

Length ou Water-line, 90 feet.
Schooner "Queen." Second Position.

Length on Water-line, 87 feet.
Schooner "Elmina.? Thiṛ Position.

SCIENTIFIC AMERICAN Established 1845

MUNN \& CO. - Editors and Proprietors
Publishod Weekly at
No. $\mathbf{3 6 1 \text { Broadway, New York }}$
TERMS TO SUBSCRIBERS
 the soientific american publications

NEW YORK, SATURDAY, AUGUST 18, 1906.

The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are
 sharp, the articies shor
will reeeive speial at at
ait regular space rates.

disappearing england.

While the question of coast erosion and reclamation is one of comparative insignificance in this country, the subject has, of late years, aroused considerable discussion in England, because of the undoubted ravages of the sea at many points of the littoral of the isiand. The shores of England are composed largely of clay, chalk, or friable rock which is easily eaten away by the waves of the ocean or the strong currents and tides along the coast. In consequence great stretches of the shore have been worn away and are constantly crumbling further inland with each succeeding year. This gradual destruction has caused great damages to many towns situated on the seashore and has destroyed thousands of acres of valuable farming land. At certain locations, even within the memory of men still living, the sites of prosperous villages of former times are to-day covered by many fathoms of water, sometimes several miles from the present shore line.
Coast erosion following severe storms within recent years has been so marked at many points on the English coast that after extended press discussion a Parliamentary commission has been appointed thoroughly to investigate the subject, and if possible to devise means for the abatement of the injury. While there is little danger that the "tight little island" will completely disappear within the next few generations, there can be no doubt that coast erosion is causing serious loss of land at many points, particularly on the south and east coasts, notwithstanding that the areas gained artificially at other points almost compensate for it. It has been estimated that in the thousand years from 900 to 1900 an area of nearly 550 square miles has been worn away by the erosive action of the waves and ocean currents. That the changes in the littoral outline of England are due almost purely to this action is the opinion of the geologists who have investigated the question, and it is not believed that the subsidence and upheaval of the earth's crust are in any way responsible therefor. The material which is carried away after being eroded from the shore is either immediately borne to the deep sea in suspension, or is washed along the coast in the form 0^{s} littoral drift. It is hardly possible to estimate the respective proportions of the possible to estimate the respective proportions of the
material which are thus disposed of, but these propormaterial which are thus disposed of, but these propor-
tions may vary from 20 to 90 per cent of the whole, though it is hardly likely that the proportion carried out to deep water often approaches the latter figure.
The question of coast protection is a difficult one, and the method in use at present, comprising the construction of walls and groynes along certain areas, results of necessity in the depriving of the foreshore of the material which might otherwise gather there. Thus while a uniform system of protective walls and groynes running from the walls out into the sea will, for the time being, largely prevent the erosion of the coast, it will nevertheless, by abating or largely decreasing the littoral drift, bring about the depletion of the foreshore and will ultimately cause the destruction of both protective walls and groynes. The question of coast protection and reclamation presents engineering difficulties of no mean magnitude, and the overcoming of these difficulties will constitute an interesting phase of future engineering history, for we feel certain that English technical men and men of science will find successful means for combating the destructive power of the sea.

aftermath of the san francisco fire.

In drawing the proper lessons from a disaster of the magnitude of the San Francisco earthquake and fire, care must be exercised lest too great an emphasis be laid upon particular and unrelated incidents and effects. It has been claimed, and doubtless with some measure of truth, that in the early photographs of the fire, and particularly those of individual buildings or parts of buildings wrecked by the fire, that were published soon after the disaster, there was too much published soon after the disaster, there was too much
broad generalization based upon insufficient data. It
is only now, after there has been time to gather and classify material in the way of photographs and observations by experts, that the public is being placed in possession of well-digested lessons drawn from the disaster. We have recently been favored with a large number of photographs and an extremely interesting discussion of the San Francisco fire and its lessons by Mr. F. W. Fitzpatrick, the secretary-treasurer of the International Society of State and Municipal Building Commissioners and Inspectors, of Washington. The article was called forth by some photographs showing the respective behavior of fireproof tile and of conthe respective behavior of fireproof tile and of con-
crete protection in the recent fire, which were pubcrete protection in the recent fire, which were pub-
lished in the Scientificanezun of June 9,1906 , and which Mr. Fitzpatrick criticises as giving a one-sided and misleading impression of the facts. The article, which is too long for the columns of the Scientific American, will be found in the current issue of the Supplement. The illustrations consist largely of interior views of columns, girders, floors, and partitions which were affected by the fire, and they are from photographs selected from several hundred made under expert supervision at San Francisco. The article is an impartial and very thoughtful review of the lessons taught by the disaster as to the design and construction of future fireproof buildings.

PROF. SEE'S INVESTIGATION OF THE EARTH'S RIGIDITY.
In the Astronomische Nachrichten Prof. T. J. J. See, U. S. navy, has exhaustively investigated the rigidity of the earth and other heavenly bodies, by mathematical processes depending wholly on the theory of gravitation.

This line of investigation was begun in 1863 by Lord Kelvin, who sought to determine the rigidity of the earth from observations of the tides of the oceans. Tidal observations secured the only means of ascertaining the amount of bodily distortion experienced by the earth under the disturbing forces of the sun and moon; and it was thought that if the earth proved to be highly rigid, the result would contradict the theory long held by geologists that the earth is a globe of molten matter inclosed in a thin crust, like the shell of an egg.
Lord Kelvin reached the conclusion that the earth as a whole is certainly more rigid than glass, but perhaps not quite as rigid as steel.
About 1880 Sir George Darwin took up the investigation, and considerably extended and improved Lord Kelvin's method. By careful study of the fortnightly tides he found the earth to be more rigid than steel; that is, it yielded less under the disturbing action of the sun and moon than a solid globe of steel of the same size. This was justly held to show that our earth could not be a sphere of liquid covered by a thin crust; and geologists had to conform their theories with a globe as rigid as steel.
Prof. See's investigation is purely mathematical, and based on the pressure existing throughout the earth. According to Laplace's law, the density at the center of the earth is equal to that of lead, and the pressure equal to that exerted by a vertical column of quicksilver as long as the distance from St. Louis to San Francisco.

By considering the pressure throughout the whole earth, it is found that even if fluid, our globe would have a rigidity greater than that of wrought iron. The earth's matter under this great pressure acts as a solid, and so vibrates in an earthquake; and the average rigidity of the whole mass is nearly equal to that of nickel steel, such as. is used in the armor of a battleship. Nickel steel is one of the strongest and hardest metals known, and it affords us a good idea of the strength and rigidity of the earth. Our globe is thus proved to be capable of withstanding enormous strain; and we need have no fear that earthquares or volcanic outbursts will ever endanger its stability.

Dr. See proves that the rigidity of the earth's crust is about equal to that of granite, which is one-sixth that of steel; and that toward the center the rigidity rapidly increases. At the earth's center the imprisoned matter is at an enormously high temperature, yet under the tremendous pressure there at work, it is kept three times more rigid than the nickel steel used in the armor of a battleship.
His new method can be applied also to the other planets. Heretofore no method has been known for finding the rigidity of any mass except the earth on which we live. But the gravitational method can be applied with entire confidence to Venus, Mars, Jupiter, or Saturn, and we can find their rigidity almost as accurately as we can that of our own globe.

It turns out that the rigidity of Venus is greater than that of platinum, and most likely about identical with that of wrought iron. The rigidity of Mars is about equal to that of gold, while the rigidity of Mercury, the moon, and other satellites is about equal to that of glass.

The average rigidity of the great planets, Jupiter, Saturn, Uranus, and Neptune, lies between eighteen and three times that of nickel steel. The great rigidity of these bodies is due to the great pressure acting
throughout such large masses. In the case of the sun the result is still more extreme. The average rigidity of all the sun's layers is over two thousand times that of all the sun's
of nickel steel.

This result affords a good idea of the effect of gravity in compressing and hardening a mass, even when it is self-luminous and at enormously high temperature.

Having shown by laborious calculation that these bodies are so rigid, Prof. See has gone one step farther, and inquired what effect this rigidity will have on the currents often supposed to circulate within these masses. As pressure directly increases the fluid friction of moving currents and tends to bring them to rest, it is not surprising to find that the rigidity almost prevents circulation, especially deep down in these masses.
Many geologists have held that liquid currents exist in the earth; and astronomers have been accustomed to assume that fluid currents in the sun descend almost to its center. In view of these results, it is not surprising to find that he denies the possibility of currents in the earth, and claims that currents in the sun and great planets must all be quite shallow.
These currents cannot descend to any appreciable depth, because the pressure and rigidity are too great. In the case of the earth, we cannot well conceive of currents in matter more rigid than granite; and in the case of the sun, a rigidity twenty-two times that of nickel steel only one-tenth of the way to the center makes circulation of currents below that depth likewise inconceivable.

DISCOVERIES IN THE SARGASSO SEA.

There is a sea in the middle of the very ocean itself, the limits of which are as well defined as those of any other known large body of water; its characteristics are so peculiar, too, that it is impossible for anyone to mistake them. The first glimpse Columbus had of this sea reminded him, so it is said, of an "undulating meadow"; as far as the eye could reach, the sea was covered with a greenish yellow plant, just as completely as water lilies do a pond. Ever since that day when the immortal Christopher first saw the weed, and doubtless for thousands of years before then, the Sargasso Sea (for such is the name of this strange body of water) has existed. Its boundaries may be indicated by tracing a triangle, the three corners of which are represented by the Azores, the Canaries, and Cape de Verde. Within these limits the surface of the sea is covered with so thick a coating of seaweed as to prevent vessels from sailing through it. Steamers also avoid it, whenever possible, because of the fouling of their screws and paddles by the weed.
During the course of 1905 H. R. H. Prince Albert of Monaco sailed for this sea in his famous vessel, the "Princesse Alice," with three objects in view, viz., the study of bathypelagic faunas in general, of the faunas of the Sargasso Sea, and of the meteorology of the upper atmosphere. The vessel sailed from Marseilles on July 20 and returned on September 24, 1905. The results of the 64 days' voyage have recently been published, and form highly interesting reading.
No less than 118 soundings were made up to a depth of 5,580 meters (18,302 feet) and 28 samples of water were taken in Richard bottles and Buchanan tubes. Some very interesting zoölogical finds were made, of which the following is a brief description. With a bag-net there were secured (at depths ranging from 606 to 11,364 feet. numerous Alcyonariæ, several interesting crinoids, and two extremely rare specimens of Gephyrocrinus Grimaldii, already discovered by the prince on a previous occasion. Among other crustaceæ there was a specimen of the Polycheles eryoniformis Bouv., a new species which recalls the Jurassic eryon by its dilated carapace. Another net, sunk to a deptr of 11,364 feet, brought up a rich find, comprising a new type of Cinroteuthis of a uniform black color, with large black brachial papillæ; a small Cephalopod, of an undoubtedly new type and species, having telescopic eyes and an extremely singular trilobial luminous organ. By far the most productive accessory of the campaign was found to be a wide-mouthed vertical net; in fact, adequately to describe the numerous specimens secured with its aid would require a booklet. Forty-one descents were made, to a depth of 17,712 feet, and, in most cases, the specimens obtained were similar to those obtained in the course of researches made a year ago elsewhere. The most striking objects were a new Ulmarida of the color of wine lees, closely related to the Aurelia, and constituting the first member of this family found in deep waters; of the Ostracod family there were some large spherical Gigantocypris, and several specimens of a large black (or almost black) Ostracod, the shape of which may be likened to the pip of a ripe pear, several relatively speaking new species of Nemertæ, especially a large orange-colored variety, hitherto rarely found among bathypelagic fauna; and finally some transparent Annelidæ with large red eyes, and several types of Phronima, one entirely new. In the Sargasso Sea the net also brought up one of those curious crustaceans of the Eryoneicus type; it is quite new, and M. Bouvier,
member of the Oceanographic Institute (who accom panied the expedition, together with Dr. Richard, di rector of the Monaco Oceanographic Museum, and other equally distinguished gentlemen) has christened it the Eryoneicus Alberti.
The fauna inhabiting the Sargasso Sea was studied on the surface, between the latter and the bottom, and on the bottom itself up to a depth of 11,364 feet. A numerous but sparseiy varied fauna lives amid the weed covering this sea; it comprises Actiniæ, Ascidiæ, Nudibranchiæ, Crabs, Isopods, and a few pelagic animals clinging mostly to the surface of the weed Mimicry is a very marked feature of animal life in the Sargasso Sea. A new species of pelagic Holothuria was found, and there were captured on several occasions many specimens of a curious hemiptera (Halobates Vüllerstorffi) which jumps about on the surface of the sea.
An interesting item of the voyage was that (when in the Sargasso Sea at a distance of 840 miles from the nearest continent) the "Princesse Alice" was visited by five swallows of the American variety called Hirundo rustica erythrogaster, Bodd. A remarkable feature of the whole region comprised between the tropics, the continent of Africa, and the Azores, is the almost total lack of any animal life on the surface of the sea. No cetaceans or marine birds were met with; flying fishes and the Plankton were the sole rewith; flying fishes and the Plankton were the sole re-
deeming features in a dreary and silent waste of waters. A curious double lunar rainbow was seen on one occasion (August 28, 1905), and was painted by an artist accompanying the expedition. The curious phenomenon known as the "Green Ray" was also often seen.

ELECTRICITY AND MATTER IN A GASEOUS STATE. by prof. edgar l. larkin.

When Newton announced the law of gravity, the effect must have been akin to the discovery of radium in our own time. Really, a rapid wave of expanding science spread over the world, and everybody talked about the mystery of all time, gravity. What has happened? If a newly discovered law equal to that of attraction If a newly discovered law equal to that of attraction
should now be telegraphed to every scientific body in existence, would a scene of animation and activity set in? Or, have discoveries "followed fast, and followed faster" of late than can be assimilated? Or, would the discovery of what gravity is, or matter, or mind, occasion more than a few remarks on a street corner, about the passing wonder?
Ionization and conductivity are equal to gravity. They form two granite and hewn stones round about and under nature. If the actual gravity is ever explained, the explanation must and will be found hidden in these. All scientific men were filled with admira-tion-yes, hidden adoration-for Newton, when the Principia appeared. But another Principia is herePrinctpia appeared. But another Principia is here-
a book, "The Conduction of Electricity Through Gases," by Prof. J. J.- Thomson. To the writer, it is as a basic Principia, upon which can be erected a vast, new, and comprehensive view of all that part of the universe known to man. Since Newton, literatures of science have teemed with the sentence: "Inversely as the square of the distance." But a new term or senthe square of the distance. But a new term or sen-
tence is now appearing in scientific literature of the highest type. Here are quotations: "The saturation current between two parallel plates of given area depends upon the amount of the ionization that takes place throughout the whole volume of gas between the plates, then the greater the distance between the plates the greater is the saturation current, so that if we use constant potential differences large enough to produce saturation, the greater the distance between the plates the larger is the current. Thus the behavior of the conducting gas is very different from that of a metallic or liquid electrolytic conductor; for if such conductors were substituted for the gas, the greater the distance between the plates the smaller would be the current.' And: "The peculiarities shown by the conduction through gases are very easily explained on the assumption that the conduction is due to ions mixed with gas" (p. 13, Thomson). And another: "The condition essential to stability in chemical combination is, 'The attraction of one atom to another (or others) increases as the distance increases'" (Berisford Ingran, Knowledge, April, 1905, p. 75). Since science began, Knowledge, April, 1905, p. 75). Since science began,
there have not appeared more important discoveries there have not appeared more important discoveries
or wisdom. While heat, light, gravity, magnetism, and electricity, when in the form of circular waves, vary in intensity inversely as the square of the distance, electricity, while traversing ionized gases as a "current," increases in quantity as the distance increases! This surely is because it gathers up ions on the way from one mass of matter to another, that is, takes up electricity. If the masses are two suns form ing in space, from primordial gas, ionization allows colossal quantities of electricity to circulate from sun to sun, whether two or two trillion. And this brings the writer of this note to the point of starting, for during many years we have advocated, in season and out, the electrical basis of the universe. On page 8 Prof. Thomson says: "The electrical conductivity of
gases in the normal state is so small that, as we have seen, the proof of its existence requires very careful and elaborate experiments." Then he gives several ways of making excessively rare gases conducting, thus: Draw them from the neighborhood of flames, or from electric arcs, or from glowing metals; but far better is to allow Röntgen, Lenard, or cathode rays to pass through them, or rays from uranium, radium, polonium, thorium, and ultra-violet light to traverse and ionize. Thus two metallic plates may have rare gas between them, and electricity would have difficulty in forcing a passage. Now ionize the gaseous particles, i. e., separate them into corpuscles, and electricity will "flow" from positive to negative with slight resistance, and external rays from any radioactive substance are able to ionize. It is almost impossible to resist the temptation to apply the new laws to cosmological processes in primitive conditions of matter. This primordial state was without doubt gaseous. Perhaps dissociation reigned. At all events, the mechanics of liquids and solids did not act. Finer forces, radio-active energies, and activities wrought for ages before gravity wheeled worlds into revolving systems. Let two suns be, say, within 25 trillion miles of each other. The space between, if filled with normal gas, would offer high resistance to transmission of electricity. Let rays from radium or any electrostatic field shoot across the intersolar gases at right angles and ionize them; then vast flows of electricity would take place from sun to sun. There was a circulation throughout the universe then, as well as now. The entire structure of nature is a living unit. It has a pulse. All matter by hypothesis was once ultra-gaseous. It therefore obeyed laws able to act on matter in that state, and no others. Every one of the laws is electrical.

Deviation of rays is a stupendous fact, deep-seated and far-reaching. From a study of the bending aside of rays in laboratories, imagination can easily carry back to primordial cosmical times. Radium emits alpha, beta, and gamma rays and many others besides. Magnetism is able to turn alpha rays one way and beta the other. The fact stands out that they are separated. Gamma rays cannot be bent out of their original straight lines. To begin gravity, matter must be charged with electricity. Of course, this is a "working hypothesis." This is the way to do it.
Let vast masses in space, like the nebula in Orion, or like the giant suns Antares or Canopus, be radioactive, and let floods of rays pour into space-for a frigid nebula or a hot sun can be radio-active.

