

The total steam power employed in manufaccures in the United States in 1905 was $10,664,560$. A single steam engine of this power would measure 400 feet by 255 feet on the base. and wonld extend 735 feet into the ar. or 123 feet above the singer building. To develop the total electrical horse-power of $1,138,208$ would call for a generator with a 134-foot base, and 126 feet high. The total of 289,51

SCIENTIFIC AMERICAN

 Established 1845MUNN \& CO.
Editors and Proprietors

No. 361 Broadway, New York

CHARLES ALLEN MUNN, President 361 Broadway, New York
Frederick converse beach, secy and Treas. thRIS TO stbscribens

the scientific american publications

NEW YORK, SATURDAY, OCTOBER 19, 1907.
The Editor is always glad to receive for examination illustrated articles on subijects of timely interest. If the photographs are
gitarp, the articles short, and the facts sharp, the articless short, and the facts authentic, the contribution will receive special att
t regular space rates.

old french machinery at panama does

 GOOD WORK.We have been so accustomed to consider the French machinery at Panama as a worthless asset, that it comes as a very gratifying surprise to learn that one of the old dredges, which had been lying in the Rio Grande River for more tilan twenty years, has been rebuilt at a moderate cost, and is now capable of excavating 120,000 cubic yards of material per month; cr as much as can be removed by four of the most modern 95 -ton five-yard steam shovels. When the dredge has been put in service at the La Boca entrance to the canal, it will be capable of doing more work than a modern dipper dredge costing $\$ 102,500$. The story of the reconstruction of this derolict reads almost like a romance; for the various parts which have been used in rebuilding were all of French construction, and were found in the jungle or among otiier abandoned material scattered along the line of the canal, all of which had lain neglected and exposed to the action of the elements for fully two decades. Thus, the three boilers, which were found in the jungle near San Pablo, were in excellent condition, being quite free from corrosion. In good shape, also, were the two cylinders; and it seems that the engine, which was in place in the hull, was, in the words of the Canal Record, "in excellent condition, and could not be surpassed by modern machinery, either as to adjustment or economy of operation." Moreover, "the copper piping on all the machinery is of very heavy design, and shows more careful workmanship than is found in modern machinery." The excellent state of preservation is due, in the first place, to the high quality of the material, and, secondiy, to the fact that it was all abundantly covered with white lead and grease when the work was shut down. This dredge is similar in type to an old Scotch dredge, which was reconstructed by the Panama Railroad Co. five years ago, and which has been steadily at work in the interim on the channel from La Boca to Maos Island, with a record of less than forty days out of commission for repairs during that time. It is expected that these two dredges will prove to be of about equal capacity; and that when both of them are in active operation, there will be a marked increase in the total yardage removed from the canal prism. The material removed is taken out and dumped in deep water by eight self-propelled old French hopper barges. It is also stated that another old French dredge of a similar type is now being repaired in the Cristobal drydock, and will be placed in commission about the last of this month.

THE FOUR-DAY BOAT

The success of the "Lusitania" in steadily breaking all transatlantic records stands for something more than the achievement of an individual steamship company, commendable though that is, and for something more than the success of one of the two great maritime nations who are contending for supremacy on the high seas. For a technical journal the significance of the fine performance of this ship lies in the fact that it marks the successful accomplishment of a supreme effort in the development of the latest type of motive power, the steam turbine. For all his reputation for caution and conservatism, your typical Briton, when he does break away from traditions, is apt to go just a little further than his competitor, whether it be in the building of a 1,710 -foot Forth Bridge cantilever, or the construction of a 45.000 -ton turbine steamship. When the dimensions of the two new Cunarders were first announced, and it was learned that each was to carry about 70,000 horse-power in motors of what was
then consiciered to be of a comparatively experimental and untried type, the marine world stood aghast that $\$ 13,000,000$ should be risked on such a doubtful venture; and when the supposedly 25 -knot "Lusitania" completed her first voyage with an average speed to her credit of 23 knots an hour only, or half a knot less than that achieved by the German boats with the reciprocating engine, there was much wagging of wise heads, and reiteration of "I told you so's"; and this in spite of the assertion of the owners that the ship had been jogged along on between two-thirds and threequarters of her full power, and had come into port with 1,500 tons of coal in her bunkers.
The second trip of the "Lusitania," which commenced at $10: 25$ A. M. on Sunday, October 6, and ended at New York at $1: 17$ A. M. Friday morning, has served to set at rest all doubts as to the success of this boat. The whole voyage from Daunts Rock to Sandy Hook was completed in four days, nineteen hours and fiftytwo minutes, at an average speed of just 24 knots an hour, the passage being made in five hours and four minutes less time than was taken on the vessel's maiden trip. Added significance is given to this performance by the official announcement that the vessel was not driven to her full capacity. the intention being to let her extend herself a little more on each succeeding voyage, until she has demonstrated her maximum transatlantic speed. It should be remembered that her contract with the government, on which hinges the payment of a $\$ 750,000$ annual subsidy, makes it necessary for the "Lusitania" to make a complete voyage from Queenstown to New York and back at an average speed half a knot faster than was made on this trip, or $241 / 2$ knots an hour. Seeing that the "Lusitania" averaged on her trials nearly $251 / 2$ knots for 1,200 miles, there can be little question of her ability to make sure of the subsidy. When every thing is thoroughly shaken down, and the officers and the crew are familiar with the ship, it will not be surprising if, under favorable conditions of a smooth sea and fair weather, she should make the run at 25 knots an hour, or in four and a half days. This would bring the ship to her dock in New York Thursday evening and would enable not only New York, but cities far in the interior, to receive their mail one day earlier than they do at present-a convenience which, in itself would go far to justify the great expense of the con struction of these two fine ships. The arrival of these boats on Thursday evenings could be made a certainty by setting the hour of departure of the last mails from London three or four hours earlier in the day than at present.

In addition to securing the land-to-land record, the "Lusitania" on two days broke the record for all-day steaming, doing 608 knots on one day and 617 knots on another, as against the highest previous record of 601 knots, credited to the "Deutschland." Her average speed of 24 knots an hour is about half a knot faster than the highest average of the "Kaiser Wilhelm II." and the "Deutschland." In looking back over the record for the j,ast fifty years of transatlantic travel, it is interesting to note how steady has been the increase in speed and the reduction in time. In 1856 the "Persia" crossed over the same course in 9 days, 1 hour, and 45 minutes. The first eight-day boat was the "Scotia," which in 1866 cut the recor to 8 days, 2 hours, and 48 minutes. To the "City of Brussels" is due the credit of being the first sevenday boat, her time being 7 days, 22 hours and 3 minutes, made in the year 1869. It took eleven years to bring the record below seven days, the honor of this performance falling to the "Alaska," which, in 1882 , made the trip in 6 days, 18 hours, 37 minutes. Seven years later, in 1889, the "City of Paris," the first of the twin-screw liners, reduced the time to 5 days, 19 hours and 18 minutes. To develop the four-day boat has required eighteen additional years of development; and apparently the feat became possible only with the advent of the Parsons steam turbine.
prospects of relief of brooklyn bridge crush. The Public Service Commission is to be congratu lated upon the lucid analysis which it made in a re cent report on the causes of the Brooklyn Bridge crowding and the probabilities of its early relief. The congestion was rendered inevitable by the fact that the Brooklyn Bridge is practically the only avenue between the two most important boroughs of the city, and that no less than eight elevated lines in Brooklyn are focused onto the single elevated bridg track, and sixteen Brooklyn surface lines converge onto the one trolley track. Evidently, the most rational method of relieving the congestion would be to divert as many of these tracks as possible to other river crossings, whether by tunnel or bridge. This, however, will take time, and can only be done by degrees as the various alternative routes are completed and put in operation.
Meanwhile, it is possible to quite materially re duce the congestion by putting in operation various devices and plans designed to give temporary relief. One of the most important of those which have been
adopted by the Commission, is to do away with the change of cars at the Brooklyn terminal during the rush hours, and introduce a service of through trains. This through service, and the better distribution and handling of the passengers at the Manhattan terminal, will be greatly facilitated by the construction of the large station which is to be erected on the site of the Staats Zeitung building, where the necessary clearing and excavation is now being pushed with great activity. The steps for immediate relief order ed by the Commission include the construction of new types of surface cars with double-size platforms to facilitate quick loading; increased policing to pre vent disorder; increased traffic regulations to prevent obstruction on the roadways; the lengthening of the elevated terminal at the Manhattan end of the bridge to accommodate six-car trains; and the rearrangement of the Brooklyn terminals to enable additional empty trains to start in Brooklyn.
Although the above-mentioned changes will have an immediate and beneficial effect in loosening up the congestion, the fundamental remedies are to be found, as we have said above, in the opening of other routes across the East River. The first relief of this kind will occur within the next few months, when the completion of the Battery tunnel will deflect a con siderable portion of the travel from the bridge. Another important agent will be found in the connection of the Brooklyn Broadway elevated road with the Williamsburg Bridge, so that through trains may be run to the new station which is being constructed below Delan cey Street. The completion of this work will cause a considerable portion of the Williamsburg and Ridgewood travel to come to Manhattan by the Williams burg in preference to the Brooklyn Bridge. The greatest relief to the Brooklyn Bridge of any single improvement under way will be afforded in about two and a half years time, when the Center Street Subway from the Williamsburg Bridge to the City Hall, Manhattan, which is now under active construction, is completed; for the new route will afford the most direct line to Manhattan for the populous dis trict lying between Williamsburg and Jamaica.
The Commission, judging from the present state of the work, believes that soon after the completion of the Center Street Subway, the new Manhattan Bridge, which is being built about a quarter mile to the east of the Brooklyn Bridge, will be completed and ready for traffic. As this structure will provide four sets of tracks for trains instead of one set, as on the Brooklyn Bridge, it is reasonable to expect that upon its being thrown open for service, the Brooklyn Bridge congestion will become a thing of the past Moreover, immediately upon the completion of the Manhattan Bridge, the older structure will be taken in hand by the Bridge Department for a thorough reconstruction and strengthening and an enlargement of its present capacity.

BATTERY TUNNEL READY IN TWO MONTHS.
Apropos of the prospects of early bridge relief, we note that, if the forecast of the recent special repor by Chief Engineer Rice on the Battery tunnel to Brooklyn proves to be correct, this most important section of the Rapid Transit system will be open for service in about two months' time. The present condition of the contract is that the first section in Manhattan is in operation; the third section in Brooklyn is well advanced; and the second section, the completion of which has been delayed by various more or less serious mishaps, is "in a fair way of being put in operation in about two months' time." In this section the tubes are practically complete and ready for track laying and the installation of the signal system, except for the section from the middle of the river to the Brooklyn shore. In this particular stretch of the tunnel a variety of work is being done to finish the tubes. The reconstruction work proper is entirely finished; the piles are all down, and the lining has been made watertight. The principal work remaining to be done before laying tracks consists in lining the roof and sides of the tunnel where the bottom is in fine sand, and in finishing the ventilating shaft. The report states that on account of the methods pursued by the sub-contractor, the extent of the variation provided for in alinement and grade when the tunnel was designed, was exceeded; but that those portions of the tube in sand where the trouble occurred have been now so reconstructed, that a clearance of four inches as a minimum can always be maintained throughout the work. This minimum conforms to the clearance which exists throughout the Rapid Transit Subway in Manhattan, of which this work has been made a part In view of the fact that the stability of a portion of the Battery tubes has been seriously called in question by more than one expert who has reported upon them, we have asked the Chief Engineer for a state ment as to the exact condition of this work. He assures us that the whole of the tunnel in both tubes, from shore to shore, is a perfectly safe and reliable work; that considering the nature of the materia through which it passes, it is remarkably dry; and
that when the calking and concreting have been completed, there will be no auestion whatever as to its dryness and security.

SOME MECHANICAL ADAPTATIONS IN ANIMALS.

