Vol. XCV.-No. 26.
NEW YORK, DECEMBER 29, 1906.

Sectional View Looking North at the Junction of Sixth Avenue and 32d Street, Showing Five Superimposed Railway Systems- The Pennsylvania, Rapid Transit Subway, Hudson Companies, Street Surface, and Elevated Railways.

SCIENTIFIC AMERICAN

 ESTAbLISHED 1845MUNN \& CO. - Editors and Proprietors
Published Weekly at
No. 361 Broadway. New York

terms to subscribers

 the scientific american publications
\qquad ney order, or by bank draft or check.
UUN \& CO., 361 Broadway, New Y

NEW YORK, SATURDAY, DECEMBER 29, 1906.

 The Editor is always glad to receive for examination illustratedarticles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

PRESENT CONDITION OF THE NEW YORK TUNNELS.

So extensive are the ramifications of subway construction beneath Manhattan Island and the adjoining rivers, that it becomes increasingly difficult to keep in close touch with the progress of the work on the individual enterprises. The approaching close of the year renders timely a survey of the progress of this work, and an approximate estimate of the time of its completion. Commencing then, with the most important of the schemes, that of the Pennsylvania Railroad Company, the present conditions are that the two tunnels under the Hudson River have been completed as far as the driving of the tubes is concerned, and there remains now the work of carrying the supporting piles down to bed rock and the lining of the tubes with two feet of concrete. It is expected that these two tunnels will be in condition for the passage of trains by the autumn of 1908 . The four tubes which the company is building below the East River are known as tubes A, B, C, and D. The most difficult portion of the driving, in which there has been a great amount of delay due to the obstruction of wharves and docks, has been accomplished. Tube A has been constructed for 180 feet, tube B for 1,100 feet, tube C for 700 feet, and tube D for 1,000 feet. The tunnels are being driven from both sides of the East River, and it is expected that all four of them will be put through before the close of 1907, and that they will be concreted up and in condition for use during the following year. The work on the crosstown tunnels connecting the river sections is proceeding without any serious difficulty, and they are expected to be completed by the end of next year.
The Hudson Companies have been making remarkable progress with their four tunnels. The two tunnels from Jersey City to Morton Street were completed several months ago, and the Cortlandt Street tunnels have been advanced about 3,200 feet beyond the Jersey shore. The Morton Street tunnel has been driven up to Sixth Avenue, and north along the avenue to a point between Ninth and Tenth Streets. This tunnel will be extended to Thirty-second Street, where it will end in a commodious terminal station. It is anticipated that this section, with the branch belotw Ninth Street to Astor Place, will be ready for service toward the close of the year 1907, and that the Cortlandt Street tunnel will be completed about twelve months later.
The Steinway tunnel, which is being built from the Grand Central Station, Manhattan, to Long Island City, is also making. remarkable progress. About four weeks ago the headings which were being driven from Manhattan and from a shaft sunk in Man-o'-War's Reef in the middle of the river met, and at the present writin the middle of the river met, and at the present writ-
ing considerably more than one-half of this tunnel has been completed. Unless some unforeseen obstacle arises, this tunnel should be driven through early in February of next year, and should be ready for use by the late summer or early autumn.
The first of the East River tunnels to be completed will be that of the Rapid Transit system, extending from the Battery to Brooklyn. The bore was broken from the Battery to Brooklyn. The bore was broken
through on the northerly tunnel two weeks ago, and connection will be established next month between the two headings of the south tunnel. There will then remain only the work of completing the concreting and track-laying, to put this tunnel in condition for service, and it is probable that in April or May of next year trains will be running from Manhattan to the Flatbush Avenue station in Brooklyn. When we bear in mind the inherent difficulties of this tunnel work. due either to the depth at which it has been carried on below the water, or the treacherous nature of the material which has been encountered, it will be agreed that the contractors and the companies are to be congratulated apon the great progress which has been made, and upon the great progress which has been
upon the promise of such early completion.
the president's message on the panama canal.
The President's message on the Panama Canal, the full text of which, with illustrations, is published in the current issue of the Supplement, is one of the most satisfactory documents of the kind that have issued from the present occupant of the White House. President Roosevelt wisely refrains from any critical discussion of the strictly technical features of the problem, athd confines himself to a lucid description of what he saw, and the impressions which he received, during his three days' visit to the Isthmus. The value of this diary, for such it is, lies in the fact that the people of the United States, to whom through Congress it is now given, have an abiding faith in the clear-sightedness, the impartiality, and absolute integrity of purpose, with which President Roosevelt approaches every subject that becomes, like this, the subject of his im. mediate personal investigation.
The visit was particularly well-timed. "I chose the month of November for my visit," says the President, "partly because it is the rainiest month in the year, the month in which the work goes forward at the greatest disadvantage, and one of the months which the medical department of the French canal company found most unhealthy." Furthermore, the visit followed close upon the publication of a series of articles and pamphlets which tended to discredit the work which was being done by the Isthmian Canal Commission, and give the impression that in sanitation, construction, and administration, this gigantic enterprise was rapidly approaching a debacle as disastrous as that which marked the close of the operations of the first French company.
Although the Scientific American was prepared to find that, in the preliminary work at Panama, there had been a certain amount of that confusion and misdirected effort which seem to be inseparable from the inception of all great enterprises involving the collection, redistribution, and setting in motion of vast bodies of men and supplies, we have always felt satisfied that the great ability and unquestionable integrity of the professional men who had been selected to control this work, were a guarantee that the preliminary work was being well done and the foundations being laid for a successful execution of the task. Therefore, it is particularly gratifying to us, as it will be to all Americans whose patriotism is of a broad stamp, to find that, as the result of his personal inspection of the work, the President is satisfied that the country is getting its full worth for the large sums of money which are being expended. "The wisdom of the canal management," he says, "has been shown in nothing more clearly than in the way in which the foundations of the work have been laid. To have yielded to the natural impatience of ill-informed outsiders, and to have begun all kinds of experiments in work, prior to the thorough sanitation of the Isthmus, and to a fairly satisfactory working out of the problem of getting and keeping a sufficient labor supply, would have been disastrous.
The only delay has been the necessary delay until the 29 th day of June, when Congress definitely and wisely settled that we should have an 85 -foot level canal. Immediately after that the work began in hard earnest, and it has been continued with increasing vigor ever since. When the contracts are let, the conditions will be such as to insure a constantly increasing amount of performance."
A well-deserved tribute is paid to the manner in which Dr. W. C. Gorgas has worked out the problem of sanitation, upon which the success of the whole work absolutely depended. "After two years of our occupation the conditions, as regards sickness and the death rate, compare favorably with reasonably healthy localities in the United States." Drainage, the removal of the dense tropical vegetation, careful sanitation, and the judicious use of quinine, have combined to abolish the mosquito and protect the canal force from the ravages of malaria and yellow fever. "Among the 6,000 white Americans, including some 1,200 women and children, not a single death has occurred in the past three months, whereas in an average city of the United States the number of deaths for a similar number of people in that time would have been about thirty from disease." Further on, the President says that Corozal, formerly one of the most unsanitary places on the Isthmus, where there is a big hotel filled with employees, for the last six months has a record of less than one per cent a week admitted to the hospital. "Yet this healthy and attractive spot was stigmatized as a 'hog wallow' by one of the least scrupulous and most foolish cf the professional scandalmongers who, from time to time, have written about the Commission's work."
The work of improving the terminal cities proceeds apace. In the city of Panama 90 per cent of the streets that are to be rebuilt are already paved with an excellent brick pavement laid in heavy concrete. Colon, at the other end of the canal zone, is beirg graded, and a new reservoir capable of holding 500 million gallons of water is about completed, together with the distribution mains for supplying the city. The President rode through the streets of Colon after two days of heavy downpour of rain, and found that the streets
"taken as a whole were undoubtedly very bad; as bad as Pennsylvania Avenue in Washington before Grant's administration; but," he says, "all the men to whom I spoke were a unit in saying that the conditions of the Colon streets were 100 per cent better than they were a year ago."

The police force consists of over 200 men, one-fifth of whom are white. "With one exception all the white men I questioned had served in the American army, and belonged to the best type of American sol dier." In view of the fact that many of the white and colored employees have brought their families with them, schools have been established. "The school rooms were good, and the teachers had taken a pride in their work and in their pupils." Saloons were alto gether too numerous, but "the new high-license law which goes into effect January 1 next will probably close four-fifths of them."
The President found that the great task of securing and caring for the laborers and other employees has been well done. At present there are 6,000 white and 19,000 colored employees engaged on the work. Nearly 5,000 of the white employees are Americans, and "they represent, on the average, a high class." They are em ployed chiefly on the steam shovels, as engineers and conductors of the work trains, and as machinists and carpenters in the shops. The President inspected the living quarters personally, talked with the men them selves and with their wives and families, and found that "the houses themselves were excellent, and the conditions satisfactory." Of the day laborers, the Spaniards appear to be doing the best work. A steady effort is being made to secure Italians, but "for the present we shall have to rely, in the main, for the ordinary unskilled work, upon coiored laborers from the West Indies and upon Chinese labor." Summing up, the President says: "From my own experience I am able to say that more care has been exercised in housing, feeding, and generally paying heed to the needs of the skilled mechanics and ordinary laborers in the work of this canal, than is the case in the construction of new railroads, or in any other similar private or public work in the United States proper."
Speaking of the question of the Gatun dam, the President found that "the ablest men on the Isthmus believe that this problem is certain of solution along the lines proposed, and that the dam will show less seepage than the average natural mountain range." There has been a rapid increase in the amount of material taken out of the Culebra cut, and even during the last three months of the rainy season there has been steady progress, as is shown by the fact that in August 242,000 cubic yards were excavated, in September 291,000 cubic yards, and in October 325,000 cubic yards. At the close of the rainy season the increase in the rate of excavation will be even more rapid.
The plan for letting the whole work by contract, "in its essential features was drafted, after careful and thorough study and consideration by the Chief Engineer, Mr. Stevens, who while in the employment of Mr Hill, the president of the Great Northern Railroad, had personal experience of this very type of contract.' Under this contract a premium will be put upon the speedy and economical construction of the canal, and a penalty imposed upon delay and waste. If no satisfactory bids can be secured, the government will do the work itself.
In conclusion, it is gratifying to learn that this great national undertaking is free alike from graft and politics. Of this vital question, the President says: "After the most painstaking inquiry, I have been unable to find a single reputable person who has so much as heard of any serious accusation affecting the honesty of the Commission or of any responsible officer under it. . . . The Commission breathes honesty as it breathes efficiency and energy. Above all, the work has been kept absolutely clear of politics."

It has been found that there are certain favored localities in Florida where the sandy soil has been naturally enriched in a singular way, and become especially adapted to the growing of orange trees. One of these localities is at Orange Bend in Lake County. Under the sandy vegetalle loam there is a soft tenacious clay of fine texture, which was probably transported from the hills of Alabama and Tennessee, and deposited in a depression of a shallow sea which once covered the Florida peninsula; and underlying this clay at a depth of seldom more than three feet is a deposit of marl of a kind that is of very rare occurrence, there being very few such deposits in the State. It is nummulite marl, so named because the shells that it contains resemble coins. Their average size is about that of the old silver half-dime. The special value of this marl as a fertilizer is due to the presence of this coin-like shell, and especially to the animal substance that held the whorls of the shell together. This substance was almost pure phosphate material, and it gave to the soil in large quantities one of the most important constituents of orange-tree food. The tap roots of the orange trees easily penetrate to this marl bed, and thereby enable the trees to nourish themselves.

CATECHISM OF A SCIENTIST.
Sir Oliver J. Lodge, LL.D., F.R.S., principal of the University of Birmingham, has issued the text of a catechism, which is designed for the use of teachers interested in the education of the young. The object sought after is the harmonizing of religion and the theories of evolution. The text of the catechism has been cabled to the New York Sun. In the preface Sir Oliver says:
"From the viewpoint of a teacher and a trainer of teachers the following clauses have been drafted by me as affording a partially scientific basis for future re ligious education:
"Question-What are you?
"Answer-A being, alive, conscious upon this earth, my ancestors having ascended by gradual processes my ancestors having ascended by gradual processes
from the lower forms of animal life and with struggle and suffering become man.
"Question-What then is meant by the fall of man? "Answer-At a certain stage of development man became conscious of the difference between right and wrong so that thereafter when his actions fell below a normal standard of conduct he felt ashamed and $\cdot \sin$ ful. Nevertheless the possibility of the fall marks a rise in the scale of existence, as creatures below this level are irresponsible, feel no shame, suffer no remorse and are said to have no conscience.
"Question-What is the distinctive character of manhood?
"Answer-That he has responsibility for his acts, having acquired the power of choosing between good and evil with freedom to obey one motive rather than another.
"Question-What is the duty of man?
"Answer-To assist his fellows, to develop his own higher self, to strive toward good in every way open to his powers, and generally to seek to know the laws of nature and obey the will of God, in whose service alone can be found that harmonious exercise of the faculties which is synonymous with perfect freedom.
"Question-What is meant by good and evil?
"Answer-Good is that which promotes development and is in harmony with the will of God. It is akin to health, beauty, and happiness. Evil is that which retards and frustrates development and injures some part of the universe and is akin to disease, ugliness and misery.

Question-How does a man know good from evil? "Answer-His own nature, when uncorrupted, is sufficiently in tune with the universe to enable him to be well aware of what is pleasing and displeasing to the guiding spirit of -which he himself should be a real, effective portion.

Question-How comes it that evil exists?
"Answer-Acts and thoughts are evil when they are below the normal standard attained by humanity. The possibitity of evil is a necessary consequence of the rise in the scale of moral existence, just as an organism whose normal temperature is far above absolute zero is necessarily liable to a damaging, deadly cold, but the cold is not in itself a positive or created thing.
"Question-What is \sin ?
"Answer-Sin is the deliberate, willful act of a free agent who sees better but chooses worse and thereby acts injuriously to himself and others. The root of sin is selfishness, whereby needless trouble and pain are inflicted on others. It is akin to moral suicide.
"Question-Are there beings lower in the scale of existence than man?
"Answer-Multitudes. In every part of the earth where life is possible we find it developed. Life exists in every variety of animal, in the earth, the air and the sea, and in every species of plants.
"Question-Are there beings higher in the scale of existence than man?
"Answer-Man is the highest of the dwellers of the planet Earth, but the earth is only one of many planets warmed by the sun. The sun is only one of a myriad of similar suns which are so distant that we hardly see them, and group indiscriminately as stars. We may be sure that in some of the innumerable worlds circulating about distant suns there must be beings far higher in the scale of existence than ourselves. Indeed we have no knowledge which enables us to assert the absence of intelligence anywhere.
"Question-What caused and what maintains existence?
"Answer-Of our own knowledge we are unable to realize the meaning of its origination and maintenance. All we can accomplish in the physical world is to move things about by means of our bodily organisms and then leave them to act on each other. But we conceive that there must be some intelligence supreme over the whole process of evolution or else things could not be as organized and as beautiful as they are.
"Question-Is man helped in the struggle upward?
"Answer-Man did not bring himself into existence nor can he unaided maintain his existence or achieve anything whatever. There is certainly a power in the universe vastly beyond our comprehension. We trust and believe it to be a good, loving power, able and willing to help us and all creatures, to guide us wisely
without detriment to our incipient freedom. This loving kindness surrounds us every moment. In it we live and have our real being. It is the mainspring of love, joy, and beauty. We call it the grace of God. It sustains and enriches all worlds. It may take a multiplicity of forms, but its essence and higher meaning is especially revealed to the dwellers on the earth in the form of the divinely human, perfect life of Jesus Christ, through whose spirit and living influence man may hope to rise to heights at present inaccessible.
"Question-How may we become informed of things too high for our own knowledge?
"Answer-We should strive to learn from the great teachers, prophets, poets, and saints of the human race whose writings have been opened to us by education. Especially should we learn how to interpret and understand the Bible, which the nation holds in such high honor.
"Question-What then do you reverently believe can be deduced from a study of the records and traditions of the past in the light of the present?
"Answer-I believe in one infinite, eternal Being, a guiding, loving Father, in whom all things consist. I believe the divine nature is especially revealed to man in Jesus Christ, who lived, taught, and suffered in Palestine 1,900 years ago and has since been worshiped by the Christian Church as the immortal Son of God and Saviour of the world. . I believe the Holy Spirit is ever ready to help us along the way to goodness and truth, that prayer is the means of the communion of man and God and it is our privilege by faithful service to enter life eternal, the communion of. saints and the peace of God.
"Question-What do you mean by life eternal?
"Answer-Whereas our terrestrial existence is temporary, real existence continues without ceasing in either higher or lower form according to our use of the opportunities and means of grace and that the

DR. WILLIAM HENRY WELCH.
fullness of life which is ultimately attainable represents a state of perfection at present inconceivable to us.
"Question-What is the significance of the communion of saints?
"Answer-Higher and holier beings must possess in fuller fruition those privileges of communion which are already foreshadowed by our own faculties, language, sympathy and mutual aid, and just as we find our power of friendly help not altogether limited to our own order of being so I conceive the existence of a mighty fellowship of love service.
"Question-What do you understand by prayer?
"Answer-That when our spirits are attuned to the spirit of righteousness our hopes and aspirations exert an influence far beyond their conscious range and in the true sense bring us into communion with our Heavenly Father. This power of filial petition is called prayer. We are encouraged to ask for anything we need. As children we ask our parents in a spirit of trust and submission and we may strengthen our faith in the efficacy of prayer by pleading the example and merits of the Lord Jesus and rehearse the prayer taught by Christ-'Our Father, who art in Heaven.'
"Question-What is meant by the kingdom of Heaven?
"Answer-The kingdom of Heaven is the most essential feature of Christianity. It signifies the harmonious condition or state in which the divine will is perfectly obeyed. It represents the highest state of existence, individual and social, which we can conceive Our whole efforts should directly and indirectly make
ready its way in our hearts and our lives and in the lives of others. It is the ideal state of society toward which reformers are striving. It is the ideal of conscious existen'ce toward said aim."