Let an enormous mass be, as it were, an electrostatic "field" in space many million miles away. Electrostatic fields attract and repel precisely like a magnet. Floods of alpha, beta, and gamma rays attempt to pass in front of this field. Let a stream of alpha rays be separated out and be deviated to one side. Let them strike a world in process of formation. It will instantly be positively electrified. And another electro-magnetic or static field can deflect beta rays upon other worlds, and charge them negatively. Charges are thus set up daily in physical laboratories; why not in space? Ra-dio-active rays are absorbed by matter with great avidity. But these rays must be electric, else they could not be diverted by magnetism. At present, it is not known what effect gamma rays have when they hit a forming world. For world building has not ceased. Another cosmical worker is induced radio-activity. An active nebula or sun can establish activity in others at a distance. It is a common thing to charge suspended insulated spheres by induction electrically in every laboratory. Suns may differ actually in their phases of matter, as much as their spectra. Thus let a nebula in space at the absolute zero of temperature be composed of corpuscles-bodies smaller than the chemical atom-in dissociation.
Let alpha rays only be deflected upon it for a million years, and let beta rays fall on another nebula; then the phases of matter produced would no doubt differ. The suns condensed from them must be unlike and project differing spectra. From the vast mass of lit erature received on this mountain peak, it appears that the entire scientific world is going the radio-active way. And well it is, for radiant energy, in the forms of alpha, beta, gamma, Röntgen, Becquerel, and doubtless a hundred other kinds of rays, together with de flection, induction, catalysis, "acting at a distance," and ionization-these all. and surely others not yet discovered, were and still are the cosmical builders, work ers, and carriers. When Crookes lighted up his lowpressure tubes he opened the gates of a world more inscrutable than that of Hermetic mysteries. And a science of boundless ramifications into every nook and corner of nature is founded and grounded on Prof. Thomson's classic book. Electricity can start from one sun to go to another. If electro-active fields are passed, then the primitive gas is ionized, and the original quantity gathers more as it flies and pours a larger flood on its neighbor. It does not weaken as the squares of the distances increase. This is absolutely new in science, is revolutionary in character, is literally true, and will overthrow all existing cosmological
theories. Soon it will be admitted that electricity exists in a practically infinite number of modes and forms, ordinary "currents" and "charges" being com-mon-place. In a few years it will be fashionabie to say that a cubic inch of iron and another of water contain equal quantities of matter; since both are nearly incompressible, and that the reason why iron tends toward the center of the earth with a force 7.8 times that of water, is because it contains 7.8 times as much electricity.
Lowe Observatory, Echo Mountain, Cal.

THE DESCENT OF MAN

Kollmann, the professor of anatomy, has recently written an exhaustive article on the subject of the relationship between man and the Pithecanthropus erectus of Dubois. It will be remembered that some years ago Dubois discovered in the island of Java some bones, the femur and several bones of the cranium, which resembled both the corresponding bones in the human frame and also in the frame of a monkey. This discovery was much talked of, since it was thought that in these bones had been discovered portions of a prehistoric animal, which might have formed the socalled missing link in the chain of descent of mar from monkey. It was the scientist Schwalbe who, in accordance with this idea, christened this hypothetical animal with the name Pithecanthropus erectus, or man-monkey standing erect. A minute examination of the bony remains of Java permitted the hypothesis that they had belonged to a being of great stature, with habits still arboreal, and which probably passed a great part of its time in the trees, but which, like man, already possessed the faculty of speech. But Kollmann now shows that although these bones discovered in Java are of great paleontological importance, they should be interpreted in quite a different manner. He asserts that the animal to which they belonged could not have been a precursor of man, for, although they certainly belonged to one of the most highly developed of the anthropoid apes, its habits and customs could not have differed from those of its cousins still living, the chimpanzee, the gorilla, the orang-outang, all spe. cies of animals which have reached the extreme limit of their variability. Kollmann is rather of the opinion that the direct antecedents of man should not be sought among the species of anthropoid apes of great height and with flat skulls, but much further back in the zoological scale, among the small monkeys with pointed skulls; from these he believes were developed the human pygmy races of prehistoric ages, with pointed skulls, and from these pygmy races finally developed the human race of historic times. In this manner may be explained the persistency with which mythology and folk lore allude to the subject of pygmy people, and it would also explain the relative frequency with which recently the fossils of small human beings belonging to prehistoric periods have been discovered.

THE DEATH OF DANIEL B. WESSON.

After a long illness Daniel Baird Wesson, the rifle and revolver maker, died at Springfield, Mass., on August 4.
Born in Worcester, Mass., Mr. Wesson was the founder of the firm of Smith \& Wesson. He went to Springfield a poor man, but died immensely wealthy.
He was the inventor of the cartridge with a percussion cap. In 1883 he formed a partnership with Horace Smith, of Norwich, Conn., and there worked out the principles of the Winchester rifle. He firsi put into use the self-primed metallic cartridge, used during the civil war. About the same time he succeeded in perfecting a revolver, the principal feature of which was that the chambers ran entirely through the cylinder.
Mr. Wesson was also the inventor of several other improvements in firearms, the most important of which were the automatic cartridge shell extractor and the self-lubricating cartridge. He also introduced the hammerless safety revolver.

It is reported that the Canadian Pacific Company has decided to await the outcome of experiments by the New York Central and New York, New Haven \& Hartford Railway Companies before taking steps for the electrification of any part of its system. Both the latter railways are spending enormous sums upon experiments, the former with a direct and the latter with a single-phase alternating current. The line from Montreal to Quebec will in all probability witness the first installation. All the electric power necessary can be obtained from the Shawinigan Falls.
Efforts are being made, by constructing embankments, to improve the channel at Rouen and keep it to one course, the present difficulty being that the channel is constantly shifting. Plans are now under onsideration for the lengthening of the embankment on the left side of the estuary, and for the construction of embankments on both sides of the same to confine the channel to certain limits between Val de la Haye and Biessard.

THE RACE FOR THE KING'S CUP.

The first race for the $\$ 5,000$ gold cup presented by King Edward VII. to the New York Yacht Club as a challenge cup to be raced for annually, took place on Wednesday, August 8, off Newport: In point of interest and importance this event compares with the famous races which have been sailed off Sandy Hook during the past half century for the famous America's cup. Ever since it was announced that the new yachting trophy had been offered and accepted, a large number of prominent yachtsmen have been directing their efforts toward the much-coveted distinction of having the name of their yacht inscribed on the cup as the first winner thereof. Practically all of the fastest of the American yachts, or at least those of them which were supposed to have any chance of success, were put into
been that in the effort to obtain power and speed the yachts have been built with extreme breadth and draft, and with excessive overhangs, the limit of excess having been reached in the "Reliance," which, on something less than 90 feet of water-line, had a beam of 27 feet, a draft of 20 feet, and an over-all length of about 140 feet. With nearly 100 tons of lead upon her keel, she was able to carry the enormous sail spread of over 16,000 square feet. The main object aimed at in the design of these boats was to carry a maximum amount of canvas on a minimum amount of underwater hull, or with a minimum amount of wetted surface and displacement.

The new rule of the New York Yacht Club places a heavy penalty on these extreme features, and a designer having in view the heavy penalties imposed on
in the race, which was won by the "Effort" on time al lowance, with only nine seconds to spare. The "Queen" is a keel schooner with an auxiliary centerboard, built of steel, and designed by Nat Herreshoff for J. Rogers Maxwell. She measures 90 feet on the water-line, 126 feet on deck, 24 feet beam, and draws 14 feet 10 inches of water. She spreads 11,000 square feet of canvas. She has been sailed steadily through all the important races of the present season, and is decidedly the fastest yacht afloat this year in these waters. What she would do against the modern single stickers, built under the old rule, is problematical; although from the decisive way in which she defeated the "Vigilant," now sailing as a yawl, it is quite possible that in a fresh breeze she could save her time allowance on such yachts as "Constitution" and "Reliance." The "Effort"

Length on Waor-fue, 86 feet 3 inches.
Yawl 6 Vigilant." Sixth Position

Length on ater-line, 90 feet 6 inches.
Yawrmsybarita, Eitered Bit Did Not Race.

Length on Water-line, $i 0$ feet.
Sloop " Rainbow." Disabled.

Length on Water-line, 56 feet.
Sloop "Weetamoe." Entered, Did Not Race.

Length on Water-line, 70 feet.
Sloop "Yankee." Fourth Position.
commission this year; and they have been tuned up nto first-class condition by following the racing circuit throughout the season. Moreover, two out-and-out racing yachts were built especially to win this trophy. As compared with the races for the America's cup, the competition for the King's cup had this decided advantage-that the yachts were built, and the time allowances calculated, under the new rule of the New York Yacht Club, which was framed with the idea of promoting the construction of a more wholesome type of yacht, with less of the "freak" about it, than those which have been turned out under the old rule governing the America cup contests. Under the latter rule, as most of our readers are aware, the yachts are rated according to the amount of sail that they carry and their length on the water-line. The result of this has
extreme overhangs, shallow immersed body, etc., finds that the type of boat best calculated to win the cup is one of a more wholesome form, with a deeper body finer ends, and larger displacement. It is the hope of all yachtsmen the world over who take an interest in the America cup, that the new rule will be made to apply to the races that may be sailed in future for that famous trophy. If it should be, there is no question that challenges will be sent in and yachts will be built which, after the races are over, will, because of their seaworthy qualities, be serviceable for racing, and even cruising for many years to come.
Of the nine yachts which started for the King's cup, two, the schooner "Queen" and the sloop "Effort," were built this season especially to compete for the cup; and it is significant that these two were first and second
is a bronze sloop designed this year by H. J. Gielow for F. M. Smith, and built by Robert Jacob at City Island. She is 65 feet on the water line, 93 feet 3 inches on deck, 16 feet 6 inches in breadth, 6 feet 9 inches in depth, and draws 11 feet of water. She is an out-andout racing sloop, with steel frames and bronze plating, and throughout the season has done some excellent racing against those other bronze boats the "Weetamoe" and "Neola," the former of which, although four years older, has proved a very worthy opponent, winning several races against the new sloop. The "Weetamoe," which, much to the regret of yachtsmen, was one of the yachts entered for the race which did not cross the line, is 56 feet on the water-line, 89 feet 6 inches on deck, 16 feet 6 inches in beam, and draws 11 feet 6
(Continued on page 114.)

THE ELECTRIC CAR EQUIPMENT OF THE LONG ISLAND

RAILROAD

y w. n. smith.

The design of the car equipment of the Long Island Railroad is based upon a careful study of the traffic conditions as they were outlined by the railroad officials at the commencement of the undertaking, calling for trains with the number of cars varying from two to six per train at different hours of the day in regu lar operation, while heavy excursion travel to the beaches and racetracks would, ơccasionally, require
in the world to adopt this radical departure in car construction, thus insuring to the public complete immunity from the danger of fire in cars equipped with apparatus carrying powerful electric currents.

The standard third-rail shoes on the Long Island cars are of the hinged slipper type supported on the usual wooden beam which is clamped against the notched face of the equalizer spring seat castings, providing means for vertical adjustment. Trains from the Brooklyn Rapid Transit Company's elevated lines operate over the Atlantic Avenue and Rockaway Beach
at reduced speed without requiring attention on the part of the motormen or train crew. Such an arrangement has been worked out and patents on it have been applied for by Mr. James C. Boyd. It consists essen tially of a hinged slipper type of shoe, mounted upon movable lug which is held in either position by means of coil springs and is actuated by an arm that engages with the stationary cam mounted alongside of the track in line with the third rail. The movement of the car past this cam in one direction changes the shoe from the inner to the outer low position, while a

All-Steel Car Used on the Long Island Railroad.

One of the Snow Plows.
trains of ten or twelve cars. Some of the service is express and some local. It was deemed of the greatest importance to provide a single type of equipment that would be uniformly available for all the varying con ditfons of train service
The maximúm possible speed for express runs can be made when all the cars of a multiple-unit train are motor cars. Ordinary schedule conditions, however, usually permit a portion of each train to consist of trailers, and the most severe conditions of frequent stops can be met if the proportion of trailers is not more than one trailer to two motor cars. A considerable saving in the weight of the entire train is thus possible without exceeding either the tractive powe of the motors or their ability to radiate the heat developed by the frequent accelerations which are the severest tax upon their capacity.

The fact that the Atlantic Division is partly in a subway and the need for interchangeability with the rolling stock of the Interborough Rapid Transit Subway has much to do with the design of the cars. The complete success of the first all-steel passenger cars ever built, and which were designed by Mr. George Gibbs of the New York Subway, led him, in his capacity of Chief Engineer of the Long Island Railroad electric conversion, to advocate their use on this road as well. To the Interborough Rapid Transit Company and the Long Island Railroad Company belongs, therefore, the distinction of being the first railroads

Adjustable Third-Rail Shoe in Inner Position.

Divisions by way of Chestnut Street Junction to Rockaway Park. The Brooklyn Elevated line has been for some years operated by the third rail, but the location of the rail is $221 / 4$ inches outside and 6 inches above the track rail, while the Long Island Railroad third rail is 26 inches out and $31 / 2$ inches up. This made it necessary to devise some form of adjustable third rail shoe which would operate with equal facility over both third rails and be able to change from one to the other

A Motor Car as Viewed from Underneath

Outer Position. THE ELECTRIC CAR EQUIPMENT OF THE LONG ISLAND RAILROAD.
reverse movement of the car past the cam changes it from the outer to the inner raised position. These adjustable shoe equipments have been fitted to such cars of the Brooklyn Rapid Transit Company as are to operate over the lines of the Long Island Railroad. The cars are equipped with hand brakes and with the improved Westinghouse quick service automatic air brake. The quick service application is obtained by venting the train pipe air into the brake cylinders,
in each service application, in the same way as is done in thc quick-acting brake in emergency. The time required to fully set the brakes in service is, in this way, reduced approximately one-half, as compared with the usual apparatus. The cylinder pressure can also be gradually reduced by any desired amount just as with the old straight-air system. This is made possiwith the old straight-air system. This is made possi-
ble by a special arrangement of ports in a triple valve ble by a special arrangement of ports in a triple valve
and a partial release of the air from the cylinder is effected by slightly raising the train pipe pressure through the motorman's brake valve. The quickcharging of auxiliary reservoirs is done by providing an additional supply port in the triple valve connecting the train pipe on each motor car with the main ing the train pipe on each motor car with the main
reservoir through the feed valve. When the brakes reservoir through the feed valve. When the brakes
are released the train pipe and auxiliary reservoirs are supplied from all the main reservoirs of the train, thereby permitting the auxiliary reservoirs to be charged at the rate that makes it practically impossible to deplete the effective pressure as long as the main reservoirs are supplied by the compressors.
The selection of the electrical equipment of the motor cars, whether operated singly or in trains, requires the most careful study of the loads to be handled, the schedule conditions under which the apparatus is to be operated, and the limitations of the apparatus itself. Whether all cars of a train should be motor cars; whether all axles of the motor cars should be equipped; what the motor characteristics, the ratio of gearing, and the wheel diameter should be; the maximum speeds that could be depended upon to make up time, and the amount of time to be allowed for "lying over", at terminals were, among others, considerations of the utmost importance in coming to a decision on the equipment that would most economically serve the purposes of the Long Island Railroad suburban lines. The variable number of motors and trailer cars per train caused some variation in the load per motor on different trains. There were also various classes of express and local service to deal with involving different schedule speeds and average lengths of runs between stops, for all of which it was desirable to provide a uniform equipment, so that any car could be devoted to any desired type of service without discrimination. Careful investigation showed that the greatest flexibility would result from twomotor car equipment, using the most powerful motors practicable. The limitations were mainly the dimensions imposed by the largest trucks that could be operated under the conditions prescribed by the tunnel and curve clearances which restricted the wheel base of the motor truck to 6 feet 8 inches. This restricted the size of the motor to about 200 horse-power and the study of the conditions was consequently reduced to an examination of the characteristics and gear ratio most suitable for this motor and of its power of endurance to resist overheating. At the outset a series of speed tests was made on various steam trains of the Long Island Railroad in order to compare the actual running time with that laid down in the time tables and with the times which the railroad officials desired to be met by the electrical equipment. An ordinary passenger coach was fitted with speed-recording devices, and a number of speed curves were obtained. These tests also threw some light on the time to be allowed for various delays to which the trains were likely to be subjected and, together with the actually derived speed curves and calculated best performance curves, showed the relation between the schedule time ordinarily allowed for a train on a given run, and the best time that it could possibly make over the same distance. An idea of the scope of the problem may be had from the statement that there had to be compared about twenty-three different types of train runs, local and express, on eight different routes, with the average distance between stops different in practically. every case.
The work of determining the equipment of any system, particularly one so extensive and interconnected as that of the Long Island Railroad, begins, therefore, with the railway motor performance as the principal starting point, and when the train requirements have been worked out carefully the determination of the rest of the equipment is a matter of detailed computation. The general fitness for its work of the equipment actually selected, as proved by the operating results, has justified the care that was taken operating results, has justified the care that was taken
to work out the problem in a consistent and logical to work
The motors are of the Westinghouse type, both mounted on one truck. The cast steel frame is split at an angle of 45 degrees, horizontally, the axle bearing being in the lower half. The armature can be taken out without removing the motor from the truck by lifting off the top half of the frame, or the motor can be lifted entire from the truck by removing the gear case and axle caps. A nose suspension owith safety lugs which engage with the truck transom is employed for this motor. Access to the brushes and brush holders is provided through an opening in the frame over the commutator, which extends down well frame over the commutator, which extends down well
over the axle making it easy to inspect the motor from
the pit. The commutator cover is perforated, and openings in the bearing housings at the pinion end provide for ventilation, which is practically effected by air being drawn in at that end and thrown out through the ventilating cover over the commutator forming a continuous draft through the motor.

The Westinghouse electro-pneumatic multiple control system was adopted for the cars of the Long Island Railroad. The advantage of air pressure as an actuating force for making and breaking switch con tacts is that it permits an application of considerable power at the contact with relatively light and simple means consisting simply of a piston working in an air cylinder making contact by air pressure and breaking it by a powerful release spring when the air is exhausted. Contact is thus made certain and welding is prevented at the contact points with the very heavy operating currents that have to be carried. The use of storage battery currents for controlling the main switches removes the necessity for using line current at 600 volts in the control system, and further, re lieves it from any bad effects that can result from a fluctuation of the potential on the system. The auto matic feature of operation is of importance in secur ing a regular progressive action of the switches inde pendently of the manner in which the motorman may handle the controller, or of any accident that may happen to the train line. The switches are moved only in a certain predetermined manner through a system of interlocks, and the operating current is limited to a certain predetermined amount insuring a rate o acceleration that is automatically kept constant, which results in maximum comfort to the passengers and a minimum of wear and tear.