Every one of the higher animals is in some way mechanically adapted to its mode of life and surroundings; a horse or an antelope being from one point of view a living galloping or trotting machine. Putting such examples on one side, there are numerous cases of more peculiar adaptations to which at tention may be confined.
Taking climbing animals first, it may be noted that a number of species, such as Old World monkeys and squirrels, present no special modifications for a life in the trees, the essential being that they should have the power of rotating the forearm on the upper portion of the limb and that their toes should be mobile, and furnished with nails or claws.
There is, however, a group of African rodents, designated scaly-tailed squirrels, the members of which seem to have felt the necessity of additional aid for the purpose of tree-climbing. They have accordingly developed on the under surface of the tail certain structures which may be compared to the climbing-irons used by workmen. These take the form of a few transverse rows of large, triangular horny scales, with their points directed backward. These scales, when pressed against the bark of a tree, must afford material aid in climbing. Another group of animals in which "climbing irons" have been developed is that of the scaly anteaters, or pan golins, of India and Asia-creatures which look more like living fir-cones than mammals. The scalesmuch larger than those of the scaly-tailed squirrelscover both surfaces of the body, as well as the head and limbs, so that it can scarcely be supposed they have been developed for climbing. Indeed, only a few species climb; but these have found the assistance af forded by the scales on the under side of value in an ascent, and habitually make use of them as climb-ing-irons.

Quite a different type of climbing, or rather hang ing, apparatus has been developed in the sloths of tropical America, which spend their time in the tree tops, where they remain suspended back-downward by their hook-like claws. These claws, which may be three or two, have been modified from ordinary claws and afford a striking instance of adaptation to an abnormal mode of life. The thumb of bats is likewise modified into a hood-like claw-also used for suspending purposes when the creatures hang head upward Generally, however, bats suspend themselves head downward by the hind claws, grasping power being re tained by the toes, so that the modification has not been carried to the same extent as in sloths, in which the claws act in a mechanical manner.
Certain bats appear to have found their hook-like thumbs and hind feet insufficient for suspension, and have made use of the sucker principle for this pur pose. This mode of suspension has been developed independently in two distinct bats, one a native of Brazil and the other of Madagascar. In the Brazilian species the suckers take the form of stalked disks at tached to the palms of the thumbs and the soles of the feet. The suckers of the Malagasy species are horseshoe-like. By means of the suckers these bats are able to ascend vertical surfaces. Very curious is it to note the similarity between the suckers of these bats and those on the arms of cuttle-fishes. The geckos which run up the walls and over the ceilings of houses in warm countries, afford another instance of the sucker principle. Bats are not the only mammals which have availed themselves of the sucker In the Malay islands and the Philippines dwell largeeyed and slender-limbed little lemur-like creatures known as tarsiers, whose habits are nocturnal. In these weird little animals the tips of the toes are expanded into cushion-like disks, capable of acting as suckers, by means of which they ascend such smooth surfaces as the stems of bamboos.

Hoofed, or ungulate, mammals, such as sheep, pigs, camels, and elephants, have given up using their forelimbs in a hand-like manner, and employ them solely for progression. Consequently, tree-climbing is out of their line. In Africa and Syria there occur, how ever, certain representatives of the order known as rock-rabbits, or hyrax, the Syrian species being the one referred to in the Bible as the coney (the old name of the rabbit). Certain African hyraxes have, however, taken to tree-climbing, and the way they manage it is this: In each foot the sole is somewhat cup-shaped, and by the aid of muscular action the center can be more elevated, so that when the edges are applied to the bark the foot acts like a sucker.
This sucker-like action in the feet of the tree-hyraxes is probably of recent origin, since it is certain that these animals have taken to an arboreal life at a late stage in their career. Enlisting the services of the tall to act as a fifth hand in climbing, is, on the
other hand, in all probability a feature of great anti-
quity, seeing that it occurs in the American opossums, which are among the oldest of mammals. Doubtless, however, this development of grasping power in the tail has occurred independently in several groups. It is found not only in the American opossums, but also in their Australian cousins, which naturalists designate phalangers, and likewise in most South American monkeys, as well as in the tree-anteaters and tree-porcupines of America. In all these the extremity of the tail has a portion of its lower or upper surface naked, and marked by transverse ridges and grooves, which when applied to a bough by curling the tail-tip round it, give great grasping power. The fact that either the upper or the lower surface of the tip may be naked, implies the independent origin of the grasping power in different groups. Prehensile tails are more common among mammals inhabiting the forests of tropical America than anywhere else. The kinkajou, a relative of the raccoon, is a creature in which this feature is developed. So great is the grasping power of tails of this type that opossums and spider-monkeys when shot will remain suspended. In spider-monkeys the thumb has disappeared, although whether this is connected with the develop ment of grasping power in the tail is not easy to decide. Probably there is no connection between the two features, the loss of the thumb being the commencement of the reduction of the hand to the hooklike organ of the sloths.

None of the animals mentioned above use their tails for any other purpose than grasping boughs, or, in the case of opossums, the caudal appendages of their parents. The Australian rat-kangaroos have, however, gone one better than this, for they employ their tails for carrying grass and other herbage for building their nests. Whether these prehensile tails are inherited from arboreal ancestors, may be a question, although they are probably a new development.

The trunk of the elephant, when contrasted with the tail of the kangaroo-rat, affords an example of the fertility in resource in animal development. In this case the specialization has proceeded farther than in the kangaroo-rat, so that the trunk is capable of serving many of the purposes of a hand. One of the most remarkable points connected with this organ is that it has been developed in the group of ungulate mammals which, as already mentioned, have abandoned the use of their fore limbs as hands, and become specialized for progression on the ground. The elephant's trunk (a development of the nose and upper lip) is therefore in one sense a confession of failure and consequently a sort of makeshift arrangement. By this I mean that in the elephant group the abolition of hands would not work, and consequently some other contrivance had to be invented to take their place.

One more instance and I have done. The antelopes and their kin are the descendants of short-limbed marsh-loving animals with large four-toed splay feet adapted to support them on yielding ground. Antelopes, on the other hand, are made for racing over hard, open plains, and their limbs are consequently long and slender, with the lateral pair of hoofs on each foot small and useless or wanting. Certain African antelopes, and more especially the situtunga of the equatorial lakes, have, however, gone back to the habits of their four-toed ancestors, and pass their time in the water or on the yielding mud of the great lakes. Now although there may be a reversion in the matter of habits, there is never any going back in nature as regards structure, and consequently the rudimentary lateral toes in these water-antelopes could not be restored to their original size. Nature is, however, resourceful, and the way in which sne has managed matters in this instance is by elongatins the two main hoofs, thereby giving to the situtunga a power of sustaining itself on yielding ground to as great an extent as was the case with its many-toed forerunner.

THE WATER SUPPLY OF THE UNITED STATES.
Water is by far the most important among the vast natural resources of the United States; and with the growth of cities and towns, and the advance in sanitary science, its importance is becoming more strongly emphasized each year. While large cities spend scores of millions of dollars to secure a supply of pure water millions of acres of arid land offer agricultural possi bilities provided irrigation can reach them. The rapid settling of the country adds to the problem; for while it calls for additional supply, it at the same time contaminates surface waters. The pioneer may drink from the nearest stream; the town dweller must be chary of his own well. Like other natural supplies, water has suffered in the past-and is still sufferingfrom neglect and waste. The consequences of defor estation-the spring floods and changing river beds; here scoured and there silted-are well known. When a well is tapped, it is at once declared "inexhaustible." In answer to this, the ground-water level in northern Indiana has fallen ten feet in ten years.

Water is a vital necessity, but it is also of great
economic value. Water power for the generation of energy, water depth for the navigation of our rivers and canals, the transportation of water for irrigation purposes, are problems in which vast capital and much labor are invested. Many large projects calling for the use of water have been doomed to failure, owing to the fact that plans were made and work undertaken without sufficient knowledge of the conditions governing the supply.
The investigation of water supply is too broad a problem for State handling. Many streams traverse more than one State, and the needs of one may be the handicap of another. The United States Geological Survey has therefore been commissioned to undertake the work. Special appropriations have been made by Congress, and for several years systematic records have been made of river flow, with the view of ultimately determining all the important features governing the flow of the principal streams of the country. The more important streams are being first measured; stations are established on them, and maintained for a period long enough to insure adequate average records. When sufficient data have been obtained, the work is discontinued at that point, and transferred to some other stream. During 1906 flow was studied at about 700 stations, distributed along the principal rivers throughout the United States. In addition to these records, data in regard to precipitation, evaporation, water power, and river profiles were obtained in many parts of the country.
Correct measurement of surface river flow calls for a skilled collecting of data, and much after-calculation. But it is straightforward work when properly undertaken. In the case of underground supplies of water, the problem is complicated by the difficulty of obtaining complete data. Until the folding and faulting of geologic horizons are more fully known than they are at present, it will not be possible to make the fullest or most economical use of underground water supplies. It is unfortunate that while many deep borings have been made, samples of the cuttings have been carelessly preserved or labeled, or even destroyed. In some of the Western States, where the rainfall is slight, future prosperity depends on the tapping or transportation of water. In many cases an adequate supply is stored under foot, waiting to be tapped. If the geologic horizons were fully mapped, it would be possible to indicate the exact spot for borings, to obtain the maxinum flow of water. Under present chance methods of boring, some wells gush out and send millions of gallons of water to waste; others flow feebly or cease altogether. Sometimes a well is sunk which robs some other well of its flow, and in some districts of artesian wells the water level is gradually falling.

Many eastern and southern sections of the country are to-day suffering from ignorant tampering with water or water-collecting areas in past years, and a similar carelessness in the West of to-day might lead to similar trouble there in the future. It is well that the seriousness of the question is fully understood at headquarters, and is being gradually appreciated throughout the country. With wider knowledge comes a hope that this greatest of our natural resources will be developed in a broad-minded, conservative manner.

THE CURRENT SUPPLEMENT.

The current Supplement, No. 1659, presents an unusual number of practical and useful articles. In the first place, we must mention Bradley Stoughton's excellent contribution on the Modern American Blast Furnace, in which the practical aspects of smelting are considered. The value of original research to applied science and engineering forms the subject of a brief paper. Mr. Henry C. Ter Meer writes on a method of constructing a modified electrical meter bridge, which is of such design that it can be made by anyone possessing a little mechanical skill, and at a cost which should not exceed five dollars. Mr. J. H. Morrison's paper on the development of armored war vessels passes to an eighth installment. "How Monazite is Mined" is the title of an article which should appeal to every householder, inasmuch as the mineral enters so largely into the composition of Welsbach and other forms of incandescent gas mantles. E. Ramakers contributes a copiously illustrated article on the laying of the Pupin telephone cable under Lake Constance in Switzerland. Felix Singer writes on aluminium coils, and prophesies for them an important future. The work of Berthelot, Mendeléeff, and Moissan is excellently reviewed. Dr. H. Liepmann, in an article on the left hemisphere of the brain, tells much that is new about the influence of the brain on the use of the arms and hands. Charles F. Holder tells how marine animals, such as starfishes, are photographed in their native element. The discus thrower of Castel Porziano, one of the famous statues of the Greek sculptor Myron, has probably been incorrectly restored, if we may judge by some fragments of an ancient marble copy which were discovered in July, 1906. The probable appearance of the discus thrower is depicted and described

SOME PRELIMINARY EXPERIMENTS IN FLYING.

The art of flying has now reached a state of develop ment that gives a great deal of satisfaction to its exponents, anc provides ample inducement to new re cruits entering the field.

A remarkable success has been scored by the Wright brothers, of Dayton, Ohio, and some comparatively unimportant but promising results have rewarded the efforts of other experimenters here and abroad. The success of these men has been directly proportional to the thoroughness of their preliminary training in managing motorless machines; and the numerous failures and disappointments that have developed can be traced directly to ignorance or neglect of the fundamental principles of equilibrium and control, rather than to any special defect in design or workmanship.
It is generally conceded that Lilienthal was the first man to demonstrate a practical way of learning how to fly, and that his experiments paved the way for Chanute, Pilcher, and the Wrights, who carried the work on after his death
These men built machines which, when launched from a height, would support the weight of a man, and descend in gliding flight to the ground. The best angle of descent obtained was about five degrees, the machine sailing down the side of a sand dune into an ascending current of air.

After a number of experiments with gliding machines which gave indifferent results, the author ventured to sug gest that in preparing to operate a mo tor machine, it might be better to learn to rise instead of fall; and since the conditions met in gliding flight were different from those met in motor flight, I became convinced that I ha been working along wrong lines.
In thinking the matter over, it seemed that it would be practical to attach a long tow rope to the machine, and then rise into the air after the manner of a kite. When the wind was strong enough, it was expected that the machine would lift the weight of a man, and that the rope (one end tied to a post) would prevent the structure from drift ing backward. If the wind was light, it was hoped that a horse or automobile could supply sufficient pull on the towing rope to make the machine rise.
It will be seen that in such experiments the pull of the rope corresponds to the power of a propeller and that practically the same conditions are met in managing a motorless aero plane towed by a rope and a flyer propelled by motor and screws.

