

SCIENTIEIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO. - Editors and Proprietors

Published Weekly at
 No. 361 Broadway, New York

rerms te subscribers

the scientific american plblications

Ones order, or by bank draft or cheek.
MUNN \& Co., 6 Bil Broadway. New York.

NEW YORK, SATURDAY, APRIL 27, 1907.

The Editor is always glad to receive for examination $1 l l u s t r a t e d ~$ articles on subjects of timely interest. If the photographs are gharp, the articles short, and the facts authentic, the contributions will receive special atte
at regular space rates.

the peace congress.

It is unfortunate that the aims of the Peace Congress which recently closed in this city should not have been more intelligently appreciated and clearly emphasized by the New York press. It is always more difficult to kill a false impression than to create a true one; and unfortunately the later movements directed to the promotion of international peace have been hampered by the misapprehension that peace was being sought by the altogether impractical road of immediate disarmament.
As a matter of fact, the aims of the recent Congress were purely educational-the inculcation and development of an idea. No one realized better than the sponsors of the congress that all those mighty changes in sentiment and practice which because of their magnitude are known as the revolutions of history, are of slow growth, and require, from the time of the sowing of the first seed to the final harvesting of results, a period which is frequently measured by centuries.
War, with everything that the term involves, political, diplomatic, material, and sentimental, is one of the most stupendous facts of national and international life. The forms and instrumentalities of war, both material and human, and all its vast organizations and varied interests, are so interwoven with the national life, that the abolition of war by the immediate disbanding of fleets and armies would be altogether impracticable.
The reign of international peace can be brought about only through a campaign of education similar to that inaugurated by the Peace Congress, which has just closed its labors. Regret it as we may, it is a fact that the average citizen does not realize that war is savagery; that when the citizens of two modern nations set out deliberately to butcher each other, they are simply reverting to that age in the development of the race, when man was emerging from the brute into the human. The world must be made to understand that war is the greatest anachronism of the day. When these facts have been clearly settled in people's minds, and their significance appreciated, a great step will have been taken toward the final abolition of war.
Of the many suggestions advanced at the congress, the most practical, the one which if adopted would produce the most immediate results, was that set forth by Secretary of State Root, in the course of his very able address. After stating that the great obstacle to the universal adoption of arbitration is not the unwillingness of civilized nations to submit to the decision of an impartial tribunal, but rather an apprehension that the tribunal selected might not be impartial, Mr. Root went on to state that what is needed is "the substitution of judicial action for diplomatic action, the stitution of judicial action for diplomatic action, the
substitution of judicial sense of responsibility for diplomatic sense of responsibility. We need for arbitration," said the Secretary of State, "judges who will be interested only in the question appearing on the record before them. Plainly this end is to be attained by the establishment of a court of permanent judges, who will have no other occupation and no other interests but the exercise of the judicial faculty under the ests but the exercise of the judicial faculty un
sanction of that high sense of responsibility."
Of the success of the Peace Congress there can be no two opinions. Seldom, if ever, has a more representative and distinguished body of men gathered for deliberations of such international importance. In addition to the fact that men pre-eminent in every important sphere of human activity were present from all corners of the earth, the congress received the highest national and local recognition; as witness the fact that the President sent a personal letter and was
represented by the Secretary of State and that the mayor of the city and governor of the State in which the congress gathered were also among its principal speakers.

SCOPE AND PURPOSE OF THE JAMESTOWN EXPOSITION.
The traveler who may be ascending the sluggish waters of the James River, in search of the wealth of historic associations with which its banks abound, after he has covered some thirty miles of his journey, and unless some timely informant be at hand, will be apt to overlook a stretch of shore which, scarcely lifting its uninteresting level above the waters of the river, has little to break its monotony beyond an irregular clump of trees, scarce hidden within which he will, on closer inspection, should his curiosity be so far aroused, discern the dark red and green walls of an old ivy-covered tower. Desolate, remote, and largely sedge-covered, this little island affords the passing traveler virtually no suggestion that it holds all that is left of the crumbling walls and scatered graves of the town and people of Jamestown-the first colonial settlement in America. It needs a creative imagination to realize that here was witnessed the "beginnings of a nation," which to-day, after the lapse of three brief centuries, numbers eighty millions of people, and believes, not without cause, that it is destine to become, at least in material resources and material power, the leading people of the earth.
The sponsors of the Jamestown Exposition are to be congratulated on the judgment and good taste with which they have determined the scope and characteristics of the enterprise. With the memories of the colossal Louisiana Purchase Exposition at St. Louis fresh in the minds of the people, it would have been folly to attempt to rival that over-big affair in the size of its buildings and the number of its exhibits. Magnificent though it was, the St. Louis Fair was big to the point of burdensomeness and boredom. It was a reductio ad absuraum of the cult of the superlative; and it taught the valuable lesson that future expositions should aim to be intensive rather than interminable, distinctive rather than discursive.
The Jamestown Exposition will be both intensive and distinctive.: It aims at historical and educational results; the one being secured largely by the character of the buildings, the other by a careful selection of the exhibits which they will house. In searching for a fitting means to embody those spectacular effects which have come to be regarded as an essential, and by many people, alas! as the most desirable, feature of a great exposition, the management have availed themselves of the fine opportunity presented by the waters of Hampton Roads, and have arranged for an international display of the naval forces of the world, which, if it does not rival in extent, will possibly exceed in interest, any previous pageant of the kind.
The Jamestown Exposition is essentially a display of the peaceful arts; hence, it is peculiarly fitting that its most imposing feature should consist of a gathering of battleships and cruisers-those stately patrolmen of the high seas, whose day-by-day duty it is to preserve the peace of the world and render the ocean highways secure; whose activities are mainly concerned in the promotion of international peace; and whose pacific purpose is never so clearly manifested as in an international review of the kind now being organized at the mouth of the James River.

RAISING the assouan dam.

The Egyptian government, as a result of prolonged deliberations, has now finally decided to raise the height of the water of the River Nile impounded behind the Assouan barrage to 22 feet above its present maximum level. This project was first mooted shortly after the works were completed and opened, and the plans and calculations were prepared by the Irrigation Department as far back as 1904, and submitted to Sir Benjamin Baker, the consulting engineer, for his consideration and approval in the fall of that year. About this time, however, no little sensation was created in scientific and engineering circles by the paper published by two professors of the London University, Atcherley and Carl Pearson, regarding the theory and stability of dams, in which reference was made to those thrown across the Nile at Assouan and Asyut. As a result of this discussion, the Egyptian government invited Sir Benjamin Baker to visit the works and announce his decision regarding the advisability of raising the level of the works, as proposed in the plans drawn up by the Irrigation Department. Sir Benjamin Baker spent several weeks inspecting both the barrages and the protective apron which had been built below the toe of the dam, to prevent the friable rock of the river bed being scoured away by the force of the water escaping through the sluices. Upon the completion of his surveys he expressed the opinion: (1) That the dain was perfectly safe and sound throughout, and that there was no reason whatever for the slightest anxiety regarding its stability. (2) That extensive works should be carried out on the talus
downstream of the dam. (3) That no decision could be given by him regarding the advisability of raising the dam for at least two years, at the expiration of which time it was hoped that the protective works would have been completed and tested.
In the early part of this year Sir Benjamin Baker visited the barrages and made a prolonged and detailed investigation of the protective works, the greater part of which had been completed, and was able to inspect the behavior of that section of the operations which had been first completed and submitted to practical test for several months. They were found to be perfectly satisfactory, and the increase in the height of the barrages was thereupon approved.
During the interval that has elapsed between the completion of the plans for this work in 1904 and the recent decision, elaborate surveys and exhaustive examinations have been carried out by the Irrigation Department throughout the Nile Valley between Wady Halfa and Khartoum, to ascertain the practicability of throwing a barrage across the river at a suitable point above the Assouan dam, and thereby creating a subsidiary reservoir, as an alternative to raising the height of the Assouan dam. It was found that no such dam could be built.
The raising of the barrage will be a work of only less importance than the erection of the structure itself, while the advantages reaped by the barren lands of the Nile Valley will equal those conferred by the original dam. The additional quantity of water that will thus be impounded by raising the level 22 feet will be two and a quarter times greater than that stored by the existing barrage. By this new supply it will be possible to bring about a million acres of land under irrigation. At the present moment there are approximately 950,000 acres of government land in the northern tracts of the Nile Valley lying untilled because of the dearth of water. It is intended to reclaim the whole of this tract by using the additional water that will be impounded in the enlarged reservoir. The wealth and revenue of the country will be immediately and greatly increased. In the cotton crop alone the increase, due to the additional water supply, will represent, it is estimated, a sum of between $\$ 17,500,000$ and $\$ 20,000,000$. The undertaking is to be commenced at an early date, and the total cost of completing the work will approximate $\$ 7,500,000$, which outlay will include the compensation to be awarded to the inhabitants of Numidia whose land will be submerged. The work will take some six years to complete, so that the country will not reap the full benefit accruing from this huge increase in the water supply for irrigation purposes until the year 1914.
Unfortunately, the raising of the water level will entail the still further submergence of the temples of Phile and other Nubian archeological monuments, upon the protection of which, by elaborate underpinning, a vast sum of money was expended when the existing structure was thrown across the river. Although the government deplores the necessity of partly submerging these historic remains, it is realized that the economic and agricultural demands of the country must receive first consideration. However, the authorities pledge themselves to do everything possible to minimize the injury. An archeological survey, extending from Wady Halfa to Assouan, has been made by the order of the government, and the various archeological societies have been invited to co-operate with the authorities in their task of preserving the remains as far as the exigencies of the country will permit.
an oppressive postal regulation.
On April 17 the publishers of the United States received notification from Washington that the Canadian postal authorities had made new regulations affecting the rate on newspapers and periodicals, whereby the postage to Canada was increased nearly six times. This law is to go into effect on May 8 , 1907. The publishers in this country are powerless to protect themselves in view of this arbitrary act. It would not be honorable or fair to terminate or curtail subscriptions which have been sent in good faith up to the present time. The result is that the publishers are obliged to pay this considerable increase in postal rates without compensation from subscribers. This is a heavy and unjust burden, which could have been avoided by giving due and reasonable notice of such contemplated change of rate. This act has been done in the most arbitrary and unnecessarily abrupt manner, and it is hoped that when the great injustice to American publishers is understood at Ottawa, and the unnecessary harshness of the provisions of the act, the matter will be reconsidered, and some measures taken to defer the enforcement of the new rate until the end of the year.
While this rule is a matter of such considerable financial loss to American publishers, in the end it is sure to be most severely felt by the Canadian reading public. By far the largest percentage of periodical literature is in the widest sense educational. To increase the cost of such literature to the reading
masses is unwise, impolitic, and sure to arouse the antagonism of those whom the increase affects.
Of course, it will be absolutely essential for publishers to increase the price of their periodicals mailed to Canada on all new business, but as eighty per cent of subscriptions are contracted for during the months of November, December, and January, the injustice done the publishers is apparent owing to the season which the change in rates becomes effective.
The publishers are forced to bear the burden of the increased rate without compensation, and this loss wil in the aggregate amount to hundreds of thousands of dollars. As a matter of fact, the financial loss to the publishers of this paper arising out of the change in rates will be between two and three thousand dollars.

RULES GOVERNING THE COMPETITION FOR THE SCIENTIFIC AMERICAN FLYING MACHINE TROPHY.

A special committee of the Aero Club of America appointed for the purpose, has formulated the following provisional rules governing the competition for flying machines of the heavier-than-air type, which will be inaugurated at the Jamestown Exposition on September 14 next.
It is the intention of the Scientific American, in offering this trophy, to have it always open to competition by inventors the world over. Should the trophy be won by the representative of a foreign aeronautical club, this club, if a member of the Federation Aero nautique Internationale, may become the custodian of the trophy; but the future competitions, even if held abroad, shall be carried out under the same rules and conditions used by the Aero Club of America in the competitions held here.
rules governing the competition for the scientific american aerenautical trophy.

1. This competition will be held annually, and the conditions of the trials will be progressive in char acter, so as to keep abreast of the state of the art The first contest will be held at the Jamestown Exposi tion on September 14, 1907, and all entries for this contest must be made in writing and sent to the sec retary of the Aero Club of America, 12 East $42 d$ Street New York city, prior to September 1, 1907. The rules governing future contests will be formulated by the contest committee of the Aero Club of America in accordance with the results obtained and the lessons learned in this first contest.
2. All heavier-than-air machines of any type whatever (aeroplanes, helicopters, orthopters, etc.), shall be entitled to compete for the trophy; but all machines carrying a balloon or gas-containing envelope for purposes of support are excluded from the competition.
3. The machine which accomplishes the required flight in the shortest time and with the best display of stability and ease of control, shall be declared the winner. If several machines perform equally well, the committee shall have the right to demand further flights in order to determine which is the best. If no machine makes the required flight on the date set for the contest, the one that subsequently first accomplishes such flight shall be declared the winner, and shall not be entitled to make a further flight until the next year, under the changed conditions of the contest.
4. The flights shall be made in calm air, if possible. If a wind of over 20 miles an hour is blowing, no trial need be made. Aeroplanes may start by running along on wheels on the ground under their own power, but no special track or launching device will be permitted. A smooth, level roadway, or a reasonably smooth, turfed field will be provided from which to make the start. Machines need not fly more than a few feet above the ground, or higher than is necessary to avoid obstacles. They should be capable of being steered both horizontally and vertically, and of alighting without being damaged. If there is a wind blowing, the flights shall be made in such direction as best suits each operator. The start should preferably be made against the wind.
5. The committee shall make arrangements to accurately time and measure all flights, as well as the distance traversed and time taken in starting and stopping. Accurate observations of the speed of the wind and other weather conditions at the time of the flight shall also be made and recorded by the committee. Complete specifications of the competing machines, giving weight, supporting surface, details of motors and propellers, etc., together with a description of any performance that the machine has made, shall be forwarded to the contest committee with the entry or when application is made for a trial.
6. Anyone desirous of making a flight at any subsequent time can arrange for such a test by communicating with the contest committee of the Aero Club of America, at least fourteen days in advance, and asking this committee to appoint a suitable time and place for the trial. If the committee believe the machine to be impractical, it can require the inventor either to prove the incorrectness of such belief by an
informal demonstration with the machine itself, or by demonstration in some other satisfactory way which will show that the machine is operative.
7. The first flight shall be for a distance of one kilometer (3,280 feet) in a straight line.
8. After every competition, the name of the winner will be inscribed upon the trophy. If it is won three times in different years by any competitor, the trophy will then become his personal property.

Aeronautical Competitions, Jamestown Exposition, Norfolk, Va., April 28 to November 30.
No. 1. Special race limited to members representing recognized aero clubs for club championship, May 4.
No. 2. Dirigible balloon competition, June 1.
No. 3. Competition of balloons for distance, June 15. No. 4. Competition of balloons for duration, August 3 .
No. 5. Competition of balloons for objective point, September 7.
No. 6. Competition of balloons for altitude, November 16 .

No. 7. Competition of balloons in pursuit of pilot balloon, August 17.
No. 8. Competition of carrier pigeons; flight from aeronautical concourse, exposition grounds, May 18.
No. 9. Simultaneous release of large number of small balloons carrying messages, May 18.
No. 10. Flying devices heavier than air, with motor and operator, September 14.
No. 11. Flying machine models with motor, August 24.
No. 12. Flying machine models without motor, and carrying operator, September 14.
No. 13. Kites for altitudes, November 2.
No. 14. Kites for steepest angle of flight, November 9 .
No. 15. Kites carrying operators, November 16.
No. 16. Registering balloons, July 13.
No. 17. Competition of balloons and automobiles. (Date to be coincident with the arrival of the automobile tour.)
No. 18. Competition of dirigible balloons and automobiles, May 25
No. 19. Competitions of photographs taken from balloons or kites.
No. 20. Competition of photographs taken of balloons, aeroplanes or other aeronautical objects.

No. 21. Competition of photographs of meteorological phenomena. (Exhibits for Nos. 19, 20, and 21 to be ready April 26 , and continuing on exhibition throughout the exposition.)
No. 22. Signaling competitions with balloons or kites, October 12.