THE RACE FOR THE KING'S CUP.
 (Continued from page 112.)

 inches. We give these dimensions for comparison with those of "Effort" to show, in a rough way, the effec of the new rule; for, although the "Weetamoe" is 9 feet shorter on the water-line than the "Effort," she has the same beam and 6 inches more draft.Another new yacht that sailed for the cup, although she was built for cruising and lacked the lightness of construction of the racer, was the sloop "Irolita," built by Herreshoff. She is of composite construction, 65 feet water-line, 90 feet on deck, 18 feet beam, and 9 feet draft. She carries a centerboard for windward work.
There were altogether seventeen entries for the King's cup, and they ranged from the old cup defender "Vigilant," now rigged as a yawl, with a rating, under the new rule, of 92.20 , down to the little sloop "Boris,' with a rating of 48.40 . That only nine out of the seventeen should have started is greatly to be regretted, for where all the yachts entered, as in this case, are the work of well-known designers and are properly handled by skillful skippers, professional or amateur, the interest in a race may be said to be directly as the number of entries. Moreover, the method of rat ing and handicapping is evidently a liberal one, and affords an excellent inducement to the smaller yachts to push through a long race of this kind and do their best to win. It is stated that the reasons that withdrawals were so many were two: first, that the day was thor oughly disagreeable; secondly, that in the rather fresh breeze that was blowing, many of the older and the smaller yachts considered that they had no chance to win. There was a time in yachting when owners were perfectly ready to cross the line in the interest of the sport, and sail their yachts for everything that was in them, even though they knew that the chances of victory were small. Moreover, it will be an unfortunate day for yachting when lowering skies and a dash of rain prove sufficient to keep one-half of our yachts at their moorings, especially on an occasion like this, when a famous trophy is to be contested for.
Of the yachts which sailed the race, the most famous, of course, is the yawl "Vigilant," a bronze boat built in 1893 to defend the America cup against "Valkyrie II." She is 86 feet 3 inches on the water-line, 126 feet on deck; her beam is 26 feet, and her draft 14 feet 5 inches. Next in historic interest to her is the "Corona," formerly the steel sloop "Colonia," built in the same year as "Vigilant" for the defense of the cup. She is 85 feet 6 inches on the water-line, 123 feet on deck, 24 feet beam, with a draft of 14 feet 10 inches. After the trial races in which "Vigilant" was selected, the "Colonia" which, as a sloop, had a tendency to make too much leeway when close-hauled, was provided with a centerboard and rigged as a schooner. For several years she has been the crack schooner of the New York Yacht Club, and only with the advent of last year's schooner "Elmina" and this year's "Queen" have her colors been lowered. The "Elmina" was built last year from the designs of Cary Smith. She is a steel schooner, 87 feet on the water-line, 125 feet on deck, with 25 feet beam and 15 feet 2 inches draft, spreading 10,000 square feet of sail. Another schooner which in her day was the fastest of her class is the "Amorita," a steel, keel-and-centerboard schooner, designed also by Cary Smith and launched in 1895. She is 70 feet
waterline, 99 feet 6 inches on deck; 20 feet beam, and draws 12 feet of water. She is owned by Richard Mansfield, who was on board throughout the race. Another schooner that sailed the race is the "Muriel," a Cary Smith boat, built in 1901; 68 feet water-line, 99 feet on deck, 20 feet 5 inches beam, and 12 feet draft. The other two yachts were the famous twin 70 -footers "Yankee" and "Rainbow," of composite build (wooden sheathing on steel frames) designed and built by Herreshoff in 1900. They are 70 feet on the waterline, 106 feet on deck, with 19 feet 6 inches beam and 14 feet draft. The "Yankee" was sailed by her owner, Harry Maxwell, and in this race, as in all of those that have preceded it throughout the season, this clever amateur was pitted against the veteran professional skipper Charlie Barr, who sailed the "Rainbow," which is owned by Cornelius Vanderbilt, the Commodore of the New York Yacht Club. In this race, as in many others of the season, Maxwell secured the lead over the "Rainbow." The twin sloops were making an excellent race of it when the, "Rainbow" had the misfortune to strike an uncharted rock, shaking up her crew badly, and so severely straining the yacht that she had to be withdrawn from the race.
From a yachtsman's point of view; the conditions for the contest were excellent, though the day was cloudy, with showers of rain. There was an easterly wind of moderate strength, and the triangular course was adopted, giving first $161 / 2$ miles to windward, then a reach of 4 miles, and then a run home before the wind of 17 miles. The "Queen," which was sailed by her owner, J. Rogers Maxwell, took the lead soon after the start, and was never headed throughout the course. Although at times she was sailing 13 knots an hour and gained a long lead on the whole fleet, the event showed that she never pulled far enough away from the "Effort" to have the race safely in hand. She had to make a total allowance to the sloop of 20 minutes and 42 seconds. At the end of the $161 / 2$-mile leg to windward, she was 9 minutes and 10 seconds ahead of the other; on the next leg, a reach of 4 miles, she beat the sloop 3 minutes 35 seconds; but in the 17-mile run home, in which she had to allow 9 minutes and 15 seconds, she was faster than the "Effort" by only 6 minutes and 43 seconds. Hence, although she crossed the line far in advance of the sloop, the smaller yacht managed to get home just 9 seconds inside of her allowance, and take the cup. The second yacht over the line was the "Yankee," which, although admirably sailed, finished about 10 minutes astern of the big schooner. The third vessel in was the "Vigilant," and then followed the "Elmina." Next in their order to finish were the "Effort," "Corona," and "Amorita," the "Muriel" having withdrawn during the race. The summary of the race is given below:

Yacht.	Start.	Finish.		Corr cted Time.
Yacht.	h. m. s.	h. m. ${ }^{\text {d }}$	h. m. s.	h. m. s.
Effort	113038	42258	45220	40640
Queen	. 113043	40230	43147	40649
Elmina	. 113312	41118	44406	42035
Yankee	. 113012	41236	44214	42205
Corona	. 113300	42716	45416	42833
Vigilant	. .113143	41332	44149	42917
Amorita	. 113118	50218	53100	44327
Muriel	. 113053	Withdr	awn.	
Rainbow	. 113025	Disable		

The "Effort" beat the "Queen" 9 seconds; "Elmina," 13 minutes 55 seconds; "Yankee," 15 minutes 25 seconds; "Corona," 21 minutes 53 seconds; "Vigilant," 22 minutes 37 seconds, and the "Amorita," 36 minutes 47 seconds.

The Current Supplement.

The excavation of the Pennsylvania Railroad station in New York city constitutes the subject of the opening article of the current Supplement, No. 1598. An excellent drawing showing the scope of this vast undertaking illustrates the article. E. W. Wilgert gives some entertaining information on the first railway in America. Some good advice is published on gas-engine ignition. The last installment of Lieut. White's version of the battle of Tsushima Straits, based on information furnished him by men who took part in the battle, likewise appears. W. W. F. Pullen writes on chimney draft. Prof. Leduc has been engaged for some time in investigating the movements which occur in liquids under the influence of osmotic pressure, and the forms which result from a diffusion of the liquids in each other. The results of his experiments are described by the Paris correspondent of this journal. Some striking photographs accompany his text. Perhaps the most important, article published in the Supplement is one on the effect of the San Francisco fire on tall buildings of that city. The article is written by F. W. Fitzpatrick, a well-known authority, and discusses most exhaustively the effects of high temperature on various forms of structural material. Excellent illustrations elucidate the article. Another striking contribution is one on mosquito extermination in New York State, showing the various forms of expertments which have been used, and how marsh land has been converted into profitable farms.

(1)drexpandente.

A Suggestion for Balloonists.

To the Editor of the Scientific American
The failure thus far to construct a balloon which will not allow gas to escape through the envelope, and thus prevent a long-continued flight, leads me to relate an experience of my own in making a protection against atmospheric humidity. Several years ago there was put upon the market an apparatus for lighting gas jets, oil lamps, and lanterns by means of a strip of paper or cloth carrying pellets, which were ignited by friction, when fed under the proper pointed spring, designed for the purpose. These came out in the autumn, and before winter had passed, many were sold and considerable capital was invested in their manufacture. When the humid weather of August arrived, every one failed. The pellets, composed largely of chlorate of potash, would draw sufficient moisture entirely to put them out of commission. India-rubber varnish, copal, and shellac, all failed. Either the varnish destroyed them, or the dampness penetrated through it. Although some preparations would bear a short immersion in water, nothing withstood atmospheric humidity more than a few hours. When the makers brought the problem to me, I forthwith repeated the experiments of those who had failed before me. At last I became sure that metal alone would protect them. It required weeks of study and many failures before I succeeded. The metal must be thin and weak enough not to interfere with the explosion, and without pin-holes, like those seen in common light tinfoil. At a tinfoil factory they made for me, with little trouble, just what I needed, scarcely heavier than paper, and perfectly free from holes. To attach it to paper, I made a cement of boiled linseed oil and copal varnish in about equal parts, and to this added a very small part of a non-drying oil. Castor oil served best. The office of this non-drying oil was to prevent the cement's becoming brittle when dry. After sizing the paper, to prevent absorption, I gave it an even coat of cement, and let it dry until it "tacked," but would not flow. The tinfoil was laid upon this and rubbed or pressed until it adhered. For the purpose I was working for the pellets were printed on the tinfoil, then another sheet of foil was laid over them, in like manner. For a balloon, however, it would only be necessary to give the tinfoil a coat of cement, and when at the proper point, spread the silk, paper, or cloth, whichever was used, and rub it with a brush until it adhered firmly. After this it could be strengthened in any way that seemed best. There may be a better metal than tin for the foil, and as many as two or three layers used, for the weight is trifling. I do not believe a gas-proof bag will be made until metal is used. And this is a practicable way. Anyone who has used rubber tubing for a lamp or gas stove knows that rubber, while probably the best of the gums, is soon penetrated by gas, whatever its thickness may be. As for the durability of my product, I can only say that I have many of the strips, made eight and ten years ago, and that they are as flexible and perfect as they were when new, although no means was used to protect them from moisture or changes of temperature. I hope someone will try this way. I hold myself ready to give any further information, gathered by several years of work in this field.

Dewey Austin Cobb.
Avalon, N. J., August 2, 1906.

Blowing wells.

To the Editor of the Scientific American:
In your issue of July 7, 1906, page 4, you publish a short article on "The Vagaries of Wells." In WaterSupply and Irrigation Papers of the U. S. Geological Survey, No. 29, Wells and Windmills in Nebraska, Washington, 1899, our State Geologist, E. H. Barbour, describes certain wells, in substance, as follows: One class of wells found throughout a large part of the State, especially south of the Platte, deserves particular notice. These wells are known as "blowing," "roaring," "breathing," "singing," or "weather" wells. These wells are held in doubt elsewhere, but the fact of their existence is established. In some communities such wells are distinguished ata distance because of the mound of earth heaped up to check the wind. The attention of the writer was first called to this matter by inquiries for explanation of and remedy for the freezing of pipes in wells at a depth of $30,50,60,80$, and even 120 feet below the surface. Reports have come in from about twenty counties. The information is derived from land owners, farmers, well diggers, ministers, principals of schools, civil engineers, and students whose fathers own such wells. These accounts agree with personal observations. There are periods when these wells blow out for consecutive days, and an equal period when they are reversed. This is tested with the flames of candles and by dropping paper, chaff, feathers, etc., into the casing to see it blown out by some force, or drawn in. It is further stated that blowing often indicates high or low condi-
tions of barometer, and that some wells blow mos audibly when the wind is from the northwest, where upon water rises to a higher level in the well than before; but when conditions are reversed, air is drawn in. Many observers notice a reverse of the curren according as it is morning or evening, and according as the temperature is high or low. During the prog ress of a low-barometer area over one of these regions, the wind is expelled with a noise audible for several rods. Upon the following of a high-barometer area, the current is reversed. Steam rises from the curb ing, melting the snow. After the current is reversed the thawed circle freezes again. The pipes are often thawed out when the well blows. The periods of most pronounced exhalation or inhalation are coincident with exceptionally low and exceptionally high barome ter areas.
He then explains the geology of the country, and draws the same conclusion as did M. Grosseteste, and continues: "The wind may be the cause in some places. At times the friction of the wind is sufficient to drive the water of the Platte across its bed, leaving the north side dry while the south side is flooded Equilibrium is disturbed. There must be readjust ment. In the vicinity water rises in wells, at a dis tance there is a wave of transmitted energy which can but affect every portion of the underflow of the Platte This may show itself in a rise of water and displace ment of air, and a rise over a wide area might expel a large volume of air."

I have condensed his article considerably. Almost the same article appears in Nebraska Geological Sur vey, vol. i., 1903. I know of several such wells nea here.

Ray G. Hulbur't.
Taylor, Neb., July 25, 1906.

Adulterated Food.

To the Editor of the Scientific American :
I read with interest an article in your esteemed issue of June 16, "The Need of a Pure Food Bill," by Charles Richards Dodge.

It is certainly gratifying to know that the pure food bill has passed the House and Senate, which proves it was neither lost, strayed, nor stolen.
The new pure food law, however, will not be of much value to the community at large unless the State laws are amended so as to conform with it. When this is done, and the law is enforced, and the public educated to the value of pure food, we will have accomplished what has long been desired
The report made by Messrs. Reynolds and Neill no doubt hastened the passage of this most important of all subjects, the pure food bill.

According to the recent reports of the conditions in the packing houses, man is getting more than the peck of dirt it is said he is entitled to. That there is room for vast improvement in the packing houses cannot be denied, but the sensational reports should be taken with a grain of common sense.

Sensational articles claiming that hundreds and thousands of men, women, and children are dying sudden, horrible, agonizing deaths on account of eat ing meats that have been colored or preserved are preposterous.

There is a great deal written about tainted and embalmed meats. There could be no chemicals, however, as powerful as embalming fluids, used to pre serve meat so that it would be edible. The most common preservatives that are used to preserve meats are sugar, salt, smoke, borax, and boric acid.

The United States Senate investigated the preservative question thoroughly, and after careful consideration it accepted an amendment which will allow borax and boric acid on meats, fish, fowl, etc. This I con sider was a wise amendment, as by the judicious use of these mild preservatives, they will prevent meat from becoming tainted. It is the tainted meat that is in condition for the propagation of toxic germs, which are so dangerous to human héalth, especially during summer months.

Articles that are preserved with a mild, innocuous preservative should not be deemed adulterated. It is not the custom to adulterate food by adding something to it that will better its condition. Adulterated food is invariably mixed with some inferior substance, which reduces the food value. A preservative would enhance the food value.

When the pure food law is enforced, it will compel the manufacturers of food stuffs to label their pro ducts. The label, however, will be of no value unless the consumer peruses it and is benefited thereby. The labels will be of great benefit to those who are careful with their diet. The masses of mankind, however, are peculiar creatures. They have educated their palates to crave pickles, candies, and highly-seasoned foods, which are not conducive to aid digestion.
When the public learn the value of simple food and the value of balancing their rations, masticating their food thoroughly, breathing deeply, exercising every day, and sleeping seven or eight hours, they will have less cares and troubles and enjoy life as normal persons should.

All we have to build and sustain our body is what we eat, drink, and breathe. Consequently, it behooves each and every one of us to pay more attention to the quality of food, water, and air we consume. The better material we use to build up our bodies, the better, stronger, healthier bodies we will have.
New York, June 30, 1906.
h. H. Langdon.

While the French have tired of balloons and are now experimenting with aeroplanes and dirigible airships, here in America one or two enthusiastic amateurs have just started in to try their hand at ballooning. Dr. Julian P. Thomas, of this city, has made several ascents of late, the longest of these being a night journey above Long Island Sound. The start was made from the gas works in 118th Street at 8:30 P. M. on Sunday, the 5th instant. A southwest wind carried the balloon, the "Nirvana" (of 50,000 cubic feet capacity) straight up the Sound. A landing was made in a farm yard at Noank, Conn., at 5 A. M. the next day, to procure food and water. A distance of 140 miles was covered to this point. Owing to the sun expanding the gas, the balloonists were enabled to rise to a greater altitude than before. As they soon approached the ocean, however, they were obliged to land, which they did in a marsh near Brant Rock, Mass., at noon on August 6. The total distance covered was 225 miles. Dr. Thomas was accompanied by Roy Knabenshue, of airship fame, and during the trip the aeronauts made a successiul test of a new guide rope.
The French permanent aeronautic commission has clearly defined the different words used to designate apparatus employed in the new science of aerial navigation. In the first place "aéronef," or "appareil d'aviation" (aviation apparatus) means an apparatus heavier than air, of which there are several kinds, such as (1) L'Hélicoptere (helicopter), which is an aéronef which consists essentially of one or several propellers which assure sustentation and progression. (2) L'Aéroplane (aeroplane), an aéronef in which the sustentation is assured more especially by one or more flat or curved surfaces. (3) L'Orthoptère (orthopter) or mechanical bird, i.e., an aéronef sustained and propelled by beating wings. The word "aviateur," which is often improperly used, should be employed only to designate the person operating an aviation apparatus, as the word aeronaut designates a person who goes up in an "aérostat" (balloon or airship using a gas bag).

Automobile Notes.

The Automobile Club of America will this year hold its annual exhibition in the Grand Central Palace, New York city, the first week in December. The Licensed Association of Automobile Manufacturers will hold a show in Madison Square Garden in January, as heretofore.
A. Lee Guinness, a wealthy English amateur driver who purchased the 200 -horse-power record-breaking Darracq racer that made a flying kilometer at Ormond last winter in $192-5$ seconds, recently reduced this record $2-5$ of a second with the same car on the beach at Ostend, Belgium. The new time is equivalent to a mile in 30.59 seconds, or a speed of 117.68 miles an hour.

The Automobile Club of France has lately published the regulations as regards the next annual Automobile Show, which is to be held at Paris. It will last from the 7th to the 23d of December. The Exposition of this year promises to be a greater success than ever, and one of the main reasons for this lies in the fact that the immense space of the Esplanade des Invalides, which lies across the Seine from the Grand Palace, is to be utilized this year to contain part of the exhibits. Last year's show, not finding enough space in the Grand Palace, made use of the adjacent Horticultural Buildings, which were quite filled with exhibits. This space is now too small to meet the demands, so that the use of the extensive grounds of the Esplanade, which give an unlimited space, was quite in order. No doubt several temporary structures will be erected here, with a large area for the stationary motors and heavy hauling cars. In connection with the show a touring event has been organized over a circuit which will run through the south of France to the coast. As regards the Show, the rules are about the same as for last year. One point to be noted is that owing to the great number of exhibits of automobile cars, it has been decided to exclude all bicycles or mo-tor-cycles from the main exhibits of the Palace. The annex. buildings outside of the Palace will contain heavy-weight cars, motors, combustibles and the aerostatic exhibits. Demands for space should be addressed before September 20 to the Commissariat General of the Exposition, at the Automobile Club's headquarters, 6 Place de la Concorde.