WILLIAM HENRY WELCH,

by marcus benjamin, ph.d.

First in 1887, then in 1900, and now for a third time in its history, the American Association for the Advancement of Science will meet in the great metropolis of New York. Langley, distinguished for his researches in astrophysics, presided over the meeting in 1887; Woodward, famous among physicists, was the presiding officer in. 1900; and at the present meeting one who has gained eminence in pathology, and indeed the foremost among his contemporaries, will direct the deliberations of the scientists who have gathered this week in Columbia University.
William Henry Welch, son of William Wickham Welch and Emeline Coliin Welch, was born in Norfolk, Conn., on April 8, 1850. He prepared for Yale, where he graduated in 1870. Among his classmates was Edward S. Dana, like him a leader in science. His college class numbered 113, and of these ten elected to study medicine, among whom was Welch. And so he came to Columbia and matriculated in her medical department, more generally known as the College of Physicians and Surgeons, receiving his degree.in 1875. Three years were then devoted to study abroad, and he listened to the masters in his specialty at the universities of Strasburg, Leipsic, Breslau, and Berlin.
In 1878 he returned to New York city, and accepted an appointment as demonstrator of anatomy in Bellevue Hospital Medical College, becoming soon after also professor of pathological anatomy in this institution, which chair he continued to fill until 1884, when he was elected to the professorship of pathology in Johns Hopkins University, which he still retains. Five years later, when the Johns Hopkins Hospital was opened, he naturally became its pathologist, a place in which he has added fame to the institution as well as gaining reputation for himself. Increasing responsibilities have come to him as the years have advanced, and recently he has been made dean of the medical schools. It is not necessary to summarize his researches in a brief outline sketch of his career, but they were embodied in numerous valuable papers, especially in pathological and histological subjects, contributed to medical journals both at home and abroad. Of his more extended writings, mention may be made of the sections on pathology and pathological anatomy in the fifth and later editions of Flint's "Theory and Practice of Medicine," of the chapters on organic diseases of the stomach in Pepper's "System of Medicine," and of the. chapter on general considerations concerning the biology in bacteria, infection, and immunity in the same author's "Text Book of the Theory and Practice of Medicine." He has also contributed to Dennis's "System of Surgery," Allbut's "System of Medicine," and to "A Textbook of Medicine by American Teachers." The Cartwright lectures were delivered by him, and these he published in 1888 under the title of "General Pathology of Fever." His valuable contributions to his chosen specialty have not failed to receive recognition. In 1894 the University of Pennsylvania gave him the honorary degree of M.D. Western Reserve in 1894, Yale in 1896, Harvard in 1900 , Toronto in 1903 , and Columbia in 1904 welcomed him into the ranks of their alumni by conferring upon him the degree of Doctor of Laws. His other honors include membership in the Philadelphia College of Physicians, the Pathological Societies of Philadelphia and of London, the American Academy of Arts and Sciences, and the National Academy of Sciences, in .which body he has served with repeated elections as a member of council.
His recognized ability as an administrator has likewise received conspicuous recognition, and notable among the honorary appointments that he has been called upon to accept is that of trustee of the Carnegie Institution in Washington, to which he was elected in 1905 and re-elected in 1906. During 1891-2 he was president of the medical and chirurgical faculty of the State of Naryland. He has been president of the State Board of Health of Maryland, and in 1897 presided over the Congress of American Physicians and Surgeons.

Dr. Welch became a member of the American Association at the Boston meeting in 1898, and was made a fellow two years later. He manifested his interest in the organization by aiding in the formation in 1902 of a section on Physiology and Experimental Medicinc, of which he was chairman in 1902, and again in 1903. The long-established practice of alternating the selection of a president from the representatives of the natural and physical sciences has slowly yielded in recent years to the better policy of recognizing the most eminent man of science in the United States as the most desirable person to fill the presidency of the American Association for the Advancement of Science, and this opinion found its expression at the last meeting in the choice of William Henry Welch, America's most famous pathologist.

THE "UNILENS." A NOVEL FORM OF TELESCOPE.
by tue waush corpedpond
A novel form of telescope or field glass, to which the name "unilens" has been applied, has recently been devised by Major Baden-Powell, F.R.A.S., of London, the feature of which is that it can be carried in the waistcoat pocket. As may be gathered from its title, the instrument comprises a single lens of con vex form, $21 / 2$. inches in diameter and mounted in a simple metal rim. The mount is provided with a small clip and screw, by means of which the lens can be readily attached to a walking stick or umbrella, being carried, as the illustration shows, at the outer end. With this simple device it is possible to obtain an enlarged view of distant objects, the maximum magnification being about four diameters. In view of the simple nature of the device and its handy form, it constitutes a convenient and efficient means for all ordinary purposes where a slight magnification is desired, being capable of fulfilling the same functions as the general type of opera and field glasses; but owing to its flat form and small dimensions, it can be car ried in the pocket without inconvenience.
When mounted on a walking stick and held at the full extended length of the arm, its greatest efficiency is obtained, since the farther it is held from the eye, the greater is the magnification. At the full extended length, which is equivalent to a distance of about six feet between the eye and the lens, the object has its maximum magnification, though at this point a slight blurring is discernible. The most convenient and easy position to assume when studying subjects through the device is a sitting posture with the hand holding the stick resting on the knee, at which point the glass, about four feet distant from the eye, enables the user to view objects clearly and sharply. The lens, how ever, is always in focus, and consequently is a handy form of hand-glass, especially when held at arm's length. It then forms a great aid to the natural sight, more particularly in the examination of hanging pic tures, the architectural features of a building, and so forth, and it will even fulfill the purposes of an opera glass at the theater
From an astronomical point of view the "unilens" has no great claim, though in this work it has its possibilities. For instance, in looking at the Pleiades through the "unilens," eight stars can be discerned quite easily, whereas with the naked eye only six can generally be distinguished. In following the movements of birds and animals in their natural habitat from a distance of a few yards, the glass is of great utility to the naturalist.
Although the "unilens" is not applicable to all sights, yet, according to one very widely known firm of London opticians it may be safely said that three persons out of four can use it quite well. To be sure, those afflicted with myopia or short sight cannot see very clearly through the single lens, but when it is employed in conjunction with a concave eyeglass, not only can they see clearly through the "unilens," but such sights are found to be improved under ordinary circumstances by the habitual use of the eyeglass.

THE NEW LUSOL LAMP.

by jacques boyer.

The introduction of the lusol lamp marks an era in the history of illumination for, according to the calculations of its inventor, the new illuminant furnishes for a cost of one cent an amount of light which would cost 4 or 5 cents i which would cost 4 or 5 cents if furnished by kerosene, 8 or 10 15 or 20 cents if obtained from animal or vegetable oils.
There is no mystery about the composition of the substance which is known by the trade name of lusol. It is simply impure ben zene obtained by distilling coal tar It is not a definite chemical com pound but a mixture of hydro carbons containing a very high per centage of carbon. The various forms of apparatus which have m orised by Mav been devis rouze for the utilization of lusol in domestic and other illumination are not simple lamps but rather complicated devices for the safe production and combustion of luso vapor.
If we dissect a lusol lamp of the small, or household, type we find that the openings of the lusol res ervoir are hermetically closed by conical screw plugs, in order to prevent escape of the thin and very inflammable fluid if the lamp is overturned, or by capillary action or "sweating," in the normal posi-

LIGHTING A sMALL LUSOL LAMP WITH ALCOHOL pastililes,

LUSOL LAMP DESIGNED FOR A sTaircase.
graph shows, the inverted U-shaped support of the Auer mantle is not a thin wire, as in most incandescent lamps, but is massive and is soldered to the base of the distillation chamber. When the lamp is burning this support is very hot, and it consequently heats and vaporizes the lusol with which the top of the wick is saturated and which is continuously replaced by fresh liquid raised from the reservoir by capillary action.
But, in order to light the lamp, this support of the mantle must first be heated by an extraneous source. Different methods are employed in lusol lamps of the various types. In lighting a parlor, office, or hall lamp the upper part of the burner is first raised with the left hand. This action exposes two clusters of points on which two alcohol pastilles, consisting of paraffined cotton soaked in alcohol, are next placed. The gallery is then replaced and the pastilles are lighted with a match.
Street lamps of the type now in experimental use in the Square du Ranelagh, in Paris, have little reservoirs which can be filled with alcohol by means of a vessel mounted on a pole. In every case, however, a little time elapses before the mantle glows with maximum brightness.
In the very large street lamps, which rival the elecric arc in intensity, the upward flow of liquid to replace the loss by vaporization cannot be produced by capillarity alone. It is consequently maintained by a low air pressure, involving the employment of only a very small volume of air. The apparatus which produces the air pressure consists of two small vessels connected by a long India-rubber tube. At the beginning of the operation one of these vessels is emptyor rather, filled with air-while the other, placed about 5 feet higher, is filled with glycerine. The glycerine flows slowly down the tube, compressing the air and forcing it into the lusol reservoir, and thus causing the lusol to rise in the wick. The operation is repeated once a day, by simply raising the filled vessel and lowering the other. A three-way cock may be arranged o apply and remove the pressure so that the lamp may be operated with or without pressure as desired. In one form of lamp the lusol and glycerine reservoirs are ingeniously combined, so that there is only one descending tube which, together with the air chamber, is concealed in the chandelier.
In point of economy the lusol lamp appears to surpass all other known lighting apparatus. A Denayrouze amp having the power of 10 Carcel burners costs 0.3 a cent per hour, while the same illumination produced by stearine candles costs 36 cents per hour.
The use of lusol, however, is attended with certain inconveniences, the most serious of which is the necessity of filling the lamps and the time consumed in lighting them. On the other hand, it does not appear to be particularly dangerous. M. Lucion, the Belgian engineer who furnished the information on which this article is based, truly observes that: "Electricity is dangerous, causing death and fires due to short circuits. Gas is a frequent cause of asphyxiation, voluntary and involuntary. Acetylene is explosive, and a surgeon of my acquaintance was recently summoned in one day to attend five women fatally burned in five separate accidents with kerosene. The essential thing is to know how to use all these dangerous things."
Lusol, while it is in the lamp, is perfectly harmless. It cannot escape in the liquid form and the flame cannot strike back to a space filled with vapor, as it can in a kerosene lamp. Furthermore, the lusol reservoir remains cold even after the lamp has been burning for hours, owing to the following arrangement: The central tube is double, the space between the tubes communicating with the external air, and the inner tube, in contact with the wick, being made of an alloy which is a comparatively poor conductor of hent. This air-cooling device has another object, in addition to safety, for if the tube should become hot the lusol would be vaporized so rapirly that its loss could tot be supplied by capillary action. The lamp is extinguished instantly by moving a little lever which closes the small orifice for the vapor. The lamp should be filled very carefully, at a distance from all lights and fires and never while the lamp is burning

A favorable forecast for the future of the lusol lamp may be drawn from the past record of its inventor. Denayrouze and Jablochkof were the first champions of the electric light in Paris. Later M. Denayrouze became the most ardent advocate of incandescent lighting by means of alcohol and he
will, doubtless, soon apply to his new invention im provements of detail that will insure its success and extensive employment. The peculiar merit of the lusol lamp is the elimination of all mechanism. As we have seen, capillarity and the heat of combustion suffice to raise the liquid, vaporize it, and mix the vapor with the quantity of air that is required to accelerate its combustion and cause the mantle to glow with dazzling brilliancy. Final ly, the lusol dight needs no costly and inconvenient system of factories tanks, and pipes, or wires.

How Rats Disseminate Plague. That the rodent is an active agent in the propagation of plague has been a steadfastly maintained theory among scientists for many years past, but exactly how an epidemic is disseminated among the rats and also communicated therefrom to human beings it has been left to the special plague commission appointed by the Indian government to determine. This scientific commission is still engaged in its undertaking, but the discoveries that have already been made are of such paramount importance, that a short and interim report upon the subject has been pub lished. In the course of this proceeding the commissioners definitely state that the disease is conveyed from one rat to another and also to human beings by the parasite commonly known as the "rat flea." This hypothesis has been confirmed as the result of several experiments. When plague-infested and healthy rats were incarcerated separately in wire cages, thereby preventing them coming into contact with one another the healthy rodents became infected, and it was also ascertained that guinea pigs could also become contam inated in the same manner. But on the other hand, if the plague-stricken rats, immune, however, from the flea, were confined and permitted to come into free physical contact with healthy animals, no such signs of infection were observed. Directly the fleas were introduced, the animals in a short time were all simi larly affected, the progress of the epidemic varying in direct proportion to the number of fleas present. These tests conclusively proved that the parasite was the active agent in propagating the disease, since every precaution was adopted to prevent the possibility of infection being spread atmospherically. Moreover similar tests were repeated in plague-infected houses For instance, guinea pigs were permitted to run freely in a house, which though it had been disinfected stil harbored parasites, with the result that the animals were found to be soon attacked by the fleas and con tracted plague, and the parasites caught on thei bodies were found to be capable of spreading the epi demic. When, however, under the same conditions, the guinea pigs were immured in cages of wire gauze, thereby preventing the infesting of fleas; no ill result attended the animals. There is one important theory advanced in the preface to this report-that the plague itself may in reality be a disease of fleas.

Light Paint for Machinery.

