

A Scientific Party Making Observations on a Glacier Moraine.
It is the busmess of these men to survey the glacier by means of the usual methods employed in civil engineering and to determine its rate of movement and its depth. Stakes are driven in the ice and ther change of position noted.

General View of Mount Tacoma.
Great Nisqually glacier shown just below the summit and at the right of it. Scientific exploring party in the foreground. The glacier has apparently cut its way through the volcanic rock on which it orlgunally rested. The rate of movement is about $2 \mu \not 2 / 2$ inches a day at the lower portion.

Photos. by A. Curtis.
Typical Crevasses in a Glacier of the Selkirks (British Columbia).

SCIENTIFIC AMERICAN

 ESTABLISHED 1845MUNN \& CO. Editors and Proprietors

No. 361 Broadway, New York

terms to SUBSCRIBERS
One copy, one year, for the United States. Canada, or Mexieo.
One copy, one yearr, to any fureign country, posi.00 the soientific american publications

Money order, or by bank daft or check.
MUNN $X \mathbb{C O}$., 361 Br Broadway, New York.
NEW YORK, SATURDAY, JUNE $30,1906$.
The Editor is always rlad to receive for examination illustrated
rticle on subjects of timely interest. If the photographs are
sharp, the articles short, and the facts authentic, the contributions articles on subjects of timely interest. lif the phontographs are
share, the articles short, and the facts authentic the contributions
will receive speciah attention. Accepted articles will be paid for
at regular space rates.

A LOCK CANAL FOR PANAMA

Thanks to the arguments which have been advanced by the President, the Secretary of War, and the Chief Engineer of the Panama Canal, the Senate has voted for a lock canal across the Isthmus-a legislative decision which will probably be welcomed by the engineers who have been intrusted with the building of the waterway and by all Americans who have at heart a speedy termination of an undertaking that means much to the economic advancement of the country The sharp conflict which has been waged by the advo cates of sea-level and lock canals, and which has resulted in a delay both irksome and perplexing to the engineers at Panama, is now happily ended, and that project has been selected which, in the opinion of those most competent to judge, will most satisfactorily fill the immediate need of an Isthmian waterway.
Of the thirteen members of the International Board of Consulting Engineers, eight reported in favor of a sea-level canal and five in favor of a lock canal. Of the six members of the Canal Commission, five were in favor of a lock and only one in favor of a sea-level waterway. Now that the dispute has been settled, the recommendations of the President and Chief Engineer Stevens will no doubt be carried out. According to these recommendations, a gigantic dam is to be erected at Gatun, measuring 7,700 feet in length and 131 feet in height, which dam is to be composed of no less than $21,200,000$ cubic yards of material, and upon which the permanence of the canal rests. To this dam a 500 foot channel will lead from the Atlantic. Three locks arranged in a double flight will lift ships from the sea level to the huge sheet of water impounded by the sea level to the huge sheet of water impounded by the
dam at an altitude of 85 feet. Through this great artidam at an altitude of 85 feet. Through this great arti-
ficial lake, and through the waters that will spread ficial lake, and through the waters that will spread
from it back through the Chagres Valley, vessels may steam unrestrictedly at a speed which they could never possibly attain in the sea-level canal contemplated originally. After passing through the Culebra cut to Pedro Miguel, the vessels will begin their descent by means of a lock having a 30 -foot lift, and will then steam through another lake formed by a dam erected in the valley of the Rio Grande. A double flight of two locks will drop the ships to Panama Bay: Accord ing to the President's reconmendations, the canal will have a minimum depth of 45 feet, will be finished in nine years, and will cost $\$ 140,000,000$.
We have already had occasion to comment on the economy and quickness of construction with which a waterway built on the high-level principle can be built. Chief among the advantages to be enumerated is the substitution for a forty-mile channel varying in width from 150 to 200 feet of two great artificial lakes yielding over thirty miles of deep water through which ships can steam at full speed, free from any risk of grounding or collision. More doubiful, however, is the expediency of building an earth dam at Gatun having the afore-mentioned length of 7,700 feet-doubt ful because of the dam's ability to prevent seepage at the base. Still, it must be admitted that the success of the earth barriers at Wachusett in Massachusetts and San Leandro in California justifies the construction which the President and his advisory engineers have advocated.
To the engineer it must be gratifying that his professional opinion has triumphed over the sentimental clamor for a sea-level canal that could be completed only at enormous cost and a chafing delay.

REDWOOD IN THE SAN FRANCISCO FIRE.

In our issue of May 12, 1906, our San Francisco correspondent, in presenting his views of the great earthquake, condemned the use of redwood as a building materiai, and gave it as his opinion that it seemed fully as objectionable as pine in the "fierceness of its flame, quickness to ignite, and the intense heat of its combustion." He based his condemnation on his personal memory of the Chicago fire, where he had had sonal memory of the Chicago fire, where he had had
ample opportunity of observing the inflammability of pine.

A member of the Redwood Association takes us to task for our correspondent's criticism, and furnishes us with letters that he has received from San Francisco officials, all of whom unhesitatingly declare that redwood is more refractory than pine, and some of whom even venture the opinion that the fire was stayed by buildings finished with redwood exteriors.
We are only too well aware of the merits of Ca We are only too well aware of the merits of Cali-
fornia redwood to decry its use in unmeasured terms, and too keenly alive to its admirable fire-resisting qualities to class it with pine for ordinary purposes. Still, we may be permitted to believe that any wood, subjected to a heat so fierce that the steel columns of a modern fireproof building sink and bend under it as if made of wax, must be regarded as unsafe, whatever if made of wax, must be regarded as unsafe, whatever
its refractory qualities may be in comparison with other woods, and in that opinion no doubt every builder will concur. For all the safety which it gave, the redwood which was consumed in the great conflagration might just as well have been supplanted by pine or by material even more combustible.

Admitting the ability of redwood to withstand ordinary heat for a greater period than most woods (and this, we take it, is all that redwood advocates claim for it as a fire-resisting material) we must attribute the salvation of that portion of San Francisco which escaped to the very liberal use of dynamite. The fire was stayed in the very midst of redwood structures, it is true, but doubtless its course would have ended where it did, had these same structures been built of other material.