Cadmium gives protective coatings for iron much uperior to zinc. The coat has the same aspect as zinc, but is much more adhesive, and harder.
recent aeroplanes and airships in france.
by the paris correspondent of the scientific american.
In France, and especially in the vicinity of Paris, here is great activity at present in the matter of airships and aeroplanes, and many are the new apparatus which are under construction at different places. It is mostly in the suburbs of the city that the new airships are being built and put through their experimental flights. Some of these have been flights. Some of these have been
only begun, or are at least in the only begun, or are at least in the
first stages, while others are quite finished and have now made the first trials. The movement in favor of aeroplane apparatus is more strongly marked this year. Heretofore but few such flying machines have been produced, as most of the aeronauts directed their attention preferably to airships. It is no doubt due to the success which the Wright and other aeroplanes have had in America that the aeronauts in France are now taking up the subject, and some interesting desubject, and some interesting de-
velopments are to be expected in this line.
Perhaps this year we may see some successful flights with aeroplanes in France, seeing that aeronauts such as Tatin, Capt. Ferber, Archdeacon, and, more recently, Archdeacon, and, more recently, others at Paris, as well as Barlatier and Blanc at Marseilles, are now at work bringing out their machines, while the Prince of Monacn is furthering the enterprises of M. Léger. What has greatly stimulated the aeroplane work has been the founding of the Grand Prize of Aviation by the Aero Club of France. For this purpose the sum of $\$ 10,000$ has been very generously subscribed by Senator Henri Deutsch and M. Ernest Archdeacon. M. Deutsch, it will be remembered, already founded the prize for airships which was won by Santos-Dumont in his men. orable flight around the Eiffel Tower. Following the announcement of the prize we find a number of entries from the leading aeronauts, commencing with Santos Dumont, who enters his new helicopmont, who enters his new helicop-
ter, and followed by M. Florencie, with an orthoptere or flapping-wing apparatus resembling a bird in flight. Then we have M. Bellamy, with a new aeroplane, and Messrs. Bleriot and Voisin with the apparatus which we illustrate here. M. Léger's aeroplane, which is being built with great secrecy, will no doubt also be entered for the prize.
As regards the new aeroplane which Messrs. Bleriot and Voisin are constructing at their establishment in
the suburbs of Paris, we present here a view of the aeroplane which was taken during the first experimental flight upon the Lake of Enghien. But a short flight was made, however, as it was found that some alterations were needed in the apparatus. The Bleriot

The Bleriot Aeroplane Ready for a Flight Over Water.
The operator is seated back of the forward ellipse with his feet upon bars that control the doable horizontal radder in front. The two propellers are driven by aus 8-cylinder gasoline motor of 24 horse-power through bevel gears and flexible shafting. 'The apparatus resembles somewhat Ludlow's aeroplane

Launching the Bleriot Aeroplane.
The aeroplane is supported upon floats consisting of cylinders of rubber-covered canvas inflated with air.
nished French silk. In front of the foremost elliptical frame are placed two 6 -foot propellers, which are driven at a speed of 600 revolutions per minute when in flight by means of an exceptionally light gasoline motor known as the "Antoinette." This motor, which, as used in a high-speed motor boat, was illustrated in our last Motor Boat and Sportsman's number, has 8 cylinders fitted in V-shape upon a long aluminium crank case. It will give 24 horse-power, and, as it is one of the lightest gasoline motors which has thus far been constructed, it marks in itself a great advance in the question of aviation. The propellers produce a tractive effort of 170 pounds. Each has a separate flexible shaft running from the motor and driven through gearing, while clutches allow of disconnecting either propeller at will.
The aeroplane is mounted upon detachable floats of rubber-covered canvas filled with air. The Blenibt apparatus has been built with the idea in mind of competing for the Grand Prix, and it is proposed to put it through a series of successive experiments. It has seats for one or two persons. Horizontal and vertical rudders make it quite steady in either direction. One of our illustrations shows the operator with his feet upon the curved bars that control the setting of the double horizontal rudder in front. In a series of trials conducted not long ago in the grounds of the Aeronautic Club near Paris, the aeroplane made a number of flights and seemed to perform very well.
We may mention briefly some of the other aeroplanes which are now in construction, reserving for a future article a more complete and illustrated description. M. Florencie, a member of the Aero Club, is bringing out an aeroplane which is quite different from the above, and consists of two canvas-covered frames resembling wings, attached to either side of a central frame. The wings are made to flap up and down to imitate a bird's flight. One part of the wing is entirely covered with canvas so as to beat the air, while another part is made so as to imitate the action of a bird's feathers, and is formed of a series of longitudinal flaps, fixed at the edges to a wire gauze network, so that the flap is made to close when the wing is brought down, but keeps open when the wing is raised. The
aeroplane is formed of two elliptical parts which are built of canvas stretched upon a frame of light wood. A supporting surface of 60 or 70 square yards is given by the two frames. The surfaces are formed of var-
middle part of the aeroplane is adapted to he fitted upon the aeronaut's body, and he works the wings by means of stirrups attached to his feet and connected to the wings by cords. Stretching out the legs causes

a lowering of the wings, and they are raised by a spring which is fixed to the frame. In front is placed a balancing weight, while in the rear is a rudder forming the tail. The apparatus is 45 feet wide over the wings and the surface is 30 square yards, with a weight of 30 pounds.

Work upon the new aeroplane which M. Léger is con-
dirigible airships, is nevertheless designed on substan tially the same lines. It supports a two-bladed propeller of aluminium directly driven by the motor at an average speed of 1,100 revolutions per minute. Behind the motor is a radiator of Santos-Dumont's own design. The motor, built by Lavavasseur, is of 24 horse-power and weighs only 2.64 pounds per horse-power. It is

The Florencie Orthopter, or Flapping-Wing Machine.
structing for the Prince of Monaco has been carried on for some time past. M. Léger brought out a machine last year which had some success, and this year he is following up his results and making some changes. The first machine was a helicopter, and consisted of two horizontal propellers (one above the other) revolved in opposite directions by a 12 -horse-power gasoline motor. On one trial it lifted over 200 pounds net weight. The new machine will no doubt be considerably modified. It is to be tried in France at the Chateau of Marchais, belonging to the Prince of Monaco, and the results of the trials are to be kept secret for the present. At Marseilles, the new Barlatier and Blanc aeroplane is making its trials. An inclined plane which can be turned at an angle is mounted in front, and in the rear are two smaller planes, one on each side, forming the tail. The central framework contains two propellers driven on horizontal shafts by a Buchet gasoline motor. It is expected to carry one person, and at present the machine is being enlarged.
Perhaps the most important of all recent French aeronautic craft is Santos-Dumont's aeroplane. The machine has been christened "14bis," and has been constructed primarily with a view to competing for the $\$ 10,000$ Deutsch-Archdeacon aeroplane prize, as well as for the Archdeacon cup of $\$ 600$ which goes to the first man who sails through the air a distance of 25 meters (82 feet) with a maximum angle of drop of 25 per cent, and the prize of $\$ 300$ for the first aeroplane to go 100 meters (328 feet) with a maximum variation in level of 10 per cent. The "14bis" is built on the lines of a giant bird of prey with the exception that in this case the tail or rudder end constitutes the front of the machine, which consists of a long central body carrying the box rudder and two lateral planes forming a dihedral angle. The aeroplane measures 12 meters (39.37 feet) in width and 10 meters (32.8 feet) in length. It has 861 square feet of sustaining surface. Its weight is $352 \% / 4$ pounds. This, with Santos-Dumont's weight ($1101 / 4$) makes a total of 463 pounds. The frame, although smaller than the frames of the Santos-Dumont

The Motor of Santos-Dumont's Aeroplane.
an 8 -cylinder V motor of 80 millimeters (3.149 inches) bore and stroke, and 79.36 pounds total weight. Its length over all is $241 / 2$ inches, and its width and height $191 / 2$. It has automatic inlet valves, jump spark ignition, and develops its rated horse-power at 1,800 revolutions per minute.
engine, the fuel supply, and the rudder. The latter, which is about 25 feet forward of the motor on the end of a long horizontally-projecting vertical plane, is similar to a huge box kite cell and can be moved in any direction. A small wheel at the aeronaut's right controls the vertical movement, while a lever at his left controls the horizontal. The rudder, as well as the machine itself, is built up of a stiff framework of bamboo and rattan covered with canvas.
The frame of the aeroplane is suitably braced, and is carried on pneumatic-tired bicycle wheels, upon which the entire flying machine is driven at a constantly accelerating speed until it rises spontaneously from the ground. In a recent test, Santos-Dumont used a small dirigible, the aeroplane supplanting the usual car or nacelle. This was fairly successful; but no free fight has as yet been attempted.
The question of airships proper has by no means been dropped. Among others we may mention the new military airship which is to be used by the French government, and which has been ordered by the Minister of War from Messrs. Lebaudy. It will be a modification of the well-known Lebaudy airshin, which is one of the most successful so far. The mechanical part is under construction at Paris, while the balloon and the rigging are set up at the Lebaudy balloon shed at Moissan. It will no doubt be used by the War Department at the town of Toul, while the first Lebaudy airship has been allotted to Verdun, both places lying near the German frontier. In the neighborhood of Paris, the new airship built by Count De la Vaulx has received its preliminary trials, during the second of which the Count maneuvered the airship for eight consecutive hours, putting it through all kinds of evolutions with complete success. On the first flight the airship started out well, but it was obliged to alight owing to an accident to the friction clutch of the motor. The photo we reproduce shows a view of it taken at the Aero Club. The cigar-shaped balloon measures 114.8 feet long and 23 feet in diameter. Inside is an air bag, or ballonette, of 140 cubic yards capacity. Below it is suspended a short body the framework of

General View of the Motor and Propeller of Santos-Dumont's Aeropiane.

The basket is of the form which Santos-Dumont has always employed in his dirigible airships. This basket is 3 feet high and not much more than 1 foot scuare. Only a man of Santos-Dumont's slight figure could find it roomy enough. Within easy reach of the aeronaut are tha various levers which control the
which is constructed of steel tubing. Each end of the body tapers to a point, and in front is mounted the radiator. In the middle is the 16 -horse-power, 4 -cylinder, water-cooled gasoline motor, which will work the propeller at the end of a long shaft. Back of the motor is a cylindrical gasoline tank.

Santos-Dumun's Aeroplane. The Inventor is Seated on Top of the Basket, Just Ahead of the Motor. recent aeroplanes and airships in france.

an Improved bed-rall joint.

A recent invention which is illustrated herewith provides improvements in corner joints or fastenings for the rails of metal beds. The joint is very simple in construction, and can be made cheaply because it does

AN IMPROVED BED-RAIL JOINT.
away with the casting on the side rail, and it also reduces the amount of iron in the bracket to one-half or less. Fig. 1 shows the joint double, as used for brass beds. The joint is illustrated as tipped back to reveal the under side. The rails of the bed are indicated at A, and the bracket at B. It is understood that the bracket can be fastened by bolt D, or by pouring the iron around the pillar so as to shrink it on. Fig. 2 is a top view of the double joint. Fig. 4 is a view of the single joint, such as is used for iron beds, showing the slot cut in the rail, also the slightly tapered bridge piece near the bracket. This is shown by the cutting away of the outside face B of Fig. 2. Fig. 3 is a cross section of the rail-bearing part of the bracket. The rail is cut off square, and the slot is punched out slightly tapered, to match the tapered bridge piece, which serves to crowd or wedge the rail toward the corner post as it is forced home. The rail is thus readily secured without bolts or screws, and will keep the bed ends vertical at all times, regardless of the weight carried by the bed. It will also be evident that the joint is effected without forging or bending the rail. Mr. James Murphy, of 700 Park Avenue, Kenosha, Wis., is the inventor of this improved corner joint.

AUTOMATIC DOOR OPENING AND CLOSING DEVICE.
The object of the invention illustrated herewith is to provide an automatic door opening and closing device, controlled by a person walking on a movable platform arranged adjacent to the door. The invention is more particularly applicable to a sliding door, such as a barn door, and the like. In the engraving a door of this type is indicated at A. The door is mounted to slide on an overhead track into a pocket in the side of the wall. In this pocket a motor is mounted. The armature shaft is fitted with a sprocket wheel, B. A chain on this wheel passes to a second sprocket wheel, C, mounted on the door A. A wheel, secured to the sprocket wheel C, is engaged by a springpressed brake shoe, which normally prevents the sprocket C from turning. The movable platform,
as indicated at D, is supported on springs in a recess, E, of the floor. The platform is pro vided with contact plates at opposite ends, adapted to engage similar plates in the recess when the platform is depressed. In this manner the circuit of the motor is closed whenever anyone steps on the platform. The motor then draws up the chain on the sprocket B, opening the door. When the door reaches the position indicated by dotted lines, it is stopped by a pair of spring buffers. But as long as the platform is depressed, the motor will keep drawing in the chain; and for this reason a brake is provided, for it permits the sprocket C to turn after the door A has reached the limit of its motion. As soon as the platform D is released the moor stops running, and the door is then drawn back by a spring-operated reel, F, acting on a chain connected to the forward edge of the door. The inventor of this novel door opening and closing mechanism is Mr. Cleophas Gamache, of Barre, Vt.

CAR DOOR FASTENER.

The car door fastener which is herewith illustrated is of very simple construction, having no parts liable to get out of order, and being so designed that it cannot be released without breaking the car seal. The invention is particularly applicable to freight cars, and it is so designed that when the fastener is moved in the releasing direction, it will start the door toward its opening position. In our illustration we show the fastener in its open position, while the closed position is indicated by dotted lines. A portion of the car wall is shown at the left, and this carries a bar provided with a slot adapted to receive a lug formed on the latch which is hinged to the car door. This latch, it will be observed, comprises a handle portion on which the lug is formed, and a cam ring eccentrically disposed with espect to the pivot pin of the latch. When the fastener is closed, the handle lies flush with the bar on the car wall. A wire is then passed through an opening in the andle and a lug on the bar, and to this wire the usual eal is attached. Not until this seal is broken will it be possible to open the door. In opening the door the eccentric ring engages an anti-friction roller at the end of the bar, and thus starts the door toward its opening position, so that the edge may be readily grasped by a

CAR DOOR FASTENER

person to slide the door fully open. The eccentric ring is formed with an inner projection adapted to engage a stop pin, to stop the member when in the vertical position illustrated. By this arrangement, when the eccentric comes in contact with the anti-friction roller upon closing the door, the fastener will be automatically moved down to locking position. The inventor of this car door fastener is Mr. F. L. Estes, of 27 Bridge Avenue, Nashville, Tenn.

NON-REFILLABLE BOTTLE.

In the accompanying engraving we illustrate a nonrefillable bottle, which not only appears to be absolutely non-refillable, but also is of such design that the cost of manufacture is but a fraction above that of the ordinary bottle. In addition to a ball weight, the improved bottle makes use of a float for operating the valve, so that in any attempt to fill. the bottle the valve will be closed by the float when the bottle is inverted and by the weight when the bottle is in upright position. This principle is not entirely new, but heretofore bottles of such design could be readily filled if held in a horizontal position. In the new bottle this objection is overcome by a novel construction of that portion of the neck in which the ball weight operates. The neck is formed with a float chamber A and a ball chamber B. Fitted into the bottom of the float chamber is a glass valve seat, C. The valve,
also of glass, is shown at D. Both the valve and valve seat are ground to provide a perfect closure. The float, which is indicated at E, is confined with a small amount of play in its chamber by the collar F. The shank of this float projects through the collar, and against this shank the ball is adapted to roll when the bottle is tilted upward. The object of confining the float is to give perfect freedom of movement to the ball, a feature which is a great improvement over previous constructions.

NON-REFILLABLE BOTTLE.

It will be observed that the chamber B flares at the bottom, providing an inclined surface for the ball to roll upon. This surface is not a plane surface, but is slightly convex, so that it is next to impossible to balance the ball midway of the chamber. Owing also to the inclination of the wall, the bottle cannot be held in a horizontal, or even approximately horizontal, position without the ball rolling against the float and thereby closing the valve. The top of the ball chamber is closed by a glass plug of such design that it would be impossible to insert a wire into the bottle neck to hold the ball clear of the float. This plug is cemented in place, so that it is impossible to remove it without breaking the bottle. An ordinary cork is used to close the opening through the plug. The inventor of this improved non-refillable bottle is Mr. P. Anthony Brock, 74 Lembeck Avenue, Jersey City, N. J.

HYDRAULIC APPARATUS FOR CANE MILLS.

In sugar-cane mills it is customary to pass the cane through two or more sets of rolls. The first set squeezes out most of the juice, reducing the cane to a sort of trash known as bagasse. The latter is then sprinkled with water and passed through the next set

HYDRAULIC APPARATUS FOR CANE MILLS.
of rolls, which squeeze out this water with the suga it has dissolved. A recent invention, which we illüstrate herewith, provides means for regulating the flow of water through the bagasse, for registering the amount of bagasse passing between the rollers, and for sounding an alarm when the passage of the bagasse ceases. A general side elevation of a mill provided with these improvements is shown in Fig. 1. Three rolls, A, B, and C, are indicated, the roll A being driven by a pulley and belt, as shown in Fig. 2, which is a view of a portion of the opposite side of the machine The shaft which carries roll A is provided at one end with a crank connected by a rod with the walking beam D of a double-cylinder pump, so that while the roll is turning, this pump will be in operation. Nor mally the pump serves to force water through the pipes E to the sprinkling head F. The latter is pro vided with a spring valve, which may be adjusted to limit the amount of water sprinkled on the bagasse A pipe G connects the two cylinders of the pump, providing a by-pass. The latter is normally closed by a valve operated by the inclined rack-bar H. This bar also engages a pinion connected with a valve in th supply pipe J of the pump. The pinion also meshes with a rack K, connected to a vertically-movable cylin der L. The cylinder is slidable on a fixed piston, and is weighted down by a series of detachable weights. A pipe M communicating with the interior of this cylin der runs to a pair of smaller cylinders N, placed one at each end of the roll, C. The shaft which carries this roll is movable horizontally in its bearing, and is con nected with pistons adapted to operate in the cylinders N. While the bagasse is passing between the rolls, it will keep the roll C in its outer position, thus lifting the cylinder L by hydraulic pressure, opening the valv of the supply pipe, J, and closing the valve of the pipe G. The pump will, therefore, continue to supply the sprinkling head F. But as soon as the passage of bag asse ceases, the weighted cylinder will move back the roll C, cut off the supply of water, and by opening the by-pass G prevent the 'pump from forcing water into the sprinkling head. On the opposite side of the machine is the recording mechanism. When water is pumped into the sprinkling head it operates to lift a piston, O raising an idle pinion, P, into mesh with the gear wheel R on the shaft of the roll A, and the gear of the re cording mechanism S. The latter records the number f revolutions of the roll A while the sprinkling head is in operation, or in other words, while the bagasse is passing; but when this ceases the pinion drops, discon necting the gear, while a small pinion T is thrown into mesh with the wheel R, and rings an alarm V to notify the engineer so that he may stop the machine. A pat nt on this improved cane mill has recently been granted to Mr. J. C. Searle, Lalamilo Post Office, Puako Pthi, Hawaii.

