

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors
Published Weokly at
No. 361 Broadway, New York

terms to subscribers

 the scientific american publications

Scientific American (Established 1845)

NEW YORK, SATURDAY, NARCH 23, 1907.

 The editor is al ways glad to receive for examination illustratedarticles on subbects of timely interest. If the photographs are articles on subjects of timely interest. 1 the
sharp, the articles short, and the facts $a t h e n t i c$, the cointributions
will reen will receive special attention. Accepted articles will be paid for at regular space rates.

ARCHITECTURAL IMPROVEMENT OF NEW YORK CITY.
The strict regard for utility which characterizes the average American has been perhaps the most potent influence in a national industrial growth which is absolutely without parallel in the history of the world. But while utility makes for a rapid increase in wealth and material power, and the development of certain of the more robust elements of national character. these elements are obtained at the cost of certain other qualities, abstract and concrete, which many of us are beginning to realize the nation can ill afford to lose. Just now we have in mind the evil effects which a too slavish obedience to the promptings of utility have had upon the appearance of the great cities, in which the more important interests of the nation are centered, and in which so large a proportion of its people must ever dwell. Thus, whatever may be said, and a great deal may be said, in favor of the rectangular system of laying out the streets of a city, on the ground of its simplicity, its economy of space, and the readiness with which it lends itself to street nomenclature and numbering, it is coming to be understood that judged from the aesthetic and architectural point of view, and even from that of convenience, it has most serious drawbacks. Why is it that the average American tourist is filled with such immediate pleasure as he looks upon the winding streets and the general unstudied grace of an ancient European city? Something broader and deeper than a mere sense of novelty enters into his -appreciation; and, as a matter of fact, his pleasure is founded in his unconscious recognition of certain fundamental laws of harmony and beauty, to which the stiff uniformity of the blocks and squares of the average American city does violence.
It is a curious fact that the ground plan of most of the great cities of this country was determined in the office of the real estate speculator and drawn with a lead pencil and a common office ruler. Certain it is that when the enterprising vendor of city lots pinned his rude sketch upon his office walls, he little dreamed that, before many decades had passed, the wildest flights of his prospectus would have been surpassed, and those crudely-drawn squares covered by the towering business buildings or the sumptuous homes of a prosperous city, and its streets filled with the rush and roar of busy commercial life.
For many years past there has been a growing conviction that the time has come for taking hold of the question of the architectural and aesthetic appearance of New York city, to say nothing of the convenience of its thoroughfares to the requirements of traffic, and devising some comprehensive scheme which will imprọve its present appearance and make provision for its inevitable future growth. Toward the close of the year 1903 the Board of Aldermen of this city created the New York City Improvement Commission which, after an exhaustive study of the problem, presented two reports, one in 1904, and a final report in January of the present year. The Commission realized that a comprehensive plan for the city's development must necessarily anticipate the future growth of the city for many years to come, and that it must be so designed that all of its parts should be consistent and form a homogeneous whole. This co-ordination was necessary in order that any future improvements might be carried out with a definite purpose and along definite lines, and not, as has been too often the case, without reference to any general plan for the city's betterment. The framing of such a system of improvement involved not only the laying out of parks, streets and highways, the location of city buildings, the improvement of water fronts, etc., but also questions of more or less detail relating to pavements, sidewalks, appropriate house numbers, gas and electric fixtures, the manner of indicating the streets, the loca-
tion of statues and monuments commemorative of historical events, the question of tree planting, and many other matters, all of essential importance if New York is to take its place as one of the great metropolitan cities of the world, not merely as regards its size and numbers, but also in respect of its aesthetic and architectural beauty and dignity.
In studying the final report, with its ambitious and really stupendous system of boulevards, parkways, and monumental structures, one must be careful to bear in mind that the enormous expenditure of time and money involved in its execution is intended to be spread out over a long series of years. To adopt the Napoleonic method, would be to throw this city, in spite of its vast resources, into immediate bankruptcy. No such course is contemplated by the committee; and the elaboration of these plans on such a mammoth scale and with such completeness, is done so that the plan may be settled at least in its broad outlines, definitely and for all time, and an end made of the haphazard methods of the past.
The salient feature of the general plan, as it affects the city as a whole, is to afford adequate and suitable avenues of connection between the different parts of each borough, as well as between the different boroughs themselves and the outlying distances. Furthermore, while each borough is provided with a park system of its own, each system is connected with the other by suitable parkways so as to make them parts of one harmonious whole and by making each supplement the other, to add largely to the beauty and advantages of all. It is largely in view of the double purpose of uniting the separate park systems and at the same time preserving their individuality in each borough, that the Commission has planned for numerous and extended parkways and comparatively small parks rather than extensive individual park areas; and the wisdom of this policy cannot be disputed. The report is accompanied by a large number of maps illustrative of the designed improvements, and while limitations of space prevent any detailed reference to these, mention should be made of the special merit attaching to the plan for connecting and treating the terminals of the new East River bridges, and notably of the plans for a great circular plaza 800 feet in diameter at the point where the Brooklyn and Manhattan bridges converge on the Brooklyn side. It is sincerely to be hoped that after due discussion of the really admirable plans here presented, the report will be adopted, and the future convenience and beautification of New York city thus defi nitely assured.

THE DEMAND FOR TECHNICALLY QUALIFIED YOUNG MEN.

In view of the general impression that the professions are greatly overcrowded, it is surprising to learn that some of the leading railroads of the country are finding much difficulty in securing properly qualified young men to fill subordinate positions on the engineering staff. One road in particular has recently gone so far as to make the fact known in the public press, and to invite communication from young men who have passed through technical schools, and pos sess the necessary qualifications to enable them to commence work as rodmen and chainmen, or do the sim pler instrumental work connected with the construc tion and maintenance of railroads. It was further stated that the remuneration would be sufficient to enable these men to maintain themselves at once in decency and comfort, and that for those who showed aptitude and application there was a reasonable expectation of early promotion. Further evidence of the excellent opening afforded by the present industrial activity is found in the fact that, in one of the leading technical colleges of the country, every member of the graduating class of 1906 had secured an appointment some months before the close of the college year. The demand for technically-qualified men in railroad work has unquestionably been stimulated by the recognition of the fact that the increase in the capacity and weight of the motive power and rolling stock, and the demand for more intelligent supervision due to the in troduction of electric traction on steam roads, is rend ering it desirable that not only the engineering department, but also those which have to do with the maintenance and operation of the road should be run by men with sufficient technical knowledge, with sufficient training in natural science, to enable them to exercise a more intelligent oversight of their departments than is possible in the case of men whose theoretical knowledge is bounded by the limits of a common school education.

In this connection it is gratifying to note that there is in successful operation in this State a railway training school under the supervision of practical railroad men, in which the students are put through a course designed to prepare them specifically for employment in the various departments under which the complicated operation of our railroads is carried on. Without casting any disparagement upon the many able men who, from humble positions on our railroads, have risen to stations of great trust and responsibility,
we believe that the complicated problems involved in the operation of a great modern railroad system have rendered it not only desirable but imperative that the heads of those departments which have to do with the mechanical and constructive elements of a railroad should be graduates of technical schools or members of the engineering profession. To make such a provision a general one would, after all, be merely to apply broadly a principle which, for many decades, has been followed upon the Pennsylvania Railroad system, whose late distinguished head, President Cassatt, was a civil engineer who had risen by steady gradations from rodman to president.

THE "JENA" DISASTER AND STABLE GUNPOWDERS. In all probability the recent terrible disaster to the French battleship "Jena" will be found to have been due to the explosion of her after magazines as the result of spontaneous combustion of the powder. If this be so, the accident is of the same character as that which, at the close of the recent war, tore out the side of the Japanese battleship "Mikasa" at a time when, like the "Jena," she was at one of the government dockyards.
In spite of the really remarkable progress which has been made in the development of modern powders, the best of them are liable, under certain conditions, o a decomposition which, if it proceeds to a certain point and be accompanied by certain conditions of temperature, may result in the explosion of the magazine and the loss of the ship or arsenal, as the case may be. Our modern smokeless powders, when in storage, are the occasion of a degree of anxiety and watchfulness which was never felt in the days of the brown or black powders. Although it is true that the stability of smokeless powder made on the latest formulas shows a great improvement over the earlier powders, it still remains for someone to produce a slow-burning powder which, without any sacrifice of ballistic power, shall possess the desirable quality of being absolutely stable under any conditions of climate and for any period of storage.

COHESIVE FIREPROOF TILE CONSTRUCTION.

The elimination of the fire hazard in modern buildings is based upon the principle that all supporting iron or steel girders, columns, and beams must be protected from fire by some material which is a poor conductor of heat and not easily disintegrated or injured by high temperatures. Burned clay materials, such as flat, hollow, porous, and semi-porous terra-cotta blocks, and certain grades of buprepd bricks, are commonly employed for this purpose. Owing to the relative lightness of these materials and their high fireresisting qualities, most steel frameworks of our large buildings are incased in hollow or flat terra-cotta tiles aid in cement mortar. Many of these clay tiles and blocks are burned in the making to $2,000-2,500$ deg. so that in any fire they will not crumble or crack at a temperature below that to which they were originally subjected.
No great stress is imposed upon the hollow porous blocks used for fireproofing beams, girders, and columns, and their crushing strength is not very great. Their function is performed in protecting the steel work from an excessive interior temperature, while the metal carries the loads of the different floors. The use of hard, flat terra-cotta tiles for certain construction purposes, both to carry the load and to resist any interior fire, has in the last year or two assumed an important development. Modern methods of burning and making the terra-cotta tiles have greatly improved their strength and durability, and the better grades of them have been used in a number of buildings in New York city and elsewhere which fully illustrate the new method of cohesive fireproof tile construction.
In the new custom house in New York city the large dome surmounting the great interior rotunda is constructed entirely of fireproof flat tiles, and the total absence of any metal for supporting this huge elliptical dome shows the great cohesive power of hard, flat tiles when properly laid up in cement mortar. The dome s 80 by 135 feet in size, and supports on its summit a huge skylight of glass and metal whose total weight is 140 tons. The tiles used for this purpose are 12 inches in length, 6 inches in width, and about 1 inch in thickness. They are laid on edge, and form a perfect curve.

The masonry walls of this rotunda are built of brick up to the lower part of the dome. A massive flat ring of steel is fitted on the top of this masonry and imbedded in it, and from this the dome springs. The foundations of the dome are of solid, flat tiles cemented together on their edges, but after a few courses an outer and inner shell is formed. Nine layers of 1 -inch flat tiles form the lower courses, but as the curvature of the dome is reached one course after another is omitted until near the middle there are only three layers of tiles for each shell, leaving an open space between them.

A central mid-rib composed of tiles laid fat runs around the dome to.strengthen it, and similar ribs of
tiles laid fiat radiate from the apex of the dome to the foundations. These ribs are joined to the central midrib by cement, and all are inclosed by the two shells of the tiles laid on edge. The cohesive strength of tile construction is thus amply demonstrated. Engi neers representing a number of structural steel manu facturers intimated before the work was undertaken that it was impossible to build the dome in this way without metal reinforcements of some kind; but the dome has been finished for some months and the heavy skylight placed in position. The lightness of the tiles makes the dome nearly half the weight of another of similar size constructed of metal, while the fireproof quality of the material insures the dome from interio destruction by fire. The tiles having been burned in the making do not warp or shrink after being placed in position, and elaborate decorations can be made directly to them without danger from cracking or warping,
A similar dome of less size and ambition has been built on the new Madison Square Presbyterian Church which recently has been completed. The same size flat tiles are used there, and the dome is built and sur mounted by a small tower. The crushing strength of the tiles is upward of 2,000 pounds to the square inch, and their cohesive strength is dependent chiefly upon the quality of the Portland cement used in building the dome. The major axis of this new dome is only 52 feet, but its shape and artistic appearance from either the inside or outside make it remarkable quite as much as the decorations placed on it by the archiect. The dome springs direct from the walls of brick, and it thus completes a remarkable building independent of any iron or steel work.
Within the past few years a number of other simi lar domes of this same general character have been completed. In the new library building of the Univer sity of New York there is one with a major axis of 70 feet, and over the rotunda of the University of Virginia the Guastavino dome of flat fireproof tiles laid edgewise has a diameter of 69 feet. The Hall of Sciences, in Brooklyn, has a dome of flat tiles without any metal supporting work of 60 feet in diameter, and the new Minnesota State Capitol one of similar dimen sions. The dome over the Bank of Montreal building is 72 feet in diameter, and is the largest, next to the new one over the rotunda of the New York custom house, yet finished by this new method of cohesive con struction.
The construction of such fireproof, non-metal-sup ported domes represents a special branch of masonry designing which has slowly reached perfection in this country. It is based upon the principles of the early Roman architects who used heavy bricks and stones for their work, but with superior tiles and cement mortar to work with, the modern designers have se ured strength and rigidity with materials much lighter and absolutely fireproof in character
The high degree of skill and mathematical designing required to construct domes, arches, and stairways of tiles by the cohesive system is probably even bet ter illustrated in the two pairs of stairs built in the new custom house facing Bowling Green in New York. These stairs spring from the basement of the building and terminate at the roof. No metal whatever is employed for supporting them. On the contrary, heavy balustrades of metal, and equally heavy marble treads, only add to the dead load carried by the tiles. Rather larger tiles are used for the stairs than for the dome construction, but they are all light and apparently frail for this. work. From the basement to the main floor a circular wall of brick masonry is built, and the tiles are attached at one end to this wall; but each semi-circular flight depends for its strength and rigidity upon the cohesive strength of the tiles and the scientific strength of a curve when the load is so distributed that the pressure to the arch is continuous. Above the main floor each flight springs to the floor above without any support other than that derived from the top and bottom. The stairs are formed by a number of thicknesses of flat tiles at the base which gradually diminish toward the middle of the arch, and then thicken again toward the top.
The construction of spiral and semi-circular stairways with hard flat tiles requires independent and careful study of each individual case. No definite rule or principles can be laid down to apply to all cases, but each problem has to be worked out by itself. The combination of the spring of the arch with the continuous curve under each platform to adjust the adjoining flight are questions of mechanical skill. Such stairways of hard, fireproof clay tiles are constructed to carry loads which will suffice for any kind of public buildings, and those recently constructed in the custom house (or rather in the course of construction at this writing) are designed to carry heavy marble treads and ornamental iron and bronze work besides the weight of those who will constantly use them for ascending and descending. The fireproof quality of such stairs is of particular force in view of the modern effort being made to eliminate everything possible from public buildings which will crumble or disinte-
grate when attacked by a hot interior fire. The difficulty of protecting an iron stairway by terra-cotta casing as commonly practised in protecting beams and girders is quite apparent If left unprotected a sharp interior fire will cause a collapse of the stairs and greatly increase the damage to the building. A tile stairway on the contrary would not be affected by a fire unless the temperature reached 2,000 and more degrees, and a collapse would not follow.
The use of the cohesive tile.construction for floors and ceilings is well illustrated in two other notable buildings recently built in New York. The domic ceiling of the new Tiffany building is constructed of hard, flat tiles laid on edge and sprung from rotunda columns and terminating in a large skylight. In these domic ceilings the curve is less than in the domes, and the effect is of a slightly arched ceiling of great beauty. The decorations are sometimes laid directly on the tiles and in other cases ornamental faced tiles are cemented to the hard supporting tlles for interior effect. In the new Gorham building all of the different floors and ceilings are made of hard tiles. A series of arches spring from the steel columns and terminate in points in the ceiling. The compression on the tiles is uniform, so that the load is carried without any undue stress upon any part. The tiles are laid on edge, with several courses forming the arch, breaking joints at each course, and cemented together with the best Portland cement mortar. The decorations are either made directly on these fireproof tiles or ornamental tiles cemented to them. No metal work is employed to support the domic ceilings other than the series of steel columns from which the arches spring. No steel reinforcements or tension rods whatever are employed in the construction. The remarkable lightness of the floors and ceilings built in this way is one of the chief virtues ascribed to the new method of fireproof building. The carrying capacity of a floor built of cohesive tile masonry is certainly sufficient to warrant their construction in some of the fin est public and commercial buildings of the country. As an interesting development of the fireproof question cohesive tile construction is without a peer, and its adaptation to new work and fields is a matter that should be of inestimable value to the building trades. In cases where lightness of structure is an important consideration hard flat tiles may prove far more desir able than iron skeleton work, and also where it is desirable to use fireproof clay materials owing to the difficulty of covering the iron work with terra cotta.

INTERNATIONAL MARITIME EXPOSITION COMMEMO RATING ANNIVERSARY OF STEAM NAVIGATION IN BORDEAUX, FRANCE.

That great interest is being manifested in the International Maritime Exposition which is to be held in Bordeaux in May is evidenced by the great prog ress that has been made in the construction of the several buildings, and the fact that the contractors promise to have them all ready some time before the opening on May 1.
This exposition is designed to commemorate the centennial anniversary of the successful application of steam to navigation by Robert Fulton. The motive for the celebration of this great event may be found in the fact that in 1803-four years before his succes on the Hudson with the "Clermont"-Fulton mad his initial trials in steam navigation in France. Ful ton's experiments appear to have been at first with a submarine boat, which he christened the "Nautilus," and in which he was submerged for five consecutive hours on one occasion in 1801. This demonstration appears to have been at Brest, in the presence of the French Admiral Villaret, and it is recorded that by the use of torpedoes Fulton managed to blow up a boat in the harbor.

He made a second submarine boat, and gave a dem onstration on the river Seine at Paris, on which a com mission appointed by Napoleon reported favorably Nothing, however, came of the submarine boat, and it was subsequently, in 1803, that Fulton treated the Parisians to the spectacle of a small boat propelled by steam on the river Seine with two bateaux tied astern. A chronicler of that time describes it as "un bateau mú par des roues comme un chariot" (a boat moved by wheels like a chariot).

