SCIENTIFIC AMERICAN

SPEEDWAY Gasoline Marine Engine

The Best That Can Be Built

CAN BE SEEN IN COURSE OF CONSTRUCTION \& OPERATION AT OUR WORKS AT ALL TIMES

We also design and build Steam and Sail Yachts, High Speed and Cruising Motor Boats, Naphtha Launches, and vessels for commercial service, steel and wood construction. Marine Steam Engines and Boilers.

GAS ENGINE $\mathcal{\&}$ POWER CO. and CHAS. L. SEABURY \& CO.

Morris Heights. New York City
Send to cent stamp for illustrated catalogue
Member of the Nalional Assoctation of Engine and Boat Manufacturers.

THE AMBERT
 THE FRICTION DRIVE CAR

 25-40 H. P. 4.cylinder Rutenberg Motor. Onr "Shaft In ive" Car, Iambert Pate
Drive Transmission, tct Write for detailed description.
its Dealer Agents ivanted in territory not already closed. WRITE US Now

THE BUCKEYE MANUFACTURING CO
Anderson, Indiana, U. S. A.

The ITlos Reliadie Car Buili in America
All models
equal throughout equal throughout
in quality in quality MODELS FOR 1907
Type E. 20 H. P. Standard

Price, $\$ 4.500$, with full equipment of five lamps, tools and other accessories. 120 -inch wheel
base; $3+x+$ tures frout; $3+x+1 / 2$ tires rear; four speed selectuve (ransmission; alloy steel 1 ears base; $3+x+$ tires frout; $3+x+1 /$ tires rear;

Type H, 35 H. P. Limousine.

Price, $\mathbf{\$ 5 , 8 0 0}$, complete with hive lamps.
adulits. lamps are square and placed on body. Seats seven
Elecric annunclator; electric dome light; toilet set; upbolstery and appornements complete and

The Cocomobile Company
Bridgeport, Conn.
NEW YORK: Broadway and 76 th Street.
PHILADELPHIA: $2+9 \mathrm{~N}$ Broad Street.

"La Mascotte III."
"Dixie."
Two of the Popular Modern Types of American Power Cruisers.
"La Mascotte III." is 84 feet in lengh over ail: "Dixie" 1893 feet over all. These pachts have comfortable accommodations for passengers and crew, and bave a wide cruising radius at fair speed

The Ocean-Going Cruiser "Hawk," Built for Service in Caribbean Waters.

SCIENTIFIC AMERICAN

ESTABLISHED 1845
MUNN \& CO.
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York
ferms to subscribers
 the scientific american publications

 MUNN \& CO., 361 Broadway, New York

NEW YORK, SATURDAY, FEBRUARY 23, 1907.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sherrp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

THE " LARCHMONT" DISASTER

The awful disaster which occurred on the evening of Lincoln's birthday off Block Island, and resulted in the sinking of the steamer "Larchmont" with a loss estimated at not less than 150 souls, is not only one of the most tragic events in the history of navigation of Long Island Sound, but there are disquieting elements connected with the event, which may well shake the faith of the public in the safety of the older boats, and in the skill and heroism of the navigation and seamanship in these famous and much-traveled waters. The conditions under which the collision occurred, so far as they can be gathered from published reports, are altogether bewildering. Here, in comparatively sheltered waters, on a clear and starlit night, in spite of the fact that the captains of the two vessels, one a three-masted schooner, the other a sidewheel steamer, distinctly saw each other's lights when they were fully half a mile away-in spite of all this and the further fact that they had deep water and ample sea room, we find these two vessels so handled as to crash one into the other at full speed, and with all the appearance of deliberation. It is useless to speculate on the facts as here presented, and for an explanation we must be content to await the searching inquiry which must follow. It is certain, however, that the sailing vessel had the full right of way, and that it was the duty of the steamer to avoid her. The fact that the schooner rammed the steamer bow on would seem to indicate that the captain of the latter had made the too-frequent mistake of supposing that the superior speed of his ship would enable him to cross the bows of the sailing vessel.

Another feature which is disquieting, and certainly does not ring true with the best traditions of the sea, is the fact that so large a number of the officers and crew were saved, or at least got away in boats, while so many of the passengers, among them several women, went down on the vessel. In the presence of such a fact one's mind harks back to that fine old legend of the sea to the effect that the captain is always the last to leave his ship. On this point also will the public look for further and very definite information; and we can only hope that facts may be developed at the investigation which will give this phase of the question a more wholesome complexion than it wears at present. That the "Larchmont" should have foundered so rapidly after receiving the blow of the schooner proves once more how utterly unfit are some of these older steamers on the Sound and in the sheltered waters of our harbors and rivers for the safe carrying of passengers. It is certain either that there was no safety bulkhead construction in the hull of the "Larchmont," or that, if it existed, it was of a flimsy and practically worthless character. According to one account, the ship had transverse bulkheads built up of six-inch timber, but this, unless it was very heavily braced, would be altogether inadequate to withstand the water pressure, especially when the water in the hold was surging, as it would be, against the bulkheads with a momentum due to the rolling and pitching of the vessel. As a matter of fact, this question of non- or inefficientlybulkheaded passenger vessels, whether for harbor or Sound travel, is one of wide significance, and fraught with untold danger to the passenger. If the traveling public knew how many of these vessels would prove, in case of collision, to be mere death traps, the shrinkage of travel upon them would be such as to compel the substitution of more modern and safer ships. If it shall result in stringent legislation to debar all but thoroughly well-bulkheaded vessels from the passen-ger-carrying trade, the loss of life on the "Larchmont" will not have been altogether in vain.
trend of motor-boat development.
One of the most prominent facts connected with the present development of the motor beat is the waning interest in craft of the lightly-constructed and overpowered racing type, and the growing popularity of the more stanchly-built, roomy, seagoing baat of moderate power, with ability to make an extended cruise with out replenishing the fuel supply. The decline in popularity of the type which is built exclusively for racing has been gradual, but decided, and particularly so during the past two years. It is unquestionable that there is a fascination about mere speed, which appeals strongly to the public mind; and in the earlier development of any of the high-speed devices which have figured prominently in the great field of sport and pastime, the accomplishment of high speed has appealed to the imagination and stimulated the efforts of designers and builders, largely to the exclusion of other and more valuable considerations. In the later years of the past, and the opening of the present, century this has been particularly true, as witness the construction and development of the yacht, the bicycle and the automobile. But because of the great cost and limited usefulness of all mechanical creations which sacrifice every other consideration to that of high speed, the cost is so exceedingly high as to place them within reach only of men of considerable wealth and leisure. History shows us that when the possibilities of speed have been pretty well exhausted there is an inevitable reaction in favor of more moderate speeds and more durable and reasonable construction. The "speed mania," however, has always left behind it a valuable legacy in the way of useful knowledge as to the strength of materials, and as to just how far bulk and weight may be cut down without any sacrifice of absolutely essential strength.
The motor-boat industry may be said to have now passed from the, first to the second and more important stage of its development, and although the highspeed races of the last year or two have shown that there still exists some enthusiasm in this form. of sport, the number of extreme racing craft that is being built on the orders of private yachtsmen is relatively diminishing, while the orders for stancher vessels, of the fast and moderate-speed cruiser type, are increasing at a really remarkable rate. To-day not many of the extreme racing craft are built on private orders, the predisposing motive for such of these craft as are constructed being found in the desire of the makers and builders of engines and hulls to demonstrate the high quality of their product, by exhibiting it under the severe conditions necessary in the construction of a successful racing machine.
The popular type of motor-boat to-day is a moderatepowered cruiser, provided with a roomy cockpit and a substantial cabin with ample headroom, one or more staterooms, abundant lockers, a toilet, galley, and pantry, and all the accessories necessary for comfort on a cruise of several days' duration. Of course, the meeting of these requirements has necessitated an increase in size, and particularly in boats intended for deep-sea cruising, or for an extended trip in the more sheltered waters of Long Island Sound, or the extensive harbors of the South. Hence, the dimensions of a modern cruiser will be represented by a vessel from 30 to 60 feet in length, and furnished with engines of from 20 to 100 horse-power.
Perhaps the most potent influence in the develop. ment of this type of craft has been the institution of the long-distance races, which have grown in frequency and popularity during the past few years. Con fined at first to courses laid through the Sound from New York to some point on the Miassachusetts coast, these races have developed fast cruising boats, of such power and excellent sea-going qualities, that in the present year two important races are being run over ocean courses; one from Miami, Fla., to Nassau a distance of 190 miles, and the other from New York to Bermuda. The latter is, of course, the more formid able undertaking, and the restrictions which have been laid down regarding the size and construction of the contesting boats have been so well drawn that there is no reason why all. the contestants should not make the 700 -mile trip in safety.
Although the flimsy racing craft has waned in popularity relatively to the moderate-powered cruiser there will always be a demand for high-speed yachts, capable of averaging about 18 knots an hour, for what is coming to be known as "ferry" service, or the work of carrying business men to and fro between New York or other maritime cities and their dis tant summer residences. These craft run in length from 75 to 100 feet or over, and carry engines cap able of giving them a sustained speed in shelter ed waters of from 16 to 20 knots an hour. They are provided with ample deck space and spacious cabin accommodation, while frequently they will have a dining room and galley sufficient to enable the owner and guests to dine aboard if they should so wish.
The question has been asked as to whether the gasoline engine will be applied to ocean-going yachts of a size capable of making the transatlantic passage.

One of our leading naval architects has recently ex. pressed the opinion that in the present condion of the art this is not practicable, because of the prohibitive cost of the fuel. Moreover, it is unideniable that many prospective yacht owners would be deterred by considerations of the supposed risk attaching to the storage of large supplies of gasoline; although, as a matter of fact, by the use of proper precaution, the danger may be so greatly reduced as to be practically negligible. It is likely that under the stimulus afforded by the introduction of free alcohol, the designers of internal-combustion engines will succeed in designing motors so well suited to the use of this fuel, that it will ultimately prove to be more economical than gasoline; and there is not the slightest doubt but that with the more extended use of alcohol the price must ultimately come down to a point which will render it as economical as gasoline. When that point is reached, the added advantages of safety and absence of odor, etc., will render it such an ideal fuel that we may look for its extended use in the larger sizes of yachts, even in those capable of making the transatlantic passage.
Furthermore, the internal-combustion engine has several collateral advantages which must commend it strongly to the prospective yacht owner. By saving the expensive installation of boilers for a steam plant, the first cost of a gasoline or alcohol plant will be considerably less; and there will be a decided saving in the important matter of space. Also, for the same bunker or tank capacity, the steaming radius, or sailing radins, will be much larger than where steam power is used; while the comfort of the owner will be further assured by the absence of smoke and ashes, and the inevitable dust and disfigurement attendant. upon coaling. Already, the way for the appearance of the large ocean-going gas-driven yacht has been prepared by the successful operation of the large auxiliary schooners, in some of which gasoline engines of considerable power have been installed and successfully operated.

GYROSCOPIC ACTION OF MARINE TURBINES.

We are most of us familiar with that ingenious device for preventing, or rather modifying, the rolling of ships, which consists of a heavy gyroscope, placed with its axis of rotation transverse to the longitudinal axis of the ship. The machine works on the principle that, to change the plane of rotation of a swiftly-rotating body by tilting the axis, requires an amount of effort which is determined by the weight and rotative speed of that body. The anti-rolling gyroscope, rotating in a plane at right angles to the direction in which movements of rolling of the ship take place, tends to resist those motions and modify their extent.
Simultaneously with the appearance of this device, and possibly suggested by it, there has arisen a discussion of the action upon turbine-driven vessels of the heavy and swiftly-rotating rotors of the steam turbine; for these, in addition to their proper work of driving the ship, undoubtedly act, because of their weight and high speed of rotation, with a powerful gyroscopic effect upon the pitching motion of the vessel. In this case, however, the gyroscopic action is felt in the direction of the longitudinal axis of the ship, and not, as in the case of the anti-rolling device, transversely thereto. Moreover, just as the anti-rolling gyroscope tends to modify rolling, so the gyroscopic effect of the heavy rotors of the steam turbines must tend to modify pitching, or vertical movement in a plane passing through the keel. Whatever modifying effect the device above referred to may have upon the rolling of a vessel, it is certain that the gyroscopic action of the turbine rotors can have none, or practically no effect upon the pitching. But since the gyroscopic resistance of the heavy rotors to a change of position of their plane of rotation is present and is considerable in quantity, it follows that they must exert a stress of no little amount upon the framing of the vessel itself. The proportion which these stresses will bear to the normal stresses for which the hull was.designed will be largest in the case where turbines of great weight and high speed of rotation are carried in a long, shallow, and lightly-constructed hull, as in the case of a high-speed turbine torpedo-boat destroyer. These stresses would act very materially to increase the bending stresses which occur when a torpedo boat is being driven rapidly across the seas. In such a vessel they would become so large as to call for an increase in the scantling of the vessel, beyond that which would be necessary were reciprocating instead of turbine engines installed.
In the course of a valuable analysis of this action of a steam turbine, Mr. A. H. Gibson, of the Institute of Civil Engineers of Great Britain, some months ago called attention to the fact that the "Cobra," one of two high-powered turbine destroyers, built several years ago for the British government, and capable of steaming 36 knots an hour, broke her back and went down during a gale in the North Sea. This destroyer was built of the same scantlings as other destroyers in the British and Japanese navies, the difference be.
tween them and her being that they were driven by reciprocating engines and the "Cobra" by steam turbines of nearly double the power. Although no satisfactory reason was assigned for the disaster, Mr. Gibson believes that the additional stresses caused by the gyroscopic action of the rotors were mainly responsible for the disaster. Assuming that the two high-pressure turbines weighed 8 tons each and the two low-pressure 14 tons each, and that the speed of revolution was about 1,100 per minute, he finds that under certain conditions a couple might be called into play of 48 oot-tons, which would have to be resisted by the framing and shell of the vessel.

LONG-DISTANCE MOTOR-BOAT RACES FOR 1907.
There are at present but two important power-boat races scheduled for the coming season. Both of these are for cruising craft, and it is noteworthy that no contestant is eligible to entry in both races. These are known as the Marblehead and Bermuda contests.
The Marblehead race is the third annual race of a series which has been pulled off between New York and Marblehead, Mass., while that to Bermuda is an entirely new venture in the long-distance cruiser field. Both these races are laudatory, since such contests tend to develop a seaworthy, convenient, comfortable, and sensible type of cruising craft. If the results this year do not prove this to be true, indications are certainly misleading.
The first long-distance race for cruising power boats was conceived by Mr. Thomas Fleming Day, of "The Rudder," who offered a $\$ 250$ trophy, to be known as "The Rudder Cup," to the Kinickerbocker Yacht Club of College Point, with absolutely no restrictions as to conditions except that it was to be raced for by cruising power boats. This was late in 1904. The Knickerbocker Yacht Club accepted this cup, but, as there had been no previous contests of a similar nature, the club fully realized the amount of strenuous work such an enterprise would entail.
After several meetings the regatta committee presented to Mir. Day, for his approval, a draft of the conditions for the first race in 1905. These rules provided for a race for bon fide cruising power boats, not exceeding 40 feet length over all, and for the exclusion of any craft not having living and cruising accommodations for a crew of at least four persons. Paid navigators were also barred. American Power Boat Association rules were to govern. As a result there were sixteen entries, with twelve starters, as follows:

Boat.	Owner.	Engine.
"Blink "	C. W. Estabrook	Buffalo.
"Aquila ".............	A. H. Chase	Cuase.
"High Baili	Richard Hutchison..	Essex.
Woodpile	A. L Lincoln	Barber.
"Glissando	F. L. Andrews.	Standard.
" Em Bee ${ }^{\text {a }}$...........	Louis Neumann.......	Buffalo.
"Eeneral, Bumps "...	P. D. Irwin	Giant.
	Arnold Schlaet	Sutandord.
"Talisman ".......	William Saville........	Murray \& Tregartha

Of these, all but six, viz., "Yeddo," "General Bumps," "Aranca," "Glissando," "Em Bee," and "Talisman," were new boats, built to conform to the conditions of the race.
The weather was the worst of the season, and after a hard trip across Nantucket Shoals, but five were able to finish and in the following order: "Talisman," "Blink," "Aquila," "Glissando," "Woodpile."
As "Talisman" was entitled to an allowance of nearly seventeen hours, there was no question of her winning the cup.
"Glissando" received second prize, and the other three handsome souvenirs.
In this race, as in that of the year following, the Eastern Yacht Club, of Marblehead, rendered valuable assistance, not only to the Regatta Committee of the Knickerbocker, but to the contestants themselves, the other two yacht clubs, the Boston and Corinthian, each vying with the Eastern as to which could do the most in that line.
Before the close of the year 1905, the Knickerbocker Yacht Club decided on a race for 1906. This was to be run in the opposite direction, i. e., from Marblehead to College Point. As a result, four prizes were offered, with fourteen entries and the following twelve starters:

Boat.	Owner.	Engine.
\because Davy Jones	Richard Hutchison.	Jag
"Unome "	Alfred L. Low..	
"Yo-Ho;	R. R. Curry \& Sons.	Ideal.
"Whew"		Murray \% Tregartha
Sis".	Eben Stevens.	Craig.
susie ${ }^{\text {' }}$.T. B. Schmelzel......	Fulton.
Shawna ${ }^{\text {Ser }}$		Murray \& Tragartha
Alice J ,	Sidney Williams.	Hasbrouck.
"Sarapa"..............	Swasey, Raymond \&	Buffalo.

