

View of Complete Blast Furnace as Seen from the Charging Platform of Adjoining Furnace. THE MINNEQUA WORKS OF THE COLORADO FUEL AND IRON COMPANY.-[See page 214.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845 MUNN \& CO. - Editors and ProprietorsNo. 361 Bublished Weekly atw, New York

TERMS To SUBSCRIBERS

 the Solentific american publications

Amer be furnished upon application. Remit by postal or express mo MUNN \& CO., 361 Broadway, New Yor

NEW YORK, SATURDAY, SEPTEMBER 22, 1906.
The Editor is almays glad to receive for examination illustrated
rticles on subjects of timely interest. if the photographs are
 sharp, the articies short
will receive special att
hat regular space rates.

GROWTH OF AMERICAN UNIVERSITIES.

The safeguard against and corrective of the evils of our vast immigration are to be found in our excellent public school system; and so, on the other hand, we may say that the greatest safeguard against the perils which attend on the increase of the opportunities for accumulating rapid wealth, and the portunities for accumulating rapid wealth, and the
temptations and opportunities to acquire that wealth temptations and opportunities to acquire that wealth
by devious ways, is to be found in the rapid growth of our universities, and the splendid moral and mental equipment which they offer to the youth of the country. We know of nothing that augurs so well for the future as the fact that the development of our universities is moving forward at an ever-accelerating rate. Indeed, during the past decade they have grown even faster than the population. The record of growth of thirty of our leading universities shows that from 1895 to 1905 the increase in the number of students has been as follows: Harvard attendance has risen from 3,550 to 4,559 ; Colum bia, from 1,942 to 4,056 ; Michigan, from 2,818 to 3,742; Minnesota, from 2,233 to 3,633 ; Illinois has made the extraordinary jump from 607 to 3,391 ; Wisconsin has increased from 1,671 to 3,390 ; Cornell, from 1,689 to 3,330 ; California, from 1,787 to 3,200 ; Yale, from 2,350 to 3,124 ; Chicago, from 1,524 to 2,901; Northwestern, from 2,413 to 2,481; New York, from 975 to 2,882 ; Stanford, from 1,100 to 1,552 ; and Princeton from 1,109 to 1,384 . This represents an increase of from 0.28 per cent in the case of the Northwestern University to as high as 459 per cent in the University of Illinois. Now, in the ten years from 1890 to 1900 the increase of the population of the United States was about 22 per cent; while during the same period at thirty universities the attendance increased 65 per cent. Among the many encouraging features in the growth of this country, there is none that carries brighter promise for the future than this ever-widening appreciation of the great educational institutions of the country

GASOLINE ENGINES AND THE TORPEDO BOAT.

it was only a question of time before the internal combustion engine would be given a serious trial in the propulsion of torpedo boats. The valuable quality of developing large power in proportion to the weight of the engine, and the wide radius of action for a given weight of fuel which can be secured by the use of gasoline, are qualities which have always commended themselves strongly to the consideration of the naval architect. The first serious attempt to produce a motor-driven torpedo boat of practical size and seagoing ability has recently been made by Yar row, and he has succeeded in turning out a craft whose success was so pronounced that it has been purchased by the Admiralty, and seems likely to become the nucleus of a fleet of similar boats.
Of late years there has been a tendency to depart from the essential principles upon which torpedo flotillas were built. The original theory was that these flotillas should be made up of a large number of small craft, each of high speed, and presenting, because of its small size, a difficult object to hit, and costing but little to build. In the desire to raise the speed, the designers have been driven to increase the length, until from their original 75 feet torpedo boats have grown to an over-all length of 150 feet. The increase in their cost has necessarily led to a decrease in the number to be built, and consequently torpedo flotillas have lost that most valuable element of bewildering numbers, on which the chance of get ting home a successful blow on a warship so largely depended.
In casting about for a type of boat which would accommodate itself to the demand for a restriction of size, it was realized that the motor-driven boat presented the best possibilities, and the matter has been so well worked out that the new motor tor pedo boat, although it is only 60 feet long by 9 feet beam, has proved able to make a trial speed of 26.15
knots and sustain 24 continuously on a sea trip of many hours' duration. The economy of weights which.has been secured by the adoption of the gasoline motor is shown by a comparison of this vessel with a torpedo boat of similar dimensions driven by steam, which, if it were carrying the same load, would be able to attain only 18 knots an hour as compared with 24 . Furthermore, the radius of action of a with 24 . Furthermore, the radius of action of a
steam-driven boat for one ton of coal would be only 60 miles, whereas for one ton of oil the motor-torpedo boat would be able to cover 300 miles. The fact that the little craft weighs only 8 tons, and is but 60 feet in length, adds enormously to its mobility in naval operations; for a whole flotilla of them in naval operations; for a whole flotilla of them
could be loaded on to the cars, and transported to any desired point along the coast with ease and dispatch. The probable method of defense with these vessels would be to arrange a series of special stations, at the mouths of the rivers or harbors, where they could run in for shelter or supplies, and so protect a long stretch of coast line with a continuous chain of torpedo defense, which could be quickly concentrated by rail in large numbers at any point which might be threatened. Although for aggressive operations such craft as these can never in any sense supersede the battleship, it is worthy of note that over three hundred of them could be built for the price of a single "South Carolina" or "Michigan."

NORTH TUBE OF HUDSON RIVER TUNNEL COMPLETED.
It is seldom indeed that an enterprise so vastly im portant as the construction of the two great railroad tubes by means of which the Pennsylvania Railroad Company is to gain a long sought admission into the city of New York beneath the Hudson River, is forced to its completion with such rapidity and with such little ostentation. Public attention has been centered upon the huge excavation for the terminal on Manhattan Island, and upon the serious difficulties which have attended the driving of the tubes beneath the East River; and since the sinking of the shafts for the Hudson River tubes, practically nothing has been heard of the truly remarkable speed with which the two tubes were being pushed through to a connection beneath the river. Work on the tunnel proper commenced on the New York side on April 18, 1904, and on the Jersey side on September 1 of the same year. The shields of the north tube met on September 12, and at the present average rate of driving the shields of the south tube will meet about the 7 th of next month.

The improvements now under way for giving admission to the Pennsylvania Railroad to New York and Long Island will cost altogether about $\$ 100$, 000,000 . The North River division of this work, extending from the new terminal at Thirty-third Street and Eighth Avenue to the Hackensack Meadows, west of the Palisades, has a total length of 13,700 feet, and the length of the tunnel proper, lying directly beneath the Hudson River, is 6,100 feet. The tunnels on both sides of the river were driven through rock without the use of shields, to as great a distance af the nature of the material would allow, and in this portion of the work serious and rather puzzling obstructions in the way of piles, cribwork, and riprap, were encountered. As soon as the river mud and silt were entered, the shields were set up and the driving progressed steadily and rapidly and with a remarkable absence, for this kind of work, of fatalities and serious accidents. One miner lost his life by being suddenly submerged in quicksand, and there was one death attributed to the effects of compressed air. It must not be supposed, however, that the success in driving the tunnel was due to the absence of difficulties of a physical nature; for the greatest care had to be exercised in maintaining the pressure at the proper point to prevent a sudden blowout and the inflow of quicksand into the tube. This was particularly the case on the Jersey side, where, at a depth of 85 feet, a freely-flowing quicksand was encountered. On the New York side, moreover, not far beyond the bulkhead wall, the tunnel passed through silt, the surface of which lay dangerously near the bottom of the river. The difficulty at this point was overcome by the well-known expedient of dumping clay and forming a blanket on the river bed, which effectively prevented air-blowing. As the shield progressed, the heavy segmental rings were put in place, and the work advanced so rapidly that on one occasion as much as $121 / 2$ feet of distance was made in eight hours. The work remaining to be done consists in driving through the bottom of the tube a row of massive cast-iron screw piles, which will be sunk until they reach the underlying rock. These will be fastened securely to the tube, and will form a series of piers, upon which the structure for carrying the roadbed will be laid. The interior of the tube will be entirely lined with about two feet of concrete, which, in conjunction with the massive cast-iron shell and the heavy screw piles, will render the work so stable as to insure the permanency of these tunnels for all time.

STEEL PASSENGER CARS FOR TRUNK RAILROADS.
It is good news to those of us who realize that the loss of life on steam railroads is altogether too large, to learn that at last one of our great trunk lines has decided to adopt the all-steel passenger car as a standard type for all new equipment. The steel car, as we have often pointed out in the columns of this journal, is the only sure preventive of those two fruitful causes of death and injury in railroad wrecks, namely, telecoping and fire. Telescoping, or the crushing of one car directly into the one adjacent to it, should, more strictly speaking, be known as shearing; for when telescoping takes place, the mischief is due to the massive and enormously strong platform of one car lifting above the one adjacent, and sliding forward upon it, cutting through the light framework of the sides until the body of the telescoped car is cut loose from the under-framing. As the entering platform is forced resistlessly along the surface of the one on which it climbs, its forward edge passes through the car, usually at about the level of the passenger seats, and the passengers are crowded forwara, mixed up with the wreckage of the seats, the splinters of the framing, and the fragments of heavy plate-glass windows, with all those resulting horrors with which we are only too familiar. The risk of fire is due to the ignition of the combustible woodwork of the car and its yet more combustible paint and varnish, by the inflammable illuminating gas, or the scattered white-hot coals from the ngine firebox.
Obviously, the best preventive of telescoping is to so construct the cars that the end framing of the body and the vestibules will be strong enough to prevent the shearing action of the platforms; and it has at last come to be realized that the only material which presents the proper resisting qualities is the wonderfully tough and elastic mild steel of which we build our skeleton buildings, our bridges, and our steamships.
Great credit is due to the Pennsylvania Railroad Company for its determination to build its future passenger cars of steel. We understand that the first order for the passenger-car equipment to be used in the Hudson River tunnels and the new Manhattan and Long. Island stations is to be of steel throughout, and that one thousand of the new cars are to be ready as soon as the tunnels and station are completed. The Pullman Company is now constructing the flrst all-steel sleeper car, which if it gives satisfaction, will be followed by five hundred Pullmans of similar design. The main feature of the new car platform is a massive central box girder, 24 inches wide by 19 inches deep, which will extend throughout the full length of the car from coupling to coupling. Froin this backbone, deep steel cantilevers will extend transversely, four on each side, to carry the sides of the car, which will be composed of steel girders of unusual strength. The floor framing will be covered with a continuous flooring of steel plates, strongly riveted to the steel longitudinal girder and the cantilevers of the floor framing; and over this plating will be placed a cement finish in imitation of stone which will be laid while in the plastic condition. Security against telescoping will be obtained by making the steel vestibule end and corner posts of such a form and strength as will present great resistance to transverse shearing; and should the adjoining platform be forced through these, it will bring up against the end door posts, which will be of a very deep section, securely riveted to the main box girder of the platform, and to a horizontal steel strengthening plate at the roof of the car. Inside and out, the lining will consist principally of steel plating, and no wood or inflammable material whatever will be used except for the top of the seat arms, where it has been introduced for the comfort of the passengers. The car is equipped for electric lighting, the current for which is furnished by storage batteries placed beneath the car; and it is to these batteries largely that the great weight of the new car is due; for while the standard wooden coach weighs about 85,000 pounds, the new steel car has a weight of 103 ,550 pounds. This increased weight, while it will be looked at dubiously by the master mechanic who has to provide the motive power, has the advantage that it greatly reduces vibration and noise and, therefore, adds to the comfort of the passenger.

JAMES DREDGE.

The field of technical journalism has suffered a beavy loss in the recent death of the late James Dredge, editor of our esteemed contemporary Engineering. Among engineers there were few contempor ary names more widely known than his; for outside of his editorial work, which extended over a period of thirty-three years, Mr. Dredge was honorably known for the active part which he took in the great international exhibitions. He was identified with the Vienna exhibition of 1873, and later with the Centennial exhibition at Philadelphia of 1876, and the Paris exhibitions of 1878 and 1899. He was a member of the British Commission for the Chicago exhibition of 1893. He held similar official positions with the Antwerp exhibition and that held in Brussels, and he was one
of the vice-presidents of the British Commission for the Milan exhibition of the present year.

Mr. Dredge was born at Bath, July 29, 1840. He was educated as a civil engineer, and it was in the course of his professional work that he first made the acquaintance of the late Zerah Colburn, and that other distinguished engineer, the late Alexander L. Holley. Zerah Colburn, who had held the position of editor of The Engineer, London, left that journal to establish one of his own, the first number of which, under the title of Engineering, was published in 1866. It was through Mr. Colburn that Mr. Dredge became one of the staff of the journal with which he was to be honorably associated for so many years. Not only was Mr. Dredge a frequent visitor to this country; but at all times he took the most lively interest in its growth and prosperity. Conspicuous among his early writings were a series of articles on American works, included in which was a series of articles on one of the leading American railroads, which was subsequently published in book form. The visit of Mr. Dredge to this country in 1890 was made for the purpose of delivering an address in connection with his unveiling of a bronze bust of Holley in Washington Square, New York. He was a member of the British Institution of Mechanical Engineers and of the Institution of Civil Engineers. He was also elected an honorary member of the AmerHe was also elected an honorary membe
ican Society of Mechanical Engineers.

THE ADVANTAGES OF CRANK AXLES FOR LOCOMOTIVES. by w. f. cleveland.
The pistons of a locomotive, and their reciprocating connections, during acceleration and retardation stresses, may be considered, so far as these disturbing forces are concerned, as captive projectiles, whether propelled by steam in the cylinders, or through the cranks and axles, by the momentum of the train when steam is shut off. In the former case, their unbalanced inertia is applied to the cylinder heads in precisely the same way as the recoil of a gun is occasioned, and induce the racking strains which occasion the serious repair bills, itemized as broken frames, deranged adjustments, bad steam distribution, and a hundred other ills, that may be diagnosed as general locomotive debility.
During the excessive speeds of modern railway travel, the strains induced by the unbalanced inertia forces of these parts are largely occasioned when steam is shut off in the descent of grades and the approach of staoff in the descent of grades and the approach of sta-
tions. The strains are then applied through the rods and cranks to the frames at the main bearing connections, the momentum of the train being the propelling energy, but the destructive effects are of the same character and proportion. They are partially and inadequately balanced by the counterweights, whose service is further vitiated by the variable track pressures which they induce, and by the unbalanced strains of their continued action at both centers, when the inertia of the piston and its connections has been removed. During piston acceleration, the effective steam pressure, as measured by the crank stresses, is diminished to the extent of the static inertia of the reciprocating parts, which is also unbalanced to an equal extent, but the loss is repaid by the dynamic inertia of retardation in the latter half of the stroke.
The retardation stresses of the latter half of the piston stroke are applied to the cranks, in unison with those of the effective steam pressure, but as the latter are balanced between the piston and the cylinder heads, the former remain unbalanced, except by the untimely action of the counterweights, and like a retarded or action of the counterweights, and like a retarded or
captive projectile, communicate their disturbing forces, through the rods and cranks, to the main bearing connections, where they are absorbed by the frames and general mass of the locometive. These forces of retardation and acceleration of the reciprocating parts act in unison with the course of the train's motion during one-quarter of each revolution of the drive during one-quarter of each revolution of the drive
wheels, but in contrary directions to one another durwheels, but in contrary directions to one another dur-
ing the next quarter. That is, with the piston of the left-hand engine at the upper (crank position) half stroke, and the opposite piston at head center, the retardation stresses, during the ensuing quarter, on the one side, and the aeceleration stresses on the other, both act in unison with the direction of the train's both act in unison with the direction of the train's
motion; but in the next quarter they act in contrary directions to one another, as the change from retardation to acceleration takes place with the reversal of the piston motion, and the change from acceleration to retardation during the course of the piston stroke. The conditions and changes are the same at the back centers, except that the directions of the disturbing forces are reversed. The cycle thus begins with these forces acting in unison for one-quarter of a revolution, and in the direction of the train's motion, then changing, during the next quarter, to contrary directions to one another, then acting in unison during the third quarter, but contrary to the direction of the train's motion, and during the last quarter, pushing or pulling in contrary directions. The conditions will be more readily understood by keeping in mind the fact that, during the piston acceleration and retardation of the
first quarter of the cycle, the pistons move in contrary directions, and therefore the disturbing forces act in unison of direction, because the acceleration forces are always contrary, and the retardation forces always in harmony, with the direction of the piston movement. During the second quarter of the cycle, the pistons move backward in unison, and the disturbing forces are therefore contrary to one another in direction, and so on to the end of the cycle.
It is therefore evident that the conditions are far worse than if these forces continually acted in contrary directions, as the sudden changes at each quarter revolution, even at moderate speeds, are productive of racking strains, aggravated by lost motion in the working parts, and culminating in crystallization and breakage of the frames, and impairment of the general efficiency of the locomotive.
A most satisfactory change for the better may be effected, however, simply by the use of crank axles, placing the cranks as closely together as possible, in order to centralize the strain, and at the same time protect the cylinders from heat radiation and cylinder condensation, by their inclosed positions. During the first and third quarters of the cycle, when the disturbing forces act in unison, the distribution of the strair ? will be practically the same as with outside cylinders, and no racking stresses will be occasioned; but during the other quarters, when the disturbing forces are contrary in direction, the approximately central positions of the cranks, considered in connection with the inertia of the wheels and outer parts of the axles, will eliminate the racking strains, and practically balance the disturbing forces. Light counterweights only will then be required to balance the coupling side rods and wrist pins.
Crank axles have been in use for many years on English railways. It is claimed that American locomotives have made a poor record on these roads in endurance competition with those of English manufacture, and the main cause is probably not far to seek; but the prejudice against crank axles in America is gradually being eliminated by improved methods of manufacture, and by the unqualified success of balanced compound locomotives running in this country.

INVESTIGATING THE NUTRITIVE VALUE OF MEAT.

A billion and a half dollars are spent every year by the people of the United States for the meat they eat-about a third of the whole amount expended for raw food materials. This immense sum is used to purchase a food of whose nature and dietetic value very little is known. Every one thinks he knows from experience what suits him best, or at any rate, as one woman expressed it, "likes to eat what he likes, and not what is nourishing."