No. 23. Hot air balloon competition, October 5.
No. 24. Dropping (harmless) shells nearest selected objective point or target
No. 25. Competition for longest trip, open during exposition.

New Means of Producing Ballast for Balloons.
A new method of producing ballast during a balloon trip has recently been tried in Berlin. In a balloon ascent just made by Capt. Von Krogh, the pilot of the Parseval balloon, a quantity of chemicals were carried, which have the property of absorbing moisture, and thus increasing their weight in a damp atmosphere. The experiments took place under the superintendence of Dr. Knochs of the Meteorological Institute, and as far as can be gathered at present, were of a successful nature. The ascent was made in the spherical balloon "Betzold" from Tegel (Berlin). After reaching a height of 5,904 feet a landing was effected at Ratteick near Koslin, 186 miles distant. Time taken was about six hours.

The Building of the United Engineering Society.

The dedicatory exercises of the new building of the United Engineering Society, at 25 West Thirty-ninth Street, New York city, to which Andrew Carnegie gave $\$ 1,500,000$ for construction and still more when it came to raising an endowment fund, were held on April 17, 1907. The exercises were in the assembly hall of the new building, which is one of the finest auditoriums of its kind in the city.
Mr. Carnegie shared attention with the venerable Dr. Edward Everett Hale, President Arthur T. Hadley of Yale, Ambassador Creel, of Mexico; Sir William H. Preece, president of the Institute of Electrical Engineers of England, and John Fritz, of the building committee, who received the most prolonged applause of any of those present.
Charles Wallace Hunt, who presided, had as a gavel the setting maul which Mrs. Carnegie used when she laid the cornerstone of the building. T. C. Martin, president of the Engineers' Club, read this telegram of congratulation from President Roosevelt:

The White House, Washington,
April 13, 1907.
My Dear Sir: I heartily congratulate you on the opening of the building of the Engineering Societies. The building will be the largest engineering center of
its kind in the world. It is, indeed, the first of its kind, and its erection in New York serves to mark and emphasize the supremacy which this country is steadily achieving through her proficiency in applied science. The whole country is interested in the erec tion of such a building, and particularly, of course, all of those who follow either the profession of engineer ing or any kindred profession, and in no branch of work have Americans shown to greater advantage what we like to think of as the typically American characteristics.
With all good wishes, believe me, sincerely yours,
Theødere Reөsevelt.
Mr. T. C. Martin, 114 Liberty Street.
President Hadley delivered the principal address and declared that a combination of ethical and technical standards would produce the best professional service Ambassador Creel voiced the greeting of President Diaz of Mexico, and a letter was read from Charles A Haswell, who, at the age of 97, is the dean of New York's community of engineers. Just before Mr. Carnegie was introduced, Charles F. Scott, the chairman of the building committee, delivered an historical ad dress.

When Mr. Carnegie rose to speak, he asked the audience not to applaud him too long, lest he should conclude that they did not want to hear him.
"It is the spirit of the men that does the work," said Mr. Carnegie; "the safety of human society lies just here. Whenever we coalesce to do some geed, a uni fication takes place and a consolidation; and whenever men meet to conspire against the public good-to do some evil-they find themselves unable to trust each other. 'Ihat's why you needn't lie awake nights and worry about the future and about what problems society is going to meet. As sure as the sunflower turns toward the sun so the human race turns toward better things.
"This is the rock on which I rest, and on which I meditate sometimes. Nor can you deny this, that, quite apart from whatever evil exists, there is that principle of improvement inherent in us. To-day is better than yesterday and to-morrow will be better than to-day. So I look forward to the future of this building and I know that the organizations to whom it is devoted will advance and continue to meet the developing needs of our age.'

Peary's Proposed arctic Trip.

Commander Robert E. Peary has definitely decided to make another attempt to reach the North Pole. He stated that he would sail from New York as near July 1 next as possible. Sufficient money had been raised, he said, for repairing his ship, the "Roosevelt," and a fund of $\$ 100,000$ necessary to equip the expedition would be available before July 1.
Commander Peary said that he expected to arrive among the ice fields by the middle of July. His equipment and crew, he said, would be practically the same as on his recently completed expedition. He will buy two hundred dogs when he arrives in Greenland. He expects that the trip may be made in about the same length of time as the 1905 trip, which required sixteen months.

The Current Supplement.

In the current Supplement, No. 1634, the article on "How Coke is Made," begun in the last number, is concluded. Charles S . Walden writes on multiplex telephony. Some highly interesting experiments on the behavior of thin aluminium sheets in electrostatic fields are recorded. Prof. H. Geitel, well known for his splendid work in radioactivity, contributes an authoritative article on radioactivity and atmospheric electricity, which may safely be accepted as the latest utterance on the subject. An exceedingly interesting piece of physical apparatus, and one that any amateur can make and use, provided he has a little knowledge of electricity and a source of direct current at his command, is the speaking arc. In the current Supplement Mr. A. Frederick Collins describes very explicitly how such an arc can be made at home. Prof. C. E. Lucke and S. N. Woodward have for months past been conducting an elaborate investigation for the purpose of ascertaining the comparative efficiencies of alcohol and gasoline in farm engines. The results of their investigations are published in the current Supplement. G. K. Gilbert's most interesting monograph on the rate of recession of Niagara Falls is concluded. Sanford E. Thompson, a well-known authority on concrete, writes exhaustively on forms for concrete construction.

Ira Remsen Chosen President of National Academy of Sciences.
The National Academy of Sciences has elected Prof. Ira Remsen, of Johns Hopkins University, president, vice Prof. Alexander Agassiz, who retires after five years' service. The vacancy in the vice-presidency caused by the promotion of Prof. Remsen was filled by the election of Charles D. Walcott, secretary of the Smithsonian Institution.

saving a ship by amputation.

It is not an uncommon occurrence for human life to be saved by amputation; but it is safe to say that the recent salvage of the White Star liner "Suevic," herewith illustrated, is the first instance in which this

The "Suevic" Inmediately After She Had Been Cut in Two.
surgical operation was used in saving a ship. There is this important difference, however, that whereas the dismembered portion of the human body can be replaced by what is at best but a doubtful counterfeit, the portion of the White Star ship that was left behind on the rocks of the Scilly Islands, which in this case happened to be her head, will, in the course of a few months under the skillful hands of Harland \& Wolff, be so perfectly reproduced and joined to the original ship, that no one will be able to tell, by looking at her, that such a drastic work of naval surgery was ever done on her.
On the evening of Sunday, March 17, the good ship "Suevic," 12,500 tons register, flying the flag of the White Star Company, was approaching the Scilly Islands at the close of a day in which she had been bowling along before a full southwesterly gale. The weather was thick, but the captain was sure of his reckoning, and confident that he had yet a few miles to go before reaching the vicinity of those greatly-dreaded rocks. Just as he was about to heave the lead, however, the "Suevic" ran full speed upon a ledge known as Maentare Rock, which lies immediately below the lofty point which is crowned by the lighthouse.
The "Suevic" is a big ship and weighty, measuring 550 feet in length by 63 feet in beam and 40 feet in molded depth. Her dead weight when she struck was probably about 20,000 tons. Consequently, before her momentum was arrested, she had driven about onethird of her whole length firmly upon the rocks. Very quickly, her three foremost holds filled with water; but, fortunately, the bulkheads of the after two-thirds of the ship held; and, by means of the ship's boats, and other craft which put out from shore, all of the passengers were safely landed.
Immediately on learning of the disaster, the White

After Arrival at Southampton. View Showing the Jagged Edges Where the Dynamite Cartridges Cut Through the Hull and Decks.
saving a ship by amputation.
which it was decided that nothing short of severing the head from the body could save the ship; and the operation was carried out as follows:

First, a stout bulkhead of heavy timbers was built
transversely across the hull of the ship, back of the last point of rupture by the underlying rocks. While this was being done, the greater part of the cargo in the after portion of the ship was discharged, only

2,000 tons being left on board to keep the vessel in trim. Then, at the point of amputation, the wooden decks were cut through, exposing the steel decks underneath. A continuous line of dynamite cartridges was laid across each deck and carried entirely around the hull of the vessel. Electric wires were led to a distant point, and, when all was ready, the lines of cartridges were detonated. The intense local action of the dynamite was sufficient to cut cleanly through the whole of the plated structure of the ship, and immediately the after two-thirds of the vessel floated away intact, leaving the other third hung upon the rocks in the position shown in one of the accompanying illustrations. Several tugs then made fast to the floating portion of the vessel; the ship's engines, which were in perfect order, were started in the reverse direction; and the "Suevic," or rather $662 / 3$ per cent of her, commenced the journey to the hospital in Southampton. It was a curious procession; and certainly, if it be true, as the poets would have us believe, that a ship is a thing of life, the "Suevic" must have been filled with amazement at her strange going.

Liquid Carbonic Anhydride as a Solvent.
In all chemical literature there is but little information at hand as to the solubility of various solids in liquid carbon dioxide. According to reports and statements quoted in the Zeitschrift für Physikalische Chemie and in the Chemiker Zeitung (Repertory), C. H. Büchner has now, on the basis of experiments, supplied this lacking information. According to these experiments, inorganic substances, particularly carbonates, such as $\mathrm{CaCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and the halogen salts, are insoluble in liquid carbon dioxide. Boracic acid, $\mathrm{PCl}_{5}, \mathrm{AsBr}_{3}, \mathrm{~J}, \mathrm{P}, \mathrm{Br}$, are slightly soluble; organic substances, as benzol, are mixable under all conditions.

The "Suevic" Backing Away from Her Bow.

The "Suevic" Starting Under Tow for Southampton, Leaving Her Bow on the Rocks.

Naphthalin is at most soluble in carbon dioxide to but $11 / 2$ per r nt. Between -60 deg. C. and +200 deg. C. ethyl alcohol showed no decomposition in carbon dioxide. Of the acids, succinic acid and phthalic acid were insoluble. Of the ethers, ethyl ether is under all conditions soluble. Fixed or but slightly volatile substances are in general insoluble. The author remarks that liquid carbon dioxide is sharply differentiated from other condensed gases such as sulphurous acid and ammonia, which easily resolve inorganic salts, and from the chlorides, bromides, iodides, and sulphides of hydrogen, in which many organic bodies are soluble.

Another Fiala Polar Trip.
Anthony Fiala, who headed the Baldwin-Ziegler expedition in search of the North Pole, has decided to fit out an expedition of his own, and is already beginning to equip it at a cost of $\$ 200,000$. The commander and navigator George Comer, of East Haddam, who has acted as master of numerous whaling vessels that have made successful trips to northern waters, is now superintending the fitting out of the "Gifford" for the trip. As a preliminary to the expedition, Mr. Fiala purposes personally to conduct a party of Americans next June to within the Arctic Circle, and probably land on the coast of Greenland. This excursion will establish a base of supplies for the expedition proper, which, it is expected, will be in readiness for the following summer.

It has been decided to increase the distance and reduce the area of the target for the firing tests in the British navy with the 6 -inch and 9.2 -inch and 12 -inch guns. The abnormally high scores made last year are responsible for the change, the opinion being held that the gunlayers can do well with a much smaller target at a longer range.

THE NEW HOME OF THE AUTOMOBILE CLUB OF AMERICA.
by harry w. perry.
Formal opening of the new $\$ 500,000$ club house of the Automobile Club of America was held April 18, when the final work of interior finishing and furnishing of the magnificent structure had just been com
pleted. This new club house is of interest, not alone because it is the largest and most costly building in the world especially designed and constructed for use by an automobile club, but because it combines in an ingenious way the club quarters of a wealthy semisocial organization with garage and storage accommodations for three hundred motor cars owned by the
members. Still another claim to interest is the fact that it is one of the first large structures erected in New York by the reinforced concrete process.
The building stands on West 54th Street, between Broadway and Eighth Avenue. It has a frontage of 131 feet and rises to a height of eight stories, towering prominently above the four-story brown-stone

One of the Four Storage Floors.

The Automobile Elevator

The Main Entrance to the Club House.
The Members' Lockers on the Ground Floor.

houses of this former rather exclusive residential sec tion. The location is convenient to the many large new garages erected within the last two years in Broadway above Times Square and is handy to various lines of transportation, including the subway and elevated systems. The front of the building is of white granite and glazed with white brick with ornamental relief of green and white terra-cotta, offering a strong contrast to surrounding buildings.
The novel problem of combining luxurious club quarters with ample garage facilities was happily solved by architect Ernest Flagg, of New York, with the result that the new home of the club offers its members ample quarters for business and social gather ings and unsurpassed facilities for the storage and care and repair of their cars under the same roof. The total cost of the new home is approximately $\$ 750,000$, of which $\$ 250,000$ was paid for the plot of eight city building lots, $\$ 350,000$ for the building, and about $\$ 150,000$ for furnishings. Every precaution has been taken to guard against destruction or damage by fire. The building has a steel skeleton sheathed with concrete, and all the floors are of tile and cement. No wood or inflammable material is used, with the exception of a limited quantity for wainscoting, doors, and windows. Fire doors sheathed with steel close automatically by gravity in case of fire, shutting off the garage floors from the club rooms and the stairways and elevator shafts. All the gasoline used is stored in an underground tank outside of the building, and no cars are allowed to have their tanks filled on any floor but the first or ground floor garage. Lubricating oil is stored in a brick vault on this floor and kept oil is stored in a brick vault on this floor and kept
under lock. Small portable tanks mounted on wheels under lock. Small portable tanks mounted on wheels
and fitted with self-registering pumps are used for filland fitted with self-registering pumps are used for fill-
ing the fuel tanks of the cars, thereby avoiding the carrying of gasoline about in open buckets. On every column in the five garage floors is hung a pail of sand, and chemical fire extinguishers are liberally disposed about the garage, to be used in case of emergency.
Describing in detail the interior arrangement and furnishing of the club house, it is most natural to begin with the ground floor, which opens directly off the sidewalk and has three runways for cars into the garage. The first door on the east is the members' entrance, of chiseled white granite. Through a double set of heavy oak doors this gives into a lobby extend ing the full depth of the building, with a grand stair way of white marble at the rear. The lobby is finished in white, with marble floor, and is furnished with carved oak settees and chairs upholstered in red leather. Several doors open from the lobby on the left, the first one communicating with the garage superintendent's office and the garage. The second ad mits to the members' locker room, where there are one hundred private fireproof metal lockers where clothing and other articles can be kept under lock and key. This room has a mezzanine gallery all of steel, and there is not a thing in it that can burn.
Back of the grand stairway and beneath the first landing is a new departure with the club-the ladies' room. This is small, but is exquisitely finished with white enamel and gray silk-covered walls and furnishin polished French walnut.
Extending almost the full length of the front of the second floor is the great assembly hall rising through two floors. The walls are white, wainscoted to a height of eight feet with dark oak. Six great windows admit floods of southern sunlight, and opposite the windows an equal number of great double oak doors open into the big grill room and onto the stair landing. Parquetry is laid on the cement floor, and massive carved oak tables and chairs upholstered in red leather furnish the assembly room. At the east end a huge marble fireplace is flanked by black oak bookcases with adjustable shelves, in which are found bound volumes of the leading motoring periodicals of the world, and automobile literature. At the opposite end of the hall is a carved oak balcony for an orchestra, with a door behind opening onto a rear stairway.
The grill room has a cement floor in terra-cotta and white, white columns and ceiling, and the walls are covered with neutral-toned green wall paper. The tables and chairs are of black-stained weathered oak. As at present furnished, the room seats one hundred. On the north side are five large leaded glass windows, while there are three big skylights. The directors' room opens from one side of the grill room, while the butler's serving room and kitchen are on the other side
On the mezzanine floor above is the secretary's office and the general office, where the large volume of clerical work is done and where the touring and road-map department is quartered. A richly furnished pool and billiard room is also located on this same floor, having an entrance from the head of a flight of stairs rising from the landing at the top of the grand stairway. The ceiling is enamele white, while the walls are papered in dark red, and a rich, red carpet covers the floor. The tables and chairs are of mahogany.