In 1905 "Talisman" took nearly 54 hours and 25 minutes to cover the course.
"Unome" finished first in 1906 in 33 hours, 45 minutes, and 40 seconds, with "Whew" second, "May" third, and "Sis" fourth. The last boat of nine to finish, "Susie," completed the 280 nautical miles in 39 hours, 5 minutes, and 29 seconds elapsed time.
Time allowance was figured on a modification of the 1905 American Power Boat Association rules, using 60 per cent of the table, with arrivals corrected so that the winners in their order were as follows: "Sis," "May," "Susie," and "Davy Jones."
The owner of "Sis," Mr. Eben Stevens, promptly offered a cup for a race in 1907. The Knickerbocker Yacht Club could not see its way clear to under take the management of another race. Consequently, the New Rochelle Yacht Club will this year have supervision over the third Marblehead race.
Very slight modifications in the rules governing the 1906 contest have been made, the two principal ones being to limit the minimum length to 30 feet over all, instead of on the waterline, and the use of 50 per cent of the table of time allowance of the American Power Boat Association rules, rather than 60 per cent. The race this year will be from New Rochelle to Marble head and will probably start on July 4.
The other race is from Gravesend Bay, off the Brooklyn Yacht Club, to Bermuda, a distance of about 700 statute miles. The minimum length of boats eligible for this race is placed at 39 feet, and the maximum at 60 feet.

This race is for a valuable trophy offered by Mr . James Gordon Bennett, the well-known yachtsman. It will be run under the joint auspices of the Brooklyn and Royal Bermuda Yacht Clubs. Careful conditions have been formulated, to avoid probability of disaster to any competing craft, each one being compelled to carry 6 square feet of sail for every foot of over-all length, and one and one-half times the quantity of fuel necessary to cover the distance under favorable weather conditions; while several other important salutary regulations are embodied in the requirements for eligibility for entrance. The conditions under which entries are to be made were published in the Scientific American of December 22, 1906
This race is scheduled to start from the club house of the Motor Boat Club of America on June 1, and with good weather the run should not consume more than two and a half or three days.
It is reported that several boats are already under construction for each race, and it is likewise probable that boats already built, and eligible for the Marblehead race, will compete, while slight modifications, consisting in the main of the addition of auxiliary sail equipment, will allow several well-known boats to enter in the Bermuda trial, which will test the best points of such craft, such as their seaworthiness and endurance.

POWER BOAT NOTES.

You cannot "throttle" a four-stroke cycle engine to slow speed, unless the exhaust valve springs are sufficiently strong to prevent ingress of the spent gases through the exhaust valves, when there is a partial vacuum in the cylinder formed by the descent of the piston during its induction or drawing-in stroke Weak exhaust-valve springs are sometimes encounter ed on marine gasoline engines.
There is an island near Marblehead, Mass., which is often mentioned in print. It is sometimes called Thatcher's and often Thatcher. It could not be That cher's, for in all geographical names now the apostro phe is omitted. What used to be called Riker's Island is now Rikers Island, while Fisher's Island has become Fishers Island. In the particular case mentioned, the latter is and has always been correct. It is Thatcher Island.
Conditions may necessitate installing propellers with excessive pitch, but such an installation should be avoided if possible. It must be remembered that the flywheel of the engine must be kept out of the water in the boat's "run," or space below the floor. This is sometimes accomplished by using a copper or galvanized pan under the lower part of the flywheel. Twocycle engines give more trouble usually than four cycle, when thus installed, and two-port engines more than three-port, if supplied with float-feed carbureters the usual tendency being to get too rich a mixture in the after cylinder and too poor a mixture in the forward cylinder. Too much lubricating oil is quite likely to interfere with the ignition in the after cylinder if the engine is of the four-cycle type.

If you are in a power or sail-driven boat, and some other craft, steam or gasoline driven, willfully violates well-known "rules of the road," you should, at your earliest convenience, report the occurrence to the nearest United States inspector of steamboats, giving a full account of the occurrence, with names and addresses of eye-witnesses. A few cases of this sort would give many of our licensed masters and pilots what they richly deserve-suspension of their licenses -even although they are often goaded to desperation as no doubt many of them claim, owing to the wanton
disregard of the usual rules by many of our powerboatmen. Moral: Learn the "rules of the road" yourself, and do not take any chances, giving the other party plenty of leeway.
A sailing yacht shows the same lights as any sailing craft, the regulation red and green side lights, when under sail, and the white riding light when at anchor. A light is sometimes suspended from the end of the main, or spanker boom, to reduce liability of fouling, and while of great utility, and in a measure considered necessary, is not demanded by federal law or regulation. Small sailing craft are allowed to show a combination red and green light displayed in front of the mast, in place of the usual separate side lights. Small power craft, when using combination lights, should have a white light showing between the red and green. When showing separate side lights they should display a white masthead light. Towboats or any power craft when towing another craft alongside, should show two white masthead lights, one above the other, and when towing astern there should be three of these lights vertically arranged. The regulations governing lights on all craft are the same, no matter whether used for pleasure or business purposes, and are in force from sunset to sunrise.
Galvanized sheet-iron gasoline tanks are unsafe, and their use should be prohibited in all boats. Copper is very much better than any other material for fuel receptacles, although high-grade house boilers, galvanized after they are made up, on account of their cheapness, are permissible. The electric-welded, press-ed-steel tank, however, is preferable to the riveted tyle. A precaution to be observed in the use of gal-vanized-iron or steel tanks is to see that salt water does not collect on them, or that they are not partially submerged in the boat. More important it is that no oak, or any wood carrying tannic acid, comes in contact with galvanized-iron tanks, else their life, owing to corrosive or galvanic action, is materially shortened. Galvanized-iron "swash" plates are preferable to those made of copper, owing to their greater rigidity, and such plates should be used in copper tanks. Soft, or hot-rolled, copper makes safer tanks than coldrolled, and even this should be "tinned" on the inside, to insure the solder holding. All copper tanks should be protected against any possibility of fracture or puncture, by means of suitable bulkheads.
Rarely does a power-boat owner aspire to own the second craft with the propeller unprotected. Speed maniacs have set the custom. Floating debris, rocks, shallows, etc., make bad work with the unprotected propeller. It has been abundantly proven that high speed, with its allurements, is not all that is claimed or desired, that a comfortable, safe, good sea boat is a much more merchantable article and one less often offered for sale than so-called semi-speed or racing craft. It is possible so to design power boats that a good, satisfactory type with sufficient speed for comfort, may be produced rather than "freaks." Boats of abnormally high speed are decidedly dangerous playthings, not only for their own occupants, but those of other craft, who have equally as good rights to navigate crowded harbors and other constricted bodies of water. Power-boat racing, except for sensible cruising craft, died naturally something over a year ago. There is but one really good power-boat racer, and that is the very fastest one afloat. When such a craft is once beaten, her value is considerably decreased. In designing a boat to get the very highest speed possible, it is usually necessary to have the propeller project below the keel.

A jump-spark coil may be put out of commission easier by too high voltage than from any other cause. Adjusting the trembler, or vibrator, until there is very little play between the core and the small button or armature, is quite likely, especially with cheap coils, to fuse or burn up the metal contacts, between which a small spark shows when the primary, or lowtension, circuit is closed at the timer or distributor. Some coils are wound for but six volts, because they can be produced more cheaply than if wound to stand nine or twelve. Such coils should never be used with more than four dry cells, or six cells of so-called oil battery. A very frequent source of trouble with coils may be traced to their use in connection with sparking dynamos or generators. It is not safe to use them in the jump-spark system, without using an accumulator or storage battery, and a cut-out, either by means of a switch or an automatic device to prevent short circuiting the storage battery through the generator, when the engine stops. If the governor on the generator could be depended upon to maintain just the proper speed to produce the correct voltage, there would be no trouble, but around salt water particularly the governor is liable to "stick," with disastrous results. This is one of the bad features incidental to the use of jump-spark ignition. In the make and break system an increase of voltage to even twelve volts has no bad effect other than a tendency to burn out the igniter points, unless it runs so high as to break down the generator itself.

RECENT PERFORMANCES OF FRENCH HYDROPLANE BOATS
by our paris correspondent
The gliding boat, or hydroplane, has been occupying considerable attention of late, mainly owing to the remarkable performance of the boa which the Count de Lambert con tructed not long since and equipped with a light-weight, high-power mo tor. This craft succeeded in out distancing all the racing boats o the usual build in a race held Octo ber 15 last upon the Seine nea Paris, and it was this performance especially which directed the atten tion of the public toward the ques tion of gliding boats, seeing that heretofore it was not generally known what could be expected from the new craft. Owing to the good results which have now been ob tained by the hydroplane, there seems to be no doubt that it i quite in the line of progress, and we may expect to hear of still mor remarkable performances from thi class of craft in the future. The question is being actively taken up in the vicinity of Paris, and no les than three different forms of hydro plane boats have been run upon the Seine, with very encouraging re sults. As regards the principle which underlies all the recent forms of gliding boats, it consist in making the craft glide upon the surface of the water with scarcely any immersion of the hull. This is done by giving the boat a sufficient speed from the use of a light and powerful gasoline motor and at the same time placing a set of planes under the boat which are slightly inclined and turned upward from back to front, so that when the boat reaches a sufficient speed the action of the planes causes it to be lifted partly or almost entirely out of the water, the latter being the ideal condition. While the usual practice of the first experimenters was to use a boat of about the ordi nary section and then adapt under neath it a set of separate planes whose angle was adjustable, in all the present boats the plane sur faces are formed simply by the bot tom of the boat, this being con structed so that there are at least two surfaces of this kind. W'hat is essential for the hydroplane action is to have the boat light enough to be easily lifted out of the water and at the same time to provide sufficient power to give the proper speed for bringing about the lifting action. This is now easy to accomplish in the

Rear View of Count de Lambert's Hydroplane Boat Traveling at a Speed of $251 / 2$ Miles an Hour
present state of gasoline motor construction, especially since the new light-weight motors for aerostatic purposes have been brought out. In the early days of the hydroplane, inventors were handicapped, since they had only the steam engine available for the purpose,
in making his craft work practically, as afterward he ceased to experiment with it and appeared to have abandoned the idea. This was no doubt due to the fact hat at that date the gasoline motor was not sufficiently developed to be of service for gliding boats. Count de ambert built his first gliding boa n 1897 and tried it in England, where he worked for some time up on the question. He used the idea of a catamaran formed of two long and pointed floats and between hem he placed a set of flat piece which constituted the planes and lay below the surface of the water The planes were adjusted at the proper angle, which was found by xperiment. On the craft he mounted a small steam engine of the Field type, together with it boiler, but as this gave him a heavy weight for a small power he could not bring the boat up to the speed which he is now able to secure with a light gasoline motor. Neverthe less, his results were encouraging and he found that his idea was a good one. Since the advent of the gasoline motor he has been at work upon the question and has already built a number of boats. The most recent type which he is now run ning upon the Seine still holds to about the same construction, using two main floats running along the whole length and joined at the top by a light platform. In the present form the planes extend clear across underneath the floats so as to cover the whole width of the craft. The planes are formed of flat surfaces and there are a number of them (five) in the length of the boat However, the plane which forms the front end of the boat has the end somewhat curved upward, as will e noticed in the photographs. Dur ing his experiments Count de Lambert has found the best angle o give the planes and the proper length, width, and spacing that they should have. The right spac别 of the planes is one of the most essential points for the proper working of the boat. These are 10 feet long by about 4 feet wide and spaced about a foot apart. Toward the front end of the craft is mounted a 50 horse-power gasoline motor
and thus a heavy weight ad be lifted, a weight which was out of all proportion to the power which the motor would give
As far back as 1876 M. de Sanderal had the idea of a hydroplane which consisted of a simple flat-bot tomed boat of rectangular shape. At each of the four corners of the boat he mounted a propeller which worked horizontally in the water and was mounted on a vertical shaft. The boat also had a main propeller placed in the rear in the usual way. By giving the proper speed to the four screws at the cor ners, the boat could be lifted more or less out of the water so as to lessen the resist ance to forward movement, and then the main propeller would cause the craft to glide on the surface of the water. He was not successful at that time in realizing this idea, since he found that the boat would require a considerable motive power, and hence that it could not be lifted by the use of a steam engine. Later on, M. Ader, of Paris; who is well known for his experi mental work in different fields, took up the idea, and as late as 1895 he built a mode of a gliding boat which somewhat ap proaches the present types. In this case he used a boat which was pointed at each end and was provided with a series of separate planes. At the front of the boat there were two planes spreading out at the sides and lying under water. They could be ad justed at any desired angle from the inside of the boat. At the rear there was a single plane which formed a tail and could also be adjusted. M. Ader had also the idea of injecting compressed air underneath the surface of the three planes, so that they would work more or less upon an air cushion and in this way the resistance of the boat would be still further diminished It seems, however, that he did not succeed

${ }^{66}$ Nautilus B. V. Jacqueline" Under Way. This Boat Won the Cruiser Race at a Speed of $\mathbf{1 6 . 8 4}$ Miles an Hour.
light weight is essential. It is to be remarked, however, that this power is needed only in starting up the boat and bringing it up to the speed where the planes cause it to lift out of the water, for it is evident that as soon as it commences to glide upon the surface it requires much less power to run, owing to the great diminution of the resistance. This, at least, is the theory of the hydroplane, although in practice the large cata maran shown made only 25.46 miles an hour with the motor developing 50 horse-power at 1,000 R. P. M., while a smaller one of about one half the size and one-fourth the hydroplane surface made the same speed with from 12 to 14 horse power. The present motor is of the eight-cylinder V pattern and is rated at 50 horse-power, running at the standard speed of 1,000 revolu tions per minute, at which it runs when driving the boat. The dis placement of the present boat, with out fuel or water, is stated by the inventor to be 1,100 kilogrammes (2,425 pounds), and with three men the displacement is brought up to 1,500 kilogrammes ($3,306.9$ pounds), although as many as five persons, inclusive of the mechanic, can be carried. The displacement of the smaller boat, loaded, was 1,763 pounds. From the motor the slightly-inclined propeller shaft passes to the rear. The blades of the propeller are each pivoted so that they can be turned and the pitch of the propeller altered. This is found very convenient for hand ling the boat. There is also a rud der which is mounted in the rear in the usual way. As to the size of the boat, the length is 7 meter (22.96 feet) and the width about 3 meters (9.84 feet). The whole is of a very light and solid build, and the top platform is made of the usual slat work.
This craft made the remarkable performance which we mentioned above during the races which were held last fall upon the Seine at Maisons Laffitte, in the suburbs of Paris. In spite of the fact that there were entered some of the fast racing boats, the hydroplane car ried off the honors and made the record for speed over a 100 -kilo. meter (62.1 -mile) course, covering this in 2 hours, 25 minutes, which is equivalent to a speed of 25.46 miles an hour. The boat carried three persons and besides was obliged to make a number of turns, which are a decided disadvantage for this class of craft. In a straight line, Count de Lambert says he made a speed of 55 kilometers (34.175 miles) an hour upon the Seine. At present he is constructing a new hydroplane, which is even of a simpler form. It is made up simply of a series of box floats placed between two long timbers on each side. Each float has the required plane surface on the bottom, and the assemblage of floats forms a kind of raft which has a number of gliding surfaces. It may be mentioned that Count de Lambert has been granted fundamental patents for the use of hydroplanes
Another hydroplane boat which follows the same
general principle, but which is much smaller in size, is the "Ricochet-Nautilus," constructed by the Bonnemaison boat-building firm of Paris. Its general appearance is shown in the illustration. The bottom is formed of two inclined plane surfaces one of which

Plan and Longitudinal Section of Levavasseur Motor Boat.

The Levavasseur Freak Motor Boat, "Antoinette,"

Tail of the Curious Two-Part Levavasseur High-Speed Boat.
extends from the stern to the middle of the boat. Commencing a few inches lower down, at the middle, is the second plane, which also runs upward toward the front and forms the bow of the boat. A cross-section of the boat one-third of the way back from the bow shows that the forward plane is not quite flat, but has a slight curve. Upon the boat is mounted a three-cylinder, air-cooled, Buchet.motor of 10 horse-power, from which a shaft runs to a propeller at the rear. The latter runs at the motor speed of 2,000 revolutions per minute when at full speed. The new craft has been tried upon the Seine, and is stated to run at 48 kilo-
meters (29.825 miles) an hour. It is built to carry a single person. The oiling of the motor is carried out from an air-pressure oil tank, and the air pressure is given by a bicycle air pump. The rudder of the boat is shown at the front in the photograph, although two rudders at the stern are generally used.
The "Antoinette" speed boat is built on somewhat different lines. In front it carries a flat-bottomed boat of somewhat the usual form, while in the rear is attached a float forming a tail-piece which aids in obtaining the gliding action. The front boat carries the motor and passengers. From the motor a shaft runs to a propeller carried in the rear of the tail-piece. The latter (see diagram) has at the end a box-shaped piece whose under surface forms a plane, and the whole device gives a constant angle for the front boat in order to secure the gliding action. By using the front boat, the craft can stand bad weather and run even upon rough water, although its speed will be slower in this case. It will run on the hydroplane principle in smooth water.

