

SCIENTIFIC AMERICAN

established 1845
MUNN $\boldsymbol{\&}$ CO.
Editors and Proprietors

Published Weekly at No. 361 Broadway, New

TERMS TO SUBSCRIBERS

 the ncientific american publications

NEW YORK, SATURDAY, FEBRUARY 2 , 1907.
The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photegraphs are sharp, the articles short, and the facts authentic, the contribution will receive special attention. Accepted articles will be paid fo at regular space rates

the english channel tunnel scheme.

When the British Parliament, a quarter of a century ago, voted down with a ringing "no" the scheme for building a tunnel beneath the channel from Dover to Calais, it was thought that the question had been settled for all time. Some pertinacious promoter, how ever, undiscouraged by the outspoken sentiment of that day, has now laid another bill before the House of Commons, in which the franchise then denied is again prayed for. Whether this latest Channel bill will meet with more favor, it is impossible to foretell. Although sentiment against the plan is not lacking, we fancy that the British public is this time disposed to lend a more willing ear to arguments in favor of the tunnel.
The question is undoubtedly one of grave political importance to Englishmen. A Channel tunnel will impair, if it will not destroy, a splendid isolation enforced by geographical situation. Accordingly, we find that the objections which were urged one-quarter of a century ago against an artificial union of France and England are again raised. A scientific committee to which the matter of properly guarding the British terminal was referred in 1882, was decidedly pessi mistic in its report. They questione the possibility of preventing the capture of the British end of the tunnel by a bold company of French adventurers. Even the most elaborate and diabolically ingenious devices for checking an onslaught, devices which seem almost ridiculously romantic, were considered inadequate, for the reason that at the last moment the hand which was to set them in motion might fail. Among other things, the committee advised that the tunnel should not emerge within any fortification, but that its exit, as well as the airshafts and pumping appar atus, should be commanded by the advance works of a fortress, besides being within effective range from the sea. Means of closing the tunnel by a portcullis, and still more wonderful, of discharging poisonous gases into it, were recommended. Temporary demoli tion of the land portion of the tunnel by means of mining was still another conception. Sluices that should allow the tunnel to be temporarily flooded, and mines which should tear open the walls, were other defenses seriously contemplated. Finally, after having considered every possible safeguard, the committee concluded that "it would be presumptuous to place absolute reliance upon even the most compre hensive and complete arrangements which can be de vised with the view of rendering the tunnel absolute ly useless to an enemy in every imaginable conting. ency."
The naval view of the matter was saner, although likewise discouraging. Admiral Sir John Hay thought it not unlikely that the tunnel might be seized by sur prise in the absence of the Channel fleet, and that a force of 16,000 men could be thrown very quickly upon the English coasts at a time when it would no be likely to find a sufficiently well-trained, well-equipped army to oppose it.
Englishmen are prone to regar the building of the tunnel as an enterprise which would redound largely to the benefit of their hereditary enemy. France is a great land power, an armed nation with nothing whatever to fear from invasion from over the sea The addition of another railway terminating within her borders endangers by no appreciable extent her present position. Even assuming that an English ex pedition might capture Calais, and that 150,000 British soldiers were projected into France, it is a question if they could vanquish a standing army composed of trained soldiers.
Dismissing these political considerations, and passing for a moment to the engineering features of the contemplated work, it must be urged that the config. uration of the bottom of the strait is most felicitous or the execution of the enterprise. The course se-
events very gentle slopes. The depth of the Channel nowhere reaches 200 feet upon the selected line from England to France. For several miles out from the English coast it is not 100 feet deep; and the greatest depth is, roughly speaking, about two-thirds of the way across to France, and there its maximum is 186 feet.
Of the various plans which have been proposed for connecting England and France, that which was ad vanced some twelve years ago by Sir Edward J. Reed ought to commend itself strongly to civil engineers. He proposed a double tube of steel plate, to be constructed in sections of 300 feet, and to be hermetically sealed at the ends, and towed to the place of submersion. Each section was to be attached by one of its extremities to a huge caisson designed to form at the bottom of the water a very low pier for its support. The tube sections were to be sunk from scows. The plan, it will be observed, is substantially the same in principle as that since adopted for the construction of the tunnels under the Seine River in Paris, under the Harlem River in New York, and under the Detroit River in Michigan.
Should the Channel tunnel ever be constructed, its form may ultimately be such as that proposed by Sir dwar Ree Moreover, it would overcome the objections of British naval men. For a length of no less than 3,160 feet Reed's tubular railway would be exposed to direct fire of the guns of ships between the high-water and low-water limit. Any breach or hole made in it below high-water mark would admit the sea at the next tide to the whole interior.
The problems involved are neither novel nor intrinsically very difficult. The most serious obstacles to be encountered are the raising of an amount of capital that must of necessity be enormous, the opposition of shipping interests, and the difference in gage between French and English railways. The capital cost is necessarily enormous. To ship goods from London to the continent or from Paris to London without breaking bulk would clearly be an impossibility. The tunnel would therefore offer merely a more rapid means of communication between British and French towns.

QUICK-STEAMING MARINE BOILERS.

There is over half a million horse-power in cruisers, battleships, and lesser arms of the service in the United States navy. Any one of the smaller vessels may be swinging idly at her anchor, with cold boilers, and in ten minutes from notification get under way, and be off upon her mission. It seems incredible to those who have business upon the great waters that a huge warship can be got under way in about the time that it takes to hitch up a two-horse team when the horses and their driver are on the spot ready for business, but it is an actual fact, as shown by the following official figures.
The United States steamer "Cincinnati" has eight boilers of the water-tube type which, when tested for efficiency of steam raising, gave the following results: Fires started at 9.40 ; in five minutes steam formed; in six minutes the gage showed 25 pounds pressure; in 7 minutes the gage showed 35 pounds; in half a minute more the pressure had jumped to 45 pounds; in the next half minute it gained 10 pounds more; in 9 minutes from starting fires with cold water in the boiler the pressure was 65 pounds, and the pressure rose every thirty seconds 10 pounds, until at ten minutes and forty-five seconds from starting fires the gage showed 115 pounds; in eleven minutes and a half the pressure was 155 pounds per square inch, ample to get under way and handle ship as required. In twelve minutes and forty seconds there were 215 pounds per square inch on the gage, and the vessel was free to go wherever she listed at full speed. Now, if this boiler had been of the old tank type, shell boiler, it would have taken two hours to attain the same result, not infrequently more. The boilers mentioned are very large, holding about 50 tons of water, more or less, according to the height of it in the water glass, but notwithstanding this fact the entire contents were raised to working pressure in the time stated. Concerning this feature in the practical handling of naval vessels, Admiral George W. Melville said, in a report after the war with Spain for the rehabilitation of Cuba: "It would have been of the greatest advantage during the blockade of Santiago to have had boilers capable of raising steam in less than half an hour. Coal need not have been used to keep all the boilers under steam all the while. The 'Massachusetts' might have shared the glories of the fight if she had been fitted with water-tube boilers. The 'Indiana' would have kept up with the 'Oregon' and 'Texas,' the 'New York' would have developed at least three knots more speed, and the navy would have been spared a controversy. I think the 'Colon' would not have got so far as she did, but we did not have water-tube boilers." The pertinency of Admiral Melville's remarks applies equally as well to merchant vessels, for in cases where ships have to remain a long time in dock, say for ten hours and more, taking off or getting in freight, the neces-
sity of banking fires would be dispensed with; the fires being drawn and fresh ones started at a few minutes' notice. It must be noted that while modern marine boilers of the type alluded to steam rapidly, they are not injured in any way, or even forced to obtain the desired results.

This is not an innovation-the installation of water tube boilers in naval ships; the first employment of them dates back nearly half a century, in fact to the "San Jacinto," of the year 1858-59. This vessel carrie the Martin vertical water-tube boiler, which was an hermaphrodite boiler, being externally very much like the fire-tube boiler of the period, in that it had a shell, braces, and water bottom, the water tubes taking the place of a crown sheet over the furnace, and extend ing into a steam space above. The products of combus tion circulated around and between the tubes, emerged into an uptake as usual. But, although strenuous ef forts were made by those interested to establish the favorable performance of this type of water-tube boiler, it was very unsatisfactory, both in naval and merchant ships. The tubes were oi solid-drawn brass, 2 inches external diameter by 13 wire gage, but they soon be came choked solid with stony saline accretions, which stopped evaporation to such an extent that they were useless as steam generators. The steamers "Fulton and "Arago" of the old Havre line had these water tube boilers. Old sailors can recall their limping into port with five and six pounds of steam, scarcely enough to get home with. Compare this performance with that of the modern water-tube boiler, which has no shell, no water-bottom, no braces or staybolts, carries twenty times the steam pressure that its prototype of half a century ago did, and can stand continuous service during the circumnavigation of the globe without repairs of any moment. The "Chicago," of the United States navy, which has eight water-tube boilers, spent the winter and spring of 1899 in active service on the Atlantic coast; then made a trip around Africa, returning to New York via South America, stopping en route at Rio Janeiro, a total distance of 35,000 miles, and on arrival was sent at once to Buenos Ayres, the boilers requiring no repairs. A performance like this is ample reason for equipping naval ships with water-tube boilers.
Not very many years ago, less than a quarter of a century, it required a good deal of persuasion to in duce users to listen to arguments in favor of watertube boilers; but now, although fire-tube boilers are by no means out of use, the water-tube type pushes them har for manufacturing purposes at least. Boilers of both classes, however, have been so greatly improved, that there is no comparison possible between the splendid generators of the present and those of two decades ago. One great factor in the improvement has been the character of the metal employed in their construction. For an unreliable, variable quality of iron, steel has been substituted, with the result that pressures have been increased and the life of boilers generally prolonged. Another advance has been made in the character of the workmanship, by no means the least of the causes leading to the regeneration of steam boilers of the period. 'The wonderful metal now available for the boiler maker deserves more than a passing notice. When, by the aid of hydraulic presses, we can make this sheet steel flow into all sorts of shapes and corrugations without the development of a single check, crack, or craze in a whole shipload of it; when we recall that in the past we had to flog our boiler plates slowly and painfully into the former, or over it, thankul if we escaped disaster, the splendid quality of the present-day product is realized.
It is now possible, because of the metal and the means, to bend sheets one and one-half inches thick to a circle of fifteen feet in diameter as easily as we used to bend quarter-inch iron

SPONTANEOUS IGNITION OF COAL

The old hypothesis suggested by Liebig, according to which the spontaneous inflammation of coal is due to the oxidation of the pyrites, can no longer be maintained. Spontaneous ignition, as pointed out by Dr. Heideprim (Welt der Technik), would seem rather to be attributable to a direct oxidation of the carbon. In fact, carbon when heated has been found eagerly to absorb oxygen from the air, and this heating effect can be increase until ignition occurs. The part played by moisture in the process has not yet been determined. The physical conditions of the carbon (hardness, size, tc.) are other factors influencing the process. In connection with a recent investigation of three hưdred cases of self-ignition, all kinds of mineral coal apart rom anthracite were examined. In most cases the ignited coal was ordinary coal, and less frequently nut coal or coal dust. The higher the layers, the more readily will self-ignition take place. An efficient ventiation by channels in the coal layers and the thermometrical recording of temperatures by long thermometers inserted in the coal have been found to be good preventive measures, while the only available means of extinguishing such fires has been found to be a transfer of the coal and simultaneous flooding.

THE HEAVENS IN FEBRUARY.

The astronomical literature of the past month does not contain much of popular interest. It may, however, be mentioned that Metcalf's comet-discovered last November-has turned out to be a periodic one, moving in an ellipse of rather small eccentricity (for a comet) with a period of about eight years. It was about as near to us at the time of its discovery as it can ever get, its distance being some sixty million miles, and even then it was very faint, so that it can never be at all conspicuous.
This adds one more comet to the large family which is attributed to Jupiter. It may seem rather strange to speak of comets as belonging to the family of a planet, but we have good reason for the phrase. All the comets of short period-of which more than a score are known-move in orbits which pass close to that of Jupiter. This invariable rule cannot be the result of accident, and it is not hard to find an explanation for it.
If we follow back the motion of one of these comets and of Jupiter, we will sooner or later come to a time when the two bodies must have been close together In such a case, when the comet is very near Jupiter the planet's attraction on it will be very powerful, and may in some cases be much stronger than that of the sun. The result of such an encounter will be a complete change in the size and shape of the comet's rbit, while, since the com t is of very small mass, its attraction will not change the motion of Jupiter by a measurable amount.
Several such cases have been actually worked out, though an enormous amount of labor was demanded by the calculations, and it has usually been found that the previous orbit of the comet was much larger than its later one, and so remote from the earth's orbit that the comet must have been quite invisible to us. In at least one case a comet has been "lost" in this way -by having a small orbit enlarged-and we may never see it again.
Now a large majority of the comets that are discov ered move in practically parabolic orbits, coming from an immense distance toward the sun, passing round it, and receding into pace again. If such comet happens to pass nea Jupiter, its orbit will be changed, and it may be so altered that it becomes an ellipse of short period. There is good reason to believe that the known short-period comets hav originated in this way, and so we speak of them as Jupiter's "family."
The other large planets have similar but less nu-
merous families of comets, whose periods in all cases are roughly half those of the planet. For example, Halley's comet, with a period of 76 years, belongs to Neptune's family.

the heavens.

Referring to our map, we find that Auriga the Charioteer is right overhead, with his brightest star, Capella, northwest of the zenith. Southeast of this is Gemini, with the planet Jupiter (which lies close to the stars $\boldsymbol{\eta}$ and μ) making it more conspicuous. The Little Dog with the bright star Procyon is lower down
Due south is the splendid form of Orion, below whom are the small groups called the Hare and the Dove On the east is the Great Dog with the superbly brilliant Sirius. Below this is part of the ship Argo, a very large and fine constellation, which we are too far north to see properly. Its brightest star, Canopus, which has no superior save Sirius, is just outside our map, but can be seen, due south and very low down, by observers in Virginia and Kentucky and farther south.
Eridanus fills a large part of the southwestern sky nd then comre Cetus the Whale and Pisces the Fishes, neither of which has any very bright stars.
The vamidole Mrara (marked o in the map of Cetus) is now fading after one of the brightest recorded
maxima. Taurus the Bull and Aries the Ram are due west, and Perseus, Andromeda, and Cassiopeia northwest, with Cepheus below the latter. The Dragon and the Little Bear are below the pole, and the Great Bear is coming up on the right.
Cancer the Crab, which is in the southeast, is only interesting for the star cluster called Præsepe or the Bee-Hive, but Leo the Lion is a full group with many bright stars and easy to recognize and remember.

The Hunting Dogs and Berenice's Hair, which are both rising in the northeast, are not very important. The Sea Serpent Hydra is a very large constellation, but we now see only a part of it, including the serpent's head and less than half his length, for it will be hours yet before his long tail drags itself clear of the horizon.
the planets.
Mercury is apparently close to the sun at the beginning of February, but soon passes out to the eastward and becomes an evening star. During the latter part of the month he is very favorably placed for observation, setting at about 6:40 on the 21st and near 7 P . M. on the 28 th . He is in perihelion (nearest to the sun in actual distance) on the 27th, and is in consequence unusually bright, as he receives more light from the sun than at his average distance. On the 21st he
planet and the first and third, together with their shadows, cross its disk.
Saturn is evening star in Aquarius, and is only well visible in the earlier part of the month. On the 1st he sets about $7: 30 \mathrm{P}$. M., while on the 28 th he is on the horizon at 6 o'clock and is no longer to be seen.
Uranus is morning star in Sagittarius, rising at about $4: 30 \mathrm{~A}$. M. in the middle of the month. On the 17 th he is in conjunction with Venus, being 3 deg. south of her. Neptune is in Gemini, not far east of Jupiter. His position on the 3 d is R. A. 6 h. 45 m . ©s.; dec. 22 deg. 9 \min. north, and on the 27 th R. A. 6 h .43 m .10 s. ; dec. 22 deg. 12 min . north. It is hard to find him without an equatorial telescope with properly graduated circles.
the moon.
Last quarter occurs at 8 P . M. on the 5 th, new moon at $1 \mathrm{~A} . \mathrm{M}$. on the 13 th , first quarter at $11 \mathrm{P} . \mathrm{M}$. on the 19 th, and full moon at 1 A . M. on the 28th. The moon is nearest us on the 10th and farthest away on the 21 st. She is in conjunction with Mars on the 6th, Venus and Uranus on the 9th, Mercury on the 12th, Saturn on the 13th, Jupiter on the 22d, and Neptune on the 23d.
Princeton University Observatory.
THE CORNU HELICOPTER.
The Cornu flying machine is one which is to enter the field to try to capture some of the aeronautic prizes. It is of the type known as helicopter, and has a pair of horizontal propellers which are worked by motors and are de signed to lift the machine from the ground, and it alsohas a set of plane canvas surfaces which are to aid in the flight. The new machine is only in the experimental stage as yet, in the shape of a working model, but it seems to give good promise, if the recent reports are to be believed. A series of trials with the experimental flyer were made not long ago at Lisieux, France, where it had been constructed by M. Cornu. In. these tests the apparatus was guided by a pivoted tube which served to hold it and prevent it from rising. to a greater height, than ten feet. The same deyice made the flyer describe a circular path of 100 feet circumference. In the first trial of the apparatus, it was found to rise in the air,. with the planes disposed vertically. The two propellers were operated by, a small gasoline motor of 2 horse-power size, but in this case it worked at only $-11 / 2$.. horse-power, since the ignition point was lowered. As regards the total weight which the propellers had to raise under these conditions, it is stated to be 30.47 pounds. There seemed to be no difficulty in making the machine rise in the air. Dur-
is in conjunction with Saturn, at a distance of a little cver $11 / 2$ deg. Mercury, which is the northernmost of the two planets, will be considerably the brighter.
Venus is morning star in Sagittarius, and rises at $4 \mathrm{~A} . \mathrm{M}$. in the middle of the month. On the 8th she is at her greatest elongation west of the sun, 47 deg. from him, and in the telescope appears exactly like a half-moon. She is still extremely bright, but is gradually fading as she recedes from us.
Mars is morning star in Scorpio, and rises at about 2 A. M. in the middle of the month. He is not yet conspicuous, but will be so in the summer.
Jupiter is the most conspicuous thing in the evening skies. He comes to the meridian at $9: 25 \mathrm{P}$. M. on the 1st and $7: 35 \mathrm{P}$. M. on the 28th, and is visible almost all night. Some unusually interesting phenomena of his satellites deserve attention. On the 1 st, in the course of a single night, the second and third satellites are eclipsed behind the planet, while the first and fourth transit across his disk. On the 10th the shadows of the first and second satellites may be seen crossing the disk at the same time. On the 19 th the first satellite is in front of the planet and the second behind it, while. the shadow of the third appears on its disk. Finally, on the 26 th, it' is possible to watch while the second and fourth satellites pass behind the.
ng the second trial, the movable planes were inclined so as to receive the air which was sent to them by the lifting propellers, and as soon as the motor had been set running in the same conditions as above, the machine rose up again, and this time took a sidewise movement, proceeding to the limit of its course. In its movement it took, besides its own weight, the device which guided it. The present machine is a reduced model of a large apparatus which M* Cornu and son expect to build in the near future and they are to enter it for the DeutschArchdeacon prize of $\$ 10,000$.