The exposition, as officially stated, is to be interna tional in character, and to illustrate the history of navigation. The world's marvelous progress in the art of shipbuilding and the science of navigation is to be shown by a collection of models of every kind of water craft, ancient and modern. All that pertains to ocean geography and all industrial and artistic pro ducts having relation to maritime affairs are to find a prominent place. There is to be a congress of naval architects, with lectures on science, art, industry, com merce, and political and social economy. There will be boat races on the river Garonne, in which the management hopes that crews from the several nations will compete
The grand palace and the main buildings, covering
an area of about ten acres, are all so connected by arcades that they form practically one great building. The grand palace is to be devoted to the illustration of maritime history, ocean geography, ancient and modern painting, sculpture, architecture, and horticulture. Materials for the construction of boats and ships, diving and life-saving apparatus, fishing appliances, ship's provisions, sea food, and motor machines (land and water) will have considerable space devoted to their exposition. In the place allotted to the navy there is to be a special exhibit of submarine boats, guns, torpedoes, ship's armor and equipment. Aeronautics, electrical apparatus, signals, wireless telegraphy, telephones, pumps, refrigerating apparatus, heating and ventilating appliances, port and harbor works, sea and river sports, art bronzes, lace tissues, linen and tapestry, glassware, china, cutlery, and musical instruments are also to have spaces devoted o them.
This exposition should afford excellent opportunities for American manufacturers to show the superiority of their products and extend their trade. Manufactur ers of motor boats, light motors and dynamos, canoes, lifeboats, diving and life-saving appliances, fishing apparatus, optical and nautical instruments, or those who make anything that relates to navigation or ships, will find a good chance here to advertise their goods and increase their business.
An appropriation of $\$ 15,000$ was made at the recent session of Congress to enable the government of the United States to be properly represented at the exposition. There will be a pavilion erected especially for the American exhibitors.
The Secretary of the Navy has ordered several of our finest warships to attend, and the members of the American Committee of Honor comprise men well versed in these matters.
It is especially fitting therefore that France in taking the initiative shows once more her thankfulness to the artisans of progress, and her sincere friendship for the United States, in commemorating the century anniversary of Robert Fulton's victory, for it was in ranc

BURCHELL'S ZEBRA

One of the larger South African mammals now verging on extinction, if, indeed, it has not already ceased to exist, is the typical race of Burchell's zebra, the bontequagga of the Boers, and the Equus burchelli ypicus of zoologists, writes Mr. Lydekker in Knowledge. This race apparently inhabited the plains to the north of the Vaal River, now forming British Bechuanaland. It is characterized by the complete absence of barring on the legs and of stripes on the lower part of the hindquarters; while between the dark brown body-stripes were' faint "shadow-stripes" on the still paler ground-color. The original specimen in the British Museum brought home by the great African traveler, Dr. Burchell, was, unfortunately, destroyed at a time when but little attention was paid to the priceless value of "types," and there is now no example of this race of the species in the national collection. According, however, to a paper published by Mr. R. I. Pocock in the Annals and Magazine of Natural History for 1897, there is, however, one specimen in the museum at Tring, and a second in the Bristol Museum, both of which come very close to the typical form, although neither is exactly similar, and each differs slightly from the other. In these circumstances it is interesting to learn that a specimen exists in the American Museum of Natural History.

THE CURRENT SUPPLEMENT.

The current Supplement, No. 1629, opens with an excellent article by the English correspondent of the Scientific American. This is one of the most important undertakings in connection with the development of transportation facilities in the African continent, and second in magnitude and character to the Cape to Cairo Railroad only. Many illustrations accompany the article. Poulsen's system of radiotelegraphy by coninuous electrical oscillations is described. John B. C. Kershaw writes on the development of the electrochemical and electro-metallurgical industries in 1906. A very excellent discussion of the recent accident on the electrified portion of the New York Central Railroad is published, and helpful diagrams are printed, which give one a very clear idea of the cause of the catastrophe. The limits of thermal efficiency in inter-nal-combustion engines are discussed. Dr. D. T. MacDougal presents a thoughtful article on the hybridization of the oaks. Dr. Charles Mercier contributes a very curious paper on the fear of open and closed spaces.

The Jiji Shimpo states that, according to the government's present plans, the efficiency of the Japanese navy in 1915 will be double what it was before the Russo-Japanese war.

AN ALCOHOL-ACETYLENE MIXTURE FOR INTERNAL-COMBUSTION ENGINES.

The photographs which we reproduce show an experimental testing plant for making all kinds of tests with a gasoline engine. The plant is that of Joseph Tracy, the well-known automobile driver. Mr. Tracy is also consulting engineer for several automobile companies, and in this capacity it is often necessary for him to make tests of various sorts.
As can be seén in the larger photograph, this testing plant is of the simplest possible type. It consists of a single-cylinder, $31 / 2$-horse-power de Dion motor, M, direct connected to a dynamo, D, to the other end of the shaft of which is connected a centrifugal water-circulating pump, H. The water pump forces the cooling water through the water jacket of the motor and also through the radiator, W. An electric fan is used to create a draft of air upon this radiator, if necessary, in making tests, while the temperature of the water when it enters the radiator at the bottom, and when it leaves it at the top, is shown upon two thermometers, \boldsymbol{T} and T^{\prime}. Attached to the outer field magnet casing of the dynamo is a circular ring having an arm, O, from the end of which is suspended a scale pan, L. The magnetic reaction of the armature upon the field magnets is counterbalanced by weights put in the scale pan, and thus the foot-pounds of energy per minute developed by the engine can be directly obtained at any moment provided the revolutions per minute are known. These are obtained from a suitable tachometer. This device does away with the inconveniences of the Prony brake, and also makes it possible to calculate the horse-power in two ways, one electrical, and the other mechanical. If the efficiency of the dynamo is known, by reading the volt and ammeters $A A^{\prime}$, the electrical horse-power developed by the dynamo can quickly be figured.
The taking of indicator diagrams of a gas engine is found to be very valuable, and there are a number of different manographs on the market for this purpose. The one employed in the present instance is known as the Schultze manograph, and is shown at S in the two photographs. The diagram is traced by a beam of light reflected upon a ground glass by a mirror, which oscillates at the same time on both a vertical and horizontal axis. This diagram is shown in the larger photograph. A small Nernst lamp supplies the light to the manograph, and as this type of lamp requires alternating current, the latter is generated by means of a magneto, m^{\prime}, driven by the small direct-current dynamo, m, and connected in circuit with the lamp, N, through a rheostat, F^{\prime}. The movement of the mirror upon its vertical axis (which traces the horizontal line) is obtained from the 2 -to- 1 camshaft by means of the bevel-gear-driven rods, $R \quad R^{\prime}$. These rods make the same number of revolutions per minute as does the crankshaft, and they cause the mirror to oscillate by means of a suitable cam. The oscillation of the mirror upon its horizontal axis is obtained by means of the impulses of the gases upon a diaphragm in the box, d. The hot gases pass directly from the combustion chamber up through a small tube, which is fitted with a water jacket, E, for the purpose $0_{\sim}^{\text {: }}$ cooling them somewhat. The impulses given the diaphragm cause the mirror to reflect the beam of light in a vertical direction, thus indicating the pressure obtained in the cylinder at any given part of the stroke. This instrument makes it possible to see indicated the variations in pressure from any cause whatever, and it is a most valuable appurtenance for the proper testing of any type of internal-combustion engine. A. complete description of it will be found in the current Supit will be
The apparatus shown in the upper photograph was constructed for the purpose of experimenting with a new system, whereby a mixture of acetylene gas and alcohol vapor is produced and used in the engine.
By the addition of a certain proportion of acetylene to the alcohol vapor, a quicker burning, more explosive mixture results. This would tend to make it possible to obtain from a given size of gasoline engine the same horse-power when operating with alcohol as when gasoline is used, without the greatly increased consumption (nearly double

Testing Apparatus for Barker-White System, Showing Jacket Around Exhaust Pipe, Large Carbide Chamber, and Manograph With Engine Connections.

Diagram Producing Apparatus Used With an Producing Apparatus Used With an

Alcohol Carbureter.

Running on Alcohol Vapor and Acetylene. Running on Gasoline.
Indicator Cards of Motor.

Experimental Testing Plant for Internal Combustion Engines.
A^{\prime}, Voltmeter and ammoter. C, Alcohol carbureter. D, Dynamo mounted on ball bearings and direct connected to engine. FF^{\prime}, Rheosiats for dynamo and magneto. G, A cetylene generator. H, Water circulating pump. I, Mercury vacuam gage. K, Cutout and rheostat for small electric motor, m. K', Switch. L, Scale pan. M, 31/2 h. p. de Dion gasoline motor. m, m^{\prime}, Small electric motor driving magneto to produce alternating current for Nernst lamp. N , Nernst lamp of Schnultze manograph. O, Lever arm attached to dynamo, D. Q, Switch and resistance for Nernst lamp. S, Ground glass screen of manograph. TT', Thermometers for testing water. U, Spark coil. W, Radiator.
Y, Fuel tank. Z, Ignition battery.
by volume) that ordinarily occurs when this is attempted. The apparatus illustrated was constructed in order to demonstrate for the inventors, Messrs. Frederick W. Barker and Thomas L. White, the feasibility of their patented process of gas generation, and to obtain interesting data as to the economy, if any, of the system. Quantitative experiments to find out the consumption per horse-power hour of alcohol, water, and carbide have not as yet been made: nor has the mixture of gases that enters the cylinder been analyzed; but the investigations carried on thus far have shown that as much as 20 per cent of the alcohol can be replaced by water with good effect. Probably not more than 50 or 60 per cent of the water in the alcohol acts on the carbide, which is detrimental, as the remainder, on account of its high latent heat of vaporization, deducts a considerable number of heat units from the mixture. The water that attacks the carbide, on the other hand, by generating acetylene increases the number of heat units quite materially. As this gas will develop twice as much power per unit of volume as will ordinary illuminating gas, one can readily see that this must be the case. The mixture of alcohol vapor and acetylene obtained in the engine cylinder should contain some 35 per cent more heat units than the alcohol and water vapor would otherwise have, this increase being based on the supposition than only half of the water in the alcohol acts on the carbide. The inventors believe, however, that the chief use of the acetylene is its action as a detonator. Being very explosive, it sets off the charge of alcohol vapor throughout almost instantaneously, and by thus hastening the combustion, causes the production of a higher mean effective pressure The arrangement of the apparatus, as well as its construction, can be seen from the photographs and diagram. The carbureter, C, is of the ordinary type; it is used in conjunction with an acetylene generator G. The air intake pipe, e, of the carbureter starts from the inside of a hot-air jacket, J, which is built around the exhaust pipe, c. The suction pipe in the carbureter is connected with the top of the generator at one side, and contains a small auxiliary air valve, V, with which the richness of the gas can be varied. The inlet pipe to the motor comes up through the center of the generator and has in it a diaphragm, D, of wire gauze, for the purpose of checking any flame in case of a back-fire. This pipe also has a small auxiliary air valve, D^{\prime}, that can be used in experimenting if necessary. The generator is fitted with a plug that will readily blow out in case of any back pressure from the motor, M. The following description with reference to the diagram will perhaps make the apparatus more clear to the reader. The air inlet pipe, B, starts from a hotair jacket, A, placed around the exhaust pipe of the engine. The gas pipe, C, leads from the carbureter into the large mkxing chamber, D, in which a layer of $1 / 4$-inch carbide an inch thick is spread on a wire gauze screen. The mixture of water and alcohol vapor passes down through the carbide and up and out through the central pipe, D leading to the engine and in which a wire gauze screen is placed to prevent back-firing Should a back-fire occur, the pressure would blow out the plug in the side of the generator. The lime from the carbide collects in a chamber at the bottom of the generator. A pool of alcohol about two inches in depth absorbs all the particles of waste material.
Fresh carbide can be inserted through the hole in the top cover without stopping the motor. In starting, a little of the alcohol is poured on the carbide, whereupon sufficient gas is generated to enable the motor to be started without much difficulty. The cards taken from the $31 / 2$-horse-power de Dion engine by means of a Schultze manograph showed a high initia pressure (about 240 pounds) and very good expansion.
After making the preliminary tests described, the inventors ex pect to construct a larger apparatus and to test the same in a practical manner upon an automobile.

The life of the mercury arc lamp in some cases amounts to 3,000 hours and more. The conducting material of the anode is either mercury alone, graphite and iron, or nickel.

catest designs of the motor in warfare

 by w. g. FITZ-GERALD.There is little doubt that armored motor-cars will play a prominent part in the next great war, not only for purposes of transport, but also as engines of offense. Practically every military nation to-day has its own type of war-car, all of them heavily armored, and some with revolving turrets carrying quick-firing machine guns with bullet-proof shields, and capable of a speed ranging from thirty-five to forty miles an hour. On each of the Franco-German frontiers, where the greatest military forces in the world are massed, there are regular batteries of war-cars, and all of them
tiate very severe gradients. They are, in fact, miniature traveling fortresses entirely proof against rifle fire, and capable of high speed. - Thus their great destructive force, combined with their mobility, bids fair to introduce an entirely new element into the warfare of the future; and it is believed in many of the war offices of the world that these are merely forerunners of veritable land "Dreadnoughts," capable of destroying entire cities that lie in their track.
The French car is much faster though less heavily armed than the latest German type. Another interesting point about the well-known C. G. V. motor mitrailleuse is that it carries a kind of telescopic
twenty specially trained men. Another highly interest ing British war-car is that provided by the London, Brighton and South Coast Railroad, whose servants form the crew and are also members of the First Sus sex Artillery Volunteers. This is a kind of armored freight-car for coast defense, and it carries no less a weapon than a 40 -pounder gun, mounted on a turntable in such a way that it can be fired in any direction. Lord Charles Beresford himself inspected and fired the weapon, and described the car as quite a formidable fortress on wheels. During the recent September maneuvers, the German Emperor expressed himself delighted with the powerful cars of his engi-

The Simms Armored Car Provided with an Apron of Steel and Ram Fore and Aft.
take part in the elaborate periodical maneuvers, which tend more and more to reproduce the actual conditions of real warfare. In fact, so valuable has the motor car been found by military authorities, that a special Automobile Section of the British Volunteers has been formed out of a number of rich men, each owning a car which he agrees to hold in readiness for the use of the military, should occasion arise.
France, the home of the motor from the beginning, can count in time of war on at least 10,000 cars, in addition to many hundreds of motor wagons and trucks for heavy transport work and the haulage of guns. The motor-mitrailleuse, as the war-car of France is called, vies with similar vehicles already adopted in the German, Italian, Austrian, Russian, and British armies. While all other motor vehicles in time of war will rely, like the light cruisers of our navies, on their high speed for escape, these powerful war-cars grimly remain behind and fight. Some of them carry revolving turrets mounting guns of quite large caliber. The engines are often of the 45 -horsepower Mercedes type, and the cars are so geared that they can travel over incredibly rough ground and nego-
bridge, enabling it to cross comparatively deep ditches in its path, and even smaller streams. Possibly the most popular British type is the war-car invented by Mr. Frederick R. Simms and built by Messrs. Vickers, Sons \& Maxim. This consists of a car surrounded with a crinoline of bullet-proof armor, flattened at the sides and having a ram fore and aft

The car is about 30 feet long, weighs over six tons, and is propelled by a 20 -horse-power, four-cylinder petrol engine. Its speed is up to fifteen miles an hour, and its armament two of the well-known "pompoms," which did such deadly service in the Boer war, and two automatic quick-firers. This car is intended for coast defense. It carries fuel for a run of no less than 500 miles, and above 10,000 rounds of ammunition. As an invading enemy will naturally not venture near a powerfully-armed fortress, it would certainly seem desirable to take the fortress to the enemy. The car supports a maximium load of 12 tons, and its Daimler engine is fitted with the Simms-Bosch magneto-electric ignition and timing gear.

It is capable of climbing a gradient of 1 in $71 / 2$. It carries searchlights, rope ladders, and a crew of

The Ivel First Aid Motor, an Armored Car for the Transport on Wounded Soldiers.

An English Armored Car Intended for Operation on Railway Lines.

A New Type of War Automobile Which Can be Used Against Airships.
like battleships to grow larger, faster, and with more powerful armaments. It seems likely that in the near future the once-dreaded war chariots of antiquity will be revived on a colossal scale. But their weapons of offense will be not merely a few sickles attached to the wheels, but rather a battery of modern guns of terrific power, securely intrenched behind impregnable walls of nickel steel, the entire fearsome fortress being capable of propulsion at the speed of an express train across all but the wildest and most rugged country.
The Germans are already beginning to construct the most ambitious of war-cars as to size and armament, and their evolutions in the field are now largely directed by the war-balloons of the Engineers.
Ehrhardt, of Düsseldorf, has recently exhibited an interesting war automobile at the International Automobile Show held at Berlin.
The war automobile is driven by a 50 to 60 -horse power, four-cylinder gasoline motor, corresponding in the main with the usual Ehrhardt-Decauville construction. The $5-\mathrm{cm}$. ($1.9-\mathrm{inch}$) quick-firing gun is free to rotate around a support bolted to the frame of the car, on which it is located; it is displaced extremely quickly and readily both in a vertical and horizontal direction, so that it can be directed against military balloons and airships.
The gun is entirely surrounded by an armored casing of nickel steel plate 3.5 mm . (0.137 in .) in thick ness, which protects the car driver and crew.
All devices for operating and guiding the car as well as for serving and training the gun are arranged inside the armor. For blocking the car there have been provided, inside the armor casing, four substantial spindles which at a moment's notice are lowered from inside in order to be screwed fast, thus unloading the springs and obtaining a rigid support for the guns. The ammunition stored inside the armature is sufficient for 100 rounds. The weight of the vehicle, inclusive of a staff of five men, is 7,040 pounds. On smooth roads the automobile attains a speed of 29 miles per hour. Forest paths of a gradient of up to 20 per cent are readiry traversed.