There is a very marked tendency at the presen time on the part of manufacturers of machinery to make a departure from the use of black or dark pain in finishing their product. It has been the custom for a long time to cover the heavier parts of machinery of all kinds with paint or enamel of somber hue and the only variation which seemed permissible was an occa sional striping of gilt or some bright color. During recent years a revolution has been going on in the matter of the construction and design of workshop and with it has come the demand for machinery painted some bright color. Not infrequently there is a demand for white, while light gray, buff, and cream color are favorites. The recommendation for this change is that the machine shop presents a much more attractive appearance and that the light surfaces of the machinery are responsible for the reflection of a great deal of light while the black absorbs the rays. The power plants of some of the new office buildings, hotels, and theaters are now regarded as show features of the establishment and one up-town hotel in New York has special accommo ations for visitors. The engine room is in a very accessible place and it is fitted with a gallery for the convenience of spectators. Hardly a night passes but that a theater party with men and women in evening dress is to be seen viewing the installation with interest. This plant is finished in white with stripings of gold. The New York, New Haven and Hartford Railroad Company, in ordering machinery for the new power plant at Readville, Mass., reserved the right to name the color of the paint to be applied to the machinery.

Fig. 1.

A SIMPLE EXPERIMENTAL DYNAMO.
 Paul b woodrurp

A generator giving from 30 to 40 watts of electrical energy is a very convenient piece of apparatus for experimental purposes, as it requires little power to drive it yet may be made to take the place of several cells of battery. Of course, with a given number of watts we
felt when the handle is turned at a very moderate speed.
Having made our purchase, we proceed to dismantle it. Take out the screws in the brass enc plates or bearings, and remove the armature. The contact spring previously spoken of would best be removed now, as we shall not need it. The armature in most of these machines is $11 / 2$ inches in diameter, of the H) or shuttle form, and wound with No. 31 wire. This should all be unwound with care, as t may come in handy for making other apparatus.
Now, while the armature is bare, we will make a commutator. This consists of a $3 / 4$-inch disk of red fiber, 1-16 inch thick, with a center hole hat is a drive fit on the pin in the rear end of the armature shaft. On one side of this disk are fastened the two halves of a $3 / 4$-inch copper or brass washer, which has been sawed or filed into two equal parts. These may be drilled and tapped for small machine screws put through the fiber, or they may be cemented to the disk, exactly as Fig. 1 shows them. But before fixing the commutator on the shaft, we would better rewind the armature. As we have decided on the 8 and 16 -volt arrangement, we will use No. 23 wire. Before start ing, be sure that the iron is well in
have our choice of voltage; thus, allowing 40 watts as the output of our generator, it is practicable to wind the machine so as to give 1 volt and 40 amperes, or 40 volts and 1 ampere, or anything between these figures, always remembering that whatever voltage we get, we must divide 40 by that number to find the amperes. The machine we are about to consider is so arranged as to deliver current at either of two voltages, according to adjustment; that is, if we wind for 8 volts 5 amperes, we can also obtain 16 volts $2 \frac{1}{2}$ amperes if we'wish, by merely changing two connections. It will also deliver either direct or alternating current

Fig. 3.-The Commutator
at both voltages. At any store handling electrical goods, a telephone magneto generator, either new or second-hand, may be bought for a small sum. The kind known as "bridging generator" should be selected; but before buying, the magnets should be tested as to strength, especially in a second-hand machine, as they will lose some of their magnetism if roughly handled. Another test is the shock. In most of these machines the current is collected by a spring resting on a pin in the end of the armature shaft. By placing a finger and thumb, one on this spring, the other on the metal body of the machine, considerable current should be

Fig. 4.-a simple experimental dynamo.
sulated; it is usually covered with paper or cloth shelacked on. Leave two or three inches free at the end of the wire, and see that the covering on the wire is not torn or loose. Wind the channel at one side of the shaft full first, and in going over to start the other side leave a loop of several inches of wire, as in Fig. 2; then fill the other side. Always wind tightly and get as much on as possible. There is almost always a groove cut around the armature used for binding the bundle of wire. Wrap a turn of wire tightly in this groove, and solder it, or at least, twist it as tight as possible, or when the machine is running at a high speed, centrifugal force will throw the wires out against the pole pieces, spoiling the winding.
When the loop left in the center of the coil is cut, there are practically two separate coils on the armature. If the starting end of the whole winding is connected to the shaft or body of the armature, and the finishing end to the pin by soldering, while the remaining ends are connected together, the higher voltage will result. For the low voltage the coils are separated, and both starting ends connected to the shaft, with both finishing ends to the pin. The machine may now be put together again, that is, the armature and bearings assembled with the pole pieces, and the shaft given a whirl to see that it runs all right. Now, drive the communtator onto the pin at the end of the shaft. The metal pieces are insulated from each other by a $1-16$-inch or less air gap; but one must be connected to the shaft, the other to the pin in the end. Prob ably this can best be done with a bit of No. 23 copper wire and a speck of solder. Be very careful to remove every trace of soldering fluid after the operation. The slot in the commutator should be parallel with the iron of the armature, as shown in Fig. 3. A little cement will make it solid in this position, but should not be used until the machine is tested, as described later.
It is now time to make a base of some kind for the machine. This is, of course, a matter for individua choice, but do not make it too light; about one inch thick, of hard wood, and say 3 inches larger each way than the extreme dimensions of the machine, ough to be satisfactory. Drill and counterbore from the bottom of the base for screws to hold the machine; you will find tapped holes already in the bottom of the pole pieces; screw the machine down solid, and we are ready for the final operation-the fitting of the col lector springs, or brushes. Spring brass 3-16 inch wide and $1-32$ inch thick is about right. Four pieces made according to Fig. 3, are fastened to the base by binding posts in the locations shown b and c rest against the commutator, not too heavily (these serve to collect direct current) ; (l against the flattened end of the pin in the center and e, which is simply a straight strip clamped under the machine, and making good connection with it, collect alternating current. Thes brushes should not press hard enough to inter ere with the smooth and easy running of the armature.
In testing, have an assistant turn the handle while you connect the direct-current posts to some piece of apparatus-a small lamp, for instance. The commutator slot is now at righ angles with the armature winding; but it may be found that a slight variation one way or the other from this position will increase the output. When the correct point has been found, the commutator may be connected to the shaft. In
a sense the machine is complete, and may be driven quite satisfactorily with the small crank and gear sup plied with it. But in the author's opinion, it is far preferable to discard the large gear altogether. Get a grooved wooden pulley (a V-groove is the best) $11 / 2$ inches in diameter, with a center hole a shade smaller than the pinion or small gear on the armature shaft, and drive the pulley right onto the pinion. Driven with a $1 / 8$-inch round leather belt from a hand wheel or sewing machine flywheel, a speed of 2,400 revolutions per minute can easily be attained, at which speed the machine will be found very efficient and useful.
The following table gives windings for various approximate voltages at 2,400 revolutions, although nothing very definite can be given, as much depends upon the make and condition of the machine. The voltage varies directly as the speed.

Wire No.	Volts.	Amperes.	Volts.	Amperes.
31	100	0.4	50	0.8
28	50	0.8	25	1.6
25	25	1.6	125	3.2
24	20	2.0	10	4.0
23	16	2.5	8	5.0
22	12	3.25	6	6.5
20	8	5.0	4	10.0
19	6	6.5	3	13.0
17	4	10.0	2	20.0
14	2	20.0	1	40.0

THE SOLUTION OF NEW YORK'S TRANSPORTATION

 PROBLEM.Less than a decade ago the Scientific American was urging upon the authorities of New York city the immediate construction of the first Rapid Transit Subway, pointing out that the objections to underground travel were mainly founded on prejudice. We pointed to the fact that the increase in the traffic on the sur face and elevated railroads, which even then was beginning to be very marked, was but the beginning of a tide which would rise with increasing rapidity, and unless speedy measures were taken to meet the contingency, would, before many years had passed, en tirely swamp the existing means of transportation. After many disappointments and protracted delays the Subway was authorized and built. Its completely successful operation, and the fact that its trains were speedily filled to their maximum capacity, proved the truth of our contention that it was only by going underneath the surface, that New York could hope to grapple sucessfully with the tremendous problem of providing adequate rapid transit. It has frequently been remarked, perhaps not altogether without some truth, that while New York city is apt to be somewhat late in adopting new improvements, when she once has done so, she develops them with a zeal and on a scale of magnitude, for which no parallel can be found. Certainly this has been the case in the matter of providing means for underground travel. The first rapid transit subway with its four-track road, its eight-car express trains, and its high running speed both in local and express service, ranks easily as the finest complete system of city underground railways to be found anywhere in the world; and to the 21 miles which are now in operation in this city, there will be added within four or five years' time an additional mileage of rapid transit tunnels, which will bring the total to over 100 miles.
The enterprise of the city itself is being ably seconded by the efforts of the great railway corporations. The New York Central Company is about to place its freight tracks which parallel the western water front of Manhattan, entirely below ground, and the company is also proposing to build a connecting tunnel from this new subway to connect with its existing main lines, running to the Grand Central terminal. The Pennsylvania Railroad Company has already completed its two tubes below the Hudson River, and is rapidly excavating its way across Manhattan Island, at a depth of 50 to 60 feet below street level, to a junction with the four tunnel tubes which are being driven below the East River to connect with the Long Island Railroad system.
Another enterprise whose magnitude is little understood is that of the Hudson Companies, whose project includes the construction of no less than four tunnels below the Hudson River, two crossing at Morton Street and two at Cortlandt Street, and a connecting tunnel running parallel with the Jersey shore and underneath all the big terminal stations of the roads which run into Jersey City. Moreover, the two tunnels which cross at Morton Street are being rapidly extended below Mankattan Island, one branch running from Sixth Avenue Jelow Ninth Street to Astor Place, and the other extending below Sixth Avenue to Thirty-third Street, where there will be a terminal station. In addition to the four East River tunnels of the Pennsylvania Railroad Company, the Belmont interests are building what is known as the old Steinway tunnel, which passes below the East River and extends under Forty-second Street to the Grand Central Station. Finally, there is the Rapid Transit tunnel from the Battery to Joralemon Street, Brooklyn,
which will connect the subway lines of Manhattan and Brooklyn.
The whole of the extensive and exceedingly costly work which we have outlined above is being built entirely below the street and river surface; and to this must be added the vast network of street railways which was formerly operated by the Manhattan Street Railway Company, and the equally extensive lines of the old Manhattan Elevated Railway Company, all of which-elevated, surface, and subway-are now amalgamated and operated by a single corporation known as the Interborough Company.

It will readily be understood that the planning and construction of so many underground railways, crossing and recrossing the island, and each other, has necessitated careful consideration of the depths at which they must be built in order to avoid interference. As a matter of fact, when the work which is at present under way or proposed has been completed, there will be presented, in at least one part of Manhattan Island, the curious condition of five separate railway systems running, one above the other, at five different levels. The particular spot referred to is the intersection of Sixth Avenue and Thirty-second Street, where, in addition to the three superimposed underground roads, there will be two distinct railway systems above ground; first the trolley street railway, and above that the elevated railway. The arrangement of the tracks and stations, and their relation to the adjoining buildings, is shown in the sectional view on the front page of this issue.
We doubt if it would be possible to find in any city in the world a center of transportation which will compare in importance with that which is herewith represented. Far down below the street surface, at a depth of 55 feet, will be the tunnels which lead from the new terminal station of the Pennsylvania Railroad, across Manhattan Island and below the East River to Long Island. These tracks will be used both for the local service and for such of the main line express trains as will be run through to the extensive yards of the company on Long Island. The local trains will be operated on the multiple-unit system, with motor cars and trailers alternating, while the express trains will be hauled by powerful electric locomotives of the general type shown in our engraving. Immediately above the roof of this tunnel, and separated therefrom by the depth of its steel floor, will ultimately be built a three-track subway, the two outer tracks to be used for local trains and the center track for express service Above this, again, will be the two tracks of the Sixth Avenue branch of the Hudson Companies' system, and at this point will be located their terminal station. At the street surface are the two tracks of the street railway; and above them are shown the elevated railway and its Thirty-third Street station. Above the elevated tracks is yet another means of travel in the shape of the footway bridge, connecting the two platforms. Finally, as if to render this epitome of modern transportation complete, we have, on the left hand, or westerly side of the station, one of the modern, elec trically-driven escalators. In this connection it is interesting to note that not only the escalator, but the five railway systems, are operated electrically.
Fully to appreciate the significance of this junction we must remember that from this point it is possible to take a car which, directly or by its connections, will not only take one to any point in Greater New York, or Jersey City and its suburbs, but to any city of the whole United States, and that this, moreover, can be accomplished very largely without having to make any change in the open.

The Discovery of Nubian Manuscripts.
While examining some sheets of parchment bought at Cairo for Coptic manuscripts, Carl Schmidt made a discovery of much importance to philology and history. The repetition of the word "Uru," which among modern Nubians means king, convinced the German savant, who iș an authority on Coptic and the early Christian archæology of Upper Egypt, that the text was Nubian, a language which, although still spoken, is no longer written. The manuscripts date from the eighth century A. D., and are translations of Christian works in which frequent references to St. Paul are made. One manuscript is a collection of extracts from the New Testament, and the other a hymn of the cross. The Greek original of the hymn is not known. When the documents are deciphered philological science will be enriched by the knowledge of the language spoken by the people of Nubia before the invasion of Semitic tribes, and the mysterious inscriptions on many of the Egyptian monuments may be read.

The Horseless Age says the United Kingdom remains the best customer for American motor cars, its purchases growing practically in the same proportion as the total exports. The most remarkable development has taken place in the Mexican, West Indian, and South American markets, and it will probably not be long before American manufacturers will control these mar kets, as they now control that of Canada.

The commission of engineering experts which was appointed by the municipality of Turin to investigate the project for a new international railroad passing through Mont Blanc, and thus providing communication between the Rhone and Dora Baltea valleys, has now issued its report. The commission selects Aosta, at an elevation of 1,600 feet above sea level, as the starting point of the railroad, which, after climbing 1,700 feet, should pass through a tunnel \cdot under Mont Blanc at a height of 3,100 feet and emerge upon the village of Les Houches in the Chamounix Valley and Pre St. Didier. By this route the distance between Turin and Chamounix would be reduced to 116 miles, and from the former city to Geneva 166 miles. It is suggested that as the railroad and tunnel would extend through three different countries, the cost of construction should be borne by the respective governments, while furthermore the municipalities of Turin, Geneva, and Chamounix, which have the most to gain from the enterprise, should also participate in the outlay.
Owing to the great crush that always prevails at certain of the great railroad stations in London in the early morning to procure workmen's tickets, automatic machines for the issuing of the same have been installed, thereby avoiding the long queues at the bookng offices, and expediting the delivery of the tickets. In Great Britain this class of ticket, which enables the workmen to travel at purely nominal fares over considerable distances-in one case 28 miles can be traveled for four cents-is issued up to about 7:30 every morning, and accordingly there is a vast section of the public which avails itself of these facilities. The automatic machines have proved highly efficient, and expedite the delivery of the tickets to a considerable degree, since no time is lost in tending change, the passengers being required to insert the correct amount into the machine. At Farringdon Street the machine installed issued 2,500 two-cent tickets per day, and proved so reliable in operation, no serious delays occurring through the mechanism breaking down, that the system has since been considerably extended, and now machines for the issuing of three and four-cent tickets are being widely adopted. A further boon possible with these automatic machines is the issuing after 4 o'clock in the afternoon of tickets dated for the following day, thereby relieving the pressure upon the device in the morning, when a considerable rush sets in during the later hours in which the machine is in operation.
The Applied Science Reference Room of the Pratt Institute Free Library (Ryerson Street near DeKalb Avenue, Brooklyn) exists for the purpose of aiding those engaged in any trade or industry. Hundreds of questions arise every day, in the factories and shops of a city, which could be answered from some printed page. It is the intention of the Applied Science Reference Room to supply as many of these printed pages as possible. Sometimes they are in books, very often in periodicals or transactions, and again may be found only in a trade catalogue. In the room set aside for this work in the Free Library of Pratt Institute are taken nearly a hundred trade and scientific papers, giving the latest news of the industrial world. There are besides over fifty of the labor union papers, of which a file is preserved. The most important of the periodicals are bound, and these bound files contain much material that can be found nowhere else. The publications of the United States Patent Office are kept here also, and are used daily. The collection of books here includes up-to-date publications in various industries, such as electrical engineering in all its branches, plumbing, manufacture of textiles, industrial chemistry, gas engines, the making of cement, and so forth. The books in this room are not allowed to go out, so that anyone coming is sure to find the book he wishes to refer to, if it is a part of this collection. The library has, however, a good collection of books in these subjects for circulation, often duplicates of the books in the Applied Science Reference Room. The room is in charge of Mr. Edwin M. Jenks, whose work is to help those who are looking up any question that lies within the province of this room. A large collection of trade catalogues furnishes the very latest information in many lines, and is being enlarged constantly. The library will get any trade catalogue in print, at the request of any user of the library. One new feature of the room is a collection of mounted cuts of machines and mechanical devices. These may be used in the room or taken away to work with, if desired. A man looking up a new form of chuck, for example, will find a score of cuts showing different chucks, and among these may well find some that will be of service to him. Men studying in the evening schools, those preparing for civil service or other examinations, lawyers, and men of various interests will find this department of use. It is open every day except Sunday, from 12:30 P. M. to $9: 30$ P. M., and can be used between 9. A. M. and 12:30 through the library office. Come in when you have a question, or want to see a trade paper.

