Leibl or 16,000 Feet
in the sprng of of 1904, when a British military mission
arived there, and some of its members entered the citved there, and some of its members entered the
city hater thus lost some of the eharm
mystery which formerly attached to it the treasures
 stored up within 1ts walis-treasures accumuated by
centuries os stadent priests-are far from having been
made aceessibe to scientific investigation indeed, in
 in ground for the scientific and geographical explorere.
Until its annexation to the Chinese Empire, more Until its annexation to the Chinese Empire, more
han a century ago, Tibet had an independent history.
 strictly difierent from the Chinese, as evidenced by its cuntry has played anabeetical system of writiting. The part in Asiatic ivilit
ation, having been the erade of Buddhism, and heing ation, having been the crade of Budahism,
till one of the strongholds of thas rellion

Tremely dangerous foe. The whole of western Tibet
at an altitude of more than 15.00 feet and in in
 storms, the severere cold and the thitu air of the treuent storms, the severe cold, and the thin air of the high
lands,
mas well as sthe absenco of sufficient food for an
 The ebasts of burden of the caravan sucumb to the
fatigues of the journey at about the rate that the grai
they earry is exhumsted they arry y is eournuastad.
When the high plateaus, When the high plateaus, with their passes and higher
ridges covered with perpetual snow, are left, and t
inhabited ret inhabited regions are visitted, the difeculties and the the
by Nature teile by Nature tend to disappear as the expedition aprives
at lower attitudes and milder clit
infuence

articess of diet. Tea is a national institution and
bricks of it-for it reaches
Tibet
 more; and closing it on all sides except one narrov
hole, whihe serves for dor, window, and ventilation,
herd for warmh round and herd for warmth round an oil lamp. Animals share
the shelter with the people, and the atmosphere of
 cult to induce native tribes to sell any beasts of bur
den, especiall y yaks, severe penalties being incurred den, especialy y yaks, severe penalties being incurred
by assisting a Earopean caranant ine yak, which
the main beast of burden of Tibet, thoush being slow the main beast of buranden of Tibet, thounh being slow
and stuborn, is far more useul than the horse, espe.
 mous strength and great frugality, It is able to carry
loads of 100 pounds without needing other food thai
re found more frequently, in spite of the higher tem:
ser found more frequently,
peraure and lower altud
The monasteries of tive
The monasteries of Tibet have been centers of learn.
ing for centuries. and to-day may be likened to the
nedieval cloisers of

 are frequenty found on isolated mountains, being
sometimes buit into them and utilizing their natural
cavities cavities. The stone walls of the country, designated by
the term of "Mani," contain numbers of slate s.2bs
 especially in the neighborhood of monasteries. Other
characteristic constructions are the pillars of taith,
cor "chers") characteristic constructions are the pillars of faith,
or "Tshorts,"
which though corresponding to conristian chapels, do not contain generally any altar, but merely
some relic. It is conesidered a pious action to walk

Philippine Islands is soon to be made under govern.
 Uhich will probably cover a period of threes vears, is
0 discover just what food fishes, edible crustacens,
 he natives hilpine waters possess, and then to show can develos their industries, and
tarticulary
 At present, only people of the coast townse eat fish,
nnt the tishermen oatco only enough for each
tse. It is expected that many new kinds of edible use. It is expected that many new kind oach dayise
fish will be discorede, of which the natives know.
little or nothinceree lithe or nothing. The natives will then be instructed
how best to take these fish, and what method to use how best to take these fish, and what me
in preparing them for market or export.
set at a dihedral angle. This monoplane is 5.1 meters
 ed upon a suitable from fromerort of of steel , tubing, which is
 are silighty inclinen outward, so that they are farther
apart at the botom than at the top. A compine lozenges.shapen horizontal and vertical rudder is mount
ed, by means of a universal joint upon the end of
and

 one on each side of the supporting framewrok, and are
arrangea to work kin unison with he euxder at the reat

the aeroplane are made of plain white silk tightly stretched over the ribs of the wooden framework, which is slightly inclined upward from rear to front.

The motor is far simpler and considerably less powerful than the 8 -cylinder, V-type, water-cooled engine with which Santos Dumont first flew over a year ago. It is a double-opposed-cylinder gasoline motor of the air-cooled type, capable of developing from 17 to 20
ber, and two representatives of the Scientific American.
After making a preliminary run upon the ground, he made a fine flight of three hundred feet or more at twenty feet height; and then a second flight of about the same distance, keeping at fifteen feet from the ground. The best performance was a fight of 450 feet made quite near the ground, during which he changed

Three-Quarter Front View of the Aeroplane, Showing the Horizontal and Vertical Rudders in Front and the Combined Rudders at the Rear.
horse-power. As can be seen from the illustrations, it is mounted at the front edge of the aeroplane, and carries a 2 -bladed, $41 / 2$-foot propeller directly on its crankshaft. The pitch of the propeller is 1.05 meters (3.44 feet), and the blades are oval and concave. The motor was designed and built in ten days by the engineers of the Duteil \& Chalmers Company, of Paris. Its weight is but 22 kilogrammes ($481 / 2$ pounds), or about $21 / 2$ to $23 / 4$ pounds to the horse-power. The gasoline tank is very small. It holds only one liter (about a quart), and is fastened at the rear of the monoplane.
The seat for the aviator consists of a small saddle suspended from the framework below the aeroplane. The controlling handles for the rudders and engine are conveniently placed in front of the operator