The craft is built for the Levavasseur motor firm, who have mounted on it one of the light motors previously described and rated at 50 horse-power. Alone, the motor weighs 132.27 pounds, or 176.36 pounds with all accessories and ready to run. The displacement of the craft is 200 kilogrammes (440.9 pounds) counting the motor, and the total length is less than 9 me ters (29.52 feet). It has already been run upon the Seine and showed a good speed. Capt. Ferber and also Santos Dumont piloted it on different occasions and were favorably impressed with its performance, stating that it had a good balance and gave almost the same sensation as an aeroplane in the air. Owing to the use of the long tail, there is but little spray at the back of the boat, seeing that this is forced to the rear. Since it has entered the field the new craft promises well and gives the gliding effect without losing its qualities of good floating and balance. Another point is the low consumption of fuel, which is claimed to be below what the ordinary craft use, while a higher speed is obtained.
In the cruiser class, the record for $151 / 2$ miles was made by the "Nautilus B. V.-Jacqueline," which covered the distance in 52 minutes 36 $3-5$ seconds, at an average speed of about 16.84 miles an hour. This boat is noteworthy from the fact that it was driven by one of the new Bourdreaux-Verdet Duplex motors, which works on a new principle, and which we had occasion to describe in Supplement No. 1597. The Duplex motor seems to be coming to the front on account of the different merits which it possesses in the way of low gasoline consumption per horse-power and the small space it occupies. One of the photographs on the preceding page shows the new cruiser at full speed. The clean way in which it cuts the water shows the design of hull to be a good one.

The "Ricochet-Nautilus," Which Has Attained a Speed of About 30 Miles an Hour With a 10-Horse-Power Motor. This Boat is About 11 Feet Long.

Count de Lambert's Hydroplane Boat at Rest, Showing the Normal Submergence When Stationary.

THE BRANGER CUP RACE FOR MINIATURE MOTOR BOATS.
 by the paris correspo

Considerable interest was recently manifested in Paris in a. series of races for model motor boats. A cup for one of these events was presented by M. Branger, a well-known French photographer of sporting subjects. The races were held on the lake of the Bois de Boulogne over a course some 150 meters (492.125 feet) in length, and they were watched with interest not only by the children but by their elders as well. Some of the little craft traversed the distance at surprising speed, and a n+1mber of curious forms of miniature launches were to be seen, as the accom panying illustrations show. One of the conditions of the contests was that none of the competitors was to exceed 5 feet in length. Some of the latter were considerably smaller; in fact, one of the winners was but 23.6 inches long. There were twenty-four starters in the races, which were watched with great interest by a large crowd of spectators.
There were races for different classes and a special class contested for the cup. Some of the boats were driven by electricity, while others were provided with explosive motors; one of the latter was of $11 / 2$ horse-power and was, as can be seen in the illustration, a single-cylinder, air-cooled motor fitted with high-tension magneto ignition, fly wheel, friction clutch, etc.
Despite a damp and rainy day, these toy racers made a very fair performance, as can be seen by the following table of winners:
Racers 0.60 Meter (23.62 inches) in Length: Winner, "Girard IV." (owned by Girard), 2 minutes 27 seconds.
Racers 1 Meter (39.37 inches) in Length: Winner, "L'Eclair" (owned by Leroy and Breton), in 2 minutes

The " Girard I.," Winner of the "Coupe Branger."
boats, who gained not a little information as to the speed capabilities of different forms of hulls.

The Death of Henry C. Sergeant.
In the death of Henry C. Sergeant, which occurred January 30 at his home in Westfield, N. J., America has lost one of her most brilliant inventors. To the irventive genius of Mr. Sergeant the elevated railroad companies owe the chopping boxes, which exabled them to stop the use of uncanceled tickets on their lines,
second in 2 minutes 20 seconds; and "Lorraine" was third in 2 minutes 25 seconds. The consolation prize was won by "Catarina" in 1 minute 16 seconds. This first toy motor-boat meet was very amusing, and was attended and directed by several constructors of motor

Plan View of the "Girard I.," Showing the $11 / 4$-Horse-Power A ir-Cooled Motor, the Gasoline Tank, and Carbureter.

47 seconds; 2, "Girard III.," in 4 minutes 30 seconds.
The winner of this event was given the superb silver medal donated by "Les Sports."
Racers $11 / 2$ Meters (59.05 inches) in Length: 1, "Girard I.," in 1 minute 5 seconds (5.16 miles an hour) ; 2, "Lorraine" (owned by Pierre de Fontbrune), in 1 minute 50 seconds; 3, "Catarina" (owned by Letang), in 2 minutes 45 seconds.
The race for the "Coupe Branger" was won by the "Girard I." in 1 minute 20 seconds. "L'Eclair" was
and materially to increase their profits. His first in vention, which he worked out when only eighteen years ord, was a machine for making wagon wheels. In 1862 he patented a governor for marine engines to prevent the racing of propellers. This governor the United States government at once adopted for war vessels. He took out patents on more than fifty air compressors and drills, and his development of the drill that bears his name made it possible to carry out some of the greatest engineering achievements of the last quarter century.

A Group of Model Motor Boats, Showing the Different'Types and Sizes.

LATEST TYPES OF CRUISING POWER BOATS
In the first-page illustration of this number of the Scientific American are shown three of the latest types of cruising power boats. The two shown in the upper part of the illustration are "La Mascotte III." and the "Dixie," the first of which was designed by Mr. H. J. Gielow for Mr. F. C. Havens, of San Fran cisco, and the latter by the Electric Launch Company.
"La Mascotte III." is 84 feet over all, 75 feet 9 inches on the waterline, with a beam of 13 feet, and a draft of 3 feet 6 inches. On deck forward are a pilot house and a cabin, provided with the usual transoms, table lockers, and buffet. The staterooms, which contain berths and lockers, are arranged on each side of a passageway leading to the engine room.
Each of the staterooms connects with a private toilet room. The quarters of the crew are aft, and provide accommodations for two men. In the engine room are two berths, seats, lockers, etc., for the members of the engine-room staff.
The vessel is driven by two 75-horse-power Craig gasoline engines, and it is provided with the necessary lighting, ventilating, and other auxiliaries. The fuel supply- 620 gallons at a maximum-is carried in tanks located in water-tight compartments. The vessel is steered from a bridge aft of the pilot house, and is equipped with a single military mast and a stack,
The "Dixie" is 93 feet over all, 85 feet 9 inches on the waterline, with a breadth of 13 feet 6 inches, and a draft of 4 feet. Her accommodations consist of a forecastle, finished in quartered oak with brass air ports for light and ventilation. The owner's quarters, which are also forward, and are finished in African mahogany, contain two Pullman berths equipped with regular Pullman car fittings with drawers for storage. There is also a bureau with plate-glass mirrors and extra wide and deep drawers. The owner's private bath is adjoining and contains a porcelain tub, shower bath, basin, and a large closet. The windows in the owner's quarters are of plate glass, protected by Venetian blinds, while additional ventilation is secured through a large skylight.
The galley is situated aft of the engine room and extends the full width of the boat. A large range burning either coal or wood is provided, together with a roomy ice box, having a capacity of 650 pounds of ice, a sink, cupboard, dresser, and closets.
The main saloon is 19 feet long, finished in mahogany, and contains a large Chippendale sideboard with glass doors, drawers for silver, linen, etc. There are also four standard Pullman berths, and a toilet room opening into the saloon on the port side forward. The windows in the saloon are protected by Venetian blinds, as in the owner's quarters, while a large skylight furnishes additional light and ventílation.
The engine room contains two 110-horse-power 6 cylinder Standard reversible engines and an 8 -horsepower gasoline engine direct connected to a dynamo for supplying electricity throughout for lighting, searchlight, fan motors, heating and cooking.
The yacht will be steered from the bridge and will also be equipped with military mast, stack, one 14 foot dinghy, and a 15 -foot 6 -inch power tender, with a 2-horse-power engine; an awning covers the entire yacht.
The hull has been very substantially built, having an oak keel and frame and yellow pine planking, all copper or yellow metal fastened.
The craft illustrated in the lower engraving is the "Hawk," which was designed and built by Mr. C. Du Poix, of New York city, for a gentleman residing on the Isle of Pines. It was intended for use both as á pleasure yacht and as a passenger carrier during the busy season of commerce. The conditions of service necessitated a seagoing power yacht of fair speed and wide cruising radius for operation in and around the Caribbean Sea. Weather conditions in that part of the world often put the craft plying those waters to the severest possible tests, and the question of seaworthiness was a factor of the greatest importance in the design of the "Hawk."
The vessel is built entirely of steel, with six watertight compartments, and the construction is one which offers great strength of hull. The deck is flush, with but a single companion way, that leading to the owner's quarters. All other openings are either watertight torpedo hatches or watertight steel skylights. There are two engines, each of 75 brake horse-power, using gasoline fuel. The latter is carried normally in four tanks placed abreast, each in a watertight compartment and provided with a water seal. Extending forward from the engine room bulkhead for 14 feet is a double bottom, the space within which is adapted to be used as a reserve fuel tank, or otherwise as a ballast tank. The full tank capacity totals 2,000 gallons.
Most of the auxiliary power devices are electrically driven. They include the lighting plant, the fire and bilge pumps, an ice-making plant of the Brunswick Refrigerator type, and the ventilating system. The ice machine compressor is driven by a $11 / 2$-horse-power motor in the engine room. The cold storage and ice com-
partments are located in the galley. Twenty pounds of ice are manufactured per day, while at the same time two refrigerating compartments are cooled. The cooking is done upon an electric range, an auxiliary oil stove being provided for emergencies.

A system of forced draft provides ventilation. An electric blower is placed aft of the conning tower, where it is shielded from breaking seas. This forces air through lines of pipes, one on each side of the boat, just above the cabin floor. Each room contains proper regulating apparatus for use in connection with the ventilation system. The air is withdrawn from the various parts of the craft through flat pipes located near the gusset plates on each side of the hull. These pipes unite in the engine room and communicate with an exhaust blower, which expels the air through a ventilator.

The conning tower is located well forward, and not only provides a place for the steersman in bad weather, but is also a chart room and smoking den. It is provided with a large, comfortable leather divan, adapted for sleeping purposes in case of necessity. Two sets of steering gear are provided in the conning tower, as well as an engine-room telegraph, a telephone to all parts of the vessel, and the usual bell signal system and speaking tubes. The electric masthead and side lights have telltale lights showing in the conning tower. The lights, as well as the searchlight and the siren, are controlled from within the latter. An auxiliary steering gear is provided on the platform aft of the conning tower for use in fair weather.
The accommodations and living arrangements are all of the very best. The toilet and bath rooms are of the latest design. The main saloon is large, airy, and comfortable, and is provided with two transom berths, a self-playing piano, buffet, bookcases, lockers, etc. Accommodations are provided in the forecastle for a crew of four, and two berths are located in the engine room for the crew of that department.
The joiner work throughout is of composition fireproof board painted with white enamel. Interlocking rubber tiling is used in the saloon, bathroom, passageways, and in the pantry and galley. The upholstery is of dark green leather. Two boats are carried in patent folding davits-a power dinghy and a whaleboat. The deck is of teak, with all deck fittings of steel.

Aeronautic School in Germany.

Arrangements have just been completed to establish at Chemnitz a training school for aeronauts and constructors of airships. A similar school has been in operation in Paris for a year past. The Chemnitz institution will be the second enterprise in this new pedagogical field. A one year's course is contemplated for the present, the school to be opened in May, 1907. This course, at the outset, is limited to the construction and use of balloons. It will be enlarged so as to include aeroplanes, as soon as practical working types have been developed.
The successive divisions of instruction during the year's course are as follows: Calculation of volume of balloons; methods of cutting the material; methods of rendering the material impermeable; construction of nets; gases used for inflation; the general theory of balloon construction and use; scientific instruments used in balloon ascensions; meteorological observations; ascents alone; ascents with passengers; special instruction for passengers; methods of landing, and the application of airships. The tuition for a year's course is 600 marks, or $\$ 143$.

The currcit supplement.

The current Supplement, No. 1625, opens with an article by Dr. Alfred Gradenwitz on the Southwestern African Railway, which is probably the longest road of its kind in the German colonies. Good pictures accompany his description. Mr. Walter J. May tells how unusual castings can be made. The mechanical design of ball bearings and roller bearings is ably discussed by W. S. Rogers. The first installment is given of a series of articles on plaster-of-Paris. Mr. W. E. Parsons contributes a well-considered forecast of our manufacturing industry. Mr. F. P. Fish's admirable elucidation of the ethics of trade secrets is concluded. The purchase by the British Admiralty of a gasoline, motor-driven torpedo boat is an official indorsement of a new type of fighting craft. For that reason the Supplement's illustrations of these new types, together with an article, will be of interest. The flights of Zeppelin's airship on October 9 and 10, 1906, are described in detail by Prof. Hergesell and Capt. von Kehler. Electric sleep or anesthesia is a subject of which we are bound to hear more in the future. Dr. G. H. Niewenglowski's brief review of his experiments and those of Prof. Leduc should, therefore, be read with interest. In an article entitled "Theory and Action of a 100 -Mile Wireless Telegraphic Set," A. Frederick Collins tells something of the theoretical action and the practical working of the instruments employed in the 100 -mile wireless telegraph equipment which is described in Supplement, No. 1605.

INFLUENCE OF THE AUTOMOBILE ON LAUNCH DEVELOPMENT.

Following closely on the Automobile Show comes the Motor Boat Show at Madison Square Garden, mark ing a new era in launch and gasoline-engine building. As the Automobile Show had its germ in the great bicycle shows of the late nineties, so the gasoline launch has served as an incidental attraction to the annual Sportsmen's Show until the present time, when it takes its place as one of the great yearly show at tractions of New. York.
Though antedating the automobile by nearly a dozen years, the marine gasoline engine was at the time of the first Automobile Show in 1900 but little advanced beyond its early primitive stage. Its manufacture was regularly established, it had found a limited market among yachtsmen and to a certain extent among fishermen and other workers, and, mechanically, it had reached a point where it was sufficiently reliable and economical in operation to justify its use in spite of many serious defects; but it was found in only one very heavy type, built almost entirely of cast iron, which made it bulky. Its design was such that it was limited practically to the low speed of about 300 revolutions per minute. Besides this it was weak in its respiratory organs (the primitive vaporizer or carbureter of the day), and was fitted with an ignition system of the make-and-break type that had hardly passed the experimental stage. Its possibilities being unknown to the yachting world, the only demand was for this ordinary heavy type of engine for cruising launches or working boats, and there was no inducement to the builder to invest large sums in the development of lighter and more efficient engines. Even the most progressive builders of the day aspired no higher than the improvement in detail of the heavy launch engine.
In England and France the development was even more backward, launches being few in number and mainly propelled by kerosene, in every way inferior to gasoline as a fuel. The awakening came, however, in the latter country, where in 1900 the new type of light, high-speed, automobile engine was first tried in a launch hull. The experiment was successful. New hulls of special design and construction were soon afloat, driven by the leading makes of automobile engines; the vocabulary was enriched by a brand-new term-"canot-automobile"-and the new sport of high speed motor-boat racing was fairly launched.
From the start the "auto-boat" or "canot-automobile" all but rivaled the motor car in popularity. Races were held for valuable prizes; the cleverest of naval architects were called on for designs of lighter and faster bulls, and all the resources of automobile engineering were called into play for the perfection of the new type of "auto-marine" gasoline engine. The fever was by no means confined to the Seine and the Mediterranean, but found its way across the Channel and even across the broad Atlantic, meeting a hearty welcome from American clubs and yachtsmen.
The high-speed auto-boat has proved to be little more than a costly and useless toy; the hull, designed solely for the highest possible speed, gives neither comfort nor accommodation, while the passenger, even in smooth water, is drenched with a cataract of spray hrown by the razor-like bows. The extremely light construction makes the boat useless except for racing; the light and delicate engines require the highest possible skill for their care and manipulation, and they are always liable to derangement and breakdowns. The first excitement over, the sport has proved far less fascinating than at first promised, owing to the great number of failures of entered boats to start, or, having started, to finish the course.
In spite of its own defects, however, the auto-boat has been a blessing to yachtsmen and to engine builders alike, in that it has forced in less than five years a development that, to all appearances, would in its natural course have taken twenty years. To put it briefly, where the average speed of the pleasure launch was well under ten miles per hour half a dozen years ago, the effort to attain a speed of thirty miles in the auto-boat has raised the average speed probably 50 per cent, while there are staunch, strong, and seaworthy launches that run regularly over twenty or twentytwo miles in the hour.
One of the most generally useful and popular of the many new types is that called "the ferry launch," of 50 to 80 feet length, fitted with at least a cabin for bad weather, if not with conveniences for a meal and a bed on occasion, with large comfortable cockpit, and having sufficient power to carry the owner and his family or friends from his home on the Sound or the Hudson to some New York pier at a regular speed of eighteen to twenty miles an hour or even higher.
The first step in this development has been through the engine. In France all the resources of the automobile builder-the highly-skilled engineer-designer, the chemist and metallurgist, the maker of fine steels and bronzes, the expert machinists, and fine machine and bronzes, the expert machinists, and
(Continued on page 170.)