When natural gas was first brought into use in America there seemed to be a general idea that the supply was inexhaustible. It was sold at low rates and usually without measurement. This method encouraged waste in the consumption of gas, and was shortly abandoned by the larger companies. To-day nearly all consumption is sold by measurement. It is believed, says the Iron Age, that the time has now come when it is possible to procure statistics of the quantity of gas consumed, and next year this will be undertaken. The method will give such figures in the future that a more direct knowledge will be. obtained of the capacity of gas areas to maintain a commercial supply of "gas' för a certain number iof years.

TO-MORROW'S WEATHER: HOW IT IS FORETOLD.
 $$
\begin{aligned} & \text { VEATHER: HOW } \\ & \text { By DAY ALLEN willy } \end{aligned}
$$

The United States government is responsible for the publication of one of the most remarkable daily newspapers in the world. It is a newspaper which has its telegraph dispatches and its local news. It is also illustrated-at least by maps. The "form" is sometimes lithographed instead of being stereotyped, although the paper is run off the press like any daily in a large city. Perhaps the most striking feature of this publication is that its staff of reporters consists of a series of machines, which not only secure the local intelligence but record it by means of the electrical current.

This newspaper-or rather, series of newspapers-is published by the government through the various weather bureaus which have been established in the principal centers of population. While it varies to some extent in size and arrangement, in general it is modeled upon the plan which has been adopted by the Weather Forecasting Division at Washington. Like the Sunday newspaper of the metropolis, this publication of the United States is also prepared in color, the coloring being used to signify storm areas and wind currents.
These newspapers also have an Associated Press service, supplied by the Weather Forecasting Division. As the preparation of the newspaper begins in the telegraph room where the dispatches are received, a brief description of this department is of interest. The staff of eperators is not only in communication with the 200 signal stations of the country by the telegraph wire, but also Washington receives not a few wireless messages. These are not directly transmitted to the Weather Bureau. They come from one of the wireless receiving stations in the city and are sent by the ordinary telegraph or telephone. As soon as the observers secure the necessary data concerning the weather, they immediately "wire" it to Washington, where the bulletins or messages are carried to a force of clerks in the Forecasting Division, who summarize and arrange them for compilation and publication. This portion of the weather forecasting staff may be called the copy readers or copy editors of the newspaper. Their copy, however, passes to another force of clerks who note and compare statistics regarding temperature, the atmospheric pressure, velocity of the wind, precipitation of moisture, with the records which are kept by the Weather Bureau, and send them out again in the form of telegrams predicting the weather. These clerks may be termed the editorial staff of the Associated Press.

As the majority of the weather newspapers are modeled upon the one issued by the Forecasting Bureau at Washington for this city and vicinity, a brief outline of the manner in which it is published will give a clear conception of the system employed elsewhere. As fast as the weather statistics are received by the telegraph operators any information of especial interest to Washington is transmitted to one of the staff whose duty it is to edit it for composition. Two men usually are sufficient to do the composing and make up the form, for the latter is merely changed from day to day like some of the pages of the ordinary daily paper. The man who makes up the form corrects the map, placing the marks which indicate the direction of the wind as well as other signs upon it. As the prepara-
tion of the form begins as soon as the clerk finishes the copy, it is ready for lithographing in a very short time. Meanwhile in the mechanical departnient the lithograph stone is being prepared for the impression, so that when the form is ready it is reproduced without loss of time. The stone is next placed upon the bed of the press and perhaps in less than an hour after composition began, the paper is being run off. The

Tower Supporting Weather Vane, Anemometer, and Contact Box.
first sheets are carefully examined to note any possible errors which may have occurred. As soon as the sheets are sufficiently dry they are sent out immediately for distribution.
Only a few of the weather newspapers are lithographed, however. The chalk plate process which is so extensively utilized at present in newspaper illustration, is also employed in preparing the daily weather charts in small districts; for by means of this process the few needed can be prepared at a comparatively small expense. In place of the ready-made symbols showing the temperature, velocity of the winds, etc., the characters are sometimes put in with a pen in using the chalk plate. Some of the newspapers are less than half the size of the sheet published at Washington, but all contain a complete weather map of the

United States as well as of southern Canada, with the temperature, barometer, and direction of the wind and condition of the weather at the time the last observation was made. In addition, each contains a weather forecast for the vicinity made by a local observer, in addition to the forecast telegram from Washington for the section from which the bulletin is issued, as well as a brief summary of the weather conditions throughout the country. Despite the variety of information afforded, the entire composition on one of the ordinary small maps is less than a thousand words, so that it can be set up very rapidly, while the tables for recording tempèrature, wind currents, precipitation, etc., are kept standing in type and need only be corrected. If the city is a seaport or located on one of the larger rivers, additional information relative to stages of water, tides, possible storms, as well as the weather reports from foreign stations may be included
While this interesting journal is published but once a day, it contains only a portion of the information which is compiled by the forecasting division of the Weather Bureau for the general public. Early in the evening the telegraph operators and the staff of clerkis are again at work, receiving the batch of night telegrams which come in about eight o’clock, Washington time. These are recorded and summarized, then if necessary, forecasts are telegraphed to stations where such information is of importance. The forecasts are made public in a variety of ways. They may be signaled by colored lanterns from some commanding edificeusually the tower on the weather observation station. They are published in the newspapers and sometimes printed on small bulletins for additional circulation at night. It is perhaps needless to say that publicity is given the forecasts during the daytime by flags hoisted on the stations, as well as by the familiar slips of brown paper which are sent by mail and messenger in the large cities.
So rapid, yet efficient, is the system that in an hour after the morning forecasts have been wired from Washington, every farmer, for example, who has telephone communication with the most isolated station or is anywhere near a telegraph or telephone office, can obtain data as to the possible weather conditions in his vicinity during the next twenty-four hours. The great value of this information has been many times illustrated, especially in Florida, where timely notice of cold waves has in some instances saved millions of dollars to the orange growers alone.
The weather observation station is usually indicated by the mechanism so often placed upon its roof. It may be in one of the "sky scraper" office buildings, or on a lower structure, but in either case one sees the familiar skeleton tower to which is attached the weather vane and the anemometer, two of the mechanical reporters which gather information, and sometimes the thermometer box. Another necessary addition is the automatic measure for determining the amount of rainfall or snowfall, while to-day, as a century ago, the barometer is one of the reliable methods of predicting weather, and is indispensable in making forecasts. The gaily decorated fowl, trotting horse, or other object which surmounts the roof of the house or barn and is supposed to determine the direction of the wind, is far different from the weather vane used by the meteorologist. The d ign adopted by the government consists of an iron rod about five-eighths of an inch

Proofreading the Finished Map. The Man Who Makes Up the Form Corrects the Map, Placing the Marks Which Indicate the Direction of the Wind as Well as Other Signs Upon It.

The Condition of the Weather Throughout the Country is Indicated on the Permanent Weather Map by Appropriate Marks as Fast as Telegrams Are Received. The Man in the Picture is Placing Storm Signals Along the Atlantic Coast.
in diameter and 42 inches long, the tail of the vane in diameter and 42 inches long, the tail of the vane
being formed of thin wooden boards spread apart about 9 inches at the outer ends. To the other end is attached an arrow point. Despite the weight of metal in the vane, it revolves upon a series of three antifriction rollers, so nicely adjusted that they do not require lubrication and the amount of oscillation is reduced to a minimum. Connecting it to the recording apparatus is an iron rod usually terminating in a contact box, as it is termed. The anemometer, which is the cup design invented by Robinson, consists of four hemispheres made of aluminium or brass attached to small square steel arms. Their revolutions turn a spindle which terminates in an endless screw fitting into a series of geared wheels. One of these drives another screw which, in turn, actuates two dial wheels divided into miles and tenths. The anemometer may be attached to the tower supporting the weather vane by a side arm or mounted above it as may be conven ient. The height of the tower varies according to the surroundings. It is necessary to have the instruments where they are exposed to the direct. force of the wind-where its direction is not diverted by buildings or other obstacles.
Not only are the velocity and direction of the wind thus reported, but with the aid of the electric current they are recorded as well. The meteorograph utilized for this purpose is one of the most remarkable instru ments in the weather service, for it not only keeps a record of the performances of the weather vane and anemometer, but registers the amount of precipitation or the duration of sunshine, a's the weather is clear or otherwise. For this reason it is sometimes termed a quadruple register, and with good reason. As will be noted in the accompanying illustration, the register contains a drum around which is wrapped a sheet of paper which receives the characters made by the recording pens, which note the changes in all the mechanism. This drum makes one revolution every six hours, being moved by clockwork to insure regularity. After each revolution the drum is moved endwise about half an inch by the action of a screw, thus preventing a record already made from being marked ver.
From the meteorograph, wires extend to the gearing, which is actuated by the spindle of the anemometer. As the toothe wheels revolve they open and close an electric circuit, thus operating magnets which in turn actuate a recording pen. The direction of the wind is recorded by the use of four magnets which, however, allow eight different directions to be noted if necessary. To the armature of each magnet is attached a long printing arm terminating in a pen point. When a current opens and closes the magnet, the printing point is forced down upon the cylinder, making a dot. The position of the dot on the paper indicates the direction of the wind. The contact box connected with the weather vane contains a series of four cam collars and levers, also four contact springs, one for each point of the compass. When the wind begins to blow directly north the base of the rod extending from the vane to the contact box presses against what is called the "north" spring, which, in turn, touches the corresponding lever, thus sending an electric impulse through the corresponding magnet. When it is blowing northeast, for example, two of the springs are brought into contact with the levers, with the result that two circuits are closed and two magnets will actuate the pens with which they are connected.
As rainfall is a rarity during the period when the sun is shining, one magnet and pen are usually employed to record these indications. The electric current for the sunshine record passes through what is called a clock contact, which gives an electric impulse once every minute by connection with the hand of a specially designed clock. The record for sunshine is a series of short pen strokes arranged in zig-zag fash-
ion. The characters for rain are also zig-zag, but obtained by the precipitation in the rain gage which is connected to the magnet by an electric circuit. While what is known as the hand measuring gage is still in use, an automatic or tipping bucket gage is being substituted for it at the principal weather stations throughout the country. By means of this appo. ratus, every hundredth of an inch of rainfall is accurately registered. The precipitation which is, of

Automatic Gage for Measuring Precipitation in the Form of Rain, Snow, or Sleet.

Automatic Blue-Printing Machine by Which the Intensity of the Sunlight is $\mathbf{P h o t o g r a p h e d . ~}$
course, received in the top, enters a funnel-shaped re ceptacle with a small opening in the center, so that the water is conducted to a point directly over the tipping bucket, as it is called. This is divided into two compartments, one of which is always presented to receive the water. When the quantity of liquid has reached a hundredth of an inch, it tips and empties the compartment, the other side of the "'bucket" being elevated at the same time. The liquid which has been emptied is collected in a receptacle below, so that it can again be measured by hand gage if desired. The motion of the tipping bucket opens and closes the electric circuit and thus actuates the precipitation recording pen.
But wonderful as are the accuracy and reliability of the instruments which we have described, perhaps the most notable mechanism is the barograph, which is in use at the present time in the majority of the weather stations. As the name implies, it is not only a barometer but also a barometric recorder. While the ordinary
barometer is also employed, the barograph has become an actual necessity, as it makes a continuous record of the barometric oscillations, hour by hour, upon a sheet of moving paper. The design of Prof. C. F. Marvin, who has become so noted for the construction of meteorological apparatus, is employed.
In this form of the barograph the barometer tube is placed at the left of the recording section of the apparatus, suspended by a hook from what is known as a balance. The weight of the barometer tube upon the horizontal beam with which it is connected at the top is balanced by a rolling carriage and a fixed weight. The equilibrium of this carriage is maintained by a contact spring attached to a balance beam at the ex treme right and immediately over the recording cylinder. By the employment of this spring the carriage is moved into the proper position by means of a whee turned by a horizontal screw. Every time the carriage is set in motion by the disturbance of the equilibrium caused by the movement of the mercury, the spring closes an electric circuit, thus actuating a recording pen which traces the pressure curve, as it is called, upon the paper cylinder. Thus, the rise and fall in the mercurial column is noted. So delicate is the adjust ment of this instrument that it is affected by an atmospheric pressure as slight as the ten-thousandth of an inch.
One of the auxiliary instruments utilized at Washington and some of the larger stations is what is called an automatic sun photographer. This machine, which is illustrated in the accompanying photograph, is so designed that the intensity of the sunlight is photographed automatically, being reproduced on a strip of blue-print paper. Thus the record can be kept of the learness of the atmosphere at various points in the United States.
Another interesting form of mechanism in connection with the work of the Forecasting Bureau is the recorder attached to the weather kite, as it is termed. To the kite is fastened a small anemometer of the design shown in the illustration, which is connected by wiring to the recorder, which is inclosed in an aluminium case. It is modeled on the same principle as the quadruple register already described, but is only intended to note the direction and velocity of the wind, so that it is provided with but two pens for this purpose. With the kite instruments, much valuable data has been obtained at heights several thousand feet from the surface. Experiments on an elaborate scale are being made with it at the new observatory at Mount Weather, Virginia.

Fusibility of the Slag of Blast Furnaces.
The Revue de la Metallurgie contains an account of the researches of M. O. Boudonard on the fusibility of blast furnace slag. This fusibility is regarded as one of the most important properties of the slag for investigation. The fusing temperature of a slag should be about that of the metal. If too refractory, it necessitates a useless consumption of the combustible. On the other hand, a viscous slag, though much lighter than the metal, will form an emulsion with it, which subsists even after prolonged repose. Great fluidity is, therefore, necessary to avoid drawing off globules of metal held in suspension. The investigation has included the systematic study of the fusibility of the silicates of lime and of alumina, the aluminates of lime, and alumino-calcic silicates.

Brilliant effects for electric signs are now to be readily obtained with little cost by the use of small colored transparent caps which fit over the rounded ends of the incandescent bulbs. This permits the owner of a changeable electric sign to alter the legend at will and to indulge in the use of colors without the necessity of keeping on hand a large supply of colored lamps, some of which are very expensive.

Quadruple Recorder for Automatically Noting the Velocity and the Direction of the Wind, and if the Weather is Clear or Rainy,

Mechanical Outfit of the Government Weather Kite, Showing Instrument for Recording Wind Conditions When the Kite is in thic Air.

THE "EXPRESS" COAL-BAGGING LIGHTER FOR coaling war vessels in harbor.