Four of the floors above this are devoted to the storage of cars. They are admirably lighted by im-
mense windows by day and electric lights at night. Although the city Edison current is at present employed, the plans contemplate the generation of current by steam-turbine-driven dynamos in the basement as soon as the machinery can be set up. Communication between all of the storage floors and the basement and roof is established by two electric elevators at the west end of the building, each 10 by 18 feet and having a lifting capacity of four tons. Flanking these are cement stairways for chauffeurs and servants. On each of the storage floors is a small room for chauffeurs, fitted with clock, telephone, tables, and chairs.

An interesting feature of the garage on the main floor is the three huge doors that admit cars. Instead of swinging back into the garage, where they would always be in the way and obstruct the light, they rise, folding inward horizontally at the middle. Directly back of one of these doors is a Fairbanks scales for weighing cars. To the east of the entrances is the superintendent's office, from which a small window looks into the garage, and on the west is the checker's room, where there are wire pigeonholes for letters and messages for the chauffeurs. The two big automobile elevator shafts are located also on the east end of the room, and in front of them is a large iron turntable for turning cars with their backs toward the elevators. On this floor are also washing stands and running water for cleaning the bodies and running gears of the machines.

The top floor is reserved for a repair department and testing room. Here is to be provided every facility for making repairs that can be found in the most up-to-date metropolitan garage. Delays in securing shipments have prevented installation of the necessary machinery as yet, but the purchases include one small and three large lathes, one milling machine, universal grinder, shaper, radial drill press, portable crane, and emery grinders, buffers,' and similar small machine tools, all driven by individual electric motors. When complete, the repair shop will provide employment for a score of machinists, with space for any reasonable expansion.

In the center of the floor, cut off by wire screens reaching to the ceiling, is the testing department. This is to be equipped with a dynamometer and every. thing needed for measuring the power developed oy motors and that delivered at the wheels of a machine, showing efficiency, friction losses, fuel consumption per horse-power-hour, taking indicator diagrams, etc. Of necessity an adequate description of chis plant, to which the technical committee of the club is giving considerable attention, must be postponed to some future time.

The growth of the Automobile Club of America has been rapid since its organization in 1899, eight years ago. The active membership limit has been raised a number of times until it stands at one thousand. This limit has now been reached, and besides three hundred additional associate members, there is always a waiting list of applicants for membership. Among the members are many wealthy and socially prominent men. The club has international relations with all the national automobile clubs of Europe, and occupies the position of a national organization in this country, conducting national motor car exhibitions and technical contests, such as endurance, consumption, and commercial vehicle trials. It takes an active and influential part in affairs, having been in large measure instrumental in securing the passage of the $\$ 50,000,000$ road improvement act in the New York legislature, in promoting touring at home and abroad, and in securing reasonable and just laws affecting the use of motor cars on the public streets and roads.
the international fleet at jamestown.
Unquestionably, the most imposing feature connected with the opening of the Jamestown Exposition will be the long lines of battleships and cruisers which have gathered from all parts of the world to do honor to the occasion. Of the sixty-seven ships of importance there assembled, twenty-seven fly the flags of friendly foreign nations, and the balance that of the United States. The visiting ships, including those of the larger size, are mainly of the armored-cruiser type, the remainder consisting of protected cruisers and a few gunboats. To be exact, there are fourteen armored vessels, nine protected cruisers, two gunboats, and one training ship. In the main, the foreign ships are representative of the latest ideas of the powers in the various types that are represented, up to the close of what might be called the ante-bellum period, or the period which closed with the Russo-Japanese war. There is, however, one important exception, which is furnished by the Japanese themselves, who have sent over, in that splendid ship the "Tsukuba," the first of a new typethe cruiser-battleship-to make its appearance on the high seas.
In dispatching the "Tsukuba" to Jamestown, the Japanese have at once paid us the compliment of sending their latest and finest ship of its class, and, incidentally, they present to the United States concrete
evidence of the fact that they are now entirely inde pendent of foreign ship-builders, and are capable of turning out in two years a first ass warship-hull, engines, guns, and equipment-cumpletely of Japanese manufacture.

The "Tsukuba" is of about the same displacement as the British "Good Hope" and the United States "Washington." But she has one inch more belt armor than the British, and two inches more than the American ship. She carries twenty-eight guns, as against eighteen on the "Good Hope" and twenty on the "Washington." Of these, the main armament consists of four 12 -inch guns, as against two 9.2 -inch on the "Good Hope," and four 10 -inch on the "Washington." The intermediate battery on the Japanese ship con sists of twelve 6 -inch and twelve 4.7 -inch guns, while the British and American cruisers carry each sixteen 6 -inch guns. The "Tsukuba," therefore, shows a grea superiority of gun power, even over the "Washington" but her speed of 21 knots is a knot and a third less than that of the "Washington," and $31 / 2$ knots less than the maximum speed of the "Good Hope." The next in importance of the foreign cruisers is the armored cruiser "Victor Hugo," representing the French republic, an exceedingly handsome vessel of 12,416 tons and 22 knots speed. She carries a $63 / 4$-inch belt, and her battery of four 7.6 -inch and sixteen 6.4 -inch guns is carried mainly in turrets with a high command of from 26 to 34 feet above the sea. The 7.6 's are pro tected by 8 inches of armor, and twelve of the 6.4 's are mounted in pairs on the broadside in double turrets protected by $51 / 2$ inches of armor; the other 6.4 's are mounted on the main deck in four casemates with four inches of protection.
In point of size and speed, though not of gun power, the next largest ships are the three armored cruisers "Hampshire," "Roxburgh, and "Argyll" of the British squadron, vesseis of 10,850 tons displacement, and from $221 / 2$ to $231 / 2$ knots speed, carrying four 7.5 -inch guns in single turrets with 6 inches protection, and six 6 -inch guns in casemates. The belt protection is 6 inches in thickness
Next in importance are the twin armored cruisers "Roon" and "Yorck" of the German navy, each of 9,050 tons displacement and over 21 knots speed. The armament, which is much heavier than that of the "Hampshire" class above mentioned, consists of four 8.2 -inch guns carried in two turrets with 6 inches of armor protection, and ten 6 -inch guns mounted in a central redoubt of 4 -inch armor, and so placed that four of them can be fired dead ahead and four dead astern. The only point in these fine ships which can be criticised is the belt, which has a maximum thickness of only 4 inches.
France, Italy, and Austria each contribute an armored cruiser of between 7,000 and 8,000 tons displacement, France sending the "Kleber" of 7,700 tons and 21.27 knots, carrying eight 6.4 -inch in 4 -inch armor turrets and four 4 -inch guns in casemates. The "Kleber" has the characteristic high freeboard of the French cruisers; but like the German "Roon" and "Yorck" her armor is over-light, the belt being but 4 inches in thickness. Of about the same displacement is the Italian "Varese," of 20.2 knots, mounting one 10 -inch and two 8 -inch in 6 -inch-armor turrets, and fourteen 6 -inch in 6 -inch casemates or behind shields. The belt armor is 6 inches in thickness. The "Varese" is a type of cruiser designed and built in Italy, which combines, if we except the "Tsukuba" and "Indomitable," more fighting efficiency on a given displacement than any armored cruiser that we know of. Two of this type went successfully through the Japanese war as part of the Japanese armored cruiser division. Another armored cruiser of the same displacement is the "Sankt Georg," of the Austrian navy, mounting two 9.4 -inch guns, five 7.6 -inch, and four 6 -inch. The belt is $61 / 2$ inches in thickness, the barbettes have 8 inches, and the side of the lower deck has $81 / 2$ inches of Krupp armor protection. These features, combined with a speed of 21 knots, render this vessel an exceedingly fine example of the armored cruiser class. A little smaller than the "Sankt Georg" is the "Kaiser Karl VI.," also of the Austrian navy. Her speed is 20.8 knots, and she mounts two 9.4 -inch and eight 6 -inch guns; the belt being $81 / 2$ inches, and the barbette armor 8 inches in thickness.
The protected cruiser class is represented by the two German ships "Bremen," of 3,250 tons and 23.2 knots speed, and "Niobe," of 2,650 tons and 21.6 knots speed, each vessel mounting ten 4.1-inch guns and several 1-pounders. Japan has the "Chitose," a protected cruiser of 4,760 tons and 22.5 knots, mounting two 8 -inch and ten 4.7 -inch guns. Italy sends the protected cruisers "Etruria" and "Fieramosca," the former of 2,280 tons and 19.8 knots, carrying two 6 -inch and eight 4.7 -inch guns, and the latter of 3,600 tons: and 17.5 knots, mounting a somewhat out-of-date battery of two 10 -inch and six 6 -inch guns. Austria sends: the protected cruiser "Aspern," of 2,437 tons and 20 knots, and a battery of eight 4.7 -inch guns. Sweden is represented by the armored cruiser "Fylgya," of 4,060 tons and 21.5 knots, mounting eight 6 -inch guns in
the international fleet at jamestown. vistitina ships.

Buenos Ay	rotected	$\left.\left.\right\|^{4,500}\right\|^{24 .}$		
Dom Carlos		Portugal 4,100 \|22.0	46-in	
Brazil.				
Barroso....	Protected	3,450	6 6-in,	Deck ${ }^{\text {tur. }} 30 \mathrm{in}$ in.
Tamoyo	nbo	1,030 23.0	-in.: 6 6-	Deck 1 in.
tred states battleship flebt.				
Minnesota	Battleship	16,000 18.8		
Vermont.....		16,000 18.3 18,00 18.8		Belt 11 in.; tur. 12 inand8 in.\qquad
	".			
	"		$\begin{gathered} \text { ". } \\ 4 \text { 12-in.; } 8 \text {-in.; } \\ \text { 12 } 6 \text {-in. } \end{gathered}$	
rg	"	14,948 192		
Nebraska. New Jersey Rhode Island. Maine...	\because	$\begin{aligned} & 1,4988 \\ & 1,948 \\ & 1,948 \end{aligned}$		
			412-in.; 16 6-in.	Belt 11 in.; tur. 12 in.
	\because			
			$\underset{4 \text { 13-in.; }}{\text { ". }} 14 \text {-in. }$	
	"			${ }^{\text {ur.. }}$. ${ }^{\text {ain. }}$
Kearsarge		${ }_{11,5520}^{11}{ }^{10}$		Belt 13tin.;tund 18 in.and and 8 in.
	\because			
		${ }_{11,366}^{11,520}$	$4 \text { 12-in.; } 8 \text { 8-in.; }$ $44 \text {-in. }$	Belt 14 in.; tur. 12in.
Indiana.	"	10,288	4 13-in.; 8 (in. 8 -in.; 410-in.; 16 6-in.	
ingt	$\begin{gathered} \text { Armored } \\ \text { cruiser } \end{gathered}$	14,500 22		
Tennessee			" ${ }^{\text {a }}$,	

turrets protected by 5 inches of armor. Chile sends the training ship "Baquebano," and Argentina the protected cruiser "Buenos Ayres," of 4,500 tons, 24 knots, and battery of two 8 -inch, four 6 -inch, and six 4.7-inch guns. Portugal is represented by the "Dom Carlos," a protected cruiser of 4,100 tons and 22 knots and a battery of four 6 -inch and eight 4.7 -inch guns. Brazil sends the old-time battleship "Riachuelo," of 5,700 tons and 16.5 knots, carrying four 9.4 -inch and six 4.7 -inch guns. She also is represented by the "Barroso," a protected cruiser of 3,450 tons and 20.5 knots, mounting six 6 -inch and four 4.7 -inch guns, and the gunboat "Tamoyo," of 1,030 tons and 23 knots and a battery of two 4.7 and six 6 -pounder guns.
united states fleet.
The United States fleet assembled at Hampton Roads to receive the visiting squadrons is one of the strongest aggregations of naval power ever drawn up for review. In the fact that of the forty ships or more twenty are armored, and that eighteen of them are battleships, the composition of the fleet is strictly representative of the United States navy, especially in its later development. Ours is essentially a battleship navy; and our naval constructors have been careful to maintain the national reputation for mounting exceedingly heavy batteries-a fact which is at once evident from a study of the number and caliber of the guns given in the accompanying table. Another satisfactory feature evident in this table is that, since the period of the Spanish war, we have built our ships strictly in classes. There is no instance of the construction
of an individual ship, whose design differs widely on some point or other from every existing class.

The most modern and formidable vessels of the fleet are the four battleships of the "Minnesota" class, all of 16,000 tons, 18.5 knots, and mounting four 12 -inch, eight 8 -inch, and twelve 7 -inch. In the "Connecticut" and "Louisiana" the belt is 11 inches, in the "Minnesota" and "Vermont" 9 inches; otherwise, the ships are practically identical. The 12 -inch guns have 12 inches and the 8 -inch guns 8 inches of protection, all of them being mounted in pairs in turrets. Of the world's battleships designed before the late war, these are the most powerful and best protected-with the possible exception of the Japanese "Kashima" and "Katori," whose four 10 -inch guns will by some authorities be preferred to eight 8 -inch.
The five battleships of the "Georgia" class (see table) are about 1,000 tons smaller than the "Minnesota," but have a knot more speed. The main armament is identical; the intermediate battery consisting of 6 -inch in place of 7 -inch guns. The only objection that can be urged against these ships is that they carry the superposed turret-whereby a heavier allround 8 -inch fire is obtained at the expense of undesirable complication of mechanism and no little interference of gun fire. Nevertheless, these are most powerful ships, with good freeboard, high speed, generous coal supply, and a battery heavier than that of any foreign vessels of their date.
The nine battleships above mentioned are by far the most formidable portion of the fleet at Hampton Roads. In the "Maine," "Miscouri," and "Ohio," of 12,500 tons and 18 knots, we have ships of excellent protection but considerably less battery power, 8 -inch guns being excluded. The "Alabama" and "Illinois," of a knot less speed and 1,000 tons less displacement, carry the 13 -inch gun in their main battery, and like the "Maine" class have no intermediate 8 -inch guns; but all of these five ships are heavier armed than battleships of the same date built for foreign navies. The "Kearsarge" and "Kentucky," of the same displacement, and about the same speed as the "Alabama," carry four 8 -inch guns in superposed turrets above the 13 -inch guns, and they have a numerous broadside battery of 5 -inch. The "Iowa," of about the same displacement and speed as the "Kentucky," is an improved "Indiana," being about 1,000 tons larger with a knot and a half more speed, and a similar disposition of the battery, the 12 -inch taking the place of the 13 -inch gun. In the armored cruisers "Washington" and "Tennessee," of 14,500 tons displacement, the United States navy possesses two ships which but for the overlight waterline armor could be reckoned as of the cruiserbattleship type which promises to have something of a vogue during the next few years. They carry a battery of four 10 -inch guns in turrets protected with 10 inches of armor, and they have a broadside battery of sixteen 50 -caliber 6 -inch guns. Limitation of space prevents any detailed reference to the less important United States ships at the review.

Taken altogether, the United States fleet at Hampton Roads is a subject for just pride on the part of American citizens; and when the President steams down the lines and receives the salvos of the visiting and home fleets, it will be a subject of well-earned gratification to him that his efforts for a long period of years should have contributed to the production of so many and such formidable warships as will fly the American flag on that day.

OPENING OF THE JAMESTOWN EXPOSITION.

What has been described as a "Colonial city beautiful" has sprung up at Sewell's Point, on the shores of Hampton Roads, and Norfolk and the towns that nestle about this historic body of water are prepared to receive the throngs of visitors to the Jamestown Exposition, which will be formally opened by President Roosevelt April 26. The exposition is in celebration of the tercentenary of the establishment of the first permanent English settlement in the new world at Jamestown.

Jamestown, a peninsula when Capt. John Smith landed there May 13, 1607, now an island cut off by the currents of the James River, is some thirty-odd miles up the river, above Hampton Roads. The town as such ceased to exist two hundred years ago and the island now is partly used for farming purposes. The historic portion is owned by the Association for the Preservation of Virginia Antiquities, which tends it with reverent care and has made valuable research through excavation. The government has built a retaining wall about part of the island to protect it from further encroachments of the river and has erected on the island a monument to the first House of Burgesses-the first representative body of the people assembled on this continent. The Colonial Dames have restore the Old Church, the dismantled tower of which alone remained, and the Daughters of the American Revolution have erected a copy of Hays Barton, the home in Devon, England, of Sir Walter Raleigh. The Pocahontas Memorial Society has been engaged in raising a subscription of $\$ 10,000$ for a
monument to the Indian princess whose interposition gave to the English their lasting foothold. The A. P V. A. has erected a statue of Capt. John Smith.