The 50 H. P., Twin-Screw, 60-Foot Motor Yacht "Katrina II." Speed, 13 Miles an Hour.

A Typical Racing-Boat Stern.

A Typical Cruiser. The 25 H. P., 46-Foot " Hazel."

The 33112-Foot "Josephine." Her 36 H. P., Speedway Engine Has Driven Her at a Speed of 22.9 Miles per Hour.

The 263/4-Foot Cruiser " Buddie II." Photo copgrightit 1906 by Edwin Levick.

The 67-Foot, 50 H. P., Twin-Screw Coast Defense Inspection Motor Boat " Norka." Speed, 14 Miles per Hour.

The 36-Foot, 30 H. P. Cruisèr "Unome," Which Reached College Point First in the Race Last Year from Marblehead, Mass. Average Speed, 9.5 Miles per Hour.

The 90-Foot, Twin-Screw, Gasoline Motor Yacht ${ }^{66}$ Dodger ${ }^{9}$ Driven by Two 300 H. P. Standard Engines. This Boat is Said to Have Reached a Speed of 25 Miles per Hour.

The 60-Foot Racer "Standard," Fitted With a 300 H. P. Double-Acting Standard Gasoline Motor. Average Speed in Mile Trials, 29.89 Miles per Hour. VARIOUS TYPES OF MOTOR BOATS.

NEW TYPES OF GAS ENGINES FOR MARINE WORK.

 py commander a. b. willits, u. b. aThe four-cycle principle is the most perfect one in theory and practice. Here the explosion of a charge performs its expansion and works completely to the end of the first stroke. It is then exhausted and expelled by the return of the piston through the entire second stroke, while the third stroke draws in fresh mixture, which is compressed on the fourth stroke ready to be exploded at the beginning of the next. Here there is certainty of obtaining a full charge of the mixture in the proportions delivered through the carbureter, and both the increased reliability of action of this type and the decreased fuel consumption per horse-power are positive and marked. It is the type used in nearly all of the automobile engines built, and, in the marine-motor field, is the type along which high powers are being designed.

The Bureau of Steam Engineering has taken keen interest in the current advances in this class of motive machinery, and has had its representatives witness the tests of the latest types with a view to the opening for such installations in torpedo boats when the fuel question is less uncertain. Already there are fourteen gasoline and gas motors installed in naval small craft and eight others waiting completion of hulls. Besides these, motors for light-powered boats for torpedo craft have been designed and are being built under the Bureau's directions at the Norfolk yard. The question of replacing the machinery of some of the torpedo boats by explosive-mixture motors is still under advisement, and nothing is being lost through lack of keeping in touch with the latest developments. The naval installations thus far are as follows:

Those awaiting completion of hulls are:

It is seen by the above that 300 I.H.P. is the largest size motor thus far purchased by the government, and this installation in the 60 -foot launch built for service between Indian Head and Washington stood a most satisfactory trial and gave excellent performance. This is a single-acting, six-cylinder, "Standard" gasoline motor. It is of light construction, and its peculiarity is that it is started as well as reversed by means of compressed air and a single movement of a cam-shaft lever, exactly as if handling an ordinary reversing link motion. Compressed air to 250 pounds per square inch is primarily pumped up into two air tanks running along the side of the engine room, by means of a small auxiliary, 1 -horse-power gasoline engine driving an air pump for the purpose, this engine being also intended to drive a bilge pump and small dynamo for lighting and charging storage battery. Only the three after cylinders are connected to compressed air, and when
the reverse lever is thrown to the first notch away from center, either forward or back, the cam shaft is shifted along to such a position as will bring cams to operate the compressed-air valves on these three cylinders, and to lift the exhaust valves on same once every revolution, instead of every other revolution. The three forward cylinders operate always on gasoline, the cam shaft shifting governing the rotative direction of the engine only. The three after cylin-
ders are now operated by opening the compressed-air throttle valve, and the instant the engine starts and makes two or three revolutions, the lever is pushed on to the next notch, which cuts out the compressed-air valves, and adjusts the cams to trip the valves in a regular, four-cycle sequence. Practically, the handling of this motor is very simple, there never being a minute's hesitation in the action of the engine or the result on the boat, as the motor jumps to full speed

Fig. 1.- Vertical Cross-Section of Double-Acting Four-Cycle Gasoline Engine.
almost instantly. While running, an air pump or compressor, attached to the main-engine shaft, keeps the air supply up in the tank, but can be shut off at will. There is no difficulty in keeping up pressure for weeks at a time in the tank, and in reversing there is usually but a drop of about five pounds in the pressure.
There will be no future for the single-acting motor for large powers in marine work. The manifest advantages in the matter of weight and arrangement for variations in cruising powers, as well as in greater effectiveness in distribution in the double-acting type, will make it unguestionably the only one to be considered in the development of this class of machinery for sea-going craft. The difficulties at first experienced in arranging for the proper cooling of pistons and rods, and in devising efficient packing for the rod stuffing boxes, have been overcome, and, as before
motor for the Indian Head boat, except that a regular reversing controlling cylinder is used with compressed air instead of steam, bringing the reversing under perfect control. Means can also be provided by which, with one motion of a lever, all the lower exhaust valves can be lock opened and all the lower inlet valves can be lock closed instantly, thus changing the engine at once to a single-acting six-cylinder motor, or, in other words, cutting down to half power with one movement and without any substantial decrease in economy. Furthermore, the two units of three cylinders each can be unclutched so that the after three cylinders can be operated alpne single acting, which actually reduces the power to one quarter of the original. Taking these points into consideration, together with the fact of being able (with a liquid primary fuel) to get under way at a moment's notice under full power and maintain absolute regularity of speed as long as the fuel lasts, there seems to be little more to be desired toward securing an ideal marine motor, and, even should producer gas be used, the same control of the variations of the power is maintained, although the ability to instantly start from cold port conditions is not secured, there being, of course, some delay in getting the fire properly under way in the retort.

Many of the details of the construction of this 500-horse-power double-acting motor are shown in the photograph and are extremely interesting to the naval engineer. In Fig. 2 the inlet side is shown, the carbureter (overflow type) being in the middle and placed low down, and directly controlled by the throttle-valve lever at the reversing cylinder on the left. . The inlet valves for compressed air are on the back, and not shown, but are merely applied in this type to the lower ends of the three after cylinders, so that the three upper ends of these cylinders and the entire three forward cylinders are constantly "on" gasoline, either in the go-ahead or backing position of the cam shafts; and, as the sparking continues in all cylinders during the action of reversal, the very moment the compressed air starts the engine in reverse the other cylinders immediately talse up action with gasoline, and the engine is running on explosive fuel immediately, so that the action of the compressed air is not practically more than the shifting into reverse motion and starting the engine in the desired direction. The moment this results the reverse lever is shifted to the full-throw notch, which restores the lower ends of the after cylinders to gasoline. This reversal is practically instantaneous. All the cam shafts are positively driven by gearing from the main shaft, and, consequently, the adjustments of the cams are exact, and the tripping of the valves in this arrangement is accomplished almost noiselessly.

The lubrication of this motor is also a very interesting feature. Forced feed with sight-feed adjustment is accomplished, through plunger boxes shown on the after end of the motor, the upper box being for delivery to the center of each cylinder, and the lower box for delivery to the middle of the piston-rod stuffing boxes, the plunger pumps for each of the small pipes being worked by a lever with a small connecting rod to a pin on the end of the exhaust-cam shaft, which gives sufficient rotary motion for the desired lift, the lift being also further regulated by a slot in the plunger lever, to which the connecting rod is attached. The lubrication for the crossheads and crank pins is accomplished by a small plunger pump worked by a gear at the forward end of the exhaust-cam shaft, similar to the gasoline pump shown at the forward end of the inlet-valve cam shaft in the photograph, the oil being kept in a constant flow from the crank pit into which it falls, up through a strainer box between the two sets of three cylinders (and just seen in the photograph), back of the middle branching of the inlet pipe, and fed by gravity from this tank to the journals; a surplus of oil being constantly circulated by this method and kept

A NEW TYPE OF GAS ENGINE FOR MARINE WORK.
noted, examples of double-acting gasoline motors of 500 horse-power are already in satisfactory operation afloat.
It will be seen from Fig. 1 that the valves are positively operated, water-cooled, and balanced. The pistons are cooled by water circulating through the crosshead, up a tube in the piston rod, providing a return circuit around this tube. The reversing of the engine is similar to that described for the 300 -horse-power
constantly strained without waste. The journals are of ample dimensions and give no trouble whatever from heating with this system of lubrication.

Another important feature in this installation is that connected with the circulating water. As the boat is designed to run in salt water, there has been a connection made by an ordinary keel condenser between a small fresh-water tank inboard and the circulatingwater pump, this latter pump being a slow-moving one
of ample dimensions worked by direct gearing on the main shaft. It is found by this means that ample cooling water can be maintained from a very moderate original supply of fresh water, and the objectionable features of having salt-water circulation are entirely obviated. Unquestionably this will be an important factor in all salt-water installations of this kind, and will greatly add to the endurance and protection of the outfit. Where the circumstances make a keel condenser in any degree objectionable, a regular tube condenser (more properly a cooler) can be adopted with circulating pump for $i t$, and secure ample provision for the work.
In the boat inspected containing this motor, an independent installation of a small 4-horse-power "Standard" motor was made for the purpose of driving a dynamo for lighting the vessel and charging storage battery, a bilge pump for constant use, an air compressor for pumping up the compressed-air tanks whenever necessary, and a small magneto for sparking. This auxiliary is not necessary to use except when particularly desired, as, when the main engines are in operation, the air supply is kept up in the tanks by attached pumps, and it is easy, of course, to attach bilge pumps to the main shaft, so as to permit disuse of the auxiliary engine, except at night.-Journal of the American Society of Naval Engineers.

A HIGH-SPEED MOTOR BOAT THAT CAN BE BUILT AT HOME.

The illustrations shown herewith depict the Brooks Boat Company's "No. 13," as viewed from the front, rear, and side when traveling at hïgh speed through the water. When the fact is considered that this boat was claimed to be going 28 miles an hour when the photographs were taken, one can readily see that the model of hull used is a good one, and one that throws but little spray when compared, for instance, with the "Standard," shown at the bottom of page 168. Fitted with a 60-horse-power, six-cylinder Sterling engine, No. 13 ' is claimed to have made a measured mile in 2 minutes 8 seconds last summer, which would be at the rate of 28.12 miles an hour. As the photographs show, this boat looks every inch a racer, and appears from the shape of the hull to be capable of attaining the speed claimed. It is 39 fect 7 inches in length by 5 feet beam, with a depth of hull at the bow amidship, and at the stern of 31,29 and $191 / 2$ inches, respectively. The draft depends upon the size of propeller used, as the hull is made flat at the stern, so that it glides nearly on the surface of the water.
The builder of the .above-described speed boat is one of the oldest boat building concerns in this country. This company not only builds boats, but also makes a specialty of furnishing frames complete, with all the necessary material for putting them together and with patterns for cutting the planking. When supplied with all this material and instructions, which can be had at relatively small cost, the amateur can build himself a boat during leisure hours, knowing that when it is completed, his craft will not be an experiment either with regard to appearance or speed.
Besides the racer shown, the Brooks Company builds, or supplies frames for, several smaller speed craft, among which are a 30 -foot racing boat claimed to make $161 / 4$ miles an hour with an engine of 10 horse-power, and a 22 -foot speed launch, claiming also $81 / 2$ miles an hour with a 2 -horse-power motor, and which should therefore make as high as 12 miles an hour with 6 to horse-power. Still anothēr interesting model is a stern-paddlewheel boat, which can be built in varying sizes from 25 to 0 feet in length. This boat can be built as an open or closed launch or as a boat for freighting purposes on shallow lakes or. streams. Equipped with a 7 to 12 horse-power motor, it will attain a speed from 6 to 9 miles an hour.

Cupro-nickel, says the Brass World, is used for two purposes: In the manufacture of bullet jackets and in the produc tion of five-cent pieces.

The Brooks "No. 13 " Making 28 Miles an Hour. A RACING MOTOR BOAT FOR AMATEUR BUILDERS.

Bullet jackets consist of 80 per cent of copper and 20 per cent of nickel. The five-cent pieces made by the United States government are composed of 75 per cent of copper and 25 per cent of nickel.

INFLUENCE OF THE AUTOMOBILE ON LAUNCH DEVELOPMENT
 (Concluded from page 16\%.)

tools-have been utilized in the production of engines of phenomenal lightness, up to 300 horse-power or high- dation on a type is the rough-water cruiser, from 30 feet upward, including the 40 -footers that raced around Cape Cod in 1905 and 1906 and the 40 to 60 -footers that will race to Bermuda this year. While for this special work the old type of heavy engine still takes precedence of all others, the development of this most useful and interesting class may be traced back directly to the autoboat racing of two and three years ago-a reaction and a protest it is true, against the extreme racing type, but nevertheless owing its origin to it.

Cabin of the U. S. Coast Defense Inspection Boat "Norka, ${ }^{9}$ Which is Noteworthy for Its Roominess and Comfortableness.

CANOVETTI'S AIR-RESIST

ANCE EXPERIMENTS.

by the paris corregondent of the scientific american.
In view of the great activity which we find at present in the line of aeroplanes and airships of different forms, the study of the resistance which the air offers to moving bodies becomes one of considerable importance. This question is also of interest in the design of high-speed trains or automobiles and in another field, in the design of projectiles for artillery. Newton was the first who formulated a series of laws for air zesistance, supposing that it is produced directly by the inertia of the molecule of air as acted upon by the moving body. But this hypothesis is far from being in accord with witat hap pens in reality, and the laws which result from it
are only good within certain limits, and then approxi mately. Following him, Euler brought out another the ory which comes nearer the practical conditions but without corresponding with them completely. On account of its great elasticity, the air gives rise to phenomena which are not to be foreseen by theory. It acts differently according to the speed of the moving body. Up to a speed of 800 feet per second the velocity follows a certain law, and after that it departs considerably from this law. It is difficult to establish any sure data of this value of air resistance for various shapes of bodies, and in spite of the experiments which have been made hitherto in this direction, we may say that the question is far from being completely solved.
An important contribution to this subject is the re cent work of the eminent Italian engineer Canovetti The experimental work which Signor Canovetti has been carrying out of late concerning the question of air resistance to bodies moving at a high speed is of great interest. The first experiments which Canovetti under took were made at B'rescia in 1897 and from the com mencement they proved highly successful. To carry out the tests, he used a steel cable of small diameter which was stretched from the top of the Castle of Brescia, a structure of considerable height, some 260 feet, down to the ground at an easy slope of about ten degrees. The wire was tightly stretched so as to give a nearly straight path, and upon it was made to run a two-wheeled carriage, transporting the body upon which the experiments for air resistance were to be made. The bodies were hung below the carriage, and were variously shaped. For instance, one or two cir cular disks were formed of a metallic hoop with can vas stretched upon it. Where a pair of disks were used, these were placed one behind the other and at different distances. The researches were carried out with special reference to the forms of the bodies and the speeds which would have a direct application in aerial navigation, either for aeroplanes or elongated balloon bodies such as are used for airships.
Since the first experiments were made, Canovetti desired to carry on another series of researches, but on a larger scale. This he had an opportunity of doing, for the Como Brunate inclined plane, which runs up the mountain slope, was put out of working order by a

Spring Frame or Buffer for Stopping the Car at the End of Its Course.
Frame stretched with wire net and held by coiled spring.
series of repairs which had to be made, so that Canovetti found that he could make use of the inclined tracks for carrying out his new experiments, and thus means were at hand for making these tests upon a much larger scale both as to distance and size of the apparatus than before. In this work he received aid from the Accademia dei Lincei which enabled him to carry it out in a very thorough manner. To this end he had built a four-wheeled carriage frame of light and strong steel tubing, so as to run upon the rails of the track. Mounted at the front end of the carriage is a large square frame of bamboo upon which is stretched a cloth covering having a total surface of ten

Canovetti's Car on Track With Air-Resistance Frame Using Small Amount of Canvas.
square yards. In the center of the carriage are placed two ballast carriers in the shape of steel cylinders which can be loaded with small lead weights to the extent of forty pounds for each cylinder or a maximum of eighty pounds for the carriage. The total weight of the latter is about 160 pounds. The apparatus thus constructed is taken to the top of the incline and allowed to run down the slope by its own weight. At the bottom of its course the carriage is stopped by a metallic network which is stretched upon a properly designed frame and is rendered elastic by a system of springs and counterweights so that the carriage is

Car Running Backward.
anovetti's car using a conical air-resistance piece (canvas.covered bag coming to a stop on the spring mattress. Cone is small end foremost and bamboo frame toward rear
stopped without too much of a shock. Starting with the square frame a number of other frames having dif ferent forms are used, such as a fiat round disk, a conical form, and others. When using the square frame and varying its surface from ten to two square yards, and at the same time varying the weight on the carriage, the latter was found to take different and increasing velocities each time, and the speed of travel was measured and registered very accurately by meane of an electric device. A series of contacts are placed along the track, spaced about eighty feet apart, and the contacts are connected with the registering station at the foot of the slope. Here are placed a set of apparatus which have been specially designed for this pur pose and upon which is observed the exact course of the carriage at any given moment. The registering nstrument consists of a double Morse register, and the paper strip which is unrolled at a regular rate contains two sets of punctures. The first series of dots are made at regular intervals by means of a clock, while the second set lying alongside the former are formed by a needle-point on the armature of an electro-magnet through which current is sent from the contacts ly ing along the track, and when the car passes over a contact a dot is formed on the paper, thus giving an exact record of its passage, and the time can be measured by comparing with the set of chronometer dots. Upon the data which are thus obtained Sig. Canovetti makes the necessary calculations for finding the air resistance and the laws which govern the latter.
After the experiments were made with different forms of fiat planes, a new series of data were obtained by using a cone-shaped frame covered with canvas. First the cone was placed with the pointed end in front, and next the point was placed in the rear, in order to show the effect of the air resistance upon the body of an airship. These experiments have a close nalogy to the researches which are made upon various orms of hulls of vessels in a naval testing basin. Another series of tests which are likely to be of great value are those which Sig. Canovetti is carrying out with the frame disposed as we find it in an aeroplane, in a fiat or slightly inclined position, and this may throw some light upon the different conditions of balance and resistance which enter into this question.