As already stated, the whole apparatus is carried on three wheels placed underneath the chassis, and there is also a supporting piece fixed under the middle of the bamboo pole. What is remarkable about the new flyer is its small size and its compact appearance. It is much smaller than most of the aeroplanes which have been built recently. The total overall length of the machine from front to rear is 8 meters (26.24 feet). The weight is also remarkably low, and it would be difficult to construct an aeroplane much, if would be difficult to construct an aeroplane much, if
any, lighter, as it weighs only 56 kilogrammes (123.45 any, lighter, as it weighs only 56 kilogrammes $(123.45$
pounds) for the complete apparatus, and 110 kilogrammes ($2421 / 2^{\prime}$ pounds) when mounted by Santos Dumont. The total sustaining surface of this aeroplane is about 107 square feet, so that each square foot is loaded to the extent of $21 / 4$ pounds when the weight of the aeronaut is included. The weight lifted per horse-power is about $141 / 4$ pounds. During the first flights which were made with his new monoplane on November 17 in the Bois de Boulogne, M. Dumont was well satisfied with its performance, about which he spoke as follows: "I had the aeroplane well under control, and never had such a great sensation of security, even in my airships. During these experiments I did not yet work the rudders, but by shifting my body to the right or left, the apparatus had a tendency to follow this movement by turning in the corresponding direction. The flight was stopped by a somewhat curious accident, that is, a lack of gasoline, as the tank had not been filled up after the first tests, so that the motor came to a stop and the flyer pointed head down; but as I was then sailing about twenty feet high, I had time to rise up again by working the horizontal rudder, and was able to come down easily on the ground." Owing to the breaking of a wheel, the tests were stopped for that day. Santos Dumont then made his formal entry at the Aero Club in order to compete for the Deutsch-Archdeacon prize of $\$ 10,000$ on the following day. To do this the aeronaut must fly across the starting line-which line is determined by two poles placed 50 meters (164 feet) apart-and then make the turn about another post situated at 500 meters (1640.4 feet) upon a line running from the middle point of the starting line and at right angles to it. After making the turn, the aeronaut must come back and cross the line while in full fight.
The trial was accordingly carried out the next day at the drill grounds of Issy les Moulineaux, on the outskirts of Paris, with the posts planted and the official timekeepers present. There were many prominent aeronauts assembled, such as Messrs. Archdeacon, Henri Deutsch, Delagrange, Tatin, Henri Farman, Capt. Fer-
the height from five to six feet at will by means of the horizontal rudders. After changing the direction of the posts so as to bring the wind dead ahead, he attempted to make an arc of a circle, being part of the time in flight and the remainder on the ground; but after several attempts of this kind he found that he was hindered by the faulty working of the carbureter, which was at too high a level for the gasoline to which was at too high a level for the gasoline to
flow into it properly. For this reason he was obliged flow into it properly. For this reason he was obliged
to finish the test for that day. Henri Farman expected to begin work the next day, so that it was agreed that the two aeronauts should compete for the prize on alternate days.
On November 21 Santos Dumont again tried his machine in the presence of the Aero Club committee. After two or three unsuccessful attempts to get the aeroplane up in the air, he finally made several short flights of from 90 to 120 feet. Just as the machine landed after one of these, a propeller blade broke off, and, hurtling through the air for a distance of 393 feet, buried itself in the turf. The aeroplane fell over on one wing and stopped abruptly. Although Santos Dumont escaped injury, the motor broke loose, and the machine was rather badly damaged.
test of the bell aeroplane.
On the sixth instant Dr. Alexander Graham Bell's tetrahedral-cell aeroplane was successfully flown as a kite above the Bras d'Or lakes at Baddeck, C. B. The aeroplane carried ballast representing a man and motor. It rose in the air easily when towed at a speed of about 15 miles per hour. Dr. Bell was entirely satisfied with the result of the test, which was made before fitting the aeroplane with a motor.

A CARNIVOROUS DINOSAUR: A RECONSTRUCTED

 SKELETON OF A HUGE SAURIANby walter l. beasley.

There is now on exhibition at the American Museum of Natural History, New York, a skeleton of a large carnivorous dinosaur. Following the policy of the museum, Prof. Henry F. Osborn, who is responsible for this reconstruction, has departed from the traditional methods of mounting, for the flesh-eating animal is here poised as feeding upon the vertebre of his victim, a huge brontosaurus, a herbivorous contemporary considerably larger than his carnivorous foe. These bulky, slow-moving brontosaurs, seventy to eighty feet long, without any armor or apparent means of defense, were hopelessly outclassed and probably easily overcome in battle by the fierce allosaurs. Additional interest surrounds this specimen, as large carnivorous dinosaurs are exceedingly rare. Though three or more distinct types of great dinosaurs lived at the same time and in the same region, the remains of the herbivorous ones have been the most frequently discovered, while the flesh-eating dinosaurs have been found only in a few instances. In this mount, Prof. Osborn, to whose courtesy we are indebted for much of the information here given, has scored a twofold paleontological triumph in the innovation of representing a fossil skeleton in action, and in the fact that this is the first giant carnivorous dinosaur of this type to be mounted and exhibited. In referring to the composition and departure from the customary scheme of mounting, Prof. Osborn made the following statement to the writer regarding this specimen:
"Since the allosaurus skeleton was found in the same bluff as the brontosaurus, namely, the Como Bluffs of Wyoming, and not very far away, it is barely possible, although very far from being a demonstrated fact, that this very allosaurus preyed upon this very brontosaurus skeleton. However this may have been, it is absolutely sure, judging by the intervals between the tooth marks, that a certain allosaurus did prey upon this brontosaurus, and we are justified therefore in bringing the two skeletons together. It is the first time that a fossil animal has been mounted standing over its fossil prey."