The opening date of the exposition commemorates that on which Capt. Newport's little fleet, consisting of the "Susan Constant," the "Discovery," and the "Godspeed" anchored off Cape Henry, named after the then Prince of Wales, when Capt. John Smith, going ashore, planted a cross near where is now the Cape Henry lighthouse.
The ceremonies incident to the formal opening on April 26, 1907, will be under the direction of Mr. G. T. Shepperd, secretary of the Jamestown Exposition Company, assisted by Lieut. P. H. Bagby, Sixth United States Infantry, military attaché to the department of the secretary. At sunrise on April 26 the Norfolk Light Infantry Blues, stationed at the exposition grounds, will fire a salute of 300 guns to usher in the commencement of the day opening the Jamestown Tercentennial Exposition in commemoration of the 300th anniversary of the first English settlement of America.
Upon the arrival of President Roosevelt on the 'Mayflower" in Hampton Roads, a salute will be fired by the United States and foreign warships there as sembled. When the President arrives at the exposition grounds, he will be met at the end of the government pier by a military escort, and will be saluted by the United States artillery stationed on the exposition grounds. Promptly at the hour of 11:30 the President will be escorted to the reviewing stand, on Lee's Pa rade in the rear of the auditorium building, where appropriate exercises will take place. When the Presi dent presses the gold button, putting the machinery of the exposition in motion, it will at the same time be a signal for a salute to the Union by the United States and foreign ships assembled in Hampton Road and by the garrison at Fort Monroe. At the conclusion of the salute all of the bands on the exposition grounds will play "The Star-Spangled Banner," at which time all the troops will salute the national anthem by presenting arms, and the entire concourse will be expected to uncover during the rendition of his ceremonial.
Immediately thereafter the President of the United States will review the parade, of which Major-General Frederick D. Grant, of the United States Army, will be grand marshal, which will be participated in by the soldiers and sailors of the United States and foreign governments and the National Guard. The governors of the different States of the Union having military representation in the parade will participate therein, together with their staffs. Boxes on the reviewing stand will be assigned to those governors who do not participate in the parade.
On the reviewing stand, besides the President of the United States and his cabinet, will be the diplomatic corps, officers and directors of the Jamestown Exposition Company, members of Congress, the general assembly of Virginia, United States and State commissioners to the Jamestown Tercentennial Exposition, official representatives from the different States of the Union, officers of the various historical societies and the mayors and municipal officers of the cities surrounding Hampton Roads.
The various States have responded liberally to calls for appropriations and some twenty-five have buildings on the grounds, nearly all permanent structures of Colonial design, alined along the waterfront, where they will remain to form the nucleus of Norfolk's prospective new suburb, which may become known as Colonial Park.
The resources of the States will be shown by exhibits in what is known as the States Building.
The principal exposition buildings are: Hall of Congresses, 236 feet long and 160 feet wide, with wings 62 feet wide; auditorium, 150×250 feet; Mining and Metallurgy, 100×250 feet; Manufactures and Liberal Arts, 280×550; Machinery and Transportation, 280×550 feet; States Exhibits Palace, 300×500; Food Products, 300×250 feet; History and Historic Arts, 100×300 feet; Education Buildings, two, connected by colonnades with wings of Hall of Congresses, each 124×129; Marine Appliances, 26,000 square feet; Palace of Commerce, 11,500 square feet.
The grounds of the Jamestown Exposition are ideally located. Sewell's Point has historic interest of its own and overlooks the scene of the great marine duel between the "Merrimac" or "Virginia" and the "Monitor." Topographically the exposition site was particularly adapted to its purpose and susceptible to the adornment and general treatment that adds so much to the attractiveness of an exposition. Its marine frontage made possible the naval display, and its beach adds the delight of sea bathing. It extends along Hampton Roads two and a half miles, and Boush's Creek skirts it for a mile and a half. Covering 600 acres, more than the World's Fair at Chicago had, the grounds offer ample room for the buildings, broad boulevards, lawns, groves, and rambles, and the Lee Parade of thirty acres. Near this is the military camp with sloping ground, giving natural drainage More than a million plants have been set out and
are now enjoying healthy growth, and these with shrubs and trees have been so selected as to give perpetual bloom. Hundreds of apple trees of large growth, some a foot thick, have been transplanted from the neighboring country, while many other trees of great variety have been brought from afar. The arboriculture of the grounds is in itself an interesting and attractive exhibit. Along the two and a half miles of water front a quadruple row of trees has been planted, and similar work has been done lavishly in all parts of the grounds, while grassed places have been adorned with innumerable flower beds. The roads are of macadam and the wallss, all broad, are concrete. A canoe trail winds for two miles through the grounds, passing through bits of picturesque woodland.
To comprehend the plan of the grounds, the best method is to go directly across the middle from the main entrance at the south to the water basin formed by the great double pier erected by th government. The piersare 800 feet long and 200 feet wide and are connected at the outer ends by extended bulkheads and an arched bridge beneath which the naval launches and smal craft from the fleet may enter. At the head of the basin called Smith Harbor is Discovery Landing, named for one of New port's fleet, while the piers are similarly named for the other vessels of the fleet, the "Susan Constant" and the "Godspeed." From the landing extends the
broad Raleigh Square back to a similarly broad expanse, in which are the lagoons
The piers with their towers for wireless telegraphy and searchlights, the Square and the lagoons, the gardens and buildings on either hand, the innermost at the back of the Square connected with those nearer the water by peristyles, make this central feature decidedly imposing
On either side of the Square are the United States government buildings-to the right the Smithsonian Institution exhibits and another exhibits building, while to the left are the Fisheries Building and those devoted to other exhibits, including the displays from Porto Rico and Alaska, and the officers' club. Within the Square on either side is, on the one hand, the re

States Exhibits.

The Auditorium will be the scene of daily conventions. Some 150 conventions are scheduled for the exposition. To meet the hall requirements another building has been erected near the entrance, while a citizens' committee has provided for many of the gatherings in Norfolk.
Willoughby Boulevard skirts the water front, and along it, flanking the central government buildings, are the beautiful State buildings. Kentucky, at the extreme right in a pine grove and next the Inside, a hotel accommodating 3,000 guests, has reproduced Daniel Boone's fort. Virginia has given a fine example of the type of Georgian Renaissance such as is seen in such old homes as Monticello, Jefferson's mansion at Charlottesville, Va., and Montpelier, the home of Madi-
production in topographical verity of the Panama isthmus and canal; on the other, a large tank for the larger marine specimens, seals, etc.

To the right of the lagoons is the Manufactures and Liberal Arts palace, and to the left the building of Machinery and Transportation. At the head of the lagoons is the Auditorium, a handsome structure, with its classic dome, lofty portico, and wide-stretching wings.
son. Maryland has copied the home of Charles Car roll, of Carrollton; Pennsylvania has the Independence Hall, and Massachusetts the old State House. New York has a conspicuous structure. with an elliptical dome, a high Colonial portico and wings; New Jersey has a copy of Washington's headquarters at Morristown; Delaware has a Colonial dwelling; Connecticut reproduces the home of Col. Talmadge, of Washing ton's staff; Rhode Island copies her first State house; Georgia reproduces Bulloch Hall, the home of President Roosevelt's mother, where on June 10 the President will deliver an address on the occa sion of the building's dedication; Ohio has "Adena," the first stone house erected by English-speaking people west of the Alleghenies, which was the executive mansion when Chillicothe was the State capital; New Hampshire reproduces the home of John Langdon, and Maine the home of Long fellow. North Carolina, Illinois, and Missouri have handsome Colonial buildings. Still other States with buildings are Flor ida, North Dakota, Vermont, Alabama, Tennessee, Arkansas, Louisiana, West Virginia (which also is erecting a huge coal monument), Michigan, and California. Oklahoma provides for her exhibits in her building, while the other State buildings are for social purposes and display of only things of art and historic interest.

These buildings are in the main of brick with white trimmings. In appearance they harmonize with the exhibit palaces, which have brick veneer instead of staff, which is used only in the trimmings. This gives an appearance of permanency, and relieves the aspect of that garish ness and newness common to most exposition architecture.
In the Auditorium group of buildings are, to the right, the concrete and fireproof History and Historic Art and Fine Arts Buildings, and the Food Products Building, while to the left of the Auditorium are the Marine Appliance Building, and next it the Minerals, Mines and Metallurgy triple building. Farther to the left and east is the Graphic Arts Building, which is shared in part by the Social Economy department. The Boston Printers' Society has arranged the plan of

Transportation Building.

the Graphic Arts exhibit and it will duly impress the visitor with the conspicuous part printing has played in the advance made by humanity in civilization in the last three hundred years.
At the eastern end of the grounds are the Canoe Trail, the Philippine Reservation and Athletic Field, and the Life Saving Station. On the extreme west are the War Path, which corresponds to the Midway at Chicago; the Negro exhibit and the Palace of Commerce, which will be devoted to display of wares, domestic and foreign.
Perhaps no exhibit will attract more attention than that of Power and Alcohol. The government will conduct tests, experiments, and demonstrations, and the agriculturist will learn how many things about him may be converted into alcohol, and profitably so, under the denatured alcohol act of Congress. Experiments will be made to determine how inexpensively denatured alcohol can be manufactured, and show its qualities as a fuel compared with coal and gasoline.
Officials of the United States Geological Survey have in charge the Mines and Metallurgy exhibits, and processes will be shown. The Building Material exhibits will be large and much attention will be paid to cement and to concrete work.
Farmers will find the States Exhibits palace devoted mainly to agriculture, and in it, besides the great staples from all parts of the country, fresh fruits and green vegetables and berries, everything in season, together with work in soils, fertilizers, and seeds. The exhibit of farming implements will be extensive.
In the Machinery and Transportation Building the
Pennsylvania Railway will show a section of its East

Government Museum Building.
this year of the Glidden tours, which will include the Virginia battlefields and reach to Virginia Beach, at which point will be found a beach course for racing of 80 miles extending to Hatteras.

Aeronautical devices are likewise to be shown.

Maryland State Building.

River tunnel tube, 23 feet in diameter, and within the tube will be one of the company's new steel cars. The Baldwin firm will show four types of locomotives, and of these two will be so installed as to have their machinery in motion. Automobiles will be shown in great variety and the exposition will be the objective

A special building has been erected and in it will be placed aeronautical paraphernalia, models, charts, etc. There are to be contests between balloons, dirigibles, aeroplanes, and various characters of flying machines, kites, etc. The contests will be not only of the sporting kind, but scientific both in reference to
airship construction and in relation to the elements. The exposition will be the rendezvous of athletes, and the field events will bring together a large number of champions in their respective lines. The auto-boat will be much in evidence and Hampton Roads will witness a series of yacht races for craft of varied design and racing length. Five cups are offered for the international races-the President Roosevelt, the Kaiser Wilhelm, the King Edward, the Sir Thomas Lipton, and the Exposition cup. Other cups are offered for special regattas and for free-for-all racing. The National Rowing Association goes to Philadelphia for its annual championships, but comes to Jamestown afterward and an interesting series of boat races is promised, off Sewell's Point.
One of the most instructive features of the Exposition will be the Negro exhibit, for which Congress appropriated $\$ 100,000$. A building has been erected on the grounds from a design made by a colored architect, W. S. Pittman, of Washington. It is 125×250 feet area, two stories, and in the Colonial style. The life of the race on American soil began at Jamestown twelve years after the landing of the English, and the exhibits will represent the stages of negro life and progress. A striking exhibit will be a series of model groups with appropriate scenic accessories illustrating in chronological order the various stages of the negro's history. This is the work of Meta Vaux Warrick, a young colored sculptor of Philadelphia, graduate of the Drexel School of Fine Arts. There will be exhibits from the several colored schools, such as Hampton, Tuskegee, Fisk, Livingstone, and Normal
Collections have been made of the products of negro labor in all branches-agricultural, horticultural, mechanical, and in the liberal arts-and furthermore will be shown exhibits representing his activities in the professions, in art, music, and literature.

Photograpbs copyright 1907 by Jamestown Official Pbotographer Corporation.

Reproduction of Old State Honse, Boston. Boston massacre occurred on the square in front of this building.

AUSTKALIAN SAPPHIRES.

 y yeu puumer

 y yeu puumer}Sapphires are found in all the Australian states, but chienly at Anakie, in Queensland, where they are obtained in considerable quantities. The sapphire-bearing area, according to Mr. B. Dunstan, assistant Queensland geologist is of considerable extent, about fifty squar miles, extending north and south of Sapphire Town, as the Anakie settlement is designated. The deposits are mostly confined to the granite country, al though rarely met with in existing streams. Gener ally, they are found high above the beds of the creeks, but roughly paral lel with the creeks. The sapphires do not travel very far, and if the depos its containing them are washed away, the stones will be found just below any remaining portions, or perhaps only a short dis tance away. Associated with the sapphire deposits is a quartzite rock, locally known as "billy," which is general in all the eastern portions of the field in which the gems are found and, when met with in unprospected localities, is re garded as an indication of he probable existence of sapphires in the vicinity There are, however, locali ties in which the sap phires are found, although no traces of the "billy" are to be discovered, hence it is assumed that while the rock may have been plentiful in the sapphire-bearing country, it is not that from which the gems originally came.
In some places bowlders of basalt invariably occur with the sapphires, and pebbles of basalt in which pleonaste is imbedded are often found. There are numerous basalt peaks scattered over the Anakie field, and a pale blue sapphire, having a thick, black scaly coating on one side, together with abundance of pleonaste, was picked up on the summit of one of these. The stone was obtained at a height of 500 feet above the highest of the sapphire alluvial deposits, and, although there were means by which it could have been taken up to the top from the deposits below, it very probably was weathered out of the basalt, together with the pleonaste with which it was found. The mineral inclusions in the basalt on thie tops of the mountains present many interesting features, and are regarded as throwing some light on the origin of sapphires, although it must apparently remain largely speculative. In the different workings on the Anakie field the thickness of the sapphire wash varies con siderably, in some places being only a few inches thick, while in others it amounts to several feet
The bottom is usually redcish clay, resting on lecomposed schists and slates. Occasionally this reddish clay has been mis aken for the bottom, but such is not the case, other and sometimes richer beds having occasionally been ound below it. Some of the workings contain only medium sized boulders while others have boulder oo large to be removed by hand. Frequently the saphire wash is extreme ly clayey, and requires "puddling" before the gems can be extracted Much, nowever, of the wash is loose, friable, and free from clay, in which case the sapphires are obtained y "dry sieving." No general rule can be given to determine what the deposits will be like
n any particular place. In a claim the wash may change from a reddish clay to a very dark, fine, friable soil, or trom a black soil to one which is white and marly, all carrying sapphires; and from being a shatlow surface deosit to one perhaps seven or eight feet deep. In several of the western creeks the wash is of considerable thickness, and in a few of the deposits, so far, no bottom has been found, the wash not being sufficiently rich to induce miners to sink beyond a
few feet. That part of the wash which carries the sapphires is often very irregular, sometimes occurring as small patches in the otherwise almost barren portions; while in other places the sapphires are generally scattered throughout the wash. As the older formations which form the bottom of the deposits vary in composition, so does the color of the deposits which rest on them. Where the bedrock consists of decomposed slates and schists, the wash is inclined to be
than the sapphire, is harder than opal, the much prized Australian gemstone. Several of the stones have the property of altering their color. Occasionally miners who have carried stones in their pockets have found the color affected by the warmth of the body. When heated the stone becomes lighter in color or changes from red to brown. Intense heat will destroy all the color. When only slightly heated the stone, as it becomes cool, resumes its natural tint. The same effect is obtainable with sunlight. The sapphire wash-dirt is, as already hinted, treated in a somewhat primitive yet very effectual manner by means of sieves of peculiar con struction, which save even the smallest stones.