Same But Running Forward
Car having same conical bsg now placed against the bamboo frame, with the large end foremost.

Canovetti's Car on Down Grade to Test the Air Resistance.

Canovetti's Experimental Car Used on Inclined Track, Running on Rails for Air-Resistance Tests.

SOME NEW AND USEFUL ELECTRIC HAND TOOLS.

 by a. frederick collins.It is generally acknowledged abroad, according to Consul J. I. Brittian, of Kehl, Germany, that the Americans excel their foreign competitors in the manufacture of machine tools, due chiefly to their thorough knowledge of the industry and their aptness in meeting every possible requirement.
The above statement is fittingly justified by a new branch of the business, namely, that of building portable hand tools driven by electricity. There are several companies in the United States that have given special atten tion to the manufacture of these devices, some of which are illustrated on this page.
One company's latest. development along this line includes an electrically driven bench drill suitable for small works, a portable elec tric breast drill and an electric buffing and grinding outfit for household use. The bench drill has been especially designed for the use of jewelers, chauffeurs, repair men, and manu facturers who have a large amount of drill ing on small work and in other places where the drilling service is not too heavy and severe.
Machine and general repair shop men, as well as manufacturers, are becoming better informed and more convinced of the advantages of the electric motor for driving their machinery, and realize that the saving of both time and money are possible in just those operations for which the electric bench drill is designed. The bench drill shown herewith is furnished with a vertical motor mounted
to No. 40. The bearings are provided with self-oiling cups which require attention only every three or four months. The outfit includes a chuck of standard design, ten feet of attaching cord and an Edison plug.

Electrical Tool-Post Grinder.

The Portable Breast Drill Motor.

The weight of the bench drill complete is about 40 pounds, enough to insure firmness and rigidity.
The new domestic grinding and buffing outfit illustrated has been put on the market especially for grinding knives, scissors, and other small edged tools, and for polishing silverware, jewelry, and other like articles. A grinding wheel of suitable character to insure a smooth cutting edge without the use of a sharpening tool is interchangeable with the buffing wheel. These outfits are adapted for the intermittent service required in the ordinary household but are not suitable for the heavier continuous work required by jewelers and dentists.
The household outfit consists of a motor with shaft extending two inches from the end of the bearing to the inside of the wheel, the necessary washers and nuts for holding the wheel in place, one rag wheel $31 / 2$ inches in diameter, one 3 -inch emery wheel $1 / 2$ inch thick, together with attaching plug and cord. These outfits are furnished for 110volt direct or alternating current and can be especially wound to 220 volts
The alternating-current motor weighs about 25 pounds, while the direct-current motor is much lighter, weighing but 15 pounds. Both motors are very simple, requiring no more attention than a fan motor. In connecting with a source of current supply the cord is attached to the binding post of the motor and the plug inserted in the nearest socket at which the proper current is available.
A Cincinnati company builds a number of port-
able electric hand-driven tools, including a number of grinding outfits for both external and internal work, radial and hand drills. The electrical tool-post grinder which we illustrate covers a wide range of work and is useful for grinding centers, cutters, reamers, dies, rolls, and the like, as well as for surface, parallel, and internal grinding jobs of all kinds.
The shank of the grinder is clamped in the tool-post of the lathe, the motor carrying on its shaft the emery wheel so that it may be set at any desired angle, in which case the wheel is moved across the face of the center to be ground by means of the handle, as the shank may be set in the tool-post of a planer, shaper, or milling machine, or it can be clamped in an ordinary bench vise. A flexible cord and attachment plug are connected and on securing the plug into any incandescent lamp socket it is ready for work.
These portable grinders are usually wound for 110 or 220 volts direct current, though in special cases they are wound for 50 to 250 volts and also for alternating current. All parts of the motor are inclosed, making it dust-proof; the spindle carries taper cone bearings and the wear may be taken up by means of a unit on the rear end of the spindle, these being also provided with dust-proof caps. A V slide having a 3 -inch travel by means of a worm through the handle A is fitted with a gib to take up the wear.
The shank B is of steel and is fitted to the hole in the V cap; it is held in position with a screw clamp so that different sized shanks can be used. The extension mandrel C is

Grinding and Bufting Motor in Use.
on top of a column sliding in a socke cast integrally with the base, in which it can be adjusted for various heights. The motor body or head is also adjusted radially for drilling positions.
The whole outfit rests on a broad base 6×10 inches which gives it the necessary stability. The minimum height is 16 inches when the motor arm is in the lowest position and the maximum height is 22 inches when the arm is fully raised, thus giving a range of 6 inches through which the motor body may be raised or lowered. The work is fed to the drill by raising the circular table, which is operated by a lever within a range of $11 / 4$ inches vertically. The motor is series wound and can be supplied with 115 or 230 volt winding, for use on direct-current circuit only A single gear reduction is provided between the armature shaft and drill spin dle. The hand wheel mounted on the armature shaft at the top is convenient for turning the spindle and adds a flywheel effect to the spindle as well, giving a smooth and steady rotation to the drill. The amount of power required for the operation of the drill naturally varies with the work performed, but in no case is it excessive. The largest drill the chuck will hold is $21 / 64$ inch in diameter and from this all. sizes down

Portable Electric Bench Drill in Use.

Method of Using Buffing and Grinding Motor.
used for internal grınding by removing the regular wheel and screwing the mandrel to the spindle. A tool-rest D is a valuable attachment, serving as an index for grinding cutters, reamers, etc.; this detachable tooth-rest insures that each tooth of the cutter will be ground correctly.

Where the grinder is set in a lathe for internal grinding the larger wheel is removed and the extension mandrel is screwed to the spindle in its place. The mandrel C will grind a hole from $3 / 3$ to $11 / 2$ inch in diameter. The grinder may be set in a milling machine and the cutter ground without removing it and the tooth-rest D may be used for indexing as previously indicated

Attached to the tool-post of a planer it is invaluable for grinding surfaces and for heavy parallel grinding, such as rolls, journals, bushings, and all kinds of hardened work. Heavier grimders operating on $1 / 4,1 / 2,1$, and 2 horsepower are also constructed. In these latter types the bases of the angle plates are bolted in the tool-post rest of the lathe and it has a vertical adjustment to bring it in line with tho centers.

A labor-saving hand and breast drill shown in one of the cuts is useful for drilling holes in wood or metal. It
is designed to be used wherever the old style hand drill can be used, and not only does it save the strength of the operator but it does the work many times more rapidly, for it is driven continuously and at a much higher speed. The motor is provided with a switch to start and stop it, so that it is absolutely under control at all times, and as the switch is located near the vertical handle it is within easy reach of the index finger. The chuck spindle is so arranged as to allow drilling on a line with the base of the motor and by this arrangement angle and corner drilling are possible.
The drill shown in the cut has two speeds operated by means of the lever on the front end of the motor and with this useful arrangement a slow speed for large drills may be used or a faster speed for smaller ones. These electrically driven tools are without doubt the most powerful and compact machine tools ever built and their extremely light weight makes them especially desirable for all classes of small work.

LEATHER GOODS MADE OF HUMAN SKIN.

It is a fact well known to a very few skilled workmen, and not known at all to the world at large, that human skin can be prepared, tanned, and made into durable articles quite as successfully as can the skin of our four-footed friends. You can say over and over again to yourself that there is really no reason why human skin should not be so utilized, and you can be told by the workmen who handle it that there is nothing gruesome in the work; you can reason and argue with yourself about the matter, and try to be "matter of-fact and sensible," and still there will be little shudders running through you and creeping up and down your spinal column at the thought of having the skin taken from a human body and made into some article of wearing apparel.
The only way to overcome this sensation, if you want to get over it, is to examine some of the articles made from the skin, and you will find that the leather is very much like dogskin or pigslzin.
Mr. William Hansell, of Philadelphia, has the largest article which has ever been known to be made from human skin. He was particularly fortunate in getting enough of one grain, and succeeded only after a long and systematic search. .The article is a beautiful pure white saddle, and any one examining it would be at a loss to tell the kind of skin from which it is made. W'hen you are told, you realize that the pores which show have a familiar look; but when you are given a bit of the skin, of which Mr. Hansell has retained a few samples, you are amazed at the thickness. Three layers of skin you know you have, but knowing how easily a needle prick will draw blood, you are astonished to find what a good thick covering these three thicknesses make. This saddle is made from the skin of one man. A woman's skin, generally speaking, would be too delicate.
Now, it is not to be supposed that there is a general trade in human leather. Hu man skin is an exceedingly rare article. Sometimes a physician will have a piece, made into a cover for an instrument case, and occasionally medical students get enough to be made into a purse or a pair of slippers. Patients sometimes have a belt or a book cover or some such article made from a limb which has been amputated. It seems a peculiar mind that would take pleasure in "souvenirs" of this order.
The wearing public are not alone in their aversion to the use of human skin for the purposes to which they unhesitatingly put the hides of animals. It is very hard to get workmen to handle the "leather." Mr. Hansell gave his piece of skin, after it had been tanned, to an old workman who had always made up all his leather goods, and told him to make it into a saddle.
Three weeks the workman kept the skin, and one day he brought the partly finished saddle to Mr. Hansell with some question about finishing. "By the way, Hansell," he remarked as he was leaving, "I wish you would tell me what this skin is. It is the most contrary stuff I ever worked with; it's worse than pig or goat skin."
Very injudiciously Mr. Hansell informed him that it was human leather. At that the workman dropped the half-finished saddle, and left without a word. He never returned, and nothing would induce him to finish his job. Mr. Hansell, after waiting three months, hoping he would change his mind, turned the unfinished saddle over to another workman, but he took good care not to tell him what kind of leather the "contrary stuff" was.
The work of tanning human sliin is pretty much the same as that of curing any other skin. Curiously enough, tattooing goes through the epidermis to the under skin, and not a little of the tanning of human slinin is done for the purpose of preserving the designs
tattooed upon it. Human skin may, however, be tanned with the hair on it, in which case the epidermis is not removed. Scalps so tanned are said to make the best wigs known, and because the tanning is done with alum instead of with oils, as is the case with furs and most of the hair-covered skins of commerce, the resulting leather is much more durable.

HUGE BOWLDERS RAISED BY BUCKET DREDGES.
The dredging operations which G. S. Mayes is carrying out for the Dominion government in Sand Point slip

a saddle of tanned human skin.

of the west side of St. John harbor are presenting difficulties which it is safe to-say were not altogether anticipated by the contractor when the work was started.

From a spot to the north of berth No. 2 an area 600 feet wide and extending northwest toward the junction between North Rodney Wharf and Union Street, has been found to consist of immense bowlders varying in weight from nearly 100 tons downward. Firmly imbedded in the mud, which in places covers them to a depth of 40 feet, the rocks have proved extremely difficult to handle, and the time spent in enabling the dipper of the dredge "Beaver" to obtain a correct balance beneath one of the giants frequently runs to hours.

The picture showing a bowlder being raised in the dredge's bucket gives a good idea of the work. The bowlder weighs about 30 tons, and when raised to the surface was found to be lodged endways in the bucket, and jammed so that it could not be removed without considerable delay and trouble. The bucket, it may be

this big bowlder, weighing 30 tons, was dredged from the HARDPAN IN 60 FEET OF WATER IN ST. JOHN HARBOR, NEW BRUNSWICK.
hardpan, which is next to impossible to dig. The worls has involved the destruction of ten large spuds or anchors, 80 feet long, 38 inches square, incased in heavy iron, as well as the breaking of three heavy steel dippers and three 16 -ton dipper handles. The main engines of the dredge are two 24×24 cylinders geared up to 1 to 14 , so that tremendous power is exerted to remove the bowlders, bedded as they are in such tough material. Another great difficulty is that the abnormal rise and fall of the tide, which frequently reaches 29 feet, makes it difficult to carry on the work at high and low water.

Effect of Duration of Stress on Strength and

 Stiffness of wood.It has been established that a wooden beam which for a short period will sustain safely a certain load, may break eventually if the load remains. For instance, wooden .beams have been known to break.after fifteen months under a constant load of but sixty per cent of that required to break them in an ordinary short test. There is but little definite and systematic knowledge of the influence of the time element on the behavior of wood under stress. This relation of the duration of the stress to the strength and stiffness of wood is now being studied by the Forest Service of the United States Department of Agriculture at its timber-testing stations at Yale and Purdue universi ties. The investigation should determine: The effect of a constant load on strength; the effect of impact load or sudden shock; the effect of different speeds of the testing machine used in the ordinary tests of timber. under gradually increasing load; and the effect of long-continued vibration.
To determine the effect of constant load on the strength of wood, a special apparatus has been devised by which tests on a series of five beams may be carried on simultaneously. These beams are 2 by 2 inches in section and 36 inches in length, each under different load. Their deflections and breaking points re automatically recorded upon a drum which re quires thirty days for one rotation. The results of these tests extending over long periods of time may be compared with those on ordinary testing machines, and in this way safe constants, or "dead" loads, for certain timbers may be determined as to breaking trength or limited deflections. The experiments of the Forest Service show that the effects of impact and radually applied loads are different, provided that the stress applied by either method is within the elastic limit of the piece under test. For example, a stick will bend twice as far without showing loss of elastic: ity under impact, or when the load is applied by a blow, as it will under the gradually increasing pressure ordinarily used in testing. The experiments are being extended to determine the relations between strength under impact and gradual loads. Bending and compression tests to determine the effect of the speed of application of load on the strength and stiffness of wood have already been made at the Yale laboratory. The bending tests were made at speeds of deflection varying from 2.3 inches per minute to 0.0045 , and required from twenty seconds to six hours for each test. The woods used were longleaf pine, red spruce, and chestnut, both soaked and kiln-dried. From the results are obtained comparable records for difference in speeds in application of load. A multiplication of the results of any test at any speed by the proper reduction factor, derived from these experiments, will give equivalent values at standard speed. The tests also show concretely the variation of strength due to variations of speed liable to occur during the test itself. The results plotted on cross-section paper give a remarkably even curve as an expression of the relation of strength to speed of application of load, and show much greater strength at the higher speeds.
It is common belief among polemen that the continual vibrations to which telephone poles are subjected, take the life out of the wood and render it brash and weak. Nothing is definitely known as to the truth or falsity of this idea. Tests will be undertaken to determine the effect of constant vibration on the strength of wood.

During 1905 the oilfields of the United
mentioned, is 6 feet 2 inches in diameter and is 9 feet 2 inches at its deepest part.
But this bowlder was greatly exceeded by one measuring $121 / 2$ by 12 by $71 / 2$ feet and weighing about 92 tons, which was raised by the same means. It was dug at a depth of 60 feet below high-water mark. The dredge was then moved, with the stone in the bucket, about 150 feet, when the stone was deposited.

In the prosecution of the work the greatest difficulty has been found in digging out or unearthing of these bowlders, as the material they are found in is marl or

States produced $134,717,580$ barrels of petroleum, as against $117,080,960$ barrels in 1904. The production was greater by $17,000,000$ than that of any previous year. It is significant, however, that the value of the 1905 products was $\$ 17,000,000$ less than that of 1904 . The largest quantity of oil produced by any State in the Union is to the credit of California, which produced $33,427,473$ barrels of oil in 1905 , or 24.81 per cent of the total output. Next comes Texas, with $28,136,189$ barrels or 20.89 per cent of the total, and third Ohio, with $16,346,660$ barrels, or 12.13 per cent of the whole.

RECENTLY PATENTED INVENTIONS.