The British naval authorities are experimenting at the Devonport dockyard with a new type of coal-bag. ging lighter for coaling war vessels when berthed or anchored in harbor.
The purpose of the invention is to provide means for filling bags with coal on boar the lighter without any recourse to shoveling, and the automatic transportation of these loaded coal bags directly from the lighter to the bunkers of the warship without any handling whatever at any intermediate points. Rapidity in loading has been the object on the part of the designers, and with this appliance there is assured a cosigners, and with this appliance there is assured a
con 60 tons an hour from each of the two transporters with which the lighter is equipped. The hull of the lighter resembles that generally adopted for this class of craft. It is constructed entirely of steel and can carry a maximum load of 1,000 tons of coal. It measures 145 feet in length by 36 feet beam and $191 / 8$ feet molded depth, and has a draft of 14 feet when fully loaded. The hull is subdivided by means of three transverse bulkheads into four main compartments. In the forward compartment is accommodation for the crew; that next aft contains the boiler and steam-raising plant for driving the hoisting mechanism, electric-light installation, etc.; the two center compartments contain the coal. In the center of the craft, at the bottom, is a small reserved space where craft, at the bottom, is a small reserve space where
the hoisting engines, pumping engines, condenser, and electric-light plant are placed. Above this area are the air-filtering and ventilating fan chambers. On the deck itself are two vertical towers or elevators fore and aft respectively for conveying the coal from the loading compartments to the warship alongside, while in the center of the deck are two slewing cranes for transshipping the coal from a collier to the lighter itself.
At the bottom of the lighter, extending practically its entire length on each side, and parallel to one another, are two galleries or filling rooms. These are about 7 feet in height, with a sloping crown at either side. On each side of this gangway are ranged benches at a sufficient height from the floor to enable the mouth of the sack when hung up to be just level with them. The crown of the roof slopes over these benches and the coal contained in the compartments above falls by gravity through orifices onto the benches and is raked by the men into the open mouths of the sacks. Along the edges of the benches where the coal bags are suspended are fitted bag holders which hold the mouths of the bags open to their fullest extent while the men are raking in the coal. In order to prevent the coal from falling onto the floor of the filling rooms; fixed and portable screens are provided.
As rapidly as the bags are filled they are mechanically lifted onto an overhead rail along which they travel to the foot of one of the vertical elevators by means of a reciprocating pawl device. These elevators extend to a height of nearly 45 feet above the deck of the lighter and are constructed of steel with a crow's nest at the top from which the operator can easily follow and control the conveying operations upon the deck of the warship. Hinged to each elevator is a radial transporter arm long enough to reach over the deck of the vessel alongside. This arm has a vertical travel of 30 feet up and down the elevator, so it can be easily adjusted to the most suitable height; furthermore, it is so arranged that it can be turned through a considerable angle. When out of use the arm is packed vertically up the side of the elevator tower, completely out of the way. Each elevator is fitted with a Mackrow-Cameron "Express", transporter capable of lifting 120 tons of coal in bags per hour.
At the top and the bottom of each elevator tower is a grooved wheel over which travels an endless chain provided at intervals with hooks. The bag of coal, upon reaching the base of the elevator, is caught up by one of these hooks and lifted off the overhead rail extending through the galleries and is immediately hoisted by the traveling chain up the interior of the tower until it reaches a predetermined point, where the radial arm projects. It is then automatically released from the elevator chain and directed onto the radial arm, along which it is run to the point on the deck of the warship where it is to be delivered. Trunks are provided for returning the empty bags as rapidly as their contents are discharged to the filling galleries, and the cycle of operations is repeated until coaling is completed.
The two slewing cranes are each of $21 / 2$ tons capacity and are of the high-speed Cameron type. They have a maximum overhang of 80 feet from the center line of the lighter, which enables them to reach well over the deck of the collier barge or other craft with ease. Their working, radius is any distance between 8 feet and 40 feet, between which limits the loads can be lifted and dumped. \cdots In' the case of a collier with the coal loose in the hold to be discharged into the holds of the lighter itself, there is a grab of one ton
capacity, though they can be utilized equally well in transporting bags of coal from a barge to the lighter or vice versa as required, and can if the exigencies so demand assist in the coaling of the vessel already being served by the elevators. The coal drawn from the lighter is shot into the hoppers of the lighter through large hatchways in the deck. Thus while the lighter is coaling the warship alongside, the slewing cranes can be simultaneously replenishing the hoping cranes can be simultaneously replenishing the hop-
pers of the lighter itself from the opposite side. These pers of the lighter itself from the opposite side. These
slewing cranes are each capable of handing from 50 to 60 tons of coal an hour.
Naturally, while coaling operations are in progress the air within the bag-filling galleries becomes heavily impregnated with coal dust. In order to insure a perfect supply of clean, fresh air within this area the dust-laden atmosphere is withdrawn from the galleries by the ventilating fans, passed through the filtering medium, and fresh air supplied in its stead.

The boat is lighted throughout by electricity, there being some sixty ineandescent lamps distributed through the loading galleries, engine and boiler rooms, and the crew's quarters. In order to facilitate coaling operations at night large arc lamps are fitted over the crow's nests on the elevator towers, and communication between the various parts of the lighter is afforded by electric bells and speaking tubes.

It will be seen that the transportation of the filled and the empty bags is entirely automatic throughout, the human element entering only in regard to the filling of the bags.
The bags of coal, upon reaching the warship's eck, are dumped down and wheeled away upon trolleys to the bunkers by the coaling crew. The designers recommend, however, that two ports be provided in the sides of the battleships through which the radial transporter arms of the elevators can extend and connect with a system of overhead runners fitted on board and attached to the skid beams so as to form a continuous bar. In this manner the bags of coal would travel from the leading rooms on the lighter direct to the bunkers and the contents be there discharged, by which arrangement intermediate handling would be entirely obviated and coaling considerably facilitated and expedited. Furthermore, the decks would be left quite clear and any necessity of clearing away ship's boats and gear, as is now usually the case when coaling is carried out on war vessels, would be dispensed with.

In the official trials recently carried out by the British Admiralty at Devonport for the purposes of testing the possibilities of this craft both in the coaling of war vessels and also the charging of the lighter itself from barges and colliers moored alongside, eminent success was obtained. In order to test the apparatus. to the utmost these trials wefe extended over a period of four months and tiń' each trial a new crew for operating the lighter was employed, so that it was impossíble for exceptional résults to be obtained owing tó the men becoming expert with the gear and conse: quently inore expert in its manipulation as a result of continual practice. In the first place, the elimination of the preparations heretofore incidental to the coaling of a warship, such as the removal of boats and davits, etc., was emphasized, since in no instance was it found necessary to disturb the vessel's equipment in any way, the transportation bar being projected through any opening in the ship's side capable of admitting a 2-hundred-weight bag. As the coaling crew became expert in the removal of the bags of coal from the outer end of the transporter speed in coaling was accelerated, and the facility and lighter labor involved in the task was rendered very apparent. The most noticeable feature was the speed with which the vessel could be coaled by this system as compared with the other methods in vogue in the dockyard, the capacity of the transporter far exceeding that attainable with the other processes.
In the course of the trials seven vessels of varying types were coaled, the quantity taken on board ranging from 1,000 tons for the "Duke of Edinburgh" to 172 tons for the "Monmouth." In the case of the former vessel the trial extended over six hours, during which time 609 tons were placed on board, the remaining 391 tons being taken on after the trial. The highest coaling speed was attained in shipping 705 tons on board the "Isis," when 41.75 tons an hour were placed on board from each transporter. In the final trial, in coaling the "Victorious" with 720 tons, the task was accomplished in 5 hours 40 minutes actual working time. Coaling was effected entirely by the transporters themselves without any assistance from the independent cranes. Had the crew been fresh the work would have been completed in shorter time; furthermore, the men had had but little experience in handling the apparatus. Trials were also made with the cranes for transshipping coal from barges to the lighter itself. On this occasion 580 tons were lifted onto the lighter in 807 trips, the average load each trip being 14.37 hundredweight or approximately 50 tons an hour. In the official tests of the gapacity of the grab 14.84 hundredweight was the average of forty trips:

Cobalt Mining in Canada.

The new mining region which is being explored in northern Ontario is perhaps as important from a scientific standpoint as from the fact that it is of con siderable extent. While the principal output has been silver, it is now known beyond question that the percentage of the cobalt in the ores is so high that this interesting substance will probably be utilized to a far greater degree in industries than ever before. While many reports have been current about the mineral wealth of this region, fortunately its natural formation as well as the mines which have been opened have been investigated by such experts as Prof. William Earl Hidden, of the London Geological Society, Dr Robert Bell, of the Canadian Geological Survey, and Prof. Nichol, of the Canadian School of Mines. All of \mathfrak{f} hese mineralogists concur as to the extent of the ore veins and the percentage of metal which they contain.
It may be needless to say that the small quantity of cobalt utilized in industries has been almost entirely in the form of an oxide. While it is known to form an alloy of a high grade when mixed with copper, iron, or manganese, and is superior to nickel for plating on metal, the difficulty in separating it from the elements with which it is usually combined has caused it to be employed almost entirely as a pigment. Porcelain is glazed with it, while the cobalt fused with borax results in a beautifully tinted glass. In a single year such a small quantity has been produced that less than fifty tons of the oxide are consumed by the various industries in America. The bulk of the oxide is imported, most of it coming from New South Wales, Switzerland, and New Caledonia.
Those who are familiar with the geology of Ontario are not surprised that the ore deposits in the vicinity of the town of Cobalt should prove so extensive. The new mining center is but 90 miles northeast of Sudbury, which, as recently stated in the Scientific American, has become one of the greatest nickel-producing centers of the world. The rocks of the Lower Huronian age and the Keewatin formation come to the surface for a considerable distance in the vicinity of Cobalt, outcroppings of ore having been found as high as 500 feet above Lake Temiskaming, while workings n the lake itself have also yielded ore of a high grade. Although the principal mining operations at the present time are being conducted immediately around the town of Cobalt, ore containing a large percentage of not only cobalt and silver, but also some gold, has been found at Ingram, 30 miles north of the present field, while a vein has also been located 30 miles south, which gives 9 per cent cobalt, 7 per cent nickel, 23 per cent arsenic, with a mere trace of silver, but averaging nearly $\$ 10$ worth of gold to the ton. While the entire region about these points has been but partially examned, the experts to whom we have referred believe that the Huronian and Keewatin strata, which contain the ore, extend near enough to the surface to make the ore-bearing region fully 60 miles in length and of unknown width.
As we have stated, the examinations of the veins thus far opened have been sufficiently exhaustive to give an idea of the character and grade of the ores, while a number of the mines has been opened to a sufficient extent to make a conservative estimate of the possibilities of the output. While silver is the principal output, the ores are remarkable for their diversity. They include native silver, smaltite, niccolite, argentite, cobalt bloom, nickel bloom, millerite, dyscrasite, galena, copper and iron pyrites, and zinc blende.
The principal vein stone thus far found is calcite, while considerable quartz is taken out mingled with the ores. Some of the outcrops so closely resemble pure silver that very exaggerated statements have been made as to the richness of the field. It has been claimed that pieces of ore have been taken out that are practically pure silver weighing as much as 150 and 200 pounds, but as a matter of fact no nuggets of pure metal anywhere near these dimensions have been obtained in the opinion of the mineralogists. The analyses of quantities of ore taken from different portions of the field give the clearest idea of the proportions of the various metals. A carload of ores taken at random from a series of five veins at Cobalt showed the following percentages when analyzed: Silver, 11.41; cobalt, 11.27; nickel, 3.78; arsenic, 44.16

It will be notice in this carload the percentage of cobalt nearly equaled that of silver. A carload from another portion in the vicinity, however, gave 15.6 per cent of cobalt, merely a trace of silver and 61.74 per cent of arsenic, the percentage of nickel being 7. These figures can be taken as a fair standard of the grade of ores in the district, although some of the mines contain a considerably larger percentage both of silver and cobalt. The bulk of the ores is transported to New Jersey for reduction, the average cost of transportation per carload being $\$ 150$. The quality of the metal thowever, is such that, the several mining companies have been. sepding not only the first-grade but their second-grade ores to be treated, as the secondgrade assays from $\$ 200$ to $\$ 300$ per ton.

La Rose mine, which was the first to be opened and has been worked the most systematically thus far, fur nishes at present the best illustration of the extent of the veins. The main shaft at this mine is down to 100 feet and drifts have been made for a distance of over 300 feet at this level. These drifts show that the vein of ore is as extensive and as rich as the portion which was first discovered. The mine was one of the series to be investigated by the mineralogists. Here the diamond drill has Hored to a depth of 350 feet, ore being found at the greatest distance from the surface The Tretheway mine contains ore of such a grade that 50 tons of it have actually yielded 190,000 ounces of silver, in addition to 12 per cent cobalt and $31 / 2$ per cent nickel. Like most of the other operations in the district, however, this mine consists of merely an open cut which at the present time is 60 feet in length and 25 feet in depth; the vein of ore averages but 8 inches in width, which will give an idea of the percentage of metal which it carries. The veins thus far located hroughout the district are not noted for their size They average from 10 to 12 inches, in one or two in stances widening to 18 inches. The geologists are still in doubt as to the formation of the veins, but believe they were created by the action of highly heated water which permeated the narrow vertical fissures where they are found. These fissures cut through the rocks of the geological ages to which we have referred.
Owing to the presence of so much ore near the sur face, mining operations in the Cobalt district are notable for the crude methods employed. As already stated, the majority of workings are practically on the surface, the earth and rock covering being stripped off and open trenches dug to conform to the size and direction of the vein. Some of the largest producers have not been mined to a distance of 25 feet below the surface as yet. The system usually employed in get ting out the ore from these workings is to utilize explosives, sometimes the pick, to loosen the formation, when it is loaded into buckets and hoisted by means of a boom derrick to the top. The windlass operated by hand-power is one of the common methods. Sidings of tramways have been laid from some of the larger mines to the Temiskaming and Northern Ontario Railway, a line which the Canadian government has built through this district from Toronto.
At La Rose and a number of the deeper mines where shafts have been sunk, the ore extracted from the chambers on the various levels is carried to the foot of the shaft by wheelbarrows, loaded in the buckets, then hoisted by windlass and cable to the surface, a steam engine of suitable horse-power being installed for this purpose. The buildings at the larger mines consist merely of the shaft house-a frame shed covering the mouth of the shaft and hoisting machineryand stock house where the ore is broken up into suitable sizes and sacked for shipping to the smelters. Some of the companies have not even provided storage for the ores, and it is a common sight to witness ores containing $\$ 2,000$ and $\$ 3,000$ per ton in silver lying in bags in the open air awaiting opportunity to be hauled to the railroad station.
Owing to the difficulty of securing the cobalt and nickel by the process employed at the New Jersey smelters it is understood that a very large proportion of these valuable substances is wasted in the effort to obtain all of the silver which is contained in the ore. A reduction works is now in course of construction at Cobalt in which the German process utilized in treating what is known as Saxon ores will be employed. It is known that by this process ores containing cobalt, arsenic, and silver are so economically treated that nearly all the cobalt and silver are saved. The mining department of the Canadian government has taken up the project and the works are being constructed under the supervision of two German metallurgists who are familiar with the treatment referred to.
Readers of the Scientific American, however, are aware that Thomas A. Edison has been making an elaborate series of experiments for several years with the view of producing an electric storage battery which will be more economical and durable than the types now used for commercial purposes. From time to time reference has been made to the work which Mr. Edison is doing. It is known that during the last year he has made several examinations of mineral deposits both in the United States and Canada. In a recent interview he made the statement that he had discovered a substitute for lead which would revolutionize the storage battery. The metal which he intends utilizing is cobalt, and it is evident that he has discovered a process by which it can be secured from the ore in such a form that it is available for his purposes. The cobalt contained in the various nickel ores thus far exposed in the United States, however, is insignificant compared with the extent of the ores in the new mining district. As Mr. Edison made the statement referred to after he had visited this section of Canada, it is probable that he will utilize a portion of its output in the new battery which he announces he is about to manufacture. The advantages of this battery over the majority of types in use can be appreci-
ated when his statement is quoted. This is to the effect that for $\$ 200$ a battery can be constructed and equipped which will supply motive power to propel a vehicle for two passengers a distance of 100,000 miles before another need be substituted. In other words, by the use of cobalt Mr. Edison believes he has found what might be called a permanent battery.

(Tomeghrontente.

Esperanto Granmmars.

To the Editor of the Scientific American
Doubtless you have long ago formed your opinion as to the merits of Esperanto, the international language. I hope that it is favorable; but as there is much irresponsible criticism of Esperanto, I want to offer an opportunity for every thinker to judge for himself. I have had prepared 100,000 brief grammars of the language in pamphlet form, and will send one free to any person who is sufficiently interested to ask for it, inclosing stamp for reply. I think it really due to this great movement for an international auxiliary language, which now embraces thirty nations in its scope, that you publish this letter, so that your readers may have the opportunity of judging for themselves.

Arthur Baker,
Editor L'Amerika Esperantisto
(The American Esperantist).
Oklahoma City, January 15, 1907.

Perhydrase Milk.

To the Editor of the Scientific American :
In your current issue we find an item relating to perhydrase milk, in which you state that the cost of this milk is about four or five cents higher per liter than that of ordinary milk. However, this is erroneous, since there is an increase of four to five pfennige, or 1 to $1 \frac{4}{4}$ cent, only per liter.
You state further that "perhydrase milk must be kept in a dark place. Exposure to light will give it a bitter taste." This refers not only to perhydrase milk, but to milk in general, as Drs. Römer and Much have ascertained by numerous tests. If any milk is exposed to light, even for a short period, it acquires a bitter taste and becomes injurious to health, while if kept in a dark room, it remains sweet. They therefore recommend the use of colored, preferably dark red or dark green, glass bottles for the keeping of milk; while if kept in the ordinary white bottles, or in bottles of blue glass, milk will "turn" after a short time if exposed to light.

These remarks may prove of interest to your reader

New York, January 17, $1907 . \quad$ C. Bischeff \& Co.

Supplementary Railroad Signals.

To the Editor of the Scientific American
Considering the recent railroad collision accidents in this locality, it has occurre to me the following plan of signaling might be used advantageously.
Place two electric lights, one red, the other white, on each telegraph pole on the line of the railroad be tween all stations, to be connected at the stations with any electrical plant sufficient to light the signals from one station to the other (when found that it was needed). Should the signal agent find that he had made a mistake, or for any other reason wish to stop the train, touching the button in his office will light all red signals instantly ahead of the train that has passed him. The engineer seeing this will know that he must be cautious, and go slow or stop for further orders. Then, when all things are righted, turn on the white light and permit the train to continue.
I suggest this as an additional safety signal, wher there is now in use the block system, and also where there is no block system at all. If there could be electricity used between stations by the engineer, he could connect to these same wires and give signals himself to other trains "fore and aft." This would be essential in cases of wrecks or other delays. I believe, if this plan had been put in use, President Samuel Spencer anc party would be alive to-day.
R. Mays Cleveland.

Marietta, Greenville County, S. C.

The Current Supplement.