A correspondent of the New York Times writes the following interesting letter to that publication on a school for airship experimenters:

The benevolence of philanthropists has been, up to this time, mainly directed to libraries, schools, universities, and other institutions of learning. There are manual training and technical schools, but there are no institutions where untold numbers of capable and practical men, especially workingmen, can be advised and financially help-
redaish, where granite is present, the wash is yellow ish; and where the basic volcanic and intrusive rocks are on the bottom the wash is almost black. The blue stones are most numerous on the eastern fields of the district, and the green ones on the western fields, while the parti-colored stones are common to both Yellow sapphires are extremely rare. Shades of blue range from light to dark, but the rich cobalt-blue color-the cornflower blue-has yet to be found. The green shades vary from a light-tinted pale green to a deep olivine green. The light green stones having a just perceptible golden tinge are very beautiful, and according to Dr. Dunstan, might be appropriately termed "Oriental chrysoberyl," while the pure green would be "Oriental peridot." Some fine specimens of the Oriental topaz, both of canary and orange yellow shades, have been obtained, but the "Oriental ruby," the red variety, is extremely rare, the one or two found being of perfect color. The purple-tinted stone, "Oriental amethyst," is also rare, but when found has the true amethyst color.
With the suphires in the alluvial deposits the hyacinth, a well known variety of zircon, is frequently

Working a Sapphire Deposit. AUSTRALIAN SAPPHIRES
found, mostly in the shape of small grains, of shades varying from brown to deep blood-red, the stones suit able for cutting as gems being comparatively rare Some of the colorless hyacinths have a resemblance to rough diamonds, and have been mistaken as such. They have rounded faces, are brightly polished, and possess a brilliant luster, but are betrayed by their inferior hardness. In some of its richer shades the hyacinth is extremely beautiful, and, although softer
d. Frequentiy such men have to give up the pursuit of ingenious inventions for lack of means to perfect them. Applied science would certainly be much promoted if inventors were given the opportunity to work out their inventions to a degree of commercial utility, which otherwise they could not afford to do.
"If we look at the field to which so many now turn their energies and money, air navigation, it appears as if they were tying the cart before the horse. Instead of advancing on a sure, scientific, and practical basis, they waste money on balloons, which lack the first requirement, dirigibility. Would it not be more sensible to recognize the immature state of the science of air navigation and to first exhaust all resources by offering prizes to scientific and practical men for valuable propositions to overcome the principal obstacle, resistance of the air? Until this problem is solved balloons will remain mere toys.
"If there existed an institution in which ideas, patterns, or developed models could be examined and where the inventor would be allowed to finish and test his invention and to demonstrate its commercial value, there would certainly be more chances to accomplish quicker and better results.
"Suppose one or more such institutions should be created, does it not stand to reason that in a given time such institutions would be self-supporting? The inventors, in case of success, would only be too willing to divide their revenues from such institutions with the institution that enabled them to finally reach success."

For several weeks during the drought from which a portion of central southern Florida has been suffering for a long time, heavy fogs were of frequent occurrence. The amount of water that these yielded was determined by the Rollins College weather observer by supporting a weighted sheet of filter paper near the ground during the night, and allowing it to remain carefully protected from the sunshine until the dissipation of the fog in the early morning, and then weighing the saturated paper. It was found that a very dense southern Florida fog is not equivalent to more than 0.002 of an inch of precipitation as measur. ed by a rain gage.

The use of nitrogen gas has been tried in France for inflating tires.

a gigantic clock.

Few mechanisms exert the same fascination on the human mind as a clock. This instrument, measuring the most important factor of modern life, time, is in fact the most indispensable utensil of our activity. This explains why from the very earliest times of the watchmaking art some especially skilled constructors should have devoted so much attention and energy to the production of real marvel clocks. These endeavors to outdo one another by the construction of ever more complicated clocks have been continued to modern times. An interesting example is afforded by the clock that has been recently installed in the bell tower of the St . Gervais basilica at Avranches (France) and of which a short description is given in the following. The clock was constructed by Mr. Gourdin at Mayet (Sarthe) and claims to be the largest in France.

It comprises five works, viz., a regulating works and four striking works. The former, which is provided with a remontoir escapement, regulates and disengages the striking works; by means of hollow steel rods 38 m . (124 ft .) in total length, and 6 gear trains it actuates 7 dials, viz., 4 external dials 1.4 m . (4.6 ft .) in diameter, and 3 internal dials of smaller dimensions. The regulating works at the same time operate a large bronze wheel upward of 1 meter in diameter, carrying y_{6} pins, each of which corresponds to a quarter of an hour, and by the aid of which the various ringing effects are produced automatically.

These ringing effects are obtained by means of four clockworks, one of which serves for the hours, one for the quarters, and the two remaining for the several chimes, which are the following: The quarters ringing works will play the hymn "Inviolata," the first 5 notes being produced at the first quarter, further 8 notes with the second, and 11 notes with the third quarter, while with the fourth quarter, before the hour is rung, the whole phrase, "Inviolata, integra et casta es Maria," is heard.
At noon and at 7 o'clock in the evening the "Inviolata" is automatically replaced by some tune varying according to the season.
The hours are rung by means of a hammer 100 kgs. (220 lbs .) in weight on a bell weighing 6,454 kgs. (14,228 lbs.), the working weight of this clockwork being only 300 kgs . (661 ibs .) Another 22 bells representing a chromatical scale and varying from 33 to $2,230 \mathrm{kgs}$. ($4,916 \mathrm{lbs}$.) in weight, has been provided for ringing the quarters and operating the chimes. The most remarkable feature of the latter is that the number of tunes is increased at will, the cylinders on which the cams of the hammers are located being readily exchanged, like those of a phonograph, pro vided the tunes in question fit into the series of notes represented by the 23 bells. The large cylinder visible in Fig. 1 to the right carries the cams, gearing with the ends of the bell hammers by means of the levers lifted by their aid. Each bell has been provided with two hammers, the weights of which, according to their size, vary from 6 to 20 kgs . (13 to 44 lbs .). The dials of the clock are of ordinary dimensions, only the power and automatic operation of the ringing mechanisms as well as the weight of the hour's hammer (100 kgs .) being remarkable. The aggregate weight of the whole clockwork is 2,000 kgs. (4,409 lbs.), its lengtlı being 4.15 m . (13.6 ft .), its breadth 1.90 m . (6.2 ft .), and its height 2.40 m . (7.8 ft .). The wheels of the ringing works are 0.60 m . (23.5 in.) in diameter.

A professor at Lehigh University has made a calculation to show that if a tiny vessel of one cu. cm . (0.061 cu . in.) capacity is filled with hydrogen corpuscles there can be placed therein, in round numbers, five hundred and twenty-five octillions- $525,000,000,000,000,000,000$,-$000,000,000$-of them. If these corpuscles are allowed to run out of the vessel at the rate of one thousand per second it will require seventeen quintillions-$17,000,000,000,000,000,000-$ of years to empty it. We leave it to our readers to calculate how long the filling process will require.

Fig. 2.-Front View of the Mechanism. A GIGANTIC CLOCR.
capabilities. Vanadium has long been known. It is found in small quantities in Swedish ore, but in such small quantities that its use was prohibitive.
The addition of vanadium to various steels has overcome in many ways the difficulties that have presented themselves in dynamic forms to the specific duties of certain grades of metals. It is a most elusive element, and its presence is not always known. If there is any oxide left in steel, it will be cleaned out by the tuilding moving machinery.

Vanadium Steel in Automobile Manufacture. Automobile construction has put steel makers to a severe test. ${ }^{6}$ To obtain strength, durability, and elasticity and yet to reduce weight are problems of no mean order. Many experiments and tests are necessary to get the best results.
Preparing metals for automobile construction requires entirely different methods from those for other engineering specifications. Steels that under ordinary

Fig. 1.-End View of Mechanism.
circumstances would stand the usual static tests, would prove unavailable if tried under the severe dynamic strains to which they would be exposed. J. Kent Smith, the English metallurgist and exponent of vanadium, in an address to the Mechanical Branch of the Association of Licensed Automobile Manufacturers, stated that from 80 to 90 per cent of the breakages were caused by dynamic strains to the metal, leaving only 10 or 15 per cent as the result of the static. It has been the aim of each engineer to discover the best grades of steel for each specific part of an automobile, which would withstand the particular dynamic strain to which it would be subjected.
In vanadium there seem to be found all the elements to give the desired requirements. Vanadium is peculiar in that unlike many other metals it has no value in itself, but when alloyed with steel has infinite (
vanadium. To use it as an agent for this work, however, is very expensive. An analysis of a steel known to contain vanadium will not always result in the finding of a percentage that has been put in, although tests will show its presence in certain degrees. For example, it may be known that 15 per cent has been put in an open-hearth casting, whereas the analysis will show but 4 per cent. This is because its introduction is improper. It is quite useless to introduce vanadium in oxidized steel because you cannot find any vanadium in the steel. It naturally did its easiest work first, seizing the oxygen, so that the steel did not receive the dynamic qualities of the element. Its work was confined to cleansing
Unlike many other elements, vanadium, to get the best results, must be used in extremely small quantities. A little goes a great way, too much being as useless as not enough. For casehard ened steel from $11 / 2$ to 2 per cent remaining in the steel will give better results than a less amount, although even if properly introduced 10 per cent of the amount put in, that is, 10 per cent of the 2 per cent, must be counted as a loss.
In some instances steel makers have directed their efforts to attaining a satisfactory tensile strength, which is of course necessary, but in many cases the tensile strength has been increased to the detriment of the dynamic qualities of the metal, and this often without needing the maximum tensile strength for some specific duty of the steel. With the addition of vanadium the same tensile strength may be maintained or even lowered with the dynamic qualities increased, but for certain conditions the dynamic qualities would not be necessary. This would apply to the parts of an automobile where a steady and consistent strain is maintained
Bending tests by Prof. Arnold have shown that vanadium steel will stand a much higher alternating stress test than steels containing any of the other alloys. A high carbon may break at 100 alternations. Steels of the best acid or open hearth casting will run as high as 290 . An excellent quality of nickel steel ran to 270 , while vanadium steel has attained as high as 570 , or nearly 100 per cent better than a good nickel compound.
The life of steels, pure carbon steels, is materially lengthened by the addition of this alloy. A pure carbon steel on test ran to 280 ; the same after the addition of vanadium ran to 480 . The simple addition of vanadium to a low-carbon steel raises its tensile strength or the elastic limit of the steel. In regard to nickel steel, vanadium does not increase the life of the steel when tested beyond its elastic limit. Where the dynamic qualities enter into the duties of a metal, it has been found that the intensifying of chrome by vanadium has given the most satisfactory results. Where the requirements are more static than dyna mic, or an equal proportion of both, vanadium nickel has proven to be the better The principal parts of an automobile that are constantly receiving the sudden or unexpected shock or strain will be most benefited by vanadium steel or vanadium chrome. Axles, springs frames, crankshafts, and gears should be specifically adapted to the dynamic conditions imposed upon them. In casehardened gears, tests have proven that vanadium chrome has been used to great advantage.

Vanadium has proven a most satisfactory alloy because it works so generally. It works in more than one direction, but these directions can be directed to get the maximum results if properly handled. It has an advantage in that it machines nicely. Vanadium chrome machines almost like a carbon steel. There is no apparent difference in machining a carbon axle and a chrome-nickel axle. A vanadium chrome shaft is a little ctiffer to machine than an ordinary carbon crankshaft, but it is no more difficult than an ordinary nickel crankshaft, and not as hard to machine as a nickel-chrome would be. In forging it is the same way, not being more troublesome than a plain nickel steel. On the whole the introduction of vanadium steels for particular parts of automobile construction has been accompanied by the most satisfactory results. It has been conceded that chrome vanadium steel is the finest steel ever used for

ImpROVED PACRING FOR PISTONS.

Pictured in the accompanying engraving is a new form of packing adapted for use on pistons and the like. The illustration shows the packing applied to a steam-pump piston. The packing ring A is loosely fitted on the body C of the piston, and the inner edge of the ring. bears against a shoulder formed thereon. The

Improved pacring for pistons.

ring A is retained by a washer, which bears against its outer edge, the washer being held in place by a nut screwed on the outer end of the central piston rod. The packing ring A is split, being formed with bev eled end walls adapted to engage a spreader bar B, of triangular cross section. This spreader bar is engaged and pressed outward by a spring G of S-shape, which is held on a seat formed integrally on the inside of the packing ring A. Instead of the \mathbf{S}-shaped spring, liners or like devices may be employed for forcing the spreader bar B outward, with a view to opening the split ring, so as to firmly engage the inner surface of the cylinder in which the piston is used. It will be evident that the outer surface of the ring snugly fits the inner surface of the cylinder in which the piston is used, the ring being spread apart with sufficient force by the spreader bar F, so as to prevent all leakage from one side of the piston to the other. The ring is preferably made of steel, while the spreader bar is made of softer metal, such as brass, so as to prevent the outer corner of the spreader bar from cutting into the surface of the cylinder. A patent on this improved packing has been granted to Mr. Stewart Holmes, 357 Douglas Street, Brooklyn, N. Y.

WAGON BRARE.

The accompanying engraving illustrates a novel form of brake adapted for use on wagons which carry heavy oads. The brake is so arranged that it may be set, to operate automatically when the wagon is traveling downhill. In our illustration Fig. 1 shows the under side of the fore truck, while Fig. 2 shows a longitudinal section through the brake mechanism. The axle is indicated at A, and this is provided with the usual hounds supporting guide bars between which the tongue \boldsymbol{B} is fitted. A transverse bar C passes through the hounds and guide bars and also through a slot in the tongue B. A bolt D in the tongue B passes vertically through the slot therein, to the rear of the bar C, so that as the vehicle is drawn forward, the strain is borne by the bolt D bearing on the bar C. The upper end of the bolt D is provided with a lateral extension in which a slot is formed. This slot is engaged by a pin mounted eccentrically upon a disk E, which is jour. nale in bearings on the tongue. A king bolt F pro-

WAGON BRAKE.
it is the custom to ship heavy objects, such as large bottles of mineral water and the like, in boxes specially provided for the purpose, and to use such boxes repeatedly until they are worn out. Ordinarily, the lid is nailed on the box, and the repeated nailing soon renders the box useless for further shipment. To obviate such difficulties, Mr. Clarence A. Schaad, of 846 South Tenth Street, San José, Cal., has invented a fastener by means of which a lid may be secured to a box without nailing. The fastener is so designed that a seal of lead or like material may be applied thereto, to prevent tampering
vides means for securing a draft tree to the pole. Secured to the under side of the tongue B are a pair of links G formed with slotted rear ends. Connected to these links G, and fulcrumed to the axle A, in the manner indicated in Fig. 1, are a pair of levers, which are connected by the rods H with the brake beam J. The latter is mounted to slide in bearings formed on the hounds, and is provided with the usual brake shoes adapted to bear against the wheels. In use, when the vehicle is traveling downhill, it moves forward on the tongue B, thus swinging the levers connected to the arms G and drawing the brake shoes into contact with the wheels. If it be desired to disconnect the brake the driver swings the disk E on its journals by lifting a cord connected to the end of a weighted lever formed on the disk, and then after the tongue has been drawn forward on the transverse bar the bolt D is slipped down in front of the bar C, preventing the play in the slot necessary for the operation of the brakes. A patent on this improved wagon brake has recently been secured by Mr. George F. Young, of South Kortright, N. Y.

An Exhibition of Inventions.
A most interesting feature of the Jamestown Exposition which has just opened will be the "Section for Inventions," in which inventors are invited to display their inventions and demonstrate their value to visitors. The invitation is open to all, and every facility is offered in the way of floor space, tables, and shelves, advertising cards and labels, electric current, gas, lights, etc. A modest fee of from ten to not more than thirty dollars, except in very special cases, is charged for such space and service. The service includes as well the general care of models, explanation to visitors, and the return of the exhibit at the close of the Exposition. Awards will be made of gold, silver, and bronze medals and diplomas. That inventors are alive to this unparalleled opportunity for making public their creations is shown by the fact that within four weeks after the first notice was sent out by the Bureau of Inventions of the Jamestown Exposition, applications had been made for more than 5,000 square feet, and new applications are now coming at the rate of a hundred a day. The inventors are not the only ones who will profit by this display, for the exhibition cannot fail to be of interest and material benefit to the public at large. Never before has such an opportunity been presented at any exposition, and now that the first step has been made in this direction such exhibitions of inventions will no doubt become a part of all future expositions.