A vivid picture of the final scene of such a combat between the two titanic reptiles, the flesh eater and the massive "thunder saurian"-brontosaurus-is ob tained from the accompanying reproduction of Mr . Charles R. Knight's water-color drawing, while the photograph shows the characteristic attitude given to the mounted skeleton, as well as the long string of vertebre, pelvis, ribs, etc., of the overthrown bronto saurus, beneath the feet of the allosaurus. That the beast waged constant warfare upon, and probably put to death its other still larger herbivorous contemporaries, is shown by the finding of their bones all scored and bitten, with the teeth of allosaurus lying close by A section of the vertebre with the deep furrows and actual imprints made by the teeth of the allosaurus is shown in one of the accompanying photographs.
In the mount the allosaurus is represented in th act of devouring the carcass of brontosaurus. The head is raised a little, and the fore limbs partly lifted in defiance-like attitude, as if to ward off other animals who might wish to share in the feast. This alert creature was built for speed and strength, as well as for fighting erect; using the very long, powerful hind

Eroat View, Showing Double-Opposed-Cylinder Motor and Propeller on Its Crankshaft. santos dumont's latest aeroplakt.
limbs, to advance by walking or running, in making an attack upon the most vulnerable parts, probably the throat, of the large dinosaurs. In erect attitude it is estimated the head was about twenty feet above ground. The massive hind limbs, eight feet long, with their huge claws, were well adapted to support the enormous frame and to hold down the body of its prey. The short fore limbs, three feet in length, with their immense claws, were used exclusively, it is thought, for attacking and tearing off the flesh of a victim, and not for support. The heavy tail, twenty feet long, served to balance the body. A vivid idea of the size of the enormous claws and their flesh-tearing qualities can be judged from the illustration, with the head of a man underneath, one of $t h e$ claws being twelve claws being twelve
inches long. The skull was three feet in length, and many of the tigerlike teeth measured three inches. This skeleton is thirty-four feet in length and eight feet three inches in height, and is one of the treasures of the famous Cope Collection, presented to the Museum by Morris K. Jesup Morris K. Jesup, Esq., the president of the
Museum, in 1899. Museum, in 1899.
The skeleton was The skeleton was
discovered by F. F.

Hubbell, a collector for Prof. Cope, in October, 1879, in the Como Bluffs near Medicine Bow, Wyoming, and not far distant from the famous Bone Cabin Quarry, opencd by the American Museum, which has yielded the greatest number and variety of dinosaurs of any one spot in the world. Here, by geological uplifts in the distant past, the earth has been thrown into a series of great rock waves or folds. In the downfolds of these, extending to some two hundred and seventyfour feet in thickness, has been found to exist a wonderful layer of entombed dinosaurs of enormous size. The allosaurus was taken to Philadelphia, where it remained in storage in the basement of Memorial Hall.for over twenty years until purchased by Mr.

Modeled by Charles R. Knight.

Jesup, who paid $\$ 50,000$ for the whole collection. In 1899, after the purchase, Dr. W. D. Matthew, the Associate Curator, went to Philadelphia under instructions from Prof. Osborn, to superintend the packing and removal of the collection to the Museum. The boxes were still piled up just as they came from the West, and had never been unpacked, except in a few
few specimens of the allosaurus obtained from the Bone Cabin Quarry. By comparison and study of the three allosaurus skeletons, with assistance and details from others, the missing bones were reconstructed and the few missing parts were carefully adjusted by Dr. Matthews. Nearly four years, at intervals, were devoted to the preparation of the skeleton. The mounting was accom plished by Mr . Adam Herrman and his assistants, Messrs. Falkenbach, Lang, and Schlosser. Mr. Otto Falkenbach modeled in the missing parts.
The American consul general at Cape Town, South Africa, is establishing a commercial information bureau and reading room in order to promote the sale of our goods in the surrounding region The intention is to furnish to prospective buyers accurate information with regard to the nature, quality, price, and the like, of every class of exportable commodity produced in this country.

Circulars are being distributed in the territory to be covered bringing the bureau to the attention of those likely to be interested, and inviting correspondence
It is hoped that American manufac turers will take ad

The Size of the Allosaurus Compared With a Horse.
instances. It was thought that the Hubbell collection was not of any great value, as his letters from the field had not been preserved; and as some of his earlier collections had been fragmentary the balance was supposed to have been of the same nature. When the collection was unpacked at the American Museum, this lot of boxes, which was regarded as of little interest, was not opened until 1903. When this specimen was laid out for examination, it was recognized as a prize. Although collected by the crude methods of early days, it consisted of nearly a complete skeleton, with the bones in wonderfully fine preservation. They were dense black, hard and uncrushed, even better preserved and somewhat more complete than the
vantage of this opportunity to easily enter the rich field opened to them and that they will send to the consulate their catalogues, price lists showing wholesale and retail discounts for goods to be exported, and all other useful information that they possess.

Another Eruption of Vesuvius.

After two months of inactivity, Mount Vesuvius is again emitting clouds of smoke from three fissures around the old crater. Much rumbling and roaring is also heard. Because of the late earthquake in Calabria, some alarm is felt, for the great eruption of April, 1906, followed after the Calabria earthnuake in April,
1905.