Coxxexpandente.

Why Not "Air-plane"?

To the Editor of the Scientific American
Air-plane is a much better word than aeroplane.
It is as good etymologically, and much better when it is spoken. arthur C. Kimber.
New York City, December 13, 1906.
Liquid Specula for Astronomical Purposes.
To the Editor of the Scientific American:
Your discussion with Sir H. Maxim concerning the "Magic Sphere" and man's "gravitational sense" suggests a subject of extraordinary interest to me. It is now nearly twenty years since I conceived the idea of employing the same two forces (gravity and centrifugal) to produce a telescopic mirror. The reflecting surface was to be mercury, to which a parabolic figure was to be imparted by causing it to rotate. I made numerous experiments with revolving liquid specula, which were not discouraging considering the crudeness of the methods employed.
I endeavored to determine the nature of the curve which the surface of a rotary fluid must assume to reach a state of equilibrium, and searched numberless scientific and mathematical works for a clew to this problem. But so far as I could discover, all author ities were silent upon this point. Pondering the matter for years, I was at length able to decide with some degree of certainty that the curve was really parabolic; but a casual word let fall by you in your reply to Sir H. Maxim was the first and only confirmation of my conclusion which I have yet seen.
In the year 1897 I published in the Leader (Melbourne) a short story entitled "Lindsay's Vision," in which the suggestion was advanced as the nucleus of a scientific romance.
A telescope constructed on the above principle would possess qualities which might be of prodigious advantage, though plainly subject to certain inherent defects; chief among the latter is the necessarily fixed position of the mirror. But assuming it to be possible by mechanical means to put the reflecting fluid into a smooth and uniform state of rotation, we should obtain a parabolic mirror of incomparable precision, with practically no limit as to size. With respect to smooth ness or polish, I think the surface of a fluid at rest is as perfect as can be conceived, approximating indeed to the minuteness of its molecular structure. Also, the difficulty of mounting and danger of flexure would be completely disposed of, while that of transportation would cease to be an obstacle.
A telescope on this principle could be placed at any part of the world which is now accessible to man, but a situation at the summit of some tropical mountain would ive preferable, since the moon and planets would in turn drift across the field of view.
Assuming my speculations to be thus far sound and practicable,-there is yet the obvious objection that perfect optical performance must depend upon the position of the object viewed, being coincident with the axis of curvature of the mirror-a condition necessarily both rare and transient.
But the problem thus presented would, in my opinion, be far less formidable than that encountered by the early makers of refracting telescopes, and which was met by the invention of the compound object-glass.
a. W. Nightingale.

Hobart, Tasmania, October 8, 1906.

Hon. Theodore Roosevelt,
President of the United States,
Washington, D. C.
Dear Sir: I beg herewith to offer through the columns of the Scientific American a plan for the con struction of locks upon the Panama Canal which I be lieve will offer greater safety and less complication than any of the plans made public, with which I am familiar.
The contingency to be guarded against, as I appre hend it, is the possible destruction of a lock by a steamship out of hand, with a subsequent release of the waters of the lake in such volume as to endanger the waters of the lake in
So far as I am aware of them, the proposed safe guards may be divided into two classes, the first of which is represented by a false gate, or buffer, which is to be thrown across each lock at fifty feet from its end, for the purpose of arresting the momentum of a ship out of hand; and the second, by normally-submerged devices consisting of horizontally-sunk or ver tically-disposed cylinders, or other devices, which in the event that the lock gate is carried away, and the waters of the lake set free, are thereupon to be thrown across the basin at the mouth of the principal lock.
The first plan, of arranging a buffer ahead of each lock-gate, assumes that a movable barrier can be provided which shall be amply strong to absorb the momentum, before it can reach the lock-gate but. fifty feet beyond, of say, a heavy battleship which may be sent
ahead through the mistaken reading of a signal, at quarter or half speed.

I beg to submit that reliance upon the strongest structure of this kind that can be provided is not well founded in experience or human nature; for if it be made stiff enough to resist the ram of a 20,000 -ton battleship moving at a slow speed, there is no assur ance that such a ship out of hand may not develop much higher speed, or that the device may not in time have to be called upon to insure the arrest of a very much heavier vessel.
The second plan, in any of the forms which have been made public, seems to be more unworthy of confidence than the first, for it assumes, first, that the submerged devices used shall always be clear of silt or gravel, or growths, and that they shall be free to move always with mechanism in instantly workable order; second, that once a gate has given way and the lake has started out there will be sufficient presence of mind on the part of those in charge to set the devices to work promptly enough to avoid the instant damage below which must follow the first on rush of the waters of the lake; and third, that the waters of the lake, once under way, can suddenly be arrested without their sweeping away the strongest surrounding works.

It is likewise respectfully submitted that none of these assumptions is well founded in experience, and that to intrust the safety of such a tremendous project, and the lives which necessarily must always be at stake, to such flimsy devices and to the courage, quickness, and wisdom of the employees in charge upon the occasion of a serious mishap, is neither wise nor necessary in the present state of engineering science.

As a substitute for the safeguards discussed, I propose these simple expedients, which are free of untried elements and offer a measure of safety unobtain able by any of the plans made public:
(A.) Surrounding the head of each high-level lock should be a receiving basin sufficient in area to hold, if it be found desirable, a plurality of vessels. Be tween this basin and the lake proper there should be a gate, which, in the event of the outflow of the waters of the receiving basin, will serve to hold back the waters of the lake. Between this, the lake-gate, and the head lock-gate there should be a system of inter locking devices acting so that neither gate may be opened until after the other has been closed. Thus whatever damage may result to the lock system itself from a boat out of hand, the lake itself cannot flow out.
(B.) Each lock, of the series of three, should be two locks long; that is to say, double the necessary length of a single lock. Midway between the ends of each such lock there should be a lock-gate, of the usual construction, which I term a center gate. Thus, each double-length lock will be composed of two sections, both of which are simultaneously emptied or filled Between the head-gate of a lock and its center gate there should also be interlocking connections so arranged that the center gate cannot be opened until after the head-gate has been closed, and vice versa.
In this system of lock a vessel from the lake will first be admitted to the receiving basin (probably with several others). The lake-gate of the receiving basin will then be closed and the head lock-gate of the high-level lock will thereafter be opened, when a vessel will be passed into its first section, after which its head-gate will be closed and its waters drawn off. The level of the first lock having fallen to that of the second lock both the center and foot gates of the first lock may be opened and the vessel permitted to pass into the first section of the second lock, whereupon the same order of operations may be gone through with respect to the second lock, and so with respect to the third.

If desired, and with as great safety, each lock may be used simultaneously to lower two full-sized vessels, each occupying one of its sections. Under these conditions the first vessel would enter the first section of the high-level lock, after which the head-gate of the latter would be closed. The vessel would then be passed intc the second section of the high-level lock and the center gate thereof be closed behind it, whereupon the head-gate could again be opened and the second vessel passed into its first section, after which, the head-gate being again closed, both vessels could simultaneously be lowered to the second level.
Under this plan the various maximum damages which could result from the collision of a vessel with a gate or gates may be summarized as follows, it being borne in mind that the lake-gate is mechanically held closed while the head lock-gate is open, and vice versa: First, should a vessel entering a lock carry away its center lock-gate there would be no disturbance of the waters of the lake itself, and no resulting flood; therefore, the canal's damage would be confined to the gate itself and its surrounding works. Second, should the head lock-gate while closed be carried away by a vessel approaching it and the vessel arrested before reaching the center lock-gate, the latter being closed, the resulting damage would be confined to the head lock-gate and no flood would occur. Third, if
both the head and center lock-gates were carried away, and the vessel arrested before reaching the foot lockgate, the damage would be confined to the gates destroyed and no flood would occur. Fourth, taking what would substantially be the maximum possible mishap, should a vessel have sufficient headway to carry the head lock-gate, and thereafter, traversing the entire single lock-length of the first section without arrest, carry the center gate, and then should it still be able to traverse the full single lock-length of the second section, and carry away the foot-gate, then the maximum damage would occur which it would be possible to do the canal by such an accident-an outrush of the waters of the high-level lock, which would be followed by the waters of the receiving basin; but with the passage of these waters further damage would cease and the waters of the lake itself would remain undisturbed.
When examined in the light of such an accident, the double-length lock with center gate offers more than wice the resistance to a flood from above that would be offered by the single-length lock, because it would offer the resistance of two gates, center and foot, and of two sections of water at rest instead of but one.
If in connection with this system of locks, and of lock operation, the banks at either side were arranged laterally to fall away from the locks, leaving the lock masonry above the level of the surrounding earth to right and left, then the flood of water resulting from the bursting of a lock above and falling upon the sur. face of the lock beneath would largely pass off to right and left with less resulting damage to the lock itself.
If an additional safeguard were ever found to be necessary, two lake-gates set in tandem, a maximum ship's length apart, their mechanisms joined by interlocking devices, would place the works of the canal beyond the possibility of destruction by an outrush of the lake itself through the canal way
Upon an analysis of this plan many advantages here unrelated will appear; and a careful consideration of the subject has led me to believe that a high-level canal built in conformity with it may be operated, so far as major accidents are concerned, as safely as one built at sea level.
The above, which I am taking the liberty of publishng, is respectfully submitted. H. A. Wise Wood. December 8, 1906.

The Current Supplement.

The current Supplement, No. 1617, opens with the President's message to Congress on the conditions which he found at Panama. A very complete series of illustrations is given. Mr. J. M. Basford has an article on the motive power officer of a great railroad. During the last few years the steam turbine has formed the subject of many papers read before various leading institutions, and its different applications have often been referred to. : Few of these papers possess more interest than that of the Hon. C. A. Parsons and R. J. Walker on the development of the marine steam turbine, published in the current Supplement. Prof. C. E. Munroe writes on the development in the explosives art in the United States during the last five years. - Mr. W. R. Stewart contributes a very entertaining statistical article on the twentieth century pen. "The Preservation of Foods" is the title of an instructive résumé of modern processes. Teeming with much curious information is Mr. G. Bolin's essay on perturbations in locomotion, in which he describes how the normal movements of animals are affected by making lesions of the nerve centers and by unequally illuminating the two eyes. Written in a somewhat similar vein is Dr. Henry Fotherby's contribution on light and visual sense.

Micro-Chemical Detection of Copper

Meerburg and Filipps (Pharm. Zeit.) say that copper can easily be detected under the microscope by means of cesium chloride, which gives with copper a double salt in the form of handsome red crystalline needles or prisms. These crystals are observable when only extremely small proportions of copper are present. If much cesium chloride be added, yellow crystals form, which become red on the addition of a ittle cuprous chloride. Cobalt somewhat affects the distinctness of the reaction; lead and bismuth are indifferent.

A German patent has been granted for a new process in spinning artificial threads made from cupric oxide and cellulose, and knitting the fabric for the mantles in the ordinary way. These mantles are subsequently impregnated with the thorium salts, and aiter drying are placed in a bath of ammonia, or hydrogen peroxide. This last bath is the essential point of the invention, as it converts the previously soluble salts into insoluble compounds, i. e., hydroxides. Since hydrogen peroxide only transforms the salts of thorium into an insoluble state, it is necessary to make use of a cerium bath, after the hydrogen peroxide treatment, in order to give the mantles the necessary one per cent of ceria.
the apparatus 0F THE UNITED STATES LIFE-SAVING SERVICE

by waldon fawcett

The series of especially disastrous wrecks, which has occurred during the past year or two on the Atlantic and Pacific coasts and on the Great Lakes, has caused an unusual activity in the invention of lifesaving devices. The United States governmental board of experts detailed to examine and test all new inventions offered for the use of the United States Life-Saving Service has been sorely taxed by the effort to give serious consideration to the many novelties which have been presented.
This official sifting process has, however, resulted in few additions to the standard equipment of the nation's life-Saving stations. Our life savers to-day rely solely in their rescue work on three utilitiesthe lifeboat (interchangeable with which is the surfboat), the lifecar, and the breeches buoy. As accessories to the use of the two last mentioned pieces of apparatus, is the wreck gun which is used to hurl lines to ships stranded in exposed positions.

Many of the rescues effected by the United States Life-Saving crews are accomplished by means. of lifeboats or surfboats. During the year 1905, for instance, there were landed by the surfboats and lifeboats upward of one thousand persons, whereas only about half a hundred persons were rescued by the breeches buoy or lifecar during the twelve months in question.
The lifeboats and surfboats are each propelled by a crew of six or eight rowers-all trained oarsmen of the Life-Saving Service. These staunch craft, weighing perhaps seven hundred or eight hundred pounds each, and by reason of their self-righting and self-bailing qualities rendered virtually unsinkable, are obviously the ideal vehicles for taking considerable numbers of persons from imperiled vessels in a limited space of time. The first duty of a patrolman who in his vigils on the beach discovers a vessel ashore is to ascertain whether the conditions are favorable for the use of a boat in the rescue work. In such event either the large lifeboat is launched from its ways in the station and proceeds to the
wreck by water, or else the lighter surfboat is hauled overland to a point opposite the wreck and there launched.
To the crew and passengers of a shipwrecked vessel the space of one to four hours that usually intervenes between the burning of the red light which signals the patrolman's discovery of the wreck and the arrival of the life-saving crew often seems an interminable wait, but such a lapse of time is almost inevitable save on stretches of coast where the stations are located
exceptionally close together. This will be appreciated when it is taken into consideration that the beach patrolman must in many instances walk three or four miles, perhaps in the face of a storm, to report the discovery of a wreck, and then the crew of life savers must drag the beach apparatus and perhaps the surf boat an equal distance through the sand or over rough

The Breeches Buoy.
roads. If circumstances permit the use of either the lifeboat or surfboat, the keeper of the life-saving station assumes command and steers the boat-the latter requiring the highest refinement of skill when women and children are to be taken off in a tempestuous sea, since under such circumstances the rescuing craft must approach close to the shipwrecked party, yet without allowing the small bark to be overturned or dashed to pieces by a collision with the stranded hull. Help-

The Suriboat Turning Over.
less persons and passengers are usually passed into a rescuing boat first, and as a rule several trips are necessary before all members of a ship's company are safely conveyed to shore. In the comparatively few cases when a ship is wrecked amid comparatively dangerous rocks, or when so high a sea is running that neither lifeboat nor surfboat could make any progress even were it able to withstand the destructive force of the waves, recourse is had to the breeches buoy or the lifecar. Under such circumstances the first consideration is to get a line to the stranded vessel. To this end a leaden missile with a line attached is fired across

In any event, once the shipwrecked mariners have a line of any kind placed in their hands, they can speedily haul out lines of fair size, and eventually the three-inch hawser which is to serve as an aerial cableway and a highway to safety. Attached to every hawser thus sent out to an imperiled vessel is a board which bears, in English on one side and in French on the other, instructions how to fasten the hawser to a mast or other secure support, together with directions for signaling to the life savers on shore that the hawser has been made fast according to instructions. As soon as the rescuers on shore are informed that the other terminal of this life line is fastened, the hawser is hauled taut and the shore end elevated by means of a tripod, in order to lift the rope well clear of the water. There is then sent off to the ship a breeches buoy, suspended from a traveler block or a lifecar from rings running on the hawser. Only one, or at most two persons, can be carried ashore at each trip of the breeches buoy, but from four to six persons can be accommodated in the lifecar. The efficiency of this latter apparatus was well attested in a memorable wreck on the New Jersey coast, when a single car was the means of saving more than two hundred lives.