HOW COMPRESSED AIR RAISED A SUNKEN SHIP. THE REMARKABLE SALVING OF THE STEAMSHIP "BAVARIAN."
To turn a 12,000 -ton steamship into a huge stee bubble by pumping her full of compressed air is a recent engineering feat.
The steamship "Bavarian," of the Allan Line, ran on Wye Rock, thirty-eight miles below Quebec, on the night of November 3, 1905, a few minutes before high tide. Almost every method known to wreckers for salving the vessel was tried and found wanting and over $\$ 150,000$ was speni in these efforts.
Examination had shown that the "Bavarian's" bottom amidships was in a very ragged condition. •The holes were so large that it would be hopeless to try to pump the water out. Preparations were accordingly made to treat the holds as caissons, compressed air being used to force the water out through the opening in the bottom.
Work was begun by the North American Wrecking Company on September 7, 1906, and the vessel was floated on November 16, 1906. Everything in regard to the operations was calculated with mathematical accuracy. The calculations for the buoyancy required, and at the points chosen, were most fortunate.
It was necessary to timber solidly between decks above the several compartments that were to be used as caissons. The hatches were closed by plating. Air locks were placed on the compartments which were to be treated as caissons. Every opening in the deck, scuppers, etc., was closed.
When the air was applied the water rapidly receded and workmen were able to stop the rents in the bottom with temporary plating. In some of the holds even, the leaks were not closed, and the vessel was floated without a bottom. Pressure-men, that remarkable class of men who make it their business to work in compressed air, and who are commonly known as "sand hogs," were brought from the Quebec Bridge, the caisson work of which had shortly been completed, or from New York, the superintendent of the work having for many years been engaged in compressedair work about New York.
A wooden tank of about 200 tons capacity was built directly between the engines, and the weight of the engines (180 tons) was carried by this tank. On the day of flotation about 25 tons of water were left in the tank. As the vessel rose and the engines settled to their old level, blocking was put between the tank and the deck over it, and this water pumped out, the surplus lift of the tank being transferred to the vessel. The heavy tides of the St. Lawrence, although the center of the vessel was flooded, lifted the end of the vessel, and the craft rose and fell with high tide, so that the engines rose and fell on some occasions 14 inches.
Air bags and tested barrels were used in the after bunkers. The boilers were blown out, and air was
applied to the forward bunkers, they, too, being treated as caissons.
Several of the holds where the bottom was not so badly destroyed that it was necessary to treat them as caissons were pumped out, 8 and 10 -inch centrifugal pumps being used for this purpose.
Owing to bad weather the tugs which had been lying alongside on November 16, the date set for flotation, had dropped down the river to a more sheltered position. As the tide rose the air compressors were set to work and the full power of the plant used in forcing air into the holds of the ships. Suddenly there was a movement in the great vessel as she lifted herself from the rock and a cheer went up from those on board. Five minutes later the "Bavarian" floated clear of Wye Rock in 60 feet of water, and was hauled to her anchors, which had been set off her port bow and quarter. After the first few minutes all apprehension that the vessel might turn turtle or that the air pressure would not hold the water back was dispelled. The "Bavarian", floated on an almost even keel and was shortly after towed by tugs to Quebec. The wrecking operations were under charge of William Wallace Wotherspoon, C.E., superintendent, who had entire charge of the wrecking operations inside the bulwarks of the vessel, and Mr. R. O. King, C.E., who was controlling engineer. Capt. W. Leslie, of Kingston, had charge of all nautical work.

CONTROLLING TORPEDOES BY WIRELESS TELEGRAPHY.
A torpedo-launching apparatus, which is operated by electric waves, has recently been tried in France, on the Mediterranean coast. It consists of two cylinders

CONTROLLING TORPEDOES BY WIRELESS TELEGRAPHY.
placed one above the other, the upper one acting as a float which holds the mast wire, while the lower cylinder contains the torpedo and the launching device. The method of carrying out the maneuvers of the apparatus from a distance by the electric waves has been devised by M. Devaux, who gives the following account of the method. Up to the present the Hertz waves have been utilized generally for operating an electro-magnet, whose armature makes the well-known signals as in the Morse instrument, and this is the method used in wireless telegraphy. However, the movement of the armature can evidently be used to set free the force of another instrument, thus acting as a relay. Up to the present, the devices in use allowed of using one electromagnet for operating two movements only, corresponding to the up or down position of the armature. To carry out a series of maneuvers which have no connection with each other, it is necessary to have as many electro-magnets as there are operations. This, though complicated, would be possible in the case of wire transmission, but it is not practicable for electric waves, seeing that as yet we are unable to separate the waves so as to have them act on different coherers located at the same point. We proposed the problem of setting in movement from a distance by electric waves, of a series of forces, acting in an order always variable and keeping independent of each other, and we devised a new method for the operating apparatus. This apparatus is used with each of the coherers, and can also be used with a wire-transmission system. In the latter case they need only one wire, using the earth as a return.

The present system consists, first, of a distributing device passing over all the contact points from which start the different operating circuits, and second, a commutating switch which sends the current at the right moment when the distributor has reached the
proper circuit. To carry this out, an electro-magnet E (Fig. 1) can attract an armature, A, which is held back by the spring, R, and is pivoted at O. This armature is prolonged at each end by the arms, B and B^{\prime} The arm, A, provided with a pawl, works upon the rat chet wheel, C, which is mounted on the shaft, O^{\prime}, of the distributor. The wheel thus advances one tooth at each attraction of the electro-magnet. At the other end, the arm B^{\prime} strikes each time against the end of the lever, L, which is pivoted at $O^{\prime \prime}$ and which works the contacts, $a a^{\prime}$. Mounted on the shaft, O^{\prime}, of the distributor is an arm, D (Fig. 2), whose end works upon a set of contacts $1,2,3$, etc., and sends current from O^{\prime} into twelve circuits. Each movement of the electro-magnet thus moves the arm around one contact. The electro-magnet is operated by aerial waves, using a coherer, or again by a line wire. In Fig. 3 is seen the second part of the device for shifting the circuits. The arm, E^{\prime}, lies in another plane from the arm $B B^{\prime}$, and on the forward end it carries a small rack and pinion device which is not seen in Fig. 1. The rack, sliding over the wheel, d, engages with it when the lever, L, is out of its normal position. In coming back, the rack draws the wheel with it, but as the latter carries a flywheel on the shaft, this gives it a certain inertia and retards the fall of the lever. During the series of attractions of the armature, the contact at $a a^{\prime}$ is thus kept open, and it is only when the armature is stopped and therefore when the distributor arm has come to the proper point, that the contact is closed. The apparatus works as follows: When at rest, the arm, D, remains upon contact No. 12 , which is a dead point. The lever closes the circuit at $a a^{\prime}$. We now wish to close circuit No. 7 without interfering with the others. It suffices to send 7 currents or 7 sets of waves with the rhythm $1=t$. The electro-magnet will work 7 times at this frequency and will make the ratchet wheel, C, advance by 7 teeth, whereupon the arm, D, comes upon point No. 7. But now the contact at $a a^{\prime}$ has remained open on account of the inertia, as we have seen, of wheel d, and it is, only closed when the arm, D, comes to rest. We thus close circuit No. 7 without operating the others. Again, we may wish to close several circuits at the same time. To do this, the distributor must be free to move without breaking the circuit which has been closed. It suffices that circuits $1,2,3 \ldots 12$ be closed by locked relays, and the latter serve to operate the work circuits. These relays are closed and remain so when the current passes, and their opening depends upon a device connected with one of the contact blocks
In Fig. 4 is shown the apparatus for operation at a distance. It is connected in the place of the usual Morse receiver for aerial telegraphy. We have applied these apparatus to operating torpedoes at sea, and thus need the following maneuvers: 1. Forward run. 2. Back run. 3. Stop of propeller motor. 4. Rudder to right. 5. Rudder to left. 6. Stop of the steering motor. 7. Lighting of the signals at the front. 8. Lighting at rear. 9. Launching of the torpedo. The apparatus uses 12 points, thus having 3 points free. The speed allowed for making a complete round of the distributor is 2 seconds. The nine working circuits closed upon seven locked relays which worked the propeller and steering motors, signal lamps, and launching apparatus. Inside the torpedo is placed a set of Fulmen storage batteries which give a four hours' run. The torpedo is formed of two cylinders of sheet iron with conical ends, connected one above the other. It weighs 6.8 tons. The top cylinder, 30 feet long and 2 feet diameter, serves as a float, and it carries two small masts to which are fixed a receiving wire and a set of signal lamps. The lower cylinder, which is 35 feet long and 3 feet diameter, contains a torpedo launching tube and a Whitehead torpedo, besides the battery, motors, etc. The land post has a mast wire 50 feet long, in fine strands. A distance from 400 to 5,000 feet was covered in the trial. The latter took place in the port of Antibes on the Mediterranean. These tests have proved satisfactory as regards the different maneuvers of the torpedo-launching apparatus from the post on shore.

A Dry Shampoo.

People who are susceptible to colds, and who fear to wet their hair during the winter months, will find a dry shampoo with orris, in connection with brushing and massage, very effective.
Ten cents' worth of powdered orris is amply sufficient for two shampoos. When ready to retire, and after carefully brushing the hair, apply the orris, rubbing it in well with the finger tips, then put on a cap or tie the head up in a towel and allow it to remain over night. The orris will absorb the oil and dirt from the hair and scalp during the night, and can be brushed out in the morning.
Orris is not only an effective shampoo, but a very agreeable one; imparting a distinct yet dainty evanescent odor to the hair. By its use the head and hair can be kept in a perfectly cleanly condition. Frequent airing, brushings, and massagings will add to the beneficial results.

ofaxiedapandente.

The Transmission of Life from Star to Star

To the Editor of the Sंcientific American:
Under the above title in the Scientific American of March 2 you gave a synopsis of Prof. Svante Arrhenius's theory that "the germs of life are conveyed through interstellar space from one heavenly body to another." His theory seems plausible and his arguments quite convincing, and his concluding thought, that "all organisms in the universe are related, and the process of evolution is everywhere the same," is splendid. But if his theory is true, it does not solve the problem of life-it simply pushes it farther from us into time and space.
If life came to our planet, to our solar system, from other worIds, that does not explain its origin. To me it seems beyond conception that life did not at some time and in some place have a beginning. When it began it must have been by spontaneous generation or by special creation. The professor shows quite con clusively by quoting high authorities that all the theories for spontaneous generation have been dis credited. So does this not leave the special creationis still "on top" in the controversy? C. W. Bennett
Coldwater, Mich., March 2, 1907

The Korn Photographic Facsimile Telegraph.

To the Editor of the Scientific American
The description of Korn's telephotographic apparatus n the Scientific American of February 16, 1907, men tions a truly marvelous property of selenium, which appears to indicate that this old favorite is deter mined not to be outdone by radium or any other up start. The writer states that selenium "is not only sensitive to varying intensities of light in its electric conductivity, but is also affected thereby in its resist ance." Hence the necessity of employing a second selenium cell with the same sensibility "in the oppo site direction." In the new apparatus, furthermore the needle galvanometer is replaced "by one of the chord type," but the function of the galvanometer is not given, nor does it appear in the diagram. Again in the receiving apparatus the beam of a Nernst lamp is focused on a Geissler tube which is in the electric circuit, "and the variations of the current are thus retranslated into variations of light." This statement agrees with the diagram, which represents the Geissler tube as being energized directly by the feeble cur rent from the distant sending station!
In the older form of receiver, as described in the Scientific American of November 25, 1905, p. 417 there were a Tesla inductor and tube, and the galvanomieter, traversed by the varying line current, "according to its position switches more or less resistance into the Tesla circuit."
According to a description and diagram in La Şci ence au XXme Siềle, January, 1907, the variation of resistance is effected by varying the length of two spark gaps, each of which extends from a fixed electrode to one end of a rod carried by the galvanometer needle. The current through the tube and spark gaps is furnished by a Tesla apparatus and no Nernst or other lamp sends its beams through the tube. The property of selenium which the second cell is designed to compensate is referred to as inertia, or retention of light-that is, slowness of recovery. The action of this second cell is not explained nor is it shown in the diagram, which is probably of the older apparatus, but reference is made to a paper read before the Académie des Sciences on December 3, 1906.

Lawrence B. Fletcher.
Marlborough, N. Y., February 19, 1907.

The Two-Cycle Motor.

To the Editor of the Scientific American:
Referring to the article in the Motor Boat number of the Scientific American by Commodore Willets, wish to state that it is not yet a settled fact that the four-cycle engine is the ideal for marine propulsion This matter is far from being settled. It is the hon est opinion of the writer (who has been connected with the development of marine engines for fifteen years) that the two-cycle type of internal combustion motor will in time enjoy the most general adoption for boat propulsion, because of the favorable feature it presents for this purpose. The four-cycle engine has had the attention of engineers to a great extent while the two-cycle has excited little interest; this is because of business reasons. A firm dislikes to bring out something new if it can copy or follow something that has been tried. However, the fact that something else has not had a fair trial is no evidence that it is of less value. There is a large number of reputable shops now giving their attention to the two-cycle, not only for heavy marine work, but also for stationary operation, such as electric drive, and these firms should receive some encouragement from government engineers, as well as from the public, when they can show results
No engineer will doubt that the principle of a two-
cycle engine is far superior to that of a four-cycle, because of its ability to operate at variable speeds and at very slow speeds. It also inherits the ability to reverse instantly without the addition of complex mechanism; the construction of a two-cycle engine is extremely simple as compared with that of the fourcycle, and best of all it has the great advantage of an impulse at every revolution per cylinder, which produces a more even torque and approaches the turbine principle in reducing vibration. The fact of the increased number of explosions per cylinder permits of a smaller cylinder and stroke per horse-power. One of the disadvantages of the four-cycle lies in the overheating of the exhaust valve, a fault which is entirely overcome in the two-cycle.
There is no question but that in time the two-cycle engine will become the standard motor for vessels; and with careful designing, together with improvements such as means for scavenging the cylinder with air at each stroke and using producer gas as fuel, it needs only the attention of the builders to bring it to the front.

A Reader.
Oshkosh, Wis., February 28, 1907.

The Bite of the Gila Monster.

To the Editor of the Scientific American:
Having read your article about Gila monsters in the Scientific American of January 26, I desire to state that I know one of the cases mentioned to be true. I have had some experience with Gila monsters, and can state that no matter what scientists may claim, the Gila monster is a good thing to shun. Indians and Mexicans have a horror of t'em, and fear them more than a rattlesnake. Old settlers here know of many cases of Gila monster poisoning, in which the effect was death. I believe that the bite of the Gila monster is dangerous because of the creature's habit of eating lizards, bugs, and rodents, and then lying on sand so hot that it blisters the hands and feet. The heat causes the food to putrefy in the stomach, evidenced by the fact that the teeth are often covered with a fermented, putrefied froth from the food. A bite has the same effect as the cut of a dissecting knife used on a cadaver; in other words, the inoculation of a deadly poison.

I spoke of the sluggishness of the Gila monster to all appearances as it lies in the sand after a feast. This is true within certain limitations. Most people do not know the Gila monster, and have never seen him in action. When frightened or angry, he can move quite rapidly, and he develops some traits not generally known. That short, thick, stubby tail of his is apparently merely a heavy tail to drag around to make him more sluggish. The thick tail is used in jumping, just as a kangaroo uses his tail for the same purpose. The Gila monster bites like a bulldog, and has the tenacity of a snapping turtle. Small wonder then that his bite is so dangerous. To cite an instance of his jumping powers, I may mention that I once saw some men teasing a Gila monster brought to Tucson. A string was tied around his neck, and a crowd naturally gathered out of curiosity. The Gila monster was crawling around on the ground, trying to get away, but was pulled back by the string. This was carried on till the creature became furious. The crowd around the Gila monster knew nothing of his power to spring. Suddenly he sprang up and bit a man among the crowd on the hand, leaping fully two feet from the ground. The monster was crawling at the time, and the string was slack so that it was not jerked up in the air. I may here record still another instance. This of a man whose chief object seems to have been a bravado display of fearlessness. He was holding one of the monsters in his hand by the back of its neck, so it could not bite him. He dropped his hand to the side of his leg. The Gila monster shut his teeth down on his heavy duck overalls, taking a double piece out where the cloth folded, as quick as a pair of scissors could have cut the fabric, and as cleanly.
The Mexicans and Indians after killing a Gila monster always hang it up by the neck on a bush so that it cannot possibly touch its feet, and leave it till it is flyblown or smells before they will trust to its being dead. The creatures apparently are hard to kill or else feign death.

Henry M.
ucson, Ariz.

A Quick Method of Repairing a Broken Shaft.

To the Editor of the Scientific American:
The writer recently, almost by accident, hit on a method of repairing a broken shaft, so cheap, so quick, and so surprisingly strong, that he thinks it may be of service to your readers. The use of the method would often obviate a long and expensive delay and loss of work, for the shaft gives nearly as good service as before it was broken. The Scientific American is so universally read, that no better medium to put it before the mechanical public could be found, and hence it is offered to you in the hope you may find it of sufficient interest to print
To be brief, the writer has under his charge a hydraulic dredge, used on the Mississippi River im-
provements in the vicinity of Keokuk, Iowa. This dredge is driven by a compound high-pressure engine 14 and 24 by 15 -inch stroke, running 220 revolutions per minute and developing about 250 horse-power. The steel shaft of this engine, 6 inches in diameter broke about 10 inches from one of the cranks. The cranks are quartering, and the shaft is a highly finished one that takes a long. time to build even under the best of circumstances. It was, as you can see, a difficult task to weld this shaft so as to repair it, as the stub-end was so close to the crank that to heat it sufficiently was likely to warp the latter out of shape and spoil the whole shaft. The attempt was made, however, and the shaft promptly broke again at the same place, although a whole week and a large expense had attended the effort to put the shaft in working condi tion. It looked as if the crew of sixteen men would have to be given indefinite furloughs, and the dredge laid up for at least six weeks while a new shaft was being built. The broken shaft was taken out, and was lying on the shop floor for measurement for the purpose of ordering a new one, when a casual traveling man happened to come along with some sort of engi neering merchandise to sell, and heard the history of the shaft. He remarked that he had once mended a similar break in a cold-storage engine shaft, where it was of the utmost importance to keep the machinery at work. This shaft was, like ours, broken too close to the crank to permit of welding, owing to the springing out of shape that would take place if heated. He said that, more in the hope of doing some good than with any expectation that it would last, he simply squared the two broken ends and screwed them together with a stud that went half into each piece of shaft. He said that they started the engine, and, to the surprise f every one, the shaft seemed as good as before breaking. They got a new shaft, but they did not take time to put it in, waiting to see the mended shaft give ome sign of breaking. It ran the season out, and was still apparently fully up to its work, when they finally put in the new shaft; not because the old one showed any weakness, but "just to avoid trouble."
This tale was no sooner concluded, than my broken shaft was put into the lathe, and work begun on it to make a similar repair. Squaring the ends shortened he shaft some six inches, but this could be remedied by moving in the outboard pillow block. A chunk of soft and tough steel, that had once done duty as a wristpin for a large engine, was selected from the scrap pile. This was cut off 10 inches long and turned o 4 inches in diameter; it was then threaded the whole length with a screw of four threads to the inch; each piece of shaft was then bored and threaded to fit this screw, and then finished the stud was screwed into one piece of shaft, and the other piece screwed home. To make the job a little more solid, the stud was dipped into salt and water to make a rust joint of t , and keep it from coming unscrewed by any chance.
It took an afternoon and part of the night to complete this job, and the next morning the shaft was replaced in the engine and put to work. It has never shown the least indication of weakness so far, and is still, after eighteen months, apparently as good as ever. The new shaft, ordered as a hurry job, was received in two months, but is still kept in reserve. The joint between the two pieces of shaft was fortunately an nch or so inside of the pillow block, and is now undistinguishable from the rest of the shaft. The work of the engine, of course, always tends to screw the pieces tighter together; but it seems a little surprising that the threads do not strip off and let the two pieces separate. Probably the friction between the outer parts of the shaft takes up most of the torsional strain. The 4 -inch stub would not last a minute by itself.
It suggests the idea that a shaft may be lengthened almost indefinitely, and do good service without any couplings, by simply screwing the ends together. This would in many cases be a great convenience. The experience on this engine at least goes to show that it is a method of uniting pieces of shafting far stronger than is generally supposed. It would be of interest to have tests made with pieces of shafting made for the purpose, to see what proportion of the original strength of a shaft this method of uniting them gives.
I would give the name of the ingenious man who suggested this repair, if unfortunately he had not gone the way of other drummers and been forgotten. I send with this a scale drawing to show plainly just what the joint looks like, together with the break in the shaft, and hope that some one may find the idea as valuable as it was to the writer. There is no reason why the shaft need to have been shortened, as a short piece of shafting with a stud on each end might just as well have been used, and would probably have been just as strong.