REGENTLY PATENTED INVENTIONS.

Electrical Devices.

INSULATING-FIXTURE. - L. Steinberger, New York, N. Y. Mr. Steinberger's invention relates to an insulating ixture adapted for use pension device in connection with span wires and is especially serviceable as an insulating ployed as a turn buckember, and may be emvariety of ways for insulating conductors, and is well adapted to act in combination with other fixtures.

Of Interest to Farmers.
IRRIGATING OR DITCHING PLOW.-M Jaceson, Mabton, Washington. The object of this invention is to produce a plow which is especialty adapted for making ditches, for clear
ing ditches already constructed or for culti vating between the rows of corn, potatoes, etc The construction enables a plow to have a knife attached thereto for cutting away root of weeds and similar growth between
COTTON-CHOPPER.-G. M. HEAd, Marianna, Ark. The invention pertains to cotton thinners
or choppers adapted to be used by cotton plant ers for thinning or blocking out the rows of growing cotton. The object is to produce an implement which may be advanced by a draft animal down the row of growing cotton; the
construction being such that the implement operates automatically to thin out or chop out parts of the growing plant.

Of General Interest.

TOBACCO-PIPE.-E. Vallance, New York, N. Y. In this instance the object of the
improvement is to provide a means for cleaning the interior of the pipe-bowl. In operation, for cleaning the pipe, the rotating part
is to be rotated, which will rotate the blade in the pipe body, thus effectually cleaning the same of incrustation that may be therein.
BEER-TAPPER. - R. B. Spikes, Bisbee Ariz. Ter. The invention is in the nature of drawing beer from a barrel and admitting compressed air, and it consists in a novel construction and arrangement of tapping devices, part of which are permanently fixed in the barrel and part retained at the bar or dispensing
place and are applied by the barkeeper by place and are applied by the barkeeper by
being coupled on to the permanently attached members on the barrel.

AMALGAMATOR.-G. E. Paullins, Colorado Springs, Col. The amalgamator is an apparatus for use in extracting gold and silver
from refractory ores, a portion of these metals being converted into amalgam with mercury being converted into amalgam with mercury
in the receptacle into which pulverized ore is delivered and wherein it is treated mechanically and electrically, and the fine ore separated
from such metal in the free state being refrom such metal in the fre
moved by mechanical means.

Sprinkler.-G. Buelna and A. R. Poett Santa Barbara, Cal. The invention relates to sprinklers as used in sprinkling lawns, etc.
relating to those which are placed at any relating to those which are placed at any
point of the lawn and automatically revolved by the reactive force of the water and throwthrow a spray at any angle, thereby increasing or decreasing the radius at which the major part of the water falls; or, the angle may be changed 180 degrees, in which case the rota-
tion will be reversed. Piano-protecting pad.-Katherine m Keowen, New York, N. Y. The invention re-
fers to improvements in devices adapted to be used in connection to protect the or iner sim from being accidentally marred or damaged by the shoes of the player. The object is to con struct a device compact and complete in itself which may be very readily and easily applied or removed and which does not mar or injure
in any way the piano on which it is used.
INSTRUMENT FOR USE IN DETERMIN ING THE FUNCTIONS OF CIRCLES.-A. S H. Hitchings, Rio de Janeiro, Brazil. Man "squaring the circle" except by methods of approximation. They have not been strictly accurate mathematically. While this invento does not claim to have supplied this de
ficiency, yet he has succeeded in producing certain geometrical constructions which have provided him with means for forming an in circumference of a circle from a known and eter.

Hardware

RaZOr.-L. Heuser, New York, N. Y. The inventor provides a razor with a blade adapted to be detachably secured to a shank, and con structed of thin, flat metal adapted to be read hy ground at its edge thereby avoiding the ex pensive operation of hollowing out the sides which frequently results in drawing the temper to a greater or less extent and preventin blades from being tempered in accordance with a uniform standard.

Household Utilities.

 PREVENTING SEATS FROM SPLITTING Please state the name of the patentee, title of PREVENTING SEATS FROM SPLITTING Please state the name of the patentee,AND WARPING.-J. E. ALbright, Greensboro, the invention, and date of this paper.

Note.-Copies of any of these patents wil
N. C. This invention is applicable to closet lid
or covers as well as seats. The closet seat a continuous circular groove in its inner side circular metal hoop is arranged in the groove less than the diameter of the groove. Thu the hoop when expanded under influence eat, is of sufficient diameter for insertion in he groove and then upon cooling grips the induced by lower temperature.
COMBINED KNIFE AND FORK.-W. I Brown, Tidioute, Pa. The object of the in vention is the production of an article whic in a folded relation and a fork normally in a folded relation and attached together in separable parts so that the device may be ca pable of use as a knife and fork.
MOSQUITO-NET SUPPORT.-F. D. RAF elee, Green Bay, Wis. A purpose of the in vention is to provide an economic type of net support, capable of being compactly folded, an of being quickly and conveniently unfolded an placed in position on the frame of a bed, cot
or like article of furniture, arching over the same whereby to fupport, arching over the above the bed or cot at its sides and ends.