The Handwriting of Authors.
An interesting study is the handwriting of authors, as it indicates to a greater or less degree their personal temperaments. Longfellow wrote a bold, open back hand, which was the delight of printers. Joaquin Miller writes such a bad hand that he often becomes puzzled over his own work, and the printer sings the praises of the inventor of the typewriter. Charlotte Bronte's writing seemed to have been traced with a cambric needle, and Thackeray's writing, while marvelously neat and precise, was so small that the best of eyes were needed to read it. Likewise the handwriting of Capt. Marryat was so microscopic that when he was interrupted in his labors he was obliged to mark the place where he left off by sticking a pin in the paper. Napoleon's was worse than illegible, and it is said that his letters from Germany to the Empress Josephine were at first thought to be rough maps of the seat of war. Carlyle wrote a patient, crabbed, and oddly emphasized hand. The penmanship of Bryant was aggressive, well formed, and decidedly pleasing to the eye; while the chirography of Scott, Hunt, Moore, and Gray was smooth and easy to read, but did not express any distinct individuality. Byron's handwriting was nothing more than a scrawl. His additions to his proofs frequently exceeded in volume the original copy, and in one of his poems, which contained in the original only four hundred lines, one thousand were added in the proofs. The writing of Dickens was minute, and he had a habit of writing with blue ink on blue paper. Frequent erasures and interlineations made his copy a burden to his pub-

SEAL BOX FASTENER.

-

with the contents of the box en route. As shown in the accompanying engraving, the lid of Mr . Schaad's box has hinged thereto at A a U-shaped strap, or bail B. Secured to the front of the box is a block C, over which the bail is adapted to be fitted. In this position it is held by a bolt D, which passes through the block and the bail. The bolt is formed with a slot near the center, and a pin or screw E in the block passes transversely through the slot to retain the bolt. A leaden seal F may be secured to the

seal box fastener.

lower end of the bolt. The hinge at the rear of the box consists of two slotted plates G secured to the lid, and two straps H fastened to the body of the box. The straps are formed with hook ends adapted to enter the slots in the plates. By this arrangement the lid may be entirely removed from the box when the latter is opened. At the same time it requires a very strong hinge, which is necessary because in packing such boxes it is customary to use a quantity of excelsior or shavings, which must be pressed down with consider able force when applying the lid. The box may be used to advantage in shipping eggs, fruit, etc., as well as heavier articles, such as bottles, jugs, and the like.

ALARM ATTACHMENT FOR SELF-BINDERS

Considerable trouble is experienced in the operation of self-binding harvesters, due to the tangling or knot ting of the twine, and its consequent breaking. To overcome this difficulty a recent patent provides an alarm device which, in case of improper feeding of the twine, will give a signal to the driver in time to have him stop the machine before the twine is broken, and thus save the delay and inconvenience which would otherwise be entailed in rethreading the mechanism. The accompanying engraving illustrates the alarm de vice. The twine is held in a receptacle A, and passes out through an opening in the top. Thence the twine B is led down over the side, and threaded through an eye carried at the bottom of a rod C. From this point it is led back through an eye at the top of the receptacle, and thence to the mechanism of the binder. The rod C is mounted to slide vertically in a slideway Intermediate of its length it is provided with a pin, which bears against one arm of the lever D. The opposite arm of this lever carries a hammer head adapted to strike the gong E when it is released from engagement with the pin on the rod, the striking being effected by a coil spring, which exrts a tension on the lever. In operation, should the wine become knotted and feed improperly out of the receptacle, the rod C would be lifted up to the dotted position, shown in the engraving, thus disengaging the lever D and sounding the gong. The length of twine B, extending down to the bottom of rod D.and back again, is such that the operator would have time to stop the machine before the twine would break. A patent on this novel attachment h as been granted to Mr. Lewis J. Phillips, of Foss, Oklahoma Territory.

ALARM ATTACHMENT FOB GELF-BLITDERS
recently patented inventions.

Electrical Devices.

TELEGRAPHONE. - G. Morin, Habana Cuba. This invention relates to telegraphones, and more particularly to apparatus for en-
abling the so-called "voice-currents" to be generated in a wire or line by means of magneto member having the form of a disk The improvement further relates to means for enabling one or both sides of the disk to b used as desired.

Of Interest to Farmers.
COMBINED POTATO-DIGGER AND COT-TON-CHOPPER.-R. Krause, Swanquarter frame having the main bars turned spirally to form approximately a screw, which would if moved in the direction of its axis through a resisting medium, be caused to turn in one
direction or the other, according to the spiral twist of the frame-bars. Means provide for turning the frame in a reverse direction. A
hoe comprises a shank and a horizontal blade, hoe comprises a shank and a horizontal blade,
which when the machine is used as a cotton chopper takes the place of the blades. The
hoe passing into the ground cuts out the cottonhoe passing into the ground cuts out
DISK-HARROW SCRAPER.-A. C. GAY Lord, Galesburg, Ill. The invention relates to in which the scraper-blades are held in contact with the disk by the pressure of springs, the object of the inventor being to relieve the pressure, and hence lessen the friction or in FRUIT-PICKER'S BASKET.-F. Cartmel, is to provide a basket arranged to permit the is to provide a basket arranged to permit the
picker to conveniently empty the basket of its contents without danger of bruising or otherwise injuring the fruit and without requiring removal of the basket from the picker, the
basket being collapsible, and when collapsed is convenient for storing, handling, and shipping f empty baskets.
CULTIVATOR attachment.-J. J. Young, Denver, Col. The purpose in this invention is to provide an attachment adapted for convenient cultivators and cultivators of like type to and to so construct the attachment that it may be applied to the beam of any cultivator and so that the said fenders can be expeditiously and quickly adjusted up or down on the arc of a circle as may be dem.
firmly in adjusted position.
COLTER-BEARING.-T. R. Wallis, Greenville, Miss. The object of the improvement is to provide a bearing which will mount the
metal hub of the colter-blade on a steel or ther metal bearing and by means of which, however, the bearing is supported firmly and on-rotatively on the frame of the plow or
SHEEP-bRANDING MACHINE. - J. A.
MAgELSSEN, Melville, Mont. The object in this Magelssen, Melville, Mont. The object in this
improvement is to provide a device in which the printing or painting mechanism will be automatically supplied with liquid coloring material may be easily and quickly marked for identification by simply applying the device to the part for an instant and causing neither pain nor annoyance.

Of General Interest

LOOSE-LEAF BINDER.-H. G. Buchan,
Woodbridge, N. J. One purpose of the inventor Woodbridge, N. J. One purpose of the inventor
is to provide a binder with a sectional segis to provide a binder with a sectional seg-
mental back of spring material so constructed hat it may be employed for binding one or of its expansion, which is limited only by the number of sheets it will hold when opened to its fullest extent.
boat.-U. R. Miller, Salem, Ohio. In this case, means are adapted to increase speed, de-
crease draft, and maintain stability. In operation a boat has a tendency to ride out of water when moving at high speed, thereby decreasing the draft and causing the boat to ride on the surface instead of crowding its way through
the water. Although the draft is thereby dethe water. Although the draft is thereby de-
creased, the keel, together with the flat inclined planes, provide ample stability to the
boat even when the planes are riding on the boat even when the planes are riding on the
water.
THAWING-POINT.-F. Lewis, Fairbanks, District of Alaska. In using the device in gold-mining operations the point is driven into
the frozen earth by means of a sledge or hamthe frozen earth by means of a sledge or ham-
mer, and steam is allowed to pass into the mer, and steam is allowed to pass into the
interior of the point. This steam, which escapes at the point, thaws the frozen ground and enables the device to be driven further in. An advantageous feature is the fact that there
is no necessity for welding the parts together
PROCESS OF PLRIFYING ACETYLENE GAS.-G. F. Jaubert, 155 Boulevard Malesherbes, Paris, France. The object in this instance is to provide a process for eliminating from acetylene gas the phosphureted hydrogen,
which, as is known, constitutes the impurity which, as is known, constitutes the impurity which is the most undesirable and at the same time the most dificult to eliminate. The gas as soon as formed is passed into washing-tanks which contain sulfuric acid concentrated at
62 deg. to 64 deg . Baumé, saturated with appropriate arsenic derivative.
horseshoe.-H. Dahms, Berlin, Germany The object of the invention is to provide a calk
form which will be secured in the horseshoe by improved means. The special object is to provide a construction which will insure that
the calk will remain tight during its period of sefulness, but which will enable the calk to be readily
by another.
STRAIN-EQUALIZER--J. W. WASH, Law renceburg, Ky. The device is characterized by renceburg, Ky. The device is characterized by
the fact that the pull on various numbers of the fact that the pull on various numbers of
wires or cables, as in stringing fence, telephone, or telegraph wires may be equalized. This is pule by an endless rope bent over a series of
pulleys a draft-bar, forming loops each of which is provided with a block, and when less
than the full number of wires are connected than the full number of wires are connected
the idle blocks will pull up the bar, leaving the other under equal strain.
BEER-TAPPER.-R. B. SPIKEs, Bisbee, Ariz. Ter. In this instance the invention has ref-
erence to devices known as beer-tappers, which erence to devices known as beer-tappers, which
are in the nature of appliances for opening and dispensing beer from the keg or barrel. simultaneously opened an outlet for beer and an inlet for air.
kiln.-J. a. Shumaker, Hyndman, Pa. The object of the inventor is to provide improvebox, whereby one part of the fire only may be maintained, while the other portion of the firebox may be cleaned. By this construction a great saving in the volume of heat for the
kiln is accomplished at all times, as well as the stopping of the volume of cold air entering the kilm which latter is very detrimental to the hot brick.
TELESCOPE FOR SUBMARINE BOATS.. Rehm, Lichtenfels, and K. Windstosser, uremberg, Germany. In this patent the invention has reference to a telescope for submarine boats by means of which the several
fields of view representing several parts of the horizon or sea are obtained within one and the same circle, the several fields of view being the same circle, the several fields of view being
preferably so arranged that the field of view of the fore part of the horizon or sea is made the chief field and larger than the other fields

CANT-HOOK OR PEAVEY.-P. Price, Panther, W. Va. This hook or peavey is such ings logs from place to place. The object of the invention is to produce a hook of a construction which operates to increase the
strength of the stock or handle and which strength of the stock or handle and which
will prevent dislocation of the point or socket of the hook.
METHOD OF RAISING LIQUIDS FROM WELLS.-F. J. Moser, Kane, Pa. This invention pertains to a method of raising liquids
from wells, and admits of general use, but is of peculiar service in connection with the raising of liquids from oil-wells. The invention may be considered in connection with Patents Nos. 721594 and 751323. The present invention undertakes to improve upon the m
disclosed in the patents above mentioned.
APPARATUS FOR SHARPENING LAWN-
MOWERS.-E. C. SPRINGER, Mason City Iowa. The principal purpose of the invention lowa. improve upon the device designed for the same purpose for which Letters Patent of the United States were formerly granted to Mr. Springer, to the extent that the device is rendered more
simple and it is not needful to remove the wheels or change the gearing before placing a only to turn the mower upside down and clamp it in position upon the device, wh the medium of a clamp-handle especially adapted for the
CHALK-Line holder.-M. A. Reare, Los holders such as used in holding marking-cords such as chalk-lines. One object is to produce a device of this kind which will operate nor-
mally to maintain the cord wound within the mally to maintain the cord wound within the
device, but which will enable the cord to be device, but which will enable the cord to b
drawn out when it is to be used.

Hardware

SOD OR WALK TRIMMER.-D. L. Rose Mankato, Minn. This trimmer is designed espe cially for trimming sod from along a sidewalk, such as cement sidewalks, but which can also
be used to advantage in trimming sod along lower-beds and the like. The tool when moved long the sidewalk will trim the sod and by all dirt and the like beyond the excavation formed by the cutters.
HAMMER.-H. Lewis,
nvention has reference New York, N. Y. This hammers chiefly applicable to silversmiths work; and its primary object is to provide
hammer that will to a greater degree be acces sible to obstructed parts. In this instance the head of the hammer is pivotally mounted near its rear end to the handle and can be adjusted
to any angle with respect to the handle as may o any angle with respect to the handle as may
e most convenient by turning a thumb-piece cated at the free end of the handle
DOOR STOP AND LOCK.-C. J. TATUM ort Arthur, Texas. A plate on the spindle when released operates as a guide for the
upper end of the rod as the latter is raisad by the key and also serves to maintain the upper
engagement of its abutment by the key when
inserted through the hole. As knobs are usuinserted through the hole. As knobs are usu-
ally spring-actuated by means of the ordinary devices connected therewith, it will be under stood that such knob-springs will aid the spring in pressing the cush
with the floor-surface.

Household Utilities.
 CASTER.-W. Imbt, East Stroudsburg, Pa The invention is an improvement in casters as used in supporting furniture to enable it to easily rolled about. The object of the inventor is to provide a form of caster which shall be strong and durable, not likely to get out of order, and one which shall be absolutely noise less and of free working.
 Broiler.-J. W. Ross, Chillicothe, Mo. This broiler is adapted for broiling meat, fish, game, etc. In operation the broiler can desired, can be used under any suitable form of hood and can be used on the top of a range or other heated surface and be made of any size and thickness to suit particular pur

 poses.
Machines and Mechanical Devices.

MACHINE FOR CUTTING MEAT.-I. B. Van Sise, Oyster Bay, N. Y. One purpose i cutting meat, especially sausage-meat, and t so construct the machine that the feed will be intermittent, supplying the cutter at each move ment of the feed with just sufficient
for the knives to properly handle.
SHOE-SEWING MACHINE.-J. A. Rhoult Haverhill, Mass. The present invention sim-
plifies and improves the means for carrying the hread. It mproves the means for carrying the and provides means for firmly holding the sole uring stitching operation and for releasing the sole during feeding movement. It simpli devices for threading the thread operation the stitch-forming elements; and adapts the stitch-forming elements; and adapts the ma the soles by providing means for gripping and feeding the felt upper, as well as the sole.
atTACHMENT FOR TURNING-LATHES.J. Morgan, Hughesville, Pa. The invention reers o lathes for metal or wond centering or a a center rest. The object is to provide a durable lathe, steady-rest or chuck which is easily operated manually, which may be attached without difficulty to lathes of the usual construc-
ion and which will afford means for holding ion and which will afford means
or steadying the material or work.
DITCHING-PLOW.-C. T. Howell, Kirk nan, Iowa. One purpose of the invention is to
provide a construction of plow for digging provide a construction of plow for digging tiling-sewer ditches or draining-ditches and
which is light of draft and capable of effective which is light of draft and capable of effective
service in any character of soil. Anotber is to onstruct a plow with an inclined conductor urface of the ground and remove excavated material from the edges of the ditch.
dapted to be drawn by a traction-engine.
STEAM-SA WYER.-S. V. Abrego, Lake Charles, La. In this patent the invention per
tains to improvements in devices for controlling the valves of a steam-feed for sawmill-carriages, mechanism for shifting the valves, thus reliev ing an attendant or sawyer from a greater part of the work now required to shift the valves

CALCINING-FURNACE.-T. MCNEaL, Kan, sas City, Mo. The general construction of this
furnace is similar to that shown in the patent furnace is similar to that shown in the patent
formerly granted to Mr. McNeal. The improvement is particularly in scrapers or agitators used in apparatus for calcining plaster and the scraper that it will engage closely with all parts of the convex bottom of the calcining vessel, thus thoroughly stirring the material.

Prime Movers and Their Accessories.

ROTARY ENGINE.-P. O. Poulson, Brigham, in rotary invention relates to improvement in rotary engines adapted for use in connection team, compressed air, water, and the like. The object is to provide means for moving the abutments from the chamber as the piston for suppyling the motive fluid adjacent said butments for operating the device.