The Wrights, of Dayton and Israel Ludlow, of New York, made use of these methods of experiment, bu with rather unsatisfactory results. The Wright broth ers abandoned the idea when it was found that a wind of over twenty-five miles an hour was necessary for sup port in the air, and never tried their machine by tow ing it behind a motor car or horse, although they might have obtained some interest ing results in this way
Ludlow designed ma chines, some of which were structurally weak and lacking in balance and control They were gigantic struc tures, and required a tre mendous pull to get them up in the air. Generally, an automobile or fast tugboat supplied sufficient power, but at times the flight resembled a tug of war, the aero plane pulling so hard in the wind that the towing power was forced to a standstill
Although the prospect did not seem particularly inviting, I decided to leave off gliding experiments, and undertake the manage ment of an aeroplane in tow ing flight. Accordingly, machine having about two

The First Machine Which Was Constructed for Experiments in Towing Flight and Which Flew Over the St. Lawrence River.

The Second Machine Equipped with the Final System Rudders. This System is to be Used on a MotorDriven Flyer.
 with Final Arrangement of Rudders. MENTS IN FLYING

Soaring Up in a High Wind.

In Full Flight. The Aeronant Sailed Over the Starting a Flight of the Second Machine, Equipped Photographer Who Took This Picture

SOME PRELIMINARY EXPERIMENTS IN FLYING

Park, the machine rising in tow of a racing automobile steered by Mr. C. A. Coey, of Chicago. Five flights were made, averaging about three hundred and fifty feet in length, at heights ranging from ten to twenty feet above ground.
These results seemed to indicate that it was quite possible to balance and steer a machine in towing flight, and that this kind of work provided better training than experiments conducted in gliding flight. Of course if an experimenter had in mind the development of a motorless soaring machine, it would be preferable for him to acquire skill in managing a glider; but since the conditions approximating true gliding flight will never be met in dynamic aviation, the value of this kind of work to a prospective motor aeroplanist looks doubtful.
However, my previous experiments in gliding flight having proved unsatisfactory, I decided to become a little more familiar with this part of the work before devoting myself entirely to the management of machines performing horizontal flight. An ideal practice ground for gliding was found at Saugatuck, Mich., where the sand dunes rise to a height of more than three hundred feet. Suitable materials for a machine were hard to find, but a stout framework of bamboo braced with heavy wire was finally erected, and suitably tested to prove its strength and rigidity. The wings were covered with strong muslin, and a combined vertical and horizontal tail placed about five feet behind the main supporting surfaces added to the stability of the machine in the air.
Circumstances compelled me to break up this machine before the contemplated experiments were finished, but I proved at least to my own satisfaction that more was to be learned by soaring up from a level field than by darting down the side of a sand hill. The long.
fashion were first conducted, to make sure of its strength and balance. These proved satisfactory, and it seemed safe to attempt the management of the apparatus in actual towing flight.

These experiments were conducted in Washington
est glide with the Saugatuck machine was about one hundred feet at a height of about eight feet above the side of the sand dune. Gliding flight is undoubtedly the safest of the several methods of experimenting with aeroplanes, but it is not the most instructive. After coming to this conclusion, I proceeded to design and construct a flyer especially suited to experiments in towing flight. This apparatus was put up and tested at Montreal, Canada, where I was spending the summer. As first built, this machine measured twenty-two feet from tip to tip of the wings, and spread about two hundred and forty square feet of supporting surface. The frame was constructed chiefly of spruce rods $7 / 8$ of an inch in diameter, and was fastened together by bolts. Heavy piano wire was used in truosing the structure, which, when completed, weighed about 60 pounds.
The first flight was made over land in an open field located about eight miles from the city of Montreal. A fast horse supplied the necessary pull at the end of a strong towing rope. A height of over sixty feet was attained, and the flight lasted about two minutes, during which time I covered over a quar ter of a mile. The balance and control of the machine were perfect, and it did not seem that it would be over bold to attempt a much longer flight

I desired to study the problems of balance and control under more suitable conditions than were possible in the e short flights over land, and so made a long and altogether satisfactory trip over the St. Lawrence in tov of a fast motor boat

The start was made from a wharf on the Montreal side of the river, the ma chine rising rapidly into the face of the wind until a height of about sixty feet was reached. At this alti (Continued on page 274.)

ILLUMINATING NIAGARA

WITH ITS OWN POWER.
by orrin e. dunlay.
During the month of September and for a few days in October, visitors to Niagara Falls were treated to the most wonderful spectacle of the illumination of the falls under varicolored searchlights. The night scene thus created was such as to force all to admit that those who have seen Niagara only by day have but half seen it.

For years this summer resort has longed for an evening attraction that would serve to entertain visitors remaining over night in the city, and which might also serve the good purpose of attracting many others from nearby points to enjoy the new beauty of the locality. There has been much discussion about illuminating the falls, but it fell upon Mayor Anthony C. Douglass to carry out the idea. He succeeded in raising a fund of about $\$ 5,000$ for installing and maintaining the plant for a month This plant consisted of eleven 30 -inch and ten 18 . inch projectors, installed near the water's edge in the gorge on the Canadian side of the river, a few hundred feet north of the station of the Ontario Power Company. The battery of lamps was arranged in the form of a crescont, and proved effective in lighting both the American

Copyright, LSNO, by O. E. Dunlap.
Horseshoe Fall at 'Terrapin Point Illuminated by Searchlight.
and the Horseshoe Falls. A second battery was placed on the spillway of the Ontario Power Company on top of the cliff, the battery consisting of four 30 -inch projectors, the bright beams being sent to light the upper portions of the falls and the rapids effect on top of the precipice
The third battery was located in Victoria Park opposite Prospect Point. It consisted of eight 18 -inch projectors, intended mainly for use on the American Fall. The electric current for the operation of the plant was taken from the 500 -volt circuit of the Niagara Falls Park and River Railway. This was applied to the operation of a motor generator set that supplied a current of 110 volts for use in the lamps.
In front of each projector was mounted a color scintillator, this latter being designed to give the color effect to the rays as they were projected upon the falling waters.

The illumination began at 8 P. M. and continued until 9 P. M. This schedule was varied to a considerable extent to meet the necessities of various parties of visitors. The evening's entertainment was generally opened by throwing the lights on the American and Center Fall. First a soft white light was played on the water. Blue, green, yellow, red, and violet rays were turned on one by

The Projectors on the Spillway.

The Battery of Searchlights in the Gorge.

Copyright, 1807, by O. E. Dunlap.
The Horseshoe or Canadian Fall, Showing the Rapids Illuminated by the Battery of Searchlights on the Spillway. ILLUMINATING NIAGARA WITH ITS OWN POWER.
one until the beautiful American and Center waterfalls were a mass of colors. Such harmony, such blending was never before witnessed, the ever-moving, dancing spray cloud creating effects that were fascinating and dazzling. The intermingling of the colors surpassed all rainbow effects ever seen by day in this place of wondrous water beauty. The Center Fall afforded mag. wondrous water beauty. The Center Fall afforded mag.
nificent opportunity for using a solid color, and either nificent opportunity for using a solid color, and either
in red or blue the glory was beyond description. The in red or blue the glory was beyond description. The
uneven face of the American Fall served to assist in a display of a different character; for the prominen part at Prospect Point was radiantly blue, while all the remaining section of the fall was illumined with chato yant colors in glorious harmony.

At Terrapin Point the spray cloud was so dense and heavy, that the lamps did not have the power to penetrate the sheet of water and reach far into the depths of the mighty waterfall. However, a never-to-be-forgotten effect was the red, white, and blue flashed on delicate sections of the Horseshoe as it poured over the Canadian cliff.
The evening's entertainment was varied by the discharge of bombs, that developed a smoke cloud on the Canadian side to the north of the garge battery. When this smoke cloud appeared, all the projectors were directed upon it. As the smoke ascended, it pro duced an artificial cloud effect that rendered possible wonderful color reflections. There were several displays every evening.

It was possible to cast the lights in any direction, and now and then they were used to outline the upper steel arch bridge, or to give spectators a glimpse of the wild beauty of the waters that pour from the tunnel of the Niagara Falls Power Company. When sent high into the sky the white beams were visible many miles, the largest lamps being very powerful.

The future of the illumination is not yet apparent Mayor Douglass hopes to make it a nightly feature The railroads must become generous supporters of the project, for it is already evident that they will re ceive the most benefit. As a feature of beauty the il lumination is an unquestioned success-a superb scene that gives to the tossing, tumbling, chaotic waters of the greatest waterfalls in the universe a night splen dor unsurpassed by anything on earth.

SOME PRELIMINARY EXPERIMENTS IN FLYING.

(Continued from page 2\%2.)
tude the flight continued without interruption for about three miles, when an accident occurred to mar the success of the trip. The machine was equipped with a small wooden seat, swinging below the rest of the framework by two small ropes.
At a very awkward moment one of these broke, leaving the operator to hang by one arm and retie it The repair was made without coming down, however and the aeronaut again safely seated, the flight con tinued without incident for some two and a half miles farther down the river. At this point recent history repeated itself in the form of the other ropes breaking. Not being so well prepared for this second accident. the operator came very near to taking a drop into the water, but caught the arm rests in time to a void trouble.

With the seat out of commission and no other sup port for his weight available, he decided that it would port for his weight available, he decided that it would
be prudent to head for shore. The boatmen misinterpreted the signals, however, and becoming con fused steered around with the wind, forcing him to descend.
The flyer was badly damaged during subsequent at tempts on the part of the men to tow it to shore. The total distance traversed during this flight was first stated by the boatmen to be three miles; and as they were men supposed to be well acquainted with the river,' I took their word for it. When the flight was actually charted on the map, however, it was found that the distance was more than six miles, the line of flight being shown on the diagram.
The machine was given a thorough overhauling, and several changes in design and method of operation were made before a third flight was attempted. This experiment pnded disastrously; the flyer collapsing in mid-air after a brief struggle with the wind.
The cause of this breakage is still something of a mystery to me, for the machine withstood the most severe tests preparatory to the flight. It is possible that I put undue strains on some part of the structure, since I was not yet familiar with the new system of control. The machine was completely wrecked, but I came out unable to show a scratch. This was the first time in my experiments that any untoward accident occurred. and it seems remarkable that the result was not more serious, for the machine plunged headlong from a height of over thirty feet and struck hard ground.

This performance was rather discouraging, for it indicated that even a seemingly strong structure could not be trusted under certain little-understood conditions of flight.

I decided to design and construct my next machine in a manner that would eliminate all chance of a breakage in mid-air. Mr. Octave Chanute, of Chicago,
very kindly made it possible for me to build this ma chine, which had turned out to be rather an expensive proposition.
In the new apparatus the span of the wings from tip to tip was reduced to sixteen feet, and the total supporting surface was cut down to about one hundred and seventy-five square feet. It was found that the and seventy-five square feet. It was found that the
resistance caused by exposed framing could be safely resistance caused by exposed framing could be safely
diminished by reducing the number of uprights connecting the surfaces and the number of ribs forming the wings. The whole structure was also strengthened considerably by incasing the framework at the joints in steel tubing.
With this new machine I felt little apprehension in flying under any condition of wind or weather, and was able to devote more time to learning the tricks of steering and balancing than before. During the first week that experiments were carried on about forty flights were made, ranging in length from a few hundred feet to over half a mile.
Much was learned concerning the eccentricities of the wind, and in fact the real object of the trials was to accustom the aviator to the management of an aero plane rather than to acquire scientific data.

By manipulating the rudder and shifting the center of gravity of the operator, it was found possible to "quarter" into the wind for considerable distances. This feat was accomplished with the wind blowing at speeds exceeding at times forty-five miles per hour.
Although it is generally best to start and land facing into the wind, yet it is quite possible to steer to right or left near the ground, if care is taken to prevent lateral oscillation when the wind strikes the wings from the side. At the moment of landing it is important that the surfaces be nearly horizontal, or the framework is liable to be damaged in striking the ground.

After several weeks' practice I find it possible to make safe landings at considerable speed, and the machine has been damaged only three or four times. Generally, the framework does not come in contact with the ground at all, but of course an occasional awkward landing must be expected.
After about fifty preliminary flights I have taken up the actual development of a motor aeroplane, and experiments are now being conducted to ascertain the most effective system of controlling surfaces.
The experimental flyer has been fitted with the ar rangement of rudders which I will in the near future install in a motor machine, and the results obtained have been very promising.
The development of a full-fledged aeroplane is a difficult proposition, but much of the bitterness of disappointment may be avoided if the investigator is appointment may be avoided if the investigator is
willing to learn the tricks step by step. As Lilienthal and Octave Chanute pointed out, "man must fly and fall and fly and fall until he can fly without falling."