Machines and Mechanical Devi

 FEEDING AND TENSION MECHANISM. B. W. Scort, Detroit, Mich. The invention re lates to machines for forming tubes by convolutely winding bands or strips of paper other fibrous material coated with cement upon a mandrel, and the object of the improvemen :-to provide means for unwinding the band of tube material from the roll and drawing it through the coating mechanism at such seed as to supply the winding mechanism a the material is required, and to stop this sup
ply when none is required. vending mactine
Vending-MaCHine.- J. J. Ronan an J. F. Barry, Jersey City, N. J. The invention
in this case relates to vending signed especially to provide coin controlle mechanism, adapted to permit a ticket to b withdrawn from the machine on depositing therein a coin of any desired denomination While capable of being used for various pur poses it is especially suitable for use in dis
tributing railway transfer tickets.

Gearing - w.
GEARING--J. W. Leonard and H. E rown, Washington, Pa. In the present paten
the invention is designed for the provision of a gearing which is strong in construction, ver effective in operation, and durable in use, and especially adapted to be employed in connection with convertible gas and steam engines for use in operating oil wells.
ATTACHMENT FOR AIR-SHIPS. Mathews, New York, N. Y. This invention designed to be applied to air ships having has for its object to provide mechanism for the purpose of elevating the device to which it applied. The device may be applied to air ships of any suitable construction having any desired

Prime Novers and Their Accensories.

 CRANK-SHAFT.-T. J. Fay, New York, N. Y The ... M. Ellsworth, Bernardsville, N. hafts, and more particularly to sectional nockdown crank shafts adapted for use in conand the object is tompressors, and the like that the shaft may be made of the minimum length and the ball bearing support thereofmay be brought as close to the throw as posmay
sible.

Railways and Their Accessories.

Raiways and Their Accessories.

 Pa. One purpose of the invention is to pro vide a device for placing a torpedo on thetrack in position to be exploded, and for autotrack in position to be exploded, and for auto-
matically exploding the placed torpedo by the matically exploding the placed torpedo by the
passage of the train should the engineer run passage of the train should the engineer run
by a semaphore set against him. Another is by a semaphore set against him. Another
to operate the torpedo feeding mechanism and mechanism for setting the striking device, fro CAR-DOOR.-T. A. Corson, Portland, Ark door constructed in accordance with Mr
Corson's improvement cannot be fouled by freight falling against the door, since it swing entirely clear of the door opening when being pened, and moreover may rock on a vertica wheel. By supporting the door from a single wheel or roller, only a short section of track is necessary and warping of the doo not impede the free movement thereof

Pertaining to Vehicles.

ShOCK-ABSORBER.-W. E. Slater, San rancisco, Cal. In its preferred arrangemen he invention embodies an axle having a cavit herein, in which is movably fitted a part
connection with the body of the motor vehicle between the walls of which cavity and sai part is arranged a pneumatic cushion provided with a supply device automatically regulated by the movement of the vehicle body and it connections.

NEW BOOKS, ETC.

elopment of the Locomotive Enain

 gus Angus Sinclair Publishing Company 1907. $6 \times 83 / 4$ inches; cloth; 66 pages, 400 illustrations. Price, $\$ 5$. This well-written book will be read with pleasure and profit, not only by American raiload men, but also by the large number hose who, while they have no practica nowledge of the locomotive, take a warm in erest in this the most scientific and the most inclair's practical knowledge of the locomo ive engine both in Great Britain and in this untry has well fitted him for his task, whic has extended over a period of many years. Unfortunately, the history of early locomotives ound in contemporary literature, and the subequent destruction of original drawings and subject any study, it has become an axiom hat to write accurate locomotive history is now practically impossible. Recognition of
this fact will disarm much adverse criticism this fact will disarm much adverse criticism hich might be leveled against this and other reatises on the subject which have been issued rom time to the, and we take pleasure in aying that the present work is by far the of the lives of American engineers who helped o develop the locomotive engine, together with some accounts of the early history of Amer can railroads, will be read with interest and peasure. The engravings, over 400 in num er, illustrating the origin and progress of th comotive engine, are, as a rule, well executed but there are some notable exceptions, espe-
cially those showing British locomotives, and e would suggest that the imperfect outline of tephenson's "Rocket" of 1829 be replaced by correct drawing in the next edition of the book, which will, doubtless, be soon wanted he "Rocket" was, in many respects, the most markable locomotive in the world, for it ine of to-day, and its details ares of the en tudy. Speaking generally, the devermiy o the British locomotive has not in the present work, received the attention which we think he subject merits, but in this regard Mr inclair has done better than the English loco otive historians, who in their records hav ractically ignored the history of the American cotion is. The chapter on valves and valve tudy devoted to these organs of the locomo ve engine than to any other, as the numerou xamples here given fully demonstrate. The book is written in an entertaining style, and
The Ought-to-go. London: Sampson Low, Marston \& Co., Ltd., 1907 1 shilling net.
A humorous brochure at the expense of auto vein of humorten in an essentially British ast seven years. The effort is by no mean the worst of its kind, and will be appreciate y those who decry automobiling, while motor rather cruel sarcasm of its pages.

Outstanding Errors of the NaUtical
Almanac. By Dodge P. Blackstone.
Berlin, Wis.: George C. Hicks.
Price, $\$ 1.50$.
A method of correcting the calculations of
the Nautical Almanac with respect to the
errors due to the shifting of the poles.
INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
December 3, 1907.

AND EACH BEARINGTHAT DATE

ํx.

SORE THROAT Hydrozone One 25 Cent Bottle Free to anyone mentioning this paper and sending io cents to pay postage
and packing. \quad Hydrozone is a harmless germicide, indorsed and successully used by leading physicians. Not genuine without my signature on
label. Ask for Booklet on Treatment of Diseases. Sold by Leading Drug-

gists.