COMPARISON OF WESTERN IRRIGATION RESERVOIRS

 AND THE NEW CROTON DAM.One of the most surprising features connected with the work of the Reclamation Service, as well as the one affording highest gratification, is the cost of structures compared with those which have become familiar to engineers in the East.
When the reclamation work was inaugurated, it was a matter of conjecture whether or not the standards of cost for dams, canais, etc., that had been established by engineering practice in the eastern part of the country, could be relied upon as a basis of estimates of the cost of the proposed western structures. As the work has progressed, it has become more and more evident that many classes of engineering work in the West can be performed much more cheaply than in the East, and at the same time the natural conditions are such that these structures are more economical and effective.
If we take, for example, the three great masonry dams now being erected for the purpose of storing water, viz., the Roosevelt dam in Arizona, the Pathfinder dam in southeastera Wyoming, and the Shoshone dam in northwestern Wyoming, we shall find that the effective storage capacity and costs are far below those of some of the great eastern dams like the new Croton in New York and the Wachusett in Massachusetts. The heights of these dams are as follows: Roosevelt, 280 feet; Pathfinder, 210 feet; Shoshone, 308 feet; new Croton, 297 feet; and Wachusett, 207 feet. These heights are measured from the foundation stones to parapet in each case, and they show that the Shoshone is the highest, while the new Croton is second and the Roosevelt third. If, however, the height above the river bed be considered, that is, the effective storage height, the new Croton is the lowest. The order is then as follows: Shoshone, 240 feet; Roosevelt, 230 feet; Pathfinder, 200 feet; Wachusett, 185 feet; and the new Croton, 157 feet. In other words, about fifty per cent of the masonry in the new Croton dam is below ground and is serviceable for foundation purposes only.
It is interesting to note the comparative reservoir capacities. While the new Croton dam is the largest in the world from the standpoint of its amount of masonry, the storage capacity of the reservoir formed by it is by far the lowest of any of those above mentioned. In fact, from a standpoint of storage economy, the new Croton reservoir is one of the poorest that has been constructed in recent years. The dam contains 833,000 cubic yards of masonry, and was erected at a cost of $\$ 7,600,000$. The capacity of the reservoir formed by it is $4,000,000,000$ cubic feet, or a cost of $\$ 1,900$ per million cubic feet storage. Similar figures for the Wachusett dam show that it contains 280,000 cubic yards of masonry, and was erected at a cost of about $\$ 2,000,000$. Its storage capacity is $8,400,000,000$ cubic feet, or a cost of $\$ 238$ per million cubic feet storage. In contrast to these excessive costs, the three western dams appear remarkable. The Roosevelt dam, for example, contains 350,000 cubic yards of masonry, erected at a cost of $\$ 3,850,000$. The capacity of the erected at a cost of $\$ 3,850,000$. The capacity
reservoir is $61,000,000,000$ cubic feet, or fifteen times that of the new Croton, and about seven and one-half times that of the Wachusett. The cost of this dam per million cubic feet storage is only $\$ 63.16$. Even more remarkable appears the Pathfinder dam. It contains 53,000 cubic yards of masonry, erected at a cost of $\$ 1,000,000$. The capacity of the reservoir is 43,560 , 000,000 cubic feet, or more than ten times that of the Croton. The cost of the dam per million cubic feet
storage is therefore only $\$ 22.95$, as against $\$ 1,900$ for the new Croton, and $\$ 238$ for the Wachusett. Similar figures for the Shoshone dam, the highest in the world, are: Cubic yards of masonry, 69,000; cost, $\$ 1,000,000$; capacity of reservoir, $20,000,000,000$ cubic feet; or a cost per million cubic feet storage of $\$ 50.35$.
These extremely low costs have seldom been equaled in the history of reservoir construction, and are due largely to the excellent natural facilities which are found in the rugged western country. From this fact it must not be inferred that these western structures are simple engineering works. On the contrary, owing to their isolated location, their inaccessibility by rail and often by wagon, and the erratic and torrential character of the streams, they involve problems which tax the skill and ingenuity of their builders to the utmost.
It is most fortunate that these reservoirs provide enormous storage at relatively low cost. Otherwise their construction would not be feasible, as the irrigated land could not bear the expense of the costly structures of the East with their limited storage capacity.
The Croton dam, if it had been constructed in Salt River Valley in Arizona for irrigation, would only supply 23,000 acres, and irrigators would have to pay $\$ 330$ an acre for stored water, as against $\$ 20$, the estimated cost from the Rcosevelt dam.

SEEDS AND SUSPENDED ANIMATION,

It has often been observed that any sudden change in the superficial character of the soil is rapidly followed by an alteration in the nature of the plants growing thereon, new species appearing where the ground has hitherto been a stranger to them. Very many farmers, foresters, and scientific men-among. others the French botanist Poisson-are inclined to attribute this phenomenon to the retention of seeds, bulbs, or spores of a former growth of vegetation in a quiescent state, these seeds and growths retaining their powers of germination even after several other successive crops of plants have grown above them. Most botanists, however, have doubted the possibility of seeds' retaining their germinating properties for so long a time, and have explained the sudden appearance of strange plants in different places by natural means of seed transmission, as, for instance, by birds, bees, currents of air, and the like. A remarkable fact was once observed by Th. v. Heldreich at the mountain called Laurion in Attica. After the removal of about ten feet of soil and rubble which had been undisturbed for ages, there suddeniy sprang up a plant unknown theretofore in that region, viz., a glaucium or horned poppy, accompanied by a rich growth of the fly-catcher or Silene juvenalis Del, a plant quite a stranger to Attica.
This mystery of plant life has, so far, been a vexed problem, and several theories have been suggested for its solution. A French scientist (M. Fliche) has recently made some exhaustive studies in this connection, and has observed some interesting phenomena which have occurred with specimens of a southern European plant called wolf's-milk or cypress-spurge (Euphorbia lathyris L.). This plant is not indigenous n France; a few years ago, however, some Nancy botanists were astonished to find large quantities of this plant in full blossom in a district where it had never before been seen, namely, in a two-year-old clearing in the large forest of Hane in the canton of Petite Malpierre. Two years later the plants had entirely disappeared. Thick growths were found, however, a short distance off in another two-year-old clearing, but only a few specimens were encountered in another clearing which was a little over three years old. Fliche does not doubt but the gradual. disappearance of the plants is due to the influence of steady forest growth, and not to any inferior seed or peculiar germinating powers thereof. In order to determine this point he made several special clearings on the spot, and the result of his experiments was fully to confirm his theory. As the part of the forest where the plants grew was very remote, and seldom visited by human beings, there was no question of the seeds having been carried there either intentionally or accidentally.
At this spot, over forty years ago, the remains of large Gallo-Roman iron works were found. Now Plinius states that the Romans used the Euphorbia lathyris for medical purposes; Fliche is consequently conviriced that the plants were originally introduced by the persons living ait the works, that the seeds lay hidden in the ground when the forest invaded the territory in the course of its growth, and that they did not awaken from their long slumber and again seek the surface till the axe of the modern woodman cleared the ground and paved the way for their resurrection. This opens un quite a new field for the student of Nature's mysteries, and doubtless, as time progresses, some cloce observer will discover more precise data with which to supplement these brief particalars.

the heavens in july.

The progress of discovery often forces us to modify our scientific definitions. For example, a few years ago the asteroids were defined as "a group of small planets circulating in the space between Mars and Jupiter." In 1898 a planet was found-the famous Eros-which comes much nearer the sun than Mars does, and there followed some discussion whether it should be called an asteroid or not. Now the limit has been extended in the opposite direction, for a faint object was discovered early last spring, which turns out to be a minor planet which is more remote from the sun than Jupiter is. This object has not yet been named, but is known as TG, according to the system of lettering newly-discovered planets which has been in force for a dozen years or so. The next discovery would be called T H, and so on-and it may give a good idea how fast asteroids are being found, to say that in the last three months enough have been recorded to give the last one the letters U K.
The planet has now been under observation for more than two months, and its orbit is fairly well determined. Its period appears to be a few days more than twelve years-more than half as long again as that of any previously-known asteroid, and two months longer than that of Jupiter. Its mean distance from the sun is 487 mil lion miles, but as its orbit is decidedly eccentric, the actual distance may vary all the way from 405 to 569 millions. If its orbit lay in the same plane with that of Jupiter, it would run a risk of colliding with its gigantic neighbo whose average distance from the sun is 483 million miles). But the orbit is inclined in such a way that when the asteroid is at the same distance from the sun as Jupiter is, it is high above or below him while when the two are in line with the sun, it is either much nearer th sun than Jupiter or a good way outside him. How ever they may be placed in their orbits, they can never come within about fifty million miles of one another.
At the present time they are four or five hundred million miles apart, and will remain so for a long period. The asteroid is ahead of Jupiter, which is gradually catching up with it, but their rates of motion are so nearly equal that in a whole rev olution about the sun Jupiter only gains about one-seventy-fifth of a revo lution upon the asteroid. As the latter is now abou one-sixth of a revolution ahead, it will take Jupiter more than twelve of his revolutions, or about one hundred and fifty years, to catch it. Similarly, we see that it is some seven or eight hundred years since they were last near together
With more accurate measurements (of the asteroid, which we shall have in a year or two) it may turn out that the intervals between such approaches are a good deal longer or shorter than the rough numbers given here; but it is certain that this small planet has been revolving in its present orbit for a long time, and will continue to do so for many years. When next it gets close to Jupiter, it will stay near him so long that the shape of its orbit may be very greatly changed, and the astronomers of a century or two hence may find this matter very interesting
It need hardly be said that the new planet is a very faint object. It is of the fourteeenth magnitude, and its real diameter may be estimated at about sixty miles, which makes it rather a large asteroid, so far as actual dimensions go, though it is so far from the sun that it appears to be one of the faintest of the group