ENORMOUS POWER CONSUMED IN OUR INDUSTRIES.

On the front page of the present issue we give a graphic representation of the enormous total of horsepower which is required to run the industrial establishment; of the United States. The drawing is based upon the latest available statistics on this subbased upon the latest available statistics on this sub-
ject, which are to be found in the report of the United States Census Bureau for the year 1905. The mere statement of figures which run into the millions conveys to the mind of the average layman no adequate idea of the quantities involved; and particularly is this true when applied to such a subject as total $\approx \boldsymbol{\sigma}$ gregates of engine horse-power. But when these figures are translated into concrete forms, they begin to take on intelligible meaning. Everyone is more or less familiar, either through the medium of illus tration or through a visit to an actual plant, with the general appearance and the great proportions of the typical steam engine of large size used in modern power plants, whether for electric lighting, or power or for providing the necessary air for blast furnaces. So also the general appearance of a typical gas engine, or of an electrical generator, is more or less familiar; and in the front-page illustration above re ferred to, the total number of units of steam engines, gas engines, and electric generators are supposed to be thrown into one, and the resulting dimensions of the single unit, thus obtained in each case, is depicted, with the great Singer tower shown in the group for comparison.
The results are certainly very striking. If the $10,664,560$ steam power used in our industries were represented by a vertical cross-compound blowing engine, of the kind that is used in our blast-furnace practice, we would have a huge affair, whose base plate would cover one-half of a large city block, and the top of whose topmost cylinders would tower 735 feet skyward. The tallest building in the world to-day, the tower of the Singer building, is 612 feet in height, so that this monster .engine would overtop the great building by 123 feet. Similarly, if the total electrical horse-power of $1,138,208$ were to be represented by a single generator, we would have to build a machine whose base would measure 134 feet in length, and whose base would measure 134 feet in length, and
whose highest point would be 126 feet above the
ground. The great proportions of this machine are shown by comparing it with the dome of the Capitol at Washington. To develop the total of 289,514 gas en gine horse-power, would call for an engine 350 feet in length by about 80 feet in height from the base plate to the top of the cylinder

The census figures showing the growth of total horse-power by decades since 1870 are of great inter est. In addition to those which we have illustrated, there is a total of $1,647,969$ water power, 91,784 miscel laneous horse-power, and 632,905 rented horse-power The grand total for the whole United States is 14,464,940 , as compared with a total of only $2,346,142$ horse-power in the year 1870. In 1880 the total had risen to $3,410,837$, an increase of 45.4 per cent. From 1880 to 1890 the total grew to nearly $6,000,000$ horsepower, an increase of 74.6 per cent. The same per centage was maintained from 1890 to 1900 , when the total had risen to $10,409,625$ horse-power. It will thus be seen that the greatest actual relative increase oc curred between 1890 and 1900; and notwithstanding the great increase in other kinds of power, steam has continued to be the motive power of greatest impor tance, representing in $1870,51.8$ per cent of the total horse-power employed in manufactures; in 1880, 64.1 per cent; in $1890,76.9$ per cent; in $1900,78.2$ per cent; and 73.7 per cent in the census of 1905 . One of the most notable features of the development o machinery in manufactures has been the growth of the use of the electric current for the transmission of power. The first census to show electric power was that of 1890 , when only 15,569 horse-power was reported. Fifteen years later this had grown to $1,138,208$ horse-power. It should be noted, in connec tion with the above statistics, that when the electric power is generated by the manufacturer, the combina tion of the horse-power of the engines and the motors results in a duplication; but since in some cases the steam engines are used for purposes other than the generation of electric current, it is impracticable to avoid this duplication.
In conclusion, we would draw attention to the fact that our front-page engraving shows the day to be very far distant when the steam engine is to be relegated to a subordinate position, and the lead taken either by electricity or gas.

The Navigation of the River Danube.

One of the most important engineering undertakings in progress in Europe is the improvement of the navigation of the mouth and lower reaches of the river Danube. This enterprise was taken in hand by an in ternational commission appointed in 1856. It was anticipated that the labors of the commission would occupy at the utmost only two years, but it has been sitting for fifty years. At the time of its inception the Danube was one of the most inaccessible and difficult of rivers, the estuary being a mass of sandbanks and treacherous swamps. During a severe gale one winter's night in 1855 alone, no less than twenty-four sailing ships and sixty lighters were wrecked in the shoals, with a loss of three hundred lives.

The task of improving this treacherous approach has, however, proved exceptionally difficult, but according to a recent report to the British government by: their representative engineer, conditions have been consid erably improved. Instead of there being only a minimum depth over the Sulina bar of 9 feet, there is now 24 feet of water, while the arm of the same name has been improved from a depth of 8 feet to 20 feet. The navigable channels have been straightened and there is a fairway from St. George's Chatal to Sulina only 34 miles in length, as compared with the former distance of 45 miles between the two points. The total cost of the undertaking has been $\$ 8,000,000$, the money for which, however, has been derived for the most part from shipping dues. That the improvements have proved commercially valuable is shown by the increase in Sulina's maritime traffic. Since 1867 the traffic in cereals has increased fivefold. Sulina itself, owing to the installation of an elaborate sanitary system, has risen from a mere collection of huts to the status of an important and flourishing port of 5,000 inhabitants. The improvement of the estuary and the greater safety afforded to shipping has resulted in a corresponding decrease in freights, for whereas in 1856 the tariff to Great Britain averaged $\$ 11$ per ton of cereals, it is now only $\$ 2.50$, while the rate has been as low as $\$ 1.50$ per ton. The improvement works are to be pushed forward as vigorously as in the past.

Eugene Godet, a French aeronaut, had a narrow escape from being drowned in a recent ascent at Jamestown, Va. His propelling machinery failed to act and the wind swung the airship against a water tower, both propellers being knocked off. Relieved of the weight, the airship rapidly ascended, and when over Hampton Roads suddenly dived toward the water but again arose and drifted away. Godet clung to his machine, and finally landed in a badly bruised condition, and with a wrecked airship, fourteen miles north of Newport News.

(forxexpughtente.

the development of the wireless telephone.

To the Editor of the Scievtific American:
Owing to the interest evinced at the present time in wireless telephony-an art I have done everything in my power to advance since 1899 -the time seems ripe for the statement showing the relative positions of the various contestants in this field of endeavor.
From time to time, as the exigencies of the cases required, I have pointed out in divers technical publications the various methods that could be employed to telephone through space without connecting wires. As far back as 1898 I began to experiment with electric waves as a means for transmitting articulate speech wirelessly, and on July 18, 1902, the Scientific Americas published a description and the drawings of an apparatus I had evolved for fulfilling the exacting conditions required in wireless telephony.
The drawings of this early transmitter and receiver of mine are reproduced in Fig. 1, and the following is a paragraph from the article in question referring to its construction:
" A is a transmitter, and B the receiver. The primary coil is shown at 1 , and is in series with the battery 2 and the key 3 . One terminal of the secondary winding 4 is connected with a special form transmitter 6 , and this to a large capacity 7 . The opposite terminal of the induction coil is earthed at 8 , and bridged across the terminals of the secondary is the condenser 9 ; 10 is a 'variator,' which will be again referred to. The receiver is quite simple, and consists essentially of a transformer coil 1, a telephone receiver 2 , and a battery 3 ; the condenser 4 of large and equal capacity to that employed in the transmitter, and 5 the earthen terminal.
"The action of the instruments is as follows: When the key 3 closes the primary circuit, the current is automatically varied by a special device (an arc-light) 10, which takes the place of the ordinary interrupter; this produces alternations in the secondary coil 4, giving rise to high potentials at the intervals 7 and 8 ; this potential difference is, however, modified by the transmitter 6. The surging of the currents through the circuit formed by 7 and 8 emits waves, and these traveling with the speed of all other electro-magnetic waves reach the plate 4 , and finding no other path of greater density surrounding the circuit 4 and 5, it traverses that circuit in preference to passing onward through the earth, since the former offers the least resistance. This sets up alternating currents in the transformer coil 1, and these are impressed on the telephone receiver 2. ."
It will be observed that the telephone transmitter, which was of the old Blake button type, was placed in the free arm of the high-tension system. At the early date when this apparatus was first used, about the only detectors known for indicating the presence of electric waves were coherers in one form or another; and where the frequencies were high a microphone detector was utilized, and when low and the waves were increased to lengths approximating those waves were increased to lengths approximating those
set up by mechanical vibration, a telephone receiver set up by mechanical
was employed direct.
The concluding paragraph of the article states that "both the transmitter and the receiver are mounted on tripods, providing the operators with testing apparatus almost as portable as a camera. The tests from the incipiency of wireless telephony have been made at Narberth, Pa., where the conditions were all that could be desired. In 1899 speech was transmitted to a distance of 200 feet; in 1900 a mile was covered, when with the equipment shown in the engravings articulate speech was transmitted across the Delaware River at Philadelphia; and in 1902, with the instruments placed on hills separated by a railroad, valleys, wooded lands, and numerous streams, a distance of three miles was attained. The results have shown the possible commercial value of this system of wireless telephony, which is soon to be perfected for actual telep."
In the past five years I have not striven to cover long distances, the three-mile test at Narberth under the difficult conditions imposed by the geological and geographical features of the country-equivalent to ten or twelve miles over water-indicating clearly enough that wireless telephony was possible over any distance the wireless telegraph could bridge, by increasing the initial power. The real difficulty encountered was not a matter of covering distance, but of getting speech that was articulate and that could be clearly understood. To overcome this untoward result I have bended my efforts, and have succeeded so well that my receiver now produces the spoken words more clearly than does an ordinary telephone, though not so loud. So much for my early wireless telephone work and the article describing it, and now a word concerning my contemporaneous aspirants for wireless telephone honors-Messrs. Fessenden and DeForest. In the issue honors-Messrs. Fessenden and DeForest. In the issue
of the Scif.ntific Americay dated January 19, 1907, of the Scientific American dated January 19, 1907,
Fessenden publishes diagrams of a wireless telephone apparatus, but gives no adequate description of it.

While I did not think it of sufficient importance at that time to call attention to many points of similarity to my apparatus of 1902, I feel now, in justice to my early work, to point them out, that he who reads may judge for himself how far I have anticipated Fessenden. Compare my transmitter, Fig. 1, with his trans-

Fig. 1.-Collins Wireless Telephone Transmitter and Receiver.
mitter, Fig. 2 , and it will be readily seen that these are very alike. There is the same closed circuit containing an electric arc and the primary of a transformer coil. The open circuit, too, is precisely the same, except for the trivial change he has made in placing the transmitter in the grounded arm of the oscillator

instead of in the free arm, as shown in my diagram. It is also apparent that his receiver and mine are virtually the same, if we except the introduction of his electrolytic detector-a very ingenious detector for wireless telegraphy, but oppositely an exceedingly poor device for the reproduction of articulate speech.

Fig. 3.-De Forest System of Radio-Telephony. the development of the wireless telephone.

Fessenden also makes a statement that I strenuously object to, though it does not concern primarily my wireless telephone. In his article he refers to his "arc-gap" method. This arrangement he would have as conformed with the Duddell-Poulsen system for pro-
ducing continuous oscillations. This "arc gap," as Fessenden terms it, is really the ordinary spark gap employed in all the older systems of wireless teleg. raphy; it has nothing in common with the tuned arc of Elihu Thomson, and is entirely different from the musical arc of Duddell, the speaking arc of Simon, or the continuous oscillation arc of Poulsen.
A new claimant for wireless telephonic honors is DeForest. Of his apparatus the Scientific Animican publishes an account in its issue of September 28, 1907. To illustrate how nearly his arrangements for telephoning without wires are like the 1902 instruments of mine, compare Fig. 3 with Fig. 1. It will be seen at a glance that they are identical in all essential respects, although DeForest copied Fessenden and placed his transmitter in the grounded arm of the oscillator circuit.
An additional detail added by DeForest and not found in my early system is "the arc light maintained in the flame of a small alcohol lamp." This scheme is due to Poulsen, and was described by me in the Scientific American of December 15, 1906. It has long since been superseded by immersing the terminals of the arc in hydrogen, which gives very much better results.