It has proved financially profitable to study the food of plants, to analyze the soil where they are to be grown, discover what food element is lacking, and by supplying this produce a more perfect and plentiful crop. Extensive experiments are carried out to determine by what system of feeding the most marketable steer yielding the largest profit can be raised. Even the question of whether the corn should be ground into a meal or fed to the animal on the cob is thought worthy of consideration and experiment. This, because the value of such care and experiment can be demonstrated in the returns in dollars and cents. A man's health, strength, and efficiency depend upon the food he eats, but it is less easy to show the results of experiments with human beings than with plants and the lower animals. In matters of food more than in anything else the human race has been content to follow its instincts. Now, however, the time has come when it does not seem sufficient to depend upon these alone. We have begun to appreciate the ability of science to first interpret the leadings of instinct, and then discover means of improving upon them. Through the domestic science movement many of the more intelligent housekeepers have come to realize the need for more accurate information regarding the nutritive and economic value of different foods, of methods of cooking, and related subjects. To supply this need the government, through the Office of Experiment Stations of the Department of Agriculture, has established a system of Nutrition Investigations. These include studies of the food consumed by typical individuals, families, and groups in colleges, hospitals, and other institutions, to determine representative food habits, to discover the principles underlying the natural selection of food, and to establish a rational basis for such selection.
While very few people in civilized countries actually starve, many have less food than they need, and multitudes have less than they would buy if they could. On the other hand, many people have more food than they should have. Careful preparation and skillful cooking fits much food for use which would otherwise be thrown away, and makes what is already edible more easily available, and therefore more valuable to the body. We do not, however, know a great deal about the effect of cooking upon food and its influence upon
digestibility. Moreover, whenever money is scarce and the most should be made of food, there the ignorance, carelessness, and incompetence of the cook are proverbial. Therefore the nutrition investigations have included researches upon the preparation of some of the most important articles of diet, particularly bread and meat. It seems especially suitable that the investigations upon the chemistry of meat should be carried on in Illinois, which contains the greatest distributing center for this food in the world.
At the University of Illinois several laboratories of the Department of Chemistry are devoted to this study. Not only are different cuts and kinds of raw meat analyzed to discover differences in composition and therefore in nutritive value, but they are also cooked in various ways to determine the comparative value of different methods of cooking, the losses and changes in composition which occur, and the influence of these upon the digestibility of meat.
A standing rib beef roast, for instance, is shown by analysis to consist of 42 per cent refuse or inedible material, bone and gristle, 24 per cent water, 26 per cent fat, 7 per cent proteid (muscle-building substance), 0.7 per cent organic extractives. Therefore, if one pays 75 cents for a 5 -pound roast of this character, 31 cents goes to pay for waste material and 43.5 cents for edible meat divided as follows: 18 cents for water and 25.5 cents for the actually nutritive material.
The same roast, boned and rolled ready for cooking, would weigh about 3 pounds, 44 per cent of which would be water, 12 per cent proteid, 1.4 per cent organic extractives, 41 per cent fat, and 0.6 per cent ash. After cooking it would weigh about $21 / 2$ pounds if cooked very rare, and contain 40 per cent water, 14 per cent proteid, 43 per cent fat, 1.5 per cent extractives, and 0.7 per cent ash. Having lost more of water than of the other constituents during cooking, it has become more concentrated, and a pound of the cooked meat contains as much nutritive material as 18 ounces of the raw meat.
It is difficult for the uninitiated to appreciate the extent of the work involved in such investigations, but some idea may be gained from the fact that a single cooking experiment, including the analysis of the meat before and after cooking and of the accompanying broth or drippings, means that one hundred and forty chemical determinations must be made-sufficient work to take all of one man's time for three weeks. Moreover, each cooking experiment must be repeated a number of times, in order to collect sufficient and indisputable evidence to justify definite conclusions. In the course of these investigations nearly a hundred raw meats have been analyzed, and three hundred cooking experiments performed. Results which are of practical as well as scientific value have been obtained.
When meat is cooked in water, it may lose from 10 to 50 per cent in weight, depending upon the conditions of cooking. Most of this loss is due to the water cooked out of the meat. Almost half of the water present in the raw meat is lost in this way, so that it is not surprising that boiled meats should seem so dry. Meats cooked by roasting lose from 13 to 37 per cent of their total weight. Only about a third of the water is lost under these conditions, leaving the meat much more juicy. The roasted meat loses very much more fat than does the boiled meat, but this is not important, since it may be saved in the drippings, and more fat probably remains in the meat than will be eaten.
The loss of the organic extractives-a class of substances about which very little is known, except that they are responsible for the flavor and stimulating effect of meat-is quite a different matter. When the meat is broiled or roasted only a small part of these exude, but if they are cooked in water more than three-fourths of them are dissolved and pass into the broth. The meats from which the soluble constituents have been. removed are very much less effective in stimulating the flow of the digestion juices, and therefore have a lower dietetic value than those which retain more of these substances. The juiciness, tenderness, and flavor of a roast or porterhouse steak are of sufficient physiological importance to justify to some extent a preference for these, even at the higher price one must pay for them, than for meat for boiling or stewing.
In cooking meats in water the losses increase with the length of time and temperature of cooking. The
smaller the size of the pieces in which the meat is cooked, the greater also will be the losses. In roasting the losses increase the more thoroughly the meat is cooked. Meat that is cooked well done loses fully twice as much as that which is left rare. This means that the latter is not only more juicy, but contains more of the soluble flavoring constituents than the former. Being in a condition that resembles raw meat. it is more easily though not more completely digested than is the well-done meat. All meats, irrespective of the method of cooking, have a high food value when judged by the kind and amount of nutritive ingredients present.

TEEE ALCOHOL SMUGGLERS OF PARIS.

COHOL without a doubt is the article most often smuggled through the gates of Paris, and this is due to the fact that the tax upon it has steadily increased during the past few years. Naturally, increased taxation means higher profits on contraband goods and, therefore, quickens the Under our very eyes these ingenuity of smugglers. Under our very eyes these men annually pass thousands of gallons of valuable
spirits into the city, where it is readily disposed of at high prices to makers of perfumes, or to liquor dealers who use it for adulterating their goods. Yet we keep a sharp watch on all who pass through the rates of the capital. None can enter until he satis fies us that contraband articles are not hidden on his person; no vehicle is admitted until it has been thoroughly searched, and every cask of liquor must be declared before the owner is authorized to pass on. Nor can any one question the severity and consci entiousness of the in spection, as the men under my orders have a share in the pro ceeds of the sale of any alcohol seized at the barriers. At given periods this is sold by the municipal author ties, one-half of the receipts going to the city funds, and the other half to the octroi employees. These men are not over-well paid, so they look for ward to increasing their incomes by extreme vigilance in capturing smugglers.
I can assure my readers that it is well worth while to smug gle alcohol into Paris. The dues on each liter or quart amount to four francs fifteen centimes, say eightysix cents. Imagine the profit to be de rived by anyone who succeeds in smuggling several thousand gallons of alcohol a year. Among the thousand-and-one methods employed by smugglers, some very curious ones have come under my observation during the twenty-odd years that I have been connected with the service. The ac companying illustra tions represent some of these. They are reproductions of spec i a 1 photographs
taken in the warehouses of the Hotel de Ville, where are stored all sorts of ingenious smuggling apparatus. They are so numerous that quite a museum could be formed, were it not for the fear of teaching dishonest men how to defraud the government.
For several months smugglers disguised as stone masons carried wooden beams through the gates without our suspecting for a moment that they were hollow and contained large quantities of alcohol. But the fraud was eventually discovered by pure accident, as nearly always happens. One day, just as the last man of a squad passed the barrier, with a cheery "Bonjour, camarades," he stumbled over a stone and ell headlong. Fearing that the man was hurt, I darted forward to help him to his feet, but had no sooner done so than to my utter astonishment he arose with astounding rapidity and made off, leaving the beam behind him; moreover, his companions also took o their heels. The reason for their flight was soon apparent. From one end of the beam there oozed a thin stream of liquid, which I instinctively detected as alcohol.
Double-bottomed bottles and other vessels are common contrivances of smugglers. In order not to awaken
our suspicion they are usually filled with some beverage, beer or wine, and this is duly declared by the man in charge of the vehicle. We have often been swindled in this way in the past. Now we are never deceived by double-bottomed bottles, nor for that matter by hollow horse-collars (see illustration) which was at one time another favorite dodge of the alcohol smuggler.

But I have come across even more ingenious tricks than these. In smuggling alcohol through the gates of Paris, it is not at all necessary to have a vehicle and a bulky cargo. A single man can carry quite a quantity of alcohol, and in quite a different sense from that usually applied to drunkards. A smartly-dressed gentleman is represented in one of the accompanying photographs. Under his spotless waistcoat and white shirt, he carries an India-rubber plastron brimful of alcohol. True, his appearance is rather bulky, but then he can probably put that down to good living, and ten to one he will slip through our hands. Sometimes the India-rubber waistcoat is replaced by a tin one, also filled with alcohol; and I have known even an immaculate-looking tall hat to be found to contain some heavily-taxed liquor. Then again this class of
pected for a moment that it contained 40 liters of pure alcohol. The smugglers took every precaution against discovery, avoiding, for instance, passing through the same barrier twice running. However, the trick was eventually discovered by an officer who insisted on examining the wreath, and found that it contained a tin interior filled, of course, with the valuable spirits.
Among the many smugglers whom I have caught red-handed, there was one man who disarmed suspicion for months by his pleasant manner. He would come up in the most friendly way imaginable, shake me by the hand, wish me "Bonjour," ask after my health, and talk for half an hour at a time about the news of the day. All this time his vehicle was standing at the gates, a vehicle which we little suspected contained no end of untaxed alcohol. Apparently his cart was filled with beer and cider, for which he always paid. One day, however, he was caught. A young employee who had never seen him before was alone on duty, and insisted on ransacking his vehicle. Nothing save the casks of beer and cider was to be seen, and he was about to let the man pass when a drop fell on his hand from the roof of the covered cart. He looked at the spot of liquid, smelt it, and at once detected that it was alcohol. In the roof of that vehicle was a cleverly-arranged tank let into the woodwork, and in addition to this hundreds of liters of alcohol were stored under the driver's seat. You can judge of the astonishment of myself and colleagu-e when we heard that the brave homme, who for six months past had inquired so kindly about our wives and children had been throwing dust in our eyes.

You can now imagine what large sums of money the city of Paris loses through the ingenuity of smugglers. The alcohol thus introduced into the city is used for various purposes, sometimes for making perfumes, but more often, I suspect, for concocting cheap alcoholic beverages. Once within the city, the smuggler can easily find a market for his produce. Frequently he is in the employ of a manufacturer who thus realizes enormous profits on h is goods. I can assure you we customs officials have often a very hard task. In spite of all our endeavors, smugglers gain their ends. We are pitted against a class of men who are sometimes perfect geniuses-men who THE ALCOHOL SMUGGLERS OF PARIS
smuggler will often carry an innocent-looking port folio which contains not papers, but alcohol. Thus surrounded by alcohol on all sides, he walks past us with the gravest of airs, taking care not to make a false step, otherwise his heavily-loaded hat might fall to the ground and reveal the fraud. I have known this class of smuggler to be accompanied by a fash ionably-dressed lady, under whose skirts there has been enough alcohol to stock a small saloon. These two defrauders are very difficult to catch, for the reason that they do not need to pass through the gates of the city, but can come into Paris by boat, and my colleagues at Charenton or Bercy are hardly likely to detect them in their perfunctory examination of bas kets and hand bags. Sometimes, of course, suspicion is aroused, and the well-dressed gentleman and lady are followed, not by ordinary octroi employees, but by detectives who are always on duty near the barriers and landing stages
During a period of over six months the customs employees at the various barriers at Paris saw two men regularly pass before their offices, carrying a very fins funeral wreath. Naturally, they never asked them to pay dues on such an article as that, and never sus-
ergies into other channels might have been inventors with a wide reputation, and with incomes honestly earned.

Fireless Cook Stoves.

In an address to an audience consisting largely of working people, Mrs. Back, wife of the director of the industrial school (Gewerbe Schule), at Frankfort, brought to the attention of her hearers the following interesting information in regard to a new article of kitchen furniture-the hay box, or fireless stove.
Every housewife knows that a pot of coffee- can be kept hot for a considerable length of time, without the aid of fire, simply by wrapping it securely in a dry towel in order to hinder the escape of heat. It now seems very strange that the world has been so slow to make a practical and more extended use of this idea.
At the Paris exposition of 1867 much attention was attracted by a wooden box lined with wool and felt, which was called "the Norwegian automatic kitchen." In this box food which had been boiled for only a very few minutes continued to cook slowly and in two or three hours was found to be ready for the table. For
some unexplained reason ali efforts to bring this use ful novelty into general use proved unsuccessful until the matter was recently taken up systematically and with more enthusiasm in Baden. The propaganda is now being successfully pushed in Berlin, Munich, Frankfort, and other cities by means of popular lec tures and public demonstrations of the convenience and practical value of this method of cooking.
Mrs. Back stated that she has now been using the hay box for thirteen years, and that it has greatly reduced for her the cares and annoyances of house keeping. At first she used the box merely for the purpose of keeping finished food warm, but it was not long before she discovered that the process of cooking continued in the box. She thereupon extended its use, making a series of experiments which resulted in pleasant surprises. She soon found that she could fin ish in the box all boiled and roasted meats, sauces fish, soup, vegetables, fruit, puddings, etc. Of course the box cannot be used for beefsteaks, cutlets, pancakes, and the like, articles whose chief attraction lies in the crispness resulting from rapid cooking on a hot fire, but when food of this kind is being prepared it is a great comfort to know that the rest of the meal is ready and hot in the box.
In any household such a box will be found of great advantage, lessening the worries of the housewife and cook, and leaving much more time for other duties and recreations, but for working women it is more than this-it is almost indispensable
A little patience and interest will secure all the experience that is needed and remove all doubts. A few experiments will teach how much preliminary cooking on the gas stove is required for different substances. In general, it will be found that two or three minutes of actual boiling on the fire is amply sufficient for vegetables, while roasted meat requires twenty to thirty minutes. Most articles should remain tightly closed in the box for two or three hours, though they can be left there to keep hot fo ten or twelve hours, if necessary.
Rice, dried beans, lentils, dried fruit, etc. should first be well soaked in cold water. After being allowed to boil for from two to five minutes, one to two hours in the box will prepare them thorough ly for the table. Cabbage should be prepared the evening before it is to be used. It should be placed in the pot with very little water, cooked well in its own juice, and put overnight in the hay box. Just before din ner on the following day it should be warmed on the stove Cauliflower and other soft vegetables should be merely brought to a boil and then placed for an hour or two in the
box. It will be found that soups are greatly improved by being allowed to develop for two or three hours in the hay box. The covers of the pots should, of course, not be lifted when the pots are being transferred to the box. By the old method of cooking, it is necessary to boil dried beans two and one-half to three hours When the hay box is used, boiling for five minutes will be found sufficient. This will give a clear idea of the amount of fuel saved.
Science teaches that many substances become ready for use as food at temperatures below the boiling point; and that, unless the pots are hermetically closed, a temperature exceeding 212 deg. F. cannot be attained, no matter how much fuel is consumed nor how long the boiling is continued. Accordingly, the object to be kept chiefly in view is to retain the heat as long as possible when it has once been developed.

One of the first things for a novice to learn is how much water to use. It will soon be found that too much is better than too little, and that if beans, peas lentils, oatmeal, etc., have less water than they can absorb, they cannot become properly cooked, no mat
er how many hours the process is continued. No water should ever be poured from the pots, not even from potatoes, as it always contains valuable salts derived from the cooking substances whose loss must lessen the alimentary value of the vegetables or meat.
The hay boxes now being offered for sale in German stores are usually lined and partitioned with hay, felt, etc., and the receptacles are furnished with covers which can be securely locked. Such boxes are no doubt useful when food is to be transported-for instance, from restaurants; but there is one serious objection to them-their immovable felt and upholstery may become moist and moldy. A home-made hay box will usually be found cheaper and more practical. Almost any box will do which has a tightly-fitting cover. The wood of which it is made should not be too thin, and of course there should be no knot holes or cracks. Old trunks and valises may sometimes be successfully utilized in this way.
The box should be loosely filled with shavings, paper, or hay-the last mentioned being probably the most
not blackened, and they will last for an almost indefinite period of time
3. The food is better cooked, more tasty, more nutritious, and more digestible.
4. Kitchen odors are obviated.
5. Time and labor are saved.
6. There is no need of stirring nor fear of scorching or burning.
7. The cares of the housewife are lessened, and her health and happiness are thus protected.
8. The kitchen need not be in disorder half of the day.
9. Warm water can always be had when there is illness in the house and during the summer when fires are not kept up.
10. Milk for the baby can be kept warm all night in a pot of water.
11. Where workmen's families live crowded in one or two rooms the additional suffering caused by kitchen heat is obviated by the hay box, for the preliminary cooking can all be done in the cool of the morning. 12. At picnics the appetites of young people are only half satisfied by sandwiches and other cold food. The hay box can furnish a hot meal anywhere and at any time.
13. Similarly, men and women working in the fields or having night employment can take with them hot coffee, soup, or an entire meal, thus avoiding the necessity of returning home at a fixed hour or having it brought to them by another member of the family.
14. When different employments make it necessary for the various members of a family to take their meals at different hours, this can be arranged without a multiplication of work with the assistance of the hay box. Of course it is necessary that the box be kept perfectly clean, as otherwise it may become sour or musty.George H. Murphy, Consular Clerk, Frankfort, Germany.

Aside from the production of cattle, by which Argentina first attracted attention, the country is known as a wheat grower, and will continue to increase in importance in this direction. The extraordinary gain made during the year 1903-4 in crop raising as against animal production was not due to any unnatural or phenome nal causes. Exports of farm products during the first six months of 1904 increased more than a third over the same period in 1903, which was considered a very good year. At the same time the exports of animal products fell off about 8 per cent. The total wheat export of Argentina up to the 1st of October, 1904, was $100,000,000$ bush els, while the total for the year 1903 was only $75,000,000$, and for the
satisfactory. The hay should be renewed every two or three weeks. Before the pots are ready the requisite number of nests in the hay should be prepared, and when the pots are placed in these holes the hay should be packed under and around them tightly. Any kind of pots can be used, although of course earthen ones hold the heat best. The tighter the top fits the better, but if the food is to be used within six or eight hours, it is not necessary that they should be of a kind which can be hermetically closed. Ordinary tops will be found perfectly satisfactory. When the pots have been placed in the box carefully and without lifting the lids, they should be covered with a pillow and the lid at once securely closed.
When not in use, the box should always be left open and the hay loosened, the pillow being hung in the air to dry thoroughly.
The chief advantages of the hay box may be summarized as follows:

1. The cost of fuel can be reduced four-fifths, or even nine-tenths.
2. The pots are not made difficult to wash; they are

Even a Hat Is Used for Smuggling Aicohol. preceding year only $23,690,070$ bushels. The wheat area is rapidly extending to the west and southwest. The acreage estimated by the Argentine Department of Agriculture for the past season was $9,275,178$, and the estimated production $124,160,636$ bushels. This is chiefly in the provinces of Buenos Ayres, Santa Fe, and Cordoba, with smaller amounts in Entre Rios and in the Territory of the Pampa.