Our map shows clearly the principal constellations of the evening sky. In the northwest the Great Bear is conspicuous. On the left is the Lion, just ready to set. The Virgin and the Herdsman are the principal groups in the southwest, the latter being very high up.

In the south is the fine group of Scorpion, now seen at its best. The star a is interesting for its bright red color, and μ because it is double, separable on a clear night by the unaided eye. The Centaur and the Archer (Sagittarius) are on each side of the Scorpion, and the Serpent and the Bearer are above.

The Eagle, the Swan, and the Lyre are the brightest groups in the eastern sky, and the smaller group of the Dolphin is not hard to find. Cepheus and Cassiopeia are low in the northeast, and the Little Bear and the Dragon are higher, above the Pole, while Hercules and the Northern Crown are right overhead. the planets.
Mercury is evening star all this month, and is best visible about the 15th, when he is farthest from the sun, and sets about 8.40 P . M.

Venus is likewise evening star, some distance above Mercury, and sets between 9 and 9.30 P. M. all through the month.
Mars is in conjunction with the sun on the 15 th , and is invisible all through July. Jupiter is morning star in Taurus, rising about 3 A. M. in the middle of the month. Saturn is in Aquarius, and rises about 10 P. M. on the same date.
Uranus is now well placed for observation, and may be easily identified, being about 2 deg. north and 1

ORIENTATION OF CARRIER PIGEONS.

Dr G. H. Schneider many years ago conducted some very interesting experiments which were concerned mainly with the education of young carrier pigeons and with the short flights of adults. The results of his work are given in the Zeit. f. Psych. u. Phy. d. Sinnes. The question that Dr. Schneider sets out to answer is this: Are pigeons guided by an inborn sense of direction which is unknown to us, or guided by the eye?
Dr. Schneider transported birds in a basket by carriage or by rail to the desired distance, and released them one by one. The time of the release, the condition of the weather, the number and characterstic markings of the bird, were all carefully recorded. The records were kept of the time of the return. The distances were very short, varying from two miles to twenty-five. Certain experiments were made to determine the relative ease of orientation between releases made in valleys and on mountains.
Schneider's conclusions are numerous, the one of chief interest being as follows: "The assumption that the carrier pigeons possess an inborn sense of direction is an error; for if this assumption were true, then the young pigeons ought to find their way equally well. The investigations have shown, especially those at Könitz, that young pigeons, even at relatively small distances from their home, have the greatest difficulty in finding their way back when the vicinity is at all strange to them, and their home cannot be directly seen." He then concludes that the young birds utilize, in their early flights, the familiar groups of houses, mountains, etc., and that the distances to which a bird may be taken and return may be increased commensurately with the increase in the development of his "topographical memory." The author believes that the pigeon can develop not only "Erinnerungsbilder," but even "Gedächtnisse."
Commenting upon these experiments, a writer in the Psychological Bulletin finds that "Dr. Schneider does not discuss the more difficult feats of the carrier pigeon. He says nothing of their long flights over the ocean. He says nothing of the socalled 'voyaging' pigeons of France. These birds travel over the continent in wagons. A stay of one or two hours in a town enables these pigeons to return to it. He has missed the point in the arguments of those who hold that there are factors in distant orientation which are not explicable by visual sensation or even visual memories. In
deg. east of the bright star λ Sagittarii (Archer) which is marked on our map.
Neptune is in conjunction with the sun on the 2 d , and is invisible this month.

THE MOON
Full moon occurs at $11 \mathrm{P} . \mathrm{M}$. on the 5th, last quarter at 5 A . M. on the 13 th, new moon at 8 A . M. on the 21 st, and first quarter at $3 \mathrm{~A} . \mathrm{M}$. on the 28th. The moon is nearest us on the 4th, and farthest away on the 16 th .
She is in conjunction with Uranus on the 5th, Saturn on the 10th, Jupiter on the 18th, Neptune on the 20th, Mars on the 21st, Mercury on the 23d, and Venus at 2 P. M. on the 24th. The last conjunction is quite close.

On the 21st of July there is a partial eclipse of the sun, but as it is only observable from the Antarctic regions, southeast of Cape Horn, it is of no practical account.
Princeton University Observatory.

Palladium has about the same degree of hardness as platinum. It may be easily rolled into sheet, and is usually found in commerce in the shape of thin sheet or foil.
the first place nobody, we believe, would deny that the pigeon uses vision where he can. And again, it is a mistaken use of the term 'sense of direction' to assume that it does not have to develop. Consequently we should not expect the young birds to return as well as the adult. The terni 'sense of direction' is used by careful writers with the implication that there is a definite psychophysical possibility of its being developed-just as there is a definite psychophysical possibility of visual sensations being developed."

Seldom in the history of chemical industry has any chemical product undergone such marked variation of price within a few years as thorium, the principal constituent of incandescent mantles. Early in 1894 thorium nitrate was sold by the German combination at 2,000 marks per kilogramme, and by January of the next year it had fallen to 900 marks; in July of the same year it stood at 500 marks, and in November at 300 marks. In 1896 it fell in May to 150 marks, and in October to 90 marks, touching the low price of 30 marks, in 1899. After that the price was pushed up to 53 marks, less 7 per cent discount, in May, 1904, a figure which the "Convention" succeeded in maintaining till January of this year, when it dropped to 27 marks, less 3 per cent discount.

THE "ITALIA" AIRSHIP.
An Italian inventor, Count Almerico da Schio, while convinced of the superiority of the "heavier-than-air" flying machine, considers the airship to be the best means of teaching men the art of navigating the air. The Count thinks it best, therefore, to reject the airship only after man shall have learned to move safely through the air with a balloon to supplement the floating power and stability of the flying machine proper.
The new "Italia" airship is accordingly designed as a complete flying machine including wings, propellers, and rudder, the balloon being made to fulfill the secondary function just referred to, and to become more and more reduced so as eventually to disappear as the flying machine proper is continually improved. The disadvantages common to most balloons of losing ballast in rising and gas in descending, are remedied by using the motor and aeroplanes exclusively for rising and descending. This will allow the airship to remain longer in the air, and will make it able at any time to seek for the most favorable air currents.
The airship "Italia" constructed by Count da Schio, as can be seen from the photograph, is cylindrical in

The "Italia" Airship in Flight.
the middle, throughout a length of 10.3 meters (42.64 feet), the diameter being about 8 meters ($261 / 4$ feet). The front part, 11 meters (36.08 feet) in length, re sembles the point of a shrapnel, and the much thinner

The Building in Which the Airship is Housed.
rear part is about 16.4 meters (65.61 feet) in length. The cover consists of varnished Italian silk coated outside with aluminium powder to reduce the effects of light. The regular symmetrical shape of the bottom of the balloon is obtained by coating the lower portion of the cover with highly elastic India rubber such as is used by Prof. Hergesell in connection with his "ballons-sondes." As this part is extremely. elastic (it can be stretched to four times its original length) the cover will always be uniformly tightened, and the balloon will maintain its regular shape with a volume varying according to the atmospheric pressure. The horizontal aeroplanes having surfaces of 10 square meters (107.64 square feet) each, used in rising and descending, augment the longitudinal resistance of the airship. The frame is provided with three wheels and pneumatic tires to facilitate its manipulation on land.
Only a few preliminary experiments have so far been made with the Schio airship, in which King Umberto and the Dowager Queen Margherita are taking much interest. While the results so far obtained would seem to bear out the claims made by Count Schio, judgment should be reserved till the definite experiments which are to take place shortly have been made.