His receiving circuits are essentially my open and closed circuits with the addition of a detector, called by him an "audion," but which is really the oscillation valve invented by Prof. Fleming, who is Marconi's technical adviser.
With any of the arrangements shown and described, it is quite impossible to obtain satisfactory results; and evidently Fessenden and DeForest are passing through the same difficulties I encountered from 1900 to 1904 , i.e., inarticulation of the received speech. Music may be transmitted to better advantage than speech, for a musical tone is simple compared with the spoken word.

In order to reproduce the human voice in clear liquid tones, a further improvement must be applied to the arrangements indicated above, and this I have done and shall make public within the next three months.

11 Broadway, New York. A. Frederick Collins.

On a Device for Balancing Aeroplanes.

To the Éditor of the Scientific American
Referring to the letter of Mr. Clark L. Swezey in the Scientific American for September 21, 1907, on a simplification of the device I had suggested in the Scievtific American Supplement for June 29, 1907, I would like to say that while the device suggested is certainly very simple, I hardly think it would be manageable. As I understand it, the aeroplane is to be balanced by the use of a tube, fitted with wires at each end, containing mercury. A tilting would cause the mercury to flow to one end of the tube, and so establish an electrical contact. But it is difficult to see why the mercury would not flow to an end of the tube in the same way whenever the aeroplane were accelerated, as in starting or stopping. The action, it seems, would be the same as that which takes place when a pan of water at rest on a table is suddenly pushed.
It is difficult to see, also, how the device could be modified so as to overcome this feature and yet be sensitive.

Romirt H. Goddard.
Worcester, Mass., October 4, 1907.

Fluorescence and Chemical Constitution.
MM. Francesconi and G. Bargellini, two Italian chemists, are stuading the problen? whether there is some connection between the chemical constitution of bodies and fluorescence. They have examined about five hundred organic compounds in various solvents, using an extremely simple apparatus consisting of a test tube located in a dark room. A conical beam of sunlight being projected on this solution, the luminous cone is examined at the upper part of the test glass. If the compound tested is fluorescent, it shows a different color from that of the solution. The following are the main results of these experiments: No compound belonging to the fatty series is fluorescent; while all the aromatical compounds show a more or less intense fluorescence. Each of the different nuclei (benzine, naphthaline, etc.) has a fluorescent power of its own. While certain groups of atoms exert a very energetic activating action on fluorescence, ot hers are reducing agents of more or less intensity.

Peat, which might almost be called the national fuel of Ireland, has never been very successfully exploited in the United States. While peat can be converted into a fair quality of fuel for both domestic and steam purposes, all methods of handling it so far devised require heavy machinery and considerable hand labor, and both of these are expensive. Several experimental plants have been started to test the feasibility of manufacturing peat fuel, but they have not commenced work on a commercial scale. It is estimated that from 500 to 1,500 tons were produced in 1906. During the year there were imported into the United States 8,557 short tons of peat, valued at $\$ 45,344$.

HOW THE SCIENTIFIC AMERICAN TROPHY WAS MADE.
In the art of the silversmith we have a striking example of the increased demand for skilled labor which follows the introduction of machinery. Innumerable tools have been invented or adapted for the working of precious metals, but at every stage of their work they call for trained hands and alert brains-the tools supplement but do not supplant.
A brief survey of the manufacture, in the work shops of Messrs. Reed \& Barton, of the trophy offered by the Scientific American for flying machines heavier than air, shows that the work has passed through many skilled hands, and that in each case the worker and not the machine has been the dominant factor.

The first designs, embodying the suggestion of the donor, were sketched out by an artist. Sometimes the artist elaborates a design from crude suggestions; oftener he is the creator. The main lines of a design

Hammer Work.
having been decided on, the proportions are carefully studied and the details worked out, in a complete sketch the actual size of the proposed work. From this completed sketch, the artist makes a final drawing in water color, intended to convey as true an idea as possible of the finished work.
The preparatory work of reducing silver to sheet form, though requiring expert skill and care, is in most respects like that bestowed on any of the metals used in the arts, and the processes of melting, rolling, etc., need not be described here.
In the forming or "spinning" of the metal, the sheet is worked over a turned form, or "chuck," in a lathe. An illustration shows the spinning of the sphere of the trophy-a delicate piece of work which calls for the nicest and most accurate touch on the part of the worker. The spinner's chuck is usually turned from a block of carefully seasoned hardwood; but for undercut shapes-such as this sphere-which will not slide off a solid block, the chuck is built up in sections round a core. When the core is withdrawn the sections can be removed, one at a time, through the aperture in the spun metal.

Another illustration shows the silversmith at work on the lower part of the trophy. Hammer work is still the vital factor in shaping silver, for the delicate touch and control of the skilled worker has not been imitated by machinery. Many of the most beautiful examples of silverware are handwrought in this way; and the hammer, with which the art began ages ago, will doubtless continue to hold its place.
The ornamental features of the trophy were worked directly on it by hand, or reproduced from models specially made for it. These models were built up in wax upon the body or form prepared by the silversmith. This process of modeling is identical with the work of the sculptor who reproduces his models in marble or bronze, and it requires an equal amount of artistic knowledge and skill, in addition to a special knowledge of the technicalities of silver working. The modeler bestows much thought and care on his work, frequently finding it necessary to modify or. even change the original design. What looks well in a water-color sketch may not be satisfactory when developed in mass, but may require the accentuating of some features and the subduing of others before a pleasing effect can be secured. When the wax model is completed, a plaster cast is taken, and carefully finished to serve as a pattern for the molder, who reproduces the model in metal by casting.

Casting is delicate work; some of the fine sands from which the molds are made are imported from Europe. These, after being accurately prepared, are tamped into iron frames around the plaster model. When a sharp mold is obtained, the frames are clamped together, dried, and the molten metal run in. With suitable sand and careful manipulation, exceedingly fine castings are secured.
The trophy is a fine example of the work of the chaser, and an illustration shows three men at work on various portions of the piece.
In the chasing of cast or sheet-metal work, a multitude of small tools are required-tiny chisels, punches, and riffles for cutting, hammering, or scraping the surface according to the texture desired. In repoussi work, where the metal has first to be raised or "snarled," this is done with a snarling iron-a hammer, which may be inserted in a hollow body, and by a sucession of rapid taps force the metal to rise or bulge out. During the snarling, the metal body is held by the operator, who guides it to obtain the raised pattern just where needed. The raised body is filled with a composition stiffening, which prevents any general sinking while yielding at any special point. The detail of the design is then tapped out on these bulges, by means of tiny punches.
When the spun, hammered, and cast portions of the trophy were chased, the several parts were assembled for soldering together. In soldering, a clean gas flame is used with the ordinary air pressure blow pipe. The portions to be joined having been accurately fitted are scraped clean at the points of contact, fluxed with borax, heated to the requisite temperature, and touched with a thin rod of solder, which should instantly flush the seam. A perfect

FOOD VALUE OF DRIED FRUITS.

laking, m.d., of england.

It is to be regretted that an economical and valuable article of food, in the shape of the dried currant, should be so much neglected. The dietetic value of the fruit is misunderstood and the prejudice against it entirely unjustified. Properly prepared, the currant might, with the greatest advantage, form an every-day item in the meals of the people, who seem to choose their food and arrange their dishes with an ignorance the extent of which is appalling. If people could be taught a few simple facts about the worth of various kinds of food commonly eaten, I am of opinion that much benefit would result. If some elementary knowledge of the chemical components of food could be imparted to the masses, I feel sure that our race would be healthier, more vigorous and better equipped to resist the attacks of disease.
Imagine what would be the benefit, if the toilers could be induced to master and act upon the fact that food, to be perfect, must contain in the proper proportions the three main elements-nitrogenous substances, carbohydrates, and fats. It should not be difficult, say, to popularize more extensively an inquiry into the meaning of "proteids"-that they are, in fact, the albuminous fundamental and principal constituents of the animal body; that food accurately abundant in proteid makes for the building of tissue and the making of muscle. The meaning of the word "carbohydrates" should not be incapable of demonstration in popular language; nor should the importance of the proper balance of the sugar in the food be difficult to explain in a manner intelligible to the people.
From recent analyses of samples of dried currants the fact has been verified that the fruit contains no less than 73 per cent of sugar in its most valuable form. This great saccharic proportion is already in the shape of grape sugar, and thus is potential to take up its work of producing and maintaining energy and vitality. It is what is known as "invert" sugar, a composite of dextrose and levulose It assists digestion; it allays nerv. ous excitement, and provides nourishment in case of nervous exhaustion. No fruit can show this large proportion except those of and kindred with the currant.
I wish it could be more gener-

"Spinning" the Sphere.
HOW THE SCIENTIFIC AMERICAN TROPHY WAS MADE.
ally realized that, in selecting articles of food to sup ply the constituents of normal diet, regard should be had to the amount of potential energy in the material It should be an easy matter to convince the people that this or that food is good or bad-that certain things are abundant or deficient in essential food elements.

For instance, let us make an interesting comparison, and one that should be quite clear to the average intelligence: I mean the comparison between the components of currants and lean beef. The currants show 73 per cent of grape sugar, the whole of which contributes to manufacture energy; the beef contains no sugar at all. Currants contain 1.77 per cent of proteid; the beef 19.3 per cent. In currants there is but 20 per cent water; in beef 72 per cent, the bulk of which is waste. Lean beef con-
tains but 0.6 per cent more heat-producing material than currants, the figures of which as regards fat stand at 3 per cent. These figures referring to the currants are taken from a recent analysis by E. F Harrison, B.Sc. (Lond.) F.I.C., Ph.C., F.C.S. The fig. ures for the beef are extracted from a table of food values compiled upon the researches of such authori ties as Church, Payer, Letheby, Blyth, Pavy, Holbrook, Oldfield, Kress, and others. The result is the disclos ure of the important fact that there is no less than 54.87 per cent more total nutriment in the currants than in the beef. The point might be advanced that the currants show a low proportion of proteid, but the people should be warned against the dietetic error of using food containing an excess of proteid. They should also be taught how to supplement any deficiency in the various modes of preparing the fruit for table. They should be shown with what ingredients to mix it, so that it may contribute its powerful assistance in building and maintaining the body. Indeed, I am not wide of the mark when I say that, even eaten alone, the currant contains nutriment in all sufficiency.

In the dietary of the peasant classes of Greece, a people remarkable for their hardihood and health, the currant appears at almost every meal, while in Germany and Holland currant bread is a common article of food; indeed, among the many shapes in which the currant may be brought to table, a bread made of say thirty parts of currants to seventy parts of dough is one of the best.
Currants contain in the right proportion certain valuable acids such as tartaric, citric, and malic. These acids, while having wholesome individual properties, besides being refrigerant, antiseptic, and antifebrile, serve to modify or adjust the flavor of the sugar and help the other nutriment components of the fruit to readily deliver themselves up. It will thus be seen that the toiling and insufficiently fed masses have at their command a delicious article of food which costs the merest trifle and of which they would surely and readily avail themselves did they but know its value. The middle and upper ciasses, those who are in a sense indifferent to food regarded in its dietetic aspect, but who select it mainly for flavor, have an important adjunct to the table, which gratifies the palate and operates as a liberal auxiliary to health and well-being.
Now a word as to the prejudice against currants. It is a fact, generally overlooked, that the desire to quickly obtain the flavor of food which is particularly acceptable to the palate, has a tendency to induce hur. ried and incomplete mastication. To obviate this neglect and to obtain the best results, it is important that the skin of the fruit should be broken. The delicious flavor of currants develops in a most marked degree by the act of chewing, and carelessness in this respect is a great loss to the eater.
The splendid varieties of currants grown in the district of Vostizza, and intended to be eaten as des. sert, either alone, with almonds, or with any other kind of nuts, are shade-dried, seedless, as indeed all currants are seedless, and of a velvety softness. For children and those who must of necessity adopt a "diet" currants properly treated and prepared will.
prove a digestive aid and act as a gentle and natural laxative. Therefore, any accusation against this delicious economical and valuable little fruit must fall to the ground as absurd.

Deutschmann's Yeast Serum.

Prof. Deutschmann of Hamburg has opened a new field of serum therapeutics by his researches, which were undertaken for the purpose of obtaining a single serum applicable to the treatment of all germ diseases, both local and constitutional. Deutschmann's

Modeling the Decorations.