After all persons have been landed from a wreck, the life savers draw out to the abandoned ship along the cableway an ingenious mechanical device known as a hawser cutter, which upon arrival at the terminus of the line automatically cuts the rope, allowing the crew to draw the hawser to shore and thus preserve intact a valuable part of their apparatus. In connection with this phase of life-saving operations, great care is necessary in coiling the initial line to be hurled to the imperiled vessel, in order that the slender rope may run free when the shot to which it is attached is fired from the mortar. Any tangling of the rope at this juncture would probably cause it to fall short of the wreck and might involve costly delays.

The United States government, which boasts the only life-saving service in the world supported wholly at national expense, now maintains upon our coasts a chain of 277 life-saving stations, of which number 200 are located on the Atlantic and Gulf coasts, 61 on the coasts of the Great Lakes, and 16 on the Pacific coast. Each of these stations is manned by a crew of from six to eight surfmen, who in every case occupy quarters at the life-saving station, and are thus in a position to respond promptly to any call to duty. It is, estimated that the United States government life savers have since the establishment of the service saved not less than 225,000 lives; and statistics
the imperiled vessel by means of the wreck gun, a powerful little portable mortar which will hurl a line over a wreck three or four hundred yards distant even in the teeth of a gale. If the wreck be exceptionally far from the beach, it may be necessary first to establish communication with the wrecked crew by firing a long-distance rocket attached to which is a cord.
carefully compiled since the year 1871 show that in the interval which has elapsed since that date, an aggregate of $\$ 200,000$, 000 worth of property has been saved.

Liquid Air in Blasting.

In one of the largest collieries in the north of England, liquid air cartridges are being utilized for the

Setting Out in the Life-Saving Boat.

Using the Hawser Cutter.
purposes of blasting the coal in the lower workings. The coal face is drilled and the cartridges are tamped home in the usual manner. The cartridges themselves are of special design. The cases are made of phos-phor-bronze of stout thickness. The end which is in-
await the coming explosion, which generally occurs in from six to eight minutes. The liquid air under the influence of the surrounding heat rapidly expands, and the inner end of soft metal affording the least resist ance, it succumbs when the requisite pressure is at
injured by the pressure exerted. A new soft metal cap can be quickly replaced, and the cartridge used immediately if desired. In this way the cost of the process is appreciably decreased. The employment of liquid air for such work is stated by the colliery engi

The End of Her Last Voyage.
serted in the drill hole is formed of a soft metal similar to that used in type founding. At the outer end the cap is fitted with a tube in which is a non-return valve. The cartridge is inserted in an empty condition. When all is ready for blasting, the miner charges the cartridge with liguid air from a reservoir through the
tained, and the escaping gaseous air disintegrates the coal surrounding the cartridge for a considerable distance. The average amount of coal removed at a blast is about 30 tons, and so complete is the process of disintegration that no removed piece of coal exceeds two feet in length, the greater part being broken up into

Landing the Rescued from a Wrecked Vessel.

Keeling Life Line After Using the Lite Gun.
inlet pipe and valve, the latter preventing the air from escaping. The liquid air vessel itself is of convenient size for portability, and the contents are insulated by specially-prepared lamb's wool. The charge inserted in the cartridge is able to exert a pressure of approximately 80 pounds per square inch. When the charge is completed, the miner retreats to a safe distance to

Rigging a Tripod for the Breeches Buoy.

conveniently-sized nuts. In the early experiments the pressure within the cartridge was considerably higher, but it was found that the force exerted was so great that the coal was completely pulverized and rendered unfit for commercial use. By using phosphor-bronze cartridges fitted with a soft metal end, the cases can be utilized repeatedly, as the phosphor-bronze is not
sibility of any gases present in the seam being fired are avoided. .The explosion too is more even, and the coal broken up more regularly. In this particular colliery liquid-air blasting is rapidly superseding the more orthodox methods, especially in the lower workings, as the men become initiated into the methods of handling the liquid air.

Resuscitating an Apparently Drowned Person.

INCREASING THE POWER OF A TALKING MACHINE BY MEANS OF COMPRESSED AIR

Heretofore it has been practically impossible to re produce sounds "life size" on a talking machine. By using large horns it has been possible to concentrate the sounds produced by the diaphragm, and, by thu limiting the area over which they are projected, to give them a volume almost as great as that of the sounds originally impressed upon the record. But this con centration is secured at the expense of the quality of the tone; for to the sound waves produced by the ecord are added the vibrations of the horn itself, caus ng a harsh metallic sound.
The Victor Talking Machine Company has just per fected a machine which produces sounds of greater amplitude than can be obtained in the ordinary talk ng machine, avoiding the objectionable features of the large horn. The auxetophone, as the new machine is called, comprises a small air compressor and a talking machine of standard make. The usual diaphragm is, however, dispensed with in the machine, and the needle or stylus which travels over the record operates a balanced gridiron valve through which the compressed air is passed. In operation the air issues from the valve in intermittent jets, which are modified in frequency and character by the action of the needle in such a manner as to reproduce the sound originally impressed on the record. The needle and valve act merely as relay, while the sound is actually produced by the com pressed air.
To more thoroughly understand the philosophy of the machine, it may be well to discuss the form and action of sound waves. It is a common error to compare sound waves with waves of waer in which, as is well known, the particles of water oscillate vertically, or at right angles to the direction in which the waves are traveling. n sound waves how ver, the oscillations co incide in direction with the travel of the disturbance; that is, instead of having alternate elevation and depression, the wave disturbance produc es alternate areas of compression and rarefaction. As the wave disturbance takes place equally in all directions under normal conditions, it follows that sound travels through air in a series of everexpanding spherical areas of compressed and rarefied air which have their center in the source of the sound. In only two particulars can these sound waves vary, one being the rapidity of vibration, which governs the pitch, and the other being the amplitude of the vibration, that is, the
ength of travel of the vibrating particles, or the dens ity and rarefaction, and this governs the volume or loudness of the sound. In a pure tone the oscillations are rhythmical, but various qualities of tone are produced by interference with the rhythm of the oscilla tion. However, these irregular movements take place in the direction in which the sound is traveling.
With this brief description of the principles of sound, we may be better able to understand the exact opera tion of the compressed-air attachment used on the auxetophone. In the usual form of talking machine a diaphragm is employed which is connected with needle in such a manner as to vibrate, causing alternate waves of compression and rarefaction to be emit ted from the sound box. The compressed-air apparatus is more powerful because when the valve is opened to permit the issuing of $\mathrm{a} \cdot$ jet of air, this air travels through a greater distance in a given time than would the air set in motion by the diaphragm; consequently, waves of greater alternate density and rarefaction are produced, giving a much louder and rounder tone
The accompanying illustration shows the new ma chine with the compressor attachment. It consists of a cabinet in the lower portion of which is a $1-6$-horsepower electric motor, direct-connected to a blower. The air from this blower passes through a condenser the office of which is to remove the moisture and oil it may contain. A flexible tube conducts the air from the condenser to a reservoir provided with a safety valve set to blow off at a pressure of 4 pounds. Thence the air is filtered and passes through a flexible tube

The Sound Box.
Front View, Cabinet Open to Show Air Compressor. Connection to Sound Box. Connection to Sound
OF COMPRESSED AIR

essed Air MESD AIR. these big cats are cer hose who know the leopard and the jagur an captives in zoological collections, this may not be obvious. But all hunters and naturalists who have observed these creatures at home in forest or jungle agree that the eye-spots (Fig. 2) resemble closely patches of shade and sunlight, cast upon the ground through a screen of foliage. It only remains to be said that the jaguar and the leopard are both frequenters of forest land, and the protective value of their spotted hides becomes obvious. Moreover, besides hiding them from possible enemies, the eye-spots are of assistance to these beasts when they are lying in wait for their prey. Among the branches of a tree the jaguar is unobserved by its victim, which wanders unsuspectingly to its doom.

With birds, there can be little doubt that the eyepot is an ornament pure and simple, albeit an ornament with a very definite use. It bears a most important part in bird courtship. Birds are particularly punctilious in all matters in connection with love making, and it is invariably the male who makes the first advances. The female, especially in the case of species where the male is resplendently colored, is generally coy and watchful. She makes it clear to her suitor that she will not surrender her liberty at once; and the cock bird must make use of all the harms with which Nature has endowed him ere he may possess himself of his bride. Indeed, it may be said that as a general rule the most gorgeous and sprightly cock will find the least difficulty in providing himself with a hen. These facts doubtless account
in great measure for the brilliant colors and extraordinary ornaments which are so often the exclusive characteristic of cock birds. They account, also, for the eye-spot, which is borne only by the male birds and discarded by them at the molt hich succeds mol which succeeds th breeding season Those who have watched peafowl at the period of their courting will know well what an important part is played
by the wonderful tail of eye-spotted feathers. The peacock struts and dances before the indifferent hen, and manifests an absorbing desire to show himself off to the best possible advantage.
The peacock pheasant from Ceylon (Fig. 3) is said o make use of its eye-spots to attract a mate in much the same manner. Moreover, in this instance the eyespots constitute the only ornaments possessed by the bird-the groundwork of the feathers being a uniform mottled brown, upon which the colored eye-spots stand out conspicuously, as a glance at the accompanying photograph of a "displaying" male will prove.
The recurrence of the eye-spot upon several fishes has probably the same significance as in the case of birds. The males of many fishes assume brilliant colors for the breeding season; and the ocelli are probably a highly specialized form of ornament produced with a like object. The facts that the eye-spots are small, or entirely absent, in the case of the females, and that they appear upon the males only during the breeding season, lend strong support to this theory.
The eye-spots which are so commonly seen upon certain kinıls of insects are particularly interesting. In the case of certain kinds of caterpillars and beetles, there is little doubt that they are protective-rendering their possessors terrifying in the eyes of possible enemies. This theory is materially strengthened by the fact that such insects usually have some trick or device at their disposal, by means of which the eyespots become more obvious and striking when danger threatens. Bates, for example, mentions a case in which a South American caterpillar startled everyone to whom it was shown by its snake-like appearancean aspect dependent almost entirely upon its possession of eye-like markings, coupled with the peculiar pose of its body when at rest. The same is the case with certain Old World hawk moth larvæ belonging to the family Chaerocampıdre. Several species which possess eye-spots upon the anterior segments of the body have a habit of withdrawing the head and first three body segments into the fourth and fifth segments when alarmed. The front portion of the body is thus abnormally swollen, looking like. the head of an animal, and upon it enormous, terrible-looking eyes are prominent. The effect is greatly heightened by the suddenness of the transformation - a n innocent and inconspicuous animal being suddenly turned into what appears to be an awful monster. These caterpillars are, of course, perfectly harmless; but as they are sufficiently snakelike to startle human beings, it is not unreasonable to suppose that birds and other insectivorous creatures are often equally alarmed, and pass on their way without molesting what they judge to be some dangerous reptile.

Figs. 4 to 11.-Examples of the E'ye-Spotting of Insects, Moths, and Shells. eye-spotting in nature.

Alaus (Fig.4). These ocelli are delineated actually upon the hard integument, and cannot therefore be really more prominent at one time than another. Yet their power to terrify is much heightened when the beetle assumes the attitude with which it is accustomed to respond to signs of danger. It belongs to the great "click beetle" family, and has the power of hurling itself into the air when frightened, and

The fact that the eye-spots of these caterpillars do not, as a rule, attract especial notice while the insects are quietly feeding will bear emphasizing. But as soon as the "terrifying attitude" is assumed in response to a danger signal, the eye-spots--owing to the

Fig. 3.-A Peacock Pheasant from Ceylon, With Tail Spread.
swelling of the body segments-become enormous and prominent.

Very striking eye-spots are seen upon the thoraces of beetles belonging to the Central American genus
falling to the ground with legs and antennæ tucked tightly beneath it. In this position it will remain, seeming to feign death, for an indefinite period.
When surprised by a hungry bird, then, the beetle not only hurls itself out of immediate danger, but prepares a surprise for its enemy in the event of pursuit and discovery. For, with its legs and antennæ tucked out of sight, it has all the appearance of a dangerous and uncanny looking reptile; and the hungry but now thoroughly disconcerted bird turns away in search of some more appetizing object. Then the beetle, after waiting a few seconds to make sure that the bird has really decamped, puts out its feet and feelers and goes merrily about its business. Its strange eye-spots have been its salvation.
By far the most numerous recurrences of the eyespot in the insect world are seen upon the wings of butterflies and moths. In some instances the distinctive mark is small and oft repeated; in others it is large, solitary, and staring. Moreover, the color and "make-up" vary as much as the size, the most curious variety being the eye-spot with a perfectly transpar ent center, which looks just as though a small piece of glass or talc had been let into the insect's wing (Fig. 5).
Now, such very striking and complicated markings cannot have become characteristic of large families of butterflies and moths without some important meaning attaching to the circumstance; and it has been suggested as possible that the "eye" possesses some protective value in that it would be likely to attract birds as a point at which to strike. If a bird, when in chase of a butterfly or moth, were to pierce one of its eye-spots, little damage would be done to the insect, which would gain time to evade it pursuer. On the other hand, the fate of an insect would be sealed if a bird once struck at and injured its body. This suggestion was first made by Darwin.
Moreover, in the case of solitary, staring eye-spots, such as those seen on the wings of the South American "owl" butterflies (Fig. 6) and many moths, the utility is probably to scare away inquisitive birds by giving the resting insect some re semblance to the head of a terrible monster. In the case of not a few moths, the ocelli occupy such a position upon the forewings that they are krought into par ticular prominence when the insect hangs wait ing for its wings to expand fully after leaving the cocoon. (Figs. 7 to 10). This is, of course, the most critical period of the moth's career, and any mark or device calculated to scare away enemies becomes ex tremely valuable Lastly, to the reappearance of the eye-spot on certain shells (Fig. 11) we may perhaps ascribe a meaning such as we saw to exist in the case of the
leopard and the jaguar. The mollusks inhabiting such shells are denizens of shallow water. Thus, the eyespots upon the surfaces of their portable homes serve a protective office on account of their resemblance to the tiny motes cast upon the sea bottom by the light coming down through the water. Even in dark holes and crannies, too, the mottlings and eyed markings of these shells would serve to break up their outlines and cause them to resemble the sand and shingle upon which they lie.
In conclusion, it may be said that the eye-spot is a most striking example of the manner in which Nature applies a beautiful ornament to the exigencies of brute life, answering by one effort her twin demands for beauty and utility. The constant recurrence of the eye-spot must not be regarded as a mere economy of design, but rather as bearing the lesson that it is not possible to have too much of the best of its kind.

Electric Motor Troubles.