Electrical Devices.
PRINTING-TELEGRAPH.-J. D. White, 50 Clanricarde Gardens, London, England. The object of this invention is to provide a "com-
pound selective relay" for use in connection with an apparatus like that described in the specitication of Mr. White in his former United States patent, so that the various local circuits which control the mechanism may be operated by a main circuit in such a way that messages transmitted along that circuit from
an ordinary Morse or similar transmitter may an ordinary Morse or similar transmitter may be printed automatically in

Of Interest to Farmers.

 GROOVING AND DITCHING PLOW. W. M. Benson, Newport, Pa. The purpose ofthe inventor is to provide a tandem gang groov the inventor is to provide a tandem gang groov ing-plow, particularly adapted for use in semi-
arid land, and to so construct the implement that the plows are set tandem or one directly behind the other, each consecutive plow-point being set deeper in the furrow than the pre ceding one for the purpose of producing a deep groove at one operation, and wherein also
the plow-points are of graduated width, the lowest one being narrowest, the uppermost the
FENCE-POST.-M. C. Wix, Milburn, Ky Detinitely stated, the invention has to do with the strand or fence wire fastening means, the object being to provide means of the char-
acter stated which shall not only facilitate acter stated which shall not only facilitate provide inexpensive and ready means for effect ing the securing of the strand-wires to th

PLOW or CULTIVATOR.-W. T. George, Fayetteville, Tenn. The object of the improve ment is to enable the distance between the shovels of the plow to be adjusted in a trans verse direction with respect to the dince to pro vide an arrangement which will enable the degree of advance of certain shovels with re spect to the others to be adjusted.
weeding and cultivating device -T. J. King, New York, N. Y. In this case
the invention pertains to improvements in the invention pertains to improvements in
devices for extracting weeds, plants, and the like from the ground, the object being to prowhich a deeds or the like may be readily drawn
whater means or from the ground with but little manual labor FERTILIZER-DISTRIBUTER. - H. T. Young, Florence, S. C. The center of revolu
tion of the wheels being eccentric to that of tion of the wheels being eccentric to that of
he sleeves, the knives are projected upon one side of the cylinder and retracted upon the opposite. By adjusting the collars circumferentially of the shaft the commencement of point of projection of knives may be varied.
Edges of the knives in passage beneath the Edges of the knives in passage beneath the
hopper follow the outline of the bottom thereof and remove a thin layer of fertilizer, and on the ground. After dropping it the knives on the ground. After dropping it the knives
begin to retract into the cylinder thus cleaning begin to retract into the cylinder thus cleaning
themselves from the fertilizer. A continuous layer is spread, of a width equal to the cylin der's width.

Of General Interest.

SHIP FOR CARRYING LIQUID CAR.GOES IN BULK.-C. E. EURNEY, Newport News, Va. carrying petroleum or other liquid cargoes in bulk. It is steady in a seaway, operating on the same principle technically known as "winging the weights," which consists in removing weights on board of a ship from the
center line out to the sides, causing her to be center line out to the sides, ca
steadier and roll more easily.
COMPOUND CONDIMENT-HOLDER.-L. B. Parker, Sulphur, Ind. Ter. The inventor has
for objects the production of a device in which for objects the production of a device in which
the caps of the shakers or distributers adapted to contain salt and pepper and other condiments can be readily removed and replaced and the perforations therein remain in a free
and open state by the action of means carried by a closure-lid operable to close that shaker APPARATUS FOR SMOKING MEAT.-C Schmitт, New York, N. Y. One purpose of
the invention is to provide for a perfect comthe invention is to provide for a perfect com-
bustion of the gas, and, further, means for heating and for producing smoke entirely in dependent of the chamber in which the arti preventing them from absorbing the thu peculiar to gas when burning, and also pre venting the deposit of carbon on the products which occurs at times under ordinary conditions.
SPEED-INDICATOR.-W. C. Plank, Las
Flores, Mexico. The object of this invention is to overcome the difficulty of taking the speed of shafts by producing an indicator in which there will be no danger of the spindle com-
municating its movement to the indicator-dial until such time as desired by the user. This is done by making the spindle in two sections, which are adapted to be automatically con nected by pressing the indicator forward. ATTACHMENT FOR MOUTHPIECES OF
TELEPHONE-TRANSMITTERS.-W. C. PLANK TELEPHONE-TRANSMITTERS--W. C. Plank,
Las Flores, Mexico. The mouthpiece of a trans Las Flores, Mexico. The mouthpiece of a trans-
mitter through constant use becomes foul and
paper concentric removable linings of antiseptic piece and fastened therein and which is adapted inner sheet becomes soiled or unsanitary.

Hardware.

NUT-LOCK.-W. S. Mason, La Salle, Ill. The device may be employed with nuts of quare, hexagonal, or other shape. An object will securely hold the nut upon the bolt against accidental displacement or loss, and which may easily and quickly be placed in position or re-
moved.
ECCENTRICAL CUTTING-bit.-J. H. TomBRAGEL and J. F. SCHUNDER, Covington, Ky.
The invention relates to bits used in boring oles in wood or metal; and one object of the truction for a bit of the character indicated which is easily adjusted, enabling the lateral adjustment of the bit to the axis of its shank, whereby the bit will bore a hole of any de-
sired diameter and depth within its capacity.

Household Utilities.

ironing-board. - L. C. Krans, East Greenwich, R. 1. In the present patent the ased in laundries for ironing chothes; and the ironing-board which can be quickly set up in ostion when erected, and which will normally be folded into small space when not in use.

Heating and Lighting.

Water-heater.-J. a. Frey, Washington, D. C. This portable heater is adapted to be
connected with a source of water-supply and is provided with an eduction-pipe by which water which has circulated through the appa-
ratus and become heated may be drawn off. ratus and become heated may be drawn off.
The heating is effected very rapidly and economically by a kerosene or other burner. There are improvements in the heater proper
or interior part through which the water ctrculates, and in connecting parts, comprising the cas.

Machines and Mechanical Devices.
CRYPTOGRAPHIC MACHINE.-H. BURG, Mollkirch, near Rosheim, Germany. The inchines in which the type are carried by a cir: e, even when they are mounted on type-bar e done is to render movable the type-carryin circle and to connect the same with a mechansm of a kind to produce a predetermined serie of various motions of said circle or a cylinder
in order to obtain the discrepancy between the ypes marked on the keys struck and the types inted.
Filter fer defechtion.-R. M. Villa for containing molasses A tank is employed for containing molasses or other syrup to be
defecated and within which are disposed stirrers for the molasses in connection with shafts, reans being employed for revolving the same seed of each of the shafts, and further means clean the structure, and still further means verflow and with the tank for to return the tank at will, said named means embodyong a valve-controlled discharge-pipe for lees
or sediment collecting therein.

Prime Movers and Their Accessories

MUFFLER AND WHISTLE DEvicle-M. zwickl, New Durham, N. J. This device is

 2wickl, New Durham, N. J. This device is pelled by explosion-engines. Such water-cral must use a whistle for signaling purposes, andhese are commonly blown by compressed air. The use of this air has a serious disadvantage, in that there is no visible signal when the raft have difficulty in locating the signal. The object is to produce a device adapted to ba used in connection with an explosion-engine which will enable
STOP MECHANISM FOR STEAM-ENGINES -A. A. Fuller and D. K. Cartter, faspei. la. The invention is in the nature of a stop device for at will throwing a Corliss steam-
engine or other engine out of gear from any part of a plant or by the automatic action of its governor when racing or running wild It consists of the novel construction and ar rangement of electromagnetic tripping devi and their connection with the valve-gear.

Railways and Their Accessories

MINE-CAR.--C. A. Keller, Rosedale, Ind ar object in this improvement is to produce terial mined and constructed so as to facilitate automatic dumping of the material carried; at the same time the car is made so as to enable dirt or similar material adich is to carrying eled from the car.
CAR-STAKE.-R. L. Edwards, Perry, Okla-
such as used at the sides of freight-cars em
ployed for carrying lumber or logs. The ob ployed for carrying lumber or logs. The ob-
ject is to produce a stake having a mounting which will permit it to be readily adjusted into an erect position, but which will enable
tion.
air-brake system.-W. H. EichelbergRoyalton, Pa. The improvement provide point of an air-braking system-that is, the coupling between the sections-and that the attachment is operative under any abnorma condition which may be present. To prevent dragging of chains when the cars are un coupled, they may be attached by any sui
able means to the free end of the hose.

Designs.

DESIGN FOR A COVER-DISH.-R. L. John son, Stoke-upon-Trent, Staffordshire, England In this ornamental design the cover-dish is of oval form. From the cover handle down to the edge of the cover the slope is gradual,
varied, and pleasing. There is a gracefully scrolled and pleasing. There is a gracefully scroll. The body lines show a beautiful curve from the top to the base.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please state the name of the patentee,
the invention. and date of thls paper.

Notes Jumen and Queries.

HINTS T• CORRESPONDENTS.

(10383) B. W. N. asks for information concerning transfer ornamenting. A. Ther
are many different ways of putting on the are many diferent ways of putting on the different method, according to circumstances give the most simple and successful method known. First, let it be understood that all only suitable for white or very light colored brown; those that are covered with a white
grounding, gold, metal, or silver leaf, can be used on any color, light or dark. After geting the work ready for ornamenting, give the ing copal varnish, thinned with turpentine (other preparations are used of which we will speak hereafter), being careful not to go beyond the outline of the design. Allow it to dry un-
til it has a good tack, and put it on the work in its proper place. Roll it smooth with an India-rubber roller, or smooth it with a paper
folder, until every part adheres well. (For very large pieces, it is well to lay them, after of damp blotting paper. It will stretch the paper and make a smooth transfer.) Now wet the paper, smoothing it down at the same time
until it has absorbed all the water possible leave it about a minute, and pull off the
paper carefully. Should any parts 'of the de sign still adhere to the paper, press it down again, wet-rub it until it separates easily.
After having removed the paper, press the After having removed the paper, press th
design on well and wash and dry it off. Should any blisters appear, prick them with a pin and be varnished, which will increase the brilliancy of the colors. An improved method has been introduced which saves time and work
with more certainty. The design is coated with a transfer cement of his own manufac ture, without regard to outline, transferred as
usual, and the traces of the cement around usual, and the traces of the cement around
the design washed off, with the detergent (also his own invention), which will remove every particle of cement without injuring the color sponge or chamois skin are sufficient. For fine ornaments, having many fine lines and touches, it is necessary to use these preparations to
make a neat job.
(10384) G. E. D. asks how to wind small 75 -watt dynamo to run same as a motor
on a 110 -volt direct current. How to reduce a voltage of 110 direct current to one of 20 plest manner in order to run a motor wound for only 20 volts in circuit with a 110°-volt
current. A. Seventy-five watts are a tenth current. A. Seventy-five watts are a tenth
of a horse-power. We do not know where the winding for so small a dynamo can be found The nearest we can come is a machine with a
sixth horse-power. This is in Poole's "De-
signs of Small Dynamos,", price \$2. We canot give you directions for redueing a 110 -volt current to 20 volts, without knowing the liting as well as we. Divide can do the calcuthe voltage by the number 30 , the rest of隹 voltage, by the number of amperes. The a small iron wire will be a proper one for the
(10385) G. G. asks: 1. Is there a paper on the market which, when damaged, will be
discolored by the passage through it of a mild ectric current, such, for instance, as would be generated by five dry cells? A. Perhaps a can be purchased.. If not, it may be made as follows: Dissolve one part of phenolphthalein in ten parts of alcohol, and add 100 parts of distilled water. Soak blotting paper in this and dry it. Then soak again in a 20 nd dry again. To use this moisten a piece of the paper in water and apply the wires to it. Wright red. 2. Is the negative pole turns a reparation which would cause paper dampened in it to take a dark color by the passage in it to take a dark color by the passage
through it of such a current? A. Dissolve me potassium iodide in water, add starch hile damp apply the wires as before. A dark color is formed around the positive wire. By moistening the paper of No. 1 with the INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
February 12, 1907,

31 Years of Success The Prudential

Foremost in Public Usefulness, Security and Public Confidence

Thirty=first Annual Statement, January 1, 1907, shows:
ASSETS, over - - \quad - $\quad-\quad-\quad-\quad-\quad-\quad-\quad 127$ Million Dollars

LIABILITIES (including Reserve over $\$ 103,000,000$) nearly \quad - $\quad 107$ Million Dollars
CAPITAL STOCK, - \quad - \quad - \quad - \quad Million Dollars

SURPLUS (largely for ultimate payment of dividends to Policyholders), over INCREASE IN ASSETS, nearly

18 Million Dollars
20 Million Dollars
PAID POLICYHOLDERS DURING 1906 over - - - -
INCREASE IN AMOUNT PAID POLICYHOLDERS 1906 over 1905, over
16 Million Dollars
2 Million Dollars
123 Million Dollars TOTAL PAYMENTS TO POLICYHOLDERS to Dec. 31, 1906, over CASH DIVIDENDS AND OTHER CONCESSIONS Not Stipulated in

Original Contracts and Voluntarily Given to Holders of Old Policies

LOANS TO POLICYHOLDERS ON SECURITY OF THEIR POLICIES,
73/2 Million Dollars

```
nearly
``` NUMBER OF POLICIES IN FORCE, nearly - - - -

5 Million Dollars
7 Million
NET INCREASE IN INSURANCE IN FORCE, over - - - 82 Million Dollars

\section*{Bringing Total Amount of Insurance in Force to over}

One Billion, Two Hundred and Fifty Million Dollars.

The Year's Record Shows:
Efficient, Economical Administration. Increased Payments to Policy Holder for Death Claims and Dividends.
Large Saving in Expenses.
Lower Expense Rate than Ever Before.
Reduction of Expense Rate in Industrial Department nearly \(31 / \% \%\) of Premium Income.
Favorable Mortality Experience.
The business operations of The Prudential are confined to the United States and strictly limited to selected lives.
```

DIVIDENDS TO POLICYHOLDERS DURING 1906 OVER = = = \$ \$1,250,000
DIVIDENDS PAYABLE TO POLICYHOLDERS DURING 1907 NEARLY $\$ 1,700,000$

```

Many letters from Policyholders receiving Dividends demonstrates that the results more than meet the expectations of the Insured.

Engine and Foot Lathes

 Foot and Powe and Turret hathe. riand

WORK SHOPS

 MACHINERY

\section*{年} THE B. F. BARNES
TH-INCM DRIL is adapted for work from \(1-16\) inch to \(1 / 2\)
inch. A strong, substantial. well turit
drill plain lion
 B. F. BARNES COMPANY, Rockford, III.

 ELECTRONS AND THE ELECTRONIC

JAGER Marine
4-CYCle Engines

 CHAS. J. SAGER CO.
\(\mathbf{2 8 1}\) Franklin, cor. Batterymarch St.

The Eureka Clip

PIPE CUTTING
THREADING MACHIN

catalogue - price
This tre
Tre
on application.

\section*{To Book Buyers}

We have just issued a new 112-page catalogue of re cently published Scientific and Mechanical Books, which we will mail free to any address on application.
MUNN \& COMPANY Publishers of Scientific America 361 Broadway, New York
\[
5
\]

\section*{HAyneS}

\section*{WHY THE HAYNES IS FIRST}

Shaft Driven car built. The exclusive
Sprocket and Roiler Pinion Drive \(\begin{gathered}\text { Haynes Standard } 50 \text { H. P. Touring Car for 1907, Model "T," the } \\ \text { highest powered shaft driven car built. Price, } \$ 3,500.00 \text {, }\end{gathered}\)
HAYNES AUTOMOBILE CO., \(\quad-\quad-\quad\) KOKOMO, IND
Oldest Automobile Manufacturers in A
Members A. L. A. M.
MICHIGAN AVENUE.

\section*{Wouldn't You Like to Own This 16 Shot Repeating} Rifle? s. 7.75

Hopkins \& Allen . 22 Caliber Repeater
The squirrels and rabbits can't get away from you when
in you have 15
It makes a ramble in the forest a pleasure-productive of full game
bags-and all the excitement of quick successful shots.
 short or 22 long rife cartridges - 16 shots for shorts and 12 for long or long rifle-and the eiector works like lightning.
You can deliver 12 or 16 shots (depending on the cartridge used) almost as quick as you can pull the trigger. THE
 SIMPLE TOUCH OF THE LEVER PREVENTS ACCIDENTAL DISCHARGE. HAS THE ONLY EJECTING
 beautifully polished walnut stock, military butt plate. every part drop forged-lock work made of spring steel. AN
EXELLENT RIFLE FOR FIELD. FOREST OR GALLERY PRACTICE-SURE TO GIVE SURPRISIN
PLEASURETO ITS POSSESSOR.
PRICE-Safe delivery guaranteed- \(\$ 7.25\)-IF YOUR OWN DEALER CANNOT SUPPLY YOU

\begin{tabular}{|c|c|}
\hline Do Eou & Own An Automobile? \\
\hline & \begin{tabular}{l}
If you desire to keep in touch with motor topics, and gain many practical hints of value in everyday automobile operation, you should subscribe to THE MOTUR CAR. It is published monthly exclusively in the interests of people who ride for pleasure, and every number is worth the yearly subscription price to any motor enthusiast. \\
Subscription price \(\$ 1.00\) per year. Single copies 10c. THE MOTOR CAR may be ordered through any news dealer. \\
SPECIAL OFFER.-Send us One Dollar now for a year's subscription and we will send you, free of charge, a gasoline tester in a neat pocket case. Will tell you every time whether or not you are geting the right kind of fuel. \\
Send us your subscription now-and subscribe for your friends at the same time. \\
W. G. PIERSON PUBLISHING CO. \\
108 Fulton Street \\
New York
\end{tabular} \\
\hline
\end{tabular}

The Perfection Power Block Machine
Makes Hollow Concrete Building Blocks. Perfect form, uniform size and quality. Concrete accurately meas-
ured, mixed by power under pressure over 100 tons. Fhull Details, List of Machines in Operation,

THE PERFECTION BLOCK MACHINE \(\mathbf{C O}\). DYNAMO AND MOTOR COMBINED.-

 End cell, Awitchs, automatic, j. Bijur.....
Engine, c. H. Moore
 Engine starting mechanism, explosive,
W. Kane
 Eraser, cleaning apparatus, blackboard,
 Eyeglass connection, s. N. S.....
Faucet, wares Holman
Faucet, J. C. Wrigt

\section*{Saving Energy \\ means much in these strenuous days. That is why \\ Telephone \\ Service \\ is so helpful in both home and office. \\ NEW YORK TELEPHONE \(C O\).}

\section*{New Portable Gasoline}

Submerged suct

The ustheat Most Practical, Most Powerful. EASIEST APPLIED.