The Molder at Work.

serum has the additional peculiarity that it neither produces immunity from infection nor generates antitoxins but simply aids and strengthens the cells of the body in their conflict with disease germs. Microbes of many kinds find daily and hourly entrance into the bodies of men and animals and the issue of the conflict between pathogenic microbes and the cells of the body depends upon the health of the latter. If the body cells are victorious only slight and transitory impairment of health results, but if they succumb to the invaders we have a case of typhoid, cholera, pneumonia, blood poisoning, etc., according to the species
of the disease germs. As a rule, healthy bodies successfully resist the attacks of most of these invaders, and Deutschmann's search was for a serum which would confer the resistance of normal, or rather of ideal health, upon a body attacked by zymotic disease.
He obtained such a serum from the blood of healthy animals to which gradually increasing doses of common yeast had been administered, in their food. Yeast has recently been employed with good results in the treatment of carbuncles and contagious local catarrhs. As yeast does not kill bacteria, Deutschmann evidently assumed that it acts by promoting the natural formation of remedial or protective substances in the organisms. These protective substances differ from antitoxins in that they neutralize or destroy all germs, not merely germs of one kind.
The serum of the animal, which contains these substances, can then be extracted and administered to human patients. The human organism can itself elaborate these substances under the stimulation of gradually increasing doses of yeast, as appears from the successful employment of this treatment in carbuncles, etc., but it cannot do so effectively when it is already seriously diseased. Hence the advantage of the indirect treatment, using the blood serum of a healthy animal that has been dosed with yeast.
The direct administration of large quantities of yeast has an injurious effect, particularly in febrile conditions. (The writer is contemplating a series of ex periments on the administration of other remedies by this indirect method.) Deutsch mann had in view chiefly the treatment of infectious diseases of the eye and in the Munich Medizinische Wochenschrift (No 19,1907) he reports a number of severe cases, from his practice as an oculist, which were completely cured by the serum, with out any other treatment.
The serum, however, has been found equally effective in a variety of zymotic diseases. Prof. Deneshi has employed it with success in twenty-four cases of pneumonia. The writer has used it with astonishing results in five cases of contagious sore throat. In each case a single injec tion of one or two cubic centimeters of the serum brought down the temperature immediately and a cure was quickly effected.

Of cases reported by other physicians I shall mention only the most remarkablea case of puerperal fever complicated with pneumonia which was cured by a few large doses of serum
It is too early to pronounce a final ver dict on the merits of Deutschmann's yeast serum, but it is evident from the results already obtained that it well deserves the attention of the medical world.-Dr. Friedlieb in Umschau.

A free trade-school has been opened at Grace Chapel, Fourteenth Street and First Avenue, New York, where instruction is given in architectural and mechanical drawing, free-hand, clay modeling, tailoring, bent iron work, electrical fitting, carpentry, millinery, dressmaking and cookery. The classes, which are under the supervision of Mr. Arthur H. Kiewitz, M. E., are held on Monday, Tuesday, and Wednesday nights and on Saturday forenoon.

Chasing and Repousse Work on the Trophy

The Final Soldering of the Trophy

BY MOTOR CAR TO THE SOUTH POLE.
At the beginning of next year, E. H. Shackleton will make another attempt to reach the South Pole, leaving New Zealand in January for that purpose. The party of twelve will embark in a ten-knot steamer, not specially built to resist the ice packs, for she will return to New Zealand as soon as she has landed the expedition, with a liberal quantity of supplies. After wintering at a convenient spot, the work of exploration proper will begin during the following October. The expedition will be divided into three sections. One will travel eastward, and cross the barrier in the hope of reaching the area known as Edward the Seventh's land, and follow the coast line southward, retracing its steps when necessary. The second detachment will strike south over the same route followed by the "Discovery's" sledge party in 1892. The third will go in a westerly direc tion over the mountains toward the magnetic pole. Each party will be equipped with a motor car, specially built for the purpose. The sledges containing provisions and paraphernalia will be hitched to the car. As a stand-by, Siberian ponies will be used instead of dogs, as employed in the 1901-4 expedition. It is claimed that these animals will easily drag a load of 1,800 pounds on a food basis of 10 pounds per day, while a dog will only conveniently shift a load of 100 pounds on a 2 -pound per day ration. Thus one pony will equal as a carrier 18 dogs at less than one-third the aggregate food allowance. Besides that, the pony can comfortably sledge a distance of 20 to 25 miles a day on a pinch, a thing the dog has never been able to do.

It is expected by Shackleton that the party will be able to cover up to 25 miles per day. If the motor car aid reaches his expectations, he feels sure he will be able to get beyond latitude 82 deg. south. At

Some carrier pigeons will also be liberated, to see if they can put up a world's record by getting back to New Zealand.

A vessel will be dispatched from New Zealand to pick up the parties in February, 1909. The southernmost section will be picked up first; then the Mount Melbourne party. After that they will steam to the north of Ballemy Islands, keeping in as far as pos sible in order to trace the coast line of Wilkes Land.

SANTOS DUMONT'S NEW HYDROPLANE

In an effort to win a ten thousand dollar bet made with M. Charron, to the effect that he could build a hydroplane which would travel 100 kilometers (62 miles) an hour, Santos Dumont has recently constructed the novel craft which we illustrate This new hydroplane consists of one long cigar-shaped pontoon 10 meters (32.8 feet) in length, and which is placed between two similar smaller floats 1 meter (3.28 feet) long. The three floats are fastened together, and a long, narrow plane, 13.12 feet long, extends crosswise from one of the small outer floats to the other. Another plane 4.92 feet long is placed transversely at the rear. The construction of the apparatus is apparent from the photographs. The floats

The 120-Horse-Power, 16-Cylinder, V-T'ype Mutor Used on the Hydroplane.

Towing Test of Santos Dumont's " No. 18 Hydroplane.
The 3 -bladed air propeller will draw the craft.

SANTOS DUMONT'S NEW HYDROPLANE.

are built u_{1}, upon a framework of wood and aluminium covered with a rubber-treated fabric which is air and water tight. They are inflated with compressed air in order to increase their stability. A 16 -cylinder, 120 horse-power, V-type motor is mounted on the frame work which carries the air propeller. The motor drives the latter direct. The helmsman sits in a small seat at the rear end of the center float, and steers the hydro plane by means of a wheel. In one of our photograph the new craft is shown being towed at a good speed by a fast motor boat. When this test was made th yroplane rose until the floats were completely lifted hydroplane rose until the lifted out of the water, and it glited upon its two planes with apparently good stability. The total weight of the new craft is not much more than 500 pounds. In the test which is soon to be made, Santos Dumont hopes to do better than 100 kilometers (62.13 miles) an hour.

The British War Department's new dirigible balloon "Nulli Secundus" on October 5 made a voyage from Farnborough, a suburb of Aldershot, to London. The trip proved in every way successful. Following the highroad, the balloon kept so straight a course that its shadow fell on the road for a great part of the way. The balloon started against a head wind blowing ten miles an hour, but in spite of this it covered the 32 miles between Aldershot and London in a few min utes over two hours. The balloon appeared under
perfect control, and whether with or against the wind it sailed smoothly and swiftly. On reaching London the balloon first circled over the buildings of the War Department and then, curving round St. Paul's Cathedral, journeyed southward to the Crystal Palace, where it descended. The entire trip lasted three and a half hours. Col. Capper says he could have remained up six hours and longer, but thought it inadvisable to take risks at this experimental stage. The event is rearded as marking a new epoch in British military history. The visit of the airship eame as a surp histore with Ofise to the authorities knew that something of the kind was contemplated at some time or other. All the officers in the building turned out to greet the visitor. It came low enough to afford an excellent view of it. It was possible to see the working of the mechanism. During the three and a half hours' trip, the "Nulli Secundus" covered fifty miles. The highest altitude reached was 1,300 feet. The mean height was 750 feet. The speed was fourteen miles an hour, but at one point it reached forty. The engine, which is of French construction, ran from 1,100 to 1,200 revolutions a minute. Ordinary gasoline was used as fuel. Ballast was carried but not used. During a recent storm the airship was badly injured because of poor housing. It is questionable whether it will ever sail again.

The Pennsylvania Railroad School of Telegraphy. A school of telegraphy was opened at Reading, Pa., by the Pennsylvania Railroad on September 16. The supply of well-trained men is at present insufficient, and national legislation limiting the daily work of railway telegraphers to nine hours will enforce upon railway companies the problem of supplying a large number of additional operators. On the Pennsylvania road alone, which now employs more than 3,000 operators, it is estimated that 700 additional men will

The Completed Hydroplane.

Note the narrow planes beneath the float, at front and rea

be needed to comply fully with the provisions of the law. The time required for the course is six to eight months, and salaried positions await graduates. The cost of tuition is $\$ 2$ monthly-a merely nominal sum. The Pennsylvania Railroad wants healthy young men between the ages of 17 and 25 , with a fair knowledge of English, mathematics, and geography-and with brains.

To familiarize students with practical work, the regular wire of the division will run through the school room and standard train order blanks will be furnished. The text books will consist of the book of block signal rules, the book of rules for the government of the transportation department, copies of all standard forms of Pennsylvania Railroad blanks gen erally used in the keeping of station agents' accounts, and other standard literature used in carrying on the business. In addition to this, students will be in structed in the general duties of an agent in admin istering the affairs of a station.

The entire frame of the great tower of the Singer building in New York is completed, and the outer walls, which have followed the steelwork closely, are more than three-quarters finished. The framework, which was not started until late in the spring, has been put up in good time and without any serious mishaps. It is expected that the whole of the lofty structure will be inclosed before there is any very cold weather, so that the interior work, which will be entirely fireproof, can proceed without interruption in the winter.

The British Admiralty proposes to arm the new vessels of the "Dreadnought" class with eight new type 13.5 -inch guns, so disposed that they can all be fired on either broadside. The new weapon will be over 50 feet long, and a shell from it will, it is calcu lated, pierce 20 -inch Krupp steel armor at a range of 3,000 yards.

PLANT CULTURE BY ELECTRICITY-AN INTERESTING EXPERIMENT

 ETMPOLD

 ETMPOLD}An exceedingly interesting experiment is being con ducted at the Royal Botanic Gardens, Regent's Park, London, under the name of "the Thwaites Electric Culture"; and if it bears out under a lengthy trial all the features that the inventor claims, it is likely to revolutionize the present methods employed both in the heating of glass houses and the manner in which plants and fruits are hastened to maturity independent of the seasons.
Before describing this new system of electric culture, a brief reference to previous experiments will not be without interest. Very soon after Jablockhoff invented the electric arc, it was discovered that the rays from this light stimulated the growth of plants, and the work was continued by Sir W. Siemens in England Bailey in America, Lebstrom in Sweden, and Berthelot in France. Both Sir W. Siemens and M. Berthelot died before the results of their experiments became known, but they were quite classical and of splendid promise. Bailey was convinced that the arc light promoted assimilation and hastened growth and maturity. Lebstrom found the positive electrostatic current to greatly accelerate the circulation of the sap, and the more fertile the soil the more vigorous the vegetation, and the.more effective the current; it was also found to increase the proportion of saccharine

Coming to the present experiment, we have an ordinary glasshouse in which have been placed some two hundred plants, consisting of geraniums, fuchsias various kinds of palms, grasses, tomato plants, etc. The plants are being forced by light from an arc lamp, and the house heated in a new and ingenious manner. This apparatus, which is causing much discussion among electricians, consists of a modern pro ducer-gas suction engine coupled to a dynamo. The electric energy developed by this plant is allocated to the feeding of the arc lights in the glasshouse. An electrostatic machine is driven from the gas-engine crank-shaft, and the electricity is discharged b y points along the plants to electrify not only the air. but the plants and their roots as well.
The arc lights are equipped with special reflector hoods, by which the beam of light is confined within narrow limits of concentra. tion. The open end of the hood is closed by a water screen, made up by a glass trough filled with water. This water screen through which the light rays have to penetrate, is intended to secure as near an imitation of natural solar effect as possible, and to limit the effect of the rays; and if it is desired to
screen from the plants any portion of the spectra colored water can be employed. The roof of the re flector is provided with a chimney, to permit the escape into the roof of the glasshouse of the nitrous oxides that may be produced. It is arranged that the arc lights are automatically constantly and almost imperceptibly moving along the entire length backward and forward of the glasshouse, radiating a powerful beam of light on both sides of the house

Ihe Rear Side of the Light

The Front of the Light.
an atmosphere containing moisture and carbon dioxide in the proportion common to most fertile countries; (4) a temperature within the limits of 70 and 80 deg. Fahrenheit; (5) an ideal fertilizing agent; (6) an ample supply of water for the roots It is also the inventor's contention that the appa ratus is an economical one. It is expected that the figures will show a saving of thirty per cent ove all systems at present employed Indeed it is claime that the whole cost of the apparatus and its working comes out in the end at the rate of two cents, as at present compared with six cents per hour. Then it

The traveler is electrically driven, and the speed may be controlled.
By this plant Mr. B. H. Thwaites, who by the way is a well-known electrician, hopes to secure the six essentials which he regards necessary to force the plant's growth. They are: (1) an ample supply of violet or chemically active rays projected from powerful and moving are lamps; (2) a supply of electro static current for the atmosphere and the roots; (3)

Thwaites estimates that with his system, from three to four producing seasons in the year will be attainable. If, of course, choice fruits and flowers can be produced at any period of the year at no great cost, the invention should certainly possess great commercial value. As already stated, at the moment it is purely in its experimental stage, the plant having only been in working order for just about a month, too short a period for one to predict likely results. At the same time, it is an experiment which will undoubtedly be followed with the greatest interest.