The unsatisfactory operation of a motor is usually attributed to some defect in the armature or commu tator. The Street Railway Journal recently notes that many overlook the fact that the fields themselves may be the cause of the trouble. If proper attention were given to the testing of fields, it is safe to say that those mysterious troubles of motors that baffle solution would be fewer in number. Frequently attempts to test fields end in failure because the work is not done properly. Often attempts are made to test them with a voltmeter and an ammeter while they are in the motor. These tests are frequently unsatisfactory because not enough current is used to get an appreciable voltmeter reading or the current is not allowed to flow a sufficient length of time to heat the fields thoroughly. A heated field will often indicate the presence of shorted coils when the same field while cool and under a drop of potential test will show up O. K. When possible, coils should be tested while clamped in position in the motor, but if this is not possible, and they are tested on the floor of the shop, pressure should be put on them when the readings are taken. Sometimes standing on them or jumping up and down on them will cause a variation in the reading of the voltmeter; if so, the chances are great that the field is defective. In addition to the drop of po tential method with direct current, fields may be tested when out of the motor by means of a trans former. A special transformer is required built in such a manner that the field to be tested may be slipped over a core and be made to serve as the sec ondary of the transformer. A short-circuited coil in the field makes itself evident by an increase in the primary current, by the heating of the field and by the sound given out from the transformer. As with direct-current tests, it is best to apply pressure to the
coil in order to develop any shorts that would occur if the field were thoroughly heated and clamped in position in the motor shell.
Several field coil testing devices especially adapted for testing fields while they are clamped in the motor have also been developed within the last few years. When properly used, these devices usually give good results, and, further, the tests are made in a very short time. The machines are usually constructed on the principle of a Wheatstone bridge, a telephone or a galvanometer being employed to indicate when the known resistance is equal to the resistance of the field being tested. But in many instances where these instruments have been purchased, the shop man who is assigned to test the fields does not operate with the instrument long enough to get familiar with it. He seems to regard it as too complex to be understood. But if an earnest effort is made to test fields in this way it will not be long before satisfactory results can be secured. When the testing of fields is begun in shops in which it has not been carried on before, records of all tests should be kept and the condition of the fields when torn up should be noted. By so doing the proper resistance for a perfect coil may be obtained for each type of motor in use. When starting out, if there are no figures as to what the readings should be, the resistance of one field of the motor may be compared with that of another.
The difficulties in obtaining satisfactory results in testing field coils are no doubt largely responsible for the general inattention given them when the causes for the faulty action of a motor are being considered. But as there is such a great likelihood of the fields being the cause of motor troubles, certainly more attention should be taken to ascertain their condition whenever the trouble cannot be located elsewhere.

Upas Arrow Poison.

The upas tree, Antiaris toxicaria, which grows in Borneo and other East Indian islands, has long had an evil reputation, and it is still a common belief that birds flying within the influence of its poisonous vapors instantly perish, and that it is fatal for animals or men to rest beneath its shade. As is the case with many another fable of natural history, there is some groundwork for the exaggerated reports of the evil effects of the upas tree, for it resembles certain Rhus plants in emitting a volatile substance which affects the skins of certain susceptible persons coming near it, though others are quite unaffected. There is no question, however, as to the poisonous nature of the sap of the tree, and it is the chief substance used by the Dyaks of Borneo for poisoning the tips of their darts. An interesting account of their method of preparing and using the poison has been given by Mr. John Allen to the Manchester Literary and Philo-
sophical Society. An incision is made in the bark of the tree and the milky exudation collected on palm leaf and dried first in the sun and then over a fire until a thick brown mass is left. In this state it can be kept without the poison deteriorating, and when required for use it is made into a thin paste with the juice of "tuba" root (which is used to stupefy fish), or with tobacco or lemon juice, and the ends of the darts dipped into the mixture and dried. These darts are made from the middle stem of the palm leaf and are about six or eight inches in length and of about the thickness of a knitting-needle. They are used with a wooden sumpitan, or blow-pipe, which is about seven or eight feet in length and has an internal diameter of about $1 / 4$ inch. A bird struck by one of these little darts is instantly killed, and a pig dies in about 20 minutes. The fresh juice of the upas tree, whether swallowed or injected into the blood, acts as a violent poison, causing convulsions and death from paralysis of the heart. It was shown some years ago by MM. Pelletier and Caventou that the active principle in the juice was a substance which they termed antiarin, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$. It was crystalline and soluble in alcohol, and when heated with dilute acid was decomposed into glucose and a yellow resin. Another poison prepared from the roots of Upas tieute, a climbing plant, is in less common use as an arrow poison. Its action is still more deadly than that of Upas antiaris, and its effects resemble those produced by strychnine.-Knowledge.

Determination of Ethereal Oils in Aromatic Waters
For this purpose E. Beckmann employs the method elaborated by him and Dankwortt for the examination of foods (Pharm. Zeit.). It is based upon the depres sion of the boiling point and the freezing point which a liquid suffers through the substances it holds in solution. The aromatic water to be tested is shaken with ethylene bromide and the above-named constants determined for the pure ethylene bromide and for the ethylene bromide used in the shaking-out process. It should be remembered, however, that the alcohol present must be removed by shaking the ethylene bromide solution with water and that the maximum depression caused by water in the ethylene bromide is to be subtracted from the depressions obtained.

While tungsten is considered one of the rare elements tungsten compounds are of considerable use Sodium tungstate is largely employed for impregnating fibers to make them fireproof. It is also used as a mor dant in dyeing. Tungsten bronzes are largely em ployed as bronze powders and pigments. The chief consumption of tungsten in recent years has been, however, for high-speed tool steels and for hardened steel for armor plates and large guns.

RECENTLY PATENTED INVENTIONS

Electrical Devices.
RECEIVER FOR TELEPHONES.-L. Steinberger, New York, N. Y. This invention relates to telephony, the more particular purpose being to produce certain improvements in
the construction of the receiver. These are partly acoustic and partly mechanical. The partly acoustic and partly mechanical. The
oblate form of the large end of the receiver oblate form of the large end of the receiver
enables it to be applied to the ear with great precision. The receiver presents, as a whole, no crevices, chinks or ledges in which foreign substance is liable to lodge, it permits no undue catching of dust, and its sanitary properties are therefore greatly increased.

Of Interest to Farmers.
PLANTER ATTACHMENT.-G. Weidinger, Circleville, Ohio. The improvement is particularly useful in connection with devices adapted
to the sowing of corn and the like, in which to the sowing of corn and the like, in which in the furrow. The blades are adjustable horizontally and vertically. There are no external projections on the runner to prevent the scouring clean of the same by contact with the earth.
IIl. The cutcr.-H. Willits, New Boston, 1I. The object of the present invention is to
produce a machine such as is used for cutting produce a machine such as is used for cutting
corn into short sections. The improvement corn into short sections. The improvement
concerns itself specially with the mechanism for operating the knife and agitating the hopthe length of the section into which the ears the lengt
plow attachment.-n. t. Lien, Brinsmade, \mathbf{N}. D. The purpose of the invention is will act to the operation of plowing, insuring their being effectually covered up, and thus preventing the weeds and stubble interfering with the subsequent harrowing of the land.

Of General Interest.
DIRIGIBLE BALLOON.-E. M. BoSSUET, 49 Boulevard Haussmann, Paris, France. The principal body is constituted by two conical
vessels filled with gas and having their bases
opposed and to which vessels a rotary motion
is imparted from a motor carried by the balloon, the latter being characterized by, first, its mode of propelling by means of helical wings rranged throughout the length of the conical vessels forming the principal body on two, with interrupted multiple threads, the wings oach line being stepped: rangement of framing for bracing the parts, voiding any distortion of the whole system and making the same perfectly rigid, while preserving the balloon and car.
AUTOMATIC WINDOW-CONTROLLING AT N. J. The invention pertains more particu-
N. J. larly to windows in factories, stores, and other buildings. The object is to provide an attachment arranged to allow moving the win dow-sash into an open position and holding it therein for ventilating and like purposes and to in case of fire to shut off draft, and thus pre vent fire from spreading.
BOX-FASTENER.-A.
BOX-FASTENER.-A. SUTER, New York, cases or boxes, the object being to provide means for lacing or securing the cover on the case. The side boards of the body of the case are provided with recesses, into which spring plates may be pressed inward of the plane of the locking devices to permit the outward swinging of the locking devices. The heads of the plates and portions of the locking devices
may be provided with perforations to receive sealing-wires.
BRIDGE.-W. E. Whiteside, Mangum Oklahoma Ter. The bridge is especially de signed as a combined railroad and wagon or other material. In practice the bridge is designed to be a suspension built in sections
with the ends of the bridge resting on abutwith the ends of the bridge resting on abut-
ments on the opposite banks of the stream or space to be bridged, the bridge being constructed with sections or units may be made of any suitable length within reasonable

GAGE FOR FINDING THE LENGTHS BEVELS, AND CUTS OF BUILDING MA
TERIAL._J. D. WALL, Minneapolis, Minn TERIAL.-J. D. WALL, Minneapolis, Minn The purpose of the inventor is to provide a
device for the use of carpenters and others
whereby to quickly and accurately obtain the whereby to quickly and accurately obtain the
lengths, bevels, and cuts of any kinds of rafters employed, especially in all kinds of roofs, and also the lengths and bevels of other work, such as hoppers, trusses, braces, and stairruns, either dome or circular. Any angle of
any piece of timber used can be readily obany pie
tained.
COMBINED BUTT AND LOCK GAGE. J. M. Realing, Daytona, Fla. The measuring nd marking means combine in a single device square, a bevel, and a marking-gage, so that
the effectiveness of one does not impair the the effectiveness of one does not impair the
efficiency of the others, but are designed to co-operate with each other. It is useful in hanging and trimming doors, marking off butt or lock lines, affording the use of a try-squa
and also a depth-gage in door operations.
WINDOW-BLIND GUARD.-L. D. Richard on, Providence, R. I. The object in this in vention is to produce a device applicable to a shutter in order to prevent the same from being dislodged by the wind or other cause.
The shutter cannot be raised in such a way as to remove it from the pintle The guard, how to remove it from the pintle. The guard, how
ever, does not interfere with the opening. or cosing of the shutters, as it simply moves with the hinge-leaf, so that the finger or dog always rojects under the hanger
Chalking device.-P. T. Erwin, Everon, Mo. The improvement is especially useful in connection with chalking devices used by carpenters or masons to apply chalk to cord
and the like. The object is to provide a device and the like. The object is to provide a device which is simple and inexpensive to manufacture and which permits the chalk to be applied
to a cord expeditiously and in a cleanly man$\left\{\begin{array}{l}\text { to a } \\ \text { ner. }\end{array}\right.$

Heating and Lighting.

KilN-heating apparatus.-S. O. Larkins, Roland Park, Md. Mr. Larkins's improvement has to do with heating apparatus mployed in lumber kilns or houses, and has or its object peculiar, novel, and improved It is designed for arrangement in midns is designed for ar angement ins or with lumber to be dried.
RELIEF DEVICE FOR WATER SYSTEMS. -L. W. Eggleston, Appleton, Wis. This in-
lators for water systems. It is intended to be used especially in connection with water-heatvice which will operate to maintain a substantially constant pressure and temperature for tially constant pressure and temperat
the water throughout a water system.

Household Utilities.

COMBINED CLOTHES WASHER AND WRINGER.- O. GuItar, Columbia, Mo. The ank is partially filled with water and the bed is lowered until they are immersed. By alternately elevating and depressing a presserand expressed out of the clothes. After they are cleaned the bed is elevated so that they latches engage the uppermost notch of the latchet-bar, removing the clothes from the
ratch water, and the presser-plate is again lowered to express water from the cleansed clothes. They are then removed from the pressing-bed and operation repeated. The same operation is done in wringing after clean water has been ntroduced.

Machines and Mechanical Devices.

FEEDING MECHANISM.-G. H. A. M. Leroy, 10 Rue Bertin-Poirée, Paris, France. The present invention relates to a system of wedging which recourse is had to an automatic tion which itmly fixing the band in the posiadvance, which allows it to be carried forward for a distance exactly equal to the stroke of the feeding device. The band becomes unwedged in a manner likewise automatic.
GRINDING APPLIANCE FOR DRILLING-machines.-E. m. Kinsella, Bisbee, Ariz. Ter. The invention relates to hand and power guiding appliance for guiding the drill-bit of the machine in the drill-hole to allow easy working of the bit in seamy or fitchety ground and to permit ready escape of the sand, dirt, or other borings from the drill-hole.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee,
the invention, and date of thls paper.

Business and Personal＜JJants． READ THIS COLUMN CAREFULLY．－You will find inquiries for certain classes of articles numbered in consecutive order．If you manufacture these goods write us at once and we will send you the name and address of the party desiring the information．In every case it is necessary to give the number of the inquiry． MUNN \＆CO．

Marine tron Works．Chicago．Catalogue free．
Inquiry No．8547．－Wanted，playing cards with
raised spots for those that cannot see． Pattern Letters．Knight \＆Son，Seneca Falls，N．Y． Inquiry No．8548．－Wanted，machinery for the
manufacture of alcohol from apples，molasses and
sagar．
 clock， ，inches hiigh oy 5 inct es wide，
frame with glass sides，visible works．re
wanted to purchase same by wholesale． Haridle \＆Spoke Mchy．Ober Mfg．Co．， 10 Bell St．， Inquiry No．8550．－Wanted，a machine for point－
ing meat skewers in iarge quantities，such as 50,000
skewers a day． ing meat ske sersa day．
skew Lawe Mfg．Co．，Box 13，Montpelier， Vt ． Inquiry No． 8551 ．－W anted，machinery for drill－
ing vegetable ivory buttons． Make Alcohol from Farm Products．－New book，\＄1．00． Iuquiry No． 8552 ．－Wanted，makers of portable
sanitary closets． Wanted．－Copies of our＂Manufacturers＇Index＂
issued some eight years ago．State price．Munn \＆Co．， issued some eight years ago
361 Broadway，New York．
Inquiry No．8553．－Wanted，name and address
of the mazars．of the Perplexity Puzzle recently sold by
the Union News Co． The celebrated＂Hornsby－Akroyd＂safety oil engine．
Koerting gas engine and producer．Ice machines．Built Koerting gas engine and producer．Ice machines．Built
by De La Vergne Mch．Co．，Ft．E．138th St．N．Y．C． Inquiry No．8554．－Wanted，name and address of
Wholesale dealers in galvanized corrugated iron and
galvanized iron roofing． Manufacturers of patent articles，dies，metal
st：mping，screw machine work，hardware specialties， machine work and special size washers．Quadriga
Manufacturing Company， 18 South Canal St．，Chicago． Inquiry No．85．55．－Wanted．manufacturers of the
foilowing：trank board lamp colors，sheet aluminum， Inquiry No．8556．－Wanted，the address of a
German tirnwhich mantature souvenirest post cards
and one which makes prism fleld glasses．

Fital Notes andQueries．

Names and Address must accompany all letters or
no attention will be paid theret．This is for
ound our information and not for publication．
dances to former articles or answers should give uiries not answered in reasonable time should be
repeated；correspondents will bear in mind that
some answers require not a little research，and， some answers require not a little research，and，
though we endeavor to reply to all either by
tetter or in this department，each must take
his turn． his turn
Buyers wishing to purchase any article not adver．
tised our columns will be furrished with
addresses of houses manufacturing or carrying
addresses of houses manufacturing or carrying
the same． Special Written
rather than genermation on interest canters of personal cal
without rem be expected Scientific Ammerican Supplements referred to may be
Books at referred office．promice 10 cents each． price．
Minerals．sent for examination should be distinctly
marked or labeled．
（10279）M．O．C．asks：Can you in－ form us how to copper common iron castings Without a battery so they will not rust，or
how to whiten them by dipping？A．To copper how to whiten them by dipping？A．To copper
iron castings，the articles must be made per－
fectly clean，and fectly clean，and then dipped in a solution of
$11 / 2$ pounds copper sulphate in water to which 1 ounce sulphuric acid has been added．They
are then washed and dried． are then washed and dried．
（10280）W．H．asks：Please give me A．One of the best dry cells is said to be A．One of the best dry cells is said to be
filled with the following mixture：Oxide of
zinc， 1 part by weight；sal－ammoniac， 1 part zinc， 1 part by weight；sal－ammoniac， 1 part；
plaster of Paris， 3 parts；chloride of zinc， 1 part ；water， 2 parts．