The opening article of the current Supplement, No 1622, describes a German coal-tipping device. The sec ond installment of the article on the new incandescent metallic filament electric lamps is published A. Frederick Collins gives full details of the location and erection of a 100 -mile wireless telegraph station. This article should be read in connection with that by the same author published in Scientific American Supplement No. 1605, describing in detail the design and construction of a 100 -mile telegraph set. F. E. Junge gives some considerations affecting the application of waste gases for power purposes. Jacques Boyer writes on mushroom culture in France. Just as the living organisms of man and animals and
plants suffer various changes as the result of disease so also many of our manufactured products are sub ject to undesirable changes in their character. Bread is among these. The diseases of bread are accord ingly made the subject of a very clear and instructive article. A very good article is published on hard solders, and some excellent formulas are given. Mr. V. E. McCourt writes exhaustively on the origin, occurrence, and chemical composition of peat.

The Automobile Races on the Ormond-Daytona

 Beach.The races this year on the Florida beach were by no means as interesting as heretofore. The only cars to compete were a few stock machines and the rebuilt, cigar-shaped, Stanley steam racer that last year covered a mile in $281-5$ seconds-at the rate of 127.6 miles an hour. A special light-weight racer fitted with an air-cooled, 8 -cylinder, V motor, and a Curtiss motor bicycle with the same type of engine, did not succeed in breaking any records.
First of the races to be held on Tuesday, January 22-the first day-was a 5 -mile race from a standing start. This was won in 4 minutes and 25 seconds, or at a rate of speed of 67.9 miles an hour, by E . B. Blakely, a young Harvard student, driving a 70-horse-power American Mercedes. A 20-horse-power English Rolls-Royce was second, and a 30 -horse-power Stanley steamer third. The 5 -mile open championship with flying start was won by F. H. Marriott, driving the special Stanley racer, in 4 minutes and $44 \% / 4$ seconds-a speed of 80 miles an hour. Capt. C. E. Hutton, on his 20 -horse-power Rolls-Royce, was second in 4:52 4-5, while a 30-horse-power Stanley again took third place. A one-mile race with flying start was won by W. Durbin with a Stanley racer in $532-5$ seconds. The 30 -horse-power Rolls-Royce was second and a 30 -horse-power Stoddard-Dayton third in this event. The second best time of the day- 3 minutes and $514-5$ secends-was made by Marriott with the Stanley racer in a 5 -mile match race. He beat Blakely, on his 70-horse-power American Mercedes, by but 5 seconds, however. A mile race for stock touring cars was won•by Ralph Owen driving the same Oldsmobile touring car with which he recently completed the strenuous journey from New York city to Ormond Beach. His time for the mile was $1: 12$. Thirty-horse-power Winton and Wayne cars were second and third respectively.
The chief event of the second day was a 10 -mile race in which the Stanley freak racer blew out a cylinder head after the first half mile, breaking the rear part of the chassis and damaging the engine beyond repair. Three other Stanleys in this race broke down and had to be towed to the garage. The race was won by the 70 -horse-power American Mercedes by less than 10 seconds from F. E. Stanley, who drove one of his own 30 -horse-power cars, notwithstanding that the steam machine broke its pump rocker arm just before it finished. A 50 -horse-power Welch touring car was third. The time of the winner was $7: 421-5$, which means a speed of 77.8 miles an hour. A 20 -mile race with one turn for American touring cars was won by the 50 -horse-power Welch in $22: 324-5$, or at a speed of $611 / 2$ miles an hour. This is a new record for stock touring cars of but 50 horse-power. An international touring car race (distance, 20 miles) was won by Hutton on his RollsRoyce in 23:5 2-5. Curtiss, on his 2-cylinder motor bicycle, made a mile in $462-5$ seconds, and went ahead of W. Ray, who drove a 2 -cylinder Simplex, by about 50 feet. On Friday, however, Ray made a new record of $442-5$ seconds for the mile, which corresponds to a speed of 81 miles an hour.
On the third day of the races, Thursday, the 70-horse-power American Mercedes, driven by Blakely, won the 100 -mile race, including seven turns, in 1 hour, 26 minutes, and 10 seconds, at an average speed of nearly $691 / 2$ miles an hour. The Rolls-Royce car was second in 2:02:35, and the New York-Florida Oldsmobile third in $2: 57: 40$. The 10 -mile open handicap was also won by Blakely in $13: 59$. The Stanley racer did a mille in $314-5$ seconds, and F. E. Stanley drove his 30 -horse-power machine a mile in $452-5$ seconds, thus making a new record for steam touring cars. On Friday, January 25, the last day of the races, a special 6 -mile match between two 30 -horsepower runabouts was won in $7: 353-5$, and the English Rolls-Royce stripped touring car defeated a 30 H . P. Franklin touring car in like condition by running 12 miles in 13:12 2-5. With the repaired Stanley racer, Marriott came within two-fifths of a second of equaling his record of last year. In a second attempt later in the day his machine struck a bump while running very fast. This threw it high in the air, and caused it to overturn and roll over and over when it again struck the ground. Marriott was thrown free of the remains of the racer. He was severely, though not fatally, injured. This accident will no doubt nut an end to attempts at attaining tremendous speed with freak machines. One of the other Stanley racers made a mile in 35 seconds, or at a rate of 102.8 miles an hour.

THE SEA-RAFTS OF THE NORTHWEST.

by day ahev whuey

In addition to the square timbers, planking, and boards cut for buildings, bridges, and other purposes in Washington and Oregon annually, a very large quantity of material for piling and telephone and telegraph poles is secured from the forests in the Puget Sound country and along the Columbia River. Until recently most of this timber was transported to market in sailing vessels and steam barges, as it is used principally in central and southern California.
The cost of transportation by steam and sailing vessel, and the limited capacity of even the largest craft for this kind of freight, caused some of the companies engaged in getting out poles and piling to design what are called in the Northwest sea rafts. As the accompanying illustrations show, these rafts are of truly enormous dimensions, and in shape closely resemble a cigar, tapering to a point at both ends, thence gradually enlarging to the greatest diameter at the center. While the sea rafts are of varying sizes, the smallest usually contain at least 5,000 pieces of timber, ranging from 80 to 110 feet in length and from 8 inches to nearly 2 feet in diameter at the butt. Con sequently, some of the rafts made in this peculiar fashion are near ly as long as the largest transat lantic liners, measuring n o less than 650 feet from end to end. So compactly are the poles ar ranged, however, that the greatest diameter is not over 60 feet; but, as the photo graphs show, the enormous weight of the wood forces a raft down in the water until the highest portion is rarely over ten feet above the surface. To fasten such a brick wall, the end of each stick being placed opposite raft so that it will withstand the force of the seas to which it is exposed in the trip down the coast from the Columbia River or Puget Sound to San Francisco and the southern California coast, no little engineering skill is required. As the cigar shape offers less resistance to the force of the waves than any other, this has been adopted. In order to pile the timber in this form, a huge skeleton or shipway, as it would be nautically termed, is constructed. This is practi-
cally a cradle, which is moored in the water adjacent to the boom where the raft timber is confined. By means of a boom derrick of suitable dimensions and power, the poles and piling are lifted from the boom singly and placed in the proper position in the cradle. They are so adjusted as to overlap each other, the plan followed being somewhat similar to that in laying a

Part of a Completed Raft, Showing the Method of Binding It Together with Chains and Wire Cables.
ed taut by a hand or steam windlass. To prevent the chains from slipping, iron staples are driven through the links into the outside poles. In addition to the chains, however, "side lines," as they are called, consisting of wire rope are stretched around the raft between the chain sections, so that when the wrapping is completed, the mass of logs is bound together very securely. When the wrapping is finished, the raft is ready for launching. The cradle in which it has been formed consists of two sections held together at the bottom by bolts. To each bolt is attached a rope; and when the raft is ready to be floated, it is necessary only to pull on these ropes. The bolts then slip back in their sockets, and the two sections of the cradle fall apart, ready to be towed away by tugboats. In building the raft, however, two 2 -inch chains are stretched lengthwise from end to end through the center. One of these is bolted to a sort of bulkhead at one end, consisting of a band of iron, which is fitted around the projecting ends of the outer pieces. The other chain, called the "towing chain," is connected at the forward end with the towing hawser, and secured inside the raft by lateral chains which extend also from side to side, being fastened to those which encircle the raft. In this way the towing strain is well distributed, and is not borne merely by the bow end. To move this unwieldy bulk, two powerful steamers are usually employed at sea, one for pulling directly ahead, and the other to aid in keeping the raft in the right course, especially in rough weather. But a comparatively small portion of the surface is exposed to the seas. Otherwise it would be impossible to transport the timber in this form. On the other hand, the depth in the water allows only a very slow rate of speed to be maintained. The average time required between the lumbia River and San Francisco, for example, is from ten to fifteen days according to the weather, although the distance is only about 750 miles.

The Columbia River rafts are put together at a town called Stella, which is located in the lumber country about forty miles from the mouth of the river. These rafts are the largest which have yet been transported down the coast. One which was sent to San

Building a Big Sea-Raft on the Lower River.

February 2, 1907.
Francisco contained no less than 800,000 linear feet of lumber, to be used for wharf piling. If the piles which it contained were stretched in a row, they would actually extend a distance of nearly fifteen miles. The majority of these rafts have been safely taken to their destinations, although one or two have gone to pieces. Where such accidents have occurred, the mass of timber has covered the ocean for a distance of many miles, and has formed a very dangerous menace to navigation. For this reason an effort has been made by other transportation companies to have a law passed in the States of Washing. ton and Oregon, preventing the building of the sea rafts, on the ground that they are a menace to n a vigation. Thus far the agitators of this movement have been unsuccessful.

Helmet and Jacket Combined; the Tube is Supported by the Belt to Avoid Dragging Upon the Helmet.

Scientific American

BREATHING MASKS AND HELMETS.
by w. g. fitz-gerald.
One of the most interesting and curious of all industries is the manufacture of smoke helmets, smoke jackets, artificial respirators, anc self-contained breathing apparatus generally, such as are used in mines of

The " Complete Mask" Type of Breathing Apparatus
of Vulcanized Rubber.
all kinds, collieries, gas and chemical works, fire brigades, sewerage works, ships' coal bunkers, the ammonia chambers of refrigerating factories, steel works, breweries, well-sinking plants, and other industrial concerns.
The curious gear is intended to supply the user with factitious but perfectly respirable air, more or less independent of ariy c onnection with the outer a t mosphere, for about four hours at a stretch. Some varieties, like the FleussDavis patent, have no air pipe or other c o n nections with the base of operations, so that for exploring and rescue work in mines, etc., its scope of usefulness is practically unlimited. The wearer, with his cylinder 0 f compress e d oxygen, is perfectly safe in the most deadly gases, and can walk any

Breathing Device for Use
Reviving a Victim Overcome by Poisonous Gas by Means of Supplementary Oxygen Supply.
Type of Helmets Used in German Fire Departments.

Passing an Unconscious Miner Through a Heading Out Into the Open Air.

Penetrating to the Scene of a Disaster in a Coal Mine.

Taking a Vietim of a Mine Accident to the Surface, Strapped Upon a Stretcher.
distance and explore the most intricate turnings of a mine with every freedom of action.
The principle of the Fleuss-Davis apparatus is that its wearer breathes the same air over and over again; the carbonic acid being absorbed from it after each expiration, by means of the charge of caustic soda in the breathing chambers, and at the same time the requisite amount of oxygen is restored to it from the steel cylinder carried, thus rendering it pure and fit to be inhaled once more into the lungs. In some cases where this apparatus is to be used in remote places, in which it would be impossible to get the oxygen supply cylinders recharged, a regular plan goes with the apparatus for making oxygen and compressing it to 120 atmospheres. There are no objec tionable nose clips and mouthpieces, and the worker's breathing goes on quite naturally.
He may if he wish carry a special telephonic ap paratus and self-contained electric hand lamp, which burns eight hours continuously with one charge. His queer-looking apparatus includes a steel cylinder con taining a full charge of oxygen compressed to 120 at mospheres, and also a charge of caustic soda for the breathing chambers.
The question of renewing the oxygen is often a serious one, say in the remote mining districts of South America, where the complicated and tiresome processes, involving the use of chlorate of potash as a generating agent, with retorts, a furnace, purifiers, and the like, would prove costly and difficult for the manufacture of oxygen on a small scale Some shipping companies absolutely refuse to carry com pressed oxy: gen in ste el cylinders; but now a new ubstance, nown as "oxylithe," has come along, affording a simple and effective means of producing oxggen gas with the minimum of trouble. The stuff is prepared in small ares r a y or immediate use, and on coming in conact with water it gives off chemically pure oxygen in he same way hat acetylene gas is produced from calcium caride except that there is absolutely $n 0$ lement of danger in the preparation; thus storage cylinders are
rendered unnecessary These breathing apparatus ar made in many varieties, according to the type of work for which they are needed. Another consists of a water and air-proof helmet and jacket in one piece The helmet is very light and strong, and is perman ently attached to a jacket of stout yet supple leather or material consisting of India rubber between two ayers of tanned twill
The helmet has an air inlet connection, to which the air tube is attached; the interior being so constructed that the air pumped in is at once, while quite resh, distributed over the wearer's face, while the vitiated or excess air is passed through an outlet valve There are windows of clear mica; and with this type there is absolutely no weight on the worker's head.
The air-supply apparatus can be worked either by hand or foot, and gives an ample volume of air under all conditions. The rubber air tube is of the noncollapsible kind, and ic fifty feet in length, with extra lengths as required. It is fitted with a coupling at each end for connecting the helmet and air apparatus; and there is a leather waist belt, fitted with a device for holding the air tube securely in position and pre venting it from dragging on the helmet.
Attached to the latter there is a special telephone for connecting with the attendant. Next we hav what is known as the "complete mask" type of breathing apparatus. The mask is of strong vulcanized India rubber, so constructed as to be shaped to fit any face comfortably. It has an air inlet valve, and also an outlet valve for the disposal of vitiated air, mica goggles, and a device for quickly securing the mask to

Special Device for Working in Non-Respirable Gases Which, However, Do Not Affect the Eyes.
the face. If two workers are to be supplied with air at once, this is done by means of a double-acting hand bellows.

A much more powerful air supply, however, can be given if desired by the ordinary air pump used by divers, and this is desirable when the workers in non-respirable air are at a considerable distance from the source of supply. A special respirator is provided for men who work in noxious gases that do not affect the eyes. It consists of a very light mask covering nose and mouth, and intended originally for the use of gas men engaged in tapping mines. Obviously, however, it can be used for other work of a noxious or poisonous nature. The wearer draws his supply of air through a short, light and flexible tube fitted to an inlet valve on one side of the mask, and exhalation is through an outlet valve and tube fitted on the other side. Both tubes pass over the man's shoulders, are held together by a small clip, and are led a few yards outside the mephitic area to the fresh air. In most cases the second tube can be dispensed with; the outlet valve line being quite sufficient to carry away the vitiated air.
Of course this type of respirator can be used only in cases where its wearer is but a very short distance from fresh air. There is hardly a coal mine in the world, a gas or chemical works, fire brigade, or refrigerating plant using ammonia chambers, which is not now equipped with this strange-looking apparatus; and many hundreds of human lives have been saved by its aid. Indeed, on ocrasion a grave catastrophe has been averted. A case in point was the
errible fires, some of which have raged for twelve months without going out.
Last December a fierce rush of flame shot through one of the galleries, entirely imprisoning about sixty workers. The blaze was of short duration, but the galleries were filled with acrid smoke, seemingly as poisonous as the fumes of picric acid. It was evi dent that the imprisoned men could not live long in such deadly vapors. One hero after another endeav ored to get through by holding wet cloths over his face, but after a hundred yards or so he would fall unconscious, and all but lose his life.
Finally half a dozen artificial respiration apparatus were brought from the town, and like a flash men had donned them, and were racing in security through the dense poisonous smoke wreaths. They soon came pon the bodies of their comrades, some of them propped against the side of the workings, and others tossed this way and that on the mud floors as though in sleep. All but three or four of the men were got out alive, and a short but energetic treatment soon restored them to consciousness.
As to the work of the fire brigades of the world with these smoke helmets, smoke jackets, and respirators, this is too well known to be more than mentioned here. A passing word must be said, however, about the duties of men who work in the ammonia chambers in refrigerating factories; without this strange-look ing gear such labor would be absolutely impossible. Then there are many trades and industries, like the making of cordite and other high explosives, as well as the manufacture of grindstones, which imperatively call for the use of such protection for the hands employed.
As said be fore, in cases where the wearer must penetrate for longer dis. tances into a a o n-respir able atmosphere, the supply of oxygen must be self-contain ed in the appar atus. We il lustrate here with several German devices of this character. The oxygen is us ually com pressed and carried in light metal cylinders, being discharged a s required through a suit able valve to the moutr piece. The apparatus some-
stopping of the flooding of the Severn tunnel by the famous diver Alexander Lambert-who, by the way, recovered nearly $\$ 300,000$ in specie from the wrecked steamer "Alphonso XII.," sunk off Grand Canary in nearly 200 feet of water.

During some repairs in the Severn tunnel a year or two ago, a certain door in the drainage quarter had been inadvertently left open, and water was roaring and racing through the shaft. Seizing a Fleuss-Davis apparatus, and fixing it in position on his face and back in a few moments, Lambert crept and swam nearly a quarter of a mile along the shaft, and by sheer strength closed the door, thus enabling the pumps to overcome the tremendous volume of water.