A Remarkable Acoustic Phenomenon.
An interesting acoustic phenomenon called, in Italy, "brontidi," has been investigated by Prof. T. Alippi, of the meteorological and seismical observatory of Urbino, Italy. These brontidi are mostly hollow noises, resembling the echo of a distant explosion, and are usually observed with a bright sky and calm air, occurring rather seldom in windy or rainy weather. They usually occur in the afternoon, both in winter and summer. These noises would seem to be of atmospheric origin. They do not produce any physiological effects of their own, nor do they seem to be connected with local earthquakes, though they sometimes cause window panes to vibrate. They are nearly everywhere considered as presage of bad weather, and are popularly supposed to be due to strong tides or storms at sea, whose echoes are transmitted to a distance. Prof. Alippi has obtained his results by means of a circular letter to which 217 observers have replied, and 135 of whom had noticed the sounds. The observers in question were distributed throughout the whole of Italy and its African colonies.
These noises do not appear to be due to artificial causes, such as mine explosions or gun shots, as they mostly occur in central mountain regions, where such causes are absent, while in some populated valleys where mines are common their existence is never no ticed. The author is . not inclined either to ascribe this phenomenon to natural causes, such as winds, while the hypothesis sometimes sug. gested of thunderbolts under the horizon cannot be maintained either owing to the equa distribution of brontidi over summer and winter.
There may be some connection between certain brontidi and seis mical phenomena while anothe class of brontidi may be connected with meteorolog ical phenomena; and in order fully to elucidate thi question, the ob servations will be continued from the Italian Cen tral Meteorologic al and Geodynam ical Office, which intends to send out more inquiry forms.

Damsite is th
in the supervising ability of an ordinary intelligent workman, and can be left for hours together
At the present time daylight is being extended for a period of four hours. Just before sunset the powerful arc lamps are lighted, and the beam flits from plant to plant as it moves slowly up and down the glasshouse. When the days get shorter, the light will be put in operation for longer periods. Mr.
name of a new town in Texas, recently included in the list of post of Col Pan handle. They have their own system of irrigation and are not selling the land, but will cultivate it, employing about 200 farm hands. A commissary store is conducted as a part of the farm enterprise, and a large amusement hall has just been finished., The aim is to make Damsite a model community.

RECENTLY PATENTED INVENTIONS． of interest to Farme

HOE OR RAKE HANDLE CONNECTION． object of the inventor is to provide an inter object of the inventor is to provide an inter
changeable handle which may be applied to the heads of hoes，rakes，etc．A further ob
ject is to provide a handle to which the hea of the desired implement may be applied in various positions，according to the nature the work to be done．The handle is adapte implement head
GRIT FOOD FOR FOWLS．－E．J．FUCHS Scranton，Pa．The product contains valuable elements necessary for the sustenance of hens engaged in laying eggs．It is largely in powerful digestive fluids，it is assimilated t onsiderable extent，and the part not thu assimilated remains hard and glassy．Tha portion which does not serve as a food an egg builder，serves as
the welfare of fowls．
of General Interest．
METHOD OF UTILIZING HILLSIDES AND MOUNTAINS．－M．Richter，Williams town，W．Va．The invention consists in form
ing the hillside into a succession of series of hallow basins adapted to hold and retain the precipitation of water and planting in each asin a growing tree，the growth being greaty held in the basin，each descending series of
trees having its individual basins alternating trees having its individual basins alternating
with basins of the series above，or being stag gered or placed so that the lines of quickest

SPONGE－HOLDER－－U．L．RIfE，Sound Beach，Conn．The device is for use in hold which it is desired to wash or wipe windows or other objects not readily reached by the hand，and the object of the inventor is to pro ride a device easy to manipulate and capable of gripping articles as tightly as desired，and from which

Machines and Mechanical Devices．

BISCUIT－CUTTER．－L．A．Rockweli，Ne York，N．Y．The invention relates to improve cuits from sheets of dough，the object being to provide a cutter and die by means of which the dough may be evenly cut with a clear
and smooth figure impressed thereon；and fur－ her to provide mears for ejecting the form iscu
GAGE．－J．J．Robinson，Bloomsburg，Pa he gage is for use in connection with saw nd other woodworking machinery．The in pulated gage apparatus．A carrier－scre mer to determine the over any number of threads will effect a known advance．Fur ase of rotation of the gage members is cured，while they are at the same time re－ carrier．
SCREW－THREADING MaChine．－F．H clain，Stratton，Me．The objects of the in which shall be automatic in its action of feed－ ing wooden boxes and covers or other blanks， aws of a suitable chuck，cutting the threa hereon and ejecting them from the chuck with no other labor required the
CALCULATOR．－E．Leder，Rixdorf，nea Berlin，Germany．The operation is simple． quantity，a slide keyboard for another figure r quantity，a plurality of slides movable be－ tween the keyboard and the slide keyboard and each provided with a pair of rollers hav－
ing various series of teeth on their peripheries a carriage movable over the slides and con taining an operameter adapted to be operated rom the keyboard for adjusting the slides， and a hand－crank with mechanism for adjust－ ing dials in the operameter．
ClUTCH－OpERATING MECHANISM．－J P．Karr and J．D．Racch，Logansport，Ind． A mechanism is produced in which the con－
struction is simplified，friction in adjusting struction is simplified，friction in adjusting
the movable clutch members is reduced，and the separation of the clutch members may be
effected instantly under all conditions．The effected instantly under all conditions．The and rotation of the twin screws as may be re－ quired to take up wear．
Propeller．－A．h．Friedel．Cleveland， invention in propellers adapted for use in con－ nection with water or aerial navigation．and the invention relates more particularly to
means for supporting the blades and varying the angles thereof in respect to the propeller shaft，whereby the speed of the vessel may
be readily controlled or direction reversed without the necessity of speed－changing Carving－machine．－m．A．Ciming，New York，N．Y．Among the objects of the
vention are：To provide a machine with per and lower deoks，the former being for
supporting the block to be shaped，the model
block being separated upon the lower deck o place the decks in such position as to cupy comparatively small floor space． lates more particularly to a machine of a type rims，or curls upon which hats are forme brims，or cu
and finished．
Note．－Copies of any of these patents will furnished by Munn \＆Co．for ten cents each lease state the name of the patentee，title e invention，and date of this paper．

（10628）N．W．asks how to color copper chocolate by oxidation．A．Take about
a tablespoonful of crystallized verdigris and dissolve it in $1 / 4$ liter of boiling water．Take siso a piece of sal－ammoniac about the size
f a nut and dissolve it likewise in 1／liter of water．Now pour the two solutions to－ gether and add $1 / 1$ liter of wine vinegar．Boil
well together and filter．Of the filtrate now take about a wineglassful and just before using phide．The copper object to be colored must be perfectly clean and polished．The solution may be applied with a hair brush and drie the oxidizing fluid，a sort of binder must be added，and for this purpose a little rouge will and dried slowly．After very evenly applied the liquid it must be seen to application of oat，which has dried in．is completely dis－
olved in the new， Six or even ten coats being thus applied，the pot may be washed in warm water and dried． Heat the article now slowly，whereupon it be omes considerably darker．If the required process must be repeated and the object again ated until the tint is reached
（10629）S．E．asks：1．What electro－ fier emploving trodes？A．Any salt may be used in an electro－ ytic rectifier which will readily oxidize alum－ nium．Sodium acid phosphate is good for the purpose．A full description of a lead－aluminium No． 164 may be had from our Supplement No．1644，price 10 cents．By this apparatus 20 volts，or 45 volts．Another rectifier，yield scribed in the Scientific American，vol． 97 No．8．We send this for 10 cents．2．Has
this phenomenon（the trode with a high resistance film）been ob－
ob erved，using other elements as electrode and correspondingly different electrolyte？A．The
metal commonly employed for the electrode to be oxidized is aluminium；the other electrod
is usually lead．3．I wish to plate a small
pither piece of platinum with aluminium；what aluminium compound is it advisable to use？
A．Plating with aluminium is we possible，but is not in commercial use，so far as we know．We have no formulas which we can say will certainly give a good result．
Many formulas have been published，but we have no personal knowledge of their working
qualities．
（10630）R．F．M．writ ₹：Our 24－horse－ power engine propeller jamued against a pies
recently and became twisted．We are unable orestore it to the proper position to drive would tell me how to set or pitch the 24 －inch blades to the best advantage．A．From so brief description we are unable to judge what may ＂Twisted＂nature of the accident to the propeller Twisted may mean that the shaft is bent which can be most readily noticed in watching rected by of the propeller，and easily mean that one or more of the blades is dis－ torted．in which case it should be shaped as nearly as possible to the form of the undis－ torted blades．To give only the formula most likely to be applicalle for plotting the pitch
and other curves of the various possible forms and other curves of the various possible forms
of screw would take more space than our of screw would take more space than our
Notes and Queries column contains，and it re－ quires education and appliances to plot the
curves from the formula or to shape the pro－
peller to the plotted curves．We would refer
you to spectal articles in our Sopplemen
Nos．16， $93,101,145,370$ ，and 800 ，especiall
to the two latter，or to＂SSrew Propellers an
Marine Propulsion，＂by I．McK．Chase（ $\$ 3$
which we can supply．

NEW BOOKS，ETC

Air Curbents and the Laws of Ventila
tion．Lectures on the Physics Tion．Lectures on the Physics of
the Ventilation of Buildings De－ ivered in the University of Cam Shaw．Cambridge：University Press 1903．8vo．；cloth； 94 pages；illus trated．Price，$\$ 1.25$

In the many pracical attempts to solve the question of ventilation too little attention has
been paid to the laws of physics．Chemists have deduced from their analyses the limits of respirable impurity in air，and much has
been written upon the thermometer as an in－ dicator of healthful conditions，but no one has yet told how a flow of air may be best mad embodies in this volume the gist of the lec－ tures delivered by him during the year 1903,
before the University of Cambridge．He re－ gards the problems largely from the analogy of the distribution of an electrical current in a network of conductors．He lays great stress
upon the physics of ventilated space．Wher－ ever it is possible results are expressed in available for practical work．
a formulæ，so as
 G．Branch．A Reference and Text－ ary Engineers and Firemen．With 300 illustrations．St．Louis：Perrin \＆Smith Printing Company． 12 mo ．， cloth； 940 pages．Price，$\$ 3.50$ ．
wing to the varied requirements of modern Owing to the varied requirements of modern
power plants，and the high boiler pressures necessary for the operation of modern expan－ the engines and turbines，the responsibility of creased in the last few years．When we fur－ ther consider that many plants now generate
their own power for the operation of their lights，motors，or elevators，and also do thei own refrigerating，it can be seen that the modern stationary engineer must not only be
a steam engineer，but an electrical and re－ frigerating engineer as well．This bok sents in a compact form the principles which underlie a thorough knowledge of power and heating plants，together with such data on the subject of mechanical and electrical engineering ion of power and heating plants of every de scription．The subjects are treated in a prac－
ical way rather than in a theoretical and mathematical manner．Before dealing with the unction of any machine，the nature and use of the principal parts are described．The great number of clear designs aids materially the allan on the Drought Antidote for the Northwest，N．S．W．By Percy Al－ an．Read before the Sydney Uni－ versity Engineering Society，October 10， 1906
An account of the artesian wells of New
South Wales，and of the methods of South Wales，and of the methods of using
heir waters for irrigation purposes．The drilling of wells and the details of procedure to insure efficient distribution are both de－

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued for the Week Ending October 8， 1907
AND EACH BEARINO THAT DATE

and

and

 scr，968

\qquad

 路 路 路 路 路

i． 3

Engine and Foot Lathes MACHINE SHOP OUTFITS, TOOLS AND
SUPPLIES. BEST MATERALS. BEST
WORKMANSHPS. CATALOGUE FREE SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati. 0

HOME MADE DYNAMOS. - SCIEN-

Table. See Ironing table.
Table rack and exhibitor, M. H. Keating.
Talking machine attachment,
Carney
Tank emptying apparatus, liquid, s... ${ }^{\text {w }}$

Tapping mechanism, T. G. Morse
Telegraph transmitter, J. Cobariay
Telephone system, F. E. Mayberry
Telephone system, F. E. Mayberry
Threshing machine feeder, D. McIvor
Tie rod. W .