Meigs, U. S. C. E.
Keokuk, Iowa, December 17, 1906.
The French Minister of War has ordered a census to be taken of industrial vehicles capable of being mobilized for military transport. The wagons will be divided into three categories, according to the load carried. Public service vehicles will also be included.

an interesting german flying machine.

by dr. alfred gradenwitz.

The flying machine illustrated herewith is arousing much interest at the present moment in German engineering circles; it has been developed by Privy Councilor J. Hofmann, of Berlin, during more than twelve years strenuous work, in spite of early lack of success and encourage. ment.
Hofmann began his experiments as early as 1895 with a trial similar to Lilienthal's fatal flying experiment, gliding with an aeroplane from the roof of a small factory building. In connection with a more extensive experiment, the flying machine was placed on a cart pushed by workmen, while two men on the cart held the device in position. As, however, one of these men, contrary to instructions, left the cart, the ma chine was caught up and broken by a sudden gale of wind. In consequence of this failure Hofmann lost the support which he needed
for the work, and was himself obliged to install a small workshop in a dwelling room in which several flying machine models, on a scale of about 1 to 10 , were constructed. All these had identical steam boilers and engines, but different propellers, wings, and legs. In spite of the successful flying experiments carried out with these miniature airships, the public remained skeptical in regard to Hofmann's work, it being thought unlikely that similar success would attend experiments on a large scale. Santos Dumont

Fig. 3 -Side Elevation of the Extended Left Wing of the Machine.

Fig. 4.- Plan View of the Left Wing.
it was who proved that the success of flying tests is independent of the size of the airship.
A committee of supporters having finally been formed, the inventor commenced the construction of a largesized machine. In place of wings rigidly fixed to the body, Hofmann uses movable wings, which, like those of insects, are folded up against the body when the latter is at rest, and are stretched out to the right and left during the flight. In the case of a large-sized machine, however, it becomes necessary to subdivide the wings like those of birds and bats, as represented in Figs. 3, 4, and 5 of the illustrations herewith. Fig. 3 is an elevation of the left-hand wing extended, and Figs. 5 and 6 are plan views; e is the body of the machine flying in the direction of the arrow; to both sides of this framework the girders of the wings are applied. The vertical rods f carry at the rear the outriggers g, which in turn are connected to gether at the back. To the upper ribs a, b, c, d, or to the lower ribs $a_{1}, b_{1}, c_{1}, d_{1}$, or to both of them, or finally to special rods i, there may be fitted horizontal sails secured to the rods g, both at the front edge i and at the lateral edge, while the back edge and other lateral edge are usually left unattached. During the flight of the machine the
four and a half feet. While the body of an animal is provided with a backbone, breastbone, and ribs, inside of which the more sensitive organs are hidden, this winged flyer has a protective framework of steel tubes and rods inside of which the motive parts are arranged. The steam boiler and superheater are of zigzag form; the steam raised in the lower part of the water-tube boiler rises into the steam chamber, placed immediately in front of the aeronaut, where the water is separated out and returns to the boiler, through return pipes; the moist steam is conveyed to che superheater located on the top, running toward the fire as far as the lower boil er, and finally through the fireplace to the throttle valve near the driver's posi tion and thence to the pro pelling mechanism. The driver's position, in addi tion to the devices usual in connection with locomotives contains all apparatus for controlling the auxiliary machinery, thus allowing the flying machine to be
corresponding to an upper arm, is 10.9 feet, the lower arm $b c, 11.9$ feet, and the hand $c d, 12.9$ feet in length. As the body itself is 5 feet in breadth, the total width of the flying machine is 76.5 feet, while the length in the direction of flying from the front edge of the propeller to the rear edge of the rudder is 26.5 feet. The machine, when traveling on land with folded wings, is 33 feet in length and over 13 feet in breadth. Another feature of the machine is the fact that the wings, when stretched out, can be moved both in a forward and a backward direction, thus replacing the rudder or correcting any mistake in the adjustment of the center of gravity
Much time and money were expended on trials intended to ascertain the most convenient shape of propeller screws. The design of the propeller at present adopted will be seen from Figs. 1 and 2, which were made from photographs of Hofmann's full-sized machine. It is, however, intended to reconstruct this machine, adapting it to combustion moters, and then a patented type of propeller will be made use of. These improved propeller screws are, like the above, mounted on arms connected with the shaft, while free to rotate in bearings in which they are turned around during operation by means of a handle. The forward and backward motion of the machine is thus controlled by this handle, dispensing with the use of any change gearing, as in the case of ship screws with adjustable blades.

The flying machine at present constructed, as seen from Figs. 1 and 2, comprises a quadruple screw propeller arranged in front with its shaft, behind which the steam engine is located. The axles of the four wheels are fitted to the ends of lengthy springs placed in guiding tubes, which are free to rotate around the center of the machine. Between the upper frame of the machine and the front and rear bogies corresponding to fore and rear legs there are two reinforced steam cylinders with projecting piston rods; this patented arrangement enables the body of the machine with the aeronaut, wings, and all to be raised about

Fig. 2.-The Incomplete Hofmann Flying Machine During Construction.
an interesting german flying machine.

ifted or lowered and the wings to be extended or folded up by means of a single manipulation in each case. It further contains the handwheel for steering the front wheels, the machine being used on land as an automobile, and two levers for the two hori zontal flight rudders arranged behind the engine on either side of a stationary vertical keel. The flight

Fig. 5.-Plan View of the Extended Wing.

Fig. 6.-Auxiliary Motor for Actuating the Wings and Legs.
rudders as well as the sails of the wings have not yet been placed in position.
If the boiler be heated with charcoal, a superheat corresponding to the temperature of melting lead is obtained with a maximum pressure of 15 atmospheres. Now, as the boiler of a 30-horse-power engine contains 13 gallons only of water, while the copper tubes (0.2 inch in outside diameter and 0.17 inch in inside diameter) represent an aggregate length of 7,260 feet, it will be readily understood that the control of the fire is not an easy matter. The fluctuations in the consumption of steam, depending on the working of the auxiliary machinery, and the operation of the copper tube superheater, exclude any possibility of a single operator tending the boiler and engine, and steering the machine through the air Now, as internal-combustion motors are at present con structed so light in weight, Mr. Hofmann, as above mentioned, intends substituting such a motor for his present engine.
After making this substitution, the construction will be as shown in Fig. 6. The motor a, while the propeller c is running at no load, fills
the reservoir, f, with compressed air until the latter is continually discharged through the safety valve f_{1}. The flying machine, whose supporting surfaces and rudder are arranged in the direction of the propeller axis, is then slowly lifted through $41 / 2$ feet by allowing air to enter through k_{2} into the cylinder or ylinders a. The ylinders g. The propeller, is next adjusted for forward running, while compressed air is introduced through k_{1} into the hrough k_{1} into the cynfoliding the wings suddenly. As the whole wing surface remains parallel to the ground, the flyer is drawn by the propeller at a speed of 10 to 12 yards a second. At this very moment the direction of the air in the lifting cylinder g is reversed by turning the cock k_{2}, thus causing the legs of the airship to be pulled up-
ward, and allowing the machine to fall freely $41 / 2$ feet. It actually falls some distance while being launched forward, and even if this distance be only half a yard, an increase in speed of about 3 yards will be derived therefrom, thus giving an initial flight speed of 13 to 15 yards per second. If the center of gravity of the whole machine be so placed in regard to the wings that the former, while transmitting its load to the wings, is rotated, e. g., to a certain extent lifted in front and lowered backward, the flight is bound to continue, the rudder being actuated in the case of a permanent operation.
In landing, the speed of the propeller is reduced while adjusting the wings to a steeper inclination by lifting the two back rudders; then the whole airship slowly drops upon its rear legs, and in a half-flying and
half-rolling motion falls on its fore legs. By revers ing k_{1}, the compressed air in the cylinder m is immediately controlled in such a way as to draw the wings abruptly to the body, thus ending the flight.

As regards the performance of this kite flyer in bad

Covering hat Bodies with Silk Plush.

Cutting Out Plush Hat Covers.

THE STORY OF A SILR HAT

by Jacques boyer.

In the making of the silk hat, that indispensable accessory of fashionable masculine attire, comparatively little use is made of the marvels of modern machinery that play so important a part in most of the arts and manufac tures. The con struction of a silk hat includes five stages: making the foundation or body (called in French galette, that is, "pie crust"), covering, shaping, sewing the silk plush cover, and, finally, lin ing and trimming. The body is com posed of several thicknesses of very fine muslin which are wrapped around wooden forms (blocks) representing the styles of the season. The muslin, before it is put on the blocks is stretched on frames brushed with a solution of shellac in alcohol containing a little ammonia, and dried in the open air or in well-ventilated rooms, according to the season and the weather. The foundation, or body, thus constructed is varnished. It is as hard as wood, very light and absolutely water-tight. If it is thrown on the floor it will rebound without becoming deformed. In order to make the foundation exactly fit the wooden block, which is smaller in the middle than at the ends, the first strip of muslin is cut bias. The innermost layer of the top of the hat consists of satin or watered silk. To this the prepared muslin is applied in one or more layers. The foundation of the brim is made of two or three layers of stouter muslin coated with shellac, which are pressed together and smoothed by a machine which consists essentially of

Shaping and Curling the Brim.
weather and winds, a special point has been made of imitating the behavior of birds. It should be remembered that all birds in their tails possess approximately horizontal surfaces, by means of which all horizontal and vertical motions as required in flying can be obtained.
If now the bird unexpectedly is taken sideways by a sudden gale, it is struck behind its center of gravity by a far greater number of air particles than in front of the center of gravity. It thus quite automatically turns toward the wind, thereby eliminating any danger. For this reason the inventor has provided his machine with rear rudders and an intermediary stationary vertical keel, in the place of the front rudder used by Santos Dumont, which on the above theory would be rather dangerous.

Coating Muslin with Shellac for Foundation.

Making Brims.

Shaping Hats After Covering.
two cast-iron rollers mounted on a heavy iron frame and heated by gas. This machine is rolled several times over the still flat brim foundation to which it gives the required stiffness. The brim is then clamped between a wooden plank and a zinc plate, in each of which is a hole slightly larger than the inside of the finished hat, and the inner edge of the brim which projects beyond the plank and zinc plate is bent at right angles by the application of a hot iron of peculiar shape and trimmed with knives to remove the irregularities produced by this operation. The short tube thus formed inside of the brim foundation is fitted to the foundation of the crown and the two are fast ened together by the application of a hot iron, the hat maker's most important tool. Then the entire body receives another coat of varnish and, after drying, it is ready to be covered with silk plush.

The covering is in two pieces, a circle and a rhomboid. The illustration shows a girl tracing the out lines with chalk on the back of the plush and another girl cutting out the pieces. A skillful needlewoman then sews the pieces together. This is a very delicate operation, for the seams must not show in the finished hat. The plush is stretched tightly and the nap is brushed over the seams.
In the operation of covering the hat, cashmere is glued on the lower side of the brim and silk plush on the upper side. Then the wooden block already used, which is composed of five sections, is wrapped with cotton wadding and forced into the hat body in order to stretch it as much as possible. The plush cover is next forced over the body and smoothed and made to adhere by the application of a wire brush, a damp sponge, and a hot iron. Then comes the most difficult and delicate task of all, the joining of the side to the brim by an invisible seam. The entire surface is again dampened and ironed and the hat is placed on a lathe and polished with a strip of velvet, which cleans the plush perfectly and gives it a brilliant gloss.
The inequalities in the crown caused by the five parted form on which it was forced are removed by placing it and turning it on a gallows - shaped heated iron tool, an operation which requires great strength as well as kill and taste. The rown is now cov ered with paper to protect the surface and the flat brim is molded to the desired form and slightly curled.

The Finishing Touches

THE STORY OF A SILK HAT.

The edge of the
brim is then sharpened with knife and plane, covered with silk braid and finally shaped to suit the particuar style desired or the taste of the wearer, if it has been made to order. The final operation, performed by girls, is the insertion of the leather sweat band and the silk lining.
The silk hat of the twentieth century can defy the elements. It is less ornate than its ancient prototype of soft felt garnished with plumes, but it is far lighter and more durable.

The man who buys a 1907 model will get something bigger and better in the shape of a car than he ever dreamed of a few years back, but the item of depreciation appears to remain stationary despite the vast improvement that has been brought about. And in this connection depreciation must be considered in two senses-actual and financial. The former is the reduction in value that the car has actually suffered through wear and tear on its mechanism, accidental injuries, and the like, and the latter is the slump in its market value that has come about merely through the fact that it has been used and regardless of how little it may really have lost. That it has been run an entire season or only a month appears to make little difference. The blight of being second-hand is upon it. And even though it may actually fulfill every representation of the owner anxious to part with it regarding the short distance it has been run and its perfect condition, it is extremely difficult to realize more than 60 per cent of its original selling price. This does not represent an extreme in either direction. In occasional instances more may be realized, but in the majority it is less and the item of depreciation is correspondingly heavier. The car that sold for $\$ 2,000$ when new will seldom bring much more than half that price when a year old, and at the end of its second year this will
practically be halved again, despite the fact that as a well-built piece of machinery it may have several years of efficient life before it.-Motor World.

A New Use for Concrete.

Repairing breaks in the hull of a sunken steamer with concrete is a new departure, but one likely to prove frequently useful. The scheme was successfully tried upon the steamer "George W. Elder," which was sunk in the Columbia River over two years ago, and remained under water many months. The boat struck on a jagged rock, which stove several holes in her iron hull; the principal one, about 80 feet from the bow, measured about 35 feet in each direction. Through this enormous gap the rock projected into the hold for nearly 11 feet. A bulkhead was built by divers forward of the break, and another aft, and two more aft of the engine room. Heavy canvas was then placed over the rock which projected up into the ship, and concrete was placed over the canvas until a heavy covering had been obtained. This was supported against the outside water pressure by a concrete beam athwart the hold, measuring 18×48 inches and 38 feet long. The concrete was mixed and placed under water by divers, the cement being sent down a chute in sacks and the stone in a box.
Other smaller breaks having been similarly treated, the water was pumped out of the hold, and the vessel floated and towed forty miles to a drydock. One of the problems connected with concluding the operations involved the relation between the capacity of the pumps, which were discharging the water from the hold, and the flow through leaks developing around the huge cement cone, and at other points in the hull which had been severely strained by the action of the current during the sixteen months of submersion. By the terms of the contract under which the salvage opera-

Preparation of Pure Helium
A new method for the preparation of helium in a pure state is the subject of a paper presented to the Académie des Sciences by Messrs. Jacquerod and Per rot. In a preceding note, the authors called attention to the great facility with which helium is diffused through a quartz bulb which is brought to a high temperature. Their researches upon the expansion of gases showed on the other hand that silica is quite impermeable to other gases, with the exception' of hydrogen, and perhaps carbon monoxide, up to the tem perature of 1,952 deg. F. These observations led them to a method of purifying helium which may present a certain interest, owing to the difficulty found in the chemical or other processes used up to the present time.
A quartz bulb, which ends in a capillary tube of the same substance, is placed inside a cylindrical platinum tube of somewhat larger diameter, stopped by a metal plate which allows the capillary tube to pass. Sealing wax is used to make a tight joint. Side tubes allow of making a vacuum in the annular space between the platinum and the quartz, as well as inside the quartz bulb, and gas can be also introduced. The apparatus is heated to about $2,010 \mathrm{deg}$. F. in an electric furnace having platinum resistance coils, with the exception of the sealing wax joint, which is cooled by a jacket having a cold water circulation. The quartz bulb can be put also in connection with a mercury gas tank by means of a stop cock. A vacuum is first made in an almost complete manner in the two envelopes by using the mercury pump, then ordinary unrefined helium coming from the calcination of cleveite is introduced into the platinum tube at somewhat higher than atmo spheric pressure, 'so as to hasten the diffusion. By adding to this impure helium from five to ten per cent of oxygen we can fix under the form of water vapor or carbonic acid, the
hydrogen or car bon monoxide which may be pres ent there After a few minutes $t h e$ pressure gage connected to the quartz bulb shows that the gas is commencing to diffuse. The pressure rises in a very regular way and after two or three hours a portion of pure helium can be introduced into the gas-holder. In these conditions the output of gas, with the quartz bulb containing 42 cubic entimeters is somewhat slow. It corresponds with about 1 cubic cen timeter of pure
tions were undertaken the successful wreckers received $\$ 30,000$, as against nothing in case of failure. The original owners had sold the wreck for $\$ 10,400$, and, as the cost of repairs was about $\$ 20,000$, the outlay of the buyer amounted to about $\$ 60,000$. After the ship was ready again for service an offer of $\$ 160,000$ was made for her.-Iron Age.