 A Home= Made 100=Mile
Wireless Telegraph Set A Home= Made $100=$ Mile
Wireless Telegraph Set

The Lambert 18 "Friction Flyer" $\$ 800.00$
Wine for catulove dexibing our full line
THE BUCKEYE MFG. Co. Anderson, Indlana

!
You USE GRINDSTONES?

"ON THELEVEL"
 Por ket
hink
fick, ,e-
E.
E.

What a comfort to know instead of to assume that you are right

American

 Homes and Giardens
the experience of experts in solving thoroughly practical magazine having the word "Home" for its keynote.
How to Build the Home
I Floor plans and details of construction of houses moderate cost as well as more pretentious man sions are a feature of each issue.
How to Decorate the Home
describe how experienced decorators in the country describe how the best and most artistic results are
attained from the point of expenditure, and the more attained from the point of expenditure, and the mor

How to Plan and Lay Out the Garden I The frame of the House-picture is the garden, and success in its treatment means that each tree and shrub is correctly
und most helpful.
Outdoor Life and Amusements, Articles on House Industries, every phase of country life is authoritatively discussed from month to month in its pages. American Homes and Gardens is conceded to be the handsomest magazine pub printed in duo-tone. Its beautiful cover printed in colors changes each month, and is always a work of art. I Subscription price, $\$ 3$ per year. I If we receive your orderfor a year's subscription now we will send you the November and December, 1907, numbers free; in other words,
fourteen months for price of a year's subscription. ourteen months for price of a year's subscription
SPECIAL LIMITED OFFER

WE have in stock a limited number of copies o Barr Ferree's sumptuous book, "American
Estates and Gardens." The book describe some of the stateliest Homes and most charming Gar
dens in America. It contains 340 pages and 275 illustrations which are nearly all reproductions of original photographs. It is beautifully printed on double coated paper, artistically bound and sells for $\$ 10.00$ per copy. I' To the first 200 persons answer ing this advertisement and remitting us $\$ 7.50$ we will send a copy of the book, postage or express prepaid,
and also enter a subscription for "American Homes and Gardens" for one year to be sent to any addres in the United States.

Address MUNN \& CO., No. 361 Broadway, New York

Classified Advertisements

Advertising in this column is 50 cents a line. No less
than four nor more than ten lines accepter. Count seven wurds to the line. All orders must be accom
panied by a remittance. Further information sent on equest.

BUSINESS OPPORTUNITIES

ERANCE. Do you want to do business with France
I am courractor to the principal European Rainway
Compand Companies, and have an important connection among
the great constructor, engineers, mines, nad automo
bile makers.

 WANNEED.-Machine for poliohing one side of Zinc
Sheets. Also for making Celluloid Advertising Buttons
(or working dra ming enabling parties to make above (or working drawings enabling part ies to make abov
machines). Manufacturer, Box 7 Tri, New York City.

 PATENTED KEROSENE INCA NDDESCENT BIRN-
ER. TO Candie powf used on any lamp saves 50 per ER. © cande power; used on any lamp; saves super
cent. berosene pead seller everywheret Exclustye
territory. Write for particulars. Y.C. Gottschalk, 265
Broadway, New York,
 Street. New York.

PATENTS FOR SALE.

 thi.00.
R. C. C. Ezekiel, Carbonhin, Ala
 Patant wancted on royalty basig. Send copy of
patent and particulars. state rovaty desired. We can
patisfy you as to our reputation for square dealing.

HELP WANTED.
WANTED.- Works Superintendent of a factory. One

AGENTS TO SELLL PATENTED DEVICE, removes

AGENTS WANTED.

TYPEWRITERS

MOTION PICTURES

 payng proposition for small capital known. Write for
Information. The Actograph Co., 0 Union Square, N.Y.

EXPERIMENTAL WORK

 \& Bayles $\ldots \ldots$. 8eliman
Rock drilling machines, water supplyin
tachme
 Roundabout, G. Lacomme \ldots.
Rule, square, and bevel, combined pocket,
Salt rialma Sample mounting machine, \ldots. Weiskop
Sandpaper holder, M. Linderoth
Sash hold Sash holder, L. L. H. Lindent, Jry.
Sash hoder. H. W. Covert.....
Sash lock, A. J. Downey......
ash, swinging, Hiltz
 Scouring machine, \mathbb{E} Ketzier
Scraper pan bit, W. . Livengoo
Scraper, road, Muckey Scraper, road, Muckey \& Robertson.........
Screw thread cutting machine, J. Hartness
Seal and fastener, combined package, Lerch

she
s.

 The

Trolley, Garp, J. L. . L . chase
Trolley whee

Trousers support, invisible, A. Barnhardit.
Truck, car, T. M. Galagher . \quad.
Truck side frame. car, E. H . Benner.
'side frame. car,
lock B. Weber
, G. H.. Wheary..
G. Q. Seaman
Tubse for covering roiliers and the liike
Tunnels, means for veamest fentiluting, L. N. Wahl
G. Geb

SHIP:EDUCATION TEACH YOURSELF AND INCREASE YOUR WAGES ONIY DRAKES PLAINIY WRITTEN PRACTICAL BOOKS CAN TEACH YOU WITHOUT THE AID OF INSTRUCTORS Every volume positively UP-TO-DATE and written
in a language so plain that even a child can under-
stand. DRAKE is the largest publisher of Modern in a language so prain that even a child can under-
stand. DRAKE is the largest publisher of Modern
Mechanical Books for home and shop study in the Mechanical Books for home and shop study in the
world. We publish good books on every mechanial
subject. Our large illustrated Catalog now ready.
Sent free.
FREDERICK J. DRAKE \& COMPANY
350 Wabash Avenue CHICAGO, U. S. A.
In ordering our catalog please mention this paper