THE LAYING OF A 10,000 -VOLT CABLE.
 by dr. alfred gradenwitz.

It is due to the high insulating power of atmospheric air that most electrical phenomena come at all to our notice. The same property of air proves very valuable in electrical engineering by allowing cur-rent-carrying conductors to be strung out in the open without the risk of leakage, provided there be no possibility of either a short circuit or a ground. These overhead conductors possess the advantage of being extremely cheap and easily inspected, but they are exposed to various dangers, rendering them unreliable for use in large cities. Here not only the risk of injury to the passer-by, but æsthetic considerations
as well, are urged against this type of conductor, and for these reasons cables are usually substituted for bare overhead wires. These cables consist of insulated copper conductors, either single or in sets of two or more; and in order to protect them from injury, and prevent the current they carry from doing any damage, they are buried in trenches.
We are indebted to the Berlin Electricity Works for the accompanying illustrations, showing the recent operation of laying a 10,000 -volt cable. The line is intended for transmitting current generated at the Oberspree central power station to the Zossenerstrasse and Alte Jakobstrasse sub-stations. The cable was constructed at the Oberschöneweide Cable Works of the Allgemeine Elektrizitäts-Gesellschaft. It is to carry three-phase current, and accordingly comprises three copper strands of 1.085 square inches cross section each. Each of these conductors, on account of the high pressure carried, is at first surrounded with a caoutchouc layer, and together with the two others is imbedded in jute. Around this insulation a lead sleeve is forced, and this serves to exclude moisture. Over the sleeve is a wrapping of jute, and on this an iron sheathing is wound. The cable was made in lengths of about 170 meters (557.7 feet) each and coiled on wooden drums. It was carried to the working place in special cars. The trench in which the cable was to be laid was dug to a depth of three feet. After running out the drum from the car, it was taken to the head of the trench, and a gang of workmen seized the end of the cable and carried it on their shoulders into the trench. Here it was dropped into specially arranged rollers, by means of which it was meann from the drum. This done, the cable was straightened and provided at intervals with labels indicating its cross section, the voltage it was adapted to carry, etc. so that any required strand might be readily identified in case of future repairs. As the iron sheathing referred to above could not be regarded as a full protection to the high-tension conductors, the cable was coated with a concrete layer. The concrete was placed in rough jute bags, which were jute bags, which were
 tamped down on the cable throughout its length. The jute bags soon gave way, permitting the concrete to set over the upper half of the cable, and thus provide it with a solid concrete covering. The trench was then filled in. The joints

Preparing the Protective Sheath.

Laying the Cable in the Trench.

maring the flags of our warships

by walter l. beaslef.

Through the courtesy of the Commandant of the Brooklyn navy yard and Commander A. Ward, chief equipment officer, the writer was given special opportunities for obtaining a full series of pictures showing an interesting and comparatively littleknown department in which the flags of our warships are made. The flag room is under the supervision of Mr. Thomas Malloy, officially rated as master flagmaker, and Miss M. A. Woods, quarter-woman flagmaker. Mr. Malloy favored the writer with all the main details of the flag department, which are outlined in the present narrative.

To furnish the many hundreds of naval vessels in commission, ranging from the large flagship and battleships and the numerous smaller class, with their regular quota of flags, the government is required to maintain an extensive plant. Few, however, realize the number of flags carried by a warship, nor the cost of all the gay bunting which flutters from mast to mast at holiday time. In addition to fleet communication, necessary during all forms of maneuvers in home waters, the ship must be equipped with an extensive array of flags stored on board for various forms of ceremonial and official occasions. This "dress suit" outfit of bunting, therefore, consists of

250 different flags, the material and making of which costs Uncle Sam just $\$ 2,500$. Each ship is entitled to a new flag equipment every three years, though a flagship will often require a new set of signals, owing to their constant use and handling, in about a year. A striking idea of the number of flags carried by a single ship may be gleaned from one of the accompanying illustrations, showing a pile 15 feet long and nearly waist high, just finished for the new battleship "Connecticut." About one-half of the lot is composed of foreign flags, incased in thick paper bags, with the name of the country stenciled on the bottom The remainder, including those for ordinary use, sig. nal sets, and the international code, etc., are not wrapped, but merely tied in round bundles. Last year for operating the flag factory the government expended $\$ 60,000 ; \$ 43,000$ of this amount was for material alone. This, however, includes a small sum for table linen and curtain fixtures; the labor amounted to $\$ 17,000$. The number of flags turned out was over 59,000 . In all, 408 distinctive kinds were made. To cut out the varied patterns and complete all these miscellaneous flags, some thirty-five skilled machine sewers and needle-women and three men are employed.
With the bright-colored, fantastic flags of all nation dangling from their machines, the long row of flag

Finishing the German Ensign, the Most Expensive One Made.

One of the Main Rooms of the United States Flag Factory at the Brooklyn Navy Yard.

The Hand Sewers Who Execute the More Difficult Designs.

The Star Cutting Machine ; Sewing On a Halyard Bend.