An Interesting Use of the Telephone.
Two novel uses of the telephone are given in the American Telephone Journal. During the past summer public entertainments have been given in Riverview Park, Chicago, which is one of the largest of its kind in the United States. One of the novel features of these entertainments was the placing of telephone receivers attached to horns in several of the trees in different parts of the park. During the entertainment, music produced on a piano, a cornet, or songs was reproduced by these telephones, much to the mystification of the audience. This effect was made possible by means of the powerful transmitter devised by the International Telephone Manufacturing Company, of Chicago, known as the "Transmitophone." The soloist who gave the selection was located out of sight and was able to keep in time with the accompaniment of the orchestra by means of a special receiving circuit. The other interesting use of the telephone was in reporting the Michigan-Ohio State football game. Two bare wires were stretched across the field, and a small trolley arranged to run on them. To this trolley was attached a portable telephone set, which was used by the reporter, who followed the progress of the ball along the field. This circuit was connected with the Ann Arbor (Mich.) exchange, and through it to the University of Michigan. In this way the progress of the game was followed at Ann Arbor almost as closely as it was on the field where it was played.

Final Shaping of the Brim.
helium per hour. On the contrary, the method, when once the apparatus is mounted, is easy to operate and the purification seems to be perfect. In fact, spectroscopic examination of the gas shows none but the characteristic rays of helium, which are very brilliant, and the nitrogen bands, although easy to see, are quite absent. Only the red ray (H) of hydrogen can be perceived, but it is very faint. It comes very likely from traces of hydrogen retained by the electrodes of aluminium of the Plücker tube, and it is known in fact how difficult it is to have the spectrum of this gas completely absent in a spectroscopic vacuum tube. Thus it is seen that the diffusion of helium through quartz at a high heat gives a good method of obtaining the gas in a pure state.

The Assay of Silver Bullion.

At the Institution of Mining and Metallurgy a paper was read recently by Mr. E. A. Smith on "The Assay of Silver Bullion by Volhard's Ammonium Thioćyanate Method." It has recently been the practice to modify slightly the method of finishing the assay by adding sufficient ammonium thiocyanate to the check assay to intensify the red color of the ferric thiocyanate, and to use this color as a standard of comparison. Experiments described by the author proved that, by finishing the assay in this way, a limit of accuracy of less than 0.1 per 1,000 of silver can be obtained by Volhard's method. Working in the ordinary way the limit of accuracy is 0.2 to 0.3 per 1,000 .

The consumption of pig iron in Germany during 1906 amounted to $12,396,088$ tons, against $10,739,871$, an increase of $1,656,217$ tons, or $151 / 2$ per cent. This makes a consumption per head of the population of 444.4 pounds, against 391.6 pounds in 1905 and 356.4 pounds in 1900 -the previous boom year.

AUTOGENOUS WELDING WITH THE OXY-ACETYLENE HIGH-PRESSURE BLOWPIPE.

by the english correspondent of the soientific american,
Some interesting experiments have recently been arried out at Birmingham to demonstrate the possibilities and efficiency of welding by means of the oxy acetylene blowpipe. With this system a temperature of over 7,000 deg. F. was obtained, which is a heat far

A Typical Example of Welding by the Oxy-Acetylene Blowpipe. The Tubes Were Welded at the Points Marked by Crosses.
exceeding that procurable with the oxy-hydrogen flame, with which a maximum temperature ranging from 3,600 to 4,500 deg. F. only is possible. Furthermore, whereas a cubic foot of hydrogen will only develop about 12,000 British thermal units, a similar quantity of acetylene will develop nearly five times as much-57,000 British thermal units.
For certain classes of welding, where especially intense heat is requisite, the oxy-acetylene blowpipe is eminently suitable, and during the past two or three years this system has come very extensively into vogue. At first considerable difficulty was experienced in the devising of a blowpipe for utilizing this gaseous mixture, together with the problem of storing the acetylene with complete immunity from premature explosion. These two obstacles, however, have now been successfully surmounted. The perfection of the process for storing the acetylene in a dissolved state has removed any liability of danger, provided ordinary care is displayed, while a highly efficient burner has been devised. At first it was considered that the acetylene could be employed with burners similar to hose utilized for oxygen and hydrogen, but it was found that owing to the premature dissociation of the cetylene, whereby carbon was freely liberated in the form of graphite, the burners rapidly became choked, and then the hydrogen only in conjunction with the oxygen assisted the burning, the result being that the same effect was produced as if only pure oxygen and hydrogen were used, with the additional disadvantage of the barners becoming clogged.
A new process whereby these drawbacks are entirely and successfully eliminated has been perfected by the Acetylene Illuminating Company, of Lambeth, Lonlon, the notable feature of which is that the burner is so designed that the acetylene only dissociates in

The High-Pressure Oxy-Acetylene Flame in Operation, Showing the Two Cylinders Containing the Respective Gases.
the actual burning. With this burner both the oxygen and the acetylene gases are utilized under pressure, instead of only the former being supplied to the burn er under pressure. Demonstration has proved that by supplying both the gases under pressure a much high er factor of efficiency is obtained, while at the same time this arrangement enables the design of the burner to be considerably simplified. Furthermore, equal gas pressure dispenses with continual adjustments of the burner, as is the case where two varying pressures are being supplied to one flame, so that disarrangement of the burner is not a constant liability

It is also much easier to maintain the adjustment of the flame with both gases supplied at an equal pressure, and once the regulation has been obtained at the correct point, it can be left. With a high-pressure oxy-acetylene blowpipe also, it is possible to obtain a more complete combination of the two gases, which is impossible in an appliance where the supply is main tained under varying pressures, and this attainment conduces to the higher efficiency. This feature too is of great importance, since there is a decreased con sumption of acetylene to accomplish a fixed amount of work, rendering this system more economical in operation, and this economy more than compensates for the difference in cost between the dissolved and the crude acetylene supplied direct from the generator.
In order to insure the complete combustion of ace tylene, a theoretical proportion of 2.5 parts of oxygen to 1 part of acetylene is required, but practical experi ence has shown that the requisite quantity of oxygen is much less, varying from 1.6 to 1.8 . This factor however, is completely influenced by the standard of purity in relation to the oxygen. This divergence be tween theoretical and practical requirements is at tributable to the fact that by the high-pressure system the extra oxygen necessary to complete combustion is drawn from the surrounding air

The high temperature of the flame from the oxy acetylene blowpipe as compared with that of the oxy hydrogen flame is jue to the fact, that whereas in the latter the temperature is limited to the dissociation temperature of steam, in the former the temperature is limited only by the dissociation temperature of carbon monoxide, which is considerably higher than that of steam. Acetylene is an endothermic gas con sisting of carbon and hydrogen, and with a high pressure blowpipe it is split up into its two component parts at the base of the flame. The carbon only par ticipates in the burning, since it will combine with the oxygen at a higher temperature than the hydrogen so that the latter is left free, and constitutes a pro tective zone to the small cone at the nozzle of the blowpipe, where the carbon is burning, and which is the point of maximum temperature-approximately 6,300 deg. F.
The perfection of a system of dissolved acetylene has contributed in no small degree to the utility and safety of the oxy-acetylene blowpipe. The cylinder is filled with some porous substance, such as asbestos or charcoal cement of a fixed porosity, and is then thoroughly saturated with a fixed quantity of acetone. The latter is a liquid hydrocarbon, and has the peculiar property of absorbing twenty-five times its own volume of acetylene at atmospheric pressure and 59 deg. F., and will continue doing so for every atmos phere of pressure that is applied to the gas. The general arrangement in regard to the cylinders is to so regulate them that they contain ten times their own volume of acetylene for every atmosphere of pressure, so that at that pressure they contain one hundred times their own volume of acetylene. Any possibility of the gas exploding within the cylinder is completely removed.
This process is particularly adapted for welding split tubing, flaws in tanks or boiler plates, boiler tubes, bicycle frames, and similar work. The accompanying illustrations show two typical welding operations that were carried out by this process. With the high-pressure system the operation is considerably simplified, since the operator, once he has obtained the desired regulation of the flame, can concentrate his sole attention to the work in hand, and does not continually have to adjust the supply, as is the case with varying pressures. As regards the time occupied in welding various thicknesses of plates, and the consumption of gas for the purpose, the following information is supplied by the French Bureau Veritas:

Thickness of Plates.	Approximate Quantity of Acety- lene Consumed per Hour.	Approximate Running Foot	
Millimeters. 1 2 3 3 4 5 6 9 10 10 12 15 20 30		Minutes. 2 2 3 6 6 10 15 16 20 20 36 30 60	

It is essential, however, that the acetylene should be quite pure, as certain impurities incidental to acetylene, unless removed, are detrimental to the weld, and tend to render the joints either imperfect or brittle. Owing to its general superiority to the ordinary oxyhydrogen blowpipe flame, it is extensively supplanting the latter process, while at the same time it possesses certain advantages over electric welding, inasmuch as no elaborate preparations or heavy initial expenditure in regard to plant are entailed.

The Age of Animal

Some of the compound earth worms that have been produced at the Marburg Zoological Institute by grafting together parts of different worms have lived from 8 to 10 years after the operation. It is fair to infer that uncombined earth worms may reach the same ge, a fact that was unsuspected and would have been deemed improbable. This discovery suggests a comparison with the ages of other invertebrates for which, however, few reliable data are available. Among the generally short-lived articulate animals lobsters and fresh-water crabs are said to live 20 years, queen bees 5 years, and queen ants from 10 to 15 years. Most mollusks, too, appear to be short-lived, but the freshwater mussel is said to live 12 or 14 years (the pearlbearing species more than 50 years, according to some writers), the sea snail, Natica, 30 years, and the Tridacna, or "yellow clam," 100 years. But the life of most invertebrates of all classes appears to be limted to one or a very few years. Hence it is the more surprising to find several well-authenticated examples of longevity among the lowly, plant-like sea anemones, of which one species has been known to live in aquariums 67 years and others from 10 to 50 years. It is impossible, in the present state of science, to explain

These Tubes Were Welded in Place by Means of the oxy-Acetylene Blowpipe, With Which a Flame Having a Temperature of $\mathbf{7 , 0 0 0}$ Deg. F. Was Obtained.
these remarkable exceptions to the law which governs nearly-related animals living under similar conditions.
The same difficuity confronts us in the vertebrates. The great age of elephants (150 *to 200 years) finds a plausible explanation in their great size and the unfavorable conditions for procreation, but there is no known explanation for the ages attained by some birds (the raven 100 , the eagle 104, the vulture 118 , the falcon 164, and the parrot a far greater number of years). The longevity of the giant tortoises, 'which are said to live 300 years, may also be explained by their bulk and their small expenditure of energy, but it is difficult to see why such small vertebrates as pike and carp should live as long as elephants, or toads as long as horses (40 years).-Adapted from the German of Prof. E. Korschelt in Die Umschau.

The year 1907 will see more railway mileage con structed in Ontario and Quebec than in any year since the original lines were built between Montreal and Toronto. The Canadian Pacific Railway intends constructing almost an entirely new line from Montreal to Toronto. The Mackenzie and Mann Syndicate has also important projects in eastern Ontario and in the vicinity of Montreal which will enable it to secure the shortest route between Ottawa and Montreal. The Canadian Pacific will complete the Toronto and Sudbury branch and the Guelph and Goderich Railway. The Grand Trunk Railway will be particularly active in the western section of Ontario between Toronto and Windsor, but the chief work will be rather in the western provinces in building the Grand Trunk Pacific Railway. The Delaware and Hudson will complete its line along the south shore of the St. Lawrence to Quebec.

THE AERO CLUB DINNER.
The first dinner of the Aero Club of America was held at the St. Regis Hotel on the evening of March 14. One of the principal events of the evening was the reading of a letter from the Wright Brothers, in which they gave their ideas on the subject of the large prize for an aeroplane flight to be offered in the near future by the club. The Wrights thought that this prize should be not too difficult of attainment, in order that it should spur on inventors to try and win it. They also stated that they hoped to make some more flights this year, and that if they did, although the flights might not be in public, they would "effectually remove all question that the flying art orig. inated in America."
Another interesting feature of the evening was a description given by E. B. Bronson of a dirigible bal loon made of three parallel cigar-shaped gas bags in 1863 by Dr. Solomon Andrews, of Perth Amboy, N. J. This machine, propelled at high speed by some mysterious power, is said to have flown successfully in September of that year.
Announcement was made of the entries for the Bennett International Bailoon Race, as follows: France, 3 balloons; Great Britain, 3; Germany, 3 Spain, 3; Italy, 2; and America, 3. The race this year, on October 19, promises to be very interesting.

STEAM TRAP WITH WATER METER ATTACHMENT.
A steam trap has recently been invented which not only operates in a very efficient manner to discharge the water of condensation from a steam pipe or system, but serves, as well, to measure the quantity of water discharged. The trap comprises a cylindrical tank and a narrow rectangular casing connected there to. In the tank is a float, which is shown in dotted lines in the engraving. The float rod is secured to a rock-shaft that projects from the casing through a stuffing box. The outer end of the rock-shaft carries an arm provided with a counterweight at its upper end and having, at its lower end, a toothed segment. Meshing with the latter is a segment gear wheel, mounted to rotate freely on the shank of a valve head. The valve, which is of the three-way type, governs both the inlet and the discharge pipes of the trap. A square stem projecting from the valve-head shank carries a short arm, to the outer end of which a spiral spring is secured. The opposite end of the spring is fastened to a pin carried by the segment gear wheel. In operation, as the water of condensation accumulates in the tank, the float rises and, by means of the toothed segment, revolves the gear wheel and with it the pin to which the spiral spring is secured. The valve, however, remains at rest, being held by the spiral spring. When a predetermined level of water is reached, the spring is carried by the revolution of the gear wheel past the center or axis of the valvehead, and it then quickly retracts, turning the valve to close the inlet and open the discharge pipe. As the water pours out of the tank the float falls, and the gear wheel is turned in the opposite direction,

STEAM TRAP WITH WATER METER ATTACHMENT.
carrying the spring past the axis again, but in the opposite direction, and returning the valve quickly to its first position. A counting mechanism is secured to the casing, in position to be struck by the segment arm just before each discharge. As the same measure of water flows out each time, the counter serves as a meter, showing the total quantity of water that has passed through the trap. A patent on this trap has been secured by Mr. Alfred L. Riggs, of Ebensburg, Pa.

A New British Heavy Gun.

The British Admiralty is engaged in the production of a new type of heavy gun to constitute the main aggressive armament of the first-class battleships that are shortly to be laid down in accordance with the

Bennett International Aeronautic Cup Race
The second annual contest will start from St. Louis on October 19t
This contest is open to all kinds of flying machines as well as to tree an
This contest is open to all kinds of flying machines as well astober to tree and
dirigiole balloons, but the conteetants must be entered by a club belong-
ing to the International Aeronautic Federation ing to the International Aeronautic Federation. Each country can have
three representatives. The winner is the balloon or flying machine that
covers the longest distance.

The ${ }^{6}$ Daily Mail $\boldsymbol{\prime}$ Prize for an Aeroplane Flight
from London to Manchester, England,
1611/ Miles. This contest is now open to members of any recognized Aero Club. It
is for heavier-than-air machines, preferably
must start from a point within 5 miles of the "Maineses. Contestants
Mails London office and must start from a point within 5 miles of the " Mail s" London office and
and within 5 miles of the Manchester oftice. More complete rules have
not been formulated as yet, but it is probable that the contestants will be not been formulated as yet, but it is probable that the contestants will be
allowed to stop and replenish fuel. Santos Dumont hase offered a gold
medal the winner, J. Gritlth a challenge cup. and the Adams
Mfg. Co.. $\$ 10,000$ provided the entire machine ing made in
 $\$ 50,000$

The "Matin" Prize for a Flight by Any Type of
Aerial Craft from Paris to London, $2171 / 2$ Miles.
$\$ 20,000$ of this prize was given by the Paris "Matin," the balance being
made up by three patrioric Frenchmen. This prize will be given to the made up by tree patriotic Frenchmen, this prize will be given to the
owner of any airship or flying machine, that, propelled by its own power
throug the air, reaches London within 24 hours from the time it left
 $\$ 50,000$ be allowed. The point of arrival will be determined by the dropping of ,
sandbag within a circle 150 feet in diameter.
Société des Bains de Mer d'ostend 9 Prize for a Any Type of Flying Mach
Paris to Ostend, 186 Miles.
This contest is open to all, the only condition being that the distance

The Henri Deutsch de la Meurthe Prizes and Trophy for Three This trophy is valued at $\$ 2,000$. $\$, 4000$ cash will be biven annually to the winner each year.).
The contest is open to members of clubs recognized by the International Aeronautic Federation,
(Tronhy)
$\$ 2.000$ $\left.\begin{array}{l}\text { ane contest is open to members of clabs recognized by the International Aeronautic Federation, } \\ \text { and the trophyis to be contested for between March 1st and October 31st. II can be won from } \\ \text { the holder onjy by making the circuit at ro higher speed than he made. The third holder of the }\end{array}\right\} \begin{gathered}\text { (Trophy } \\ \$ 12,000\end{gathered}$ the holder onjy by making the circuit at ${ }^{\frac{1}{1}}$ higher speed than he made. The third holder of the
cup can retain it permanently.
The Brooklands Automobile Racing Club Prize for a 3-Mile Flight Above the Track.

This prize is open to all. It will be given to the first heavier-than-air machine that makes a ciricit of the new Weybridge track at a speed of 10 miles an hour or over and at a height of 40 or 50 feet from the groumd. This course is open to experimenters for practice.