A NOVEL TOBACCO PIPE

Many inventiōns have been made from time to tíme, with a view to preventing nicotine from being drawn up through the stem of the tobacco pipe and into the smoker's mouth. The latest invention along this line, which we show in the accompanying engraving, is a radcal departure from all previous designs. The pipe has the appearance of a pear, the bowl be ing entirely inclos ed with the excepion of a ventilaion opening in the bottom. The body of the pipe is made up of three mem bers, which are threaded together, as indicated in the drawing. The cen tral member con tains the bowl proper, or holder. This consists of a sleeve with wire netting over each end. The netting at the lowe end is carried in a cap hinged to the tobacco holder. A suitable lining is interposed between the holder and the body of the pipe. In use the bottom section of the pipe body is removed, and the holder is filled with tobacco. The latter is now lighted in the usual manner; and the section screwed on again. The top section of the pipe body is provided with a lining, which will absorb any tainted saliva or nicotine that passes up into the upper section. This lining can be removed at any time and replaced by a new one. As the tobacco is almos
completely inclosed, no sparks can pass out, and the pipe is thus rendered perfectly safe in almost any place. A patent on this improved tobacco pipe has been secured by Mr. Neal P. Shulin, of Butte, Mont., Box 1265.

ANCHOR FOR AIRSHIPS.

Pictured in the accompanying engraving is an im proved anchor for airships invented by Mr. David Thomas, of 2526 Ocean Boulevard, San Francisco, Cal. The anchor is of the harpoon type, being adapted to penetrate into the ground when thrown from an airship, and having prongs or claws which will move out laterally and prevent the anchor from being dislodged. The design is such that the claws will not move out until the anchor has penetrated the ground to a predetermined depth. After the anchor is firmly fixed, the airship may be drawn down by winding up the anchor rope on a windlass. The body of the anchor consists of a hollow boxlike strucure shod with a shar metal point. The point is provided with a shank, which extends upward into the body of the anchor. Fitted in a socket in the shank is a compression spring, which at its upper end supports a slidable guide block. The claws or prongs rest on the guide block, and are hinged to a rod which has bearing in

ANCHOR FOR AIRSHIPS.

 a cap at the top of the anchor. The rope a tached to this rod passes under a peg, and is secured to a slidable crossbar near the top of the anchor, as shown in the engraving. The ends of the crossbar project through slots in the anchor body. When the anchor is driven into the ground, these projecting ends engage the surface of the ground, causing the crossbar to rise relatively to the anchor, and thus pulling down the rod and forcing the prongs out through slots in the side walls of the anchor. When it is desired to raise the anchor, enough earth is removed to allow the crossbar to slide to normal position, after which the anchor may be drawn up by pulling on the projecting end of the rod.
AN IMPROVED TROLLEY.

With the purpose of overcoming the common lia bility of a trolley to run off a trolley wire, an invento in Texas has devised the double wheel trolley illus trated herewith. One of the wheels is secured to the trolley harp in the usual manner, while the other is mounted yieldingly therein. The latter, or auxiliary trolley wheel, is journaled in the forked end of a rod which fits in a tube secured to the harp. A spiral spring in the tube and coiled about the rod serves to press the auxiliary wheel outward. Both of the wheels serve as conductors for electric fluid, and owing to the peculiar manner in which the auxiliary wheel is mount ed, it retains its true engagement with the trolley wire, ir respective of jumping or swinging of the pole. A cord is attached to the rod which car ries the auxil ries the auxil iary wheel, an when it is de sired to draw down the pole for the purpose of clearing crossings and overhead struc tures, this cord
 should be pulled, so that when the pole is moved down, the auxiliary wheel also moves down in the harp. This avoids entangling the auxiliary wheel with overhead structures when the pole is drawn down The spring-sustained wheel will bear yieldingly against . the wire at all times during the operation of the trolley, and will take from the same
the shock incident to vertical movement of the trolley against the wire. Owing to the inertia of the trolley pole, the trolley in ordinary constructions often fails to follow the trolley wire when the latter is set swing ing. In the present case the inertia of the auxiliary wheel is inconsiderable, and it will not fail to keep in touch with the trolley wire. It will be noticed that the auxiliary wheel-supporting rod is so mounted on the harp that it moves approximately tangent to the arc of the circle described by the end of the pole, and as a consequence will respond more quickly to the impulse of the spring, and will require less time to pass through the entire extent of movement with re spect to the harp necessary to maintain the wheel in contact with the trolley wire than were it mounted o move perpendicularly thereto. The inventor of this improved trolley is Mr. G. E. Ward, Abilene, Texas (Box 28).

Brief Notes Concerning Inventions.

With a new model of the Colt automatic pistol just placed on the market, a novelty is being introduced in the shape of a holster and stock combined, which greatly enlarges the weapon's sphere of usefulness. Being taken from its case, the weapon may be at tached to it and the combination made use of as a shoulder piece, and utilized in bringing down larger game than possible with the use of the pistol alone
The matter of who is "next" in the barber shop often ccasions unpleasant incidents, and the offended person may leave the place, never to return. To obviate hese incidents, a mechanical device has recently been nvented by which the patrons are summoned in proper order. It consists of a dial secured in a prominent part of the place. The patron has merely to glance this at such times as his attention is attracted by the ringing of a bell, and when he sees the number which corresponds to that on a check which was handed to him as he entered, he knows it is his turn. This signal is given by the barber whose chair has just been vacated, by touching an electric button placed at a convenient point on the chair or fixtures.
Stone and mosaic floorings have been rendered expensive by the large amount of hand work required in the laying and finishing. After laying as carefully as possible, the method of giving the finish consisted of rubbing it down with a heavy stone and a suitable abrasive, such as sand. This stone was pulled back and forth by two men, and the operation was therefore a tedious and expensive one. A machine has been recently invented and used with great success in this work. It consists of a motor mounted on a fourwheeled truck, \because with several horizontally-mounted grinding wheels which are driven by the motor. The machine is guided by an operator, who rides upon it. The grinding wheels are thirteen inches in diameter, and are arranged to entirely cover a path thirty-three nches in width. These grinders make two hundred revolutions per minute, leave the floor in a perfectly finished condition, and when at work travel fifteen feet per minute.
William S. Meade, who is said to have made a fortune of $\$ 250,000$ in a process discovered by him for the preservation of meat, recently died in a New York lodging house, penniless. He originally came from Buffalo, N. Y., and drifted to the West, where he made his meat-preserving discovery. Afterward, while on the Pacific coast, he befriended an old sea captain, who claimed to know the resting place of a sunken treasure boat, and upon the captain's death Meade was bequeathed a number of charts and directions in cipher for locating the craft. Meade's whole fortune was wasted in an effort to find this boat. At his own expense he sent out three expeditions. Two of them came to grief on the coast of South America, and the third was abandoned after cruising along the coast of Chile and Peru for several years in search of the treasure. During the latter part of his life Meade made a living by peddling various articles in New York offices.

It is the common practice of nearly all trolley companies to keep the curves in the track lubricated by an application of grease. This is essential in order that the cars shall not jump the tracks when rounding the corners. The material made use of is a composition of tar, and it is frequently the cause of complaints from passengers and others who get it on their clothing. A suggestion to make use of water in this connection has been under trial at. Sacramento, Cal., and it is said to have been successful in every respect. It is proposed to fit out each car with a small water tank; and with an outlet just over the track and in front of the wheels. Upon encountering any deviation in the tracks, this device is automatically put into operation, and a tiny stream of water is directed on the inner surfaces of the track, which is the part that comes in contact with the wheel in making the turn. This is said to answer all purposes. In view of the success of the experiment, a company has been formed to exploit the invention and to introduce it generally through the couniry.

RECENTLY PATENTED INVENTIONS. Pertaining to Apparel.
MARKING DEVICE FOR SKIRTS.-MAR garet hall, Vancouver, Wash. The invention has reference more especially to devices or
structures for marking ladies' garments-such as skirts, coats, cloaks, dresses, and the likeon a line at which to cut or hem the garment form distance all around from the ground on floor. The device is collapsible and occupies but small space in shipment or transportation or when not in use.
Shoe-heel.-R. I. Herrmann, Roulette, Pa. The invention relates to improvements in heels for shoes, the object being to provide a heel which may be firmly yet detachably connected to shoes, so that the heels may be trans
ferred or substituted one for the other when erred or subs so the the ing the shape of the heels, but keeping the ing the shape of the he
footwear in proper form.

Electrical Devices.

TROLLEY.-J. H. Walker, Lexington, Ky ent relating to the trolley harp, its connection with the conductor wire of the pole, and the manner of mounting the trolley wheel. It is figured by this inventor that the improvement will prolong the life of the trolley harp and its attachments and result in greater conven-
ience in effecting the necessary adjustments ience in effecting the
due to wear and usage.
TROLLEY-POLE.-P. Dudley, Asbury Park, N. J. The purpose of the invention is to pro vide a ball-and-socket connection between the
fork for the trolley wheel and the pole and a laterally-curved guide and support for th fork, which construction allows the wheeel to not exactly overhead and also to follow the not exactly overhead and curves, said construc
wire upon all manner of tion also insuring the wheel being straight up-
telephone attachment.-F. f. Howe Cleveland, Ohio. The inventor provides means whereby the swinging spring-pressed carrier
may be moved in either direction from its nor may be moved in either direction from its nor-
mal position and will when so moved release the rocker connected with the telephone-switch, so that if the carrier be moved laterally in one
direction to permit application of the receiver to the left ear or laterally in the opposite civer to the right ear the rocker will be re leased in both instances to open the telephone switch. It is an improvement particularly in that class illu
to Mr. Howe.
CORD-SUSPENSION ELECTRIC DENTAL engine.-J. V. Trenaman, New York, N. Y In this case the improvement pertains to means for mounting and manipulating dental engines, and more particularly to the means
for suspending the electric motor and its acfor suspending the electric motor and its ac pearance and materially increases the quality of the insulation as between the wires and other metallic parts.

Of Interest to Farmers.

Shipping-Coop.-H. B. Fry and T. B. Fry, Memphis, Tenn. This improvement ha are used for transporting live fowls. The object of the invention is the production of a
coop of this kind which is simple in construction and which is sanitary and which is capa ble of being folded up compactly for return hipment.
CORN-TOPPING TOOL-F. W. Gordon Miami, Tex. The object of the inventor is to provide a cutting-tool that may be placed on cut corn-heads from the stalks when the heads quently manipulated so as to forcibly impinge the sharp edge of a knife that is a part of each tool against the stalk near the head while the latter is grasped, the cut heads being peration of removing heads of cereals from the standing stalks.
mOWING-MACHINE.-S. D. Grimm; Conordia, Kan. In this machine the sickle bar is operated by a lever as its fulcrum intermedi-
ate its ends, the outer end being connected by ate its ends, the outer end being connected by
a ball and socket joint and pitman rod witb the sickle bar and the inner end arranged to ngage two rollers each provided with cam
rooves so that the rotation of the rollers with grooves so that the rotation of the rollers with effect horizontal roc
STRIPPING AND CLEANING MACHINE.The object in this chine especially adapted for treating the leaf sheaths or band-like material stripped off the abaca and like plants and arranged to permit a quick and thorough separation of the pulp and freeing the fibers without injury to the
latter, the fibers being completely freed or of the pulp.
LAND-ROLLER.-S. WARNER, West Union, Ind. This roller is especially adapted for upon two or more listed ridges. A purpose of adapted to the shape of the ridges and which will not only roll the top or crown of a ridge,
but will also crush the earth at the side edge where it is most needed. Means are provided ports to accommodate them to different-sized urrows made by different-sized listers.
water-regulator.-R. J. Powers, Chicago, Ill. The invention relates to novel means
for regulating the water admitted to troughs, for regulating the water admitted to troughs, tanks, and other receivers by which means to
automatically cut off the water-supply when automatically cut off the water-supply when
the trough is full. It is particularly adapted he trough is full. It is particularly adapted
or use in connection with stock-waterers; but it is useful in other ways.

Of General Interest.

SLIDING DOOR.-J. S. Schlosser, Chicago il. This invention relates to sliding doors
uch as used on stables and cars. The object of the invention is to produce a sliding door wich is hung in a simple manner, which may be readily opened and closed, and which will
operate to close the doorway tightly when the operate to close the doorway tig
door occupies its closed position
BUFFER.-S. M. Goldberg, New York, N. The invention refers to a toilet articl employed for polishing nails. The principal objects thereof are to provide a device with a
buffing-surface which can be readily removed and replaced, so that when worn the entire article does not have to be discarded, also to provide means for securely holding the buffing
material upon a base, and to provide a removmaterial upo
able handle.
Vaginal Irrigating Device.-V. Salcedo, Apaseo, Guanajuato, Mexico. One purpose of the invention is to provide a hygienic
device for the organs and protecting them dur device for the organs and protecting them dur-
ing such operation, which device is externally applied and is provided with means for venyringe without bringing same in connula of with he person and also means for conducting re fuse to a distant receptacle, thus protecting clothing and bedding
LIQUID-COOLER.-F. D. H. Kluhsmeier, ertains particularly to improvements in vices for cooling beer drawn from a faucet having direct connection with a keg, the object being to provide a device of this character that
will keep the beer at a proper temperature, will keep the beer at a proper temperature,
and, further, to so arrange the device as to and, further, to
supply ice water.
tailor's measure.-Hester a. Wool man and E. Z. Lesh, Guadalajara, Jalisco, Mexico. In this patent the invention relates garments before cutting. The object is the production of a measure having scales and production of a measure having scales and
marking-curves conveniently placed for the purpose of facilitating the measuring and marking operations. The device is preferably in the
form of a plate the edges of which are formed with scales and curved in certain parts.
SEWER-PIPE.-G. Feltz and W. S. East, Lima, Ohio. The invention relates to pipes, such as used in the construction of sewers and
culverts. The object is to produce a pipe culverts. The object is to produce a pipe
arranged so that the succeeding sections interarranged so that the succeeding sections inter-
lock with each other. Further objects are to prevent scouring under the pipe and to pro bulkhead, such as found especially in culvert onstruction.
PROJECTING APPARATUS.-F. SCHWANides imper York, N. Y. The inventor pro such as a combined dissolving stereopticon and moving-picture apparatus, whereby only two lamps are required, one being capable of being bodily shifted in a lateral direction to assume
an active position either for one of the sterean active position either for one of the stere-
opticon-lanterns or for the moving-picture aparatus.
METHOD OF MAKING CONCRETE SLABS OR BLOCKS AND APPARATUS THEREFOR -W. R. Stanton, 2 Gonville Place, J. W 4 Broad Street, Cambridge, England. The ob ject in this invention is to facilitate the proramming in a mold; and to this end consists essentially, in providing an improved form of vertical-sided collapsible core in conjunction with a separable mold for shaping the blocks ind slabs, the core being so constructed that
it may be withdrawn from the cavity of the being or slapering in fithout the
CAP-FITTING
Cap-Fitting.-W. C. Truex, Allentown O. One purpose of this inventor is to pro
ide a vase or cap-fitting for brass or iro bedsteads, newel-posts, and other devices where the above cap or vase may be used, struction, capable of expeditious and conven ent application, and when applied is entirely oncealed from view
EXCAVATING AND CONVEYING SYSTEM -E. B. Merry, Augusta, Ga. Mr. Merry's i ention relates to systems for excavating vari as materials and transporting them to de
ired points in suitable receptacles. His prin ipal object is to provide a simple and eff of requirements and be usable in many situa ons. By a slight rearrangement of the el may be caused to operate at either side of