^ a MECHANICAL PERFECTION STARSAFETY RAZOR

which has been tested and tried out by over five million
users all over the world. It does its work with safety, comfort and dispatch. forged and full concaved similar to the ordinary razor blades. With proper care they will last a life-
time. They should be stropped occasionally to produce the
 This razor may be inspected at any cutlery store. If you purchase a Star Razors are sold in sets from $\$ 1.50$ and up; with the automatic
Stroping Machine and strop, $\$ 4.50$ a set. These Safety Razors are sold all

THE STAR SAFETY CORN RAZOR Simple, Safe and Sure, on sale by all dealers, or
will be sent you from our factory on receipt of qi.00. Both of the above articles make useful,
handsome and valuable holiday gifts, and as the
Christmas season approaches consider the advisability of purchasing the Ster Safoty Razor
and the Star Corn Knife for relatives or
friends.
KAMPFE BROS., 12 Reade Street, New York \star

MASON'S NEW PAT. WHIP HOIST
 Mando. by Yowiver w. Mitsonde co.. Inc. ELECTRIC LAUNCH MOTOR. - THE

 over all and 4 feet 6 inches beam, drawing 18 inches. and
is acabale of ropopling such crat at a sped of
per miles

Magical Apparatus. 25c. Parlor Tricks Catalogue, free.
MARTINKA \& CO.. Mfrs.. 433 Sixth Ave., New York MNVERNTORS. HIGRE METAL NOVELTY WORKS CO SO. SAMECIAL ST. CHICAGO.

 KUHLMAN TRAESFORMERE Quality always. Single and 3 -phase. Prompt delivery.
KUHLMAN ELECTRIC co.
LEARN WATCHMAKING We teach it thoronghly in as many months as it
formerit took years. Does ana witt
ticeshiv. Money earnod while studying. Positionrers seured. Easy terms. Send for catalog.
ST. LOL1S WATCHMAKING SCHOOL, st. Louls, Mo

THE "LEADER."
$1 \frac{1}{2}$ H. P. Gasolene Auto-Marine Engine

 CLAUDE SINTZ,
 DESIGNS Anyone sending a sketch and description may
 sent free. Oldeest agency f or securing patents.
Patents taken through Munn
Co. recelye Scientifific FImerican.

 - 872,806
 Vehicles, apparatus for checking or dead
ening the vibrations imparted to sus

 brook. Se
v Voting walls, double
Wagon, \mathbf{F}. W. W. Miller Waist, supporter Miller
Waime
Watch, D. H. Church Watch barrel, L. A. Faile collector for, \mathbf{E}. tanks , mud retainer
Water

Water closet fitting, C. A. Dreier
Wurify
Gret

DESIGNS.

Book mark, H. M. Willis
Brooches, scarf pins, or simil
for, J. E. De W. Wngaert
Buckle, belt.
Buckle, belt, L. C. Henriksen............................
Chafing dish lamp and stand, S.
Combs, knives, or similar articles, handi

Fabric, woven,
Glass boww, cut. M. M. Sche
Headight, R. H.
Mirror or similar article, w. A. Jameson.
Neckwear fabric, H. Bernste
Purse or bag, A. E. Vogt

 TRADE MARKS.

 Beer, Anheuser-Busch Brewin
Cider, Fleming \& Cristian
Cigars, Rupp \& Oeschger
Cotton cloth, L. Hess \& Co.......................
Cotton duck, Consolldated Cotton Duck Co.
Cotton duck. Mount Vernon-Woodberry Cot
 Liqueurs, ${ }^{\text {E. Rowntree and Claburri }}$ and Fil.........

 Snuff, I. Sjoberg
Stoge.
Stoves,
R.

LABELS

 "Home Malt Tonic," for a malt beverage
Home Brewing,
"King Philip Bleaching Water,," for bleach

 PRINTS.
"Built Right \& Wearwell," for men's cloth Buint Right \&e, Wearwell," for men's cloth-
ing, Berger,, Raphael \& WWile...........
"Don't Be odd," for four, Washburn Crosby
 A printed copy of the specification and drawing of any patent in the foregoing 1ist, or any patent
In print issued since 1863 , will be furnished from
this otace for 10 this offce for 10 cents, provided the name and
number of the patent desired and the date be be
given. Address Munn \& Co., 361 Broadway, New
Canadian patents may now be obtained oy the in-
ventors for any of the inventions namert in the foregoing list. For terms and furtrir particulars
addrems Munn
\&
Co., 361

It was the mark of a gentleman sixty years ago. Few possible gifts still bear the same sentiment of exceptional personal regard. As accurate as a star the recognized standard where time is vital Prices, $\$ 35$ to $\$ 150$. Write for copy of "Watch Wisdom. E. HOWARD WATCH CO., South St., Waltham, Mass., U. S. A.