A novel instrument for illustrating the magnetic properties of iron was described some time ago to the Cambridge Philosophical Society by Mr. A. H. Peake. In this instrument a strong magnetic field is produced by sixteen bar magnets; this field, which is normally horizontal, may be slightly inclined at will by rotating a turn-table, to which the permanent magnets are attached, through a few degrees. The specimen of iron under test is very thin in proportion to its length; it is supported in a freely pivoted cradle, to which a control weight and a long pointer are attached; the axis of the cradle is in the same straight line with that of the turn-table.

HOW A PLANET IS WEIGHED.
 Y FREDERICE honey wit col.

In the measurements of astronomical distances, the unit of computation is the mean radius of the earth's orbit, i. e., ninety-two million nine hundred thousand miles. This unit multiplied a little over thirty times gives the radius of the orbit of the outermost planet, Neptune, nearly two thousand seven hundred and ninety-two millions of miles.
But the imagination is unable to grasp the meaning of these figures; and we are compelled to be content with the statement of the fact, without attempting to fathom its significance. When, however, we come to the consideration of volumes and weights, i. e., those of which we can speak with any degree of definiteness, the quantities appear to be, if not comprehensible, at least capable of being stated in terms of which we know something.
Simple illustrations are here given to make it pos sible for the average reader to understand the compu tations in the determination of a planet's volume and weight. These computations are dependent upon a knowledge of its apparent diameter; its distance from the earth; the radius of the orbit of one of its satellites; and the period of the latter, or the time of one revolution round the planet. Therefore the degree of accuracy is primarily dependent upon the ability of the observer to determine these elements.
We will take for our illustration the giant of our system, Jupiter, whose weight is about two and a half times the sum of the weights of all the other planets and their satellites. We will compare the volume and weight of Jupiter with those of the earth.
Jupiter's Volume.-In order to determine the dimensions of a planet, its distance from the earth and apparend diameter must be known. Jupiter's mean distance from the sun is 5.2 times the mean distance between the earth and the sun, i. e., over four hundred and eighty-three millions of miles. At opposition the mean distance between the earth and Jupiter is the difference between this distance and the mean radius of the earth's orbit, or about three hundred and ninety millions of miles. But on account of the eccentricity of the planet's orbit, this distance varies between very wide limits. When it is known, and the apparent diameter of Jupiter measured, his real dimensions may be computed. The equatorial and polar diameters of Jupiter are respectively 88,200 miles and 83,000 miles. The difference between these dimensions is apparent even in the accompanying small drawing (Fig. 1) which is an ellipse, the minor axis $a b$ representing the axis of rotation of the planet, and $c d$ its equator. Jupi ter's volume is equal to that of a sphere whose diameter is 10.916 times the diameter of the earth.
Since the volumes of spheres are in proportion to the cubes of their diameters, Jupiter's volume is $10.916^{3}=1300.8$, i. e., thirteen hundred times the volume of the earth.
Jupiter's Weight.-Fig. 1 represents Jupiter and one of his satellites, Callisto, which revolves at a distance of one million one hundred and sixty-seven thousand miles from the planet; and completes her revolution in sixteen days and sixteen and a half hours. On the same scale the earth and moon are represented; the latter revolves round the earth in twenty-seven days and seven and three-quarter hours, at a mean distance of 238,840 miles. It should be noted that in the drawing, Jupiter, Callisto, the earth, and the moon are correctly proportioned, also the orbit radii of the satellites; but the latter are in each case made one-third of the length which would correspond with the dimensions of the planets and satellites, in order to bring the illustration within the limits of the paper.
Assuming that the satellite situated at M (Fig. 2) moves for a short distance in a circular orbit $M M^{\prime}$ round the planet at E, were it not for the force of gravity, it would travel in the direction of the tangent, and after a certain interval of time reach the posit.on $M^{\prime \prime}$; and the distance which the satellite "falls" towara the planet under the influence of gravity is equal to the difference between the length of the hypotenuse of the right triangle. $E M^{\prime \prime}$ and the radius $E M^{\prime}$.
In order to institute a comparison between the orbits of the moon and Callisto, they are represented as having a common center at E; and for the purposes of this illustration, are for a short distance assumed to be circular. The length of the radius of Callisto's orbit is nearly 4.89 times that of the moon. Since Callisto travels in her orbit eight times as fast as the mon, the tangent $C C^{\prime \prime}$ is made eight times the length of the tangent $M M^{\prime \prime}$. The proportion between the distances $C^{\prime \prime} C^{\prime}$ and $M^{\prime \prime} M^{\prime}$ represents the attractive force
of Jupiter upon Callisto as compared with that of the earth upon the moon.

By means of the very simple computation indicated above, we discover that $C^{\prime \prime} C^{\prime}$ is about 13.1 times the length of $M^{\prime \prime} M^{\prime}$, i. e., the attraction of gravity is more than thirteen times greater in one case than the other. But Callisto's distance from Jupiter is equal to nearly 4.89 times the distance between the moon and the earth. Remembering that the force of gravity diminishes as the square of the distance, the attraction represented by 13.1 must be multiplied by 4.89^{2} in order to ascertain the attractive force of Jupiter as compared with that of the earth reduced to the same distance from the planet.
Multiplying these numbers, $13.1 \times 4.89^{2}=313.1$, i. e., Jupiter's attractive force, and therefore his mass or weight, is three hundred and thirteen times that of the earth.

If we divide this number by that representing the 313
volume $\frac{313}{1300}=0.24$, we obtain the density. A given volume of Jupiter therefore weighs a little less than a quarter that of an equal volume of the earth.
In the illustration (Fig. 2) the measurements $C C^{r}$ and $M M^{\prime \prime}$ are very much exaggerated in order that the "fall" of the satellite toward the planet may be apparent to the eye.
The measurement contemplated is one which in the drawing would apparently coincide with the orbit.
The work more accurately in detail is as follows: Dividing the mean radius of Callisto's orbit by that 1,167,000
of the moon, $\xrightarrow[238,840]{ }=4.88+$. The periods of the
satellites reduced to minutes are respectively 24,032

Fig. 1.

HOW A PLANET IS WEIGHED.
and 39,343 ; and $4.886 \times \frac{39,343}{24,032}=7.999$, i. e., Callisto
travels eight times as fast as the moon. We will suppose that the moon travels a distance of one mile in the direction of the tangent to her orbit. Her "fall" toward the earth is equal to $\sqrt{ } \overline{238,840^{2}+1}-238,840=$ 0.00000209345 fraction of a mile.

While the moon is moving this distance, Callisto trav els eight miles, and her "fall" toward Jupiter is equal to $\vee \overline{1,167,000^{2}+8^{2}}-1,167,000=0.00002742074$ fraction of a mile.
0.00002742074

Div_ding Callisto's "fall" by the moon
0.00000209345
$=13.09$ © and $13.098 \times 4.886=312.7$
By this simple and direct process of how a planet may be weighed, we approximate within one and two per cent the latest computation of the weight of Jupiter.

A German engineer, Mr. Balderauer, of Salzburg has proposed a method of using balloons for railway purposes, which is now being tested. A stationary balloon is fixed to a slide running along a single stee rail. This rail is carried up the side of a steep mountain, which ordinary railroads could not ascend, except by means of heavy inclines, with vast earthworks and tunnels. The balloon is moored by a steel cable to the rail, at a height of about 35 feet above the ground. The conductor can cause the balloon to ascend or descend at will. The lifting power is furnished by hydrogen gas, and the descent is caused by water pressure poured into a large tank at the upper end of the road. This is not so new as may be supposed. A similar method was described in these columns years ago.

Some Facts About Moths.
Some interesting information concerning the habits of the species of moth which creates such widespread havoc among domestic apparel has been furnished by a Scottish naturalist as the result of his prolonged inestigations. There are at least three common species f this destructive pest bearing the general name of "clothes moth," and all these differ somewhat in detail. The perfect insect, Tinea Pellionella, is about half an inch across the wings, the front pair of which are of a grayish yellow with three rather indistinct brownish spots on each, while the hind pair are whitish gray. The caterpillar, which is the real mischief maker, is of a dull whitish tint with a reddish brown head. This very destructive species is partial to furs, and the most valuable of such articles are liable to be sacrificed unless provision be made to resist its ravages. This species is the only one of the three which constructs a nıovable case or house. When moving, it carries its home quite comfortably along, as a snail does its shell, but if threatened with danger it shrinks together and disappears within
But the most interesting feature in connection with this fur-devouring insect is the way in which, as it grows, it enlarges its home. As the little caterpillar grows rapidly both in length and girth, it enlarges its home correspondingly, and marvelous is the manner in which the case is adapted to the requirements of the growing tenant. First of all, by means of its sharp jaws, the caterpillar slits the case open longitudinally from one end for just half its length, and then proceeds to weave a strip of new material between the cut edges. When this is done the creature reverses its position, slits up the remaining half from the other end in the same manner, and inserts a little strip of freshly-woven material. By this means the diameter of the whole tube is increased, but hardly symmetrically. To preserve the original shape of the case, the insect repeats these operations on the opposite side. The lengthening of the tube is a simpler process, and merely consists of adding successive rings of material as required. But even in this case it is done at both ends alternately, and thus the original symmetry of the tube, which was slightly wider in the middle, is preserved. When the caterpillar has finished feeding, and incidentally done its maximum amount of damage, it prepares itself for the assumption of the quiet, harmless chrysalis state.

The Kattea: Are They Possible Aborigines of Africa?

An obscure race may possibly be the true aborigines of Africa south of the Zambesi. These are the Kat-tea-or Vaalpens, as they are nicknamed by the Boers, on account of the dusty color their abdomen acquires from the habit of creeping into their holes in the ground-who live in the steppe region of the North Transvaal, as live in the steppe region of the North Transvaal, as
far as the Limpopo. As their complexion is almost a pitch black, and their stature only about 1.220 meters (4 feet), they are quite distinct from their tall Bantu neighbors and from the yellowish Bushmen. The "Dogs," or "Vultures," as the Zulus call them, are the "lowest of the low," being undoubtedly cannibals and often making a meal of their own aged and infirm, which the Bushmen never do. Their habitations are holes in the ground, rock shelters, and lately a few hovels. They have no arts or industries, nor even any weapons except those obtained in exchange for ostrich feathers, skins, or ivory. Whether they have any religious ideas it is impossible to say, all intercourse being restricted to barter carried on in a gesture language, for nobody has ever yet mastered their tongue, all that is known of their language being that it is absolutely distinct from that of both the Bushman and the Bantu. There are no tribes, merely little family groups of from 30 to 50 individuals, each of which is presided over by a headman, whose functions are acquired, not by heredity, but by personal qualities. So little information is available concerning the Kattea that it is impossible to say anything about their racial affinities.

A series single-phase electric railway system between Atlanta and Marietta, Ga.-the first alternating-current line in the Southern States-was recently put into service. The line, which is of standard gage, is about 15 miles long, and is supplied with power from the hydraulic station of the Atlanta Water and Electric Power Company, 18 miles from Atlanta, transmission along the feeders being at 22,000 volts, with three-phase current. Each of the two sections of the line is served by two transformer sub-stations, these stations being a little more than three miles apart.

(1Toxxesprandence.

Air Resistance

To the Editor of the Scientific American :
In the September issue of the Scientific American, in the first article, "Air Resistance of Electric Cars," the figures for the flat front fall somewhat short of Smeaton's table of wind pressures, in which the square of the miles per hour is divided by 200 to find the wind pressure in pounds per foot; whereas in the article mentioned, for the rates 20,60 , and 80 , the respective pressures are 1.4, 8.2, and 14 unit pounds. The ratios of $\frac{(20)^{2}}{1.4}=286, \frac{(60)^{2}}{8.2}=439, \frac{(80)^{2}}{14}=457 \mathrm{in}$ crease with the speed, but do not vary much between 60 to 80 . I suppose the reason why these ratios are so much higher than in other tests, is that in the above ests the suction element was eliminated largely by the body of the car, both in deflecting the wind behind the flat testing front and by the eddy formed between he front of the car and the testing flat, which would end to push forward on the latter.
I am interested in these experiments, as I am mak ng some such tests for my own use. I think the above ratios in a free air test would come nearer 100

Ira J. Paddock.
Percival, Iowa, September 6, 1906.
Aeronautic Terminology.
the Editor of the Scientific American
was much interested in reading Mr. Joseph A. Blondin's letter in the issue of September 8, of the Scientific American. His classification of aeronautic terms (or rather that of the International Aeronautic Congress of 1889) is excellent as far as it goes; bu aeronautics, as a science, is developing very rapidly and it seems to me that the state of the art warrants a substitution for the term "aeroplane" (when ap plied to a complete machine) which is one of the three subdivisions of "aeronef" or "flying machine."
Properly speaking, an aeroplane can only be one of the parts, and not the whole, of an aeronef; for aero planes are used in kites, in soaring machines, and in trodynes, which is the term I wish to propose to denote aeroplane-supported machines, driven by mech anical power (i. e., by a prime mover).
The Greek roots of aerodyne are obvious and ex pressive, and while I have always thought Langley's term of "aerodrome" was euphonious, it has been pointed out very properly by Capt. Ferber (Revue d'Artillerie, March, 1904) that "aerodrome" really means an air course, just as hippodrome means a course for horse races, etc., and in France "aerodrome" is also used to denote a balloon-shed.
The word aerodyne should be capable of international acceptance, and I would therefore suggest that in future the subdivisions of aeronef be: helicopter, or thopter, soaring machine, and aerodyne.
The term "flying machine" should be dropped, as it is too suggestive of the orthopter, or wing flapping device, to be synonymous with aeronef; and the term gliding machine (meaning soaring machine) should also be dropped from the nomenclature of aeronautics, as it is liable to be confused with the hydroplane or gliding boat, which is also a gliding machine.
W. R. Turnbull.

Rothesay, N. B., Canada, September 8, 1906.

"Vacuum Preservation." of the S'cientific American:

o the Editor of the S'cientific American:
I am much interested in Beatty's article on the acuum process for preserving edibles. The Mason ar, so much used, is about as unsanitary as it can be. The fruit juices come into contact with the zinc cover around the porcelain lining of the same, and also between the zinc cover and the porcelain lining, making the lining useless. I have put up fruit in the West Indies, and on reaching home the zinc was corroded entirely through, and the contents of the jar had evaporated and spoiled. There is a number of jars on the market in which the contents only come into contact with a glass top and a rubber ring packing; these are sanitary, but for some unknown reason the price is more than that of the Mason jar. I have been a reader of the Scientific American for ove half a century, and rejoice in the good work along such lines as this.

William B. Reed.
Hastings, Minn., September 9, 1906.

To the Editor of the Scientific American

Referring to the series of inquiries in regard to vacuum preservation, I wish to say that such meth ods have been experimented on largely, and have been applied practically to a limited extent. A company in Philadelphia has for years been putting up an infant food in cans which are sealed under a vacuum of about twenty-eight inches. This preparation is a finely-powdered solid, among the constituents of which are dried egg-albumen and cereals. The conditions necessary for preservation of meat, ripened fruit, fruit juices, milk, and eggs are much more difficult to obtain, be-
cause these articles are always more or less impregnated with micro-organisms of sturdy vitality.
As you remark in your editorial comment, many of the questions asked by your correspondent cannot be answered without elaborate research; a few, however, can be answered from known data. The sterilizing effect of heat is due to the temperature almost entirely, and not to the pressure. If, therefore, water boils at, say, 120 deg. F., the fact of such boiling will not accomplish sterilization. A perfect vacuum is 30 inches only when the surrounding air-pressure is equivalent to 30 inches of mercury.
In the letter there is a statement which seems to me to mean that by mechanical means your correspondent obtained a vacuum equivalent to more than the surrounding pressure. This is impossible, and the observation has been evidently based on error.

Anaerobic bacteria may occur in any raw food product; some of them may be able to maintain their vitality for a long while under unfavorable conditions. Many persons overlook the fact that the simpler forms of life can remain long inactive without dying. Hence microbes live in ice for months; as soon as the ice melts and the temperature rises to about blood heat, the organisms begin to multiply. Satisfactory sterilization is not likely to be obtained by boiling under reduced pressure

Philadelphia, September 10, 1906.

Motor-boat Races on the Hudson River. Some interesting races were held last week on the Hudson River under the auspices of the Motor Boat Club of America. The first day was given up to reliability trials. In these trials a number of the smaller boats competed. Points were given for different features, such as reliability, speed, condition after trial, economy of fuel, etc. The test consisted in making as many rounds as possible of the $101 / 4$ nautical mile course within a given time. Several boats dropped out for various causes, such as stoppage of the water circulation, lack of sufficient fuel, etc.; but the two boats which made the best record were the "Simplex VI.," fitted with a 30 -horse-power Simplex, four-cylinder engine, and the "Sparrow," another small speed boat under 33 feet in length and fitted with a 31.8-horse-power Packard four-cylinder, automobile motor. These two boats made eight and nine rounds respectively, and their best times were 41 minutes and 50 seconds, and 36 minutes and 28 seconds, the latte time corresponding to a speed of 19.43 miles an hour.

The second day's event consisted of a long-distance race from New York to Poughkeepsie and back, a total distance of $1155 / 8$ knots, or 133.3 statute miles. Nine boats started in this event. These boats ranged from 60 to 30 feet in length, and carried engines of from 200 down to about 30 horse-power. Of the nine boats which crossed the starting line at the foot of West 112th Street at 9:30 A. M., but three returned late in the afternoon. The first of these to arrive was Mr. Harry Fayne Whitney's large yacht the "Artful." This boat is some 60 feet in length, and is fitted with twin screws and two six-cylinde $61 / 2 \times 8$ Speedway engines. She covered the course in 6 hours, 5 minutes, and 33 seconds, or at an aver age speed of 21.87 miles an hour. The next arriva was the 31-horse-power "S'parrow." This small craft because of her fine lines and her reliable motor, was only 40 minutes longer than the "Artful" in covering the 133 miles. Her time was 6 hours, 45 minutes, and 55 seconds, corresponding to an average speed of 19.7 miles an hour. The third and last boat to finish was the 30 -horse-power "Simplex VI." Her time was 7 hours, 43 minutes, and 59 seconds, which corresponds to a speed of 17.33 miles an hour. This was about 16 minutes slower time than that made last year by "Simplex III.," which won the race.