ELECTROCHEMICAL PROCESS OF PRO DUCING NITROGEN COMPOUNDS.-J. W.
Wood, Moulton, Iowa. Mr. Wood's invention
elates to an electrochemical process for pro ducing nitrogen compounds. The process is trolytic fluid around the anode is constantly drawn off by a siphon. The fluid is preferably renewed, by adding water thereto. The nitro gen which is constantly removed from the hiquid is replenished by nitrogen of the air a through the liquid. A comparatively minute quantity of nitric acid may be used at the afterward needed
PROCESS OF UTILIZING THE NUTRI TIVE PROPERTIES OF MIDDLINGS.-S. B. Apostoloff, 28 Bush Lane, Cannon Street,
London, England. In this process the floury London, England. "In this process the floury grade) may be extracted and utilized in bread-
making by introducing it into the kneading apparatus and therein incorporating it with the flour for the "batch." The process involves dissolving out the loury constituent from the middlings, adding yeast to the liquor and fer
menting; straining the fermented liquor, so as to separate the bran or insoluble matter, and passing the strained liquor to the kneading trough for admixture with ordinary flour.
SAW.-S. J. Gray and J. Horning, Oak permitting sufficient flexibility in will prevent bending of the links with respect to each other in opposite direction. By making
the link substantially wedge-shaped in cross section and placing teeth on the base of the wedge a strong link is secured with a smaller amount of metal than would be necessary with edge of the link is adapted to withstand comfor the strain and afford arrow is suffi ciently strong to resist a tension strain.
PERMUTATION-LOCK FOR BOTTLE-STOPPERS.-J. C. Bowers, Boston, Mass. The lock comprises a casing carrying means for mounted therein a spring-controlled bolt, co operating with which are a plurality of tum bers, which require to be brought into certain positions relatively to each other, by which dial-plat lock and stopper to be removed dial-plate is employed for the lock, in asso special means for operating the tumblers to cause the bolt to become either engaged with or disengaged from a portion of the neck o the bottle.
PRINTING DEVICE.- 0 D. SAFFord, Passaic Park, N. J. While especially designed printing columns, the device is particular the like. The principal object of the inven tion is to provide for conveniently setting up
words to be printed in such a way that they can be readily placed in alinement and readily removed from the printing device, so as to
adapt it for those classes of business in which on
Fire-escape. - J. A. Reynolds, New York, N. Y. This invention relates to a firethe principal objects being to so construct fire-escape in the shape of a ladder or stair was that it can be partially folded up out of the way and to connect it with a scuttle in such manner that the placing of the escape or
stairway in a proper position will automaticalstairway in a proper position will automatical-
y open the scuttle, while the folding will ly open
close it.
TOBACCO-PIPE.-N. P. Shulin, Butte, Mont. The object in this improvement is to
provide a pipe arranged to keep fresh and clean, to prevent tainted saliva and nicotine from enterisg the smoker's mouth, and to prevent sparks leaving the pipe while smoking
thus rendering it perfectly safe to smoke the pipe at any desired place and without danger of setting fire to the surroundings.
submarine vessel.-S. Neves, valpariso, Chile. One purpose here is to provide a vessel to contain one individual, who is sup-
plied with atmospheric air from water level and have telegraph or telephone communication with attendants on the surface of the water, and to provide means for propelling the boat ahead, sternward, star-
board, or port, or up or down, thus enabling board, or port, or up or down, thus enabling
descent to depths unattainable by ordinary apparatus, and whereby the person in the vessel bow being provided with bull's éyes, enabling the occupant to observe upon all sides of the vessel,
ANimal-Trap.-A. A. Kellogg, Clinton, The invention refers to traps of the
orm commonly known as "cage-traps." comprehends in its broad conception a trap having an adjustable tubular passageway leadinterior, means for adjusting the tubular passgeway, a hinged door in the latter, and novel
tigger and securing devices.
PROCESS OF HARDENING AND SOLIDI FYING OILS AND UNSATURATED ORGANIC Baden, Germany. By this invention Mr. Kronstein is enabled to use any solidifying ng-oils other than wood-oil and in any dry portions whatsoever, so as to obtain various
grades of consistency frow liquid to solid with-
out use of a reducing agent and without fear ncy solidification. It is an the time required for nventor's former patent.
FILTER.-A. L. Johns, Colorado Springs, Col. The structure is in the form of a barrel and is capable of being rolled for a sufficient ime to cause ore therein to thoroughly mix, by which to facilitate and expedite chlorina-
tion of gold contained in the ore. The filter ion of gold contained in the ore. The filter
is of special construction, has means for seis of special construction, has means for se-
curing the same in the bottom of the containing structure therefor, other means being employed between the filter and lining of said structure to prevent access of sand and the ike to a chamber disposed beneath the filter for receiving from the latter the gold chlorid
without admixture therewith of sand and limes.
STORAGE-BIN.-G. H. Warren and S. ontaine, Minneapolis, Minn. In this in-
tance the invention relates to the construction storage-bins, especially those used for the torage of grain and similar materials which must be kept free from moisture. The bin is and for reducing the possibility of a destruction of its contents by fire.
CASE FOR PHONOGRAPHIC OUTFITS.M. Hemstreet, Jr., North Bergen, N. J. . The in which phonograph cylinders or records and the horn or trumpet may be conveniently packed and transported from place to place.
This enables persons to carry the outfit conThis enables persons to carry the outfit conveniently and without danger of breaking the
records. In attaining this end a case is prorecords. In attaining this end a case is pro-
vided having means for carrying a large number of records and also arranged to carry a telescoping trumpet or horn.

PAINT.-C. A. Lundquist, Moscow, Idaho. This invention relates to paints used for coat ing various substances. It forms a hard coat preserves wood or other surface from the action of rain or sunshine. It does not crack or peel off in the manner of paints of other kinds, and will stand for any length of time Ceramic product.-M. m. Meran, 155 Rue du Faubourg Poissonnière, Paris, France. The present invention has for its object a
ceramic product constituted by magnesia silicates employed pure, but nevertheless present ing sufficient plasticity before firing and great
strength when they have been fired. The first strength when they have thing or the biscuit of the first provided with an appropriate coating or enamel.
Garment-Clasp--J. h. Geisel, New Ronce to N. Y. Mr. Geisel's invention has refer applicable to the retaining in place of a belt waist, and skirt. As its principal object it provides a compact and attractive device for this purpose which may be readily manipu lated by the wearer and which will effectivel perform its functions
BUTTER-CUTTER.-G. Eircson, New York, N. Y. The cutting edges are provided to be
forced into the tub or mass of butter, thus forced into the tub or mass of butter, thus rated from the body of the butter by a cutting. wire or the like, the device being then with drawn with the cake of butter thereon and being provided with an ejecting-plunger by
means of which the cake may be delivered. STAM The improvement refers to hand-operated stamps such as found upon desks in offices for the purpose of affixing dates or other printed matter to papers or envelops. The device, to the end a stamp with an inking may be inked quickly, neatly, and thoroughly, and so that a distinct and uniform impression will be produced.
Ventilator.-J. W. Be Quette, Platteville, Wis., and B. F. Sackett, Toledo, Ohio In this patent the invention relates to imbuildingsts in devices for giving ventiation vision of a ventilator so constructed that the hot or foul air will readily pass out from the top or upper portion of a room and be re-
placed by fresh air. It is designed to be arplaced by fresh air. It is design
ranged in the wall of a building.
FOLDING UMBRELLA.-F. L. Atherton Paterson, N. J. One purpose of the invention
is to so construct the umbrella that the ribs can be permitted to remain at full length in opening and closing, operating at such time in practically the same manner as an ordinary umbrella, so that when it is closed the ribs will automatically fold outward upon them selves, reducing the body portion of the
brella to about one-half of its length. It ma easily be placed in a medium-sized hand-bag. CIGAR-CASE.-M. Nielle, New York, N. Y. This improvement pertains to a cigar case or
similar receptacle, the principal objects being to provide a combination lock and cigar cutter and to improve articles of this character. The effective locking and cigar-cutting operation without the use of a large number of movable without the
elements.
LOCK for bag-frames.-L. b. Prahar, New York, N. Y. One purpose of the inventor the frame, usually the central member, which will receive and fasten the other frame mem
bers in closed position in such manner that
either outer frame-member may be released either outer frame-member may be released
without disturbing the locking connection bewithout disturbing the locking connection between other frame members, and so that at
will both of the outer frame members may be
simultaneously released, completely opening simultaneously released, completely opening
the bag to which the frame is secured, both
the bag to which the frame is secured, both
outer members when closed being self-locking.

Hardware.

LOCK.-G. Fais, New York, N. Y. A combined bolt and hasp is employed having move-
ment within a case, as well as through holes ment within a case, as well as through holes
or openings formed in a door with which the or openings formed in a door with which the
lock may be associated, said case having a beam on the door, and being provided with a
catch for engaging with the bolt and preventing the latter from being moved outwardly or withdrawn after proper manipulation thereof
for effecting locking engagement with the hasp for effecting locking engagement with the hasp of one of
NUT-LOCK.-I. J. Griffin, Ossining, N. Y. In this case the object is to provide a new
and improved nut-lock arranged to allow convenient screwing up of the nut on the bolt to venient screwing up of the nut on the bolt to
the desired position, to securely hold the nut
against accidental return movement, and to against accidental return movement, and to
permit the operator to unlock the nut for un
screwing the same whenever it is desired to screwing
do so.

Heating and Lighting.

CHIMNEY-COWL-C. T. Miller and D.
B. Storck, Battle Creek, Iowa. The cowl is B. Storce, Battle Creek, Iowa. The cowl is
formed from a single piece of metal, and the formed from a single piece of metal, and the
same is of special construction by which wind striking it from any direction is caused to be
utilized as an accessory in educting the smoke utilized as an accessory in educting the smoke and other products of combustion from the
chimney in connection with which the cowl may be employed. The structure may also be formed of two pieces of metal, each practically a duplicate of the other, the two pieces
being cut out and struck up to the desired being cut out and struck up to the desired form, so as to present substantially the
of the first piece of metal. ILLUMINATING APPARATUS DESIGNED
FOR USE IN FLASH-SIGNALING.-A. Ros for USE in FLASH-SIGNALING.-A. Ros-
minberg, 259 High Holborn, London, England. ENBERG, 259 High Holborn, London, England
The object in this case is to provide self contained apparatus capable of being packed
a way in a small compass when not in use and a way in a small compass when not in use and
wherein, as compared with other similar ap paratus, first, a larger proportion of the ligh light will have a relatively greater range of with diminished liability of signals being read by persons for whom they are not intended.
The invention relates to apparatus for opttcal signaling, but applicable also as search-light apparatus
INCANDESCENT GAS-LAMP. - L. T Alton, New York, N. Y. The invention pro-
vides a check and air-mixing chamber and also an additional air-chamber which surounds the mixing-chamber and permits a supply of pure air-that is, air free from gas-to pedetermined quantities, whereby a more complete combustion is had, and a larger mantle may be heated either to incandescence, if the mantle is to be used for lighting purposes, or
to a lower degree if the burner is desired for to a lower degree if the
heating purposes only.
TIME GAS LIGHTING AND EXTINGUISHing apparatus.-T. F. Westenholz, Hel lerup, Denmark. This device comprises an hour-dial, a lifting-hand movable over the dial an extinguishing-hand movable over the dial,
a spindle on which both hands are mounted, a spindle on which both hands are mounted,
a pinion, a releasing-lever for engaging the pinion, a lever having a blade-shaped stop, a pin, a wheel on which the pin is mounted, pin, a wheel on which ane said arms are de-
arms, and deviees in which saitan to
signed to engage to stop the motion of the signed to engage to stop the motion of the
lighting and extinguishing mechanism. It is to be emplojed in street-lamps and houses es pecially.

Household Utilities.

STOVE.-F. A. Buck, Hubbardston, Mich. Ir operation the damper is lowered to close communication between the rear flue and the
smoke-vent while the fire is kindling, making direct draft from the fire pot through the smoke-consuming chamber into the vent. Wel
kindled, the direct draft may be shut off by raising damper to close communication between
upper part of stove and vent, thus forcing upper part of stove and vent, thus forcing
heated gases down through the front flue, the base-flue, and up through the rear flue. Draft in either direction may be regulated by checkdrafts. Magazine lightly covered, all draft
must be through the opening. between the must be through the opening. betwe
baffle-plate and the front lining-section.
MOP-WRINGER.-R. Christensen, Ogden Utah. The intention in this improvement is to provide a wringer which forms a permanen fixture of a pail or like receptacle and is ar
ranged to permit of conveniently placing ranged to permit of conveniently placing a
mop in the wringer to wring out the mop and mop in the wringer to wring out the mop and
to cause the dirty water to pass into the pail without splashing the water upon the floor
during the wringing operation. WATER-CLOSET BOWL-
Honolulu, Hawaii. In the present patent the invention has reference to water-closet bowls and the object is the production of a bow with which a cuspidor is incorporated, to the
end that the cuspidor may be automatically end that the cuspidor may be automatic
cleaned. The device is very sanitary.

DETACHABLE SUPPORT FOR IMPLEMENTS AND OTHER ARTICLES ON Bath, Me. The object of the improvement is to provide a device and means for detachably clamping it upon the border-flange of a top
plate on a stove or range, and affording very convenient means for holding implements used at a stove for ready removal. It provides
means for supporting plates or other dishes, means for supporting plates or other dishes,
adjacent to or over the stove to warm them and a support for
stove to dry them.
EGG CUP AND CUTTER.-E. N. Gaillard New York, N. Y ranged to prevent soiling of the hands or tablecloth by securely and neatly holding a boiled off the top portion of of conveniently cutting knives in a hinged cover, retaining the cut-off portion witnin the cover when swinging the later over to allow free access to the opened-
up egg and readily receiving any drippings rom the egg
potato-masher.-C. C. Naeve, Portland, re. The material to be pulped is introduce hrough the hopper into the feed-chamber. Th the screw, with the assistance of the ribs, longitudinally of the chamber and against a
perforated plate through the openings in perforated plate, through the openings in
which it passes into the mixing-chamber, thus receiving its preliminary division. Here it is subjected to the action of heating-fingers,
which reduces it to a creamy state. Milk or other fluid, and condiments, may be delivered from the reservoir into the pulp and mingled
therewith, the mixture being finally discharged over a chute. Means are provided for readily cleaning the apparatus.

Machines and Mechanical Devices. TYPE-WRITER.-A. H. Hogen, Geddes, S. D. away with the keyboard now ordinarily used and the delicate connections with which it is usually provided. The invention comprises ainable on high-priced machines of a complicated nature, these being obtained by means which render it possible to build a machine that will have very few delicate and easily
broken or deranged parts and at the same time will be capable of being built at a low cost. DEVICE FOR PAINTING OVERHEAD WIRES.-G. Welman, New Orleans, La. By feed-wires, may be given a coating to preserve them from the elements of the weather. It is designed to be operated from the ground and to apply a coating of paint or other preservative in an effective, rapid, and economical manner.
It is so constructed that the paint can by It is so constructed that the paint can be
automatically applied and evenly coated by cheap labor and without danger to life mb in its application.
ATTACHMENT FOR PLANERS.-J. H. bauer, New York, N. Y. The invention per-
tains to an attachment for planers and sim tains to an attachment for planers and sim-
lar machine-tools adapted for modifying the ordinary operations performed by such tools. The principal ways Mr. Bauer modifies the operations are to turn the work so as to pro-
vide for cutting a screw-thread on it and to move it on the support upon which it is mountd in such a manner that the stationary too past which it moves will make a cut having
curved or slanting inner surface. The device wil
column.
VARI
VARIABLE-SPEED DRIVING MECHAN ISM.-R. M. Ruck, 44 Thurloe Square, South
Kensington, London, England. The principal object of the present invention is to provide means for enabling the pinion member of the mechanism to be shifted lengthwise of the cone by hand under automatically-acting control instead of by automatically-actuated mechanism
under manual control. The invention relates under manual control. The invention relates
to that type of variable-speed driving mechanto that type of variable-speed driving mechan-
ism which is described in an application for Letters Patent having Serial No. 310,696
MECHANICAL MOVEMENT
Murphy, Long Branch, N. J. The invention consists in the combination of a driving-shaft disk with intersecting guide-grooves in its face raversed by guide-blocks, a cross-head connecting the blocks and a crank-shaft on the
neriven shaft at one end and to a counter-shaft geared to the driven shaft by cranks and link at its opposite end. This movement will
be found desirable in boats and locomotives. transmission gear.-W. L. Buck, New York, N. Y. The invention relates to mechanism for transmitting rotary motion at different speeds and in opposite directions. It is ap-
plicable to various uses, notably in automobile transmission and for transmitting from gasoine motors in marine propulsion. Change of leed and dirertion is accomplished by the
 the other.
COMBINATION-GAGE.-J. D. CANN, New to provide a combination-tool or universal machinist's tool whereby the gage, bevel, or
angle of any piece of work may be quickly angle of any piece of work may be quickly
and accurately determined; and the purpose and accurately determined; and the purpose
is to construct such a tool of three main elements capable of use independently or in com-
bination.

MACHINE FOR RESHAPING BOTTLE-CAPS.-G. G. GLEN , Gastonia, N. C. In the present patent the object of the invention is
the provision of a simple and practical ma chine for reshaping previously-used crown caps for bottles and at the same time inserting
new cork disks therein. The inventor has new cork disks therein. The inventor has
found that the bottle-caps may be used as a found that the bottle-caps m
rule four times to advantage.
WIRE-FENCE MACHINE.-H. J. Gardner, Montpelier, Ohio. With a single revolution of a crank the stay-wire is given two com-
plete wraps, or more if desired. The second coil passes over the frst, providing a lock. Means are provided for folding the machine
into small compass, easily transportable. double cutter saves much time in severing the wire, which is ordinarily done by hand with nippers. A stronger fence results from wrap-
ping the stay-wires in opposite directions than when wrapped in the same direction, since in other and not so easily displaced.
brick-machine.-C. E. Poston, Crawfordsville, Ind. Mr. Poston's object is to provide means for giving to the bricks unique
and novel faces and ends as distinguished from known smooth or glazed faces. Rough-surfacing is desirable for a variety of reasons, among which are more ornamental appearance and a better bond when laid. This invention provides means for producing it without hand-
labor and the use of "brooms" or other devices. EXERCISING DEVICE.-F. PELISSIER Gonaives, Haiti, W. I. The device is intended especially to be used by musicians for the purpose of manipulating the knuckles so as
to increase their flexibility. The object of to increase their flexibility. The object of
the invention is to produce a device which will afford means for giving the fingers of the hand a movement at the joint and to provide ions between the movements to be produced It may be used by paralytics, or persons whose at the joints.
CENTRIFUGAL F'ILTER.-R. E. Lee, Franklin, La. In the present patent the infugal filters, and the object of the improve ment is the provision of a cylinder or drum of such construction as will enable the same to be readily adapted to machines of slightly
different sizes. The cylinder is of very simple construction.
FABRIC-HoLDING FRAME.-H. Hoch reutener, West Hoboken, N. J. One purpose
f the inventor is to provide a frame adapted or use in connection with what is known a "Swiss embroidering-machines" and to so construct the frame that any desired number of retaining devices may be employed, which enves are simple, light, and strong, and so pieces of fabric may be quickly and conveni ently stretched and firmly secured in their tretched posit
METHOD OF LUBRICATING PNEUMATIC MACHINERY.-E. A. Emery, Cripple Creek, Col. The inventor employs a lubricant of a
solid nature and utilizes a current of compressed air as the vehicle by which the lubricant is carried to surfaces desired to lubricate The most potent factor in dissolving a charge of solid or pressed lubricant is the action of air on the charge, and he places the lubricant charge in such proximity to the path of the current that the moisture therein will have access to the lubalily and slowly. The lubricating solution thus formed is conveyed in
current to surfaces of the machinery.
LUBRICATOR FOR PNEUMATIC MAIn the pry.-E. A. Emery, Cripple Creek, Col a construction adapted to contain a "cartridge" or charge of solidified oil or grease
treated to make it soluble when attacked by moisture and around or adjacent to this cart ridge the motive fluid is caused to circulate so that the cartridge is caused to dissolve by
ts affinity for the moisture in the motive fuid, whereby the lubricant is taken up by the current of the motive fluid and carried into WRITING-MACHINE.-J. B. Vidal, Havana, Cuba. Mr. Vidal's invention has reference to a writing-machine, and the object of the improvement is to construct a writing-mach will be capable of attaining a speed
which equal to that of an expert stenographer. Two sets of keys are used and when operated there is no danger of a finger touching the
float mechanism.-P. S. Mauritzen, Port Richmond, N. Y. In this case the inven tion relates to foat mechanism adapted for
use in connection with intermittent flushing apparatus and with pumps or siphons for basins. Its principal objects are the provision of a simple and effective mechanism of this character.

Prime Movers and Their Accessories.