Again, everyone knows how poisonous the atmosphere becomes in a coal mine after an explosion; and less than thirty years ago, before apparatus for arti ficial respiration was invented, it was impossible for rescuers to venture down to the aid of men overcome by poisonous gases. To-day, however, the moment a catastrophe is known at the pit's mouth, volunteers put masks and helmets in position, jump into the cage and go down into the reeking depths, where no living creature could venture in the ordinary way.
Disasters have also been averted in the sewers of great cities, where hundreds of men are employed; in oil ships, and even in gold and silver mines. Last year fifty-seven men were rescued by these smoke jackets and helmets in the far-famed Broken Hill silver mines of Australia. Here are enormous underground workings supported by wooden pit-props. For some reason or other the Broken Hill is subject to

A Mask Without Helmet, of Vulcanized Rubber. This Device Can Be Adjusted with Great Rapidity.
times also includes an extra supply of oxygen for use in reviving persons overcome through the inhalation of noxious gases. The illustrations indicate the terrible difficulties with which the.rescuers must often contend in coal or other mines, after an accident of the kind to which such mines are liable. One of the engravings shows the type of helmet, not with a selfcontained oxygen supply, which has been adopted in many German fire departments.

Charles D. Walcott, the New Secretary of the
 Smithsonian Institution.

On January 23 the Regents of the Smithsonian Institution unanimously elected Charles D. Walcott to fill the place of the late Samuel P. Langley as Secretary of the Smithsonian Institution.
Mir. Walcott was born at New York Mills, N. Y., on March 31, 1850, and became an assistant in the New York State surveys in 1876. He was appointed assistant geologist in the Geological Survey in 1879, and took up a study of the Cambrian rocks, the oldest known on the globe. His paper presented before the Geological Congress in London in 1888 was epochmaki'ng concerning studies of these formations.
In 1894 Mr. Walcott became director of the U. S. Geological Survey, succeeding Major J. W. Powell.
To Mr. Walcott is due much of the success of the reclamation service, and under his direction this service has grown and increased until it now employs more than five hundred civil engineers and assistants in constructing works in all parts of the arid West, under an expenditure of upward of $\$ 1,000,000$ a month.

CONCERNING EARS.
 by r. lydekber.

Like many other terms in general use, the word "ear" has a double signification. In its wider, and perhaps proper, sense it denotes the entire organ of hearing, both external and internal. On the other hand, in its more restricted signification it is confined entirely to the outer or external ear; and it is in this sense that it is most generally employed at the present day, as witness the fact that both seals and whales are commonly spoken of as being earless animals, although their internal organs of hearing are very strongly developed. In our translation of the Bible we have examples of both usages. Thus the somewhat curious phrase "the deaf adder which stoppeth her ears" refers, of course, to the internal organ of hear ing, seeing that serpents have no external auricular appendage. On the other hand, in the reference to the cutting off the ear of one of the high priest's servants in the Garden of Gethsemane the term is employed in its more restricted sense, as denoting the external ear only. Similarly, when we speak of an animal having large or small or long or short ears, we refer solely to the external position of the auditory apparatus. And from the latter example it will be perfectly obvious that in its popular acceptation the word is now very generally, although by no means in variably (as when we speak of the "drum of the ear") employed in this narrower sense.
Naturalists have felt the difficulty arising from this diversity of usage, and are accordingly in many cases accustomed to refer to the external ear as the "pinna" or "conch," while that portion of the ear lying within the skull is referred to as the internal ear. There is, however, no uniformity of usage even among writers of this class; and in the ordinary descriptions of mam mals the term "ear" relates only to the external portion of the apparatus, as when we speak of the long eared bat or the long-eared fox.
As already mentioned, it is in this more restricted signification that the word is employed in the present article. And here it may be remarked that mammals (or quadrupeds, as they are commonly called) are the only animals that possess ears, in this sense of the term; the so-called ears of the long-eared and short eared owls being merely tufts of feathers, in no wise representing the mammalian ear. Curiously enough, this peculiarity is not given as one of the distinctive characteristics of mammals in at least many textbooks
Not that all mammals have ears (in the present sense of the term). To a certain number of species, owing to peculiar modes of existence, such appendages would obviously be not only inconvenient, but abso lutely useless, and they have accordingly been more or less completely discarded. The sea bears and sea lions (Fig. 1), which spend much of their time out of the water, are of special interest in this respect, as demonstrating that all earless mammals must be descended from ancestors with well-developed external ears. In the case of these sea bears and sea lions (hence collectively known as the "eared seals") the ears exist as tiny rudiments, which can be of no possible use to their owners, even when on land. Their presence sug. gests, however, that these animals have taken to an aquatic mode of existence at a later period than the true or typical seals, in which all traces of the ear have disappeared, as they also have in their cousins, the walruses. Whales, porpoises, dolphins, and their like afford other examples of aquatic mammals in which the ears have been completely lost; while the aperture of the internal ear is reduced to little more than the size of a pinhole. Not that we are to assume that whales and dolphins cannot hear; on the contrary, owing to the great sizes and peculiar shell-like form of the bones of their internal ears, it is perfectly clear that their powers of hearing must be very strongly developed, although it is by no means improbable that the vibrations of sound may be received and conducted from the water by the general surface of the body to the special organ of hearing.
Sea-cows, or dugongs, and manatees may be cited as other examples of aquatic mammals which have lost their ears; and since these creatures have no sort of relationship to whales and dolphins (beyond the fact that both are members of the mammalian class), it is quite clear that the loss has taken place independently in the two groups. The Australian duck-billed platypus is an exclusively fresh-water mammal in which the ears have completely disappeared; and other in stances of the same nature are displayed by certain shrew mice inhabiting the streams of Tibet, as well as by some curious water mice from those of the Andes. In all these instances the loss of the ears has, of course, taken place quite independently
Animals like the otter and the sea otter, which spend as much of their time out of the water as in it, present, as might have been expected, an intermediate condition in the matter of ears, these being smaller and more rounded than in many of their purely terrestrial relatives.
The loss of the ears is, however, by no means confined to aquatic mammals, as such appendages would
be just as much in the way, and every bit as useless, in the case of burrowing animals. Accordingly, we find that the ears have vanished in the moles of the northern hemisphere, in the golden moles of southern

Fig. 1.-head of SEA-LION, SHOWING THE RUDIMENTARY EAR.

Fig. 2.-the large ears of the reed buck.

Fig. 3.-head of wild sheep, showing the small SIZE OF THE EAR.

Fig. 4.-The white rhinoceros has a curious tubular ear.
and eastern Africa, in the marsupial mole of Aisstralia in the great strand mole of Cape Colony, and in the tiny and repulsive-looking natied sand rats of Somaliland. All these creatures, it should be observed, pass practically the whole of their lives underground; and
the absence of close relationship between any of them (some being very widely sundered indeed) affords conclusive evidence that in each instance the loss of the ears has been an independent adaptation to the needs of a speçial mode of existence.
On the other hand, in burrowing animals which pass only a portion of their time underground we find very variable conditions of ear development. For instance in the curious scaly anteaters, or pangolins, of Asia and Africa-creatures which look more like reptiles than mammals-the ears are very small, indeed, and must be almost useless. Accordingly, it is natural to suppose that these anteaters spend a large portion of their time in their burrows, as indeed appears to be the case. Again, in many of the South American armadillos, which may be found at all hours of the day above ground, although most, if not all, of them are burrowers, the ears are, on the contrary, very strongly developed, being in one instance so large as to have earned for their owner the name of mulita, or little mule. The ears are still larger in that most remarkable animal, the African ant bear, or aard-vark, which spends the whole of the daylight hours deep down in its burrows, but wanders abroad at night in search of the white ants on which it feeds. During its nocturnal wanderings large ears are probably essen tial to its safety; and when in its burrow these appendages must doubtless be in some manner foldel back so as to be out of harm's way.
Within the limits of particular groups, large ear:s may be taken, as a rule, to indicate either great power 3 of hearing or the necessity of catching every wave of sound. Thus, forest-dwelling animals generally have much larger, and especially broader, ears than their relatives inhabiting open country. An excellent in stance of this is afforded by the okapi of the Semliki forest, as contrasted with the giraffe of the more open districts of Africa-the ears in the one case being excessively broad and leaf-like, while in the other they are comparatively narrow and pointed. Similarly, Grevy's zebra, which inhabits scrub jungles in Somaliand and northeast Africa generally, has much larger and wider ears than the ordinary zebras of the open veldt.
In the larger hoofed mammals, coming under the designation of "big game," there is great variety in the size of the ears, which is not always easy of explanation, although it is probably connected in a great degree with the nature of the ground they inhabit. Remarkable contrasts in this respect are afforded by the reed bucks of Africa (Fig. 2) and the wild sheep of Central Africa (Fig. 3), the ears being as propor tionately large in the one instance as they are small in the other. As implied by their name, reed bucks frequent the dense reed brakes fringing many of the African rivers, and have, therefore, to depend in great part for safety on the acuteness of their hearing. Wild sheep, on the other hand, dwell on the open mountain plateaus, and rely chiefly on their senses of sight and smell for warning of the presence of enemies. It has, indeed, been suggested that the great spiral horns of the wild sheep of Central Africa act the part of megaphones in conducting sound to the small ears; but this theory not only requires proof, but is probably alto gether unnecessary. Rhinoceroses (Fig. 4) are remarkable for their tube-shaped ears; this is, however, only an ultra development of what occurs in the case of the horse. Among the smaller mammals, mention may be made of the desert-dwelling Yarkand jerboa and the African long-eared fox and fennec (which are also inhabitants of open country) as species furnished with enormous ears. In these animals, as in other long-eared species, the size of the ear is correlated with a great development of that portion of the internal organ of hearing technically known as the bulla (=bubble), which appears on the under surface of the skull as a bubble-like shell of bone. It might be thought that the long ears of the species just mentioned controvert what has been mentioned with regard to such a feature being characteristic of forestdwelling animals. That rule applies, however, only to large mammals, which are able to see considerable distances; smail creatures being deprived of this advantage and, therefore, requiring the aid of hearing to protect them in their exposed haunts.
The creatures that have proportionately the largest ears of all are certain kinds of bats, such as the European long-eared bat and the Indian false vampire, the ears in these cases being furnished with an additional internal organ known as the earlet. The value of long ears to nocturnal flying animals like bats is, of course, self-evident. It is, however, noteworthy that many kinds of bats, such as the horseshoe bat, are furnished with peculiar leaf-like organs on the muzzle, which probably enable them to find their way in the darkness without, or with little aid from, the sense of hearing; and among such species we accordingly find that the size of the ears is moderate. Certain bats are altogether peculiar in that the two ears are united for a greater or smaller length at their bases on the crown of the head.
In the great majority of the larger animals the ears
conform more or less to the ordinary conical and pointed type. A modification of this type also obtains in the lemurs of Africa and Asia; some of whichthe African galagos-share with certain bats the power of folding up their ears when at rest. On the other hand, when we reach the higher monkeys and apes, we find the ears assuming that flattened and depressed form characteristic of the human species, this type

WINDOW-BLIND GUARD.

being probably the one best adapted to an arboreal existence, at any rate in the case of comparatively large animals.
Adaptation to a life spent in the forest, where upright ears on the top of the huge head (which is used in pushing a way through the thickets) would be inconvenient and liable to injury, must probably be regarded as the reason why elephants have acquired ears of a flap-like and depressed type. No diminution in the power of hearing is, however, thereby induced, for when an elephant scents danger it immediately cocks its huge sail-like ears, and thus catches every available sound vibration.
If proof were needed that the size and upright position of ears is correlated with the necessity of catching all possible waves of sound, we have it in the fact that among domesticated animals there is a tendency for these appendages to drop, or "lop," as in the case of spaniels and rabbits. That the ears of spaniels and "lop-rabbits" tend to grow to a great size, has nothing to do with the argument, the excessive development in these cases being due, as in the tails of
very large trade of this character, the show is now recognized as one of the features in developing the industry. Seeing that the public is having its attention directed more and more toward scientific and mechanical progress, such as airships, automobiles, and the like, it is only natural that mechanical toys should figure somewhat prominently at the present exhibition. We illustrate some of the designs which attracted the greatest attention. One is a very ingenious device in the shape of a collapsible automobile, which is so built that it will run for a certain distance at a high speed and then suddenly collapse, throwing the chauffeur out and giving an excellent imitation of a real motor accident. Another is a model of a large-sized touring car, and the third a model of the Charron-Girardot-Voigt war automobile.

WINDOW-BLIND GUARD.

The fact that the ordinary hinges used on window blinds and shutters are inadequate for the office they serve, is often demonstrated in a high wind by the unhinging of a blind. In the usual construction it is the weight of the blind which keeps the hinges in place, and no provision is made for retaining the blind when the latter is accidentally lifted. To remedy this deficiency, a simple device has been invented, which may be attached to any blind hinge of standard make to guard against dislodgment. This window-blind guard is illustrated in detail in the accompanying engraving, which also shows the device in position on a shutter hinge. The hinge comprises the usual hanger, whose spiked end is driven into the window casement or the wall of the building. The hanger carries a pintle adapted to enter the eye or sleeve of the leaf hinge, which is attached to the blind. Between the sleeve and blind the guard is applied. The guard is made of stout wire bent to form a hook at the upper end, which hooks over the upper edge of the leaf. The lower end of the wire is formed with a finger, which projects approximately at right angles to the body of the guard. This finger is adapted to engage the under side of the hanger, thus preventing the leaf from being lifted off the pintle. The illustration shows the blind in closed position, and it will be evident that the blind may be opened without interference from the guard, whose finger will merely rotate with the leaf hinge while the blind is being swung open. A patent on this improved window-blind guard has just been granted to Mr. Louis D. Richardson, 789 Cranston Street, Providence, R. I.

A novelty which has been brought out during the present season consists of a skate which folds so completely that a pair may be carried in a man's pocket or a lady's muff. On the foot the folding skate has much the same appearance as the ordinary one, but upon being removed the portions by which it is attached to

CHUCK FOR ROCK DRILLS

The accompanying engraving illustrates a chuck of novel form adapted for holding rock drills with suffi cient yield to prevent their breaking under pounding or jarring straïns of the driving mechanism. The chuck is of such form that the drill may be quickly placed and securely held between two opposed springs.

One of our views shows a section of the chuck. It

CHUCK FOR ROCK DRILLS.

will be observed that the chuck comprises a tubular member formed with a circular enlargement. In the circular enlargement a transversely extending chamber is provided. Fitted into this chamber is a stud A, threaded at its upper end to receive a nut B. Between this nut and shoulder in the chamber is a split spring washer. In an opening in the stud A is a sleeve D, formed with a central rib, which is adapted to engage a groove E in the drill shank. The lower end C of the stud is threaded to receive a nut, and between this nut and a washer which bears against a shoulder in the chamber, is a coil spring. Collars are provided at opposite ends of the stud to prevent entire removal of the nuts. The latter are loosened when it is desired to insert a drill in the bore of the chuck.
The chuck and drill are provided with notches, which are adapted to be brought into alinement when the drill is inserted, so as to bring the groove E in proper position. The bore is slightly tapered to a larger diameter at its outer end. The nuts on the stud are now screwed down against their respective springs, and as one of the springs is stronger than

A Toy War Automobile.

A Model of a Comfortable Touring Car.
domesticated sheep, to a kind of degenerate or retrograde action. In this it has been possible to refer to a few only of the most salient points connected with the ears of mammals. The observant reader, when his attention has once been directed to it, will, however, not fail to find the subject an attractive one, wherein he may find a field of wide interest.

NEW TOY AUTOMOBILES

by our paris correspondent.

There has been held at Paris, during the last six years, an annual toy exhibition which is organized by M. Lepine, the Prefect of Police, and is intended to bring out the most interesting novelties of the year. Inventors, and especially the small manufacturers of toys, are encouraged by the models exhibited and the prizes which are awarded, and by the fact that the leading toy dealers visit the show and take up anything that seems novel. As Paris has a

The Collapsible Automobile Wrecked. the other, the shank of the drill will be pressed by the rib of sleeve D to the position illustrated, with the inner end bearing against the upper side of the bore at F, and the outer end bearing against the lower side of the bore at G. When the drill is in use it will yield against the action of the springs, and thereby serve as a cushion to take up any lateral strains which are imposed upon it. A patent on this improved

The Machine Before the Wreck.
the shoe are foldable so that they occupy a position parallel to the blade: Thus they form a flat shape less than a half-inch in thickness. A wallet is furnished with each pair, one skate being fitted into each of the pockets. It makes a parcel less than an inch in thickness and of a length slightly greater than that of the skate.
drill chuck has recently been granted to Peter McKay, of Day Dawn, Murchisor, Western Australia.

Cork forests exist in several parts of Morocco, and when order is established, and the cost of transport is lessened by the construction of roads and bridges, these forests may well be turned to profit.

RECENTLY PATENTED INVENTIONS. of Interest to Farmers.

GRAIN TRANSFERRING DEVICE.-B. B. Staufer, Wichita, Kan. The improvement
relates to self-feeders for threshing-machines. The object is to provide a transferring device or power-pitcher for carrying grain in the
straw from a stack or the like to the self straw from a stack or the like to the self
feeder of the threshing-machine in such man feeder of the threshing-machine in such manlayer to the self-feeder to insure a continuous and proper feeding of the grain without the aid of manual labor.
CUSHION FOR BALL-AND-SOCKET this patent the invention is an improvement in cushions for ball-and-socket joints, and is especially designed for use in mowing-machines and harvesters, having for an object the avoid ance of the extreme wear ordinarily ex
ienced in the use of ball-and-socket joints.