Wednesday, September 12, was given up to speed trials for mile and kilometer records, and also to a free-for-all race for the American championship. In the speed trials the "Standard," a large boat equipped with a new 300 -horse-power, 10 x 10 , six-cylinder, double-acting, Standard marine motor, made the fast est time. This boat covered a mile with the tide in 2 minutes and 10 seconds, and against the tide in 2 minutes and 34 seconds. The average figured out 25.56 knots, or 29.46 statute miles an hour. . The next best mile record was made by the "Dixie," which is equipped with an 8 -cylinder $61 / 2 \times 63 / 4$ engine, rated at 132.72 horse-power. This boat made the mile with and against tide in $2: 35$ and $2: 44$ respectively, or at an average speed of 22.57 knots, or 26.01 miles an hour. The "XPDNC," fitted with Mercedes engines of 60.83 horse-power, made 22.22 knots, or 25.61 miles in the mile trial, and the "Mercedes U.S.A.," which likewise had a 60 -horse-power Mercedes engine, made 19.09 knots, or 22 miles an hour. The "Vesuvius," a new boat fitted with a Hurd \& Haggin engine of 40 to 50 horse-power, attained a speed of 20.64 miles an hour in a mile trial. The best records for the kilometer were 1:07 and 1:37 with and against tide, made by the 300 -horse-power "Standard." This was an
average of $1: 22$. By making this distance in 1:18 and 1:46 with and against tide, the 60 -horse-power "XPDNC" attained the same average (1:32) for the kilometer as did the 132-horse-power "Dixie," which covered the distance in $1: 23$ and $1: 41$ respectively.
The free-for-all race for the American champion ship consisted in making three rounds of the $101 / 4$ nautical mile course. But two boats succeeded in finishing this race. These were the 132 -horse-power "Dixie" and the 190-horse-power "Skedaddle." The latter 60 -foot boat had a 9 x 10, 6-cylinder, Craig engine. It did not succeed in making any extraordinary time, however. The race was won in 1 hour, 20 minutes, and 1 secònd by the "Dixie," while'the "Skedaddle" required 1 hour, 44 minutes, and 39 sec onds. The "Dixie" averaged 23.06 knots, or 26.58 miles an hour, in this race, which was $351 / 2$ statute miles in length. The second day after, the "Dixie" ran his distance for a third time in the race for highspeed boats of 12 meters (39.37 feet) length and under, in 1 hour, 19 minutes, and 6 seconds, thus mak ing 23.39 knots, or 26.96 miles an hour. In the race for high-speed boats of 40 feet and over, the "Skedaddle" won in 1 hour, 27 minutes, and 49 seconds, which corresponds to an average speed of 21.01 knots, or 24.22 miles an hour. The following day she did somewhat better, covering the $351 / 2$ statute miles in 1 hour, 22 minutes and 10 seconds, and winning from the "Dixie" on time allowance, because of her lower rating. In the race for high-speed boats of 33 feet and under, the "Sparrow" won in 1 hour, 44 minutes, and 46 seconds, or at an average speed of 17.59 knots (19.27 miles) an hour. Her fastest lap was made in 34.19 , or an average speed of 20.38 miles an hour.
The races were marred by an accident which occurred on Friday afternoon to Mr. L. L. Haggin's "Vesuvius," and as a result of which the two men who were run ning this boat were drowned. The "Vesuvius" had rouble with her steering gear, which suddenly gave way and caused her to swerve, thus precipitating one of the men into the river. The other man attempted to rescue him, and both were drowned. On the third day of the races the steering gear of the 300 -horsepower "Standard" broke while she was making a sharp turn, thereby disabling her. These accidents seemed to show that builders of motor boats do not realize the remendous strain put upon the steering gear of such raft when making sharp turns at high speed.
In the races which have just been held no remarkable records were made. The long-distance race was a fizzle, owing to the unreliability of the competing boats, and the time made by the winner was by no means comparable to the record run from Rouen to Trouville made recently in France by "La Rapiere II.," in which she covered the 70 miles between the two places in 2 hours and 9 minutes, or at an average speed of 32.9 miles an hour.
From the performances of the boats in this meet it would seem as if the present scheme of placing tremendous horse-power in a light hull has been pushed to its limit, and that in order to realize any increased speed, some new form of hull offering less resistance must be designed

The Elimination Race for the Vanderbilt cup.
On Saturday, the 22d instant, the elimination race o select a team of five machines and drivers to represent America in the Vanderbilt cup race of October 6 will occur on Long Island. The course used will be much the same as that traversed last year. It has been changed somewhat, so that the bad S turn will be avoided, but in place of it there will be a very sharp "hairpin" turn near Roslyn. The start will be near Mineola, as heretofore. The race will consist of ten circuits of the 29.7 -mile course. Fifteen powerful cars are expected to compete. Among the entries are three Thomas machines, three Frayer-Millers, a Locomobile, Christie, a Haynes, an Apperson, Oldsmobile, Matheson, Maxwell, Pope-Toledo, and a B. L. M. Most of these machines are specially-built racers of from 100 to 130 horse-power. Even if all do not start, there will be a sufficient number to make a most exciting and interesting event. The first five cars to finish will form he American team in the subsequent race.

The Current Supplement.

The current Supplement, No. 1603, is of more than usual interest. The new Morrison Street bridge at Portland, Ore., is illustrated and described. "Modern Manufacture of Alcohol" is the beginning of a specially translated treatise on this subject which is very much in the public eye at the present time owing to the passage of the free alcohol bill. The first installment deals with the chemistry of the subject. "Meteorites" is by Oliver C. Farrington and is illustrated by the most interesting engravings. "The Art of Inven'ting" is a most important article by E. J. Prindle. Among the other articles are: "Large Electric and Steam Locomotives," "The Queen Ant as a Psychological Study." "Clearing New Land" is concluded. "Malleable Cast Iron" describes an important process. The usual notes will be found in this issue.

the pioneers of the swiss army.

 by day amen whlex.While all of the European countries whose boundaries extend to the "backbone" of Europe have divisions of their armies composed of troops trained especially for maneuvers among the mountains, the Swiss soldier probably excels all others as an Alpinist; nor is this strange, when it is remembered that practically all of this little republic is situated in the heart of the Alps, and much
of it is above the cloud line. In a country where the highway may lead over summits 10,000 feet above sea level, where glaciers may be more easily crossed than the ordinary road, special instruction in mountaineering is absolutely necessary as a branch of military tactics. Hence the Swiss soldier is as familiar with the alpenstock as he is with his rifle, and moves about on skis as quickly and skillfully as the S'wede or Norwegian. While numerically the Swiss army is relatively large, consisting of over $150,000 \mathrm{men}$, including all branches of the service, its mobility as a fighting unit is really remarkable. Some of the feats which are performed by the various commands are notable, because they would be impossible for soldiers in other portions of Europe
During winter as well as summer the Swiss soldier
frequently journeys from post to post over the snowfilled passes among the higher Alps, as already stated, frequently crossing glaciers and snow fields of great extent. In descending a mountain, glissading with the aid of skis is common. Tourists in Switzerland sometimes witness the novel sight of an entire battalion sliding down an incline at great speed, yet without a man losing his balance. At the end of the glissade each soldier immediately takes his place in the ranks, ready for the march.
So much has been written and said of the prowess of the tourist guides in Switzerland, that the ability of the soldier in climbing difficult peaks is comparatively little known. In executing certain orders the men are sometimes required to climb mountain slopes
where the ice ax and the rope are absolutely necessary, but in addition to these appliances they must carry their rifles, possibly haversacks as well, thus making the ascent even more difficult and perilous.

As may be imagined, engineering work from a military standpoint forms a most important part of Alpine tactics. One work of the engineer is the construction of pontoon bridges of suitable size and strength to permit the passage, not only of foot soldiers, but of cav-
securely anchored by heavy weights. As fast as the pontoons are secured, longitudinal timbers are laid across them. These "balks" are secured in place by rope lashings made fast to cleats in the pontoons, sometimes by means of bolts or pins which can be quickly adjusted. The beams average about five inches in thickness and are made of seasoned timber, so that they are not affected by dampness or the weather. Upon them is placed the flooring of the bridge, consisting of planks ranging from one inch to one and one-half inches in thickness and measuring about a foot in width. It is a fact that no nails whatever are used in fastening the planking to the beams, the fastening being done by rope lashing, so that the superstructure of the bridge can be taken apart immediately after the troops have crossed. Side rails, laid along each end of the flooring and lashed directly to the pontoons, act as a reinforcement to the strength of the structure.
Such a bridge will support a weight of at least one hundred pounds to every square foot. The width depends upon the size of the stream and the number of men, but usually the Swiss bridges do not exceed ten feet in width, permitting the passage of infantry in columns of fours, as well as batteries and field pieces drawn by horses. The pontoons are also utilized independently of bridge work for crossing the mountain streams, especially in moving artillery. The gun is detached from the carriage, and the equipment loaded aboard the boat. A squad of artillerymen then man it, and the horses for drawing the gun carriage and caisson are forced to swim across, being held by some of the men in the pontoon. Thus the Swiss soldier is drilled not only in Alpine work, but as a waterman, for it is frequently necessary to cross rivers at points where there are no permanent or temporary bridges, and the use of the oar is as essential as the use of the alpenstock.

The Canadian Pacific Railway offers a 12,000 -mile trip under one flag.

Crossing a Pass in the Alps.

Assembling Pontoons.

Fording a Stream.

A PECULIAR RUPTURE.
 by w. d. graves.

The accompanying photograph is of a short section of a flue taken from an old boiler, and shows two small holes which appear to have been made by some pressure from the inside of the flue, i. e., a pressure from the direction opposite to that of the normal steam pressure.
Though the direction of the rupture is more distinctly apparent in this place than in any other, it is only one of several similar holes in the same set of flues. The boiler was used in connection with a 2 -horse-power engine, under a pressure of 60 to 80 pounds, and this set of flues had been in only a year The photograph is of a part near the center of one of the latter.
The only explanation of the peculiar rupture which seems applicable is that it must have occurred from the inward pressure of the air when the boiler had cooled sufficiently to form a vacuum. The appearance would indicate that the scale had served to help withstand the steam pressure, while against that from the outside it offered little or no resistance.
The circumstances support this theory as to the caus $€$, in that the boiler was last fired on a very cold evening, cooled off rather more quickly than usual, and was found, the next morning, to leak freely.

A MANTEL MADE OF CIGAR BOXES.

The accompanying illustration is manifestly a picture of a carved mantel. It is more than that, however. It is made of cigar boxes, two thousand in number, and nothing but cigar boxes. The man who presumably smoked the cigars contained in the boxes (or at least obtained the cigar boxes of other smokers) carved all the ornamentation with a penknife during his leisure time. That is why three years were consumed in the operation.

A CURIOUS ACCIDENT TO A GRAIN ELEVATOR

by w. f. miners.
One of the most peculiar accidents which might befall a modern grain-handling plant occurred at Fort William, Ont., recently when the gigantic elevator of the Ogilvie Milling Company slid from its foundation into the Kaministikwia River in much the same manner as a vessel leaves her ways on being launched. The structure, which cost $\$ 250,000$, was of the tubular steel type, 60 feet wide, about 100 feet long, and 180 feet high, built on a concrete foundation, which was supported by 65 -foot piling driven through clay to solid rock. The elevator had a storage capacity of 500,000 bushels, and contained about 400,000 . It was built but two years ago, and was one of the most modern grain-handling plants on the continent, it being electrically operated throughout, induction motors supplying the motive power
It is generally believed that defective concrete work was the cause of the accident. The cement foundation was 16 feet high and only 16 inches in thickness, which it is now claimed was not sufficient to withstand the enormous weight. The foundation gave way at one corner, and the whole wall immediately went to pieces, letting the building slide 30 feet into the river. The structure at the time the accompanying picture was taken stood in 20 feet of water at an angle of 25 deg. It was a total loss, as the tanks were twisted and pulled completely out of shape. Holes were tapped in the sides of the tanks, and the wheat run off through these openings into scows in the river below, from which it was transferred to boats, about 50 per cent of the grain being lost.

Scott's Discoveries in the Antarctic.

Great Britain may well be satisfied with the information collected in the Antarctic by Capt. R. F. Scott and his gallant companions. The full results of the scientific observations are not yet worked out, and in many cases for a complete appreciation of their bearing they must be compared and correlated with those of the other Antarctic expeditions, but many highly suggestive points have already been revealed. And what did Capt. Scott find after his memorable struggle up the glacier through the mountains? An enormous plateau at an elevation of about 9,000 feet, nearly level, smooth, and featureless, over which he traveled directly inland for over 200 miles, seeing no sign at his furthest point of any termination or alteration in character. So far as could be seen from other journeys, glacial discharge from this great upland is very small, and practically it appears to be dead. Its accretion by fresh snow-fall is insignificant, while
on all sides along the flanks of the coastal mountains there are signs of diminution in the mass of ice. The great ice-barrier east of Ross Island tells the same tale. This magnificent feature presents to the

a peculiar rupture.
sea a face of perpendicular ice-cliffs varying from 60 feet to 240 feet in height, and 450 sea miles long. Sir J. Ross mapped its position in 1841, and Capt. Scott finds that it has retreated on an average fifteen miles,

AN OVERMANTEL MADE FROM 2,000 CIGAR BOXES.
Only cigar bozes were used, and all the carving was done by hand with a penknife during the leisure moments of a workingman's time. The work was completed in three years.
varying much in different parts. Should this rate of retreat continue the whole of this ice mass, as far as Capt. Scott saw it, will have vanished in 1,000 years. As the motion of the ice mass is about fifteen miles

A GRAIN ELEVATOR WHICH GLIDED INTO A RIVER AFTER ITS FOUNDATION FAILED.
to the north in the same time, icebergs covering collectively an area of 450 miles by 30 have been discharged from it in sixty years. Capt. Scott traveled over it nearly due south to a point 300 miles from its face, and then saw no sign of its end. It is bordered on its western side by a mountainous coast line, rising in places 15,000 feet. He found the ice practically flat and wholly unfissured, except at the side, where its northerly motion, found to be about 130 feet in the month, caused shearing and vast crevasses. All that is known of its eastern edge is that it is bordered, where it meets the sea, by land from 2,000 feet to 3,000 feet high, suspected by Ross and verified by Capt. Scott. This may be an island, or more probably the eastern side of the great fiord or bay now filled by the barrier. Capt. Scott is of opinion that this great ice sheet is afloat throughout. It is unexpected, but everything points to it. From soundings obtained along the face it undoubtedly has about 600 feet of water under it. It is difficult to believe that this enormous weight of ice, 450 miles by at least 360 , and perhaps very much more, with no fall to help it along by gravity, can have behind it a sufficient force n true land glaciers to overcome the stupendous friction and put it in motion if it be resting on the bottom. It is sufficiently astonishing that there is force enough even to overcome the cohesion at the side, which must be very great. The flat nature of the bottom of the Ross Sea and the analogies of many geographical details in other parts of the world make it most probable that the water under the whole barrier is deep. A point on which no comment has been made is the difference in the appearance of the slopes of Mount Terror. Capt. Scott found the bare land showing over large areas, but during the two summers of Ross's visit it was wholly snow-clad. Sir Joseph Hooker, the sole survivor of Ross's expedition, when questioned had no doubt on the subject, and produced many sketches in support. This may be due to temporary causes, but all the information collected by the expedition points without doubt to steadily diminishing glaciation in recent times. We have, therefore, this interesting fact, that both in Arctic and Antarctic regions, as indeed all over the world, ice conditions are simultaneously ameliorating, and theories of alternate northern and southern maximum glaciations seem so far disproved. But this does not mean that climatic conditions in the Antarctic are now less severe-probably the contrary. It has been pointed out by many that land glaciation may arise from varied primary causes, but one obvious necessity is that the snowfall should exceed melting and evaporation. It need not be heavy; but if it is it may produce glaciation under somewhat unexpected conditions. This would entail a vapor-laden air more or less continuously impinging upon the land at a temperature which will enable it when cooled, either by passing over chilled land or when raised to higher regions by the interposition of mountains, to give up its moisture freely. This condition is not fulfilled when the air as it arrives from the sea is already at a very low temperature. The shores of the whole of western southern Patagonia, deeply indented with long and deep fiords, indicate, according to all received views of the origin of such formations, that the land was formerly higher, while signs of glaciation are everywhere present.

A Needed Machine.

An illustration of the difficulty of making a practical machine in which the government is vitally interested is the postage-stamp sticking machine. According to Machinery there is no practical machine for sticking postage stamps on letters, although the demand for such a machine is considerable. The difficulty of the problem lies in the fact that postage stamps come in sheets gummed and perforated. A stamp sticking machine should, of course, have the stamps printed in strips which should not be perforated but should be slightly notched on each side at the junctions of adjacent stamps. With the stamps prepared in this manner the problem of a successful sticking machine becomes a comparatively simple one, but where the invention is restricted to the use of stamps in the present form the difficulties are so great as to make the scheme in all probability impractical. To get the government officials to print stamps in strips and supply them rolled, ready for use in such a machine, would require great political and business influence and pressure and is something that would certainly cause a very great scandal on account of appearing to favor a patented device which mus necessarily be a monopoly.