Cutting Out Patterns; the tlags of China and Siam Above and Below the Table. maring the flags of our warships.
makers present a picturesque scene. The long spa cious room is literally a blaze of color. Rolls of brigh bunting are heaped up waiting to be cut, while long lines of women operators are swiftly sewing the seams and putting the finishing touches to American and to forty-three foreign ensigns of different hues and patterns. The flags are cut out from measurements arranged on chalk lines and metal markers on the floor. Large stripes and certain designs can be more conveniently stitched in this way. Daily a section of the floor is covered at all hours with several different flags, with the men and women cutters at work. The final sewing is done on machines by the women. Each machine is run by a small electric motor of one-fourth horse-power. Owing to long service, the labor has become highly specialized, and the women are kept at work on the particular flags which they can make the best. Some excel in sewing on the stars, others in finishing certain other parts of the flag. Nearly all have been in the establishment for years. Their pay averages from $\$ 1.20$ to $\$ 2$ per day.
A great deal more time and labor is required to finish certain of these flags than is generally supposed. For instance, the President's flag requires the longest time of any to make, as it takes one woman a whole month to complete it. The flag consists of a blue ground with the coat of arms of the United States in the center. The life-sized eagle, with long outstretched wings, and other emblems, are all hand-sewed and involve the most patient work. The flag is made in two sizes, 10 feet by 14 feet and 3 feet by 5 feet. The silk used on this and other designs costs $\$ 9$ a pound. The largest flag made is the United States ensign No. 1, 36 feet long by 19 feet wide, which costs $\$ 40$.
The most difficult, expensive, and likewise consuming the longest time to make, are the foreign flags. This is especially true of the South American and cer tain others. These in most cases average 5 feet in diameter. The work is done by a half-dozen specially skilled hand device sewers, each having acquired the knack of making certain of the center designs to perfection, and continually kept on these respective flags. Every battleship carries forty-three foreign flags, 25 feet by 13 wide. A smatler size is also made. The weakest in point of power and smallest of the Latin nations have the most gorgeous and picture-bedecked ensigns. That of San Salvador is especially so, and requires much time and patient labor to complete. The half-tone representation of this hardly brings out the wealth of detail and elaborate sewing that is expended on it. For a center piece the San Salvador has a regular marine landscape, consisting of a belching volcano and a rising sun, set in a varied design of draped banners, cactus branches, cornucopias, and a swastika on the ground of a rayed diamond, with the date of the independence of the nation inscribed on the top. One hundred different pieces are used to form the center design. It takes one woman sixteen days to complete the San Salvador ensign, which costs $\$ 52.50$. The most expensive ensign to make is the German, which, owing to the delicate scroll work of the large imperial eagle and royal crown, necessitating delicate, slow, and careful sewing, costs $\$ 56.50$. The dragon flag of China consists of two hundred separate pieces. Twelve o fourteen days are ordinarily consumed in finishing this flag, which costs $\$ 51.75$. The flag of Siam with the huge white elephant costs $\$ 38$. The Mexican, with its center design of a large eagle holding a serpent in its bill, cost $\$ 39.50$. The cheapest foreign flag made is the Moorish, which costs $\$ 21$.
Last year 150,000 yards of bunting were used. This is all wool, 19 inches wide. Samples of English and Italian bunting have been tested in the past to compare with the American. The former lacked in tensile strength and was over-weight, and the red lost considerable color in the washing tests. The Italian filling was not up to standard, and likewise lost color. The warp and filling of the navy bunting now used has thirty-four threads to the inch, and is of light weighta very desirable feature. The material is given both a chemical and physical test. For the former several strips are cut from a bolt, which are soaked and washed in soap and fresh water for twenty-four hours. The next day the same process is followed, using salt water. They are then exposed to the weather for ten days, thirty hours of which must be in the bright sunlight. This is for the color test. No fading or running of colors is tolerated. For tensile strength, a strip of the warp two inches wide is placed in a testing machine, and must have a tensile strength of sixtyfive pounds, while two inches of the filling must sustain a forty-five-pound test.
The many thousands of stars are cut out by an ingenious machine, specially devised for this purpose, operated by a four-horse-power electric motor. Only a few years back the stars were cut out by hand. The machine has a plunger fitted with steel knives, the shape and size of the star. A single down stroke cuts out from fifty to one hundred at a time.
Pressing the foot on a pedal operates the machine. In all, eight different sizes of stars are used, each having a special die. Running the machine for only
an hour a day furnishes enough stars to keep the women operators going for several days. The stars vary from fourteen inches in diameter to less than two. All completed flags are pressed by an electric ironer. A heading of flax raven canvas is sewed on, together with a distance lining of plaited hemp rope. This fiber will not kirk or twist, and is specially made for flag purposes on board the naval prison ship at Boston. Wooden toggles for catching the loop are also put on, and the border stamped with the name of the flag and date of contract. After being critically inspected and passed by Master Flag-maker Malloy, the flags are delivered to the general storekeeper in the yard, where they are held until needed by commissioned ships.

HOW GLACIERS ARE STUDIED.

by charles wiles.

Despite the interest that has been taken especially in recent years in the study of glaciology, the thickness of but one of the world's glaciers has been accurately determined. This is one of the ice formations in the Tyrol, which has been pierced by the tedious process of hand drilling, and its depth from the formation on which it rests to the surface of the ice ascertained to be a little over 400 feet. The thickness of the great Piedmont glaciers, such as the Mala spina and Miles, and the Alpine glaciers in the Cas-

Photo. by A. Curtis.

A Hard Climb.

HOW GLACIERS ARE EXPLORED.
cades of the United States and the Selkirks in British Columbia, have only been estimated by those who have made a study of them.
While scientific observation on other lines has been materially aided by funds advanced by institutions and individuals, glacial study in America has not had the support its importance merits, and much of the data we have of the great ice masses lying on the coast and mountain slopes of western America is due to the efforts of a few investigators, who in some instances have taken up the work unaided financially. Thus it happens that the surface dimensions and glacial flow or movement have embraced most of the information with which we are familiar. For example, the Nisqually, one of the largest on Mount Tacoma or Rainier, has been calculated to be at least 500 feet thick near its lower edge. A study of the ice wall at the point where it terminates in the Nisqually Valley would indicate that these figures are not exaggerated, and that the slope of the valley which is covered by the glacier may be more abrupt than is generally supposed. Should this be the case, the thickness at the bottem may be much more than the estimate given.
This lack of data in connection with glaciology is more noticeable for the reason that the glaciers, not only in the Alps but in the western portion of the United States and in British Columbia, have been the subject of careful study. The notable group on

Mount Tacoma (Rainier) has formed an attractive series for scientists. As far back as 1857 at least one of the formations on Tacoma was known, but no authentic information was obtained until investigated by Prof. E. S. Emmons in 1870. In 1905 Prof. Le Conte, of the University of California, ascended the mountain, and with his associates devoted consider. able time to a careful survey of the Nisqually glacier. The results of the investigation of this party proved of much value in adding to information on the subject, although, as stated, no measurements of the thickness of the ice could be secured except figures based on general estimates. The surface of the Nisqually was measured by the use of such well-known instruments as the theodolite, and its width and length accurately noted for what was probably the first time.
The movement of this gla.cier has been the subject of much attention among scientists, who have visited Mount Tacoma, on account of its shape and location. Lying in a valley inclosed by walls of lava formation, the glacier apparently has cut its way through the volcanic rock on which it originally rested, for the walls on either side rise above the ice surface to a height ranging between 1,000 and 1,500 feet. The incline of the glacier downward is at a very steep angle for the greater portion of its length. In fact, the head of this great river of ice in places is almost a vertical wall. Consequently, the downward pressure is enormous. In summer, when the lower portion disintegrates more rapidly on account of the rise in temperature, the fissures or crevasses in the surface are much more numerous. The movement of the ice mass in connection with the moraines is of such extent, that one can distinctly hear the sound produced by the cracking and grinding of the ice at a distance of a half mile from the gorge in which it lies. That the Nisqually is one of the most active glaciers in North America is shown by the fact that in a single day the lower portion has moved twenty-two inches. One of the most rapidly-moving glaciers thus far measured is the Mer de Glace in Switzerland, which has a record of thirty-five and one-half inches in twenty-four hours. Needless to say that the movement varies considerably, depending much upon the time of the year, as well as the bed on which the glacier rests. Should the formation change in character by the erosion of the ice, and the latter encounter a soft rock stratum, its downward movement may increase considerably, owing to the decrease in resistance to it. The width of the Nisqually from edge to edge is nearly 1,500 feet; its depth has been estimated at 500 feet. The crushing force of such a mass can only be imagined. Looking down into the abyss in which the glacier lies, the Niagara gorge seems of insignificant proportions in comparison.
The Nisqually is one of four large glaciers which form the upper ice cap of Mount Tacoma-a cap of such dimensions that at a distance of sixty miles the top of the mountain appears to be entirely covered with it. Like the Nisqually, each of the others forms the source of one of the most important rivers of the Northwest, this single mountain giving birth to the Nisqually, the Cowlitz, the Puyallup, and the White rivers. Including the smaller ice fields, Mount Tacoma contains no less than sixteen glaciers. Consequently it affords in itself a broad field for the study of glaciology.
As has already been stated, the surface of glaciers is measured by some of the methods usually employed in civil engineering. To ascertain the movement, however, a somewhat novel plan has been adopted in conection with the Tacoma glacier. Selecting suitable spots on the surface, holes are cut in the ice into which stakes are firmly driven. Care is taken, however, to set the stakes in a straight line at right angles with the length of the glacier. The stakes are placed at nearly equal distances apart, the line extending a considerable distance across the surface. Other stakes or base marks are made on the bank at the side of the glacier. The change in the position of the stakes after they have been driven aids in determining the glacial movement, for they not only show the total extent to which the ice mass has worked its way downward, but the more rapid movement of some portions than others, as the line of stakes is so irregular. For example, the stakes in the center may be considerably in front of those at the side, indicating that here the downward and forward pressure is greatest. Another method of ascertaining the movement is to substitute cairns of stone for the stakes, locating them with special relation to "monuments" on the bank, so that the movement can be gaged by their position after being erected.
Prof. Le Conte's party had a special opportunity to observe the extent of the crevasses in the Nisqually as well as the Cowlitz glaciers, since their investigations extended beyond the névés in each case. The trip up the mountain was made from Reese's camp in the Paradise Valley, which is bounded on one side by the Nisqually gorge. One of the principal routes taken in reaching the summit is up the head of this valley, skirting the precipices known as Mc-