NEW BOOKS，ETC

Printing Art．Vol．VII．Cambridge
Mass．：Issued by the University Press Mass．：Issued by the University Press
1906．4to．；pp． 412 ．
uxuriant，from a typographical point of view that we have ever seen．It should be on the desks of all managers of printing establish ments，and every compositor should subscribe
for this beautiful publication，which will teach him how to produce the most artistic com position and printing．All of the advertise idea，as they are most informing．There are a large number of inserts showing cover papers
of various weights and colors．The text is devoted to articles on the printing art written by experts，and freely illustrated by examples from the very best presses．A large number
of samples of commerial work are tipped in One can see at a glance what the up－to－date printers are doing in the line of commercial
work．This publication should be subscribed work．This publication should be subscribed
for regularly by all those who are in a posi－ tion to buy printing，as it enables them to
keep abreast of a rapidly－advancing art．The publication is highly creditable to editor and printer alike．

INDEX OF INVENTIONS
 For which Letters Patent of the
 United States were Issued

ANDEACHBEARINGTHATDATE

 See note at end of list about copies of these patents．
for the Week Ending
 for the Week Ending December 18，1906．

 Amusement device，A．Hay
Atomizer，F．S．Dickinson

 Bag－frame，Hiering \＆Fuller．i．．．．．．．．．．．．．．
Bag frame，sewed－in or English，Lange．
Barbess chars，sanitary protector for head
rests for rests for，A．Miller
Barrel washing machine
Barrel washing machine，R．Troehle．．．．．．．
Battery charging system，W．I．Thomson．
Bearing．rolle，W．T．Fleming．．．．．．．．
Bed and guide，attachment，supplemental．
Bed
Bed
Bed
Bed E．C．collassible folding，C．Warnecke．：
Emith

 t clamp，G．H．Alexander．．．
tuide，De Gree \＆MeAlist
t stretcher， S ．L．Porter ．．．．
 Block．See Awning sheave block．．．．
Br．
Bower head，rotary，G．C．Hicks，Jr．
Bieaner，C．H．Prescott．

Wiliams
Brake shoes，making，W．D．Sar
Brander，electric，G．J．Sc
Bridle，H．A．Sie
Broom protector，J．C．Coop
Brush，sanitary hair，R．J．Elli
Brush，scrubbing，F．W．Scofiel
Buckle，cross line，N．G．Wilson．．
Buggy top support，L．W．Loving
Building block，J．H．Clayton
Buoy，breeches，J．W．Dalton
Bustle，F．B．Kuebler
Butcher＇s cleaver，
Butter box，G．E．Wo
Button cleaning machin
Button，separable，G．F．Fla
Buttons and like articles，machine for turn－

ar draft rigging，railway，J．R．M38，560，
ar fender，A．E．Gumz Nitchell．
ar

ar sign support，M．D．Batchelder ．．．．
Car ventilator，A．P．Scheurman
Car wheel．，manufacture of，J．K．Grim．
Cars，antifriction center bearing for ra

ement，roofing，M．W．Powell Chafe iron，C．T．McClelland

Chinney cap，J．R．Cochran
Chocolate press，G．Carlson
Chromates into bichromates，

Circuit breaker，time limit，w．M．${ }^{838,624,}$
Scott．
Clamping tool，W．A．Fuller．．．．．．．
Cleat，scenery，D．J．Cronin．．．．
Clock，electric alarm，Lr． T ．
Clutch，electromagnetic friction

 Condueting，interior，
Connecting ring，Fi．Engem
Conveyer，C．
Copy holder，J．H．Sherger

\section*{| ．．： |
| :--- |
| us， |
| 13， |
| ．．． 838 |
| 83 |}

Corrugating machine，I．W．Numan．．．．．．．．． Coupling device，H．Hills． Crown，porcelain and metallic，c．．．．．．．．．．．．．．．．

Cor	
Crow	
Cult	
Cur	
Cur	
Cu	
Cu	
Cu	
Cu	
C	
C	
De	
De	
De	
Dis	
Dis	
Dis	
Do	
Dour	
D	

버우우요

Fast Feed Fence Fence Ferc Fer

 \section*{
 \section*{
 | Fire |
| :--- |
| Fire |
| Fire |
| Fish |
 \section*{易易品品}}

92	$\begin{array}{l}\text { Furnac } \\ \text { La }\end{array}$
Fuse	
W	

 ${ }_{9}$
${ }_{\substack{88 \\ \text { 88 } \\ 88}}$

> | $\substack{\text { Dust } \\ \text { Dyst } \\ \text { Dyn } \\ \text { Dyna }}$ |
| :---: |

 Educational device，G．W．Chapman ．．．．．
Electric circuits，automatic cut－out devi
for，W． 0 ．Taylor Elect
Elect
Elect
slect
 A
Electr
se
Ele
E
Electr Hamilton
Electrical receptacle，
Electronlating
E．E．Salisbury Electroplating，W．S．Hutchinson ．．．．．．．．
Electropatating apparatus，W．S．Huthiso
Electrotyping，solution for use in，A．Gerst Elevator，G．F．Steedman ．．．．．．．．．．．．．．．．．．．
Elevator car satety aparatus，H．H．Busch
Elevator safety device，C．H．Leffingwell．． Engine．See Gasolene，engine．
Engine，J．H．Trevorrow
Engraving machine，pantographic．．．．．．

 Gasoo
Gear
Gin
Gins
Glass
Glass
Glass

Grate
Grindi
Grindi
Grip，
Gymn
f
Hand
Harr
Harr
Har

 Heating device，structure，D．W．
Heating surfaces，machine for，

Hose bracket，swinging，L．
Hot air furnace，T．G．Neai．．
Hub，wheel，E．Nendelbach
Humidifier，F．B．Comins
Humidifier，F．B．Comins \ldots ．．．．．．．．．．．．．．．．．．．
Hydraulic power systems，means for effect
ing and controlling the storage of wate

Engine and Foot Lathes SUPPLIES. best materials. best SEBASTIAN LATHE CO., 120 Culvert St., Cincinnati, 0 Foot and Power and hurret Lathe. Fian

ORIGINAL BARNES

THE CURTIS \& CURTIS CO..
Electrical Engineering

For Early Publication

Industrial Alconiol

Its Manufacture and Uses A Practical Treatise

Dr. Max Maercker's
"Introduction to Distillation" as Revised by
Dis. Delbrück and Lange comprising
Raw Materials, Malting, Mashing and Yeast Preparation, Fermentation, Distillation, Rectification and Purification of Alcohol, Alcoholometry, The Value and Significance of a Tax-Free Alcohol, Methods of Denaturing, Its Utilization for Light, Heat and Power Production, A Statistical Review, and The United States Law

JOHN K. BRACHVOGEL, M. E
450 Pages. 105 Engravings. Price, $\$ 3.00$.
The latest and most authoritative book on the subject based on the researches of eminent German specialists. Denatured alcohol is one of the most promising of the coming industries and its literature is extremely limited.

MUNN \& COMPANY, Publishers 361 Broadway, New York

We have said a good deal about the infinite variety of incomparable Color Designs it is possible to render with

Pennsylvania Interlocking Rubber Tiling

and how, through its employment, elaborate interior effects may be enhanced to an artistic degree far beyond the scope of any other flooring material. While the Architect cannot fail to delight in the execution of ideas calling these wide and exclusive possibilities into play, the MARVELOUS ELEGANCE OF PENNSYLVANIA RUBBER TILING FLOORS LAID IN SOLID COLOR OR TONE IS EQUALLY WORTHY OF ATTENTION.
Where art goes hand in hand with simplicity, the unmatchable greens, browns, blues, yellows, reds and tones obtainable in this flooring, vastly heighten and enrich effects which other materials can only restrict. Its peculiar, beautiful finish adds a most attractive sense of softness and warmth to interior schemes. ALL ARCHITECTS AND BUILDERS SHOULD HAVE AT HAND OUR BOOK OF DESIGNS IN COLOR, with full data regarding PENNSYLVANIA RUBBER TILING, which will be mailed free upon request.

PENNSYLVANIA RUBBER COMPANY

 Jeannette, Pa. General Sales Agent, Roger B. McMullin, Chicago $\begin{array}{ll}\text { New York-1741 Broadway } & \text { Philadelphia-615 N. Broad Street } \\ \text { Chicago-1241 Michigan Avenue } & \text { Atlanta, Ga. }-102 \text { N. Prior Street }\end{array}$ Chicago-1241 Michigan Avenue
Boston-20 Park Square London-26 City Road

YOu USE GRINDSTONES ?

cial purposes. Send for catalogue " 1 ",
The CLEVELAND STONE CO.
2d Floor. Wilshire. Cleveland, 0 .
A Home=Made 100=Mile Wireless Telegraph Set
 Price 10 cents by mail. 0 order from your newsdealer, or
from

ROTARY PUMPS AND ENGINES.

F 1906

 THOMASAUTO=BI

Classified Advertisements

seven words to the line. All orders must be accom-
panied by a remittance. Further information sent on
request.

SALE AND EXCHANGE.
HALE INTEREST OR STATE RIGHTS in Window
Raising and Iocking Device for sale. See description
this this paper September 29. Address Bruno, 157 Fourth WANTED.-Copies of our "Manufacturers Index",
issued some eight years ago. State price. Munn \& CO.,
361 Broadway, New York.

BUSINESS OPPORTUNITIES.
 AMAZING SCIENTIFIC. DISCOVERR and inven-
tion combined. Science finds fountain of youth. De-
 or cures disease, Send for Prospeetus ot Facts insuring
tremendous probts for investment instock of the Bache-
tet General Mand
 for use in every home. Price s50 up Address H.
Walker, 11th Floor, Flatiron Building, New York. WANTED TO CORREESPOND WITH SOME FIRM
or fimm that do metal spinning. FIT further particu-
ors addres Dr oliver J. West, lars address Dr.
CHEAP POW ER.-WANTED A PARTY OR FIRM,
 CAPITALIST WA NTED to form a stock company newly invented machine that will produce more
power than is put in it; demontrates the trans-
formation of a horseshoe magnet force into a
 money rapidly and easily. For
address Erther
Connecticut.
C.
COMPETENT BUSINESS MANAGER WANTED between forty and forty-five years of age and of good
address. Must possess executive ability and know how to market product when necessary, and have had
successful experionce in this cassof of business before.
Good opening for man of energy. Write full particul lars, together
Address "XYZ," Box references and
Bit New York
INVENTIONS DESIGNED,perfected and made prac-
tical and valuable. We show how to make correctly; where to manufacture and how to sell, Make Exami.
nations, drawings, expermental work, etc. Adress
Engineering Dept, Industrial Bure FOR SALE.-Portable Compressed Air House Cleanto operate in cities of from five thousand inhabitants
 upwards. Over 100 companies operating our sy stem. We . We
are the pioneers in the business, and will prosecute all infringers. State reterences. Address General Com.
presse, A Ar Honse Cleaning Co., 4453 Olive Street, St.
Louis, Mo.

I SELL PATENTS.-To buy or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. WE MA NUFACTURE METAL SPECIALTIES of
ail kinds. Best equipment,

TYPEWRITERS

Fully gewaranteed at special prices to those who

 TYPEWRITERS.-All makes, all prices. Twelv

 ing, mimeograph stencil cutting. Visible writing, in
terchangeable type, prints from ribion. Imperfec

HELP WANTED

 usto-day. Hapsoods, 305 Broadway, New York.
WANTED. A Foreman to take charge of machin shop in manufacturing plant, having from 12 to 14 ma
ching chinists in his charge. Applicant must be thorognhly
posted in the manuacturig of blanking ano drawin
dies. Good position for the rikht party State salay dies. Good position for the rif bit party. State salary
and give references. Foreman, Box 773 , New York.

PARTNERS WANTED.

 WANTED.-A Partner with money to manufacture and place upon the market a feed water regulator for
boilers. I amo also willing to give it on royatilies. For
further particulars apply to A. A., 140 Fifth Avenue,
New York City further particula
New

PATENTS FOR SALE

 For further in
 Navy, Guaranted superior to any. Free errial machine
for tests. Andrews Mfg. Co., Rockaway, N. J. PATENTS SOLD ON COMMISSION-If you wish
to buV Or sell a patent write for particulur to E. L.
Perkin,

SCHOOLS AND COLLEGES.
PATENT LA WS AND OFFICE PRACTICE.-Thor-
oughly practical course by mail for atorneys ind in-
ventors.
formation. Cort bring free specimen pages and full in
School of Patent Law, Dept. Aul 1853

PROFESSIONAL CARDS.
ANAL PTICAL CHEMMST. - Problems of a chemical
nature sol ved. Ay sample of mann tatet ured speceialty
 Waters, minerals and commercial products accurately
tested
B.S., Bratenahl Block, Clevelana, O. O .

FACTORY AND MILL SUPPLIES. PUT IN WATER WORKS at your country home. A
Caldwell Tank and Tower is the thing. Substantial
 out any expense," Write for Water Works wata
logue and
DD, Louisville, Ky.

PHOTOGRAPHY.

 LUMERE PLATES, PAPERS \& CHEMICALS
For 30 Years the standard in Europe. A freesample for
the asking. Write N. Y. Office, 11 West For 3 years the standard in Europe. A free Sample for
the asking Write N. Y. Office. .1. West $28 t \mathrm{St}$ St. Fac
tories, Lyons, France, and Burlington, Vt.

GAS-LIGHTING APPLIANCES.
 intalled, ever lasting, Ask your gas company or write
Pneumatic Gas Lighting Company, 150 Nassau st., X. Y.
Thousands in use.

DEAL EYE MASSEUR

A MOST VALUABLE AND SUITABLE PRESENT Indistinct vision, muscular troubles, and chronic dis
eases of the ey suceesffull treated by scientitic mas
sage. Read illustratedreatie on tne eve. Mailed free
The

DRAMATIC.

FOUNG MEN WANTED to learn stage management

ACETYLENE GENERATOR PATENT FOR SALE.

AGENTS WANTED.

 burned or scalded hands, no more food wasted. Nomore
free. . For particulars ,
ing Co., Johnstown, Pa.

BOOKS AND MAGAZINES

 SEARCHING THE HEA VENS AND THE. EARTH, the sin, moon and stars move alound in in perfect thatcir
cies in 24 hours, and a number of other new discoreries Price \$5 net. Address the author; John Moran (Atty.), MAGAZIN

MACHINERY FOR SALE. ALWAYS ON HAND, good second-hand machinery
also boilers and engines, dynamos and motors; from also boiners and engines, dynamos and motors; from
smallest tolargest. Write us before ordering elsewhere.
Liberty Machinery Mart, 138 Liberty st. . New York. THE VERY THING-A HAND PLANER. Only
\$40. New, goon, guaranteed. Has selt-hardening tool

FOUNTAIN PENS.
RIGHT FROM THE MANUFACTURERS. - The 4, Full Chased and Hard Rubber, Send $1 . .00$ money
order. Langill $\mathrm{F} . \mathrm{P}, \&$ B. Co., 20 Front St, New York. EVERY BODY SHuULD OW N an All-Write Fountain
 LheT THE ILARGEST Fountain Pen Manufacturer to

Wheels, slip preventing and deviee for, E. S. Lebeau Wheels to axles, means for

 ${ }^{838,}$ Windmill, J. . F..............Window, A. Kent
Window, A. Kent

ing flat, F. Forsberg
Wire stretcher, R. A. Bradsaw
Wire terminal, F. T. Lockwood
 DESIGNS.
Apron, B. A. Earl
Apro
Badg
Bird

Clasp member, ${ }^{\text {H. }}$. ${ }^{\text {C.hsson... Frank }}$
Clock case Dablem, C. Flora
 Stove, heating, W. Thompson et al. 38,370 to 38,372
Stove or range, cooking, W. Thompson et Water cooler or radiator tube, Lyhee $\underset{\&}{38,373 \text { Bald- }} \mathbf{3 8 , 3 7 6}$ TRADE MARKS.
abrasive and polishing materials, certain
named, Joseph Pickering \& Sons........