THE MINNEQUA WORKS OF THE COLORADO FUEL AND IRON COMPANY.
Ten per cent of Colorado's population, it has been estimated, is dependent upon wages earned by employees of
small iron mines at Orient, the fuel from a few small coal mines and banks of coke ovens in "the southern field" near Trinidad and in Gunnison County on "the western slope." The extensive development of the Pueblo plant and of the iron and fuel industry in the West did not, however, begin until after August, 1892, when the capitalists at the head of the Colorado Fuel Company, the Grand River Coal and Coke Company, and the Huerfano Land Association took charge of the iron works. October 21, 1892, a mer ger of these last-named companies and of the Colorado Coal and Iron Company was effected under the name of "The Colorado Fuel and. Iron Company." The fuel properties were first extensively developed, and upon the revival of business following the depres sion of 1893, the steel plant was improved and slightly enlarged. Rapid enlargements did not begin, however, until 1900, since which time the original departments have been increased several times in size and almost completely rebuilt and many new mills have been added. The cap ital stock was increased in
he Colorado Fuel and Iron Company, which is engaged in the mining of iron ore and coal, together with the produc tion of coke and all sorts of iron and steel products, al though the mining of precious metals is generally supposed completely to overshadow all other industries in that State.
as increased in Octo ber, 1904 , from $\$ 40,000,000$ to $\$ 46,200,000$, to provide among other things for improvements made shortly thereafter at the Minnequa Works where now there is being spent in addition some four million dollars. A tract a mile long and half a mile wide is now covered by mills and trackage of
in diameter by 95,90 , and 85 feet in height respectively, with an average daily capacity of 400 tons. The Bessemer steel department is equipped with two 15 -ton vessels; two 300 -ton molten metal storage tanks, which are served by two 50 -ton electric traveling cranes; three 10-foot iron cupolas; three 7-foot spiegel cupolas; two Aiken duplex hydraulic ingot strippers. The openhearth steel depart ment consists at present of six stationary basic furnaces, each of fifty tons capacity, 60 feet 6 inches by 17 feet in size, in addition to which six additional basic furnaces

Steam Shovel Loading Ore from Open and a 300 -ton molten metal storage tank are now being added. The new main building will be $1,005 \times 200$ feet. Ingot stripping is performed by two Aiken duplex hydraulic strippers. Gas is supplied by forty-eight large-size waterseal Duff producers. The 2 -high 40 -inch blooming mill in

General View of a Part of th
Filling Molds from Bottom of 50 -ton Ladle at Open-Hearth

Steel Plant.

In 1891 the Colorado Fuel and Iron Company was represented by a small and unimportant steel plant at Pueblo, worth about $\$ 3,000,000$, the chief product of which was steel rails that only partly supplied the requirements of the local market. The phenomenal growth of the plants is shown by the fact that at present the Minnequa Works of the Colorado Fuel and Iron Company is one of the largest iron and stee plants of America, representing the investment of over twenty-five millions of dollars, employing between four thousand and five thousand men, and producing a wide variety of products.
The history of the steel plant at Pueblo is that of the iron and steel industry west of Chicago. The Colorado Coal and Iron Company built a single small blast furnace and began to "make" pig iron during September 1881. The first Bessemer steel was made in the small converter the following April. A puddle mill, cut-nail mill, bolt mill, merchant mill, and rail mill-all of small capacity-were soon added, and in 1889 a second small blast furnace. Ore came from

Pot Car for Carrying Slag from the Blast Furnaces.

Erecting One of the Blowing Engin4

Furna
double reversing engine coupled direct to the mill. Two shears, one hydraulic and one driven by a vertical engine cut the product. The five pit-heating furnaces for this blooming mill are served by two 5 -ton automatic charging and drawing cranes. A roller conveyor about 900 feet long distributes the blooms and billets to the rod mill and storage yard.
The roll trains of the ail - mill, which is practically all new, are covered by a steel main building 55 feet x 580 feet. The hot-bed building is 121 feet 6 inches x 174 feet. The building covering the finishing department is 774 feet $x 60$ eet; that covering the soaking pits, 89 feet x 166 feet. The ingots, when taken from the soaking pits by two electric utomatic charging and drawing cranes, are deposited in n automatic tilting car which conveys them to the bloom© table. Gas used in this department is supplied by
standard type, the only difference being the location of some of the rolls. The 16 -inch continuous mill and the 14-inch train are driven by a 40 and 72×60 inch tandem compound engine. The three 10 -inch trains of each mill are driven by a 38 and 70×48 inch and a 27 and 46×42 inch cross compound engine. Four Laughlin furnaces heat the billets in 6 -foot lengths. All the engines and rolls are covered by electric overhead traveling cranes. The main building of the rod mill is 137 feet by 534 feet. The furnace building is 90 by 126 feet.
The wire mill is one of the largest and most complete in America, being thoroughly equipped in every detail to manufacture all sorts, shapes, and sizes of wire and wire product. There are 360 blocks in the wire-drawing department; 280 machines in the mail department, with an approximate total capacity of 6,000 kegs in twenty-four hours; 81 machines in the barb-wire department, with an approximate total capacity of 150 tons in twenty-four hours. The wire mill is fully equipped with cleaning, annealing, painting, and dipping departments, repair shops, inpartments with kegs, the company has a cooperage shop with a capacity of 5,000 to 8,000 kegs every ten hours. Staves and headings come from sawmills, etc., operated by
 accessories. For supplying the wire mill and other de daily; 40 -inch blooming mill, 1,200 to 2,000 tons daily
cast-iron pipe foundry; complete electric power plant for supplying all departments except the wire mill. The approximate capacity of the several departments now in operation is as follows: Blast furnaces, 2,000 tons daily; Bessemer steel department, 2,000 tons daily; open-hearth

Metal Storage Reservoir, Into Which Molten Metal is Poured from the Pot Cars. steel department, 1,50 tons rod mills, 600 tons daily; wire mill, 700 tons each twentyfour hours; 9, 12, and 20 -inch mills, from 200 tons to 250 tons daily, varying with size of shapes; cast-iron pipe

o Blast Furnaces of the Minnequa Works.

Bird's Eye View of Coke, Ore, and Limestone Bins.

3s for Supplying Air to the Blast 38 for
ces.
twelve Duff the company on its timber lands near Little Rock, Ark. producers. In addition to the new mills described above, the MinneThe double qua Works includes a merchant iron department comprisGarrett rod ing 9,12 , and 20 -inch mills for miscellaneous shapes and mill is practi- comparatively light tonnage; spike, bolt, and nut factories cally of the complete in all details; iron, steel, and brass foundry;

The Molten Metal is Carried in These Pot Cars from Blast Furnaces to Converter or Open-Hearth Furnaces.

LLORADO FUEL AND IRON COMPANY.

foundry, about 40 tons daily; bolt and nut factory, 500 tons per month; spike factory, 80 tons per day.

During the year ending June 30, 1905, the Colorado Fuel and Iron Company produced $4,504,752.65$ tons $(2,000$ pounds) of coal; $948,553.50$ tons of coke; $483,570.86$ tons of iron ore; $213,007.36$ tons of limestone; and $1,444,177.19$ tons of iron and steel and iron and steel products.

A perfectly reliable water supply is as essential to the operations of an iron and steel plant as is ore or coke. The Colorado Fuel and Iron Company has therefore taken the precaution to fortify itself well against a failure of water. It has completed reservoirs Nos. 1, 2, and 3 near Pueblo, having a total storage capacity of $3,000,000,000$ gallons, besides two additional "sugar-loaf reservoirs" near Leadville, at the sources of the Arkansas River, which brings the total storage capacity up to $10,000,000,000$ gallons.

Like the original Carnegit Steel Company, the Colorado Fuel and Iron Company owns or controls sources for all its raw materials including
iron lands in Colorado, Wyoming, New Mexico, and Utah; some 600 square miles of the finest coal-an thracite as well as coking and non-coking bituminous -one tract being 250,000 acres in extent, all easily accessible from the steel plant; limestone quarries, manganese mines, etc. It has 39 coal mines and 3,500 coke ovens-a majority of them being of the "beehive" type, for there is no market for by-products sufficient to warrant the use of by-product ovens, which are comparatively very expensive, and against which there is prejudice because of the contention of some experts that the quality of coke produced from western coal in by-product ovens is inferior. Including those not yet thoroughly opened, the Colorado Fuel and Iron Company has in various parts of Colorado, Utah, New Mexico, and Wyoming, 65 properties scattered over an area of 260,000 square miles.
Fundamental differences exist between the problems of development in the Rocky Mountain region and those confronting iron and fuel corporations in the middle West. In the latter region, when development of the coal and iron resources was begun on a large scale, means of transportation were to a great extent already provided, or by the construction of short spurs of railroad and the utilization of natural waterways, raw materials could be transported to the steel works and the market at comparatively small cost and with out great preliminary expenditure. Again, in the comparatively thickly-populated middle West, the securing of labor near at hand is possible and, to a great extent, places for workmen to live are already provided near the seats of industry. In the Rocky Mountain region, the pioneers of the iron and fuel industry found no such ready-made conditions. In the field which the Colorado Fuel and Iron Company operates there are no navigable lakes or rivers. To reach new properties railroads had to be induced to extend or the company had to build its own lines. It now operates 178 miles of rail road, and has supplemented existing lines of electric communication by 1,835 miles o telegraph. In fact, in a majority of cases where the "prospects" have been in the mids of the desert or far off in "the hills," the company has had, in addition to the task of opening mines and providing means of transportation, those of building towns, of providing people to live in them, and of supplying water, food, and merchandise In short, beside, ${ }_{3}$ the ordinary problems of coal and iron mining, coke and steel making, the Colorado Fuel and Iron Company has had to solve those of general develop ment.

Some 17,000 men, representing between twenty and thirty nationalities, are now employed by this corporation. Between 4,000 and 5,000 are employed at the stee plant.
The Colorado Fuel and Iron Company's principal source of iron ore is the Sunrise group of mines in Laramie County, south ern Wyoming, 360 miles from the steel plant on the Colorado \& Southern and the Burlington and Missouri River railways. The open-cut system of mining with steam shovels, which was the principal method employed earlier in the history of this property, is now largely replaced by the "milling" system of underground mining, the product being handled through shafts and tunnels. There are also smaller iron. mines at Orient, Colorado, and Fierro, N. M In the open-cut work the ore is loaded directly from the steam shovel into standard-gage railroad cars In the underground work the ore is dumped from skips and mine cars into bins, from which it is drawn off into the automatic dump cars, in which it is arried to the steel works and dropped into the or bins at the furnaces.
On a track beneath these bins run electric trolley scale cars," into which are drawn from the bins, in proper proportions by weight, the coke, limestone, and ore to make up the "charge" for the blast furnaces The contents of the scale cars are in turn automatical ly dumped into the "skip cars," which run up a "bridge" on the side of each blast furnace, and auto matically drop their contents into the "upper bell"-cone-shaped receptacle at the top of the blast fur nace. Then this upper bell is lowered, allowing the charge to drop upon the ower bell, whereupon the upper bell is again raised. Next the lower bell is low ered, and the charge drops into the fiery interior of the furnace. The slag and molten iron are drawn of nto immense pot cars.
The slag is hauled over a short railroad to one of the reservoirs three miles south of the plant, where it is dumped while still molten upon the sides and bottom. By this ingenious arrangement the problem of slag disposition is solved, and the seepage from the reservoirs reduced.
The molten iron is hauled either to the pig-casting machines or to the metal storage reservoirs at the

LODGE-MUIRHEAD PORTABLE WIRELESS TELEGRAPH PLANT FOR MILITARY USE THE GURRENT IS GENERATED BY A SMALL CONTINUOUSGURRENT MOTOR DRIVEN FROM A STATIONARY BICYCLE.

THE LODGE-MUIRHEAD PORTABLE WIRELESS TELEGRAPH PLANT FOR MILITARY PURPOSES.
An interesting and compact wireless telegraphic plant of the portable type has been constructed by Sir Oliver Lodge and Dr. Alexander Muirhead, the system employed being that evolved jointly by them The installation, which is self-contained, is especially intended for military operations, and for facilitating transport particularly over difficult country it has been made as compact and light as possible, so that it can be easily stowed away for carriage by mule. It is of sufficient capacity to enable communication to be established over distances up to 50 miles across land, or 150 miles over sea
The antennæ are carried by bamboo poles, of short, convenient lengths for transport, which poles, when fitted together, form a somewhat cubical structure 4 feet in height. No earth capacity is necessitated and indeed any such connection must be avoided when it is desired to insure the greatest degree of efficiency over long distances.
The transmitting and receiving installations are carried in a small cabinet and occupy the minimum of space. When in use this cabinet is supported upon a folding trestle. The necessary current is generated by means of a small continuous-current dynamo car ried in a frame resembling that of a bicycle, the power being supplied by bicycle pedal action, as shown in the accompanying illustration, with the electric valve system devised by Sir Oliver Lodge to accumulate the impulses. For receiving messages the Lodge vibrating needlepoint-oil-mercury coherer with telephone receiver is fitted.

Decrease in Use of Lightning Conductors.

It seems probable that there has been a decided falling off in the use of lightning conductors within the last thirty years. According to the United States census statistics, there were, in 1860 , twenty estabishments manufacturing lightning rods, which turned out a product valued at $\$ 182$, 750. In 1870 the number of establishments had risen to twenty-five and the value of the products to $\$ 1,374,631$. In the next decade the number of establishments fell to twenty and the value of the product to $\$ 801,192$, and finally in 1890 the number of establishments rose to twenty-two, but the value of the product diminished to $\$ 483$, 296. At the census of 1900 the classification in vogue from 1860 to 1890 was abandoned and lightning rods were tabulated in the general classification "Foundry and Machine Shop Products." There are no means of determining absolutely whether the large decrease in the value of the manufactured product from 1870 to 1890 marks a decline in the use of lightning conductors; certain it is, however, that the "lightning rod man" is not so much in evidence as he was in the early seventies.
In largu cities the use of lightning rods is not imperative owing to the prevalence of modern steel structures and in general buildings with metal roofs. For buildings that stand isolated in the open country the
ments undoubtedly will be made eventually to send Colorado steel products by way of the Gould system to San Francisco, and from thence by sea to the Orient, and by the direct railroad route to Galveston, and thence by water to all South American points. With the completion of the Panama Canal this natural advantage will be increased, for then this Colorado steel company will have two tidewater outlets to the Orient-south and west.

The Department of Anthropology of the University of California has just been enriched by the acquisition of the first skeletons of Pomo Indians possessed by any museum or institution. An expedition sent by the department to Mendocino County, California, has returned with five complete skeletons, several parts of skeletons, many beads and other objects buried with the dead. These will be of great value in determining the qualities and characteristics of the Pomos and their relationships with other tribes of California Indians.

The Pomos practised cremation, which explains the almost complete lack of remains of them. They were of middle height, with round, heavy skulls. Many living Pomos are to be measured and photographed for purposes of comparison with the skeletons, the bones of which are now being measured. When comparisons have been made with the remains of other Indian tribes, the results will be published by the University of California. It is expected that our knowledge of the origin, connections, and wanderings of the Indian tribes will be considerably increased by this determination of their characteristics, and that much information that is not supplied by a study of their language and customs will be obtained.
prudent course would be to install thereon a system of protection from lightning. The extent to which the building should be protected and naturally the expense of installation should bear some definite relation to the value of the building. If the building is insured against loss by fire or lightning, it would not seem advisable to go to the additional expense of erecting lightning rods. In any event the final decision must be reached by the owner of the building. In arriving at his decision he should be guided by the fact that, while absolute security from damage by lightning is attainable only with great difficulty and considerable expense, a reasonable degree of protection can be secured by very simple means, provided the system of protection be devised and erected by a thoroughly competent person.-From a bulletin issued by the U. S. Weather Bureau.

Santos-Dumont's Flight

Santos-Dumont recently succeeded in driving the "Bird of Prey" many yards into the air, and eleven yards through it. He then came to earth, smashing his propeller wheels and frame. There seems to be no doubt that he actually flew. Fortunately, M. Santos-Dumont was unhurt.

Although the Hall American patent for the manufacture of aluminium has expired, the Bradley patent is still in force, and will not expire until 1909. The Bradley patent is of fundamental importance for the manufacture of aluminium, covering, as it does, the use of the current, as well for the purpose of keeping the electrolytic bath in a molten condition as for effect ing its decomposition and setting the aluminium free at the cathod?.

THE MATHUSHEK PIANO.

The remarkable resonant quality, the easy and re sponsive action, and the ability to remain at pitch for an unusual period of time without retuning, which are distinguishing characteristics of the Mathushek piano, have been obtained partly as the result of forty years of scientific design and careful workmanship, and partly because every part of the piano is made at the factory of the company. The building of a first class piano that will remain first-class for decade after decade of use is by no means a simple proposition,

Back of Piano, Showing Absence of Heavy Vertical Posts.
and one of the facts which complicate the problem is that a piano must be prepared to withstand the most severe and widely-diverse climatic conditions. Any given piano is liable to be shipped either to the extremely humid climate of Cuba, where the humidity may range for weeks together anywhere from 75 to 100 per cent; or to the elevated plateaus of western America, where the atmosphere is extraordinarily dry. Seeing that the piano is made up so largely of wood, and that wood, like all fibrous materials, will expand ration of the atmosphere the degree of saturation of the atmosphere, the piano manufacturer is confronted, at the very outset, with an exceedingly difficult problem; for unless the frame of the piano, the delicate sounding board, and the many fragile parts of the action are so constructed that they will remain absolutely true to their original lengths, surfaces, and clearances, there will be endless trouble. Under the combined tension or pull of the strings, which may aggregate in the total from 25 to 35 tons, the frame may give ever so little, or the tuning pins may begin to tear through the pinblocks, allowing the strings to slacken and lose their proper pitch. Moreover, the sounding board, which is the very life of the piano, if it be not properly designed, and its materials carefully selected, is liable to lose its proper contour, flattening out and permitting the piano to become "tinny" in tone. Now, the Mathushek Piano Company, during the forty years of their operations, have been giving particuiar attention to these points, with the result that they have produced an instrument which they claim will keep its tone and pitch longer than any other
The elements of the Mathushek piano which are distinctive of the instrument, and to which it owes its fine quality of tone and durability, are the special construction of the frame; the use of a full-length, extra heavy iron plate, in combination with a special tuning-pin bushing and a special design of sounding, and a special design of soundlected and assembled with a view lected and assembled with a view to securing fine singing quality and permanence of form in the sounding board
the the features mentioned above the most important is the full iron plate in combination with the tuning pin bushing, as shown in one of the accompanying illustrations. In the earlier pianos, and in many
of the cheaper pianos of the day, of the cheaper pianos of the day, the metal plate extended only to the under side of the pinblock. The pins were driven directly into the block, and under the pull of the wires there was a tendency for the pinblock to crush down through the fibers of the wood, enlarging its hole and failing to keep the strings up to pitch. Another method is to carry the plate at a reduced thickness over the face of the tuning block, so as to allow the outermost bearing point of the pin on the wood to be brought a little closer to the point of attachment of the strings. In this case also there is a ten-
being taken by the metal plate and the tuning pin bushing. Consequently, the back of a Mathushek piano shows simply a rectangular frame of moderate thickess and weight, whose function it is to serve as a backing upon which to assemble the main parts of the