Of General Interest.
OIL-SHELL-C. A. GLever, Bellport, N. Y The shell is adapted to contain oil and to be fired from a cannon or mortar over a body of
water to distribute oil thereupon at a point water to distribute oil thereupon at a point
distant from the shore and is so constructed that during the major portion of its flight the outlet for the oil will be closed but automat
cally opened at or about the time the shel strikes the water, thereby permitting the oil to spread upon the rough element and quiet it.
pole-Splicing device.-F. N. Drane, Corsicana, Texas. The device is for use in
plicing telegraph or other poles to timbers, concrete, or the like. Clamping means are provided by which the main pole may be firmly
secured to a new butt, replacing the original butt that may have become rotte in the ground, thus obviating the expense of a new new poles too short but otherwise good may be spliced to useful lengths.
CALCULATOR.-K. H. J. Marcimerdt, o calculators, such as shown and described in the application for Letters Patent of the United States formerly fled by Mr. Marckwordt. The object of the present invention is and accurately carrying out a large number of arithmetical calculations, such as calculat-
ing wages, volumes, multiplication, degrees of ing wages, volumes, multiplication, degrees of
alcohol, lumber measurements, degrees of sugar pulverization, and the like.
FOLDING SHAVING-ERUSH.-H. M. RyneAart, New York, N. Y. The purpose of the ingention is to provide a construction of shav ing-brush wherein while the handle remains
attached to the body of the brush at all times the handle may be closed around the body of the brush when the brush is not in use t
shorten the brush and protect the bristles. horseshoe.-J. f. Robinson, Rockaway, struction of horseshoe of rubber having a metal skeleton core of horseshoe-shape, the ends of the core being connected by a bar member, so as to strengthen the shoe at its
heel-section, the core being made of malleable or soft iron, so that after the rubber is cast upon the iron the shoe may be contracted or expanded to neatly fit the shape of the foo
to which it is to be applied. INSECT-TRAP.-Q. R. Jenes, Yosemite, Ky. This invention pertains to improvements in devices adapted to attract and destroy in
sects-such as mosquitos, moths, and the like the object being to provide a device of this character which will be simple in construction, and convenient for use in sleeping-ro
the like. It can be readily cleaned.

Hardware.

HiNGE.-S. N. Stevens, North Chelmsford,
and E. P. Flanders, Lowell, Mass. The inention is particularly applicable to those used for the support of blinds or shutters. Its
principal object is to provide a hinge embody principal object is to provide a hinge embody-
ing means for securing the blind at various ing means for securing the blind at various
angles. The improvement renders it difficult to angles. The improvement renders it
raise or open the blind from outside.

Heating and Lighting.
Air-heater.-E. T. Slaughter, Kansas City, Mo. The invention is an improvement in air-heaters in which cold or relatively cool
air is passed over or through a drum or other form of casing heated by a gas or other burner, the air escaping in a heated condition into the room in which the heater is located or into a pipe leading therefrom to another heat and economy of construction of the heater
are obtained.

Machines and Mechanical Devices.

GAS-GENERATING RETORT.

Stewart, Oakland, Cal. The device is espe-
cially adapted for use in connection with cially adapted for use in connection with gas-
engines, heating, lighting, or other uses for engines, heating, lighting, or other uses for duce gas for use in gas-engines, the heat in the duce gas for use in gas-engines, the heat in the
waste gases drawn off through the exhaustpipe may be used to convert the gasoline, disas for such use and for any other purpose for which gas is desired.
bOAT-PROPELLING MECHANISM. - R. seated on the stern-sheets of a boat or, if
sired, two operators, one seated on the stern
sheets and through means of a transverse handle and its rotary movement to a crank-shaft and to iropelling-shaft, coupled thereto. In this
ner the propeller may be rapidy driven.
SAWing-machine.-B. E. Harreld, Eldon, Iowa. In this instance the invention is an
improvement in machines in which the saw is mprovement in machines in which the saw is re provided for raising and lowering the saw allow the insertion of a log or stick be ion thereon.
MACHINE FOR MAKING FENCE-POSTS. R. L. Dennison, Kansas City, Mo. In th in machines for making concrete articles, and is especially designed for the manufacture of fence-posts from shale and other plastic material. The interiors of the mold-bozes are end to end.

Prime Movers and Their Accessories.
ROTARY ENGINE - E. NELSeN, Driscol, . Dak. The construction of this rotary en gine comprises two cylinders communicating mounted. These rotars two rotators are teeth which intermesh so that the rotators
otate in opposite directions. Each rotator is rotate in opposite directions. Each rotator is
formed with projecting piston heads at diarmed with projecting piston heads at also
ametrically opposed points on its face, also ametrically opposed points on its face, also
midway between these heads with grooves adapted to receive the piston heads of its fellow rotator. Steam may be admitted either above or below the point of engagement of the rotators, thus governing their direction of rovided between the ends of the cylinder and the rotators.
Current-motor.-J. W. Laurent, Spokane, Wash. The invention refers to improveing streams, the motor being especially adapted or elevating water for irrigating purposes, the object being to provide a current-motor that
will be self-regulated to the rise and fall of the water and that may be operate by a comparatively light current.

Railways and Their Accessories.
RAIL-JOINT.-ANNA E. Boman, Fargo,
D. In the present patent the invention N. D. In the present patent the invention has reference to railways; and its object is to pro-
vide a rail-joint arranged to allow ready exde a rail-joint arranged to allow ready exand to prevent the undesirable clicking when the car-wheels pass over the joint. The joint is practically sufficiently flexible to accol
date the usual movement of the rails. AUTOMATIC AIR-BRAKE FOR CARS.W. J. Dankel, Pittsburg, Kan. The inventor he piston-rod which actuates the brake-leve carries a piston, which plays between two air chambers one on one side containing com-
pressed air, which in expanding applies the pressed air, which in expanding applies the
brake, and the one on tue other side of the brake, and the one on the other side of the
piston being connected through a valve with the train-pipe, so th t when the pressure with in the latter is reduced by the engineer, the pressure within the communicating air-chamber will be reduced and will allow the preponderat
ing pressure in the chamber on the other sid to expand and by advancing the piston apply the brakes.

Pertaining to Recreation.

MERRY-GO-ROUND. - G. B. MCKinney,
Barry, Ill. In this instance the object of the invention is the provision of a new and im proved merry-go-round arranged to allow one
or more of the passengers to readily propel the merry-go-round without requiring undue physical exertion on the part of the operators.
artificial bait.-L. P. Gibsen, Little Rock, Ark. In the present invention the improvement has reference to fishing; and its
object is to provide a new and improved artiicial bait arranged to readily spin or revolv through the water as in ordinary fly-casting.

Pertaining to Vehicles.

TRACTION DEVICE FOR VEHICLE wheels. - H. S. Weaver, Butler, Pa hough applicable to vehicle-wheels generally his invention has reference more especially wheels for automobiles and the like, in tires; and one of the principal objects of the invention is to provide means for preventing chine is being propelled over soft or muddy ground.

Designs.

DESIGN FOR A HAMMOCK-VALANCE. -
D. W. Sheyer, New York, N. Y. This designer has produced a ruffe for a hammock, a continuous line of dancing bears in grotesque and it gives a graceful finish to the design.
Note.-Copies of any of these patents will furnished by Munn \& Co. for ten cents each. the invention, and date of thls paper.

Business and Personal Cuants.
READ MHIS CoLUMN CAREFFLLY.-You will

 Maniry No. 85s8- Wa

 Inguiry No. SJ6.1-Wanted, a machine for makOf nutiry H o. 856 .ens.

tingainy Nas.

 Inquiry No. S571-Wanted, manufacturers of

 Notes and Queries.

HINTS TO CORRESPONDENTS.

and Adress must accompany all letters or
attention will be paid thereto. This is for
information and not References to former articles or answers should giv
date of paper and page or namber of question
Inirie onat answered in reasonable time should be
repeated answ ies not answered in reasonable time should be
eated; correspondents will bear in mind that
me answers reqire not a iltle research, and,
ngh we endeavor to reply to all either by turn in this department, each must take
wishing to purchase any article not adver
in our columns will be furnished with tised in our columase will be furticlisised adver with
addresses of houses manufacturing or carrying
the same. ther thitten Information on matters of personal interest cannot be expected
In
 price.
$\begin{gathered}\text { Minerals } \\ \text { marked }\end{gathered}$ ent for exami
or labeled.
(10357) A. M. asks: 1. I have made motor described in SUPPlement No. 641 and it any current when driven as a dynamo. It is series wound. Please let me know the remedy
A. Small motors very often are not wound so that they will excite their own fields and they cannot be used as dynamos, except by disconbecting the field and using a battery to excite
the field. 2 . Would there be any practical way to run it on 110 -volt alternating lighting cir
(10358) H. M. W writes: We under stand there is an easily prepared paper which may be used for the finding of the negative
and positive poles of an electric wire. Will you kindly inform us how to make this paper
and whether it will keep? We only wish for a small quantity. A. We give below two methods for this purpose, both of which are
easy. First method: Dissolve sodium sulphate, a teaspoonful, in a half pint of water, in which also dissolve about the same quantity of potas
sium iodide and of starch. To dissolve the starch the water must be heated. Soak white blotting paper in this solution and dry
Cut it into strips of any convenient size half inch by two inches is suit able. Keep the paper in a dry place such as a tin box or a place the lie. To use, moisten a strip and or farther part, according to the voltage of
the current. A dark ne current. A dark spot will appear at the
Ditive pole. Second method: Dissolve 15 grains of phenol-phthalein in a half ounce of
common alcohol. Dissolve also 20 grains of sodium sulphate in 4 ounces of water. Soak off the superfluous liquid. Then soak it in the second solution and dry it. Afterward treat a red spot appears at the negative pole.
(10359) B. S. writes: Our church teeple of Hillcrest is about 160 feet high,
slate roofed or covered and the top conslate roofed or covered and the top con15 feet; the church is of brick. The steeple
has been struck and badly damaged by iight-
ning within 3 years, although it stood for ning within 3 years, although it stood for 20
odd years before it was first struck. It is thought by some that the large number of verhead telephone wires that go right by the hurch and the telephone station just across
he street tend to attract lightning, which strikes the steeple first, it being a considerably higher point. Some contend that proper lighting rods would prevent damage, while others claim that lightning rods are incapable of carrying the great amount of electricity form-
ing such a bolt of lightning. A. 1. We should not dare to have a building with an iron top tsconnected with the earth metallically, as is
this church spire. It is an invitation to a visit of the lightning. The lofty Washington Monument, in Washington, was struck and damaged till its metal tip was grounded by a lightning rod, since which it has been repeatedly struck, but without damage. Suitable inghtning rods certainly are of service in proecting a building. We should suppose that the telephone wires were a partial protection
to a neighborhood. 2. Is it a fact that no uction pump will pump or draw a greater
height than $331 / 2$ feet before entering the pump, or in other words, before passing through the valves? If water can be raised a greater height by such a pump before it passes
through the pump valves can you tell what istance mit if there is any? A. A lifting, or as it s sometimes called, a suction pump, can raise water no more than 28 to 30 feet. Theoreti-
cally 34 feet is the limit to which the pressure of the atmosphere can push water pressure with a vacuum above the water. No pump an exhaust the air above the water perfectly, hence no pump can get water 34 feet above the
level of the water below. The pump lifts the air off the water in the pipe; the air outside the pipe pushes on the water in the well and pushes it up into the partial vacuum in the pipe
below the valve of the pump. For this see any text-book of physics under pumps in pneu(10360) C. E. T. asks: 1. I am thinking of making a small direct-current dynamo, and would like to know the formula and meaning the size of wire to be used in order to get a given voltage and current. A. Perhaps
the simplest book for calculating the parts of a dynamo is given in "Practical Electricity," price $\$ 2$ by mail. There is, however, no easy best way for the amateur to go about the building of a dynamo is to select the size
of machine he requires and buy plans for it all worked out. Many such designs have been published in the Scientific American and other periodicals and in books. We have frequent occasion to recommend such to our
correspondents. They can be had very cheap. . I would also like to know the name of a aod reliable varnish or lacquer for using on
articles of steel or iron so they will stand a good deal of handling and to be kept in a damp place so as they will not rust. A. A
good lacquer for rough ironwork is made with 6 parts asphaltum dissolved in turpentine, 1 part shellac dissolved in wood alcohol; mix and thin with turpentine or wood alcohol. For bright steel or iron, a shellac and mastic mastic dissolved in wood alcohol. Color with any of the aniline wos alcono. Color with (10361) G. P. M. asks: What are the true primary colors? A. Primary colors are the
colors into which white light is separated by the dispersion of a prism. Those named by indigo, and violet artists reduce these to three-red, yellow, and blue. Scientists generally consider red, green, and blue to represent the primary color sensations, and in one theory there are supposed to be three sets
of nerves in the retina which can respond to these three colors. The idea of three primary colors is that from the combination of these three all hues may be produced which
(10362) E. A. writes: Please give me an explanation of the following phenomenon:
During a rainstorm a click or brief ring of During a rainstorm a click or brief ring of
the telephone bell is frequently audible. It is evidently due to the lightning being coincident the effect? Also, does the lightning produce seen shooting from five to twenty feet from the 'phone? Is it harmful? Please answer the following questions: What chemicals are l used in the makeup of a Mesce dry battery cell? Please explain the chemical action.
Is the cell affected by heat or cold? Are the chemicals injurious to the body if handled? A. The clicking of electrical apparatus during thunderstorms is due to the action of the lightning flashes upon the lines. When they
are struck there will frequently be a flash from the wires, even though the be a flash resters do their work properly. The lightning produces the effect because it is an electric discharge, the same a he usual current, only to handle electrical apparatus during a thunderstorm, when the wires are strung upon poles, though the lightning arresters usually protect the instruments. We have not the
formula for the composition of the Mesco dry cell. It probably contains the same materials as the Leclanche cell, since all dry These cells are very little affected by heat
and cold, cannot be frozen by winter temperature even on mountain tops, and the chemicals
are not poisonous. The general chemical acare not poisonous. The general chemical ac
tion is that the ammonic chloride acts upen the zinc chloride. The hydrogen goes to the manganese dioxide and forms water with it oxygen. This is only general, since other sub-
stances may be used and other and more complicated reactions take place.
(10363) A. H. H. writes: A. C.'s land problem in SCIENTIFIC AMERICAN of December
22, Query 10271, can be solved by arithmetic in the following manner: $\quad 20: 1.34:: x: 10$
$20 \times 10=200.200 \div 1.34=149.253+$ rods $=$ $\begin{array}{ll}20 \times 10=200 . & 200 \div 1.34=149.253+\text { rods } \\ \text { one side of field. And } 149.253+\times 149.253+\end{array}$ $222276.458+$ syuare rods in field. Now
Now Explanation: Assume a field 20 rods square It would of course equal a field of 400 square rods. y/ being plowed away, leaving 300 suuare
rods, each side of which is $17.32+$ rods. From center of this unplowed plat to its edge equal $1 / 2$ of $17.32+=8.66+$ rods. Now, 10 rods,
half of this assumed feld, $1.34+$ rods, which is $1 / 1 /$ of assumed field
plowed. Then y proportion: If by plow-
ing $1.34+$ rods from a field of 20 rods square, $1 / 4$ of the field is plowed; how many acres in a field if an outside strip 10 rods wide
is $1 / 4$ of it? A. Although no letters are used is $1 / 4$ of it? A. Although no letters are used
in the solution above, the genius of it is alge braic as much as if all the quantities wer represented by letters. Algebra is a branch of
mathematics in which the relations of the quan mathematics in which the relations of the quan
tities are assumed, and upon these assumed tities are assumed, and are discovered, or till the relations of the let ers in the problem are determined in the
simplest manner possible in the case. In this problem the number 20 is used as if it were
a letter, and operations are performed upon 20 till its relation to the correct number appears. Thus it is seen that the solution is algebraic employed. Our algebraic solution was simple than this so-called arithmetical solution.
(10364) G. H. H. asks: 1. Where lay the path of totality of the total eclipse
1868 or 1869 , which was visible, I think, i Iowa, etc.? Duration of eclipse? Wiath
path? A. We have not the path of the eclipg path? A. We have not the path of the eclipse
of 1868 or 1869 in Iowa at hand. You may be able to get it from the U. S. Naval Observa tory, Washington, D. C. 2. How must I under stand the magnitude of stars given in Standar
Iictionary, where Sirius is given as 1.4 and Arcturus 0.3 , when Sirius is said to be the
brightest fixed star? A. The magnitudes of brightest fixed star? A. The magnitudes o
stars are now given in magnitudes and tenths based upon the fact that a first-magnitude sta sixth magnitude. Each magnitude is there fore as many times as bright as the one next
below it, as starting with 1 and multiplying by the same number will give 100 after five multiplications. This number is the fifth root first-magnitude star is of the. brightness of
Ildebaran and Altair. The Pole star is of the second magnitude. Stars brighter than the first-magnitude stars must be expressed by a
number indicating that fact. Sirius is -1.4 number indicating that fact. Sirius is -1.4
magnitude. See Young's "Elements of Astronmagnitude. See Young's "Ele
omy," which we send for $\$ 2$.
(10365) C. B. asks: 1. Can stains on the finger nails caused by pyrogallic acid
in a photographic developer be removed, and how? A. Cyanide of potassium will remove most stains produced by photographic chemi-
cals. It should be used with extreme care. It is better to have the stain than to be pois films which will not stain fingers add doer for contain bromide of potassium? A. There is n developer which will not stain, and none i use at present which do not require bromide potassium as a restrainer. 3. Can a 1110 -vol
alternating current be transformed to a 10 alternating current be transformed to a 10
volt direct current without using a rotary transformer, and how? A. It is necessary to
use a rotary transformer to convert an alternating current into a direct current. 4. How acid to make the so-called $\mathrm{H}_{2} \mathrm{SO}_{4}$ dilute? A Dilute sulphuric acid is a somewhat indefinite term. When a concentrated acid shows 1.84
on the hydrometer, it will show 1.07 hydrometer if made a 10 per cent sotution, and 1.14
hydrometer if made a 20 per cent solution. Both these percentages are used, and are called dilute acid.
(10366) S. A. W. asks: An article on standara time on page 124 of Todd's "New As
tronomy", contains the following: "The whole country is divided into four sections or meridian belts, approximately 15 deg. of longitude in width, so that each varies from those
adjacent to it by exactly an hour. The time in the whole 'Tastern' section is that of the 75th meridian from cours slowith time. This stan dard meridian coincides almost exactly with the local time of Utica and Philadelphia and above that Buffalo or the 79th meridian wa the western boundary of the eastern standard or 75 th meridian time belt. If each section or
belt is 15 deg. wide and the 75 th meridian is belt is 15 deg. wide and the 75 th meridian is
at the center of the 'Tastern' section, I cannot see why the western boundary of this section
should not be $71 / 2$ deg. west of the 7515 th merid ian or $1 / 2$ degree west of the $82 d$ meridian,
which would be at a line drawn from Port