-547 Y: FiNISH $_{\text {START }}$
The Deutsch-Archdeacon Prize for an Aeroplane Flight of 1 Kilometer $\boldsymbol{(0 . 6 2 1} \boldsymbol{m i l e}$ in a closed circuit. $\boldsymbol{\$ 1 0 , 0 0 0}$ $\left.\begin{array}{l}\text { The Archdeacon Cup for a Flight of } 220 \text { Meters (1\%213/4 Feet). } \\ \text { was won by Santos Dumont on November 12th last. } \\ \text { Itmust be won two years in succession }\end{array}\right\} \begin{gathered}\text { (Trophy) }\end{gathered}$ in order to be retained. ©6 Daily Mail M, Model Aeroplane Competition.
This competition we will be held from the 6th to the 13th of April in the Royal Agricultural Hall, London.
The models must not weigh over 50 lbs. complete, and they must fly 50 feet in a straight line with an

$\mathbf{a n ~ A h e ~ C a r ~}^{\mathbf{6}} \boldsymbol{\prime}$ Prize (Annual) for the Longest Flight Made in England With $\boldsymbol{\}}$
The Barnum \& Bailey Prize for an Aeroplane That Will Fly and Carry $\boldsymbol{\}}$, $\$ 10,000$
The ${ }^{6}$ Daily Graphic" Prize for a Flight of One Mile.
The Pepin Prize for a Heavier-than-Air Machine. Conditions not yet announced,

The Aero Club of America Prize for an Aeroplane Flight. Conditions and prize to be announced later.
The Frank Hedges Butler Challenge Cup. For the longest distance covered by aeroplanes or balloons starting from
Sir David Solomon's Cup for a Heavier-than-Air Machine.
Lord Howard de Walden Prize for a Heavier-than-Air Machine
Total $\overline{\mathbf{\$ 3 1 5 , 4 7 5}}$

INTERNATIONAL AERONAUTICAL PRIZES OFFERED UP TO DATE.

naval shipbuilding programme that has recently been revised. In this class of warship it is probable that the 12 -inch weapon will be abandoned in favor of the new and heavier gun that has been projected. The recent gunnery trials with the "Dreadnought" have confirmed the prevailing theories that it is impossible to render this class of warship more powerful by the addition of further 12 -inch guns, since the battery as it at present stands represents the maximum number of guns that can be brought to bear in action with any distinct advantage. Consequently, it is realized that to increase the offensive power of the vessel, a new type of gun of greater caliber is essential.
It is stated that the new weapon will be 13.5 inches, of 45 calibers. A weapon of this caliber is already in use upon the "Royal Sovereign," but its design does not coincide with the modern gunnery practice as ap plied to weapons of this class, since its penetrating power and velocity are less than the present 12 -inch weapon, though the weight of the shell is 1,250 pounds as compared with the 850 -pound shell fired from the modern 12 -inch weapon. The new 13.5 -inch weapon will be 50.625 feet in length, and will weigh approxi mately 85 tons. The main fighting armament will probably number the same as carried on the "Dreadnought," namely, eight, and so disposed that six can fire ahead or astern, and the whole eight brought to bear upon either broadside.

FILTER FOR COFFEE POTS

Pictured in the accompanying engraving is a filter of very simple and inexpensive design, which is adapted for use in coffee pots to retain the coffee grounds The filter proper consists of a bag of thin material, such as muslin, which is so mounted that it can readily be removed, cleaned, and replaced in the coffee pot. The filter bag is supported in the coffee pot on a stand consisting of a tubular body, to which three wire legs are soldered. The filter bag fits within the tube, but at the top it is folded outward over the upper edge
of the tube. A cover piece, also of muslin, is laid over the top of the bag, and its edge as well as that of the bag is clamped against the tube by means of a

FILTER FOR COFFEE POTS

snugly-fitting band. In use, ground coffee is placed in the bag, and the latter, with the stand, is then lowered into the coffee pot. Boiling water is now poured into the pot, or it is filled with cold water and then brought to a boil, and the water will percolate through the bag, extracting the strength from the coffee. In cleaning the bag it is only necessary to withdraw the band to release the edges of the bag and cover. The cover is an important feature, in that it admits of the passage of steam through the top of the bag, but prevents the coffee grounds from getting into the pot, as, for example, by the coffee boiling up over the top of the bag. The inventor of this improved filter is Mr. Clarence Monroe, of Loveland, Col.

RECENTLY PATENTED INVENTIONS.

Electrical Devices.
COMBINED SOUNDER AND RESONATOR. -S. F. Cox, Sallisaw, Ind. Ter. This invention relates to telegraphic apparatus, the more particular object being to produce a combinational
instrument adapted to do the work of a relay instrument adapted to do the work of a relay, a sounder, and a resonator. Further it relates
to details of construction, the purpose of which to details of construction, the purpose of which
is to improve the general efficiency of the is to improve the general efficiency of the
same in the matter of producing a clear tone same in the matter of producing a clear tone
and of rendering certain parts readily accesand of
sible.
trolley harp.-C. Hibbard and w. Hibbard, Sandy Hill, N. Y. In this case the invention refers to trolley-harps, the more parmounting the trolley-wheel upon the harp and for removing it therefrom, and also for maintaining the wheel mountings firmly in position while the wheel is in place.
ELECTRICAL SIGNAL CONTROL.-M. Abt, New York, N. Y. In the present patent the trols, and more particularly to a system for use in connection with elevators for the purpose of enabling passengers to hail cars and for ap prising passengers of the approach of the said
cars.
ELECTRIC MOTOR.-D. MENDELSon, Brook lyn, N. Y. The invention is in the nature of a motor of the vibratory type designed, chiefly
to be used in small installations for advertising purposes, but applicable also to other uses; and it consists in the construction and arrangement of the motor parts with special reference to of the motor parts with special reference to
securing a large effective power in a relatively small motor.

of Interest to Farmer

CONVERTIBLE FORK AND RAKE.-C. C Tyler, Anneta, N. C. Mr. Tyler's improvement
relates to a tool adapted to serve as a fork or relates to a tool adapted to serve as a fork or
rake and to be readily converted from one form rake and to be readily converted from one form
to the other, and has for its object to provide a tool so constructed as to enable straight prongs to be used and adapted to hold straw
or hay when used as a fork as readily as i or hay when used as a fork as readily as with disadvantages arising from the use of used as a rake.
Stalk-PULLER.-C. R. Smith, Fentress, provide a machine by means of which a pull may be exerted on stalks for extracting them and their roots and to improve upon the pulling machines for which Letters Patent were formery granted to Mr. Smith, to the extent that the machine is made lighter, and wherein the grip-
pers constitute links of endless chains having pers constitute links of endless chains having
guided movement in independent casings, the opposing chains being in close and automatiout the length of their inner leads.
CORN-HARVESTER.-J. Hettrich, Grand Istand, Neb. The machine is guided by a grain-wheel on the tongue so that three rows
of corn are engaged by the front thereof, dividing boards straightening the leaning stalks Teeth receive the stalks between them, distance between the teeth allowing the stalk to pass,
but not the ear, the latter being snapped off and but not the ear, the latter being snapped off and carried upward by the teeth which deliver onto the carrier. The carrier elevates the ears and
drops them onto husking-rollers. Husk is torn drops them onto husking-rollers. Husk is torn
from the corn by the rollers and dropped upon the husk-conveyor which delivers it to the rear ping the corn into the wagon

of General Interest

MUSIC-SHEET.-J. B. Walker, New York, N. Y., and A. R. Bond, Plainfield, N. J. A a length of paper provided with perforations sounded and which is adapted to be to be over a series of pneumatic ducts in a so-called "tracker-board," to progressively uncover, by means of the perforations, certain of said ducts
thereby pneumatically selecting the notes thereby pneumatically selecting the notes
which are to be struck by the mechanism. which are to be struck by the mechanism. contract with hygroscopic changes and do not properly "track" with the tracker board. The present invention provides a sheet which will
properly track properly
changes.
eraser.-G. W. Park, Denver, Col. One of the principal objects of the improvement is part of the tubular member ordinarily employed with fountain-pens for protecting the pen or writing-point thereof. The device may be conveniently associated with a fountain-pen
and carried in the pocket with the latter to be and carried in the
ROLL-PAPER HOLDER AND CUTTER. J. F. Finan, Cumberland, Md. The improvement pertains to that form of a roll-paper
holder having a stand with a vertical spindle holder having a stand with a vertical spindle
on which the roll of paper is held, and it is on which the roll of paper is held, and it is
designed to apply to this form of roll-paper designed to apply to this form of roll-paper
holder a feature heretofore employed in horizontal roll-paper holders for facilitating the seizure of the edge of the paper between the out and tearing off the sheet.
ROPE-GRAB FOR OIL OR OTHER DRILLED WELLS.-L. STEPhens, Macksburg,
devices employed for fishing out or recovering ropes lost in oil wells. It is more particularly an improvement in that class of grabs consist teriorly with teeth and which are provided in such manner that they will close upon a rope and hold it firmly gripped so that it may be drawn out of the well.
SHAFT-PACKING.-F. T. Nolan, Crystal River, Fla. The object of the invention is to provide a packing for rotatable shafts which minimum water tight and in which there is the packing may be used in connection with rotatable shafts
packing-glands.
Grader.-J. Bagley, Tacoma, Wash. The nvention is especially useful in connection with devices intended for operation in hard ground, such as shale. The object is to provide
a grader which presents a plurality of blade grader which presents a plurality of blade
edges. A further object is to provide removable teeth for a device peculiarly adapted for use in hard or stony ground.
sprinkler.-C. C. Rhodes, Honolulu, Ter. Hawaii, and H. G. RHodes, San Francisco,
Cal. In this instance the invention rafers to sprinkling apparatus, and more particularly to that adapted for use in watering lawns and the like. It has for its principal object the provision of a movable sprinkler in which the
direction of rotation is automatically reversed and in which the range of this movement may varied.
LABEL SPREADER.-G. N. Byl and J KoEhler, Jersey City, N. J. One purpose of
the invention is to provide an economic device the invention is to provide an economic device
for spreading labels on a surface coated with an adhesive material, which device can be nd length, and wherein the labels will be and length, and wherein the labels will be wherein also the feed of the labels will be SHAFT-PACKING.-
y. This intion. H. Cook, Louisville, in packings particularly designed for automobile piston-shafts, an object being to provide a packing that will permit the slight vibratory motion incident to piston-shafts, but will effectually prevent leakage along the shaft of gas or other motive agent employed.
COMPOSITION OF MATTER.-E. Voller, Jersey City, and M. F. Thalberg, Hoboken, N. J. The composition is adapted for any purose for which a hard waterproof and fireproo
material is desired; but it is particularly adaptable for use as a lining for ceilings, walls, and the like. While the material is being introduced to produce the color or tint desired for the resulting product.
SIGN-PAINTING PROCESS.-T. Munnecke,
New York, N. Y. The invention has reference to a process for painting signs or fixing charac-
ters upon a surface. The improvement especially applicable in placing signs or letter upon glass, as in show-windows or glass doors he object being to facilitate the object.
METHOD OF TREATING ORES.-W. KEmp, Tucson, Arizona Ter. Mr. Kemp's invention relates to an improved method for smelting
ores, especially ores of copper and iron. This ores, especially ores of copper and iron. This
inventor does not limit himself to the use of any particular apparatus for carrying out his process. Certain particular forms of appa
ratus are especially suited for this purpose While feeding fuel to the ore continuously he also prevents premature combustion from tak ing place in the fuel supplied.
HAWSE-PIPE. - C. Petrie, St. Johns, vention are to provide means whereby a cable vention are to provide means whereby a cable
will be absolutely protected from coming into contact with any sharp edges and to provide
rollers for reducing friction and assisting in rollers for reducing friction and assisting in
the above-named objects with means whereby if the above-named objects with means whereby if
the spindles are broken or displaced they will still remain in position and perform their services in a similar manner to that in which
they operate normally.

Hardware.

LOCK.-T. S. Morton, Quincy, Ill. The imand a gravity member made approximately T shape and pivoted in the middle of its head with the latch, its pendent portion extending below the pivot and below the plane of the lateral arm.
COMBINED TURNING-TOOL AND CALI PERS.-R. S. Whipple and J. A. Olessak, Philadelphia, Pa. The object of the invention
is the provision of novel details of construction for a wood-turning tool and for a calipe attachment thereon that are adapted for co operative use, affording a gage as weli as
turning-tool, whereby a piece of material may hn rapidly turned to a desired diameter at one operation.

Household Utilities

window-Jack.-J. S. Hawley, New York, N. Y. The jack is designed for prying up windows which become stuck by reason of the
swelling of the sash or other causes. The inswelling of the sash or other causes. The in
vention consists of a lever with a reduced end antion consists of a lever with a reduced end
adapted to work in a recess in the lower frame of the window-sash and carrying fulcrum-
thereof, adapted to be brought alternately
action. action.
COFFEE and tea flask.-J. Garrigan, New York, N. Y.-The aim in this invention is
to provide a heating device with means for removably holding it in position; also to prowhich air is drawn to cause the lamp-flame to spread over the bottom of the flask, thus causing quick heating of the liquid. The term flask is designed to also cover dinner-pails or D
Dish-drainer.-J. P. Tibbits, New York, . Y. This device is used for holding plates, to allow the same to drain thoroughly and makes an excellent dish-warmer. The invention also relates to a type of rack in which dishes
are as far as practicable supported edge upare as far as practicable supported edge up-
ward, yet rest easily in position without any ward, yet rest easily in position without any
pressure except that due to their own weight, and suspended clear of the bottom of the drip tray in such manner that the entire edge each dish is free.

Machines and Mechanical Devices.

ATTACHMENT FOR GRINDING CENTERS C. L. Petrikin, Muncy, Pa. The grinde One embodiment of the invention consists of frame substantially U-shaped supported in horizontal diagonal position from the tail-stock spindle when applied to the lathe, a form of be readily attached and detached. Journale in the frame extremities is a shaft frictionally driven from the lathe face-plate and itself acting to frictionally drive a second shaft, journaled parallel thereto in the frame, the second shaft carrying a grinding-wheel at its inner extremity and slidingly mounted in its
bearings, whereby the wheel may be reciprocated over the lathe-center as both revolve in pposite directions.
REWINDING MECHANISM FOR SELF LAYING PIANOS.-H. Meyer, New York vide a mechanism arranged to allow the use of a single note-sheet containing a number oid pieces of music, only one of which is played being automatically rewound at the end of the ast piece of music to start playing the first ther coin. It is a division of the application for Letters Patent of the United States, formrly filed by Mr. Meyer.
NAIL AND RIVET MACHINE.-J. Buckley Waterbury, Conn. The chief objects of the in ventor are to provide a multiplex machine
which can be used for simultaneously making which can be used for simultaneously making
a plurality of rivets, nails, and the like, and which portions can be readily thrown out of so as to provide for making any smaller num ber of articles. In this way the machine can be used for making a single rivet at a time or for simultaneously making a nail and a ivet or a plurality of either. CHINES.-M. G. Albertson, Oakes, N. D. One object of the invention is to provide autopon shafts to friction-brakes which operate ag the time the knives are in normal operation, aid brakes being so applied that should rapidity of the feed of the bundles tend to choke the machine the brakes will permit the kniferoll over the bundles, thus obviating throwing off the drive-belt and preventing possible breakge of knives.
MACHINE FOR CLEANING AND SEPARATS. Lyle, McLoud, Oklahoma Ter. A special bject in this instance is to provide a machine which will act upon cracked and unopened bolls, nd so work upon machine-picked material, as well as hand-picked, thereby reducing the cost of gathering the cotton and increasing the yield
by utilizing immature and unopened bolls. Such bolls are opened without cutting or tearing the same, thereby saving the staple and
avoiding the difficulty of cleaning out mashed or finely-broken pieces of hulls.
molding-machine. - H. Bannon, Elood, Indiana. This machine is especially moke and ventilating passages. It is capable of general use. A hand-press made of caststeel provides great strength without clumsimold articles of complicated shape and leave them so as to be readily removed from the mold and set aside for drying. The invention also provides an efficient and easily-operable
core-manipulating device, a simple means for core-manipulating device, a simple means for
opening the mold, a novel press-head, and a pallet.
VIOLIN-PIANO.-F. H. Watson, Huntingdon, Tenn. In this patent the object of the invention is to provide a violin-piano which is
simple and durable in construction and ar ranged to insure the proper sounding of the ranged to insure the proper sounding of the
treble and bass strings and to allow of conveniently placing the resinous band in posi-
intestine-cleaner.-W. F. Duncker,
Wrightsville, Pa. Mr. Duncker's invention consists in an improvement in machines for clean-
ing intestines of hogs, beef, and sheep for
tearing thereof by the revolution of scrapers
is avoided in the operation. The feed-rollers and scrapers are kept clean and water is sup through the machine.