Wouldn't You Like to Own This 10 Shot Repeating Rifle? $\mathbf{s i n}^{\text {oun }} 75$

Hopkins \& Allen . 22 Caliber Repeater
The squirrels and rabbits can't get away from you when
more shots coming almost before he can move.
It makes a ramble in the forest a pleasure-productive f full game
and all the excitement of quick successful chots.
 You can deliver 12 or 16 shots (depending o the cartridge used)
GAME SIMPLY CANNOT GET AWAY
 DEVICE THAT WILL QUICKLY EMPTY THE MAGAZINE WITHOUT FIRING A

PRICE-Safe delivery guar
PRICE-Safe delivery guaranteed- $\$ 7.75$-IF Your own dealer cannot supply you

JAGER Marine 4-Cycle Engines
 CHAS. J. JAGER CO. klin, cor. Battery
Boston, Mas s.

OUT JANUARY 12, 1907
The Special
Automobile Number Scientific American
Handsome Cover in Colors Lavishly Illustrated Price 10 Cents

THIS SPECIAL NUMBER will contain a greater number of detailed descriptions of improvements in construction of all American Automobiles than ever before published. Engines, transmissions, steering gears, axles, frames and all other parts of importance will be illustrated and described in detail.

There will also be a page of Automobile Novelties, consisting of various accessories of use to the user. The description of new features will be more complete than ever before, and the issue will show, in a condensed form, the progress which has been made in automobile construction during the past twelve months.

ORDER FROM YOUR NEWSDEALER OR FROM MUNN \& CO., 361 Broadway, New York City

SORE THROAT Hydrozone

Valuable Books Home Mechanics for Amateurs
 REVISED and ENLARGED EDITION The Scientific American

15,000 Receipts. 734 Pages. Price, $\$ 5.00$ in Cloth. $\$ 6.00$ in Sheep. $\$ 6.50$
in Half Morocco. Post Free.
 'This work has been re-
vised and enlarged, 900 New Formulas. The work is so arranged
as to be of use not only to
the specialist , but to the
the spal ine is general reader It shoul home and workshop A A
circular containing
Table of Contents will circular containing f uil
Table of Contents will
be sent on apilication.
Those who already have
he Cyclopedia may obtain
he 1901 APPENDIX. Price, bound in cloth, $\$ 1.0$

JUST PUBLISHED

Scientific American Reference Book

 Hlustrated. 6 Colored
The result of the queries or ande conresponondents of reader crsal
lized in this book, which has
heen in course of
, been in course of preparation
for months. It is indispensa-
be every tamil and busi-
ness man. It deals with mat-
 and more more complete
and orastive than
anysthing of the sind which
has ever been hetem anything of the kind which
has ever been attempted. The
Secientife American Refer-
ence efter gauging the the
atent
want of thousands.
been revise by
 of Government reports alone
It is is book of everyay reter
ence more usefulthan an en
cyclopedia, because you wil cyclopedia, because you wil
fin what vou want in in in
stant in a more condensed
form. Sixty years of dexnel

[^0] MUNN \& CO., Publishers, 361 Broadway, NEW YORK

部

 Boots and shoes, leather, T. D. Bar
Boots and shoes, leather, W. Hahh
Brand Boots and shoes, leather, W. Bart
Boots and shoes, leather, w. Hahn
Brandies, fruit, C. M. Mann Co....
 Butter, H. C. Christians Co...............................
Butter and cheese, Borden's Condensed Milk
 Candies,
Candies,
W.
W.
Brown
C.

 Champagne, F. . U. Swarts.
Cheese, Phenix Cheese Co.
Cheese, Popper, Gray \& Co.

 Cigars,
Cigars,
J.
Jigars,
Weinreich

a

 songood, Guiterman \& Co....
Cocoa, C.J. Van Houten \& Zoon..
Cocoa and chocolate, C. J. Van
 Collars and cuifs, waterproof, ceiluloid © \mathbf{C}.

 ber, mercerized, J. Bister........
Cotton duck, J. Spencer Turne
Cotton piece gods, Grendel Mills.
 Hream separe Co. of America...............
Culinarvy vessels made of an ailoy contan-
ing nickel and copper, International

 densed Milk
Dress goods and
coibbons,
ribl....................... woven, wiliam
 Veau Telephonene Manufacturing Co..... Cabot Electric Ce.................... Fabrics, certain named textile, J. Lonke....
Fabrics, printed and dyed testile, Eddyston Manufacturing Co................................ Flavoring extracts, Holden Drug Co....................... Flavoring extracts, Mercantile Supply Co.. Flavoring extracts, A. Schillng \&lo........
Flour, wheat, Cheroee Mill
Flour, what, Liberty Mills..................
Flour, wheat, Hardestr-Williams Milling Co Flour, wheat, Hardesty-Williams Milling
Flour, wheat, Kimbal. Flour Co.........
Floor, wheat, Wm. Lindeke Roller Mills

 Lean Manufacturing Co..........
Hats and caps, Gordon \& Ferguson.
Hose supporters and suspenders, combin Kazoo Suspender Co...
Hosiery, Wellknit Hosiery Co.
Hosiery, J. Samuels \& Brother.
Inks printing Ault \& Wiborg Inks, printing, Ault \& Wriborg Co...........
 Journal, monthly, Metal Industry Publish Knives and razors, pocket, wester Bros.
Lamss and carbons therefor, electric, H. M
Hirschberg
 Lamps, incandescent electric, General Elec.
tric
Co.

 Measures, skirt, F. M. De Leon.............
Medicated pads.
Metal ard Sanitary Mer. Mo.................
Metal polish, P. Johner............. Co.58,577, 58,627 , Molasses. syrup, and sorghum, New Orleans Coffee Co................, $50,9,58,654$ to
Musical instruments, certain named, Regina

Neckwear
Button
wupporters, Blumenkrohn Croche

 edles, crochet hooks, and bodkins, hand
sewing and knitting, H. Milward \& Sons
vets, hair A. G. Jening. Net, har, A. G. Jennings..................
Nitrogen fixing bacteria. Ray Chemical Co.
Oil and lubricants, cylinder, White \& Bag-
 ronsides Co. 58.491,
Overals, jumpers, and trousers, Fort worth
Overall Co.

It's an axiom in mechanics that no chain is stronger than its weakest link-that the strength of any piece of machinery is the strength of its weakest part.

- The strength of a typewriter is the strength of its typebars. On the typebar and its bearings the chief wear comesthe chief strain comes-and the wearing out first comes. The strength of the Typebar sets the limit to everything.

The picture shown herewith tells its own story. It shows a Remington Typewriter suspended in mid-air from a heavy four-strand copper wire attached to the type on one of the typebars. The entire weight of the machine (28 pounds) is supported on this one bar-all without displacement either of the bar or its bearings. Think of it!

The Remington bar represents skill and care in manufacture carried to the absolute limit. There are THIRTYTHREE distinct processes in the manufacture of this single Remington part.

The result-a typebar which is incomparably stronger and more durable than the typebar of any other writing machine. No wonder the

REMINGTON TYPEWRITER

REMINGTON TY $\overline{P E W R I T E R ~ C O M P A N Y ~}$ New York and Everywhere

NOT FOR FARMERS ONLY

Oltr Cunulified Cinullenan

$x+2 \pi=-\infty$

The Leading Journal of Agriculture The ONLY Agricultural NEWSpaper
The one weekly devoted to country life which no suburban resident and no city owner of a country place can afford to be without.
Every department edited by a specialist recognized as a leading authority in his line.

$$
\begin{array}{ll}
\text { Best Reviews of the Crops. } & \text { Best Market Reports. } \\
\text { Best Accounts of Meetings. } & \text { Best Everything. }
\end{array}
$$

[^1]LUTHER TUCKER \& SON, ALBANY, NEW YORK

		"Lusitania," fuel consump.. ${ }^{95}$$\mathbf{M}$			
	Gold, sources, new............ Grand Central Station, new.				
				Santos Dumont's fightSargasso sea, discoveries in.	
	Gun, Guns, erosion of, $186,226,231,247,426$				
	$\text { Gypsy moth, parasite of.... } 23$ H	$\begin{aligned} & \text { Masses, rotating, balancing..*196 } \\ & \text { Matter in a gaseous state... } 111 \\ & \text { "Mauretania," turbine ship } * 320 \end{aligned}$	$\begin{aligned} & \text { Photography, color, new proc. } 304 \\ & \text { Photometer, new } 430 \\ & \text { Physics, history of, wanted. } 13 \\ & \text { Piano, Mathushek } 217 \end{aligned}$		
		Merchant marine, British.... 130Message, President's, Panama		Sea, effect on climate........ Seasickness and the eyes..... Seasickness, remedy for Ser Seaweed burning Norway	
				Selden patent, the 63Sewage dispos., Washington.*173Sewage, nitrification of..... 227Shark, monster *70	
				$\begin{array}{ll}\text { Ships, old, disposal.......... } & 5 \\ \text { Shipping in Antwerp } & \ldots \ldots \\ \text { Shoe blacking, electric. } & 71 \\ \text { Shoe } & 424\end{array}$	
		Moter			.
	Hydrolythe, for prod. hydro- 				
	1 1			'South Carolina,'" battleship,	v
		$\begin{array}{ll}\text { Motor boat race, ocean.... } & 463 \\ \text { Motor boat races on Hudson. } & 211 \\ \text { Motor car, independent...... } & \mathbf{2 4 2}\end{array}$			
			${ }^{\text {a }}$	${ }_{\text {g }}^{5} 5$	
			250		
					Volcanic dust fog............ 230Voltax, new insulator....... 28w
			Race, ocean, motor boat..... 463 Race, Vanderbilt cup...246, 281 Races, Dourdan $\ldots \ldots \ldots \ldots .405$ Races, motor boat................ 211	$\begin{array}{llrr}\text { Stones, precious, imitation. } & 424 \\ \text { Stones, precious, in } 1905 \ldots . & 62 \\ \text { Storms, } & \text { southern } & \ldots & 467\end{array}$	
					Water freezing in tubes.... 407 Water, hot, supply to towns.*190 Water, mineral, examina.... 43 Water .wells, and earth-
	Island, a new, berling sea.... 190				
		Nitrogen, spectrum of........379Nobel prize, Roosevelt's.....467Noses, red, treatment.......308$\mathbf{0}$			
	 K				
			$\begin{array}{lllr}\text { Rails, guard, subway...... } & \text { * } 71 \\ \text { Rails, steel, large order for } & 95 \\ \text { Railroad collisions } & \ldots \ldots \ldots & 426\end{array}$		
		ger collotel ….. 102			
				Sweerer sireer, antomate..."मis	

America's
 Flower Garden

Mother Nature, Father Neptune and a kindly climate all contribute their share
toward making California the "Golden Soward making California the Golde In a like manner new equipment, appetizing meals, the lowest altitude and most
southerly route all contribute toward the southerly route all contribute tow
popularity of the Rock Island's

Golden State Limited

No other train over any southern route to California can compare with it. electric-lighted Drawing-room and Stateroom Pullmans, Mission-style Diner and Buffet-Library-Observation Car

B. FELEARNESS SCREW HMyster CUTTINC LATHE

Scientific American.

Muvin \& Co.aisinaman, New York
Paints and and $\begin{gathered}\text { cons, certain named, Murphy } \\ \text { painters } \\ \text { and materials. }\end{gathered}$

Tur

\& Erwin Manufactur
\&-ray tubes, H. Green..
LABELS.

PRINTS,

 Co. ..

 A printed copr of the specification and drawite
 s 15 "GEM" Adding Machine Free 10-Day Trial. We Pay Ex.
pressage. Has a Resetting Device Mechanical Proeluction. Does the work of high-priced machines. Handiest thing an engineer can own. Great for outdoor work.
Carried in your pocket. Guaranteed for two years. Catalog. Free.
Automatic Adding Machine Co., $\mathbf{4 7 5}$ Broome St., N. Y. City

MR. INVENTOR MONARCH TOOL CO., 128 Opera Place, Cincinnati, 0.
E. V. BAllLARO. 24 Frankfort Street. New York.
PARKER, STEARNS \& C0., 228.229 South Street, New Yor
EEOO M MAER, MS M MONADNOCK, OHICASO

T. LOUIS WRECKING \& SUPPLY CO.

LEARN WATCHMAKING

 elo
LEARN PLUMBING Ateerimonhs, mi

How to Construct An Independent Interrupter

 Mr. This artitice should he read in eunnection vith MENT, 160.5. How to Construct a 100 -Mile
Wireles. Telegraph Outfit.
Each Suplement cots 10 cents; 20 cents for the
two. order from your newsdealer or from MUNN \& CO.. 361 Broadway, New York

Von Welsbach, Bessemer, Nobel, and Bell
each of these great scientists tells his own story of the invention that made him famous in GEORGE ILES, latest book
Inventors at Work

USE THIS blank:

 this ofnce for 0 cents, provided the name and
number or the patent desired and the date be
civen. Adress Munn \& Co., 361 Broadwas, New
Yiver Cork.
Canadian patents may now be obtained by the in-
ventors for any of the inventions named in the ofore
golng Hist.

Rubber Elevator \& Conveyor Belting
FOR CONVEYING AND LIFTING BROKEN STONES, COAL, COKE, WOOD F \because JLP, GRAVEL, SAND, SUGAR, etc., etc.

SPECIAL CONSTRUCTION

 EXCEPTIONAL QUALITYNEW YORK BELTING \& PACKING CO., Ltd.
91-93 Chambers Street, New York

CHARTER
Stationaries, Portables, Hoisters, Pump-
ers.
with Dining and Boat Outits, Combined th Dynamos.
Gasoline.
Gasoline. Gas, Kerosene
Send for Catalo Send for Catalogue.
State Power Need
CHARTER GAS ENGINE CO., Box 148, STERLING, ILL.

 CRUDE ASBESTOS | PREPARED | |
| :---: | :---: |
| $\begin{array}{l}\text { ASBESTOS FIBRE } \\ \text { for Manufacturers use } \\ \text { OFFICE, MT.PAUL BUILDING } \\ \end{array}$ | 220 B'way, New York. | THEDIAGRAPH The Improved Stencil Cutting Machine

I I a saving of 90 per ceent in your ship-
ving Department worth considering?
 10 N. Amecorican Street, Diagraph Recording Instruments For Pressure, Temp erature and INSURE SAFEREECONOMICAL Write for Catalog T. stating conditions $\rightarrow \quad$ Bausch \& Lomb

Bausch \& Lomb Prism
Brom thars are as dififerent
from the field fathers as the modern rife is from the from thint fieck. Ilasses of our
bunt, or follow the sports, one of these little glasses of giant SEND TO-DAY FOR DESCRIPTIVE CIRCULAR BAUSCH $\underset{\text { Rochester, N.YTICALCO }}{\mathcal{L}} \mathbf{L}$

WM. H. BRISTOL Electric Pyrometers

 give saqtisfaction, Send for circulars.
Wm. H. Eristol, 45 Vesey St., New York

CLFKIN
tape
For sale corerymhere. Send for

wisant To Know

something a bo ut a particular
TTool.or Tnols
cloth.bound
This
g50 page

 MONTGOMERY \& co. 105 Fulton St., N. Y. City

STEAM USERS

Ranioow Pading

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.

Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints. Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by
PEERLESS RUBBER MFG. CO. 16 Warren St., New York

Its Metallurgy and Mechanical Treatment

By Harbord and Hall in the metallurgica
W. ROBERTS-AUSTEN

J. B. LIPPINCOTT CO.

[^0]:

[^1]: Subscription, $\$ 1.50$; Four Month's Trial, 50 cents. Specimen copies free on request.