IS IN YOUR GRASP

IF YOU READ
The Scientific American Supplement

Price 10 Cents a Copy, $\$ 5.00$ a Year

WRITE FOR A SAMPLE COPY AND FOR A CATALOGUE OF SCIENTIFIC AMERICAN SUPPLEMENT ARTICLES TO

MUNN \& CO. * * 363 Broadway, New York

Rubber Pump Valves
For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. ** * Mechanical Rubber Goods of every description of unsurpassed qualities, including BELTING, HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking
Tiling, Emery Wheels and MOULDED and CUT SPECIALTIES for any mechanical and commercial device. $\& * \neq \pm \neq \pm \neq$ NEW YORK BELTING \& PACKING COMPANY, Ltd. 91 \& 93 Chambers Street, New York

A Desirable Holiday Gift draper's
Recording Thermometer Traces automatically a correct and
continuous record in
pratik of the tem.
Made in on arauated weeky chart Merature on a graduated weekly chart.
Made in two sizes and standardizzd
and full guaraneed. Also other
weather recording instruments. THE DRAPER MFG. CO

CRUDE ASBESTOS DIRECT FROM MINES PABESTOS FIIRE
Ior Mantacturess use OFFICE, ST. PAUL BUILDING for Manufacturers use 220 B'way, New York.

DIAGRAPH The Improved Stencll Cutting Machine Is a saving of 90 per cent. in your
shipping Room worth considering? Two Thousand Diakraphs
ouses in the United States. "The machine is so easy of operation, its work is so peat, and above
all it is such a necessary iddition to in upt-to-diat shippink department,

 Just a word will bring our free illustrated Dooklet
describing the Diagraph and our "No Error" System of shipping goods.

Automatic Water Supply
 brook, or river, dele fromed spring.
distance. Write for caralogue. Niagara Hydraulic Engine Co.

JAGER Marine 4-Cycle Engines

 31 FranklIn, cor Batterymar NIn, cor Battery
Boston. mass.

"Shave Yourself"

I have already ©convinced over a million men that a dally home shave with my razor is a habit that every self-respecting man should acquire. I have taught them that the "Gillette" way is the only way to save time and money-to maintain an unruffled disposition and to be sure of perfect hygienic shaving conditions.

My razor is increasing in popularity every day, because it is absolutely dependable-it is always ready for use-no stropping-no honing-and it gives as light or as close a I have changed the entire complexion of the advertising pages of the prominent magazines of this country, not only by my own advertisements, but by the
greater number of announcements published by greater number of announcements published by
manufacturers of shaving soaps, shaving brushes, shaving powders, shaving creams and other shaving accessories that have been made profit able because the army of "Gillette" users who
are self-shavers is increasing in number daily.

Finally, I am proving more conclusively every day, that while there may be room for argument as to what shaving accessories one
should use, there is no doubt about the Razor. There is but one perfect razor-for all menThere is but one perfect razor-for all men-
to be used under all conditions-and that is my razor-the "Gillotte."
When you buy a satety razor get the best-
the "Gillette." It will last you for the rest of your life-it is not a toy-it will always give you
complete satisfaction
The double-edged, flexible blades are so inexpensive that when they become dull you
throw them away as you would an old pen. ringe Sillette

AN IDEAL HOLIDAY GIFT Combination Sets from $\$ 6.50$ to $\mathbf{\$ 5 0 . 0 0}$ Ask your dealer for the "GILLETTE" to-day. If substitutes are offered
refuse them and write us at once for our booklet and free trial offer. GILLETTE SALES COMPANY 207 Times Building NEW YORK CIT

The Favorite!
Others have been, but the

Underwood

 Standard Typewriter IS!UNDERWOOD TYPEWRITER CO. 241 Broadway, New Yor

The Advance Favorite

 CADILLAC Model G

Four Cylinders-25 Horse-power
Every day of service adds emphasis to the fact that the chief difference between Cadillac Model G and cars of the most expensive types is in price, not performance. Time after time it has proven its superiority over competitors of double its cost and thrice its rated power. Let a de monstrator convince you of this by ac tual tests, then observe the long, rangy lines of the car, its simplicity and strength, its racy, "thoroughbred appearance, and you will appreciate
why Model G is the advance favorite why Mode
for 1908.
for 1908.
Speedy, silent, responsive, always dependable. Twenty-five horse power (A. L. A. M. rating); sliding gear transmission; shaft drive; $100-$
inch wheel base. inch wheel
$\log G-N$.
Cadillac Model H, a luxurious fourcylinder touring car, also commends itself to your attention. Thirty horse power; 50 miles an hour ; $\$ 2,500$. Described in catalog $\mathrm{H}-\mathrm{N}$.
The Truth About the Automobile and What it Costs to Maintain One is the title of a 64 -page booklet of actual facts
and figures compiled from sworn statements of a large number of userss of the sturdy
single-cylinder cadillacs. Get a free single-cylinder Cadillacs. Get a free copy
of this valuable brochure, ask ing for Booklot
No. N. It contains many surprises for those No. N. It contains many surprises for those
who have been misled into believing that
every automobile is an expensive luxury. These smaller Cadillacs-Model S Runa-
 both great
catalog T-
CADILLAC MOTOR CAR CO., Detroit, Mich. Member A. L. A. M.

Accurate as its Big Brother
An ideal gift is the Lady Elgin-in every respect a standard Elgin-made as small as possible without sacrific ing Elgin accuracy, durability and perfect adjustment. The

LADY ELGIN

is sure to please and give lasting and reliable service. Valuable as a jewelry piece-invaluable as a time piece Illustration actual size of watch. Every Elgin Watch is fully guaranteed-all jewelers have them. Send for "The Watch," a story of the time of day Elgin National Watch Company, Elgin, III