Huron, Mich, to Tampa, Fla., which is as far west of Buffalo as Buffalo is west of the 7 th
meridian. Will you kindly explain this through the columns of your paper? A. The statement quoted from Todd's "New Astronomy" is cor-
rect. The inference made from the statement s not correct. The places at which the change shall be made from the time of one section to that of the next westerly section depends largey upon the convenience of the railroads and not upon the longitude. The system of standard
uime in America was adopted for the benefit time in America was adopted for the benefit
of the traveling public and the railroads, and of the traveling public and the railroads, and
not to satisfy any sentiments of astronomers not to satisfy any sentiments of astronomers
as to scientific fitness of thing. It was a pactical and not a scientific arrangement. he roads centering in Buffalo make the chang Suffalo, since the Central Meridian end at Buffalo. The change is made at Pittsburg for the Pennsylvania system. A comparison of the maps of the roads giving the points at which the changes of time are made
will show some strange departures from the will show some strange departures from the
longitudinal belt of 15 degrees in width. At ongitudinal belt of 15 degrees in width. A
one place in the Southwest Pacific time meets one place in the southwest Pacific time meets
Central time so that the Mountain division is uite eliminated at that point.
(10367) C. M. T. asks: 1. What is air, and how it is generated? A. Air is a
mixture of nitrogen 4 parts, oxygen 1 part, with traces of some other gases. To these are added minute quantities of carbon dioxide and
other products of animal life as impurities. Water vapor is also always present in the at mosphere. 2. Did it exist from the very birth of the earth or some time after? A. The
atmosphere has been on the earth from the irst, although its composition has changed as he earth has cooled. Once all the water of the earth was in the atmosphere, and remained
here till the temperature fell below the boiling point of water. The water then came down in be destrosed or arr destrucie? not destroyed, you mean to say that the air which we breathe to-day is the same that was on the earth millions of years ago? A. The nitrogen of the atmosphere cannot be destroyed by any ordinary means. It is a most inert
substance chemically. The oxygen is readily passed into combination with carbon by combustion, and with many other substances by chemical combinations as oxides. The most
familiar example of this perhaps is iron rust familiar example of this perhaps is iron rust-
ing in the air. Plants and animals all live ing in the air. Plants and animals all live
from the oxygen of the air. The animal world from the oxygen of the air. The animal world
takes oxygen from the air to breathe and gives takes oxygen from the air to breathe and gives
it out as carbon dioxide, which the plant $\}$ akes up and separates for its food, giving off ontinually gain into passing out of the air and back reathe to-day is the same as animals breathed at the first. But since that time it has been
subject to numberless chemical changes, and has been perhaps in liquid and solid forms many times.
(10368) V. P. H. and others: We are receiving many ueries regarding cannon, guns,
balls, etc., shot from moving trains in every balls, etc., shot from moving trains in every
variety of ways which ingenuity can devise and describe. A recent correspondent states even different propositions, all different connot time or space to take up this matter. We have heard it discussed for a long lifetime, o all these conundrums is in the Second of Newton's Laws of Motion: "A given force pro duces the same effect whether it acts upon a
body at rest or in motion; whether it acts body at rest or in motion; whether it acts
alone or together with other forces." This has een accepted universally for centuries, and is case in question it is only necessary to say that the discharge of the powder produces the same effect upon the ball under all circumtances. It is atso necessary to say that the
motion of the train produces the same effect upon the ball as if the powder had not been exploded. The ball is at any time just where he two motions will together carry it. Calculate this and you have the answer. We do
not desire communications upon this subject. Let our esteemed correspondents find something
(10369) J. E. B. writes: In your Issue of December 22, 1906, question 10271, a armer having plowed a strip ten rods wide fourth of the field. How many acres? You say that this is not an arithmetical problem, ears ago a country school ts solution. Fifty to tell us that all problems could be solved by
arithmetic. Perhaps he was right. Solution o. 2. Divide a square by diagonals into four riangles. Divide one triangle into two rightngle triangles by a perpendicular from the one of these triangles is any length, four rods equal, the area is base and perpendicular are base, viz., eight square rods. One-fourth of this riangle having been plowed, the base and perpendicular of the remaining similar triangle would be the square root of twelve, vil., 3.464 .
This subtracted from 4 leaves 0.536 , the width of the plowed strip. Then, by proportion,
$0.536: 4:: 10: 74.6$. But the base of the triagle is one-half of the side of the square, viz., 49.2 rods, your answer by algebra. A. Your field is uite correct. You assume a figure
with a "base of any length, four rods long."
Then from this you calculate the parts on the conditions of the original problem, and at last arrive at the proportion between your assumed figure and the figure given in the problem, from which the length of the side of the square field is found. Permit us to say that this process to use a letter to represent the side of the square and proceed with the calculation till the numerical value of the assumed letter is found
than to do it as you did. To use only numbers than to do it as you did. To use only numbers
does not make a process arithmetical. In an arithmetical process the numbers given in the upon those numbers and continued till is base swer is found. In an algebraic solution the answer is assumed, usually as a letter, or els value of the answer can be computed from the assumed quantity, and the calculations are This is whe the assumed number or quantity Arithmetic has its place and uses. So has algebra. Many of the older arithmetics con tained problems which were solved by assum rendered the solution algebraic. It was by
is saying about solving all problems by arith
10370) L. W. asks: In the yea 833 , in the month of November (do not re eight on 2d of March) I witnessed just at been break in the morning that great and notable event of the falling of the stars, or meteoric hower. It was a magnificent sight, and a ivid to my mental sight as at the time. I flakes, but disappeared as fast as they fell Why I was out of my trundlebed at that tim and looking out of the window, I do not recall My parents or no one saw it but myself, as was in Centreville, Allegany County, New York. From that time on I have never seen the like, with those who saw them at that time Now they are said to be periodic, about the 14th November. Now what I wish to know is,
where are they perceived-in what localities and why not universal? Are shooting stars classed as meteors? What is the cause of
meteors? A. The meteoric shower which you so vividly remember occurs once in about $331 / 4$ curs, on the night of November 14. If it oc
cun is above the horizon place it is not seen at all. It occurs here in New York in the early morning hours. There None of thowers in $1833,1866,1898$, and in 1901 as that of 1833 . The earth crosses the orbit
of the meteors each November 14, but the meteors are at the same place at the same time the earth only once in $331 / 4$ years.
(10371) W. B. C. says: Why is it that when water freezes bubbles are formed in morning, I found the water rrozen half way down the glass in a series of domes. Between was a bubble of air as big the and wate always been curious to know how that air got utely undisturbed while the water was freez ing. The solution of this problem would in pear m ice because the air was dissolved it the water before it was frozen. Upon freezing natural condition always contains air, else it would be tasteless and fish could not live in it grow warm, the water is allowed to stand and in a similar manner and appears as bubbles on .
(10372) S. M. D. asks: Is there any limit to the distance that a certain amount of weak battery send ovectricity that is, will strong battery? A. There is a limit of distance to which a small amount of electric be perceived. This is at a less distance than ment. In this sease a weak current cannot travel as far as a strong one over a wire
A weak battery cannot produce the same effect through a mile of wire as a strong battery can.; but if we had more delicate instrument
we might still detect the weak current much farther than we can at present. It is not so much the defect of the curr
straments for observing it.
(10373) G. H. says: I would like to get or make a cold solution, say a few degrees
above the freezing point, in small quantities Could you advise me where I can obtain such duce it? A. You may obtain a low temperature by the addition of hydrochloric acid to crystal of sodium sulphate. By using strong acid low freezing can be had. Different proportions tures. We have no tables giving the parts of each to be used, and you can determine by
experiment the parts of each to be taken for experiment the parts of each to be taken for
the temperature you wish to obtain. Water alone poured upon the crystals will produc

NEW BOOKS, ETC

ysis By William Chemical Analworth, M.Sc. Easton, Pa. Chemical Publishing Company, 1906 .
Pp. 153. Price, 1.50 . This book provides a manual holding an inermediate position between an elaborate treatse and a skeleton ortline of the subject. The work is concise but clear throughout; it is certain familiarity with general student, as will be found necessary ains a full and useful list of reagents, a list of suitable apparatus, and other convenient data, which will be found useful for supplementing the information contained in the body of the volume.
Business Organizatien. By Samuel E. Sparling, Ph.D. New York: The Mac374. Pri'ce, $\$ 1.25$ net.

This volume is an outgrowth of a course of lectures on Business Organization and Manageconnection at the University of Wisconsin connection with the courses in Commerce. ivity indicates the increasing interest maniested in the systematic study of business intitutions and corporations. But as there have een few books fully covering modern business ing's contribution will fill a decided want in his connection. The book is well written and hat the plan of treatment was necessarily somewhat arbitrary.
Taschenbuch der Kriegsfletten. VIII. Jahrgang, 1907. By B. Weyer, KaLehmann's Verlag, 1907. 12mo.; pp. 403.

Capt. Weyer's Annual may be considered a ery compact and accurate review of the state of naval affairs in all countries down to the
irst of December, 1906. Following the plan hich has been adopted in previous issues, he has endeavored to present a photograph of and plan views, in which the armor and gun ositions are clearly indicate. Constant use of tify us in assuring for this book a well-deserved acces.
Technelegical and Scientific DictienE'dited by G. F. Goodehild and
Tweney. Philadelphia: J. B Lippincott Company, 1906 . Large The title of this useful book explains fully its object. The definitions are concise, brief, but nevertheless of sufficient length to be of
value in almost every case. Chemical formulas re freely given- Hlustrations are provided, supplementing the explanations of certain of
the terms defined. Various important subjects the terms defined. Various im
are discussed at great length.
Internal Energy. By John V. V. Booraem, M.E. New York: McGraw Pub-
lishing Company, 1906. 12 mo ; pp. 144.

The author has undertaken a task in this ook which at first glance would appear posi-
tively staggering. This is to suggest a simple orng hypothesis whereby the an stimated. The work is base upon familiar nes of experimental data, the idea originating from a mathematical study of the periodic curves of the atomic volumes and melting points. The hypothesis is based upon a mathe-
matical method, and provides for expressing he relations of heat to mass through great e Canal de Suez. By Voisin Bey. In Seven Volumes. Paris: H. Dunod
et E. Pinat, Editeurs, 1906. econd Report of the Wellcome ReSearch Labөratөries at the Gerden
Mem@rial Cөllege, Kharteum. By Andrew Balfour, M.D., B.Sc., F.R.C.P. Edin., D.P.H. Camb. Khartoum: Department of
Government, $1906 . ~ 4 t o . ;$ pp. 255.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending January 22, 1907.

AND EACH BEARINGTHAT DATE

Kerosene Oil Engines

 Marine, Stationary, Portable NO DANGER, MaximumPower, Light.est Weight. Simple.. Reliaiabe. Ecoonomical.
No Batteries, Self IEnition by Compres-
 INTERNATIONAL OIL ENGINE CO.
38 Marray St. New York,

Keystone Well Drills

m:Upigight Drivils Send for Drill Catalogue.
W. F. \& JNO. BARNES CO. (Established 1872)
1999 Ruby St., Rocktord, II

SUBSIIIUTES FOR COAL
Are described from the technical American Supplements.
Each Supplement named costs io cents
by maill :
 The article enumerates the principal peat
bogs and states their financial possibilities. GERMANBRIQUETHINGMICHIN-

 cribes the bessey process.
LIGNTE, PEAT, AND COAL DUST MENT 1426 . A careful consideration of
 SCIENTIFIC AMERICAN SUPPLEMENT 1211.
A valuable monograph by a n expert. THE WHITRE MINERAL PRESS AMERICANAN Supplemger illustrating an American

Price 10 cents each, by mail. Order through your Newsdealer or from MUNN \& COMPANY 361 Broadway

Asbestos and Magnesia Products ABex ictificisiur on \mathfrak{x}

yearfrom $11-2$ to 20 H. P. If you want agency, write at once. 58 East Congress St., E., Detroit, Ilich.

Dra

orn.
Nconale:

ence post, namilton \& C Gwinup. Hates

A Home= Tade 100=Mile Wireless Telegraph Set

841,934
841,656
841,699

FREE for INSPECTION

 for HOMIE stuyy in a simple, understandable manner.
REGULAR PRICE $\$ 24$ - SPECIAL 30 DAYS $\$ 12$

 aess fif ered by the refular courses of the Ameriean Scho
azop phe handbok sent free on request it yon mention
paper.

Besides making all klids of photographic Lenses we manuacture to order lenses of every descriptron, including sterescope, surgical itstrument, lanern ienses, magninying mirrors, etc. Write for estimates and samples. We make 35 different styles and sizes of PHOTOGRAPHIC SHUTTERS and our factory is especially equipped to manufacture fine small metal articles of all kinds, furnishing the dies if desired. Estimates on application. Wollensak Optical Co., 292 Central Ave., Rochester, N. Y.

How to Construct
An Independent Interrupter
Pn ScIentipic American Supplement. 1615,
A. Frederick Colinins describes fully and clearly with

 MUNN \& CO., 361 Broadway, New York

 Flash boiler, H. Lemp

 Gaging the thickness of material, machine
for, M. C. $\&$ A. Wells Game, H. T. Hughes
Game apparatus, J. J. S.
Game apparatus, J. H. C
Garment $\underset{\text { Garment, }}{\text { G. Freedman }}$. Fole

 Gearing, equalizing, Aers, system of regula Gin feeder., S. E. Thomas

Grain, cleaning, W. R. Reid \& Rumeley,
 Gravity carrier, Mathews \& Lister...842,i55,
Grinding and polishing composition, C.
Snyder

Harvester, beet, J. F. Sanderg............
Harvesting ind
H. Steiner Hasp, J. C. Morsan
Hay press, A. E. Mulier
Hay rack and wason

 Hoe, weeding, J. Mcclure
Hoisting appratus, C. W Hook, E. J. Hebert
Horizontal boiler, J. ©. Parker
Hose suporter, H. E. Crandall
Hydraulic drill, W. W. We Hydralic press multiplicator, $\dddot{C l}$............
Ice making apparatus, D. J. Havenstrite Illuminating apparatus, $N . D$. Bishop.......
Impermeable mass, manufacture of an,.

Insect exterminator, J . Sullivan. \ldots....
Internal combustion
huth hnuth or the like, device ror handing
liftsing, or supporting, T. A. Martin. Iodin preparation, organic, E. Fisch
Journal box and lid, S. J. Johnson. Kettle, M. E. French.
Keyless lock, A. Lochne
Kiln, G. Larsin \ldots Lin
Kiln, P. Chimelewski

Lamp, gasolene, W. C. Coleman
 Last, A. F. Seymour

Lathes, apparatus for holding crank shaft
pinn in turning, A. Tindel
 Ledger plate fastener, F. B. Rogers.........
Level, Beekman \& Shel
Leveling apparat
 Liquids, regulator for automatically con
trolines the fow and temerature of
W. C. Ricketts
 Log raft gear, B B. Bu Suldity.
Loging device, W. M. Shaw
Loom tilling detecting mechan

 Matting, straw, F. E. Arrouquier
C. Landis Metal plate bending or forming machine Metals, produc
Kuselgen
Metalic tie, Metallic tie, tie, J. J. $\underset{\text { W. . Schafer }}{\text { Hulbert }}$ Moistener pad,
Mold
Mold Music stand, J. Ants, registerings........... for tracker boards of, W. B. Tunstal
Musicai instruments, reversing and rewind
ing mechanism for automatic, T.

RELIABILITY

The makers of the Haynes have been developing their car for 13 years. They know their car through and through.
Year after year they have seen their old cars come back after varied use and have spotted here and there chances for improvements.

Their experience has developed for 1907 a car that can be safely advertised for reliability-a car that can be trusted.

Model T, $50^{\mathrm{F}} \mathrm{H}$. P. Touring Car. Price $\$ 3,500$.
It contains no parts not made in the Haynes Factory, no principles that are unfamiliar to the Haynes designers.

In these days when every blacksmith is buying parts and assembling cars under a private trade-mark, the fact that the Haynes factories really make everything in their car is a guarantee of Haynes reliability.

The Haynes is the Highest Powered Shaft Driven car built : The Exclusive Sprocket and Roller Pinion Drive makes this possible
HAYNES AUTOMOBILE CO., Kokomo, Ind. New York : 1715 Broadway. Chicago: 1420 Michigan Ave.
HAynes

YOU NEED IT!
Modern Gas=Engines and Producer= Gas Plants

By R. E. MATHOT, M.E.

Bound in Cloth 152 Illustrations

Price \$2.50, Postpaid

A Practical Guide for the Gas-Engine Designer and User.
A book that tells how to construct, select, buy, install, operate, and maintain a gas-engine.

No cumbrous mathematics : just plain words and clear drawings.
The only book that thoroughly discusses producer-gas, the coming fuel for gas-engines. Every important pressure and suction producer is described and illustrated. Practical suggestions are given to aid in the designing and installing of producer-gas plants. Write for descriptive circular and table of contents.