Clure's rock and Gibraltar rock, the latter extending nearly to the head of the Nisqually glacier. The accompanying photographs give an idea of the ice climbs and snow crossings which the party encountered dur ing its investigation.
While none of the larger crevasses could be precisely measured as to depth, it was the conclusion of the observers that few if any of those on Mount Ta coma exceed 150 feet in depth, although guides on the mountain claim to have come across fissures in the Cowlitz formation over a half mile in length. It is believed that the depth of these ice cracks in the Alps as well as in America is often grossly exagger ated, and that instead of being 300 or 500 feet as is sometimes stated, they seldom exceed 200 , since the downward movement of the ice continually tends to force the walls of the crevasse together, overcoming the force which originally caused the disruption.

The Industrial Uses and value of Alcohol.

(Continued from page 511.)

The automobile in this country is but one way in which the internal combustion engine is finding favor as a substitute for steam, for animal power, and for human labor. A conservative estimate of the number of such motors in service in the United States at the beginning of the present year placed it at 300,000 , including mechanism for operating small vessels as well as stationary engines. The rapidly expanding use of this form of power is shown by the present output of companies making a specialty of constructing so-called gas and gasoline engines. One plant located in Philadelphia is building about 1,200 engines this year, which will aggregate 20,000 horse-power. This is a branch of a German corporation which constructs liquid fuel motors ranging as high as 3,000 horse-power for an individual installation. The American orders of this company during 1906 will need a supply of at least $6,000,000$ gallons of fuel for their operation. The Board of Commerce of Detroit, which is a notable manufacturing center for small motors, has made a canvass of the various companies, and has learned that during the present year they will complete mechanism for automobiles, marine use, and for pumping which will require at least 200,000 gallons of fuel daily when in operation. As a further indication of the expansion in the motor industry, two plants in Chicago have increased their facilities until they now have a combined capacity for building no less than 50,000 motors annually, ranging from 1 to 20 horse-power each.
As yet gasoline constitutes the staple fuel for the internal combustion engine in the United States. Therefore its properties compared with those of ethyl alcohol as a source of power are of no little interest. Fortunately, alcohol has already been employed for internal combustion motors to such an extent that its advantages or disadvantages can be correctly determined. In Germany a series of very exhaustive shop tests have recently been made with gasoline and alcohol with engines which varied in size from 10 to 30 horse-power. The results obtained showed that an engine of a given size-that is, a given cylinder capacity -produced an average of 20 per cent more power when run on alcohol than when operated with gasoline. This is due to the fact that it is possible to get a higher efficiency from alcohol, because it can be compressed to a much higher degree without danger ot spontaneous combustion than is possible with gasoline. The thermal efficiency of the engine, that is, the degree of utilization of the heating value of the alcohol, is therefore much greater than it is with gasoline, the figures being about 21 per cent for gasoline as against 30 per cent or more for alcohol. The consumption of alcohol per horse-power at this test was practically the same n volume as when using gasoline-about one-eighth of one United States gallon per hour. This is as far as the shop tests made with such engines before shipment were carried.
Another test has been made by a chemist, a professor in a German university, the object being to determine the effect of the exhaust gases upon the interior portions of the engine and its connections, and the degree to which the atmospheric air would be contaminated if the exhaust gases, as might be the case, were puffed out into a room occupied by human beings. This was done with a view to using alcohol locomotives for transporting cars in mines instead of using horses, mules, or gasoline power. The results showed hat these exhaust gases contained 20 per cent less obnoxious constituents than the exhaust gases from a gasoline engine. It was also shown that an alcohol engine produced about 30 per cent less constituents which tend to contaminate the air than a number of horses doing the same amount of work as the engine. In addition to this, the horses or mules will keep on fouling the air when they are doing no work at all, which, of course, is not the case with an alcohol engine when idle.
Tests have also been made of engines in actual service in this country by employing the two fuels under the same service conditions, the motors being of 10
and 15 horse-power. A few preliminary tests were made to compare the rate of evaporation and danger of explosion of gasoline and alcohol. First, a surface about six inches square was covered with equal volumes of gasoline and alcohol. The alcohol took twice a long to evaporate. Second, a small quantity of gasoline in a receiver placed in any part of an iron bucket had, at the end of a half hour, nilled the bucket with explosive mixture, so that a lighted match placed anywhere in the bucket caused an explosion. The same experiment tried with alcohol failed entirely, although the alcohol was allowed to stand a longer time. There are two reasons for this. Even dilute mixtures of gasoline vapor and air are explosive, and gasoline vapor, being much heavier than air, diffuses upward very slowly, thus keeping the mixture near the liquid rich enough to be explosive.
The 10 -horse-power engine was tested with alcohol in the same condition in which it had previously run on gasoline, without any change whatever. It developed 11 brake horse-power, as against 10 horse-power with gasoline, and consumed $1 \frac{1}{2}$ pints of alcohol per horse-power per hour. By increasing the compression of the engine, this consumption was reduced to 1.1 pints per horse-power per hour. There was no diffi culty in starting the engine on alcohol, even when cold. This is particularly important to determine, as in the German engines it was necessary to start the engine on gasoline and turn on the alcohol after the engine had "warmed up," which took about two or three minutes. The 15 -horse-power engine showed sim ilar results, the power developed being 16.5 as against 15.2 with gasoline, while the spirit fuel consumption was 1.08 pints per brake horse-power per hour.
In this connection it may be added that alcohol has been substituted successfully for gasoline in a trial made with the engines of a United States sub marine torpedo boat. A test of several hours' duration was made, during which an engine was connected to two full tanks, one containing gasoline and the other alcohol, in such a manner that either of the two fuels could be turned on or shut off. The engine was first started on gasoline, and after a half hour's run the gasoline was shut off and the alcohol turned on. There was no change then in the amount of power developed, but the fuel supply valve had to be opened a little more, increasing the consumption from 0.110 of a gal $1 . \mathrm{n}$ to 0.130 of a gallon per horse power hour. The :ngine was shut down after a two-hour run, allowed to cool off, and we.s started on alcohol and run for an other period of one hour. It was then taken apart and the cylinder valves and interior portions of the engine were carefully examined by the engineer. It was shown that the parts exposed to the combustion were as free from rust or sediment as they generally are when using gasoline.
Referring again to Germany, in 1905 over one thousand engines were built in that country to utilize denaturized alcohol exclusively. They included motors for vehicles and boats, motors to drive farm machinery, motors for pumping water as well as for electric light plants, bakeries, and flour mills. All these are actu ated on the same principle as the gas or gasoline engines. The alcohol is injected into the cylinder in the form of spray, being compressed by the piston on the return stroke. The contact points of the electric igniter extending to the interior of the cylinder to provide the spark which explodes the vapor.
The value of the alcohol motor in modern agricul ture, especially on the extensive farms of the West promises to be of great importance. With an abundant supply of raw material at hand, plants for distilling spirit can be erected wherever liquid fuel is needed, just as the grist mill supplied the neighborhood with flour in the old days. It is not necessary to transport it long distances by rail or water at so much extra expense for transportation, consequently the farm motor should become as much of a necessity as the plow and the harvester. The small stationary motor of one or two horse-power is sufficient to grind the feed, saw the wood, churn the butter, actuate the cream separator, and run the mill. The next improvement to the traction engine will doubtless be the substitution of internal combustion for steam, which means that all of the more arduous farm labor, such as plowing, harrowing, cultivating, harvesting, threshing, shocking corn, etc., can be accomplished even on small farms more rapidly and economically than by the employment of horse power.
One of the principal obstacles to the reclamation of the arid territory of the West has been the expense of operating machinery for pumping water where reservoirs could not be located to furnish an adequate supply by gravity. Many irrigation sites are at such a distance from petroleum wells, coal deposits, and woodland, that the cost of fuel for the pumping engines is prohibitive. As the sugar beet forms one of the staple crops of irrigated land, and, as already stated, yields a large percentage of alcohol, it is only necessary to raise a sufficient crop of these vegetables to insure a permanent supply of power for pumping and all other machinery required.