Prime Movers and Their Accessories.
MOTOR.-S. J. Evans, Bluefield, w. Va. In this case the invention has reference to motors
and has for its object the provision of a motor and has for its object the provision of a motor which is simple, cheap, and efficient in opera-
tion, and one in which the water of condensation is drained off without the use of cocks. Air may be employed as a motive fluid instead of steam, if desired.
LUBRICATOR.-C. G. Glasrud, Sheyenne N. D. This force-feed lubricator is adapted moving parts of engines or other mather It insures certain and reliable action, at same time provides means by which the feed may be regulated with great exactness. The driving part is simple and certain in action, and provides for complete regulation of its

Railways and Their Accessories
BRAKE MECHANISM FOR INCLINED RAILWAYS.-S. E. Jackman, New York, N. Y. The object of this invention, which reas shown and described in Letters Patent of the United States, formerly granted to Mr Jackman, is to provide a mechanism, arranged to allow the controlling of a car on the downack or homestretch independent of the ocof the car and bring it finally to a stop at the station.
Railway.-S. E. Jackman, New York, . Y. The invention relates to switch-back or in pleasure-resorts, exhibitions, and the like. The object is to provide a railway arranged to afford exciting and interesting rides over a continuous track. Very little time is con-
sumed in passengers entering and leaving the sumed in passengers entering and leaving the
cars. Mr. Jackman has secured two more cars. Mr. Jackman has secured two more
patents in railways. In one, the invention patents in railways. In one, the invention
efers to switcl-back or inclined gravity-railways, and is for use in pleasure resorts, ex-hibition-grounds, etc. The arrangement provides for cars continually traveling over a continuous track, with little loss of time in han dling passengers, and hence many cars can b run simultaneously on the track, spaced suit derived from the running in a comparatively short time. Mr. Jackman's next invention of a railway relates to switch-back or gravity rail
ways, such as used in pleasure-resorts, exhibi ways, such as used in pleasure-resorts, exhibi tion-grounds, and the like places. The object track for cars to travel on, the track being provided with deep dips in the several courses to render the ride exceedingly interesting and exciting to the passengers.
COMBINED TRAIN SIGNAL AND INDI Cating apparatcis.-W. A. Harris and B. A. Harris, Greenville, s. C. The apparatus trains and adapted through the aid of an in dependent train-pipe to communicate an audible and a visual signal to the engineer, the visua corresponding to the audible and remaining in position to indicate the latter signal which ha been given until the indicating devices hav Harris signal and indicating apparatus designed train use on freight trains, the present invention re lating to means whereby the engineer may signal back to the conductor or other train man in the caboose the signals which have been received by the engineer or any other signal desired, the objects being to establish signaling communication by which signals may
be reliably sent back and forth between the be reliably sent back
caboose and engine-cab.
CAR-REPLACER.-W. A. Hutson, Orlando Fla. The replacer is of the class which consists of a portable device, commonly called
"frog" or "shoe," which is adapted to be placed over or beside a track rail and has a wheel of a railroad-car may run and be at the same time guided into due normal position upon the rail. It includes two frogs or shoes which are used together, but differ in construc tion, the same coacting in such a way as to
replace a car-truck in a novel and expeditious replace a car-truck in a novel and expeditious

Pertaining to Recreation

GUN-SIGHT.-D. W. King, Jr., San Fran cisco, Cal. The purpose here is to provide a
sight in which are means whereby to enable a marksman to use any one of the four notches with either side of the diaphragm at any de sired elevation, providing for eight combina eyes and to conform to the size and shape of
other object onto a table from a point remote therefrom, the object thrown having a contact
portion to complete the electric circuits employed.

Pertaining to Vehicles.

HORSE-DETACHER.-H. G. Simpson, Elkhorn, W. Va. This is an attachment for the leasing poles and shafts in case of danger from a horse or team running away. More particu-
larly it is an improvement in detachers which larly it is an improvement in detachers which
include sliding bolts adapted to secure pole include sliding bolts adapted to secure pole
or shaft irons, and a vertical oscillating lever with which such sliding bolts are connected by link
CARRIAGE-TOP ATTACHMENT. - W. C Willitis, Eckford, Mich. This inventor's im provement is in that class of buggy or carriage
top attachments which are removable from the carriage or buggy seat. The object is to pro vide an attachment which may be more easily fore and which will be held securely when so
applied. It is applicable for many forms of vehicles.
CHECK ATTACHMENT TO VEHIClES.S. L. Duckett, Goldfield, Colorado. Of the purposes in this instance one is to provide an should they attempt to run away while being driven or when left standing and to provide a device for such purposes which will be simple driver still holds the reins.
CrANK-HANGER.-F. M. Osborne, Ana conda, Mont. This invention is an improve
ment in crank-hangers for bicycles. In carry ment in crank-hangers for bicycles. In carry
ing out the invention the sprocket wheel pulls between the bearings, and the cranks can be conveniently removed when desired without disturbing all of the parts of the hanger. The contruction forms a very simple crank-hange from which dust will be excluded and in which
the cranks can be readily removed by simply the cranks can be readily removed by simply
turning off a nut and pulling the shaft-sections turning off a nut and

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please state the name of the patentee,
the invention. and date of this paper

Notes and Queries.

 Names and Address must accompany all letters orno attention will be paid thereto. This is for
our information and not for publication. References to former articles or answers should give
atate of paper and page or number of question.
Inquiries not answerd in reasonable time should be
repeated ocrespondents will bear in mind that
some answers require not net little research, and,
thoust we endeavor to reply to all either by letter or in this department, each must take
his turn
uyers wishing to purchase any article not adver.
tised in our collumns will be furnished with
addresses of houses manufacturing or carrying the ssee. or houses manufacturing or carrying
ame.
Epecial Written Information on matters of personal
rather than general interest cannot be expected without remuneration.
Scientific American Supplements referred to may be
had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
price. sent for examination should be distinctly
marked or labeled.
(10440) Mr. C. D. W. asks: Is John
tyndall dead? If so, when did he die? A. Tyndall dead? If so, when did he
John Tyndall died December 4, 1893 .
(10441) S. K. S. says: Is the nebular hypothesis of Laplace still the accepted scientific theory of the cosmeogury of our cas-
tle? If not, what theory, if any, has supple mented it? A. It cannot be said that the nebular hypothesis of Laplace is held in its entirety by astronomers at the present time. The phe-
nomena which cannot be accounted for by their ondition are too numerous. Darwin's tidal evolution hypothesis has by many been adopted
as an addition or supplement to the nebular hypothesis. The large number of spiral nebulæ seem to demand a modification of the hypothesis. You will find a very recent ex-
position of the whole question in Moulton's position of the whole question in Moulton's
"Astronomy," pp. 440-448. We can send the book for $\$ 1$
astronomy.
(10442) W. B. K. asks for the government formula for whitewash. The following United States government for painting light houses, and it effectually prevents moisture from striking through: Take of fresh Rosen-
dale cement, 3 parts, and of clean, fine sand, dale cement, 3 parts, and of clean, fine sand,
1 part ; mix with fresh water thoroughly. This gives a gray or granite color, dark or light according to the color of the cement. If brick the mixture to produce the color. If a very light color is desired. lime may be used with have all the ingredients well mixed together In applying the wash, the wall must be wet y with the cement wash. This prevents the bricks from absorbing the water from the wash too rapidly, and gives time for the cement to set. The wash must be well stirred during the
application. The mixture is to be made as
whitewash brush. It is admirably suited for
brickwork, fences, etc., but it cannot be used chark, fences, etc., but it cannot be
advantage over paint or whitewash.
(10443) A. A. H. asks how to make javelle water. A. Javelle water proper is pre-
pared by passing gaseous chlorine-derived ared by passing gaseous chlorine-derived
rom the action of hot sulphuric acid on a mixture of common salt and oxide of manganeseato a 10 per cent aqueous solution of carbonate It may also be made by adding a solution of arbonate of potash to a solution of chlorinated ime (bleaching powder) as long as a precipiate continues to form, the liquid being afterward decanted or filtered. Ordinarily, however,
the liquid called javelle water is chlorinated the liquid called javelle water is chlorinated
(10444) J. K. B. asks how to make gravel and tar walks. A. Take 2 parts very dry lime rubbish and 1 part coal ashes, also very dry, and both sifted fine. In a dry place, on a dry day, mix them, and leave a hole in
the middle of the heap as bricklayers do when making mortar. Into this pour boiling hot coal tar, mix, and when as stiff as mortar put in 3 nches thick where the walk is to be; the
ground should be dry and beaten smooth; round should be dry and beaten smooth;
sprinkle over it coarse sand. When cold, pass light roller over it; in a few days the walk be solid and waterproof
(10445) B. L. W. asks how to make Pharaoh's serpents. A. These are little cones of sulphocyanide of mercury which, when
lighted, give forth a long, serpent-like, yellowish brown body. Prepare nitrate of mercury y dissolving mercury dioxide in strong nitric cid as long as it is taken up. Prepare also sulphocyanide of ammonium by mixing 1 volume sulphide of carbon, 4 strong solution of
ammonia, and 4 alcohol. This mixture is to be mmonia, and 4 alcohol. This mixture is to be
requently shaken. In the course of about two ours, the bisulphide will have been dissolved, forming a deep red solution. Boil this until
the red color disappears and the solution bethe red color disappears and the solution be-
comes of a light yellow color. This is to be vaporated at about. 80 deg. F., until it crysallizes. Add little by little the sulphocyanide ercury will precipitate; the supernatant liquid may be poured off, and the mass made into cones of about $1 / 2$ inch in height. The powder
of the sulphocyanide is very irritating to the ir passages, and the vapor from the burning cones should be avoided as much as possible.
To ignite them set them on a plate or the like, and light them at the apex of the cone.
(10446) H. N. M. asks how to prepare kins for fur. A. Mix bran and soft water sufficient to cover the skins. Immerse the
latter and keep them covered for twenty-four hours; then remove, wash clean, and carefully scrape off and flesh. To 1 gallon of water (hot)
add 1 pound of alum and $1 / 4$ pound of salt. trance of the hand, immerse the skins for twenty-four hours, dry in the shade, and rub. Stir the liquor again, immerse the skins for twenty-four hours, dry, and rub as before;
immerse for twenty-four hours in oatmeal and warm water, partially dry in the shade, and finally rub until entirely dry. This leaves the skin like white leather, and fit ${ }^{\wedge}$ for immediate
use.
(10447) A. C. N. asks how to lay sheet lead. A. In laying sheet lead for a flat
roof, the joints between the sheets are made either by rolls, overlaps or soldering. In joining by rolls, a long strip of wood two inches
square, flat at the base and rounding above, square, flat at the base and rounding above,
is placed at each seam ; the edge of one sheet is folded round the rod and beaten down close, and then the corresponding edge of the next heet is folded over the other. In over-lapping, the adjacent edges of the two sheets are
turned up side by side, folded over each other and closely beaten down. Soldering is not
adopted when'the other plans. can be carried out.
(10
(10448) H. J. N. asks how putz pomade is made. A. 1. In 100 pounds common yel-
low vaseline, melted, stir 20 pounds of fine colcothar. 2. Same as above, only using lard in stead of vaseline. 3. Twenty pounds of Am. mineral oil and 5 pounds of lard are melted 4. The following is given as the formula for genuine putz pomade: Oxalic acid, 1 part; palm oil, 60 , 25 parts; rottenstone, 20 parts of iron may be Venetian red. Both it and the rottenstone must be absolutely free from grit. Oxalic acid is poisonous.
(10449) M. B. W. asks how to make dextrine paste. A. In hot water dissolve a suf-
ficient quantity of dextrine to bring it to the consistency of honey. This forms a strong adhesive paste that will keep a long time unchanged, if the water is not allowed to evapor-
ate. Sheets of paper may be prepared for extempore labels coating one side with the paste and allowing it to dry; when to be used, by
slightly wetting the gummed side, it will adhere to glass. This paste is very useful in the office or laboratory
(10450) H. P. W. asks how to join ubber. A. Rubber is easily joined and made strong as an original fabric, by softening before a fire, laying the edges carefully to-
gether, without dust, dirt, or moisture between. The edges so joined must be freshly cut in the beginning. Tubing can be united by joining the
iously been rolled with paper. After the glass
is withdrawn the paper is easily removed. Sift is withdrawn the paper is easily removed. Sift
flour or powdered soapstone through the tube prevent the
(10451) C. N. asks for a formula for round glass. A. Sandarac, 90 grains; mastic $11 / 2$ grains; ether, 2 ounces; benzole, $1 / 2$ to
ounce. The proportion of the benzol added determines the nature of the matt ob-
(10452) A. M. C. asks: I have ystem of wires which I use for receiving wire
ss messages. They are horizontal, and run nearly parallel to the elevated structure of the Long Island Railroad, which is equipped with lhe third-rail system. I have noticed that un engine passes on the structure, I get sparks about $1 / 8$ inch long from the wires. There are our wires, each 180 feet long. They run at an
ngle of about 15 deg. to the tracks, and are bout 40 feet off ground. Between the wires and parallel to the tracks is a two-phase 2200 volt alternating line, about-the same height
as the wires. The least distance from the as the wires. The least distance from the
wires to tracks is about 125 feet. No smoke or steam from engine reaches the wires. The sparks are very heary, and apparently of an sparks obtained from high wires. At no other imes except during thunderstorms can 1 ge thing. A. There would seem to be no doub that the sparks from the receiving wires of
the wireless station are due to the induction of the great mass are metal in the steam en sine, passing through a field in which heavy currents are already flowing, that of the just this case before, but it would seem that this cause would be sufficient to account for the effect produced
(10453) K. S. B. writes: In regard the recent wreck of the electric train on he New York Central, I see by your paper
hat the spikes holding the outer rail were sheared, showing a much greater stress on the uter rail at a given speed than for a steam ocomotive of the same weight. As for the
reasons for this: Besides the concentration and the low height of the load, would not the gyroscopic effect of the rotating parts of the motors play an important part? As the
wheels (drivers) are comparatively small, the seed of rotation is large. Then to change the direction of the axis of revolution of these heavy, rapidly-revolving parts would take a
considerable force, which was probably not onsiderable force, which was probably no
taken into account by the engineers, who levated the outer rail to counteract the in rtia of the train only. This so-called "gyrother problems of a similar nature, and it eems to me that it would in this particular ion of the motors would have to be taken into account on heavy motors at high speeds. I resume that lighter parts, also lower speeds n general, is what has kept electric trains
rom experiencing this difficulty heretofore. . Your suggestion of a gyroscopic action in e rapidly rotating wheels of an electric train produced we have not calculated. It would variable, and would increase very rapidly the increase of speed.
(10454) E. S. D. writes: Will you indly answer me through your Notes and ueries what would be the normal height of the barometer at an elevation of 5548 feet
bove the level of the sea? A. Normal barometer at an altitude of 5,548 feet will be (1045) J.
(10455) J. B. W. asks how to color brass deep blue. A. A cold method of coloring carbonate of copper and 750 grammes ammonia are introduced in a decanter, w corked, and shaken until dissolution is ected. There are then added 150 cubic centi meters of distilled water. The mixture is shaken once more, shortly after which it is eady for use. The liquid should be kept in
cool place, in firmly closed bottles or in lass vessels, with a large opening, the edges of which have been subjected to emery friction and covered by plates of greased glass. When
the liquid has lost its strength it can be ecuperated by the addition of a little ammonia. The articles to be colored should be erfectly clean ; especial car them of all trace of grease. Trrey are hen suspended by a brass wire in the liquid, which they are entirely immersed, and a
o-and-fro movement is communicated to them. o-and-fro movement is communicated to them. they are taken from the bath, washed in clean ater, and dried in sawdust. It is necessary that the operation be conducted with as little pades are only obtained in the case of brass nd tombac--that is to say copper and ainc lloys. The bath cannot be utilized for colorg bronze (copper-tin), argentine, and other etallic alloys.
(10456) A. D. M. asks for a dressing r linoleum. A: A weak solution of beeswax brightening the appearance of linoleum. re are some other formulas: 1. Palm oil, ounce; paraffine, 18 ounces; kerosene,
ounces. Melt the paraffine and oil, remove
from the fire and incorporate the from the fire and incorporate the kerosene.
Polish.-2. Yellow wax, wax, 2 ounces; oil turpentine, 10 ounces; enzine, 10 ounces. Melt the waxes carefully, 3. Yellow wax, 5 ounces, and stir until cold. ounces; amber varnish, 5 ounces. Melt the with a re the oil, and then the varnish. Apply (10457) J. W. H. asks for a tool or straightening wire. A. Such a tool is
hown in the accompanying cut. It consists of a casting about 10 inches in length, having

n

n each end a bearing which may be supported n suitable boxes. The pulley is a part of the nches and is 3 inctel pins are inserted 1 nch apart and a little to one side of a central ongitudinal line. A hole a little larger than the wire to be straightened is drilled axially through the bearing. The wire passes through well lubricated and is pulled through as the rapidly
(10458) C. N. asks how to do annealing. A. For a small quantity, heat the t in sawdust, in an iron box, covering the sawdust with ashes. Let it stay until cold. or a larger quantity, and when it is required lathe or planer) chips in an iron box as iron (lathe or planer) chips in an iron box as fol-
ows: Having at least half or three-quarters of an inch in depth of chips in the bottom of the box put in a layer of steel, then more chips to fill spaces between the steel and also the half or three-quarters of an inch space between the sides of the box and steel, then more steel; and lastly, at least one inch in depth of chips, ell rammed down on top of the steel. Heat two to four hours. Do not disturb the box two to fou
until cold.
(10459) B. W. F. asks how to clean paint. A. To clean paint, provide a plate with
some of the best whiting to be had; have ome of the best whiting to be had; have
ready some clean warm water and a piece flannel, which dip into the water and squeeze arly dry; then take as much whiting as wil here to it, and apply it to the painted move any dirt or grease. After which, wash the part well with clean water, rubbing it dry with a soft chamois. Paint thus cleaned looks jury to the most delicate cors. It is far better than using soap, and does not require (10460) C. D. ask how
(10460) C. D. asks how to make grape syrup. A. 1. Half pint brandy, 1 ounce tinc-
ture of lemon, 1 gallon simple syrup, tincture ed sanders, 1 quart. 2. Brandy, $1 / 2$ pint;
 sanders, 2 ounces; simple syrup, 1 gallon. 3 .
A grape syrup, not an artificial syrup, or one for fountain use, but a syrup from the fruit, for domestic or table use, etc. Take 20 grapes ipe freshly picke stone jar, and pour over them 6 quarts of boiling soft water; when sufficiently cool to allow it, well squeeze them thoroughly with the hand, after which allow them to stand 3 days on the furnace with a
cloth thrown over the jar, then squeeze out cloth thrown over the jar, then squeeze out
the juice and add 10 pounds of crushed sugar; let it remain a week longer in the jar; then take off the scum, strain and bottle, leaving again and bottle tight, and lay the bottles on the side in a cool place.
(10461) B. J. asks how to waterproof canvas. A. A solution containing equal parts by weight of gelatine and chrome alum. It
is not advisable to mix at once than is sufficient to give the canvas one coat, as, if the mixture once sets, it cannot be reliquefied like a plain solution of gelatime and hence, if the quantity of canvas to be waterproofed is but small, it would, perhaps, be preferable to coat with plain gelatine solu
tion until quite impervious to cold water, and then to thoroughly soak for, say, twenty-four hours in a strong solution of chrome alum.