Railways and Their Accessories

switch.-J. T. Salvo, Charleston, S The object of this invention is the provision of means simple and inexpensive in construc-
ion, durable in operation, and effective in use adapted to be readily operated by a passing car and so constructed as to be operative in
ny locality with little or no liability to become inoperative from any cause.
Car Journal-box.-A. V. Peppard, San Luis Potosi, Mexico. An object of this invenwhen the pressure of the car is downward and orward on the box the tendency of the liner and shoe or wedge will be to draw the bolts down and at the same time the liner will lock
the bolts in lower position, and also to provide the bolts in lower position, and also to provide
construction of spring for each of the bolts, construction of spring for each of the bolts,
ion. It is an improvement upon the box for which Letters Patent were formerly granted to Mr. Peppar
DLST-GUARD.-H. BENSCH, Davenport, Iowa. By this invention Mr. Bensch seeks to provide a guard which can be readily inserted
in any of the ordinary journal-boxes now in in any of the ordinary journal-boxes now in general use and which will comprise a series
of radially movable packing-blocks with the pring embracing the series and adapted to exhe blocks being movably beld in suitable suides he blocks being movably held in suitable guides

Pertaining to Vehicles.

AXLE.-G. A. Weaver, Newport, R. I. While this invention is capable of use with mobile construction. The object is to provide an arrangement for mounting the wheels upon the frame, which will enable the direction of the wheels to be easily controlled. A further object is to provide a strong axle construction which will dispense with the usual steeringknuckle and its accessories.
TRANSMISSION MECHANISM.-G. A.
WEAVEr, Newport, R. I. This mech WEAVER, Newport, R. I. This mechanism is
especially adapted for application to automobiles. The inventor provides means whereby wo engines can be coupled up, so as to simulaneously transmit power at varying rates of shaft and the other provides for driving one of the engines or motors in case of breakage, and also provides an efficient means for transmitting the power when the speed is to be varied.
VEHICLE-FRAME.-O. Stolp, New York, N. Y. In this patent the invention is an improvement in frames for vehicles, especially of the automobile type, and has among other objects the production of a spring arrangement in the frame whereby little shock or roads and other uneven in purfaces
MOTOR-VEHICLE.-M. H. Magie and C. n. Winters, Bakersfield, Cal. The underlying purpose here is
the motive power, braking force, and steering action may be applied to all of the four roadwheels of the vehicle. This construction gives greater power of traction, prevents skidding, and enables the vehicle to be completely controlled.
rein-guard.-W. P. Fell, Huron, S. D. he design in this case is to prevent the reins agon-pole The provide a device of this character at a very small cost which will be simple and durable and
which may be quickly and easily applied to which may be quickly and easily applied to arious sizes and types of wagons.

Designs.

DESIGN FOR A WALL-COVERING.-L. Pronberger, Berlin, Germany. Mr. Pronberger has secured patents on seven separate designs of wall-covering. They are numbered from
38,517 to 38,523 inclusive. Ornamental value 38,517 to 38,523 inclusive. Ornamental value
of a wide and varied artistic range marks the designs. Only one of the number departs from the perpendicular band style of running the patterns. All bear the characteristic of ornate invention within lines of refinement and are calculated to attract by their distinct originality.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. the invention, and date of this paper.

Nam hints to correspondents.

(10511) C. C. W. asks how to amalgamate zincs. A. This is accomplished in sev eral ways. 1. By dipping the zinc in dilute into a small quantity of mercury, af end of it the surface with a brush. 2. Dissolve 1 pound of mercury in 5 pounds nitro-muriatic acid (nitric acid 1 part, muriatic acid 3 parts) heat the solution gently to hasten the action. When a complete solution of the mercury is effected, add 5 pounds more of nitro-muriatic acid. The solution should be applied with a 3. To the bichromate solution commonly used
in batteries, add to every pint of solution 1 drachm of bisulphate of mercury or a similar
amount of nitrate of mercury (mercury dis. amount of nitrate of mercury (mercury dis-
solved in nitric acid). By employing this solved in nitric acid). By employing this
metho, the amalgamation of the zincs is maintained continuously after the first amalgama1 or 2. 4. In the Bunsen, Grove, or Fuller battery the amalgamation may be accomplished by placing a small quantity of mercury in the cells . ntaining the zincs. 5. Place a little merculy in a saucer with some dilute sulphuric acid. Dip the zincs into dilute acid. Then
with a little strip of zinc or galvanized iron touch the mercury under the acid and rub it on the zinc. This will transfer a little to the surface, and a few minutes' rubbing will make
the zincs as bright as silver. A very the zincs as bright as silver. A very small
globule of mercury is enough for a single plate.
(10512) N. P. E. asks for information concerning vellum. A. A fine kind of parchand lambs. The skins are limed, shaved, washed, and stretched in hoops or other frames, where they are scraped and trimmed with the
currier's fleshing knife, and next carefull rubbed down with pumice stone; they are lastly polished with finely powdered chalk or fres slaked lime, and then dried. A green color is
given with a solution of crystallized verdigris to which a little cream of tartar and nitric acid have been added, and a blue color with
a solution of indigo. The surface is often finished with white of egg, and subsequent friction. The skins of sheep are commonl use for parchm
(10513) C. L. T. asks for a formula for elastic glue. A. Elastic glue which does not spoil is obtained as follows: Good common glue
is dissolved in water, on the water bath, and the water evaporated down to a mass of thick consistence, to which a quantity of glycerine which the heating is continued until all the water has been driven off, when the mass is poured out into the molds or on a marble slab. This mixture answers for stamps, printer's rolls, galvano-plastic copies, etc.
(10514) S. Y. B. asks for a cement for mica. A. A colorless cement for joining sheets of mica is prepared as follows: Clear gelatine
is softened by soaking it in a little cold water, and the excess of water is pressed out by gently squeezing it in a cloth. It is then melt, and just enough hot proof spirit (not in pint of this solution is gradually added, while stirring, 1-4 ounce of gum ammoniac and 11-3
ounce of gum mastic previously dissolved ounce of gum mastic previously dissolved in
4 ounces of rectified spirit. It must be warmed 4 ounces of rectified spirit. It must be warmed
to liquefy it for use and bept in stoppered bottles when not required. This cement, when properly prepared, resists cold water.
(10515) B. N. C. asks how to deodor ize alcohol. A. Add to the barrel of alcoho agitate thoroughly, let rest for twelve hours then saturate with chalk (which, combining with the chlorine, forms chloride of lime) and distill. Filtering through animal charcoal after precipitating the chlorine with the chalk af fords a very fair substitute for the redistilled
alcohol. The fusel oil can be separated from alcohol, in small quantity, by adding a fep drops of olive oil and thoroughly agitating in a bottle and allowing it to settle, and then de-
cant. The olive oil combines with and retains the fusel oil.
(10516) B. F. K. asks how to do an nealing. A. For a small quantity, heat the steel to a cherry red in a charcoal fire, then bury it in sawdust, in an iron box, covering
the sawdust with ashes. Let it stay until cold. For a larger quantity, and when it is required to be very soft, pack the steel with cast iron (lathe or planer) chips in an iron box as fol ows : Ilaving at least half or three-quarters of an inch in depth of chips in the bottom of the box put in a layer of steel, then more chips to
fill spaces between the steel and also the half fill spaces between the steel and also the half sides of the box and steel, then more steel; and lastly, at least one inch in depth of chips, well ramme down on top of the steel. Heat the whole to and keep at a red heat for from
two to four hours. Bo not disturb the box
(10517) N. D. R. asks: 1. If the length of the wires from the secondary terminals of an induction coil affect the shock to No. $2 \boldsymbol{c}$ copper wire. A. The length of wire have little effect upon the shock given, since the resistance of these wires will be very small compared with that of the human body 2. Why is it that Easter comes on a different day every year? Why not permanent A. Easter is determined by the full moon nearest to the vernal equinox; hence it cannot be fixed for the same date each year. 3. I have
heard that the puffing of a locomotive is due heard that the puffing of a locomotive is due
to the exhaust steam from the cylinder. If true, what means are employed to effect the same? A. The steam when it escapes from the cylinders is directed into the smokestack a locomotive in order to increase the draft. I is the sudden ejection of the steam and its condensation which produces the sound called the puffing of a locomotive.

NEW BOORS, ETC.

Flüssige Kristalle und die Theorien es Lebens. By O. Lehmann. Leipzig: Johann Ambrosius Barth. 55 pages; 16 mo .; 30 illustrations; flexible cloth. Price, 50 cents.
Although, in leading up to his subject, the athor makes a statement that has more xperition in popular belief than in biological and learnedy dealt with. The border between nimate and inanimate forms of matter pre research, and work in it should be given every

The Design of Steel Mill Buildings. By
Milo S. Ketchum, C.E. (University of
Colorado). Engineering News Puio
lishing Company, 1906. Pp. 480.
Price, $\$ 4$.
Price, $\$ 4$
Mr. Ketchum's excellent work hardly needs recommendation after the success which at-
tended the first edition. Few books on this subject are provided with illustrations and algebraic tables which so excellently supplechiefly with While the book is concerne
 equally well to all classes of steel-frame construction.
The Cemplete Autemobile Instructer. By Benjamin R. Tillson. New York: Price, $\$ 1.50$.
Mr. Tillson has succeeded most admirably in condensing the practical knowledge necessary for one to operate and care for an autointo questions and their answers. These are subdivided and classified according to their

Induction Ceils. How to Make and Use Them. A Practical Handbook on the Spark Coils. By Percival Marshall. Thoroughly revised and enlarged by Kurt Stoze. New York: Spon \&
Chamberlain. 12 mo .; paper cover; 70 pages; illustrated. Price, 25 cents. A most excellent set of directions for mak-
ing an induction coil and its accessories. The heory of induction is explained in a lucid simple manner.
Modern Chemistry. Theoretical and
Systematic. By William Ramsay,
D.Sc. New York: The Macmillan

Company. 24mo.; 9 figures; cloth; 2
parts, 329 pages. Price, 70 cents net.
This book is exactly what one needs. to
brush up" on when he feels rusty in his
hemistry. It contains both theory and de-
arranged for reference. An excellent book for advanced schools and colleges.
Phetegraphy for Students of Physics
York: The Macmillan Company
12mo.; cloth; 247 pages, 88 figures
Price, $\$ 1.40$.
As the title indicates, this little volume goes more into the theoretical aspect of photography than the popular hanabooks. It
discusses lenses and their defects, diaphragms, color sensitiveness, and methods of color photography, as well as the best ways in Which to develop, print, reduce, etc. Although
the work is more advanced than the photographer usually considers necessary, it will be found useful by all who wish a good photographic reference book.
nglish Weights. With their Equiva-
lents in Kilogrammes. By Frederick
Chamberlain. Pocket size; 89 pages.
Price, 50 cents.
A useful little book for those who are
obliged to convert English weights to their
Photegraphic Chemistry. By Paul N.
Tographic Chemistry. By Paul N.
Hasluck. Philadelphia: David Mc-
Kay. 16 mo , cloth; 160 pages, illus-
f the pretest pole
of the greatest possible service to the not willing to work by mere "rule of thumb."
For the beginner, cnough elementary chemical theory is given to make the later development of the subject quite plain. Those familiar with chemistry can save time, if they wish,
by skipping this portion of the work, and commencing this portion of the work, and proper, which is complete in itself.
Principles ani Practice of Agricultural Analysis. A Manual for the Study of
Soils, Fertilizers, and Agricultural
Products. Second edition, revised and Products. Second edition, revised and enlarged. Vol. 1. Soils. By Harvey
W. Wiley, A.M., Ph.D. Easton, Pa.:
The Chemical Publishing Company. The Chemical Publishing Company tions. Price, $\$ 4$
A book which is indispensable to the agriculural chemist, and of the greatest value to the modern farmer. Written as it is by one
of Dr. Wiley's experience and standing, it contains such methods only as have been carefully tested and found reliable. The section on nitrifying organisms fills a want in a depart-
ment in which far too little practical work ment in which far too little practical wor
has been done on this side of the Atlantic.

Among the Worlo's Peacemakers. Edit-
ed by Hayne Davis. New York: The
Progresive
ed by Hayne Davis. New York: The
Progressive Publishing Company,
$\$ 1.65$ mailed; paper, $\$ 1.10$ mailed.
The Arbitration Peace Congress held in New York, April 14 to 17 , makes the appearance
of a work of this kind valuable at the present time. The book is the epitome of the intermembers of this international house of repr sentatives and of progressive people who are promoting the plan for permanent peace which this union of lawmakers has espoused. We
have made many provisions for mitigating the have made many provisions for mitigating the mate abolition. It is only by the holding of
peace congresses and the dissemination literature like the present work that we ca pcint that this relic of barbarism will be obone, fille with most interesting illustrations The interparliamentary peace movement began - ctober 31, 1887, when delegates from the
British rarliament were presented to the President of the United States. The book is
filled with very interesting data, and is on which very interesting data, and

Digest of United States Patents of Air, Caloric, Gas, and Oil Engines, and
Other Internal Combustion Engines,
1789 to 1906 . Five volumes. Draw Other I nternal Combustion Engines,
1789 to 1906 . Five volumes. Draw-
ings two volumes, Claims and Briefs ings two volumes, Claims and Briefs
two volumes, Indices and List of Reftwo volumes, Indices and List of Ref-
erences one volume. Price, $\$ 50$ per set of five volumes
This work is the only one ever published omprising this class of existing patents, an the material has been prepared with great care
and labor. The drawings are clear and distinct, and are as readily understandable a Patent office. It contains all of the reissues, above peried, accompanied by the claims in full, and a brief description of the invention claims. The definitions of the sub-classes are Especial
Especial care has been bestowed upon the arrangement of the patents to simplify an facilitate examinations, and to this end th several thousand patents are chronologically
arranged under 208 subdivisions. To enhance the value of the Digest as a work of reference
In the sub-classes have been added.
lete list of references cited is given by num ber, name, and date, as well as the interfer
ences, the parties thereto, and the decisions.
The work will be found exceedingly useful inventors, manufacturers, and attorneys and particularly by tho
Office is not available.
a Comparative Study of the Mayas and the Lacandenes. By Alfred M. Toz zer, Ph.D. Report of the Fellow in American Archæology, 1902-1905. ological Institute of America by the Macmillan Company
In this treatise Mr. Tozzer gives only a sug gestion of the great mass of data that he coland Southern Mexico. In an ethnological sens the situation that he studied is of the greates - tane. The two branches of the "Maya and the "Lacandones," were originally the ame. Since conquest, however, the "Mayas" have been in intimate contact with the Spanish
population, while the "Lacandones" have been free from contamination. Apart from the in terest attaching to the life and customs of a
pure stock, we have the splendid opportunity of comparing the effect of Christianity and its been allowed to develop along its own lines.
nciples and Practice of Plumbing
By J. J. Cosgrove. Pittsburg: Stand By J. J. Cosgrove. Pittsburg: Stand
ard Sanitary Manufacturing Com pany. Cloth; 12mo.; 267 pp . 169 illustrations. Price, $\$ 3$.
Covering as it does almost the entire fiel of plumbing, technical as well as theoretical,
is a work to be highly recommended as a handbook for all who have to deal with the preblems of sanitation as they occur in everyficiency of commonly-used materials the solu bility of various salts in water, etc., are in luded in the volume, giving it great practica
A Text Text Beok of Electro-Chemistry. By
Max Le Blanc. Translated from the fourth enlarged German edition by
Willis R. Whitney and John W Willis R. Nh York: The Macmillan Company. 12mo.; cloth; 332 pages,
51 illustrations. Price, $\$ 2.60$ net. 51 illustrations. Price, $\$ 2.60$ net
As the title indicates, a translation of the dourth German edition of the treatise by Prof Le Blanc, with certain additions by the trans
lators. It is composed of several more or less elementary chapters on dissociation and simlar subjects, followed by a discussion of con actance, electro-motive force, electrolysis used are described as is the apparatus. A uni-
form system of notation is followed throughout the book. To be recommended as a text book on the subject.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending April 16, 1907.
AND EACHBEARINGTHAT DATB
(see note at end of list about copies of these patents.)

entrifugal machine, E. A. Forsberg

Check or other financial instrument biank,

850,573
850,671
850,515䜌 850,388
850,126
年 50,372

Engine and Foot Lathes

How to Construct An Independent Interrupter

 MUUN \& Co., 361 Broadway, New York
The Best for AUTOMOBILE Dry Battery ${ }^{\text {for }}$ SPARKING
Becko Spark Cell x_{8}^{∞}

The Kickdrive Circular Saw
 210.12 Canal sto New

Instructive Scientific Papers ON TIMELY TOPICS

Price 10 Cents each by mail ARTIFICIAL STONE. By L. P. Ford. A paper of immense practical value to the
architect and builder. SCIENTIFIC AMERI-
CAN SUPPLEMENT 1500. THE SHRINKAGE AND WARPING excellent presentation of modern views;
fully illustated. SCIENTIFIC AMERICAN
SUPPLEMENT 1500. CONSTRUCTION OF AN INDICAT-
ING OR RECORDING TIN PLATE
ANEROID BARONETER. ANEROID BAROMETER. Ry N.
Monroe Hopkins. Fully ilustrated.
TIFIA AMERICAN DIRECT-VISION SPECTROSCOPES. By. T. H. Blakesley, M.A. An admirably
written, instructive and copiously illustrated
article. ScIENTIFIC AMERICAN SUPPLEMENT No. 1493.
HOME MADE DYNAMOS. $\begin{gathered}\text { SCIENTIFIC } \\ \text { AMERICAN SUPLEMENTS } 16 i \\ \text { and } 600 \text { con- }\end{gathered}$ PLATING DYNAMOS. ScIENTIFICAME RICAN SUPPLEMENTS 720 and 793 de-
scribe their construction so clearly that any
DYNAMO AND MOTOR COMBINED. Fully described and illustrated in ScIENTIFIC
AMERICAN SUPPLEMENTS 844 and 865 .
The machines can be run either as dynamos The machines can be run either as dynamo
or motors. struction

Price $10 \overline{\text { Cents each, by mail }}$ MUNN ® COMPANY

HAYNES or

sonian Institute Musearm to illustrate the history of the the ventomobile. Its Its successors were
the first automobile factory to be built in America. It has taken time to develop the aut the first automobile factory to
and Haynes had a long start.