Attached and Detached to Any Boat in a Moment. Can be raised and lowered to run in shallow water. PERFECTLY SAFE. Entire Outfit is Outside of Boat. INEXPENSIVE. roductory price to May 1.
\(\$ 7500\). SUBMERGED ELECTRIC MOTOR CO. Menomonie, Wis.

ELECTRICAL APPARATUS REPREsented by Conventional Diagrams in Drawings.-Fifty
diagrams showing the usual method of illustraing ele.
tical trical apparatus in drawings. A Aabor saving paper.
Coutainea in SUPDEMENT 1106 Price 10 cents.
For sale by Munn \& Com and all newsdealers.

\section*{}

F you know the many good points of
last year's model, you'll be all the last year's model, you'll be all the
more interested in this handsome more interested in this handsome
car. It has greater simplicity, more power, better material, and a finer ap-
pearance. Wider wheel base, longer tread, one hand lever only, single nickel chain, standard tires and the JEWEL 2-cycle, single- cylinder engine, giving full 8 H. P., with two speeds forward and reverse-4
high gear.
Do you know all about the JEWEL motor? It's the greatest talking point
any car ever possessed. For simplicity economy and thorough reliability it has no equal to-day.
Write at once for full information.
THE FOREST CITY HOTOR CAR CO
202 Walnut St., Massillon, 0.

DURYEA AUTOS

HaveOne Hand Con-
trol. The only trol. The only autos
simple enough to be handled by a single
hand. This proves their great simplicit
Get our leaflet.
duryea power co.. Aeyrud Street, Reading, Pa.
CRANK SHAFIS
LaRGEST MANUFACTURERS for prices, also on al
DROP FORGINGS
Detroit Forging Co., DETROIT, HICH., U S.A How to Construct An Independent Interrupter

Mr. Colling' article should be rede in connection with
 Each Supplement costs 10 eents; 20 cents for the
two. Order from your newsdealer or from MUNN \& CO., 361 Broadway, New York

Eruit patitime deviee dried,
 Furniture fastening device, i.. w. Tower..
Furniture leg fastening device, N . Anderse
Fuse Fuse housing, K. Wieser
Fune, non-arcing mumed,

Garment hanger and
Garter, G. H. Phelps
Garter, J. F. © Brien

Gas
Gas

Gas produc

\({ }^{G}\)
Gate ock, crossing, W. C. Sile
Gate mechanism, A. E. Miller
Gear,
fear, friction, W. J. Seitz
 Gearing, elastic, L. F. Bieter...............
Glass grinding, smoothing, and polishing
apparatus, plate, E. Bagnall, reisue.
Glass plates, corner clamp for, L. Bartel-
 Glass with or without an embedded strensth-
ening structure, aparatus for making
sheet
 Gernor,
Gorvernor, Hill \& Purceil
Grader
Grader. L. W. Brophy
Grain binder,
Gre.....
Grain bscreen, Trace Pheips
Grapple, E. Y. Meore Fiflid

Grease cup, c. C. Martens \(\ldots\).......
Grinding machine, J. T. Wheatman
Grinding machine, E. A. Petersean

 Halter, compound twitch, C. .
Ham for market, peparins, L. Bu
Handle attachment, Lar Wojidk
 Harrow with tengue truck, disk, W
Harvester guard, J. W. Pridmore
Harvester,
stripper, J. J. Charle

Ha

㩆

tineau...................................\(~\)

Heating and annealing furnace, G. Beds-
worth
 Hee sweep brace, J. H. ingram.

\section*{}

Horse shoe calk, R. N. Noodwin.
Horseshes,
means for
frien

Ice crusher, Q. T. Larkin,
Imitation tree, E. A. Stra
Indexes
Indexes or the like, box for
Inowony
Induction coll, c. L. Bopp
Induction motor, E. J. Wiliis

Lace with meta, coant \& J. A. A. Baly.......
Ladder and scartold combined, M. Bauer.
tamp, C. B. Broushton

\section*{It will out-last your engine Apple \(\underset{\substack{\text { Ignition } \\ \text { Dynamos }}}{\text { Ap }}\)}
in use to-day have given A 1 service for the last ten years.
This 1907 model is better than ever.
It retains many of the features of previous models which have proven so successful and it also possesses many new and remarkable improvements.

A 200 R. P. M. reduction in running speed is alone evidence of surprising advancement

The Apple Ignition Dynamo can be used on any automobile, boat or stationary gas engine as a storage battery charger to complete the "Floating the battery on the line" system, or as an automatic sparker for starting and running engines without batteries.

It will pay you to investigate an ignition system that will do its work unfailingly as long as you run your engine.
Send for this bulletin today.
Every automobile, boat and stationary, gas engine manufacturer, jobber, dealer and user ought to have it. Free on request.
The Dayton Electrical Mfg. Company 98 St. Clair Street, Dayton, Ohio.

We extibita at the New Yorik and Chicago Motor Boat Shows.

HOW TO MAKE AN ELECTRIGAL
ELECTRO MOTOR. SIMPLE, HOW TO make.-BF G.M. Hopkins. Description of a small elec-

210.219 Cunal

Classified Advertisements
Advertising th this column is 50 cents a line. No less
than four nor more than ten lines aceepted. Count
seeve words to the line. All orders mutbe accom-
panied by a remittance. Farther information sent on request. SALE AND EXCHANGE.

\section*{BUSINESS OPPORTUNITIES.}

18ELLPATRNTS. To oua or having one toesel, writ

TYPEWRITERS.
WELLINGTON Typewriter: Durable, strong, speedy.

 261 Broadway. New York.

 privilege of examination. Write for complete catululed

\section*{PATENTS FOR SALE}

 dena, Bottineaut C., N. D.
LATELY PATENTED everlasting combination do
 FOR SALE.--A patent-Simple device for converting
any coftee pot or vessel into an ideal Irench contee
pot. For particulars adress R. L. Grifiss, Mills Build-
ing, Now York City. fors
HOR S ALE.-U. S. patert. on something new in pulley
blocks. Noiseless.

STAMPS AND COINS.

EYE-GLASS SPECIALTIES.

\section*{
}

FACTORY AND MILL SUPPLIES.

WANTES-MISCELLANEOUS.

GAS-LIGHTING APPLIANCES.

\section*{MACHINERY FOR SALE.
}

BOOKS AND MAGAZINES.
 THE POCKET LA WYER.-A handy. practical re.

\section*{SOUVENIR POST CARDS}
 1,000 POST CARDS \(86: 500-\) wit ; made to orderf romany
Photo or print with your iryprist on each as publisher.
Workm

\section*{PHOTOGRAPHY.}

\section*{AUTOS.
UNDEERSTAND XOUR AUTOMOBILE! The Motor
Car Model tells all about aUStruction, mechanism and
location of every part. Strongly bound in Cardboard,
 \\ ASTRONOMY.}

STARS AND PLANETS-learn to know them at a
llance! Astronomy in simplest and most fascmating

SCHOOLS AND COLLEGES.
GEO. H. WILSON, the World's Champion. has written
anooklet, Waudeville. Stage Dancrng and Entertain-
ing. ing." It it absolutely free and very interesting. Just
address Wilson Vaudevile School. 263 W. 42 d St., N. \(\mathbf{Y}\).
P
 Law, Dept. A, 1853 Mintwood Place, Washington, \& C.

ALCOHOL MANUFACTURING.

COINS, MEDALS, CURIOSITIES

nat

\section*{}

Mechanical movement,
Mechanical mover

\section*{Is THIS the letter of YOUR line? \\ \\ \begin{tabular}{|lr|}
\hline Accountants & PAGI \\
Adrertisement Writers & \(\mathbf{8}\) \\
Architects & \(\mathbf{1 5}\) \\
Artists & \(\mathbf{4}\) \\
All Pencil Users & \(\mathbf{1 - 3 2}\) \\
\hline
\end{tabular}}

No matter what you do, there's ight Lead Pencit for your work. Dixon's Pencil Gnide describes it by name and number so you can get it indexed bypocations. Find your page and your pencil is before you. The book is free.
If your dealer doesn'tkeep Dixon's Pencils, send.
Dcpr. W Joseph Dxxon Cruciale Co.. Jerser Citr, M. J.

\section*{eidichers}

MARINE MOTORS
lit. P. \(\$ 3 j^{2+2}=2\) \(2=2=\)

\$40 MOTORCYCLE

AUTOMOBILES
BOUGHT, SOLD AND EXCHANGED The largest dealers and brokers in New and
Seconduhand Automobiles in the world. Send frimes SOUARE AUTOMOBILE CO.

\section*{SORE THROAT Hydrozone}

ERRO

\section*{Auto-Marine Engine} The one marine gasoline engine cf perfect
reliability. Made from blue print to finished engine by.the most skilled organization in the
 to 25-H.P. The imme-
diately get-at-able, easily
understood, easily managed \(₹\) understood, easily managed, Every wearing part adjust-
able. Cylinders taken off ithout disturbing pipes, bearings, crank shaft, or base. No visible
water pipes, no grease water pipes, no grease
cups, no leaky bearings. A strong, de ings. A strong, deevery detail. Equipped for salt water.
Send 10 cents for our complete Treatise on Marine Gasoline Engine or write for free catalog, which fully and plainly describes the construction of the perfect en gine. Send to-day.
The FERRA Machine \& Foundry Co 75 Wade Building, Cleveland, Ohio

Our patterns or materials coat y you only halt,
the price asked by others, BUILD YOUR OWN BOAT We are the largest ualluers of pipesure boats in the worlid. We
ssell you full size working panterns, knock-down frames and materials, from bone-dry stock, at half the price asked by
others. We use these patterns and stockevery day in build ing

Packard Enameled Ignition Cable

your innith systemate thet tantalizing uncertainty o your ignition system by using a tested and \&uaranteed
article that has so gloriously stood the test of time? The Packard electric co., Warren, Ohio
A Home= Tade 100=Mile Wireless Telegraph Set

\section*{s. \\ }

\section*{She
She}

Sew
Sha
Sh
Shat
Sne
She
Sbe
Sbe
She
She
She
Sh
Sh
Shi
Shi
She
She

am dayw Li Gate

Steel manufacturing, B. E. Eidred.
Stering mechanism, F. Baker
Stenciling

Telephone lines, harmonic signalin
station, \(W\) W. Dean....
Telephene receiver; H. W. Haff

Thill coupling, antirattle
Tie plate, E.
Tire, H . L . Fliagn
Tobace
Tobacce leaf sizing machine, H. Schumacher
Tobacce packing and shipping can, A. H.
Gregg

Trap. See Steam trap.
Trian, serving, C. A. Weiss.....
Trilley retriver, F. M. Milier
Truck, W. H. Armstrong \(\ldots \ldots\).

\section*{\[
\frac{\pi}{x}
\] \\ }

munn \& CO., 361 Broadway, New York

\section*{BUILDABOAT}

WEATHERWAX METHOD
\(A_{\text {Boat? We Buing of buying or building a }}^{\text {RE }}\) from a 9 foot Row Boat to a 40 foot Power I, aunch or a 125 foot Steam Yacht. We are the only Boat Builders who sell Boat Patterns. Our complete, accurate, actual size Boat Patterns, with illustrated and simple, easy-to-follow instructions, will enor for any one else. We also furnish Knock Down Frames, ready to set up and easily Down Frames, ready to set up and easily
put together, saving time and labor. Beside, we furnish Marine Hardware, Motor Engines from two (2) to any desired Horse Power, and everything that goes into the
Building of Boats. Building of Boats.
When you buy a Boat, or a Boat Pattern,
from us you get a guarantee of satisfaction from us you get a guarantee of sat factory behind it: this means a great deal to you,
and the best is always the cheapest. Write for our Free Catalog J, showing57
New and Improved rgo Models. BAY CITY BOAT MFG. CO. Bay City, Mich., U. S. A.
```

Bradstreet's, Dun's, any Bank
at Bay City, Mich.

```


\section*{SPARK COILS}

Their Construction Simply Explained 160 describes the making of a 136 -inch spark coil and condenser. Scientific American supplement Scientific American Supplement
1si4 tells you how to make a coil for gas
engine ignition. engine ignition. 1522 explains fumerican Supplement jump-spark coil and condenser for gas-engine
igntion. Scientific American Supplement
ignition 1124 describe spark coilitific American Supplement \(108{ }^{\circ}\) gives a full account of the making of an alternating current coil giving a 5 -inch Scieutific American Supplement
1 o27 describes a
d-inch spark coil and condenser.
scientific American Supplement
1402 gives data for the construction of coils of a definite length of spark.
The above-mentioneq set of seven papers
will be supplier for 70 cents.
Any single copy will be masled for 10 cts MUNN ® COMPANY, Publishers 361 Broadway
\(\left\lvert\, \begin{gathered}\text { Vermicelli and the like, machine for manu- } \\ \text { facturing and bunding, B. F. A. Cour- } \\ \text { tine }\end{gathered}\right.\)
 Wagon body, C. Leavitt
Wagon jack, Wagon jack, I. Shupe
Wagon loading device,
Wagon running gear, \(W\).

\section*{\begin{tabular}{l}
w \\
w \\
w \\
w \\
\hline
\end{tabular}}

Water heater, H. . . Humphrey M...........
Water purifing apparatus, J. M. Muphy.
Water purifying apparatus, A. E. Dieterich
Water rating and controlling machine, auto matic adjustable, W. J. McEride. Waterer, bog, P. Bernard.
Watering trough, stock, Gertzen \& Rogbair.
Wave action, protecting objects from, P.
 Weighing machine, automatic, H. Richar

\begin{tabular}{l}
\(\mathbf{W}\) \\
\(\mathbf{Y}\) \\
\(\mathbf{P}\) \\
\(\mathbf{P}\) \\
\hline
\end{tabular}
Sign, illuminated chandelier, \(\mathrm{L} . \mathrm{K}\). Liggett.
Type, font of, A. Gottschling..............
TRADE MARKS. Alloy of nickel, manganese, and copper, Isa
bellenutute G. m . b. H.............525
Antisptic solution, Jobn Wyet and brothe
Automobiles, Fairbanks, Morse \& Co.......

\begin{tabular}{c}
Can \\
Can \\
Can \\
Ca \\
\hline
\end{tabular}

Cigars, W. H. Barion
Cigars, Cifuentes, Fern
Cigars,

Clam preparation, Rosenstein Brothers.
Cleaning paste, Flasb Chemical Co.........
Clothes drying, machines, Clicago Dryer ©o.
Clothing, certain, Dayton Clothing Manufac

IT

Anilin-Fabrikation
Electric fuse
Euses,
Electric Device
Lectric fuses, Electric Device Co............
Electric sparking and igniting apparatu,
ciete General des
dend Huiles et Fournitures

 Fo. Fertilizers, Scott Fertilizer Co. of Cicil
County Fibrous materials covered, etc., with a plas-
tic compound, Cellulod co,
Flavoring extracts, Greever-Lotspeich Manu-
 Fumigants, Mass \& Waidistein Co.
Glue, Hall \& Ruckel
Gun, implements and certain equipments, Hosiery, H. Frank \& Sons...
Insecticide, liquid, Gerryo
Insecticior arquid, Gerrno Manufacturing \(\mathbb{C} 0\)
Instep or arch supprt, William H. Wood
Insulation Instep
Insulation material, certain, Union Fibre Co
Iron smoothing compound, A. Le wis Iron smoothing compound, A. Lewis...
Journal, agricultural, T. Tucker \& Son
Lace curtains, I. H. Hassall. Lace curtains, I. H. Hassall
Lamps, incandescent, Shelby
Laxat,
Co. ...ts, compound, Bubier Laboratory Leather and leathér soles, sole, Regal Shoe
Co.

NEEDED ON FARM, SEA OR RANCH.