NEW BOOKS, ETC

The Naval Pocket-Book. Founded by Sir W. Laird Clowes. Edited by W. Thacker \& Co., 1906. Pocket size pp. 965. Price, $\$ 3$.
The present edition of this well-known, compact, and very convenient little work is fully up to the high quality of its predecessors. It
opens with a calendar in which the leading events of naval history on each particular dat are recorded; and this is followed by a com parative summary of the fighting fleets of the world arranged under a new system of nota tion. Then in tabular form is given the sates descriptions of the naval guns and small arms, a list of drydocks, giving dimensions and capacities, and the close of the book are dia grams of the leading types of ship of each rmor showing the disposition of guns and
with the sizes and thicknesses of each.

Inquiry Noo Ss.77.- Wanted, manufacturers of
Inanitry No. S5ys.-Wante

 For which Letters Patent of the United States were Issue
for the Week Ending March 12, 1907. AND EACH BEARINGTHATDATE
 Acids, production of organic sulfonic, M
Aeropiansk or crait for aerial navigation

 ward \quad All.......................
 Anchor device adjustable, W. L. Greeiey Apparel hanger and support, \dddot{w}. atomatic
utomobile, M. H. M. Sullivan...
and
 Bailing machine, W. P. Marsh.
Bait and weed. guard, artificial,

${ }^{338}$	cill
,185	Crenitituat
	electrically actuated, R. W.

Building block mold, Alexander \& eriersen ….............................. Bulkhead door, hatch, or other barr B. Cowles Bullet, J. H. Berlow Buoy, torpedo, and similar device,

$\infty \infty$

$\xrightarrow{\text { Bide }}$

$$
\begin{aligned}
& 847,266 \\
& 886,735 \\
& .874,181 \\
& \hline 848,885 \\
& \hline 846,602
\end{aligned}
$$

$$
\begin{aligned}
& 840,020 \\
& 846,905 \\
& 846,977
\end{aligned}
$$

Engine and Foot Lathes

GUNSMITHS ${ }^{\text {FOR }}$. TOOL MAKERS, EXPERIMENTAL, EREPAIR

 Automatic Water Supply

Price 10 Cents each by mail
ARTIFICIAL STONE. By L. P. Ford. A
paper of immense pratical value to the
architect and builder. ScIENTIFIC AMERI-

CAN SUPPLEMENT 1500. OF THRINKAGE AND WARPING Oxcellent presentation of mold Busbridge. An ent views

excellent presentation of modern views;
fully illustrated. ScIENTIFIC AMERICAN
SUPLEMENT 1500.

CONSTRUCTIONOF ON INDICAT-
ING ORRECORDING TIN PLATE
ANE OID BAROMETER. BY N

TIFIC AMERICAN SUPPLEMENTISOO.

HOME MADE
HOME MADE DYNAMOS SCIENTIFIC
PLATING DYNAMOS. ScIENTIFIC AME
amateur can make them.
DYNAMO AND MOTOR COMBINED
AMERICAN SUPPLEMENTS 844 and 865 a
The machines can be run either as dynamos
ELECTRICAL MOTORS. Their Con
Sruction at Home. SCIENTIFIC AMERICA
SUPPLEMENTS 759, 761,767,641.
Price $10 \overline{\text { Cents each, by mail }}$
Order through your newsdealer or from
MUNN \& COMPANY

Fr
F
F
Ga
Ga
Ga
Ga
Ga
an

G1

SORE THROAT Hydrozone

One 25 Cent Bottle Free to anyone mentioning this paper
and sending to cents to pay postage and sending Io cents to pay postage
and packing. Hydrozone is a harmless germicide, indorsed and successfully used by leading physicians. Not genuine without my signature on label. Ask for Booklet on Treatment of Diseases. Sold by Leading Drug-
gists. gists.

Prof. Chantestrarctiand

Dept. U, 63 Prince Street, Now York

AUTOMOBILES

BOUGHT, SOLD AND EXCHANGED The largest dealers and brokers in New and
Second=hand Automobiles in the world. Send
for complete bargain shee TIMES SQUARE AUTOMOBILE CO.

THE AUTO-SPARKER nitomondynamo for gasonne engines an $\xrightarrow[\text { Dept. T }]{\text { D }}$

NERY CO.
Everything

LARGEST PARTS AND SUPPLY HOUSE IN AMERICA Nustadt Automobile and Supply Co
435s outve St., St. Lonis, Mo.

BABBITT METALS.-SIX IMPORTANT

Curtiss Airship Motors

 G. h. curtiss mfg. co., Hammondsport. n. r.

The Eureka Clip

HOW TO MAKE MONEY

\pm
steady all day runing. They are
practically indestructive, every part is
interchangeable. Don't fail to get o
catalogue before purchasing. 21.2 t
40 H . P. Prompt delivery guaranteed
PENINSULAR MOTOR CO.
Typewriter Bargains

Ite tool G . Leples The.

Micrometer gage, J.
Mixing device, C.
C.
T. Peddycoart
Mold. See Building block moid.
Mold, Alexander \& Fredericksen.
Molding apparatus, L. Hansen..

 Necktie frame, W. Cf Truman.
Nest, hen's, C. M. Steely.....
Nickel ores, etc., treating

Nut, Iock, A. Minne.......... Obstetrical supporter,
Oil burner, J. C. Fitzsimmon
Oil burner, W. R. Gilmo
Oil can, air tight, J. Dah1
Oiling device, centrifugal, H .
Ore concentrator, A. C
Ore distributing devic
Organ, whistle, J. O.
Packing carrier, sheet, ${ }^{\text {Packing, metalic piston, } \mathrm{W} \text {. Ho }}$
int colors to articles and
ing and applying decorative, J.
er bag machine, W. A.
Paper bag machine, F. E
per box machin
Paper ${ }^{\text {Paper fe }}$
Paper h
B
ling machine, fruit
Pen, fountain, F. C. Br

\qquad

 Pipe coupling, train, J. E. Forsyth. 846,840,
Pitch for coating the interior of ber and
ale packages, making, H. C. Dippel...

Promptness

is one of the
essentials of
business success

The Telephone

makes prompt
Have You One?
new york telephone co.
15 Dey Street
You USE GRINDSTONES ?
Hiso ree can suphy yout All gize
 the cleveland stone co.

NOW READY Industrial Alcohol

Its Manufacture and Uses
 A PRACTICAL TREATISE

DR. MAX MAERCKER'S "INTRODUCTION TO DISTILLATION" AS revised by drs. delbrück and Lange

Raw Materials, Malting, Mashing and Yeast Preparation, Fermentation, Distillation, Rectification and Purification of Alcohol, Alcoholometry, The Value and Significance of a Tax-Free Alcohol, Methods of De-
naturing, Its Utilization for Light, Heat and Power Producnaturing, Its Utilization for Light, Heat and Power Produc
tion, A Statistical Review, and The United States Law
By JOHN K. BRACHVOGEL, M. E.
528 Pages
105 Engravings
Price, $\$ 4.00$

THE value and significance of a tax-free alcohol have been so widely discussed in the press and periodical literature of the entire country, that the subject, especially to our agricultural and indus nations of Europe in this regard, and in consequence our literature has been sadly lacking in anthoritative works covering this phase of industrial activity This book was designed with the especial purpose of filling this want, and it is the latest and most comprehensive work of its kind which has been published in this country.
It is based

It is based upon the researches and writings of the of fermentation and distillation. It covers the manufacture of alcohol from the raw materials to the final rectified and purified product. An introductory farmer and the manufacturer. Additione new law and what it means to the naturing, domestic utilization of alcohol for heating and lighting purposes alcohol as a fuel for power production, and a statistical review. The full United States law is given in an Appendix.
The IO5 illustrations are of especial value and excellently supplement the text.

Few in number are those to whom this book would not prove of interes and value. The farmer, the manufacturer, the power-producer, the house that its use and introduction will effect savings and economies which were hitherto impossible of accomplishment.

MUNN \& COMPANY, Publishers, 361 Broadway, New York

Classified Advertisements

advertisinginthis column is 50 , No les

 than four nor more than ten lines accepted. Countseven words to the line. All orders must be accomseven words to the line. All orders must be accom-
panied by a remittance. Further information sent on res.

SALE AND EXCHANGE

BUSINESS OPPORTUNITIES

 PEAT SWAMPS TURNED INTG COAL MINES.Peat coal, coke, gas, litter. Peat bogs developed anplants erected. Dealer in pat ma chinery and peat pro
ducts. J. Bordollo, Kingsbridge, New York City. EVERY ONG INTERESTED IN THE MAIL ORDER
 To Get Into The Man ors D.
Title None Free. . Roilding, Philadelphia.
INGORPORATE YOUR BUSINESS. Over sixteen
hunded charters procured tor my clients. Write for
corporation laws, blanks free, to former A ss't

 metal. Reduces danger in
For ssale very chea, Inquire
dress B. S., Box 773 , New York.
Wits can be bought reasonable. If you are connecte with a shopand know where any are for sale writected
about it. R. A. Pinner, 122 Water Street, New York
City.
A. FEW DOLLARS will start a prosperous mail order
business. We furnish watatarues and
sary. By our eas y method failure impossibling neces
sary. By. our easymethod fallure im iossible. Write to
day. Milburn-Hicks Co., 18 Pon tiac Building, Chicago
 FOR SALE.-POrtable Compressed Air House Clean-

 are the pioneers in the business, and will prisecute all
infringers. State reeerences. Address Geeneral Coom-
pressed Ar Honse Cleaning Co., 453 Olive Street, St.
Louis, Mo.

I SELLL PATENTS.-To buy or having one to sell, write
Chas. A. Scott, 719 Mutual Life Buiding, Buffalo, $\mathrm{N} . \mathrm{Y}$

HELP WANTED.

Ollinortunilics for exper ienced technical men in foreign countries. Servie confidential.
daj. Hapgoods, 305 Broadway, New York.
WILL MAKE A FIRST, CLASS BOOK-KEEPER
of you in six weeks for $\$ 3.0$ or return money
positions, too-free

PARTNERS WANTED

WANTED.-Financial assistance by an inventor to

PATENTS FOR SALE

PATENT FOR SALE OUTRIGHT OR FOR PART
royalty and part cash Hatchet and Plane Combined.
 FOR SALE.-Quick ajdusting pipe and nut wrench.
Will sell opatent outright or have made with right
parties for rovalty. For full information and particulars, adaress F . B. McGovern, Box 373 , Oil City, Pa.
IF YOU WANT TO BUY A MONEY MAKING
Patent, I have a Patented Fence Post for sale or take royalty. For further information and particulars, ad-
dress R. R. Bueto, Slaughter, La. MORE WOMEN USE FACE POWDER than me

PA'TENT GAME APPARATUS.--Most exciting board game out. Represents the stringale for suprem
acy in life will sell outrightor will hease on royalty
James E. Heron, Meeteetse. W yoming.

WATER FILTER.

FACTORY AND MILL SUPPLIES.

 PUT IN WATER WORKS a tyour country home. oug any expense.
Dion, Louisville, Ky.

MACHINERY FOR SALE
REMOVED to larger quarters, we offer our large engines, dynamos, motors, materials and supples
Liberty Machinery Mart, 153 West Street, New York.

ENGRAVING.

PGENERAL ENGRA VING ON STEEL ANDCOPPER PLATE. - Monograms, address dies. visiting cards an
wedding invitatons my secialt.j. Estimates furnishe
uponal classes of engraving. F. J. Maidhof, 9 W. 14 th
St., N. Y.

PHOTOGRAPHY.

TEDDY BEAR SKULL, DEVIL, SCARF PINS.mardecllous deffect
Medical Baterie
New Yorkicity.
ELECTRICIAN AND MECHANIC is now publishing

EXPERIMENTAL ELECTRICS.

SOUVENIR POST CARDS.

25 BEAUTIFUL POST CARDS mailed to any address
for 12.. A great variety of subjects. Sold by so aesture
at 2 for 5c. and others
West Broadway, New York. Price list free.
FREE, -12 Post

MOTION PICTURES

MOTION PICTURE MACHINES. Films, Slides and sole agent Power's Cameragraph the real freproof ma-
chine. Catalogs. Lewis M. Swaab, 336 Spruce St., Phila.

SCHOOLS AND COLLEGES

GEO. H. WILSON, the World's Champion, has written
 PATENT Laws and Office Practice.-Thoroughly prac-
tical course by mail for attorneys and inventors. Free
specimen pages and information. Cor. School of Patent tical course by mail for attorneys and inventors. Free
specimen pages and information Cor. Scoool of Patent
Law, Dept. A, 1853 Mintwood Place, Washington, D. C.

FOR THE HAIR

GAS-LIGHTING APPLIANCES.
THE "PNEU-WAY" of lighting gas! Lights Welss
bachs without electricity from button on wahl! Wasily nstalled. ever lasting. Ask your gas company or write
Pnematic Gas Lighting Company, 150 Nassau St., N. Y.

MACHINERY.

MACHINE TOOLS WANTFD. - Milling, Machine,

DUPLICATORS.

 \section*{}
 \section*{}

Spi
Spr
Spr
Spr
Spr

Toa
Tob
Tob
Toll
Tong
Ton

$\stackrel{B}{\mathrm{~B}}$

\section*{
 } | 847,147 |
| :---: |
| 846,948 |
| \mid |

IIAMONDS (sortsen ON CREDTT

 OPPORTUNITY
JAMESTOWN EXPOSITION will admit models, plans, inventions, etc., A special opportunity not previously granted at other expositions.
For details, cost, arrangem TAMESTOWN EXPOSITI NORFOLK, VIRGINI

THE "LEADER." Built P. Gasolene Auto $\begin{aligned} & \text { like at watch. } \\ & \text { Beautifuly, Fine Engine } \\ & \text { rately } \\ & \text { constructed. } \\ & \text { Light, }\end{aligned}$ stronished. Accu
 CLAUDE SINTZ,

Graygood Hydraulic Shock Absorber
 DESIGNS
COPYRIGHTS \&

 $+=\mathrm{E}=\mathrm{m}$
Scientific American.
Mujin \& Co 36

$$
0
$$

Sausages. hains, baicon, sait pork, and lar

T
T
T
T

$\stackrel{T}{\mathrm{~T}} \mathrm{~T}$

Tire Tob Toil

\qquad

LABELS.

\qquad
PRINTS.

We ought to Char Core More Tha
for Hour, Wastiburn croshyA printed coov of the specifcation and drawin

Specialties \& Patents Bought and Sold
VENTRILOQUISMTelegraphy $\mathbf{z}=$
MASON'S NEW PAT. WHIP HOISTS

RUBBER $\underset{\substack{\text { Exppert Manufaturers } \\ \text { Fine Jobbing } W \text { Wors }}}{\substack{\text { and }}}$
PARKER, STEARNS\& CO., 228.229 South Street, New York
 teennical books on easy terms of payment.
Wm. T. Comstock, $23 \mathbf{W a r r e n}$ St.. New Yort MODGLS FHICAGO MODEL WORKS
LEARN WATCHMAKING
We teach it thoroughly in as many months as it
ormery took y ears. Does awa with tedious appren-
iceship Money eanned whine sudving. Positions se-
cured. Easy terms. Send for catalog.

ern systems and approved devices, Sampie coppo on
ELECTROCRAFT, Detroit, Mich.

To Book Buyers

We have just issued a new 112-page catalogue of recently published Scientific cently published Scientific
and Mechanical Books, which we will mail free to any address on application. MUNN \& CCMPANY Publishers of Scientific America
361 Broadway, New York

Rubber Pump Valves
For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. * * * Mechanical Rubber Goods of every description of unsurpassed qualities, including BELTING, HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking Tiling, Emery Whels and MOULDED and
CUT SPECI LTIES for any mechanical CUT SPECIALTIES for any mechanical
and commercial device. $\& * * * * * *$ NEW YORK BELTING \& PACKING COMPANY, Ltd. 91 \& 93 Chambers Street, New York

Stationaries, Portables, Hoisters, Pump-
ers. Sawing and Boat Outtits, Combined ers. Sawing and
with Dynamos. asoline. Gas, Kerosene
Send for Catalogue State Power Needs.
Charter gas engine co., Box 148, Sterling, ill.
 Money. Lists Free. CHICAGO SCALE: Too.. Chicago. IIl.

CRUDE ASBESTOS \begin{tabular}{|c|c|}
\hline PREPARED \& R. H. MARTINg

ASBESTOS FIBRE \& OFFICE, ST.PAUL BUILDING

\hline | ASBESTOS |
| :--- |
| for Manufacturers use |

\hline
\end{tabular}

the DIAGRAPH
The Improved Stencil Cutting Machine Is a saving of 90 per cent in your Ship-
ping Department worth consldering ?

You Can Actually Save 50%

Tools! Tools! Tools!

and all you want to know about
them. Our Tool Catalogue No.
22i a a cloth-bound book of 950
pages. If you want oo "'know pages. If you want to "know
it all," about Tools you should Sent port-paid on receipt of of
$\$ 1.00$ which will be refunded from your first purchase from
us of $\$ 10.00$ or over. MONTGOMERY \& CO. 105 Fulton Street, N. Y. City

Send First for the I.H.C.

 furnish abundant power with the least annoyane and
at least const. They are strng and simple. stury and
dependable, powerful and durable. Sind to-day for
for catalogue.
I.H.C.engines are built in the following style and sizes:
Vertical, 2 and 3 -H.
 The International Harvester Company of America. Inc.
 CHAS. J. Selud for catal
TAGER CO. kiin, cor. Batterym
Boston, Mass.

The
pictures

are

$41 / 4 \times 61 / 2$ inches.

No. 4 A
 FOLDING KODAK

A grown-up pocket Kodak. Retains the features that make for simplicity and convenience, but takes large pictures.

Superior Rapid Rectilinear lenses, Kodak Automatic Shutter, Automatic Focusing Lock, Rising and Sliding Front, Reversible Brilliant Finder, Two Tripod Sockets. Made of aluminum, covered with finest seal grain leather. Loads in Daylight with $41 / 4 \times 61 / 2$ Film Cartridges for 6 exposures.

Price, \$35.00.
EASTMAN KODAK CO.
Rochester, N. Y
Catalogrue at the
dealers or by mail. The Kodak City.

A practical screw-driver. Reversible, automatic. in-
terchangebale. For riving and dawng screws.
distinct and separate spirals each working independ.
dis. aistinct and separate spirals each wor king independ-
ently. Each with three bits. Send for catalogue.
GOODELL-PRATT COMPAYY