(Toxiedx

mmunity of Mines from Earthquakes.

To the Editor of the Scientific American:
In corroboration of the statement of your correspondent, E. D. Guilbert, of San José, regarding the fact that earthquakes were not felt down in the mines at Honduras, I will state that the same phenomenon was experienced at the New Almaden quicksilver mines, near San José, where the workmen, 1,500 feet under ground, did not feel the shock, though buildings at the mouth of the mine were shaken down by it. Can you or any seismic expert explain this singular phenomenon? Furthermore, will you kindly publish the fact that this beautiful "city by the sea" has not been "wiped off the map" by a tidal wave at the time of the earthquake, as has been falsely stated by many eastern papers? There was no tidal wave, and very little damage was done by the earthquake, aside from chimneys being broken. Not one person in the city received any injury from it.
Santa Cruz, Cal., June 13, 1906.

To the Editor of the Scientific American
In enlarging her cemeteries, San Francisco might do well to adopt a custom I noticed in the South just before the earthquake, and whatever might befall her residences, her memorials of the dead could not be shaken down. In Rosehill, the cemetery of Macon, Georgia, a very beautiful and thriving city of 40,000 inhabitants, most of the tablets lie flat on the ground. A large proportion of them are plain brick and mortar slabs, of various sizes, those for adults being about 3 feet by 6, certainly not a durable or attractive style of architecture. Often a lot would contain a large number of these slabs, with a few of marble, and many of the later and more ornate of polished granite.
The stone slabs usually bear brief inscriptions, the brick rarely, though sometimes ornamented with vases and sea-shells. Among them are scattered monuments which, of course, are upright, and bear the usual inscriptions of loving remembrance. The later memorials are heavier slabs with more ornamentation, and most of them lie on the turf or are raised slightly above it. The general effect as one looks over the slopes is very pleasing, though of course the brick slabs have nothing to recommend them either of beauty or durability.,
In my own mind I reasoned that the custom must have originated in war time, when labor and material were both wanting; but I was informed by Mr. Massonburg, the city clerk, that it bears date much earlier. He came from the Jamestown peninsula, in Virginia, sixty years ago, and noticed the same thing near there, and thinks it was brought from the old country by the earlier settlers of the colony.
G. S. Paine.

Winslow, Me., May 20, 1906.

The Panama Canal Problem

To the Editor of the Scientific American :
Will you please inform me if it has ever been proposed to build a 30 -foot earth dam at Gatun (for the Panama canal), maintaining this level to the foot of the northern slope of Culebra, with a 60 -foot level through the cut, maintained by a masonry dam and single lock supplied with water from Gamboa basin through a side channel? It would necessitate a minimum level of 60 feet in the basin, with a reserve capacity above this level for the reception of the Chagres floods, controlled at the side channel by suitable flood gates.
On the Pacific slope dams with single locks would be necessary at Pedro Miguel and La Boca. The dam near Obispo would be comparatively inexpensive, as the artificial channel only would be encountered, probably with bedrock foundations at its bottom.
Locks in flight would be altogether avoided by this plan, and the Gamboa dam would serve the doubly valuable purpose mentioned, which with the creation of a great water power at this point would justify its erection.

If the maintenance of an 85 -foot water level by an earth dam at Gatun is a feasible work in the opinion of some engineers, but contested by others, there would certainly be little room for differences of opinion concerning a 30 -foot level dam. The efficiency of a canal of this type would doubtless be fully equal to that of sea-level construction, while the saving at Culebra and throughout the whole course of the canal would be enormous. The free sailing advantages of the 85 -foot level type would also be secured, and a considerable item in land damages avoided. W. F. Cleveland.

Chicago, Ill., June 6, 1906.
[Among the many earlier studies of the Panama canal problem there was, we believe, a proposal to build a dam of moderate height at Gatun and a dam for a 60 -foot summit level at Bohio. This plan is being suggested as an alternative to the 85 -foot Gatun dam.-Ed.]

OIL FUEL ON SOUTHWESTERN RAILROADS

by day allen wileyy.

The series of illustrations recently given in the Scientific American showing the enormous production and consumption of petroleum, present an idea of its great value, especially for fuel. Perhaps no interests have been more benefited in this country by the abundance of fuel oil than those of the railroad companies especially in the West and Southwest. The substitution of liquid fuel for coal and wood on the Pacific coast is so extensive that nearly all of the freight and passenger locomotives of the principal systems, such as the Santa Fé and the Southern Pacific, burn petroleum exclusively. While many of the standard coal-burning engines have been equipped with oilburning apparatus, and the space devoted to coal utilized for oil tanks, a large number of locomotives has been designed and built exclusively for the use of liquid fuel. The comparative tests that have been made of the best steam coal and of ordinary petroleum such as is produced from the California and Texas region prove beyond question that the latter is far more economical. Its use has passed well beyond the experimental stage.
One of the great advantages of petroleum is that fueling stations along the various systems can be supplied with it at a minimum cost and with little inconvenience, the oil being stored in reservoirs which are filled from trains of tank cars. The storage reservoirs are usually located adjacent to the water tanks, and the conduits serving the locomotives may be placed next to the water pipes, so that fuel and water tanks of an engine can be filled at the same time. In fueling a locomotive, a pipe similar to the ordinary pipe used for filling the water tank is employed, the upper end swinging on a flexible joint at right angles to the vertical pipe, which is connected to the supply reservoir either by an elevated or surface conduit. The connection is such that upon the opening of a valve the oil will flow into the engine tank by gravity. The accompanying illustrations show the method employed on the Santa Fé and the Southern Pacific systems.