2isise

MUNN \& COMPANY, Publishers 361 Broadway, New York

 Separator. See Centrifusal separator.
Sewing machine button sewing attachment,
C
 port, combined, H. A. Bierley.....
Shade roller bracket, A. H. FIeming..

artificial, H. E. A. Vittenet. $. \rightarrow \ldots \ldots . .$.
Smoke burning fire box for stoves, furnaces, and boiliers, J. J. Dorckery $\begin{aligned} & \text { Di.... }\end{aligned}$.
Smoke consumer, Aube \& Tremblay...

 Sound recording and reproducing mechanism,
E. F. Shue $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

Speed regulator, P. Weber.
Square, carpenter's, L. W. Cole
Square, carpenter's, L. W. Cole.:
Stairel smoker, window, B. F. F. Shirrod....
 Steam boiler, H. Schofield
Stirrup, J. V. Levy

 Suspenders, J. U. Adams
Swimming machine, G. T. Hunneweli.......... Swimming machine, G. T. Hunnewell.
Sringe, hyperdermi, J. de Lisle......
Trek utting machine, feeding mech
Tack cutting machines, feeding mechanism
for, G. N. ConFt.
Talking machines, arliver ng horn for, w Tap for liquids, ", cesaring, delivering, and

Telegraph transmitter.
Telegraphic code, A. M. Fisher......
Telegraphy, space, S. Cabot
Telephone, switch ook, R. Hanson.
Telephone trunking circuits, H. G. Webs
Telephone switch hook, R. H. Manson......
Telephone trunking circuits, H. G. Webster
Telephone trunking isystem, W. W. Dean.

Frommater
Tire
Tobachicle,
F.

Tools, testing pneumatic, R. A. Chambers. Toy, J. H. Sharrett
Trench. she Burnett. $\dddot{\text { The }}$............... A.
Trestle, D. P. Chesbro.

Classified Advertisements
Advertising in this column is 50 cents a line. No less
than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on request.

SALE AND EXCHANGE. SET OF U.S PATENT OFFICE REPORTS AND further information address E. H. Evans, 23 Broad
way, New York.
FOR SALE.-PROFITABLE BUSINESS. ADDING Cost to make, 75 C . For full information and particulars,
address 422 Westside A venue, Jersey City, N.J. patent SELty for t which reduces cost of suther information an particulars, address. American Fart Rartel
pany, 23 Court Street, Boston, Mass.

BUSINESS OPPORTUNITIES. WA NTED.-THF: MANUFACTURE OF SMALL

 yTEEL WHEELS to fit any wagon or cart. Made
any size, any width of tire. AAsu handy waagons with
low wneels and wide tires. Wood wagons with steel
 traction engine power. Steel axles of any size a nd
Shape. Adres Electric Wheel Company, Walton Square, Quincy, IIl., U. S . A.
Motion PICTU RE MACHINES, Film Views, Maglc
 PATTERN LETTERS AND FLGURES (White Netal and brass for use on patterns for castings. Large va
riety prompt shipments send fort catalog. H. W.
Knight son, Seneca Fails, N. Y.
METAL NOVELTY WORKS CO, Manufacturers of Hardware Specialties on contract. MetalStamping Die
and Stamping our specialty. $43-4$ Canal St., Cbicago. WIIPERT STEEPLE CLIMBER, 1 Tif years experience, Uures, practice. Or by mail. Experience unnecessary
Very proftable. John F. Meighan, 311 W. 114th $S t$., N. Y A PATENT FEED DEVICE. -1 WANT TO FIND
some one to manufacture it for me, or 1 will sell
gor let on royalty. For further informatien and particulars,
address G. W. Russell, Amarillo, Texas. ACTIVE FIRM IN PHILADEELPHIA HANDLING
several machinery and bard ware specialties, desires to represent one or two more specialties to develop the
 stock for immediate delivery For tullinforma carion and
particulars, addres Box 82, Philadelphia, Pa.
 lars, address Box 82, Philadelphia, Pa.
WE ARE IN POSITION to secure capital, special or
active partners for good, sound busingess propositions;
wehave several clients on
nand who will consider busi-

FOR SALE.-Portable Compressed Air House Clean-

1 SELL PATENTS. - To buy or having one to sell, write Chas. A. Scott, 719 Mutual Life Building, Bufflol, N. Y.

WE MANUFACTURE, METAL SPECIALTIES of

HELP WANTED.

 ATTRACTIVE OPENINGSDraftsmen
Arcbitectural,
EIectrical, Structural, \$903 to $\$ 2,100$. Write us to-day, statink posi
tion desired. Hapkoods, 305 Broadway, New York. WILL MAKE A FIRST- CLASS BOOK-KEEPER positiong, too-free! For further particularg, write, MEN \$30-8100 WEEK LV.-Learn Hairdressing, Mani-

AGENTS WANTED

AGEN'S WANNTED to se 1 best kettles in world for

TYPEWRITERS.

WELLINGTON Typewriter! Durable. strong, speedy
 TYPEWRITERS.-Caligraph, for. Hammond, \$10. $\mathrm{L}, 43 \mathrm{~W}$. 125 th Street, New York City. TYPEWRITERS, \$15, \$20, son-Remington, Smith

SPECIAL BARGAINS.-Remington No, 2, writing two
colors. Densmore, Hammone Franklin 15 each, shiped privilegeof examination. Write for complete cataloge

PATENTS FOR SALE
For SALE.-U. 8. AND CANADA PATENTS ON masi be positioned in any desired spaced relation. Hor
fuil particulare, address H . C. Youngs, Attica, Mich. AUTOMOBILE PATENT FOR SALE. - Protects
 PATENTS SOLD ON COMMISSION. - If you wish to buy or sell a patent write for particuliks to E. L.
Perkin, $\begin{aligned} & \text { sing } \\ & \text { Bively. }\end{aligned}$ Stroad Street, Boston. Patent Sales Exclu-

FACTORY AND MILL SUPPLIES FACTORIES. CUT DOWN YOUR INSURANCE by
outting in achaldwell Tank and fower for fre protee
ince up, no further expense. Endorsed by all

FOUNTAIN PENS.

FILLS ITSELF BFA BREATH.-No sticky threads,
no leaky joints.
Can't leak. Positively cleanest, most

PHOTOGRAPHY.

ALL THATS GOOD IN PHOTOGRAPHS.-For pub-
 DIFFICULT PHOTOGRAPHY OUR SPECIALTY. Tie interior and architectural views. Copiesand en-
arements. Mercantile and balltone work. Paintings
apied by solor value mocess. Models and machinery. BLUE PRINT PAPER. - The finest made Obrig

 WE PHOTOGRAPH any thing, any where, anyt ime.
Building. Paintings. Plans, Models, Machinerv, Est ates, etc. Llustrationsfor Advertisers, The General Photo-
graphing Co., 1215 B'way, Daly's Thearre Bldg., N. Y. City

BOOKS AND MAGAZINES.

THE POCKET LAWTER.-A handy, practical re-
ference book conta inlngall needed information on legal

GAS-LIGHTING APPLIANCES. SIMPLLQUE"
ELECTRIC GAS LIGHTER. Simple;

MACHINERY FOR SALE. IF INTERESTED IN POWER for any kind of light manuacturing, electric iggting, marine or other pur-
oises, getinformation on the most improved kerosene
oil engine sendink for catalogue to Remington Oil
Enging Co REMOVED to larger quarters, we offer our large
stock of new and second-band machinery; also boilers, engines, dynamos, motors, materials and supp hies
Liberty Machinery M art, 153 West Street, New Yor k.

W ANTED-MISCELLANEOUS. P1.50 per dwt. for clean
PLATINVM SCRAPS.
Send byATequar Mail fors. ${ }^{\text {Safety. }}$
National Refnery, 239 Taylor Ave., Newport, Ky.
SITUATIONS WANTED.
DRAUGHTSMAN-MECHANICAL, GRADUATED
from the Technical school Sf Stockholm. Sweden, seeks

ALCOHOL MANUFACTURING. ndi compressed yeast. Ane manufacturing of aleoho

EDUCATIONAL.

MONEY IN DRAWING.-AMBITIOUS MEN AND

ASTRONOMY.

STARS AND PLANETS-learn to know them at a

[^0]
Truss, head, W. Wrain ${ }^{\text {D. Peters }}$ drill tube

alve, J. H. Ble $\begin{aligned} & \text { I } \\ & \text { Valve }\end{aligned}$

 Valve for gas and liauid conduits, auto.
matic check, F. J. H. Rustige........
 Vehicle, spring buffer, P. Froger-Delak Mak
Vehicle steering device, wheled,
 Vending machine, cigar, I I H Garson.....
Vending machines, receiver for coill
ton trolled, H. . . Jackson.
Vessel, marine, J. F. Gray
 Wagon, dump, R. H. MacClernan..........
Walk cleaning, mechanism, R. Johnson. Warm cleaner, G. F. Connef...
Warnaing marnee, ©. L. Badger Washing machine, c. Lusk \ldots....
Watch fob and mined, C. F. Wallerstedt
Water tube boiler, H. Del Mar. recentacie........
Mar.
Mat.

 Weed cutting attachment, c. H. Line..... Wheel rim, T. Midgley
Whip. M. Felker
Whip actuating der
Winp actuating device,
Windmill, J. Barker
Wind il B. F. Mohr ire to other . bjects, means for securin

"Juice" When You Need It

DRILL CMUCK can get along very well without
'em ; because it's built the 'em ; because it's built that way.
It is well finished, strong, durable, economic. For points, sizes
and prices, refer to our catalogue. If you've misplaced it, better send for another.
GOODELL-PRATT COMPANY Greenfield, Mass.

Most men can put by at least one dollar a week. For that amount (payable yearly) a man aged 36 may get a $\$ 1,000$ Twenty Year Endowment Policy bearing dividends and covering Life Insurance for 20 years, and payable in full to himself at the end of that time.

Policies may be taken out froin 81,000 ro $\$ 100,000$, ages
Write The Prudential Today. It has Something Interesting to Tell You Regarding both the Investment of Your Savings and a Good Way to Make Money!

YOUNG MEN-MAKE MONEY

at present to represent a big, sound, popular, up-to-date Life Insurance Company in a profitable manner. Prudential Represerta ives Mase Moer manent Income. The attention of Young Men, particularly Young Men staring in business, is especially sought.

The Prudential

Money Mation Oppor-
Cunities in Your City. ェixazez
Insurance Company of America

Home ofice JOHN F. DRYDEN
State of New Jersey
NEWARK, N. J.

Saving
 Energy
 means much in these strenuous days. That
 Telephone
 Service
 is so helpful in both home and office
 NEW YORK TELEPHONE CO.

SENSITIVE LABORATORY BALANCE

The "Best"

The World's Best Light \begin{tabular}{c}
Sold in every civilized coun.

try on earth.

Costs s.essthan

\hline

Kerosene gives six times

more ligithinan lectricity.

\hline
\end{tabular} APure White Steady Light

 THE BEST LIGHT GO.

W Wod ornamenting machine, E. C. Dittmar
Wrapping mathine, A. H. Potbury
 $\begin{array}{ll}\text { Wrench, } & \text { F. } \\ \text { Wrench, } & \text { E. } \\ \text { E. Wallen } \\ \text { Lacheze }\end{array}$

 TRADE MARKS.

 Ale, stout, and porter, J. \& R. Tennent.

 Balls, base, Manacturing Coper \&o. ©
Beer, Muessel Brewing Co.....
 Malting co. 1 and extract of mait, D
Beel, ale, porter, and
Iuth Brewing \& Malting Co...59.88 t
Bending, shaping, and forging machines,
 Beverages, certan, J. Graf
Bicycles and parts thereof, Aurora Automati
Machinery Co.

Butter, C. C. Muncan, Jr., C. Martin
Candies, National Cand Co.
Candies and bonbens, Runkel

 Candy kissses with nuts in them, B. M

Chese, limburger, M. Uhlmann $\begin{gathered}\text { Co,0,0 } \\ \text { cous }\end{gathered}$

 Wa
Cigars,
CiEars,
Cigars,
Cas

Cleanins compounds, white \& Bagiey oo. Coats, pants, overalls, and blouses, Larne Corter

 Culinary utensils, tin, Reed Matufacturing

Knitted woolen goods, j. Cunz
Lamp mantles, incandescent

 Lead and paint, white. J Lucas \& Co
Lead, pig Picher Lead Co
Lead, white, Carter white Lead Co.

and syrup, Pure Oil. Co.
Licorice and licorice paste

Magazine, Construction News Co.
MaIt extract, Parazon Malt Extract Co...
Maraschino cherries, A. Breslauer Company easuring and scientific apparatus, appli,
ances, and instruments, certain, Techni

"Prest(0)Lite"

 Dept. 76, 18=24 So. East St., Indianapolis, Ind.

DURYEA AUTOS

getting an auto next orice for ©ur " Mather
to User profit-sharing
Man,
dURYEA POWER CO

Concrete Blocks

W^{E} contay a very Beatiful Album

 these halftones are made from original
photographs - not wash drawings pxiz inches. If unsatisfactory, money
9x inntly refunded. Price One Dollar.
verite for fachine Catalogue- Free. $\underset{1450 \text { Girard Street, Washington, D.C. }}{\underset{y}{\text { Harmon }}}$
(5) estidithnterss
 3 NMMM

Scientificic American.

Mivis diais imw Nevivit

 Undershirts and drawers, woven, Earl \&
Washing and cleansing tablets, H. K. Hat.

\qquad

LABELS

 $\begin{gathered}\text { Disease } \\ \text { Ruegz }\end{gathered}$
"Pineozone

$\stackrel{\text { Ramon }}{\substack{\text { Renn }}}$

tionless Metal,, for frictionless met
Frictionless Metal Co.
A printed copy of the specification and drawirg
of any patent in tho forezoing list, or any patent in print issued since 1863, will be furnished fron
this oftice for 10 cents, provided the name an number of the patent desired and the date b
civen. Address Munn \& Co., 361 Broadway, Nen
Yort

A RACTICAL DRAFTSMANSHIP
 TAUGHT personally and individually by CHIEF DRAFTSMAN of large concern anges all instructions personally to fot your individual ability and requirementris. I constantly receive reauests from the best concerns in the constantly receive requests from the best concerns in the country, offering best paying permanent Full set of tools worth $\$ 13.85$ furnished free. Address. CHIF
 Address, CHIEF DRAFTSMAN, Division ENGINEERS ${ }^{\text {EQUUPMENT CO. (Inc.), Chicago }}$

HARVARD UNIVERSITY High Grade Brass Manufacturers ond

\$5,000 A YAR

BE A WATCHMAKER

Telegraphy

To Book Buyers

We have just issued a new

 112-page catalogue of re cently published Scientific and Mechanical Books, which we will mail free to any address on application.MUNN \& COMPANY Publishers of Scientific America
361 Broadway, New York

Rubber Elevator \& Conveyor Belting

FOR CONVEYING AND LIFTING BROKEN STONES, COAL, COKE, WOOD PULP, GRAVEL, SAND, SUGAR, etc., etc. special construction exceptional quality
NEW YORK BELTING \& PACKING CO., Ltd. 91-93 Chambers Street, New York

Something you need toknow about.

Star Expansion Bott Co., Cedar \& West Sts.. New York

Bausch \& Lomb

 Fige BalancesOur line of Analytical Balances is very
comprehensive, including all the leadcomprehensive, including all the leading makes. We can supply balances at
all prices; also druggists' and other all prices; also druggists' and other
small balances from $\$ 3.50$ up. This is only a part of our great line of labora-
tory a pparatus. Write for prices and tory appa
catalogs.

 $\operatorname{Tm} 18=2$

 portable concrete
Block lachine

 costan, water and Portland cement
only materials required. THE PETTYJOHN co.
615 N. 6th St., Terre Haute, Ind.

added to that which was already excellent-here is the simple story of Peerless
success. The new 1907 Model shows many such new improvements that make for
increased comfort and saftet to Peerless passengers.
The springs in the 1907 Model are longer than last year. Made in France of the increased comfort and safoty to Peerless passengers.
The springs in the 1907 Model are Donger than last year. Made in France of the
finest Silico Manganese steel-the toughest and most resilient springs ever made. A breakage is practically impossible; they make riding in a Peerless, at 40 miles an hour, as
comfortable as riding in a phaeton at 5 miles an hour.

.

ELECTRICAL MATERIAL Lauson Frost King

At Less Than Wholesale Prices

 cal parpose in
duceap prices
MOTOR
 INGANDESC. NT LAMPS, 6, 8 and 16 CANDLE
POWER.
SOCKETS.

 ST. LOUIS WRECKING AND SUPPLY CO. 3865 Manchester Ave., St. Louis, Mo
SEND Si.
How To Make Alcohol

"LIBERTY BRAND"
Steel Letters and Figures

Indispensable for recording the exact time to a 1-5 second in all Laboratorial, Experimental and Scientific Work

$$
\begin{aligned}
& \text { THE NEW YORK STANDARD CHRONOGRAPH IS } \\
& \text { THE ONLY ONE THAT IS FULLY GUARANTEED } \\
& \text { For Sale by your Jeweler. }
\end{aligned}
$$

New York Standard Watch Co., 401 Communipaw Ave., Jersey City, N. J.

STEAM USERS

painhow Papking

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.

Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints.
Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by
PEERLESS RUBBER MFG. Co.
16 Warren St., New York

INNER TUBES
Obviate Tire Troubles
STRONGEST TUBES
Imported or Domestic
ARKER, STEARNS \& CO
228 and 229 South St., Now York, U. S. A.

[^0]: SCHOOLS AND COLLEGES.
 PATENTLLams and Offlce Practice.-Thoroughly prac-
 ical course by mail for attorme ysand inventors. tical course by mail for attorne es and inventors. Free
 specimen pages informations cor sconol of Patent
 Law, Dept. A, 1853 Mintwood Place, Washingon,