\section*{The} Metropolitan Magaine

\author{
The Aggressive Magazine for 1907
}

THE March Issue will contain the first chapters of The Great Historical Series relating to THE MEXICAN WAR. The articles will be full of Dramatic Human Interest. The Illustrations, many of them reproductions of old rare prints, are extraordinary both in conception and treatment.

> SUBSCRIBE NOW and read the series from beginning to end.

MOTOR-BOATING: A good deal of space in the March Issue will also be devoted to the growth and development of the Motor-Boat Industry. The article, written by Mr. W. S. Dudley, will be of interest to all readers and especially so to the owner or prospective purchaser of one of these handy little craft. Some of the pictures to accompany the article are full of action and unique.
Subscription Price \(\$ 1.50\) per Year. Single Copy 15 Cents.
THE METROPOLITAN MAGAZINE
3 West 29th Street, New York City

\section*{A Popular ELGIN}

Every watch movement bearing the name ELGIN is the best movement of its kind made.
There are varying grades of which are fixed by the number of jewels and the quality of materials used in construction.
The movement which meets the great demand for a popular-priced WHEELER movement, a name almost as great as ELGIN itself.
This movement can now be had in the popular sizes, for men's and boys' use, and in the models so much desired. Ask your dealer.
ELGIN NATIONAL WATCH CO., Elgin, III.

Freeman's Auto-Boat chair

Winl give you extra seats in your
boat without crowding anyone. The
frame is made of crucible spring steel and enameled crack. The seat
and back-rest are upholstered in and back-rest are upholstered in ar-
tificial, waterproof leather. Will tificial, waterproof leather. Wil
st and 200 pounds under strain. Folss
flat to store a way when not in use. flat to store away when not in use.
Size, seat, ty in. high, 10 in. wide. Sold by all Auto-Boat Supply
Description Booklet Free
RACINE METAL CHAIR CO. 411 Main Street

RACINE, WIS.

Curtiss Airship Motors All extras ready to install. Now used.
by every suceesful
A eronaut. Hient G. H. CURTISS MFG. CO., Hammonds.

Reversible
Marine. Engines

\section*{\(1 \%\) to 30 H.P.}

Send for cataiop. Valabale Features-Prices Low
Termaat \& Monahan Co.
Oshkosh Wis.

Mazazine, Porter, Tony Torior \& Co.
Mazazine, min, F. H. Chas
\[
\begin{aligned}
& \text { Remedies for the cure of the liquor habit, } \\
& \text { Remedy for consumption. H. C. Febrlin. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Sewing machines, parts, and atachments, } \\
& \text { Wheeler \& Wilson Manufacturing Co, Con } \\
& \text { Shirts, negligee and workingmen's Heynemann } \\
& \text { \& Co }
\end{aligned}
\]
"Curzon Complexion Cream,", for complexic
cream or paste, J. W. Hosler

 "Men's Apparei," for men's apparei,' W. C

 Corn," for canned corn, T. Roberts \(\&\) Co.
"Pure Foor Brand Garden Grown Sifted
Pease," for canned peas, T. Roberts \(\&\)
 "Scherman's,"EEE Shampoo," for a shampoo,
J. Scherman \& Co .
"Scherman's Liquid Shampoo," for a liquid

\section*{PRINTS}

\section*{"Fashionable Coat Sleeves," for coat sleeves,
Ea. V. Price \& Co..................}
 drawers, Erlanger Bros.
"Ther
men's and boys' cousand vests, and trousers, Ed. v. Price \& Co................. 1,9
A printed copy of the specification and drawi
any antent in the forefoine list, or any of any atent in the foresoing list, or any patent
in print issued since 1863 will be furnished from
this ofice for

\section*{BOUND BOOKS AT SHEET PRICES}

\section*{}

1 t would require an expert to discover that these books are not in every way perfect, and in most
cases out of the entire este one or two volumes only show the slightest blemish. Trivial as these imperfections are, we prefer to state candidyly that the books are not quite perfect,
and offset this by a liberala cut in the price. Rather than rebind the discolored volumes, we offer
the set at the cost of the sheets. the set at the cost of the sheets
This is positively your last

ENCYCLOPAEDIA BRITANNICA

In the Material and Construction of

\section*{Power-Driven Vessels}
allowances must be carefully made for the strains that must bear on every part and section of the craft.

> Pemmsylvaniq Interlocking Rublber Tiling
is the only material that can be used for decks and flooring possessing sufficient resiliency to be absolutely unaffected by the severest and most constant wrenching. When, at last, the boat must be put out of commission this rubber tiling will be found to be as good as new.

Morever, it is entirely non-slippery and of extremely elegant appearance and design.

Write for our Book-of-Designs-in-Color, with jull description.

PENNSYLVANIA RUBBER COMPANY Jeannette, Pa.

\section*{The ... \\ Remington Typewriter}
has completed the thirty-third year of its history with a gain in business of
31\%

\section*{Over the Year Before}

Our enormous increases are derived from three sources: from the man who is buying his first Remington; from the man who is buying more Remingtons; and from the man who has tried other than Remingtons.

Remington Typewriter Co.
Now York and Everywhere

COLLEGE PREPARATORY COURSE

MECHANICAL DRAGUING
Is agreeable work and opens the
way to great opportunities, it way to great opportunities. It
will pay you well, and you can
master it at a little expense. master at at a little expense.
Write at once and we will send you Free a 200 -page book, de-
scribing 6 ocourses of instruction.
STRUCTURAL ENGINEERING

MECHANICAL ENGINEERING

 Courses in Mechanical Ening
eering is Free. Write today.
American School of Correspondence CHICAGO

Before You Invest

 3 Months Free
 \(\xrightarrow{\text { Clactucerafte }}\)

Trade Marks DOESIGNS
COPYRIGHTS \&c.

\section*{Scientifific Jmerican.}

Kill Diamonds ordit

TCJWACHSES
MODELS \(\underset{\text { Inventions deveioped Special }}{\text { E }}\) Wachinery
RUBBERE \(\underset{\substack{\text { Expert Manufacturers } \\ \text { Fine Jobbing Work }}}{\substack{\text { Jin }}}\) PARKER. STEARNS \& C0., 228.229 South Street, New York Montsezaze

LEARN PLUMBING \(A\) Atew monthe in
 after gradua
TRA TRATAB CATALOGUEVST. LOUIE TRADE
SCHOOL, 3992 Olive Street, St. Lonis, Mo.
VENTRILOQUISM
\(\qquad\) LEARN WATCHMAKING

\section*{}

\section*{chan Cushman mandre \\ \\ is the most reliable. cconomical and
durable engine bult.
Will use either Gasoline or AI
cohol. Skiliully desisned and very
simple. Will always take you bome
and win you many races.
For catalogue write
CUSHMAN MOTOR CO
Lincoln, Neb.}

\section*{HEADQUARTERS}

\footnotetext{
for Bronze Inscription Tablets, Signs, Bank Work, and Ornamental Brass Work of all kinds. Designs furnished albert russell \& sons co.

\author{
Wealand Bronze Works Dept Newheort,
}
}

\section*{ Generałors ro MOTOR BOATS AUTOMOBILES and BICYCLES}

Solars are not only of simple, strong construction, but made of best material -heavy drawn brass. Their few parts add to their solidity. The way these parts are put together-riveted and screwed (never soldered)-further fortifies Solars against the hardest knocks and jars.
Their construction is not only durable, but scientific in EXACT FOCUS, utilizing ALL the light.
Each lamp thoroughly inspected before shipment. Solars are the Strongest Lamps made, and give the Strongest Light.
Our 1907 catalogue describes our entire line-both Lamps and Generators. It's free-want one? BADGER BRASS MFG. CO., Kenosha, Wis. Eastern Branch, 11th Ave. 36th \& 37th Sts., New York C

\section*{Mullins}

Makes Everything In Art Architectural Sheet Metal Work Statuary-Ornamental Sheet Metal Work-Skylights-Fireproof Windows-Art Metal Tile Rooing-Stee Cellings- - Minials designs submitted for architects, builders and contractors. The W. H. Mullins Co.,203 Franklin Street, Salem, Ohio.
 Magazine
is one of the most popular magazines in America It is noted for its clean, wholesome, snappy fiction, its handsome illustrations and its cheerfulness of purpose. It has indeed been well termed "The Magazine of
Cheerfulness," and its policy is to uplift, to please and to ducate.
The annual subscription price is \(\$ 1.50\), or 15 cents for a single copy.
MAGAZZINE
is taking front rank among the leading popular magazines of the country. No
magazine offers a better lis of contributors; none offers more beautiful illustrations;
few, if any, offer articles of such wide popular interest. Look up any number on the
newsstand and judge for newsstand and judge for
yourself. The Magazine may be sent to a differen address from your own i

new clothebound book in
a Tabard Inn Bookcase.
The Tabard Inn
Library The lowest price of a Tabard Inn Exchangeable
Book is \(\$ 1.18\). A Brand New Book of your own selection from the accompanying list will be mailed you prepaid in the combination herein offered. The books
are well bound in cloth and hand are well bound in cloth and hand-
somely illustrated. Once you
 Book it is your own property,
but you can exchange it but you can exchange it for another as often as you like on pay-
ment of a fee of five cents. There are a million Tabard Inn Library Books in circulation and two thousand exchange stations all over the United States and in some cities in Canada.

Many of these books
are among the most popular of the day.

\footnotetext{
A BRAND NEW BOOK (your own selection) THE METROPOLITAN MAGAZINE-any address

Both for \(\$ 2.10\)
}

List of the Latest Books

\section*{The Fighting Chance
Robert W. Chambers} Rhipert
Chinge Borough
The Awakening of Helenan Ritct Margaret Deland
Prisoners Mary Cholmondele On Newtound River
Thomas Nelson Page \({ }_{\text {Winston Churchill }}^{\text {Chill }}\) \(\underset{\text { A. }}{\substack{\text { Sir Niget } \\ \text { Conan Doyle }}}\)
The Treasure of Heave Marte Correlin Cana Puck of Pook's Hill Puck of Pook's Hin
Rudyard Kiping The Tides of Barnegat
F. Hopkinson Smith The Bishop of Cottontewn The Lion and the Mouse Cbas. Klein and Arthur Hornblow The Incomplete Amoris
\[
\begin{gathered}
\text { J. Nesorit } \\
\text { Jane Cable } \\
\text { George Barr McCutcheod }
\end{gathered}
\] The Doctor
Ralp Ralph Connor Anthony Overman
Miriam Michelson Buchanan's Wife y the Light of the Soul
Mary E. Wilkins-Freeman White Fang
Jack London Rosemary in Search of a Father
C. N. \(\&\) A. M. Williamson The White Plume

FORM OF ORDER
-

\section*{* CHARTER
 Send for Catalogue. \\ CHARTER GAS ENGINE Co., Box 148, STERLING, ILL}
 \begin{tabular}{|c|c|}
\hline PREPARED \\
ASBESTOS FIBRE \\
R. MAR MAR \\
H.
\end{tabular} \begin{tabular}{l|l|}
\hline ASBESTOS FIBRE \\
for Manufacturers use & OFFICE, ST.PAUL BUILOING \\
& \\
\hline
\end{tabular}

\section*{BRISTOL'S} Recording Instruments
 insure safes Eionolical
wite Write for Catalog T. stating conditions
HE BRISTOL CO., Waterbury. Conn., U.S.A the DIAGRAPH

 WM. H. BRISTOL Electric Pyrometers

Electrical Eng ineering

Mullins Advice to Boat Buyers

 back and refund the purchase price if they do not make the speed guaranteed?
Fifth II I Iour engine guaranted to be free from defecto in workmanship and material
comercill accurate, perfect running, and will you, in case of \(m y\) inability to run my engine, send
a man to start it for me?
Mulfins Pressed Steel Boats
Are Sold Under the Ahove Absolute Guarantee They are built of smooth, pressed steel plates, with air chambers in each end like a life boat. The
smooth, treel hull has handsome lines, and clides through the water wwith the least posibibe resistance
-thet re that smooth, steell hull
thener are faster,
desicn and finish.

Write For Our Large Illustrated Catalogue of
Motor Boats-Row Boats-Hunting and Fishing Boats.
The W. H. Mullins Company, 118 Franklin Street, Salem, Ohio.

\section*{STEAM USERS}

\section*{Rainoow Patking}

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints. Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by PEERLESS RUBBER IIFG. co. 16 Warren St., New York

\section*{The GRIFFIN2Yill}

\section*{The Greatest Pulverizing Machine in the World}

OVER 50 PER CENT. OF THE PORTLAND CEMENT MANUFACTURED IN THE UNITED STATES TO-DAY IS GROUND IN THE GRIFFIN MILL.
The Griffin Mill pulverizes more cement than the combined output of all other machines used for this purpose.
Thoroughly tested by continually successful and constantly increasing use during the past sixteen years.
Portland Cement Clinker reduced from \(1 / 2\) inch to required fineness in one operation, with no auxiliary apparatus. No other machine made will do this.
Buy the GRIFFIN MILL and get the BEST. It holds the world \(\Rightarrow\) record from every standpoint.

Bradley Pulverizer Company, 92 State St., Boston

Holsten Spark Plug

 Wab wividuzz

TRIUMPH ENGINEERING CO.

The only comfortable, non-injurious motor
cycle on the market, built on the latest model including the famous "Merkel", motor, Grip ncluding the famous "Merkel", motor, Gri
control, and Spring Frame and Fork, absoyet made.

Urite for Catalogue and Prices IIERKEL MOTOR CO.
1092, 26th Avenue, Milwaukee, Wis.

\section*{FREE ON REQUEST}

No mere advertisement can convey an adequate idea of the vast interest and immense utility of the Americana, or of its exceptional value and sumptuous appearance. Let us send you therefore a handsome l20-page book containing specimen pages, maps, full-page plates, duotones, color plates, and text illustrations, with portraits of celebrities, full-page photographic plates of the most interesting and up=to-date subjects-The Americana being the best illustrated of all reference works. With the object of making the Americana quickly and widely known, before placing the work in the hands of dealers for general distribution, we will accept orders direct at a large reduction from the established price. Those interested are requested to make application immediately. The work is sold exclusively in connection with the SCIENTIFIC AMERIOAN and cannot be otherwise obtained.

SCIENTIFIC AMERICAN COMPILING DEPT. 258 fifth avenue, new york city

Gentlemen: Please send, without expense to me, your 120-page Book of Specimen Pages, Maps, Duo tones, Color Plates, Portraits, etc., of the N E.W AMF.RICANA, with particulars regarding prices and your easy-payment plan.
Name.
Occupation... Street.
Town and State.

\section*{A Business Opportunity}

There is a big profit in boat building. Seventy-five per cent. of the selling price of boats is for design-labor and the boat factory's big profit. We furnish the design-you put up the boat and get the profit. We have established hundreds in the boat-building bisiness. One man built twenty-seven boats from the one set of patterns last year. You can supply your customers with any kind of a boat they desire-racing-semispeed or family launches-dories-tenderstarpons - stern-paddle wheelers - sail-boats-larks-skip jacks-skiffs-row boats-duck boats and canoes.

SPEED. We can give you 28 miles per hour with 60 Horse Power engine - 20 miles with 15 Horse Power-16 miles with 10 Horse Power- 8 miles with 2 Horse Power-all proved over measured courses last year.

\section*{Why You Should Use the Brooks System}

We are the Originators of the Pattern System of Boat Building. Our goods are Standard. We have continually improved and perfected our System. We have the largest factory of its kind in the world. (Covers 20 acres of ground and nearly 10 acres of floor space.) We own the standing timber-cut and manufacture it ourselves-do this where the timber grows. You pay no middleman's profit. We are the largest retailers of marine hardware and boat fittings in the United States. We buy in enormous quantities in the open market and at right prices. We sell right. We handle not only one part of a boat or frame, but every part and piece entering into the construction of a boat-framing-planking-decking-hardware and fittings-complete or in part as you desire. Our frames are all made by duplicating machinery-each part is ferfect and accurately fitted. Every pattern is worked out scientifically and the result is both artistic and practical. Your boat is an assured success. Get our catalog for prices on all parts and and practical. Your boat is an assured success. Get our catalog for prices on all parts and
materials. Our No. 5-16-foot launch. frame with patterns to finish \(\$ 1500\). Our No. I522 -foot speed launch, frame with patterns to finish, \(\$ 20.00\). These are regular prices listed in our catalog-other frames in proportion. Paiterns are absolutely free with all knock-down frames, We sell for less than it osts others to manufacture. We offer the largest and most
the largest and most complete line of boats of all kinds --for all purposes.
Special freight rates and quick dispatch on foreign shipments. We prepay carriage charges on patterns to any part of the world.
REDUCFD PRICES. Patterns of all row boats and canoes \(\$ \mathrm{r} .50\) to \(\$ 2.00\). I aunches and sail boats under 2 I feet \(\$ 4.00\) to \(\$ 5.00\). From 2I to 30 feet \(\$ 5.00\) to \(\$\) ro.00. Satisfaction guaranteed or money refunded.

Don't fail to get our big EREE Catalog.
It fullv illustrates our big line of boats. Contains a number of testimonials from amateur builders and photographs of the boats they have built.

\section*{BROOKS}```