STEAM PUMPING DEVICE.-E. C. Pol Lard, Seattle, Wash. The entire apparatus ozzle and inclosing screen. As an engine it believed that this apparatus comes as near
engine as any devised. Downward pressure engine as any devised. Downward pressure
of the column of water being lifted, which is
due to the due to the action of the vacuum, it is not to
be considered as a loss of energy, because it is belanced through the suction-pipe, which is due to the same cause.
Valve-G
Valve-Gear.-W. Hartmann, 64 Augsburgerstrasse, Berlin, Germany. The invention re-
lates to valve-gears for use on steam-engines, lates to valve-gears for use on steam-engines,
gas-engines, and other motors. The present invention enables Mr. Hartmann to dispense with the rocking arm actuating the valvenately connects the valve-lever with the driving mechanism and locks the valve-lever dur ing the period in which the valve is closed. CARBURETER.-O. H. Hinds, Le Mars, gas-machines or carbureters wherein atmos pheric air is utilized to take up the vapors of hydrocarbon liquids-such, for instance, as gasoline; and the invention has for an object the provision of means whereby the
amount of gasoline taken up in the air to amount of gasoline taken up in the air to
enrich the gas may be varied without varying enrich the gas may be varied with.
the volume or pressure of the air.
ROTARY EXPLOSIVE-MOTOR.-S. DENTON and E. S. Veen, Great Falls, Mont. A circular cylnnder is conts the whole a rim by a fly-wheel, and the pockets carrying radiallymovable abutments which co-act with a stationary piston carried by a stationary shaft, on which the cylinder is mounted to turn, and the shaft and piston provided with ports VAPORIZER FOR HYDROCARBON-EN-GINES.-C. F. Pearson, Chicago, Ill. The special object of the present invention is to provide means for effectively regulating the supply of fuel, this regulation taking the without, however, affecting the uniformity of the fuel mixture supplied to the engine. constitutes an improvement in the type of vaporizer disclosed in a prior patent granted to Mr. Pearson.

Rallways and Their Accessories.

SWITCH-OPERATED SIGNAL-LIGHT. - G. W. Jordan, Purvis, Miss. When the switch is closed the electric lamp will flash, thus notifying the engineer that the switch is in proper shape. will be no flash, thus giving warning
there that all is not right at the switeh. By arranging the lamp to operate when the switch
is closed liability of error from defects in the apparatus is eliminated, since it is apparent that failure of the signal to operate for
any reason, will indicate "danger" to the en-

DERAILER.-T. W. LINN and J. H. Pat rick, Clymers, Ind. This device is for use in derailing railway rolling-stock. It may be used on sidings to prevent cars on the siding at a railway-crossing to prevent cars from at a railway-crossing to prevent cars from
running onto the crossing when the signal is set against them. A feature is the profrom snow shield for protecting the deve provision of means on the derailer for cutting through and clearing away any ice, snow, or dirt which may have accumulated between the rail and the derailer.
CAR-COUPLING.-P. D. Serrurier, Savanna, Ill. The purpose here is to overcome the delays to trains caused by the breaking of the
draft devices. Generally the part which breaks is the lug holding and forming a pivotal supis the lug holding and forming a pivotal sup-
port for the knuckle. The coupling is so constructed that when the lug is broken it may be removed and a new one applied without disturbing the draw-head proper. To this end the coupling is made in two sections, one the
"draw-bar" the other the "removable draft-"draw-bar" the other the "removable draftbar that it can be removed therefrom when is desired to replace it with another
EMBEDDING FOR STREET-CAR RAILS. . Melaun, 9 Hardenbergstrasse, Charlotten structed according to the a pavement con tion can be submitted to driving as ton can be submitted to driving as soon as
finished. In case work has to be done on the rails later on, the asphaltum cover is first removed on the particular places and the inThe stones are then taken out one by one. Tevices, and or lifting out is effected by lifting devices, and for this purpose the stones are
provided in course of construction with iron rings.
RAILWAY-RAIL.-C. W. Landers, Genoa, Neb. The object of the improvement is to
produce a rail of great strength and durability and which will be reversible in character, ity and which will be reversible in character,
so that either face of the rail may be used as the tread or head. This rallway-rail worn increases the life of the rail.
CAR-DOOR LOCK.-B. B. Ross, Albany, N Y. The intention is to use this improvement
for locking the doors of milk-cars and while it is especially applicable in this connection, it may be applied to doors of other constructions. The object is to produce a lock of
simple construction which is always held in a simple construction which is always held in a
fixed position, so that it cannot swing against fixed position, so that it cannot swing against
the wooden parts of the door-frame or door to cause damage.
P. Wingren, Denison,

Tex. The object here is to provide a joint
arranged to securely unite the meeting ends arranged to securely unite the meeting ends
of adjacent rails with each other to allow expansion and contraction of the rails without their sliding on the joint, thus preventing
wear, to insure lateral alinement of the rails, wear, to insure lateral alinement of the rails,
to effectively resist the flange thrust on curves, and to allow the convenient use of the device on steam and electric railways.

Pertaining to Recreation.

SKATE.-T. Spacie, Houston, Texas. Mr
Spacie preferably provides the skate with a Spacie preferably provides the skate with
foot-plate, but embodies in connection there with substantially similar devices for attaching the skate to the sole and heel of a shoe,
as described in former Letters Patent granted to him. Special means are used for securing to the under side of the foot-plate the for-
ward set of rollers for the skate, and other special means are employed for also attaching to the under side of the foot-plate the rea punching-Bag. - C. McKenzie, Butte, Mont. The invention is an improvement in
bags, such as are used for practice in boxing and exercising. The apparatus embodying the pended and adapted to revolve and swin laterally in vertical planes as to afford special
advantages for instruction in boxing and exadvantages for in
ercise in general
confetti - cannon. - R. Kliemandt, Mount Vernon, N. Y. The device is for use
upon social occasions and for amusement for the purpose of scattering the substance known as "confetti" over floors and tables, and over
the persons of participants in various social functions. The invention relates more par causing the confetti or analogous substance to be scattered by means of an explosion.
Carrier for game.-J. m. Paul, el Paso, Texas. One purpose of the inventor is
to provide a device for carrying game adapted to be worn across the shoulders and held in place by the weight of the load. Another,
is to so construct the device that moderately is to so construct the device that moderately
large or small game of all kinds in large or small quantities may be expeditiously, con the carrier and carried with comfort without injury to the game.

Designs.

DESIGN FOR A BOTTLE.-G. BuTON Bologna, Italy. In this original and ornathe length of which is about evenly divided between the neck and body portion. The latter is plain in outline, but the neck at its center is gracefully and slightly increased in diameter
Note.-Copies of any of these patents will bearnished by Munn \& Co. for ten cents each Please state the name of the patentee, title of

Business and Personal <Uants.
READ THIS COLUMN CAREFULLY.- You will in consecutive order. If you manufacture these goods
write us at once and we will send you the naine and
address of the party desiring the information. In
every case it is necessary to give the
number of the inquiry. For logging engines. J. S Mundy Newa Inquiry No. 8286.- For manufacturers of smant
machinery of brass or iron, such as can be used in
model construction work. U. S." Metal Polish. Indianapolis. Samples free Inquiry No. 8s8\%. - For manufacturers of an at-
tachment of a amoline or gas stove testing automatic-
ally the temperature of an oven. Sawmill machinery and outfts manufactured by the
Lane Mfg. Co., Box 13, Montpelier, Vt. Inquiry No. N288.-For manufacturers of ma-
chinery for making silk underwear, stockings and
gloves. 1 sell patents. To buy, or baving one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. Inquiry No. Biz89.-For manufacturers of burlap
bag turning machine. Metal Novelty Works Co., manufacturers of all kinds of light Metal Goods. Dies and Metal St
Specialty. 43-47 S. Canal Street, Chicago.
Inquiry No. X890.-Wanted, the address of a par-
ty to make closures to fit in a corset. The celebrated " Hornsby-Akroyd" safety oil engine.
Koerting gas engine and producer. Ice machines. Built by De La Vergne Mch. Co., Ft. E. 138th St., N. Y. C. Inquiry No. 8\%91.-For manufacturers of higb-
grade stilletes.
Manufacturers of patent articles, dies, metal Manufacturers of patent articles, dies, metal
st.mping, screw machine work, hardware specialties. machinery tools, and wood fiber products. Quadriga
Manufacturing Company, 18 South Canal St., Chicago Inquiry No. N29.-Hor manufacturers of sheet
gutta-perchation inthick, and sheet ebonite No. 14
gauge, also Stubs' steel wire.
gauge, also Stubs' steel wire.
Automobile experts are in constant demand at high salaries. Our seven weeks' course is the most thorough
and practical, fitting men to drive, handle and repair. New York School of Automobile Engineers, 146 W est 56th, Street, New York
Inquiry No. 829.
chinery for cutting a
glass. N. Inquiry No. 8294.-For manufacturers of match-
making nachinery.
Inquirv No. 8295.-For manufacturers of ma
 Inquiry No. 8296.- Wanted, a decorticating ma-
chine for South American fibers. Inquiry No. 829\%. - Wanted. a malleable cast fac
tory to manufacture a horse elease evener. Ingniry No. 8898. - For manu facturers of wood.
turning machinery such machines tor mating bungs
for beer barrels, also wooden corks. also spigots.

hints to correspondents.
 References to former articles or answers should give
date of paper and page or number of question. Inquires not answered in reasonamber of of question.
repeated; correspondents will bear in mind that

 Special Written $\begin{aligned} & \text { Information on matters of personal } \\ & \text { rather than } \\ & \text { without }\end{aligned}$ genal interest cannot be expected Scientific American Supulements referred to may be
had at the office.
Price 10 cents each. Books referred to promptly supplied on receipt of
price. Mineralls sent for examination should be distinctly
marked or labeled.
(10085) C. S. J. asks: I wish to learn the cause of trichinæ in pork. A. The
trichina spiralis is a worm, a parasite of the hog. It is often found in great numbers in
the flesh of these animals, in the encysted con he flesh of these animals, in the encysted con-
dition but still alive. If such meat is eaten dition but still alive. If such meat is eaten
without cooking thoroughly, the parasite is taken into the body and is rapidly propagated he worm came originally from the rat. A hens eat rats, they pass into the hog and
thence into man. The only preventive is thorough cooking. This kills the trichinæ. rare or underdone pork should ever be eaten
The risk is too great. The cost of immunity is so little, that anyone may be safe. Cook all
pork thoroughly. 2. The cause of ptomaine poisoning by eating pork. What causes the presence of the poison, how the poison can be revented, and whether or not there is any way of detecting the presence of poison before
using the meat? A. Ptomaines are formed by ecomposition. If only fresh food is used, one these poisons.
(10086) H. S. N. asks: I have been a reader of your paper for several years, and
always enjoy reading it. I should like to submit a problem for solution. The problem is this: Several years ago I took a picture of a fast train while running, a Michigan Central fier, at a point about two miles east of Deblur of 1-32 inch, i.e., the pilot did. I I used a Vive extra rapid plate; the focus of the lens
was 6 inches; the distance of the engine, the was 6 inches; the distance of the engine, the
pilot, from the camera, 50 feet; the length placed at an 100 of one second; camera was What was the speed of the train? The camera was a Vive, $41 / 4 \times 41 / 4$, meniscus lens. A. The train is not difficult, at least so far as a
sufficiently close approximation is concerned. Start with the fact that the image of the pilot moved $1-32$ inch during exposure. Since
the lens is 6 -inch focus and the pilot is 50 feet away, the pilot moved across the line
drawn through the center of the lens, 100 times through the center of the lens, 100
inch, or 3.125 inches, since 50 feet
is 100 times 6 inches. And since the is 100 times 6 inches. And since the camera
made an angle of 15 deg. with the track, we
mulst divide the 3.125 inches by the sine of must divide the 3.125 inches by the sine of
15 deg. to find the distance the pilot moved during the exposure. This gives 12.07 inches as the distance the train moved in the time
of exposure, or $1-100$ second. In one second it of exposure, or $1-100$ second. In one second
moved 1,207 inches, or 100 feet 7 inches. This a speed of somewhat over 71 miles per ho tion, but still not far from the result which an
(10087) J. S. M. asks: Will you kindly answer in your column of Notes and
Queries the inclosed questions relative to RoQueries the inclosed questions relative to Ro-
man computation? I suppose the matter is any work explaining it, nor any person whom I have asked who could throw any light on the subject. A. Very little is known concerning
the method by which the Romans used their very inconvenient notation for performing the ordinary calculations. They are supposed to
have used the abacus for all except the most have used the abacus for all except the most
simple problem. This instrument is in comnon use now by all Chinamen, and it is not these men may be found. A description of the abacus mar be had from any encyclopedia There was a rod for each denomination of umbers to millions, seven rods each carrying five balls. Another set of short rods corres-
ponded to these, and had one ball sliding on ponded to these, and had one ball sliding on
each. They could thus count by fives and each. They could thus count by fives and
carry by tens. Other rods supplied their need for calculating ounces. Further than this their business did not require them to go; hey never needed to divide the distance of
the sun by the velocity of light. They died tatal darkness in regard to both outset, we do not know the detail of the method by which the Romans made their calculations. Their mode of writing numbers was not like ours by placing like denomina-
tions in the same column, but each letter ad its significance, and each number could be meant a denomination.
(10088) A. N. says: 1. I have seen it stated frequently that a single "ground" on a metallic circuit, while a source of danger,
does not impair the transmission. If the does not impair the transmission. If the
potential at a "ground" is 5,000 volts, for in-
stance, does this not mean 5,000 volts above stance, does this not mean 5,000 volts above
the zero potential of the earth? If so, why the zero potential of the earth? If so, why
does not all the current, if the resistance at the "ground" is low, flow to earth and equal-
ize? A. A single ground on a metallic circuit ize? A. A single ground on a metallic circuit
does not impair the transmission as you state. The amount of electrification that passes to earth is so great, that it would take practically an infinite period of time to change its potential. 2. Standing on the ground, can a person touch with impunity one wire of a high potential circuit if the circuit is free from "grounds" ". A. If there was no ground, and
no chance for the current to jump and produce no chance for the current to jump and produce
another ground, there would be no injury to you in touching a high-potential circuit, but such a condition practically never exists on tance in ohms of the human body? A. Th varies with the person, the points where con-
tacts are made, and the condition of the flesh tacts are made, and the condition of the fles
where these are made, but it is approximatel 2,000 ohms. 4. What is the minimum strengt of current the human body can endure? A
You probably mean the maximum. This varies with the person, and the condition o varies with the person, and
the body, from 0.5 to 1 ampere.
(10089) F. J. M. says: Will you please answer the following questions through
Queries column of your paper: 1. What is a Queries column of your paper: 1. What is a
Faradic brush? Please give a short description of it. A. We believe you refer to the brush made of wire bristles, which are con-
nected to one terminal of the coil, while the other terminal is connected to a plate on which the hand rests, thus sending the current from the coil to the brush, the head, and back to the coil through the hand. 2. Does it make connection with a physician's coil? A. Any kind of battery can be used. A good form o dry battery is the most convenient. Alway
give full name and address, as we might wish to answer your query by mail.
(10090) F. G. says: Please print formula for making a vibrator jump-spark coil
for a 3 -horse-power engine. A. Scientifi for a 3-horse-power engine. A. Scientifie
American Supplement, No. 1402, price te cents, gives full directions for winding induc 1 inch long would be large enough for your purpose.
(10091) J. B. A. says: Is there any cheap way one can fix a camera so as to make will not have to make a negative, then a print I thought that there might be an arrangemen
attached to the lens, so as to change the imag on the ground glass, so that when you develop the negative it will appear like a positive. it decrease the light coming through the lens and how much? A. There is no arrangement by which you can obtain a positive by exposing
the bromide to the object through a lens. The negative differs from the positive in other re spects than in the inversion of the image. The
tintype process appears to do this, but if you positive is a perverted image of the object We fail to see any advantage in such an an rangement, as duplicate copies could not be through which the light passes, the image will not be as bright
(10092) W. D. W. says: Will you be kind enough to answer the following questions the greatest respect for your opinion on scientific matters? 1. Will electric wires, furnish
ing current for arc lights coming in contac with street trees, injure them, that is, when the insulating covering has worn off from rubbing
against the branches of the tree? One of the against the branches of the tree? One of the
tree and park commission of this city (Columbia, S. C.), a college professor and a very in
telligent gentleman, insists that the electricity that is, all that is taken by the tree in we that is, all that is taken by the tree in we
weather, will do no harm, while I hold to the opinion that it will ultimately kill it, and wish to know which one of us is wrong. electric arc light wires does injure the limbs of trees, particularly when the difference of potential is very great, although we do not
believe it would kill the tree unless it wa believe it would kill the tree unless it wa
very young. 2. When a tree has been killed by escaping electricity, how long a time should elapse, in case the leak be located and stopped before it will be safe to put another tree in its place? A. We see no reason why another
tree cannot be put in at once if the ground tree cannot be put in at once if the ground
has been removed. 3. Some very large oak that are exposed to the smoke from the rail road workshops have died very recently, and for their dying. The shops have been there for a long time, and it seems that if the smok is the sole caase the trees ought to have died before this time. It may be possible, how may be partly responsible for their dying. A If the trees are very close to the top of the have lost some vitality on account of it, as the products of combustion are very destructive to under the direct influence of the smoke.

NEW BOOKS, ETC.

906. By the Committee of Yachts, Register. New York: Lloyd's Register of Shipping, 15 Whitehall Street. 384 pages. 35 colored illustrations of
flags of the United States and Canflags of the United
ada. Price, $\$ 7.50$.
It was as long ago as 1874 that a small but complete volume containing the register of yachts was issued in New York. Since that been local, rather than national, in scon have fining themselves to the larger yachts and clubs of the Atlantic seaboard only. In 1877 the Committee of Lloyd's Register of British and Foreign Shipping was requested by British yachtsmen to classify yachts after the same plan as merchant vessels. The work thus be-
gun continued to the present time. In 1902, gun continued to the present time. In 1902,
in response to a demand from American yachtsin response to a demand from American yachts-
men, the committee issued a similar Register of American Yachts, which has been continued annually to the present date. In the present olume for 1906, an entirely new plan has The introduction of other types of motor than he steam engine has removed the necessity for dividing yachts into two divisions, steam and sail. Consequently, all yachts in the present volume are grouped in one alpha-
betical list. The almost universal use of the internal-combustion engine has called for a
ind more complete description of this type, and the iversity in hulls has called for new particuars descriptive of the details of houses and
cabins. In quality of paper, torp, and illusrations, this excellent work ts fully up to hose which have annually preceded it. The first 260 pages consist of the register, which gives the full particulars concerning the con-
truction, rig, leading dimensions, designer uilder, rig, leading dimensions, designer, hinery, the owner's name, and the home board of registry. Particularly handsome are the thirty-four colored plates, giving the flags of yacht clubs and the flags of private owners, ollowing which are the particulars of the yacht designers, engineers, builders, etc., also

July 31, 1906.
AND EACH BEARING THATDATE [See note at end of list about copies of these patents.]

 apparatus therefor, burning, C. Ellis..
Cenent, magnesia, E. Bidtel, M.......
Cement post for wire fences, o. Fleming.
Cements, composition of matter to be used
in making waterproof and polishable, ments, composition of matter to be used
in making waterproof and polishable,
Paul or. Krotnaurer

 Creaming can, H. A. Arvig.
Crib construtction, F. Simpson
Cross tie, sectional metallic, J.
 Current collector, Linden \& Hierserunani.
Curent motor, alterating, M. Milch.
Current tap and and lamp socket, swiveling,
 Curtain shade fixture, C. W. Moore
Cuspidor, W. C. Kirk \ldots. $\ldots \ldots$.
Cuspidor or spittoon, P. M. Freer.