T
,

Trace holder, W. L. Richardson.i.

Truck and
Randall
Truck, locomotive, $\begin{aligned} & \text { W. } \\ & \text { Tubes, manufacture of, } \\ & \text { W. J. S. Still }\end{aligned}$
Turb, me, N. Baasshnus
Turbine, M. Haeberlein
Turbine, M. Haeherlein
Turbine, steam, R. Schiz
Twist drrilt, G. J. Bragy
Twisting together the flaments of a thread
of artifcial silk, machine for, M. Wad
dell

Cold-Pronf

Wright's Health Underwear differs from common underwear in that it protects the wearer from catching colds. It is made as no other underwear is, on the wonderful Wriad stiny leops of wool forming fleecy lining to the garment. This open woven fleece gives the skin the requisite ventilation, allows the pores to breathe, carries off perspiration and allows it to evaporate outside, leaving the skin dry and healthy.

Or dinary catch-cold onderwear is tightly woven, non-abborbent,
ho 18 the perspiration on the kin, chill the bod -gives colds.
With its many advantages wrights Health Under wear costs no
more than commonulderwear. Ask yonr dealer for it and write
for free book "The Loop of Health and the Fleece of Comfort."
wright's health underwear co., 75 Franklin Street, New York.

Cushman
 Build It Yourself

RADIUM AND THE RADIO-ACTIVE

RUBBER STAMP MAKING.- THIS

Your Advertising inserted in the
 Scientific American

would mean its being seen and read by the leading minds in

EVERY BRANCH OF INDUSTRIAL PROGRESS

The Scientific American reaches a thinking class of people who buy freely.

They are amply able to purchase any product advertised attractively.

There is no other publication having the same advertising value for your purpose, because it combines the best elements if the technical papers in your particular line with the large result-giving circulation of a general advertising medium.

In one year it carried successfully the advertisements of 298 different lines of goods, from paper clips at 10 cents to ice machinery at $\$ 15,000$.

We have a department of experts to co-operate with prospective advertisers.

Will you let us take up your advertising and show you Why?

MUNN \& CO., - 361 Broadway, New York

Classified Advertisements

 than four nor more than ten lines accepted. Countseven words to the line. All orders must be accomseven words to the line. All orders must be accom
panied by a remittance. Further information sent on

BUSINESS OPPORTUNITIES.
FOR SALE.-Strictly modern gray iron foundry com-

 TO FINANCIERS.- Wanted a man with $\begin{gathered}\text { f1,000 } \\ \text { finance a newly }\end{gathered}$
 Stamford, Conn.
WANTED.-Patented article of merit to manufac
ture and market. Have abundant capital and exiellent
 ROYALTY SALESMAN WANTED to travel and
phace manufactureandsaleonryaltof spondid house
hold article. Rigbt man can clear sil, START a mail order business;
 INVENTORS AND MANUFACTURERS, havin
 INVEVTORS.-Send for free sample copy "World's
 INVENTORS, MANUEFACTURERS! - Special ma-
chinesdesigned, built, repaired, and experimental work erecuted in a well-equiped, machine shop. J. G.
Mantie, Mechanical Eng ineer, 1907 Park Ave., New York.

AGENTS WANTED

TYPEWRITERS.

MOTION PICTURES

 THE MOVING PICNURE WORLD, weekly. 10 centsper copy; vearig subscription \&R The oll paper de
voted to the moving picture. illustrated song and lan-WANTED.-Addresses of enterprising men contem-

MODELS \& EXPERIMENTAL WORK. INVENTIONSPERFECTED,-Mechanicai Drawings,
Toons., Dies. Special Autonatic Machinery and Nuvel
ties manutactured. Ahe victor Hodel and Novelty

AUTOS.

We have recently received for chauffeurs. we bave de. cided to open a department that will enaile yauto be-
come an experienced automobile diviver and mechanic.
Special course for those out of town Write Automo. special course for those out ot town. Write Automo-
bile Exchanse. 1416 Broadway, New York City.

[^0]

AUTOMATIC MACHINERY.

ELECTRICAL.

ELECTRIC WATER HEATER complete with wire
and plug for 110-volt alternating current. Boils
pint of and
water in 1 minute. .fores by mail. Richard Toennes,
Box 344 , Boonville, Mo.

TALKING MACHINE NEEDLES.

SEASICKNESS.

SEASICKNESS and Car Nausea prevented, Brush
Remedy (Elixi prophylactic). Guaranteed perfect
Harmle

 DESIGNS.
Radge. P. A Mandabac
Bag. i hand, L. Hauser

Flour, wheat, Western Star Miill Co.
Flour, winter whent. Hall \& Wods Co
Furniture polish, Orchard \& Wilhelm

 ine
indenales Co. electric, Electric ser
Knitted goods, certain, Novelty Knitting C

New Auto Bargain

Till
 FREE to Scientific American Subscribers

Home Mechanics for Amateurs
by George m. hopkins

12mo, $\mathbf{3 7 0}$ Pages. $\mathbf{3 2 0}$ Illustrations. Price, $\mathbf{\$ 1 . 5 0}$ postpaid lathe work, metal spinning, silver working; making model engines, boilers and water motors ; making telescopes, microschpes ahts, mynamos and motors

Scientific American Reference Book

Price, \$1.50 Postpaid

The result of the queries of three generations of readers and correspondents is crystallized in this book, which is indispensable to every family and business
man. It is extensively used by government officials. The book contains 50,000 It is profusely illustrated with engravings and comparative diagrams. It tell how to harness a horse and read a gas meter as well as giving hundreds of
tatistical tables. The very wide range of topics treated may be judged by the table of contents which is mailed free on request.

The Scientific American Boy

By A, RUSSELL BOND

12mo. $\mathbf{3 2 0}$ Pages. $\mathbf{3 4 0}$ Illustrations. Price, $\mathbf{\$ 2 . 0 0}$ Postpaid This is a story of outdoor boy life, suggesting a large number of diver-

ns which, aside from affording entertainment, will stimulate in boys sions which, aside from affording entertainment, will stimulate in boys
the creative spirit. In each instance complete practical instructions are
given for building the various articles. given or building the various articles.
The needs of the boy camper are supplied by the directions for making
tramping outfis. sleeping bags and tents a also such other shelters as tree
houses, straw huts, log cabing and The winter diversions inclund insestructions for making six kinds of skate
sails and eight kinds of snow shoes and skis, besides ice boats. scooters. sledges, toboggans and a peculiar Swedish contrivance called a "renn wolf., heliographing and bring tre building subjects in which six are different kinds of of briagging
including a simple cantilever bridge, are described In addition to these, the book containsa larger number of miscellaneous
devices, such as scows, canoes, land yachts, windmills, water wheels and

TO OUR SUBSCRIBERS If your name is at present upon our list as a subscriber MUNN \& COMPANY, 361 Broadway, New York City

Manufacturers!

How to Construct An Independent Interrupter

 Wirele,s Telegraph tountity ruct a ion-Min Each supplement costs 10 cents; 20 cents for the
two. $\begin{aligned} & \text { order from your newseaeier or from } \\ & \text { MUN } \& \text { CO., } \mathbf{3 6 1} \text { Broadwa, }\end{aligned}$ New York WET PROCESS CONCRETE IS BEST

BEA MOTORMAN TMotormen and condoctors por

Paints
 Trade marks

 CopyRIIGHTS \&c. Angon sendup aketa had deacription zia

Scientific American.

DON'T BUY GASOLINE-ENGINES , witupinewnix

Rubber Pump Valves
For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. * * * Mechanical Rubber Goods of every description of unsurpassed qualities, including BELTING, or unsurpassed qualities, including BELT
HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking Tiling, Emery Wheels and MOULDED and and commercial device. $* * * * * *$ NEW YORK BELTING \& PACKING COMPANY, Ltd. 91 \& 93 Chambers Street, New York 0 (1)
 R. H, MARTIN,

OLDS ". ENGINES "Best by Every Test "
L. s. Gov't Report standard. years the by
U. s. Government. We build engines from 3 to $\mathrm{U} . \mathrm{H}$. H . fovernment. sorts
of stationary and farm power. Send for catalogue. 958 seager Street

LEARN TO BE A WATCHMAKER

TOOL KNOWLIDGE CHEAP

The Contagious Enthusiasm los Four-Cylinder is the best proof of its extraordinary efficiency, its power, its high-grade mechanical construction-its right
to class in all respects with to class in all respects with many foreign and American cars of twice
the price. Perfect in balance, minithe price. Perfect in balance, mini-
mized friction, simple, easy to handle
and control, most ent of any four-cylinder car ever built. The Model G is rapidly gaining the posi-
tion among large arsthat the single cylinder
Cadillac has Cadillac has always held among small cars-
that of pre-eminence. Ask for Catalug $\mathrm{G}-47$. $\underbrace{\substack{\text { CADILLAC } \\ \text { Mich }}}_{\text {Menbers Asso. Licensed Auto. Mfrs. }}$

Makes Easy Motoring

 Theonly oil
which can
be ı elied
upon to take
care of your your
engine under all
conditions is Mobil-
oil. Whatever the
make of your automo which propels it-there is special grade of

мовilíloll

WITTE GASOAND ENGINES
 changeable and adjustable. Quick deliveries. "Write today for descriptive cital "S "ind rices,
WITE IRON WORKS CO.; 546 West Fifth Street, Kansas City, Mo

I. HI. C. Gasoline Engines

A line of engines adapted to the uses ot all classes
of mechaniins. Constructed onterhanicall correct
principles.
Cverywhere distinguished for their or mechanics. Constructed on mechanicaly correc
principles. $\begin{aligned} & \text { Fverymbere distinguished for thei } \\ & \text { sefety and ease of management, as well as for thei }\end{aligned}$ efaciency and economyd 3 horse-power.
vertical sty in in annd
Horizontal
Hian 12, 15 and 20 horse-power.
Also a 1 -horse-power air-cooled
 particulara
The Inter
 15 Harvester Bldg., Chteago, $\mathbf{I I I}$.

THE

IAGRAPH
(Trade Nark Repistered)
The Improved Stencil Cutting Machine Sha saving of 90 per cent in your
Two Thg Roomu worth considering?
 Facory, National Candy Co., Buffalo, N. Y. Yo illustrated booklet
Just a word will bring our free
dustibing the Diagrank oud fre " No Error", Sustem of shipping goo

AutoBuggies, Little Roadsters

One and Two Cylinders-Vertical and Hori- Coled Engines Fontal Air Cooled Motors. All Styles of Water Cooled Engines
Friction and Planetary Transmissions. Single or Doube Chain Drive NEUSTADT AUTOMOBILE \& SUPPLY CO 3932 Olive St St Lours Buggies.

YOUR OWN ELECTRIC LICHT PLANT.

 pumping water, sawing wood, refrigeration, etc.
For latest printed matter coverigover ahundred sutats address
ELECTHIC DEPAKTMENT
richardion engineering co. Hartford. Conn.

Star Expansion Bolt Co., Trask Ave. \& 2d St., Bayonne, N. J.

The Lady Elloin

A new Elgin Watch perfectly adapted to the watch needs of womankind, yet meeting the same rigid re quirements that have made the Elgin the standard watch for mankind.
Illustration actual size of watch. Every Elgin watch is fully guaran. teed ; all jewelers have them - Send
for " The Watch," a story of the time of day.
ELGIN NATIONAL WATCH CO

[^1]
[^0]: BOOKS AND MAGAZINES. ELECTRICIA AND MECHANIC.-Practical month-
 y magazine for electricall and mechanical students and
 Publishes illustrated directions for

 CORRESPONDENCE SCHOOLS.

 SCHOOLS AND COLLEGES. PRACTICAL INSTRUCTION in the engineering use
 of Algebra, Geomerry, Logarithms. Trigonometry.

 ## PHOTOGRAPHY.

[^1]: HMNEOL ANYIHINGSENRE