The Frame of a Mathushek Grand Piano, Showing Method of Bracing to Keep the Frame to Its Proper Curve.
piano. In the construction of the Mathushek sounding board the company justly claim that they expend an amount of care in the selection of the wood and of labor in building it into the finished board which is not equaled by any other concern. They point to the fact that the board is built up of selected pieces of spruce, none of which is more than one inch in width, as compared with widths of from 4 to 6 inches which obtain in other sounding boards. It is absolutely essential that the sounding board should be at once highly elastic or resilient, and at the same time be free from any tendency to warp and lose its proper curve. These qualities are ob tained by assembling the strips with the grain running perpendicularly to the face of the board. Where there is any dip or inclination of the grain from the vertical the adjoining pieces are assembled so that their grain diverges in opposite directions The result is that the tendency to warp out of shape is entirely neutralized. The arrangement of the strips is shown clearly in the accompanying photographs.
Almost all piano manufacturers have trouble, during the winter season, from the

Front View, Showing the Special Design of Full Plate, the Method of Stringing, and the Sounding Board Made up of Carefully-selected One-Inch Strips.
the mathushek piano.
full plate and the tuning pin bushing are not used, the "pinblock" has to be mounted upon a series of heavy vertical wooden posts, which serve to keep the block in position when the strings are being tightened under the process of tuning. In the Mathushek piano, how ever, there is no such thing as a pinblock, its place
cracking of the varnish, a defect which is chiefly due to the several coats of varnish not being thoroughly dry. The upper surface of each coat crusts over, but it does not dry entirely through, and it requires but a slight expansion or contraction to break these thin coats, with the result that the upper surface fre quently shows innumerable hair lines and even distinct cracks. The company has recently put in an ex tensive plant which is designed to dry each coat of varnish thoroughly by circulating continuous currents of warm air through the room in which the varnished material has been placed and by exhausting the fumes of the turpentine that evapor ate from the varnish in the pro cess of drying. The atmosphere of the room is kept absolutely dry and in continual circulation. The advantage of this system is that the varnishing can be done during the moist atmosphere of the summer (the period in which pianos that are sold chiefly in the fall and winter months are made) with the same certainty of securing a durable surface as in the drier months of the year.
The plant of the Mathushek Piano Manufacturing Company is located in West Haven, a suburb of New Haven, where it has had its home for thirty years past. The buildings are all of brick and are uniformly one story in, height. The main building is 416 feet long by 20 feet wide, with a wing 380 feet by 50 feet adjoining. Particularly fine is the new dry house for the drying of the lumber, which has a capacity of 220,000 feet of lumber. It is heated by a large steam fan and much of the excellent quality of the woodwork is due to this fea ture of the establishment. The buildings are so arranged that the handling of the material during construction is reduced to a minimum.
recently patented inventions.
Pertaining to Appare TROUSERS PRESSER AND CREASER.curved board and a flexible apron the inventor secures uniform pressure on the trousers, and this pressure may be assisted in forming the crease by pressing with the hand or some
other substance, an iron, if necessary, upon the apron. When the lever is drawn to strain the apron over the bed, it will be stopped by engagement with the folding leg. The apron
is made so as to conform to all inequalities is made so as to conform to all inequalities
of garment thickness, thus giving pressure in of garment thi
EAR-GUARD.-I. D. James, Roselle, N. J. The guard has means for retaining itself in
the desired angular relation to the side of the the desired angular relation to the side of the
face. The device is so constructed that while thoroughly protecting the ear of the wearer from the wind and rain and preventing entrance of dust or dirt it also serves to con-
vey ordinary or nearby sounds to the auditory vey ordinary or nearby sounds to the auditory
canal so that there is no difficulty io carrying on conversation with
or other vehicles.

Electrical Devices.

electric motor.-D. Mendelson, New York, N. Y. The inventor utilizes the attraction value of the remote ends of both electro-
magnets as well as their proximate endsthat is, in addition to the attraction value between the adjacent ends of the movable utilizes also the attraction value of the two ends of these magnets which are remote from
their adjacent poles. The next feature contheir adjacent poles. The next feature con-
sists in means for reversing the current sists in means for reversing the current
through the movable and the stationary electromagnet at short intervals to clear out o
prevent accumulation of residual magnetism.

Of Interest to Farmers.

COTTON PICKING AND HARVESTING Machine.-W. H. Le Vin, New Orleans, La. and harvesters in which pneumatic force and suction-hose are used. The objects are to pro-
vide a means for the easy application of vide a means for the easy application of
suction-hose to the ripe cotton-boll at all stages of development of the maturing plants and by means of an
INCUBATOR-G.
INCUBATOR.-G. H. Lee, Omaha, Neb. This improvement pertains to incubators and
the object of the inventor is to improve the the object of the inventor is to improve the
circulation of the warm air and ventilation of the eggs during incubation. Further objects of the invention are to render the heating of
the eggs more uniform and to provide improved means for supporting the eggs in the egg-tray.
ChURN.-G. Lake, Memphis, Tenn. Mr. Lakes invention is an improvement in churns
which are provided with vertical rotary dashers that are operated by a horizontal shaft arranged above the churn body and suitably
geared with the dasher. It is also applicable geared with the dasher. It is also applicable
for mixing various materials, such as paint, cream, paste, powders, and drugs.
gate.-O. e. Conat, North Yakima, Wash. One purpose of this invention is to provide a One purpose of gate or a farm-gate that will be perfectly safe, not liable to stop on a dead
center and return to a shut position while a person or vehicle is in transit through the
gate, and also to so construct the gate that gate, and also to so construct the gate that
it will be light, simple, strong, and economic and so evenly balanced that it can be operate with ease by a child.
COMBINED COOP AND BROODER FOR YoUNG Chickens.-J. A. Clark, Bolckow Mo. A combined coop and brooder is em
ployed, embodying special means for preventployed, embodying speclal means for prevent-
ing overcrowding of the young chicks in the compartment in the structure, due to which
hitherto poultrymen or culturists have in hitherto poultrymen or culturists have in-
curred considerable losses by smothering of chicks in large numbers, it being their pecul-
iarity to crowd together in small space in the iarity to crowd together in small space in the
coop or brooder however ample the housing coop or brooder however ample the housing
provisions. Special means are provided for airing, fumigating, and ventilating.

Of General Interest.

LEAF-TURNER.-K. H. Dillon, Philadel-
phia, Pa. The apparatus of this phia, Pa. The apparatus of this inventor is
primarily intended for turning sheet music The individual arms provided for each sheet are operated in succession by means of a
treadle, the arms being mounted in connection with a rock-shaft which connects with the treadle by a cord. A torsion spring is pro-
vided for returning the shaft after each movevided for returning the shaft after each move-
ment of the treadle. The mechanisms include ment of the treadle. The mechanisms include
means for readily permitting the assemblage and rearrangement of the turning arms a

desired.

HOIST.-S. T. Wallace, Los Angeles, Cal. The object is to primarily adapt the invention
to handling mortar, lime, cement, brick, and to handling mortar, lime, cement, brick, and
other material required to be carried in a other mater bucket. A carriage is provided
hopper or batical track and
adapted to move along a verticher adapted to move along a vertical track and
mount pivotally a bucket. Coacting with the bucket is a peculiar latch and trip, by means of which the bucket is held during the ascent and automatically released when the top of
the track is reached, the bucket being pivoted the track is reached, the bucket being pivoted it automatically tips and dumps its load.

SOAP.-L. H. Revter, New York, N. Y
This liquid soap or soap solution is for toilet and medicinal purposes and for use in the saponifying oils or fats with an alkali, dissolving the alkaline soap in water and alcohol,
allowing the liquid to settle, filtering addin allowing the liquid to settle, filtering, adding of perboric acid, stirring the liquid during p and adding finely portions.

Hardware

Wrench.-J. Christian, Hydraulic, and may be readily adjusted and securely locked in position. The side of a recess remote from when the handle is swung outwardly and tends oo move the wedge slightly downward upon the bar, whereby to loosen the wedge from
between the frame and the bar. In this conbetween the frame and the bar. In this con-
struction the long arm of the handle is provided with means for tightening the wedge, while the short arm is provided with means for loosening the wedge.

Machines and Mechanical Devices.

RUUCING AND SEPARATING SYSTEM -M. S. Weber, Ephrata, Pa. A coffee-berry egument, which is a continuation of a hull and which is not removed in preparing coffee
for the market. This contains tannic acid, which impairs the flavor and renders it un
healthful. To remove this substance and to furnish means for reducing or grinding the berry for use are the objects of the invention PULP OR PAPER STOCK SCREEN.-W W. Wells, Sandy Hill, N. Y. The object of improved screen arranged to permit of screen imp an exceedingly large amount of pulp or paper stock in a short time. It relates to
pulp or paper stock screens such as shown and pulp or paper stock screens such as shown and
described in Letters Patent formerly granted o O. H. Moore, in 1902 and 1903.
DEVICE FOR MAKING AND FINISHING BOTTLE-NECKS.-W. S. Breeden and H. H.
Breeden, Bradford, Pa. The invention Breeden, Bradford, Pa. The invention relates to a machine for making and finishing the
necks of glass-blown jars, bottles, and homeopathic vials ; and the purpose is to provide a machine in which a revoluble shaping and polishing tube is employed for the neck, and
the tube to be formed into the means for adjusting the bottle to the said tool, and also means for bringing the tool quickly into and out of action with relation to the TOOTH-BAR.-T. O. BERG, Little Falls, Minn. The improvement is in tooth-bars used
in sawmills for shifting and turning logs, one of the objects befng to provide a tooth-bar formed in a single casting, thus giving it
greater strength and rigidity than is found in greater strength and rigidity than is found in
bars made in several pieces riveted together, s such a bar is weakened on account of the great number of rivet holes.

Prime Movers and Their Accessories. ROTARY MOTOR.-A. Primat, 103 Rue
Lafayette, Paris, France. Four rigidly-conLafayette, Paris, France. Four rigidly-con-
nected pistons rock around a central point, nected pistons rock around a central point, caving in cylinders arranged circulare motor, cast in a single piece, this rocking movement being converted into ontinuous circular movement by means of a mixture is conducted alternately into each the four cylinders so that an explosion takes place for each reciprocatory movement, while the suction, compression, and the exhaust of of the other cylinders, owing to the provision f a set of valves.

Railways and Their Accessories. SWITCH-TONGUE GUARD.-M. Mali Scranton, Pa. The invention refers to im-
provements in guards for the free ends of rail-way-switch tongues, the object being to provide a simple device to prevent chains, couplings, ging from a car from catching over the end of an open switch-tongue, thus preventing damage or possible accidents.

Pertaining to Recreation.
MARINE ILLUSION APPARATUS.-F. M. apparently floating in a waterway, and a fixed structure spans the latter intermediate by which passengers are transported along the waterway until the fixed structure is met, and through this they pass onto the second, which is stationary, but capable of being
rocked to simulate motion of a boat and also provided with paddle-wheels revolved to produce further illusion of propulsion. Passengers suppose that they pass through the bow er, as of boat instead of making the transwithin a building ornamented with marine views and moving pictures are thrown on a screen,
effect.
Note.-Copies of any of these patents will Pe furnished by Munn \& Co. for ten cents each. the invention, and date of this paper.

Business and Personal ZUants.
 READ THIS CoLUMN CAREFULLY--Yon

Marine Iron Works. Chicago. Catalogue free. Inquiry No. 8350.- Wanted, the name and ad- dress of the manufacturer of the Imperial Smoothing Iron, which is heated by gasoline or oil

"U. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 8351.-W Wanted. the name and ad-
dressof the patentee and present manufacturer of the
toy top called the New 201h Century Gyrosco pe.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St. Inquiry No. 8352.- Wanted, manufacturers of
decorated glass, such as used in clock doors and quaint
dials Sawmill machinery and outats manufactured by the ane Mfg.Co., Box 13, Montpelier,
Inquiry No. $\mathbf{8 3 3 5 3 3}$ - - Wanted, manufacturers
bricks made of siwdust compressed with coal oil. I sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.
Inquiry No. 83.54.- Wanted the nume and ad.
Lress of the manufacturer of the Mars Gas Engine
Lubricator. The celebr
The celebrated " Hornsby-A kroyd " sa fety oil engine.
Koerting gas engine and producer. Ice machines. Built Koerting gas engine and producer. Ice machines. Built
by De La Vergne Mch. Co., Ft. E. 138th St., N. Y. C.

win's calculating machine.
Manufacturers of patent articles, dies, metal tamping, screw machine work, hardware specialtie machine work and special size washers. Quadriga Inquiry No. \&356.
and listing machines. Inquiry No. 835\%,-For manufacturers of large Inquiry
the steam line, or just boilers and engines. Inguiry No. 8359.- Wanted, machinery fir the
manufacture of alcohol from apples, molasses and
Inquiry No. 8360 - Wanted,
ing the straw of alfalfa into meal.

Inguiry No. 8362.-For parties engaged in mak-
smanl buildings, K noch Doun, suitable 1or small ma-
chine shop.
Inquiry $N \mathbf{N o}$. 8363.- - Wanted, machinery to make
ooden bungs, stoppels, etc. Inquiry No. $8364 .-$ W.
racting fibers from plants.
Inquiry No. $\mathbf{8 3 6 5 5}$. - Wanted, makers of buckram
or cariage work, also manu facturers of malleable cor-
Inguiry No. 8366.-Wanted, makers of reliable
melodeon cloth, and a general line of buggy onl cloth.
Inquiry No. 8367. -Wanted, a mill for grinding
Inquiry No. 8368.-Wanted, apparatus for the
distidation of wood for charcoal, woud spirit and acetic
Inquiry No. S369.-Wanted,
pulley rims, for motor cycle outtits.
Inquiry No. 8 N370.- Wanted, makers of glasses
with miniat ure pictures, such as are in knife handles,

hints to correspondents.
Names and Address must accompany all letters or
no atention will be paid thereto. This is for
our information and not for publication. our information and not for pubtication. This is fo
eferences to former articles or ansers should give
date of paper and page or number of question
repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by
letter or in this department, each must take
his turn
Buyers wishing to purchase any article not adver.
tised in our columns will be furnished with
addresses of houses manufacturing or carrying
atd addresses of houses manufacturing or carrying
the ssme.
Wrial Writen Information on matters of personal
rather than general interest cannot be expected rather than general interest cannot be es pect
without remuration
entific American Supplements referred to may be
had at the office. Price 10 cente each. me

\section*{| price. |
| :---: |
| $\begin{array}{c}\text { Minerals } \\ \text { mark }\end{array}$ |}