 Die stock, W. E. Brooke \ldots
Die stock, H. W. Oster
Dish pan, J. J. Meser
Door securer, G. H. Foster
Doors,
Dotc.

Fence machine, wire, © Chet, F. Leonard.
Fence making machine, J. Harris
Fence, wire, J. Harris.
Fence, wire, J. Harris.
Fence wire stretcher,
Fencing, woven wire, H. H. Mrirreil.
Fermenter, D. Gordon
Finco.l.
Fiber material from animal tendons o
sinews manufacturing S. Kohn
Filter, J. T. H. Paul
Filter, centrifugal, T. S. Patterson 827,389,

 N

wowno

皮
$\infty \infty \infty$

 m

$\infty \times \infty$

IGNS.			
			cear, rarionle speed and reversing, $\mathrm{F}_{\mathbf{F}}$
ene tana		${ }_{\text {Ca }}^{\text {Ca }}$	
trin, leace,		ca	Glass fur
mock, 1			Glass.
		ca	
${ }_{\text {din }}^{\text {ding }}$ Winstures, backpiece for,	"D-Lish-Us Gum," for chewing gum, Amer-		
similar article, G. E. Homer	,, for canned lobster, J. A. A. Ne. Nilie. 13,022		
Rade Marks	wailian P		
Battery eells, hard rubber, American Hard	"Hiavailia		
Books, accout, r. Hioiihimworth..........		Clothes	
			Headi
nd shoes,		Coin holding and	Heat radiatin
nd			Hin
Art	"		
			Hose eouplinn, Jo. F.
	"s.		
	paper cutter, envelop opener, paper clip,		Insulating coinerings, form for making fiber, 887,777
		Continuous piston en	
	er, J. Kornahrens........		
Citars, Herana, ope			
${ }_{\text {s }}$ cead			
Coats tavarsts, Respee and pantan Sons,			
		Cultivator, Cultivator, S.	
eiee			and cab
${ }^{\text {ree }}$			
ottery C_{0}	"Dragon,", for playing cards,	nd cleaner, J. D. De	
$g_{0 r}^{\text {gr }}$	"E		
	"		
Separator company $1 \ldots$.			
	and ponitry remedies Pratt Food		
	ow pine, fir, and spruce	ts, h	
$\begin{aligned} & \text { Manufact } \\ & \text { ics, tex } \end{aligned}$			tastening means for recentacies, J ,
npany			Lifts, eleerators, conveyors. etc., means for
	Index of Inventions for which Letters		${ }_{\text {fixt }}$
	Patent of the United States wer		
	he Week Ending		
			Lockss inesting device for permutation, .\%. 828,276
pins comb			A. Jacauard actuating
ry,			
			Loom shatt
		${ }^{\text {Dust }}{ }_{\text {B }}$ Iaysing ${ }_{\text {Singer }}$ and absorbing composition, 827887	
	taining air pressure in, E. R. Brown. 828,270		Ma
	${ }_{\text {An }}$	Electric	M
	An	Electric	$\xrightarrow{\text { Merr }}$ Meal
	Asbestos, Ash pit	- $\begin{aligned} & \text { Eleectric elerat } \\ & \text { Eleetric } \\ & \text { light }\end{aligned}$	Metal
Sols	Audiphone	ric motor support, \bar{J}. \dddot{G}_{G} Crawford.... 828,09	Metals, making composite, T. A. Edison.. 827,717
	-	Electric Kitsee	Microseope, mieroraphate. O . H . F. Volleehr 827.896
Tandsticksfabriksaktiebolaget och vulcans		$\begin{array}{\|c} \text { Ele } \\ \substack{\text { Ele }} \end{array}$	
		Eleecromangetic locking switc	
stard, Wm. Henning Co...................		Electros	
wspapers, Manufacturers' Recori Pubisisi-		Elevator, \mathbf{C}. W. J. Jac	
		Eereme	Moteret
			Musi
entiz			
		Extrefrnal combustion	
cils, lead, Eagle	Be		
lent		Exter	
fou			Nout
S, meattac		Eyeglas	Noill
ing eards, New York Consolid	Bo		
or,	${ }^{\text {Book, }}$ Book ma		Oscillator. go-cart, sle
$\begin{aligned} & \text { sies } \\ & \text { ber } \\ & \text { Wer } \end{aligned}$	${ }_{\text {st, }}^{\text {st, }}$ Jr,		
ces, Wm. Henning Co................. 5			
		Fire ${ }_{\text {Sheporerd }}$ prection ... signal	
Sms roundabous, and teeters, E. $\mathrm{D}^{\text {d }}$			${ }_{\text {Pap }}$
et metai, dovetaiied colorugated, " Brown	${ }^{\text {Bo }}$		
Oistigy, Mace			
es,			
Manuract			49
p, Fels			
p, tollee	Bu		
			Ph
ate			
o.			
		${ }_{\text {Fur }}$	

 Sad ron J. Recker ini meibinism,........

 Our Hand Book on Patents, Trade-Mr
ett., sent free. Patents procured thr
Munn \& Co. receive free notice in the San Scientific American MUNN \& CO., 361 Broadway, N. Y.

THE MIETZ \& WEISS

Asbestos and Magnesia Products

$\underset{\text { New York, Milwaukee, chicago, Boston, Philadelphia, St. Louis, Pittsburg, Cleveland, New }}{\mathbf{M}=}$
New York, Milwaukee. Chicago, Boston, Philadelphia, St. Louis, Pittsburg, Cleveland, New Orleans, Kansas.
City. Minneapolis, Dallas, San Francisco, Los Angeles, Seattle. Lọndon.

 Trucks, friction grip for ropeway, Cariso

Tube scraper, G. H. Burpee
Tug, thill, B. F. D. Miller
Turbine lige
Type casting, machine, ${ }^{\text {Prall }}$ W. Type casting machine $\begin{aligned} & \text { stan } \\ & \text { tan }\end{aligned}$

New Light

 42 Broadway \quad.- New York Clty:
GAS ENGLNE DETAILS.-A VALUAble and fully illustrated article on this
tained in SPPLEMENT Not 1292. Price
salle by Munn \& CME. and ail newsdealers.
Whitewash Your Buildings

How To Increase
Wilford's Waterproof Cloth light, strong, soft and durable. Made of
twisted twisted pure flax thread, It is pliable-wil It is positively salt and fresh water proof The proper goods for Hatch Covers, Boat Covers, Sail Covers, Tarpaulins, Side Clothi etc. Ten years of success-Every piece
stamped. Test its merits with a trial order.
EDWARD A. BUNKER
Sole Agent for the United States and Canada
Box 1579 NEW YORK
How to make an electrical

Sciēntific Color Printing

We have added to our large printing es-
tablishment, and now have in successful
Photographic Color Department equipped with the largest cameras, best pos-
sibie instruments and printing machinery
for

Fine Colored Reproductions
\mathbb{C} Paintings, Objects of Art, Rugs, Carpets, Commercial Designs, and articles of mer-

chandise faithfully reproduced in all their natural colors, in any quantity. $\underset{\sim}{\mathbb{C}}$ Periodical Covers, Artistic Book and Cata| $\begin{array}{l}\text { logue wor } \\ \text { specialties. }\end{array}$ |
| :--- |

(6e SPARRELL PRINT

To Book Buyers

We have just issued a new 48 -page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application.
MUNN \& COMPANY

TRADE MARKS

Cane mills, C. S. Bell Co............................
Canned fruits and vegetables, Griggs, Coope

Cardas, playsing, United States Plaging Card
Co.
Catchup, Curtice
Chains,
Co

Cigars, Havana, Havana Comyercial
cigars. Havana, H. De Conabas y Col

made suits,
clothing, cedell
cortain
named, Brown, D..........i

 onfections, solid chocolate, H.........iibur
\& Sons

 55,223
55.20
5.58
5.5 .021
5
\qquad

Inexpensive Classified Advertisements

sale and exchange.
 For SALEE.-Going Machine Shop. Reasongiven for
selling.
Wiil bear strict investigation
situated in

 Tour speaks for its

 IF You. WANT to bry a machine, engine boiler, machinery- anything int the madhiniline- -eill Us and

BUSINESS OPPORTUNITIES. CAPITAL WANTED.-Have been buiding wo cycle

 WANTED. Salesman representing machinery
 BARGAINS TO CLOSE AN RSTATE,-AL practi-

BARGAIN for one desiring a small and well-estab.
nsted manufacturing buiness. full proteted by Patents, clearing sio.000 annualiy. Mrvestigation so

 ing or fickernot Send 250 for somple.
 meehanica1, architectural and structural draftsmen
permanent
\$1,000- $\$ 2,5001$. positions.
Hapgoods, 305 Broadway, sew

PARTNERS WANTED.
WANTED, A PARTNER. - I have a complete plan of
 euntrols the direction of the vessel qui
rudder. Wanted a capitalist tudevelop
G. Unzner, 159 Lincoln Avenue, Bronx.

POSITION WANTED.
$\underset{\text { works superintendent is invited to answer wanting a }}{\text { Aro- }}$ vided they pay ${ }^{* 4.000 \text { or }}$ ver for a mechanical executive
George F. Stilman, 117 Summit Ave., Syracuse, N. \bar{Y}.

SITUATIONS AND PROFESSIONAL OPENINGS.
EXPORT ADVERTISING SOLICITOR W ANTED.
-An advertising silicitor having had long experience
An on export business can have a valuable position with
well-known export medium on proving his ability. Ad
dress Export, Box 773, New York.

HOTELS AND RESORTS.

PATENTS FOR SALE.

ELECTRICAL APPARATUS REPRE sented by Conventional Diagrams in Drawinss.- Fifty
diamatrams showing the usual method of Ilusmaing eiee.

 H
 Horse and mule shoes, metal, Phoenix ce cream Crane IVe Cream Cl......
Knitted cloth having a napped
face, French \& Ward

 gestive tract, J. Cocke \& Co.......
Medicated uterine
Medicine, liquid $\begin{aligned} & \text { wafers } \\ & \text { headache, }\end{aligned}$ Treadwell

 iilk centrifugal cooling and pasteurizing
machines' and apparatus, Aktiebolaget
Salenius's Werkstader
 i

 Beschrankter Haftung
ils, paint, Kay \& Ess Co.

 Preparations for the cure of certain named
diseases, E. E. Sutherland Medicine. Co.

Largest Air-Cooled
Stationary Stationary
Engine made. Bore 6×6 inches. Cools perfectly,
No engine ever No engine ever
constructed with so constructed with so
few working parts. Weight 900 lbs . 5 H. P. Gasoline 942

Mrs. Harper Was Surprised

when her husband's policy, on which pre= mium payments had ceased, was paid in full. She did not realize that an Extended Insurance Clause is found in all regular Ordinary Life Insurance policies now issued by The Prudential.
"I was therefore very much surprised," she wrote from her Indiana home, "to be notified within a few days after my husband's death that the claim would be paid in full."

Perhaps YOU would be surprised at the liberal pro= visions of a Pru= dential policy. We would like to explain them to you.

Address Dept. 121.

The Prudential

Insurance Company of America
JOHN F. DRYDEN, President

SENSITIVE LABORATORY BALANCE By N. Monroe Hopkins. This "built-up", laboratory
balance will weigh up to one pound and will turn with a
anarter

Eureka machine Co.

$$
\begin{aligned}
& \text { an } \\
& \hline
\end{aligned}
$$

?

FouseCleaning Macbinery

Stationary Plant
for private residences. Uses
power from lighting power from lighting current,
$\$ 350$ and up. State size
of house. Private plants for office build
ings, department stores, etc, Portable plants for residen
tial cleaning business, $\$ 2,000$
We sell exclusive and up. We sell exclusiv
city rights. Over 85 companie
now operating.
General Compressed Air House Cleaning Co. NMMAMC,

Scientific American.

А

Sarsaparilla, Clantrell \& Cochrane. Sauerrkaut, Clyde Kraut Co. Son

 Shirts, certain named, Regent Shirt Co...
Shirts, dress and negligee, Columbus Shirt

 Specific for rheumatism, gout, and neuralgia,
F. A. Schulz

 Parker Pray co.

Whisky, Melchers \& Eftier
 LABELS.

"White Eagle Tea," for tea, A. Kempler.. 13,034 PRINTS.

A priuted copy of the specification and drawins of any patent in the foregoing list, or any patent
in print issued sine 1863, wil be furnished from
this oftice for 10 cents, provided the name and this otice for opents, provided the hame and
number or the patent desired and the date be
given. Address Munn \& Co., 361 Broadway, New York.
Canadian patents may now be obtained by the in.
ventors for any of the inventions nemed in the for

I KNOW

Where to locate you on the
LEHIGH VALLEY RAILROAD
if you want to establish a new industry or re-locate one already established.
P. H. BURNETT, Indusizrial Agent
143 Liberty St., N. Y.

DRINKING WATER
Scientifically cooled with the Wsecit Cooler

You-SEE-1T (THE WATER) Costs you less than the germ breeding kind. Will last a life time. Practically indestructible. Accompanying cut is sect-
ional view of our No. 1 cooler with five gallon bottle. Price $\$ 12.00$. Note pure block tin coil connection from bottle to faucet. Water cannot become contaminated even if impure ice is used. Guaranteed to give perfect satisfaction or money refunded. Our cooler is covered by broad basic patents. All similar coolers are infringments. We manufacture a full line of coolers to fit any bottle. Prices from $\$ 5.50$ to $\$ 36.00$. Ask your dealer or write us for illustrated catalog.
N. B.- J. Hungerford Snith Co., Rochester, N. Y., have adopted the "USEEIT", Cooler with
special features, (Price \$12.00) for dispensing their famous Golden Orangeade at frrt class

The Consumers Company, Cooler Dept., 3517 Butler St., Chicage

No Fooling Around

 HACK-SAW BLADES They can always be found "on the job," They are thinand hard, built for use in rapid Work -very rapid.
Finest hot-rolled sheet steel used in their manulac. (GOODELL-PRATI COMPANY
Green
Grenfield, Mass.
C
2
7
7
7
7

Chat Arack ana wason or stock soale made
 George White Company Fine Experimental Machinists
28 and 24 Morrice And Sorrs. JERSEY CITY, N. J. A Few Things That We Can bo
 Experimental Wark, Mechanicial Diawings, Work Special Machinery, Jigs, Tools and Dies.
Speciat - \#hotors; Hydrocarton; steam;-Compresse Pertectand Connotrie

Call and See A Few Things. We Have Done
Bausch \& Lomb-Zeiss

Bausch \& Lomb Optical Co. ROCHESTER; N. Y

LEARN TO BE A WATCHMAKER

 do it, why not you 7 lits easy; write to u and we'll tell you

IFYGU GIVEA HOTRTRYIT CHBESLY\&CA

STEAM USERS
 Ralmow Padimf

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
Whor steam, air, hot or cold water, aed and arnmennaints. Beware of imitations
Look for the trade mark-the word Rainbow in a diamond in. black, three rows of which extend the full length of each roll.

Manufactured exclusively by
PEERLESS RUBBER MIFG. CO 16 Warren St., New York

FISK TIRES ARE REMARKABLE
for the Simplicity and Ease with which they can be repaired, for their Positively Safe Rim Attachment, their Comfort, a
Fisks cannot roll on the rim. It is so firmly secured that there is absolutely nochance for it to creep absolutey nochance for it to creep cannot get pinched. All the air in a Fisk is entirely above the rim, making the one perfect wheel eushion.
They are now recognized everywhere as The Standard for Sterling Excellence of Design, Material, and Construction.
We would like to send you an article
on the subject of different tire con-
THE FISK RUBBER CO., Chicopee Falls, Mass.

SPENCERIAN O.N.P.

OUR NEW PEN NO. 21. DOME POINTED.
Ball shaped points for free hand writing, will avoid scratching and spurting. Will SPENCERIAN PEN CO. 349 Broadway, NEW YORK

The Rule of Thumb

is not a good rule in mechanism

The distance from first joint to end of thumb nail is
not a reliable standard of measurement. It is liable to not a reliable standaid of measurement. It is liable to
be different in every thumb; therefore the best me chanicizns ertploy it morc accurate tool for measuring
inchss, one which insure unuiform and accurate results. inches, one which insuree uaxiform and accurate results.
Why should the cost Accounting deparment be Cost of an artucle depetd upgig the guese or estumate
Caleulagraph It makes no errors, Its records are mechanically ac
curate. It show exactly how long a man works on each job or operation.
Glad to tell you more about it

Calculagraph Company 1433 Jewelers' Building, New York, U. S. A.

FOR DEPENDABLE POWER

For power that will give you the best service with the
least troubee and expense to
vour vu-power adapted to Get an I. H. C. Gasolind Engine Because it is built more simply, along more practical
lines, than any other high grade Engine. For fues, tuse gasoline, gas or denatured alco the Let us show you how and why it will save you time.
money and bother. There are good reaso money and bother. There are good reasons and
plenty of them. Yo owe it to yourselfto investigate.
send for Free Patan Send for Free. Yata $\%$ oeque, in to yourself to investigate.
ing Horizantal
 International Harvester Company of America (inc.) TOOL KNOWLIDGE CHEAP
 This cut represcnt have it free new Tooi bound and contains 950 pages all about Tools. Full descriptions
and thousands of illustrations. and thousands of illustrations.
Sent post-paid on recelpt of $\$ 1.00$
which is refunde which is -refunded on your trst
purchase from us of $\$ 10.00$ or over MONTGOMERY \& CO. 105 Fulton St., N. Y. City