The original leadership has never been lost.
Iow tension makeand-break ignition originated in the Haynes models of 1895 . The Haynes began the march of improvements in materials by introducing nickel steel. Aluminum alloy for
bodies and for engine parts was used first in the Haynes. The Haynes were the firstcarsto be equipped with large wheels. The side entrance body was a Haynes introduction. In a multitude of
detailsthe Haynes has been universally imitated. There is no doubt but that the Haynes has been details the Haynes has been universally
more copied from than any other car
To-day in their simplicity, reliability and
perfection, the Haynes models are still head imitated in other cars in later years.
The Vanderbilt Elimination Race proved the quality of a Haynes when a ragular stock
model-the only stock model entered -won its model-the only stock model entered-won its
place on the American Tam against the best
special designs America could produce. In the final Cup Race, against special Hace Iny
cars of twice its horsepower, its worthtriut
showing is too well known to need repeating.

Address Desk H 5
HAYNES AUTOHOBILE CO., Kokomo, Ind.

907. Model S. 30 H. P. $\$ 2,500$

Keystone Well Drills Kerosene Oil Engines

O DANGER, Maximum Power, Light
 INTERNATIONAL OIL ENGINE CO.

T1] Asbestos and Nànesia Products
 ASEESTOS PACKING (FEr all purp oses). ASBESTOS FIRE-RESISTM S FABRICS.

$\mathbf{M}_{\mathbf{x}} \mathbf{W}_{\mathbf{x}}$ SOMNSS=MANYILLEECO
New York, Milwaukee, Chicago, Boston, Philadelpha,

NORWALK BRASS CO. For All Purposes NORWALK, CONN.

GANNERS, LAUNDRIES, SHODS, SPRINGFIELD FUELGSFMAGHINES.

ALCOHOL

Its Manufacture
 Its Denaturization
 Its Industrial Use

Abstract

The Cost of Manufacturing Denaturized Alcohol in Germany and German Methods of Denaturization are discussed by Consul-General Frank H. PLEMENT 1550 The Us, ${ }^{\text {Cos }}$ ond Efficiency of Alcohol as a Fuel for Gas Englnes are ably explained by H. Diederichs in ScrENTIFIC AMERICAN SUPPLEMENT 1596 . Many clear diagrams accompany the text. The article considers the fuel value and physical properties of alcohol, and gives details of the alcohol engine and gives details of the alcohol engine wherever they may be different from wherever they may be difierent from those of a gasoline or crude oil motor. In SCIENTIFIC AMERICAN SUPREEMENT 58 I the Production of Industrial Alcohol and its Use in Explosive Mo= tors are treated at length, valuable stators are treated at length, valuable sta- tistics being given of the cost of manufacturing alcohol from farm products and using it in chen ens. French Methods of Denaturization constitute the subject of a goona article published in Scientific American How Industrial Alcohol is Made and Used is told very fully and clearly in No. 3, Vol. 95 , of the Scientifc AmerICAN. The Most Complete Treatise on the Modern Manufacture of Alcohol, plaining thoroughly the chemical prin ciples which underlie the process with- out too many wearisome technical phrases, and describing and illustrating all the apparatus required in an alcohol plant is published in ScIENTIFIC AMERICAN SUPPLements 1603, 1604 and 1605. The article is by L. Baudry de Saunier, the well-known French authority.

In Supplements 1607, 1608, 1609 w prbliyh a digest of the rules and regu- ations under which the U. S. Internal ations under which the U . S. Internal Revenue will permit the manufacture and denaturation of tax free alcohol. A Comparison of the Use of Alcohol and Gasoline in Farm Engines is given 634 and and S. M. Woodward. The Manufacture, Denaturing and f Alcenical and Chemical Utilization of Alcohol is ably discussed in the ScIentific Americain Supplements 1636 nd 1637 by M. Klar and F. H. Meyer, both experts in the chemistry and distillation of alcohol. Illustrations of stills The Souces industrial hat is the Farm Products fromicohol, alcohol is distilled, are enumerated by can Suppiements i6Il and 1612 and heir relative alcohol content compared The Distillation and Rectification of Alcohol is the title of a splendid article. y the late Max Maercker (the greatest authority on alcohol), published in Screntific American Supplements 1627 ond 1628. Diagrams of the various types of stills in common use are used as illusrations. In SCIENTIFIC AMERICAN SUPRLE- MENT I6I3 the cohol in the Arts and in the Home are discussed. $$
\begin{aligned} & \text { liscussed. } \\ & \text { Any Single } \end{aligned}
$$

Any Single Number of the Scientisent for to cents by mail. The entire set of papers above listed will be mailed Order from your nezusdealer or fron the pubisher MUNN \& COMPANY, 361 Broadway, New York

Valuable Books Home Mechanics for Amateurs

370 irners 326 Engruvingh Price $\$ 1.50$ twenty-third edition EXPERIMENTAL SCIENCE.

REVISED and ENLARGED EDITION The Scientific American
Cyclopedia:
15.000 Receipts. 734 Pages

Price, $\$ 5.00$ in Cloth. $\mathbf{8 6 . 0} \mathbf{0}$ in Sheep. $\mathbf{\$ 6 . 5 0}$
in Half Moroca. Post Free.

the
Price
and appendi.
MAGICC $\begin{gathered}\text { stage illusions and Scientific Diver. } \\ \text { sions including Trick Photo }\end{gathered}$

Scientific American Reference Book

The result of the gueries of
 nealone have made it possibe for theapotishersor
 MUNN \& CO., Publishers. 361 Broadway, NEW YORK

 0 or 0 or 0

The Scientific American Boy

By

A. RUSSELL BOND

12mo. 320 Pages. 340 Illustrations. Price $\$ 2.00$ Postpaid IS is a story of outdoor boy life, suggesting a large number of diversions whic h aside from affording entertainment. will stimulate in boys the creative spirit. In each instance complete practical instructions are given for building the various articles.
II The needs of the boy camper are supplied by the directions for making tramping outfits, sleeping bags and tents; also such other shelters as tree houses, straw huts, log cabins and caves.
II The winter diversions include instructions for making six kinds of skate sails and eight kinds of snow shoes and skis, besides ice boats, scooters, sledges, toboggans and a peculiar Swedish contrivance called a "rennwolf.
II Among the more instructive subjects covered are surveying, wigwagging, heliographing and bridge building, in which six different kinds of bridges, including a cimple cantilever bridge, are described.
II In addition to these, the book contains a large number of miscellaneous devices, such as scows, canoes, land yachts, windmills, water wheels and the like. A complete table of contents sent on request.

MUNN EO COMPANY

361 Broadway "scientirict american" New York City

Important to Subscribers for Scientific American in Canada
Owing to recent changes in the Postal Laws, copies of Scientific American mailed to addresses in
Canada will have to be prepaid by stamps affixed at the rate of one cent for each four ounces or fraction thereof. Commencing May I, I907, the rates for subscriptions for our periodicals mailed to Canada, postage prepaid, will be as follows

Scientific American
Supplement
American Homes and Gardens Scientific American and Supplement
Scientific American and American Homes and Gardens

MUNN \& COMPANY, Publishers 361 BROADWAY, - NEW YORK

SENSATIONAL CLEARANCE SALE

OF SLICHTLY RUBBED SETS

of The New Americanized ENCYCLOPEDIA BRITANNICA
These superb sets will bring delight to the Booklover. The bindings are fine half mo-

ENCYCLOPEDIA BRITANNICA

THIS IS YOUR CHANCE. The tremendous selling of the last few weeks bas left us with a few

THIS WORLD-FAMOUS WORK is the provuct of three hundred of the fnest bra

 $\$ 1.00$ Secures Possession of the Entire Set.

We par all transortation charges.
If
not top purchase,
If you like te te books you will have immediate
possession thereof. Youn can then
SIEGEL COOPER CO. New Yofk Adaress.

Classified Advertisements

$|$| AGENTS WANTED. |
| :---: |
| MACHINTST, ELECTRICANS, PRINERS, IRON- |

 AENTS WANTED ta sell best keties in wraf for

SALE AND EXCHANGE

HELP WANTED.

Syracuse Chilled Plow Co.,

FACTORY AND MILL SUPPLIES.

MACHINERY

REMOVED to larger quarters, we offer our laree
stock of new ana second-land machinery; also boilers, entines, dynamos, motors materiale and supples.

TYPEWRITERS.

PHOTOGRAPHY

BARGAIN TIMEIS HERE. Splendid opportunity in

PATENTS FOR SALE.

EYE-GLASS SPECIALTIES.

SCHOOLS AND COLLEGES.

Shock absorber. F. W. W. Battershall. Shock binder, A. Melin.

蓲

,

$\underset{T}{\substack{T 11 \\ T}}$
Tiin

\qquad

850,804
850,371
范

TRADE MARKS.

Bras
$\substack{\text { Brandy } \\ \text { Brandy } \\ \text { broma } \\ \text { tha } \\ \text { bin }}$

Make a Motor Boat of any Boat in 5 Minutes

LET US ESTIMATE ON YOUR MOTOR BOAT OR LAUNCH
New Factory. Perfect Equipment.
Testing rasin. River Coqiected.
Expert Service. Competitive Prices.
WECKLER BOAT

Scientific American.

 descriptions. Single numbers will be mailed for 10 cents

STRONG \& DURABLE

The New York Standard

CHRONOGRAPH

"Stop-Watch" Watch made in America and is un equaled for Laboratorial and Experimental Work, Photographic Purposes, Electric and Telephone Uses. For Refiner and Compounders of ©ils, etc. For Physicians, Sur geons, Nurses, and for the exact timing of all athletic events.

All Jewelers Sell Them

New York Standard Watch Co., 401 Communipaw Ave., Jersey City, N. J.

nent Eie Summer Work. Perma=...
 TiF ordinary new book proposition. Nothirg like it for hig sales and big THE REVIEW OF REVIEWS COMPANY
13 Astor Place, Room 4i4, New York

RUBBER
以
MODELS \& EXPERIMENTAL MACHINERY,

VENTRILOQUISM

Before You Invest

 $=3=3=2=2$

3 Months Free

NE DRILLING Machines

 trong, simple and arable. Any mechanic can.
WILLIAVIG BROS. WILLIAMIS BROS., Ithaca, M. Y.

Fow to Make a $100=$ mile (Xireless Celegraph Outfit

 expert, Mr. A. Frederick Collins, describes clearly and simply, without the add of nathematics,the construction of a roo-mile wireless telegraph outfit. Complete drawings accompany his

The design and construction of a $100-$ minie $\quad \begin{aligned} & \text { The adjustment and tuning of a ron-minile } \\ & \text { wireless telegraph outfit is discussed in SCIEN- }\end{aligned}$
wireless telegraph set is described in SCIEN-
 telegraph outfit is explained in SCIENTIF
AMERICAN SUPPEMENT I625.
 These sixarticles constitute a splendid treatise on the construction, operation and theory of
wireless telegraph instruments. The complete set will be mailed to any address for 60 cents.

MUNN 82 CO., 361 Broadway, New York, N. Y.

Rubber Pump Valves
For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. of et ot Mechanical Rubber Goods of every description of unsurpassed qualities, including BEL TING, HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking, Tiling, Emery Wheels and MOULDED and CUT SPECIALTIES for any mechanical
and commercial device. $\& * * * * * *$ NEW YORK BELTING \& PACKING COMPANY, Ltd. 91 \& 93 Chambers Street, New York

WM. H. BRISTOL Electric Pyrometers
 Wm. H. Bristol, 45 Vesey St., New Yorin

FORMOZONE "ODORLESS"

 GARBAGE CAN

Bausch \& Lomb

 Fine BalancesOur line of Analytical Balances is very
comprehensive including all the lea comprehensive, including all the lead-
ing makes. We can supply balances at ing makes. We can supply balances at small balances from $\$ 3.5 \circ$ up. This is only a part of our great line of labora-
tory apparatus. Write for prices and tory apparatus. Write for prices and catalogs.
Bausch \& Lomb Optical Co.
New York Rochester, N. Y.

BRISTOL'S Recording Instruments For Pressire, Temperature and ingure safeidectonomicat HE BRISTOL CO., Waterbury. Conn., U.S.A

Franco-Auto Portable TURNTABLE
No. 2 Ball Bearing Caster, made in one piece, light and durable. Cars can be run off or on at either end. Protects Tirges when car not in use. One man can handle
the largest car with ease. Indispensable for handling cars in garage, factory or private barns. Requires no jack to in garage, factory or private barns. Requires no jack to
place in position. Write for full description and price list.
FRANCO-AMERICAN AUTO Q SUPPLY COMPANY $\underbrace{1402 \text { Michigan Avenue, CHICAGO }}$

For Cement Rock and Clinker, Coal, Phosphate Rock, and other refractory substances.
Notbing Succeeds Like Success
Over 2000 "Griffin Mills" sold to date. 783 of these sold to the following six leading Cement Companies of the United States: American Cement Company

Alpha Portland Cement Company
Lehigh Portland Cement Company
Iola Portland Cement Company Vulcanite Portland Cement Company Hunt Engineering Company
Ordể's on books A pril, 1st for 1907 shipment, 229 Mills.
BRADLEY PU!.VERIZER C0., 92 State Street; BOSTOA:

BUILD WITH
 PRACTICAL KNOWLEDGE ${ }_{\text {times }}^{\text {build, this cost. of tor toks will save you many }}$ ter chance to learn a paying trade or profession could be offered. If
you are a Car penter, Contractor, Builder, Architect, Draftsman or you are a Car penter, Contractor, Builder, Architect, Draftsman or
Mechanic it offers you an exceptional charice to advance i, your present occupation. The truest test of your present efficiency is the amount of nunlly earned by you from week to week. Unless you are advancing等 must come a time and more money as younger and more ambitious men will
Cyclopedia oA Acchitecture, Carpentry mom Building

SPECIALADVANCESALE LESS THAN 1 - 3 REGULAR. PRICE
TEN MASSIVE Volumes,

Special $\$ 19.80$ Price

Regular Price $\mathbf{\$ 6} 0$
 In any case you lose nothing.
In asol
Absolutely yo orders accepted at this price if postmarked
later than May 25, 1907.

DO YOU
KNOW THE

THE FERRO MACHINE \& FOUNDRY CO. Ifarge Stock at 75 Cortlandt Street, New York,

A MONEY MAKER (2)

Proved Best BY
 Every Test
 Mullins

 Fireproof Windowis absolutely fireproof and actually does
what no other window can do - it stands Ask for an Estimate Her w muncing catalo 203 Franklin Street, Salem. 0.