(10158) E. B. asks: 1. I want to mag netize an ordinary twist drill, making a mag net of it. Will I have to draw the temper of the drill first, or can I make a magnet of it
as it is? A. The cutting end is already hard as it is? A. The cutting end is already hard
enough for your purpose. Heat the other end to redness and plunge into water, then mag. netize. 2. How many amperes of current will
it take to magnetize it by means of a coil it take to magnetize it by means of a coil
of 6 or 8 layers of No. 18 silk-covered wire the current being 110 volts? A. You must be governed by the heating of your coil. Use only so much current as will not heat the coil so the the insulation burns. That would destroy of tool steel, shall I first soften the steel be fore magnetizing it, or should it be hardened at the ends? A. Harden the bar at the ends glass hard.
(10159) E. S. D., Jr., writes: 1. I would like to know if you conld give me the
formula for a solution for bichromate cells, with a good ampere output, in the right proportions, and how to mix it, etc? A. A good scribed in Supplement No. 792, price ten
cents. 2. Which is the best form of bichro
nate to use for making electropoion fuid the mate to use for making electropoion fluid-the
sodium or the potassium?
A. The sodium salt is easier of use. 3. What is the best way of amalgamating a zinc? A. The usual method is to clean the plate with dilute sulphuric acid,
and then rub mercury over the plate, dipping and then rub mercury over the plate, dipping
it into the dilute acid if necessary to make the mercury take to the surface. 4. I would like to know if I could have a battery rheo stat made for these batteries, steady current
etc.? A. Yes; though there is little need of one. The amount of current can be regulated
by immersing the zincs to a greater or less depth in the liquid.
(10160) W. G. S. asks: 1. What is the output in amperes of the common telephone battery called sal-ammoniac battery? A. The
Leclanche cell gives probably 3 amperes as maximum discharge rate 2 also of the dry battery called the 1900 , and does the size of the battery govern the number of amperes? The amperes of discharge of any cell are great er with a large than with a small plate. 3 Also give output in amperes of the common Crowfoot gravity battery, 6×8 size. A. You
will not be far wrong to take the discharge of the gravity cell at two amperes. 4. Where can I get a table giving the above informa-
tion? A. Most cells are rated in Carhart's tion? A. Most cells are rated in Carha
"Primary Batteries," price $\$ 1.50$ by mail.
(10161) D. C. E. asks: 1. Which is the correct way to place a fuse block-outside
or inside the cut-out switch? I have seen fuse or inside the cut-out switch? I have seen fuse being right. A. Switches are placed so that the handles turn down when opened. They cannot then drop by gravity and close them
selves. This is much more important than the position of the fuse. 2. Tell me the best oil to use on commutators. A. Use some one of the commutator compounds prepared for this especial purpose.
(10162) H. B. asks: What in your opinion is the best material or substance to cut off or take away the power of the mag-
net? For instance, a magnet will draw steel toward itself; what can be placed between the piece of steel and the magnet to take away the power of the magnet to draw the steel? A.
Iron of considerable thickness is the only creen against the lines of magnetic force. (10163) P. S. S. asks: What solution is used in plating, for instance silver, or nickel, nickel the double sulphate of nickel and am monium is commonly employed, and for silver the cyanide of silver is almost universally
used. Full instructions are to be found in Full instructions are to be found in
Langbein's "Electro-Deposition of Metals," price $\$ 4$ by mail.
(10164) A. B. McK. asks: Will you indly give me what information you can on he following subject? Take a piece of steel possible and the other as hard as possible; now, what will be the difference in resistance in ohms, if any? A. Barus and Strouhal give the specific resistance of glass-hard steel as
45.7 and of soft steel at the same temperature as 15.9 . This is the resistance in thousandths ohms of a bar one square centimeter in cross
(10165) M. and S. J. write: If iron or steel is properly cleaned before plating
with nickel, it can be burnished like silver without peeling or stripping, therefore, the burnish is a good test for poorly nickeled (10166) C. W. asks: Please inform me as to the difference between an aneroid and a holosteric barometer. A. The word aneroid is
from two Greek words meaning without liquid, nd the word holosteric is fwo Greek names for the same thing. There is no differace between them.
(10167) G. M. D. asks: What should be he dimensions, size and amount of wire for a 12 -inch coil, 15 -inch coil and 18 -inch coil? Is
there any definite relation existing whereby the above information may be determined from known coil? A. The dimensiors of inducthan of calculation. The properties of the magnetic circuit and the effects of induction rectil known, and can be applied to an inuilder works from designs which have been wrought out by experiment and are known to ive good results. The sizes and windings of nduction Coils," price $\$ 2.50$ by mail
(10168) H. O. writes: Can you give s a formula for a preparation for the tempering of mill picks? A. The treatment of mill portance than any hardening preparation other than salt water, which is the only menstruum that we can recommend. No hardening solu tion can recover the lost properties of steel that has been overheated, burnt corners of mill picks, or hammering at above or below a full red heat. Cyanide of potassium dissolved in
the hardening water or powdered and sprinthe hardening water or powdered and sprinhed on the rea-hot point before dipping, or even common soap rubbed on the pick before heat-
ing, are used by experienced men in the busi-
(10169) F. H. P. asks: Is it possible
make a jump spark coil of it? If so, kind:s
give directions and state the
give directions and state the way it should be coupled up. A. A simple spark coil may be be
made with a core of iron wire (No. 16)
10 made with a core of iron wire (No. 16) 10
inches long and one incli in diameter. Fasten heads for the spool on this, and cover the
core with a few turns of brown paper. Wind No. 14 single cotton-covered magnet wire on this to a depth of about $5 / \%$ inch, insulating It is better to give each layer a coat of shellac also. The coil is used in series with a battery and the spark is obtained when the circuit is
broken. With six or eight strong cells a thick broken. With six or eight strong cells a thick (10170) F. H. R. writes: I have stereopticon lantern, and have been exper1-
menting some with it. For a screen I have menting some with it. For a screen I have
a blank wall tinted an orange red. Can you a blank wall tinted an orange red. Can you
tell me what colored glass I can use with my tell me what colored glass I can use with my
lens in order to throw a white light upon the red surface? A. To obtain the best effect you must find a glass of a tint the exact comple mentary of the color of the wall. This will be
a bluish green. Of course much light is lost both by the absorption of the wall and of the glass. We should suppose that very little would be left.
(10171) G. W. H. asks: How can I connect the wires on the carbon element of an open circuit, home-made battery which I have
I use sal ammoniac. They work fine for about two weeks, when I have to renew connections on the carbon. It seems the fluid rises within
the carbon and corrodes the wire. Have tried phe carbon and corroces the wire. Have tried
parafine and also rubber on the outside, but to no avail. The carbons are arc-light pencils, well up out of the fluid. A. Dip the top
of the clean and dry carbons into melted par affine till they are saturated with the par afine thil they are saturated with the par
affine as far as the surface of the liquid, so that the sal ammoniac cannot climb through the carbon, nor over the outside of it. In sal ammoniac cells usually there is a thick hea of composition on the upper end of the car
bon.
(10172) A. K. M. asks: 1. Can you le me know the cheapest and most simple way of
producing oxygen? A. Oxygen is generated by producing oxygen? A. Oxygen is generated by heating a mixture of manganese dioxide and
potassium chlorate in a metal flask. Care is necessary in doing this not to disengage the gas too rapidly and thus produce an explosion of the apparatus. The materials also should be tested in advance to see that they will give up
the oxygen quietly and not too rapidly. 2. Can you explain what caused electric spark ing at point of connecting 3 -inch suction pipe let in from top of tank car containing a mixture of turpentine and naphtha, the discharge pipe from pump leading to large storage tank of several thousand barrels of the same mix-
ture? Also being connected with large storage tanks of gasoline and carbon oil. The suction pipe being of iron, every attempt made to
connect would cause heavy sparking so that the men dared not connect for fear of fire the temperature being about 15 deg . Fahr., having had cold weather for some time; whereafter the men got a suction pipe of galvanized iron, let it down into the tank car, and in connecting there was no more sparking. A. The charge
of electricity was due probably to the very cold of electricity was due probably to the very cold
air and friction of the pipe and pump. If the air and friction of the pipe and pump. If the
liquid was not set on fire by the sparks which liquid was not set on fire by the sparks which
passed while the men held the pipe near the passed while the men held the pipe near thed
tank, it could not have been after they had brought the ends into connection with each other. The danger would then have been over. (10173) J. F. C. asks: 1. What ad antages has the double pole receiver over the single pole (as they are called) electrically? of the two, placed on one pole of a permanent ing current) afect the magnet an alternat as the two coils of half the resistance, one placed on each pole? A. A horseshoe magnet is always stronger than a bar magnet of the
same number of turns of wire upon its poles, and so a double pole magnet in a telephone will act more powerfully than a single pote of a straight magnet. 2. Is pure soft iron
free from resistance to magnetic flux? What is the resistance of the air to magnetic flux as compared to pure Norway iron? A. The number of lines of force which will pass through iron as compared with air under the degree of magnetization. It may be as much as 5,000 times as many, and it may be only a few times as many when saturation is
nearly reached. See the table of permeability nearly reached. See the table of permeability
in electrical works such as Foster's "Pocket in electrical works such as Foster's "Pocket
Book," price $\$ 5$ by mail. to say, that a magnet attracts a piece of soft iron because it lowers the resistance of the magnetic flux, or that an opposis washen a piece of iron approaches a magnet it both becomes a magnet and furnishes an easisier path for the lines of force than the air. 4 . Is the greatest force of attraction exerted in a mag-
net in attracting opposite poles of itself? A. Ve do not know whether a magnet works most in attracting its own poles or not. 5 . What electrical disturbance is made by the action takes it up? A. The noise to which you refer in a telephone is produced by vibrations caused riction of the wind. The wind produces no electrical disturbances.

NEW BOOKS, ETC.

he Chemistry of Paints and Pain't Vehicles. By Clare H. Hall, B.S.
New York: D. Van Nostrand Company, 1906. 12mo.; pp. 134. Price, $\$ 2$.
In the great mass of analytical chemistry it is often difficult to discover particular methods pplying chiefly to any one subject, or, rather, find those methods concisely collected beween the covers of a single volume. The
author has attempted to sift out those methods which apply particularly to the analysis of paints, while at the same time dwelling with most important physical characteristics of the aw material ; for it will be understood that no chemist can be proficient in the analysis of paints without a thorough knowledge of all he materials with which he comes in contact. Of course, the limits of the book make it impossible to give more than the general facts ormation has been written from the stand oint of the chemist, the author tries the stan the space between the laboratory and the fac tory, and to show that the less this space is in evidence, the better will be the resulting product of the manufacturer.
Darf Fruit Trees. By F. A. Waugh. New York: Orange Judd Company, cents.
American agricultural and horticultural conditions are usually on so large and extended ell as in a physical a commercial sense as ave hardly been introduced as avocations and astimes, and the growing of trees largely for The author of this book will doubtless suc eed in his undertaking of arousing interest in dwarf fruit trees more as a pastime than s a commercial enterprise, though the latter is by no means precluded.
The American Steel Worker. By E. R. Markham. New York: The Derry Collard Company
Mr. Markham's book, which has reached its second edition, is based on the experience of nnealing, working, hardening, and tempering of the various sorts and grades of steel. The ew edition contains an interesting section on formation on the subject includes the latest intext to a condition of completeness which the acking in the earlier edition.
Ahrbuch der Naturwissenschaften Freiburg im Breisgau: Herderfsch Verlagshandlung, 1906. 8vo.; 501. Price, $\$ 2$.

The interesting volume edited by Dr. Wildererts, is a comprehensive survey of the ad vances that have been made in the natura sciences during 1905-6. The latest develop ments in physics, chemistry, astronomy, min eralogy, zoology, botany, geology, and many other fields of science are discussed, often in
detail, and frequently with excellent illustrations. This book will be found valuable for general reader, who desires to keep in science and natural history.
OUtlines of the Evolution of Weights
and Measures and the Metric Sys
tem. By William Hallock, Ph.D., and
Herbert T. Wade. New York: The
Macmillan Company, 1906. 8vo.; pp 304. Price, $\$ 2.25$.
mselves flatly in of its intrinsic superiority and because of the manifest advantage of having a universal system of weights and measures for all industrie hroughout the world. A complete and fai various chapters of the volume, with its th ical development and chief characteristics. An account is given of the experience of the Euro pean nations which have tried and adopted the system. The citation of the authorities is voluminous, and the references to the bibliography of the subject are extensive. The worked out, and are put in very convenient form, and therefore as a work of reference on scholarly and useful.
Italian Varnishes. B'y George Fry,
F.L.S., F.C.S. ${ }^{\text {London: }}$ Stevens
Sons, Ltd., $1904 . \quad 16 \mathrm{mo}$.; pp. 170 .

Little attention has apparently been given old Italian musical instruments, and the theory has been accepted that these are oil varnishes or rather an oil varnish colored to suit in ividual tastes. The author gives an account of ject of the treatise, and he shows, to his ow satisfaction at any rate, that the old violin makers used as the constituents of their var
nishes the natural products of coniferous trees and the flax growing in their immediate vicinity, both abundant and easily procurable and that therefore the varnish was a simple
one composed of resin and turpentine, or both one composed of resin and turpentine, or both
of these with linseed oil. The work is inas well as from that of the general reader.

Field to Dairy. By William Shepperson, F.C.S. London: Simpkin, Mar Shall \& Co., Ltd., 1906.16 mo .; pp

$$
\begin{aligned}
& \text { 49. Price, } 80 \text { cents. } \\
& \text { he object in gathering }
\end{aligned}
$$

The object in gathering the material in "Field to Dairy" was to give in as concise a form as possible the essential points pertain and the production of milk, cream, butter cheese, and various by-products in the dairy The little volume will be found a handy book of reference where time is lacking for the
study of a completer history of any particular study of
subject.
Farm Science. By Joseph E. Wing, P G. Holden, Waldo F. Brown, Hon. W
M. Hays, Thomas Shaw, Clinton
R. Crane. Chicago: International Harvester Company
$1906 . \quad 32 \mathrm{mo} . ;$ pp. 128.
This excellent little book has been compiled by a number of eminent specialists for the particular purpose of assisting American agri
culturists in the work of farm management With this end in view, the highest authorities in their respective fields of research have bee called upon to prepare a number of special articles covering the results of extended experiments involving the most important opera-
tions on the farm, and the subjects treated tions on the farm, and the subjects treated
deal substantially with every branch and phase deal substantially with every branch and phase
of modern agriculture and cover a wide range of modern agriculture and cover a wide range
of thought. It is generally conceded that the astonishing progress made the agtulle of the American farmer, notwithstanding that considerable credit must be given our unlimited agricultural resources, and to the material assistance rendered the farmer by the work of inventors who, recognizing the necessity of
improved methods, have supplied both ma mproved methods, have suppied both ma obviate manual labor. A careful perusal o "F'arm Science" will undoubtedly sugges the crops, of making the dairy more profitable, and of securing larger results with less labor. Ropp's Commercial Calculator and

$$
\begin{aligned}
& \text { Chicago: C. Ropp \& So } \\
& \text { 8vo.; pp. 160. Price, } \$ 1 \text {. }
\end{aligned}
$$

vo., pp. 160. Price, $\$ 1$.
new, complete, and quite author give ystem of tables intended to save time and labor in the various phases of commercial calculation. The text includes condensed and simplified explanations, rules, and reviews of
the essence of arithmetic and mensuration. It the essence of arithmetic and mensuration. It
is designed for the use of farmers, mechanics, business and professional men, bankers, and torekeepers. The explanations of the prin tion are well prepared, and the book will doubtless make the study and use of figures easy, if not interesting, for the user. Alto gether, the work is convenient, practical, and
labor-saving, and will be found useful by business men.
School Teaching and School Reform
lams \& Norgate 1905. 16mo.; pp 171. Price, $\$ 1.20$.

This book by the well-known English educa tionalist, Sir Oliver Lodge, should be of inter
est and value to teachers in Great Britain and est and value to teachers in Great Britain and
this country. The text comprises a series of four lectures on curricula and methods, and eachers in general, notwithstanding that they were delivered before the secondary teachers and teachers in training at Birmingham.
Gas Engines and Launches. By F. K.
Stream Publishing Company, 1905
16 mo .; pp. 123. Price, $\$ 1.25$.
This little manual is a collection of a Stream on internal-combustion engines and launches. The subject is placed before the reader in terms which are easily understood even by the inexpert, and technicalities have
been avoided wherever possible. The illustrations are clear and sufficient in nu
vantageously to supplement the text
Portland Cement. By Richard K. Meade,
B.S. Easton, Pa.: The Chemical
pp. 385. Price, $\$ 3.50$.
One of the latest contributions to the literature of the cement industry is this book,
which is really a second and enlarged edition of a small handbook by the same writer published some years ago. Of course, the advance of the industry necessitated the rewriting of large sections of the earlier work, and
the addition of much information and data collected since then. The analytical methods given have been found satisfactory in the
writer's laboratory. The section on the anThes of cement is exceptionally good.
The Electrical Nature of Matter and
Radioactivity. By Harry C. Jones.
New York: D. Van Nostrand Com-
pany, 1906. 8vo.; pp. 212. Price, $\$ 2$. Prof. Jones's book is a collection of a series
orticles which he wrote for the Electrical Review, and the correlation of the subjects under consideration, as well as the general inled the discussidn to be placed in compact led the discussion to be placed in compact
form in a single volume. The text has been
carefully revised with the assistance of Dr.
H. S. Uhler. The object of the lectures was ical language, the important facts and conclusions in connection with the work on the subject, and this has been done in the incientific interest in the developments in phyics and physical chemistry, nevertheless are ill equipped technically and mathematically to omprehend a purely scientific treatment of subject. Thus, while the work has been
ritten in a semi-popular style, the subject as doubtless been covered with scientific ac curacy.
he Analysis and Softening of Boiler Feed-Water. By Edmund Wehrenfennig in collaboration with W. W Paterson, M.E. New York: John Wiley \& Sons, 1906. 8vo.; pp. 290. Price, $\$ 4$
The present form of this book is the result a number of changes from the original one, Organ fuer die Fortschritte des Eisenbahnvesens" of Austria. The translator first perormed that part of the work for his own ain so information, but it was found to conand general interest, that it was decided to place the book before the public. The chemistry of the subject is treated with great care, nd includes simple methods of analyzing ater intended for boler feed. These methods eadily be understood even by the layman Ceadily be understood even by the layman. uccessful in softening water intended for team purposes, and the exposition of their methods should be of use and value to American roads introducing or contemplating the tilization of water-softening plants.
ew extensive A B C Tables for Azimuth, Position Lines, Error in Longitude Due to an Error in Latitude, etc. By S. Mars. Groningen:
P. Noordhoff, $1906 . \quad 12 \mathrm{mo}$.; pp. 56 . ogical Geology. The Weakest Point in the Evolution Theory. By George McCready Price. Los Angeles: The pp. 93. Price, 25 cents.
Unsolved Problems in Metallurgy. By Robert Abbott Hadfield, M.Inst.,C.E. Engineers, 1906. 12mo.; pp. 36 .
Die Abhangigkeit der Bruchlast vom perger. Berlin: Wilhelm Ernst \& Son, 1906. 8vo.; pp. 47.
utomobili Stradali e Ferroviarie per Trasporti Industriali. By Ing. Ugo
Baldini. Milan: Ulrico Hoepli, 1906. 8vo.; pp. 351 . Milan: Ulrico Hoepli, 1903. 8vo.; pp. 473.
The Quest of the Germ. With Observations Thereanent. By Eugene H. lished by the Author, 1906 . 12 mo . pp. 229 . Price, 75 cents and $\$ 1.50$.

INDEX OF INVENTIONS

For which Letters Patent of the

United States were Issued
for the Week Ending
September 11, 1906.
ANDEACHBEARINGTHATDATE

Engine and Foot Lathes SUPPLIES. BEST MATERIALS. BEST
WORKMANSHIP. CATALOGUE FREE. SEBASTIAN LATHE CO.. 120 Culvert St., Cincinnati. 0 .

 $\underset{\text { Grand Prize, Highest Award, St. Louls, 1904. }}{\mathbf{4 4 - 6 0} \text { East }}$

Regal
Marine Engines

the CURtIS a CURTIS CO..

1
THOMA
0 AUTO=BI
 Machines
on wheels or on sills. With engines or horse powers. WILLIAMS BROS., Ithaca,

Modern Manufacture

 of Free Alcohol
A

N important series of papers on the manu-
facture of alcohol is begun with SuPPLEment 1603, especially translated for the vork of L. Baudry de Saunier. All who are should secure all of this very valuable series Copies of the SUPPLEMENT are mailed on receipt of 10 cents each, or they may be purchased MUNN COMPANY
N \& COMPANY, Publishers 361 Broadway. New York

$\stackrel{\mathrm{E}}{\mathrm{E}}$

Eleva
Eleva
Elever
Eleva

Fare register onerating device,
Feed bagt. D. D. McRernan
Feed cutter, D. L. Wolf
Feeding device, E. N. Trump

(I. Maxwells stand second in number of cars sold during the past year. No more could be sold because no more could be made.

 You USE GRINDSTONES?

The Eureka Clip

Electrical Engineering

 Engineering Dept. F. ${ }^{\text {Izell }}$ (Vandewater

Any Size or Shape
Steel Towers
Any Height
The Baltimore Cooperage Co. BALTMORE CITY ALTIITORE CITY, MD

WoolenTants

Cement Reinforced Concrete Building Blocks

SCIENTIFIC AMERICAN SUPPLEMENT Brysson Cunninghar. The article clearly
describes the proper composition and mixture
of concrete and gives the results of elaborate of concrete and gives the results of elaborate
tests. SCIE
to be used in concrete. SCIENTIFIC AMERICAN SUPPLEMENTS elaborate discussion by Lieut. Henry J. Jones
of the various systems of reinforcing concrete, concrete construction, and their appli-
cations. These articles constitute a splendid text book on the subject of reinforced co
crete. Nothing better has been published. SCIENTIFIC AMERICAN SUPPLEMENT in which practical notes on the proper prepa
ration of concrete are given. SCIENTIFIC AMERICAN SUPPLEMENTS 1568 and 1569 present a helpful account of
the making of concrete blocks by Spencer
Newberry. SIENTIFIC AMERICAN SUPPLEMENT ing value of reinforced concrete.
SCIENTIFIC AMERICAN SUPPLEMENTS 1547 and 1548 give a resume in which the
various systems of reinforced concrete con
struction are discussed and illustrated. CIENTIFIC AMERICAN' SUPPLEMENTS A. Hicks, in which the merits and defects
of reinforced concrete are analyzed. SCIENTIFIC AMERICAN SUPPLEMENT concrete with tome principles of reinforced
Walter Loring Webb. SCIENTIFIC AMERICAN SUPPLEMENT 1573 contains an article by Louis H. Gibson
on the principles of success in concrete block manufacture, illustrated.
CIENTIFIC AMERICAN SUPPLEMENT CIENTIFIC AMERICAN SUPPLEMENTS Philip L. Wormley, Jr., on cement mortar
and concrete, their preparation and use for farm purposes. The paper exhaustively dis-
cusses the making of mortar and concrete cusses the making of moriar and concrete
depositing of concrete, facing concrete, woo
forms, concrete sidewalks, details of co
struction of reinforced concrete posts, etc. Each number of the Supplement costs 10 cents. A set of papers containing all the articles above mentioned will be mailed for $\$ 3.50$ MUNN \& CO., Publishers, 361 BROADWAY, NEW YORK CITY

SCIENTIFIC AMERICAN AM SUPPLEMENT
I372 contains an article by A. D. Elbers on
tests tests and constitution of Portland cement.
SCIENTIFIC AMERICAN SUPPLEMENT SCIENTIFIC AMERICAN SUPPLEMENT
I396 discusses the testing of cement.
SIENTIFIC AMERICAN SUPPLEMENT 1325 contains an article by Professor Will
iam K . Hatt giving an historical sketch of SCIEA cement. AMERICAN SUPPLEMENTS 955 and 1042 give good accounts of cement
testing and composition, by the well-known
authority, Spencer B. Newberry. SCIENTIFIC AMERICAN SUPPLEMENTS I5Io and Richardson on a che constitution of
Cliford Resen
Portland cement from a physico-chemical standpoint.
SCIENTIFIC AMERICAN SUPRLEMENT on experiments with materials which retard
the activity of Portland cement. I465 and I466 publishes an exhaustive illus trated account of the Edison Portland ce
ment works, describing the ment works, describing the machinery used.
SCIENTIFIC AMERICAN SUPPLEMENT CIA9I gives sume fallacies of tests ordinarily
applied to Portland cement. SCIENTIFIC AMERICAN SUPPLEMENT I561 presents an excellent review by bryss
Cunningham of mortars and cements. SCIENTIFIC AMERICAN SUPPLEMENT dustry and gives some valuable formule.
SCIENTIFIC AMERICAN 1575 discusses the manufacture of hydraulic
cement. L. L. Stone is the author. SCIENTIFIC AMERICAN SUPPLEMENTS ${ }^{1587}$ and 1588 contain an able paper by
Edwin C. Eckel on cement material and
industry of the Tnited States. SCIENTIFIC AMLRICAN SUPPLEMENT machinery by William L. Larkin.
SCIENTIFIC AMERICAN SUPPLEMENT 1583 gives valuable suggestions on the selec
tion of Portland cement for concrete tion of Portland cement for concrete blocks.
SCIENTIFIC AMERRIAN
I58I
splendidly discusses gates. A helpful paper.
SCIENTIIC AMERICAN SUPPLEMENT I 595 presents a thorough discussion of sand
for mortar and concrete, by Sanford E.
Thomson. ationed will be mailed for paper $\$ 3.50$

Inexpensive Classified Advertisements panied request.
 SALE AND EXCHANGE. second-hand physical apparatus, especialty electrical. Give full descripion. TThose having such apparatus for sale, address M. I., Box 773 , New York. FOR SALE.-Patent No. 724,914 Double Stroke Wind utilizing both strokes, simple in on construction, handle more water withless wiad than any mill. O. Johnston, Coleman, Tex. MOTION PICTURE MACHINES, Film Views, Magic Lanters, Sides and similar Wonders For Sale. Cata- logue Free. We also Buy Magic Machines, Films, Slides. FOR SALE STATE RIGHTS.-Patent embracing carframing table in one smail tool. Simple and inexpen. sive. ingabling anyone tobild a house or similar work. Will sell on sight. 0. Johnston, Coleman, Tex. Doultry book free to yearly subscribers, book alone, Dyc.; catalogue poutry books free. Poultry Advocate, Sracuse, N. Y. IF YOU WANT to buy a machine, engine, boiler, power equipment, electrical, steam, pneumaticorother machinery-anything in the machine line-Tel Us and machinery-anyt you get full desieription, prices, atata- wogs, etc., from all the first-class manufacturers. We logs, etc., from all the frst-class manufacturers. We charge nothing for the service. Address Modern Ma- chinery Daily News, Security Building, Suite 10, Chicago.

BUSINESS OPPORTUNITIES

WANTED.-A rticles to manufacture in either iron
or wood by well-equipped foundry, machine and wood
working pant- For terms address Ypsilanti M achine
Works,
YOUNG MAN with capital and business experience, noes. s. manufacturing preferred, or will take aegency for
N. Y . and vicinity. Confidential, Box 773 , New York. LET US BE YOUR FACTORY.- Hardware special-
 Hrst-class workmanship, re
Company, Momence, Ill.
AUTOMOBLLE FX PERTS are in constant demand
at high salaries.
thorourgh and practical , fttin weeks con course is the most
 BARGAIN for one desiring a small and well-estab-

HELP WANTED

OPENINGS in offices of best railroads for bright
young unen with or without expericonce. Excellent young uen with or wit. Write us to-day. Hapgoods,
©hanter froadvanvancement. New York.
ENVELOPE Machine Adjuster or Machinist who has
 required. Marcus Ward
W ANTED.-God executive to take charae of order
nad shipping departments of large electrical factory in

POSITION WANTED. YOUNG MAN GRADUATE of a eelebrated technical
school desires position where he can advance himself
by hard work and a tention to duties. Address Meby hard work and attention to
chanical Engineering, Box $773, \mathrm{~N}$
A prant generating its own electric light and no position.
preterre. For trith particulars address P. ©. Box
86s, San Jose, Calitornia.

PARTNERS WANTED.

 parlor game (patented.) A. Ehebala,
New York City.

PATENTS FOR SALE.

 Schnells Patant Lamp co., Ltd., are open to receive a casonable offer for the sole American riights to the theirvaluable incandescent lamp burner, patent No. 822.870 .

 NEW PATENT. - My Rubber Angle Worm, just
 to batents sold on COMMISSION-If you wish

To Book Buyers

We have just issued a new 48-page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application.
MUNN \& COMPANY 361 Broadway, New York

If you personally owned the entire equipment and personally controlled the entire organization of the American Cigar Company-

And if you used this equipment and knowledge to produce cigars exclusively for your own smoking-

You could make no better cigars nor make them more carefully than we are now making them for you.

We believe that the possession of the largest equipment, organization, resources and business ever known in the cigar industry, binds us to a public duty to give the public the best cigars possible to make. Furthermore,

It Is Good Business Policy

We are good enough judges of human nature to appreciate the fact that meritorious service is the best and most permanent foundation of commercial success. If we give better cigars at lower cost than can be given by any other manufacturer, we shall secure, by perfectly logical and common-sense methods, what is virtually a franchise from the public to supply it with its cigars.

A franchise based upon public preference is stronger and more endurng than any that can be secured by legislative enactment, and it is this sor of franchise, obtained in this way that we want.

Gaining Success by Deserving It

Cigar smokers know what they want. Taste is constantly improving, demanding better goods all the time. There is no way of forcing people to purchase any brand of cigar which does not appeal to them on its own merit

From the beginnıng we have devoted the entire force of this organization and equipment to the problem of improving cigar quality and lowering cigar cost.

An "All-Round" Production

The products of our vari variety of cigars-from the "Royal ,Bengals" to the Havana.'

An important ad hensiveness of output gives to us to grate curately. This as formity-a feature
The tremen-
 ous factories include every highest type of "Seed and

Loading apparatus, A. Marvin
Lock E.

 in quality, due t

The "Triangle A" Merit Mark vantage in this comprelies in the power it our tobacco very acsures unvarying unimuch appreciated ating smoker. dous improvement clusive processes of curing, blending and ripening American grown leaf, extends through our entire line. These processes are performed in our own gigantic "stemmerhazard methods which have been followed with blind devotion since the days of Sir Walter Kaleigh. These scientific processes have improved the domestic cigar at least 100 per cent., giving a and a developed fragrance to our 5c. cigars, for example, which were by no means common even in the 10c. cigar a few years ago.

An Unbroken Line of Successes

This improvement has been demonstrated to the smoking public with ever increasing emphasis by the appearance of brand after brand of cigars selling at 5 c . possessing a superiority which has made them instantly popular and permanently successful These are of different brand-names and different characteristics but are all marked with our " \mathbb{A} " (Triangle A) merit mark and possesses the fundamental qualities of fragrance and "ripeness' for which the " \mathbb{A} " (Triangle "A) stands unerringly.

This " Δ " (Triangle A) merit-mark appears on the front of every box containing such cigars, and may be accepted implicitly as a guarantee of mel Among the " Δ ". (Triangle A) brands each smoker is sure to find the cigar he wants. The list is so long that only a few of the more prominent can be mentioned here:

The New Cremo (Victoria), Anna Held, George W. Childs (Cabinets), Chancellor, Caswell Club. The Unico, Benefactor, Captain Marryat, Roxboro General Braddock, Orlando. And the Palma de Cuba, and Isle of Pines and absolutely dependable quality in whatever brand suits your taste.
AMERICAN CIGAR COMPANY, Manufacturer

Valuable Books Home Mechanics for Amateurs

TWENTY-THIRD EDITION
EXPERIMENTAL SCIENCE.
 EXPGelimen cis scIEN

EEVISED and ENIARGED EDITION
The Scientific American
Cyclopedia:
15,000 Receipts. 734 Pages.
Priee, $\$ 5.00$ in Cloth. $\mathbf{\$ 6 . 0 0}$ in Sheep. $\$ 6.50$

Scientific American Reference Book

The result of the queries of
three generations of rea ders
and and correspondents is crrstal.
lized in this dook hhich
been in course oof preparation been in course of preparation
for months. t is is indispensa.
bie to every
ness man. It deall and busi-
nith matt ters of interest to everybody.
The oook contanios 50.000 facts
and is much more complete and more more complete
anything of the kind whan thich
any anything of the kind which
hiseverineen attempted. The
enceentifict, American Refer
ente
 tisticians. Information has
beend drawn from over one ton
of Goverument reports aone.
It is a book of ev eryday refer-

[^0]MUNN \& CO., Publishers, 361 Broadway, NEW YOiK

 $\sqrt{6}$

Rak
Raz

Kitur

rovir

Sca
Sea
Sea
Sea
Sem
Sew
Sew

 Time element device, J. J. Statter.........
Tire for vehicle wheels, cushion, L

 Torpedo applier, railway, \dddot{P}. . F . Suilivan....
 o. laying apparatus, portable self,

830,762
830,616

made in America
THE NEW YORK STANDARD "CHRONOGRAPH"
For Laboratorial Work, Experimental Work, Photographic Purposes, Electric and Telephone Usages. of Oils, etc.
Physicians, Surgeone and Nurses, and for the Exact Timing of all Athletic Events.

For Sale By All Yewelers
New York Standard Watch Co., 401 Communipaw Ave., Jersey City

Announcement

D^{2}R. HENRY SMITH WILLIAMS has taken the whole field of Science from the earliest times down to the present day, and put it into a readable, narrative form that will give anyone a right understanding of how Science began, how one discovery led to another, how all the Sciences are related to each other, and just what problems Science is working out to-day.

Everybody respects the word Science, and has some off-hand information about the tremendous achievements that Science has made in electricity, medicine, mechanics, etc., but few people have that general understanding of, and familiarity with, Science that they would like to have.

In this connection a more readable or more profitable set of books than "A History of Science," in five illustrated volumes, cannot be found. It is the only work that has ever attempted to put a comprehensive knowledge of Science within the grasp of the average intelligent reader.

A business man in Kansas City, Missouri, writes us that:

> "Professor Williams has managed to make what I heretofore con- sidered 'rather dry subjects' so very interesting, has explained the different stages of Science in so simple and concise a manner as to make it very intelligible and entertaining to the average reader.'
We could quote many similar letters of surprise and gratification that "A History of Science" has evoked from merchants, bankers, lawyers, shopkeepers, and others, to whom Science has been more or less of a mystery until they read these books. The author, Dr. Henry Smith Williams, M.D., LL.D., has that rare faculty of being able to write entertainingly on scientific subjects. He is widely known as a scientist and popular writer on scientific subjects.

These five magnificent volumes are the very books you have perhaps often wished for. They are permanently bound in dark blue cloth with gold lettering, and fully illustrated with portraits of famous scientists, diagrams, facsimiles, pictures of scientific apparatus, etc.

OUR OFFER

On receipt of $\$ 1.00$ we will send you, all charges prepaid, the complete set in five volumes. If you do not like the books when they reach you, send them back at our expense, and we will return the $\$ 1.00$. If you do like them, send us $\$ 1.00$ a month for eleven months, until the full price, $\$ 12.00$ is paid. On receipt of your request for these books we will enter you as a subscriber for one year, without additional cost to you, for either Harper's Magazine, Harper's Weekly, Harper's Bazar, or The North Amerjcan Review. In ordering, state which periodical you wish.
HARPER \& BROTHERS, PUBLISHERS, NEW YORK

JAMAICA

Colombia, Nicaraǵua, Costa Rica, Guatemala, Colon, Panama, and Hayti. Weekly sailing by superb "Prinz'
Hamburg-American Line.
Send for illustrated literature, telling you
about this and other superb cruises to all parts of the world.
35 and 37 Broadway, New York. 1229 Whalnut St., $\quad 159 \begin{gathered}\text { Randolph St } \\ \text { Chicago, Ill. }\end{gathered}$ $\begin{array}{ll}1056 \text { Broadway, } \\ \text { Oakland, Cal, } & \text { 901 Olive Street, } \\ \text { St. Louis, Mo. }\end{array}$ 90 State Street, Boston.
agencies in all largie cities.

MAKE MONEY

Send 15 c. for 3 months' trial subseription to
The Business Man's Magazine

 HiE boon-kerprr publising co. Lit
59 Fort street, Detroit, Mich.
Wild Rice That Will Grow

 NORTHRUP, KING \& CO., \quad Minneapolis, Minn.

Wagon brachment, F. C. G.
Wagon brake, G. O. D. Doi.....
Wagon, dumbing, F. Ezzeli...

DESIGNS.

$$
\begin{aligned}
& \text { Pid } \\
& \hline 10
\end{aligned}
$$ Fi

Til
II
Ren
R
\qquad

I,

"Grann Dad's Lor Live medicine, T. L. James "Noxall,", for for four, Scote County wiiling Co.

PRINTS.

Water Supply Pumps Âderamentic The Niagara Hydraulic Engine is the most wonderful automatic pump. Send for catalogue if you want to improve your supply.
NIAGARA HYDRAULIC ENGINE CO., 140 NASSAU STREET, NEW YORK

"KNIPE." BALL BEARINCS

PRESSED STEELMFG. CO.,545 The 10 tourse, Phlla,, Pa.
AUTOMOBILE INSURANCE

Every owner of an Auto should in sure his car against
isss or damage, whether in actual riding or in transit.
We

WE MAKE GOOD

SHOP ROOM TO LET s. A. NICHOLAS, $\mathbf{3 0}$ Greenwich Avenue

PARKER, STEARNS \& CO., 228.229 South Street, New York
GEOM. MA YER,
WORKING DRA'WINGOS
DRYING MACHINES, $\underset{\substack{\text { S.E. WoRRELL } \\ \text { Hannibal. Mo. }}}{\text { M. }}$

Experimental \& Model Work

 Bad amome Water

 A. FRANKLIN-HOWARD Con, Kansas City, Mo. LEARN WATCHMAKING

T Magical Apparatus. 25c. Parlor Tricks Catalogue, free.
MARTINKA \& Co., Mfrs. 43 Sixth Ave., New York. MASON'S NEW PAT. WHIP HOIST

IF YOU OWN A ROOF USE

George White Company Fine Experimental Machinists OFFICE and Works:
$\mathbf{2} \mathbf{2}$ and $\mathbf{2 4} \mathbf{M}$ Morris St., JERSEY CITY, N. J.

A Few Things That We Can Do
We Investigate, refine and perfect Crude Ideas or
Inventions, reducivg them to Commercial Value. Inventions, reaucitg them to commercial Value.
Experimental Work, Mechanical Drawings, wo
ing Models of Patented and othar Inventions. Special Machinery, Jigs, Tools and Dies. Special Matiors, Hydrocarbon, Steam, Compressed
dir, and Turbine Motors. Perfect and Construct Aus

Call and See A Few Things We Have Done
CRUDE ASBESTOS

PREPARED	R. H, MARTIN,
ASBESTOS FIBRE for Manufacturers use	
OFFICE, ST.PAUL BUILDING	
	220 B'way, New York.

\dot{b} Bausch \& Lomb
 Prism $\triangle \rightarrow$ Field Glasses

ZUFKIN
TAPES AND RULES
ARE THE BEST.
For sale everrwhere.
Catalog No.
S.
$\underset{\substack{\text { LUF } \\ \text { Saginaw, Mict. } \\ \text { New York and London. }}}{\text { S. }}$
Tools! Tools! Tools!

and all you want to know abont
them. Our Tool Catalogue No.
22 is a cloth-bound book of 950 2 in. Our rool catalogue No
pages, If If you wand book of of 90
so know it all" about Tools you should
send for this book at once
Sent post-paid Sent post-paid on receipt of
\$1.00 which will be refunded
from jour first purchase from us of $\$ 10.00$ or over.
MONTGOMERY \& CO 105 Fulton Street, N. Y. Cit

STEAM USERS

pajndian Proving

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.

Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints. Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by PEERLESS RUBBER IIFG. CO. 16 Warren St., New York

NAIL HOLDER:
 AND SET
 the l. S. Starrett co., - - Athol, Mass. ${ }^{\text {\& }}$

Mound City Dishwasher

Prolong the Life of Your Battery

A MONEY MAKER

$\overline{\substack{\text { Younvert }}}{ }^{\text {Couto }}$ Bicycle ${ }_{\mathrm{a}}^{\text {Int }}$ Motorcycle

B. FELEARNES SENEW

[^0]: nce alone have made it possible for the publishers or