The cost of equipping a passenger or freight locomotive with oil-burning apparatus ranges between $\$ 100$ and $\$ 150$ to each engine, some of the systems being more expensive on account of the patents. The experience of the engineers with the liquid fuel is that they can make steam in about one-half the time required to get a coal-burning engine ready for service. By means of the ordinary burner the supply of oil can be regulated to a nicety, the flame being watched through a peep-hole in the furnace door. By noting the hue of the flame the fireman can tell at a glance whether the spray in which the fuel is forced into the fire-box contains too much or too little petroleum, and the proportion can be increased or diminished by merely turning a regulating valve. If the flame is white the combustion is practically complete. Engineers who have been utilizing petroleum claim that it becomes a smokeless fuel if the firing is properly done. This alone gives it a great advantage over coal, to say nothing of the reduced labor of the fireman. of the fireman.
The main difficulty experienced i n the burning of liquid fuel is the formation of a deposit in of a deposit in
the bottom of the bottom of
th e firebox when the combustion is not perfect. This forms a mass so hard that it i s necessary to break it up with an iron bar in order to remove it. When a layer of the carbon has formed it decreases the draft and makes it difficult to keep up the requisite steam pressure. Another difficulty which has been encountered is the tendency of the oil to clog the spraying conduits. Being secured from a wide area of territory the oil is not of uniform consistency, some kinds having higher specific gravity than others. If too much of the heavy oil is forced through the spraying apparatus, it may choke the feeding conduits, so that the feed ceases and the

Locomotive Filling Oil and Water Tanks Simultaneously.
OIL FUEL ON SOUTHWESTERN RAILROADS.
steam cannot be generated. A few instances have occurred on the southwestern lines where engines have been disabled from this cause, but they are only occasional.
The use of petroleum fuel is of especial value in southeastern California and in Arizona, where the distance from the nearest coal deposits is so great that

A Turn of the Lever Regulates the Supply. Intensity of Combustion is Indicated by the Color of the Flame.
the expense of transporting coal to the several supply stations is a very important item. As three barrels of oil equal a ton of ordinary steam coal, a train of tank cars will carry a much larger supply of fuel than a coal train of the same tonnage. Going from station to

The savants who have busied themselves with deter mining the temperature of the sun have given us very different figures. One of the first, Father Secchi, direc ior of the observatory at Florence, says L'lllustration, by means of utilizing the height of the solar protuberances, attributed to the king of the stars a temperature of $10,800,000 \mathrm{deg}$. F. Some years ago Violle contented himself with a temperature between 3,632 deg. F. and 5,432 deg. F. His method was simple and ingenious: a thermometer is placed at the center of an opaque, hollow ball, allowing the solar heat to penetrate through a very small aperture. The diameter of the aperture and the heating of the thermometer permit the solution of the problem in a certain measure, by means of calculations based upon the diameter of the sun, its dis tance from the earth, and the law of radiation through the atmosphere. Other figures were further proposed2,052 deg. F. to $-3,092$ deg. F. by Pouillet and Soret, 11,732 deg. F. by Wilson, etc.
The various methods employed, the article goes on to say, were vitiated by fundamental flaws which explain these divergencies. An infinitesimal error of observation results in an enormous number. On the other hand (whatever certain specialists pretend), we know nothing precise of the constitution of the atmosphere, or of what replaces it at a few kilometers above us; nothing, consequently, of the manner in which the calorific radiation acts in the mysterious heights.
M. Moissan, by an indirect process resting upon particularly reliable foundations, has just shed new light upon the solution of the problem. The great chemist (inventor of the electric furnace, thanks to which he has been able to volatilize the metals refractory to the action of the previous furnaces) has proved that there exists upon our planet no substance that cannot be liquefied and distilled by the heat of the voltaic arc, to which is universally given a maximum temperature of 6,000 to $7,000 \mathrm{deg}$. F.

Now, spectroscopic experiments teach us that the majority of the simple substances existing upon the earth are found in the sun. On the other hand, it is probable that, on account of the very quantity of heat that it radiates, the sun cannot be formed merely of gaseous materials that, overheated, could reach temperatures much higher than the temperature of distilla tion, but must contain a solid or liquid nucleus. Its temperature, therefore, should not exceed that at which the numerous substances common to it with the earth distill. Let us remark, however, that the distillations of M. Moissan were produced at the ordinary temperature. There may exist in the sun a pressure that raisesthis temperature; which, it seems, should be comprised between the number of Wils o n, 11,732 deg., and that of Voille, 5,432 deg., but probably nearer the latter. So we are far from the $10,800,000 \mathrm{deg}$. of Father Secchi.

Comparison of Cost of Concrete and Stone Masonry.
The cost of concrete and stone masonry varies largely with the local conditions and the character of the work on which they are used; but there are very few places where concrete masonry is not only cheaper than stone masonry, but better, being much stronger and more suitable in many ways. This fact is becoming more generally recognized, and more than one quarry which in former years produced building stone is now producing crushed stone for concrete. The following fig. ures give a general idea of the comparative cost of brick masonry and concrete, per cubic yard:

Brick.	
500 brick.	\$3.75
$3 / 4$ barrel cement.	1.50
$1 / 4$ load sand.	. 50
Labor	2. 25
Making a total.	\$8.00
Con	
1 barrel Alpha cement.	\$2.00
$1 / 4$. load sand.	. 50
Broken stone.	1.50
Labor and forms.	1.50
Making a total.	\$5.50

Procuring the Supply of Bait for the Following Day's Fishing.

SUPPLYING NEW YORK WITH

 BLUEFISHThe extent to which the bluefish catching and marketing industry has grown to-day is evidenced by the magnitude of the trade in New York city alone, where annually over $5,000,000$ pounds of the catch are sold, aggregating over $\$ 300,000$ in value. All along the eastern coast north of Cape May are scattered colonies of hardy fishermen, whose existence the year around depends upon the success of the bluefish season; and the growing favor with which it is regarded as a table fish, especially in the North, is constantly augmenting the numbers of these industrious and ener. getic toilers. The bluefish, Pomatomus saltatrix, is of wide distr:

Waiting Upon the Dock to Buy Bait.

Removing the Day's Catch from the Beach.

Running the Boat up on Shore After Landing.

shore. The young fish first appear in northerly waters in August, and at that time they are about five inches long. They grow with great rapidity, and by the fol lowing season have usually attained a length of from twelve to fifteen inches. Subsequently the increase in size is even more rapid, and it is said that bluefish weighing as much as twenty-five pounds have been caught off the Massachusetts coast, while eight and ten-pounders are not rare. The average weight of those taken in the coastal regions of New York, New Jersey, and New England is between three and five pounds. The fish is bluish or rather greenish in color with a silvery underbody and a dark blotch at the base of the pectoral fin. It is one of the most voracious, feeders upon other inhabitants of the sea, and repre sents an extremely important factor in fish mortality. Traveling rapidly in great schools, it ferociously at tacks similar schools of other fish little inferior to it in size, often destroying many more of these than are required for its food, and it has been found that this excessive voracity characterizes the young as well as the old. They feed principally upon gregarious fishes particularly the menhaden, upon squids, and upon cer tain kinds of marine annelids. They are sometimes found in large rivers, and, for instance, they are caught in the Hudson as far up the stream as the set of the tide is perceptible.
Between the eastern end of Long Island and Cape Cod, bluefish in great numbers are caught in weirs or pounds, and in still greater quantities in gill nets. Line fishing, especially along the New Jersey coast, is also employed, and this method is largely resorted to in supplying the New York market. When caught with rod and line the bluefish offers excellent sport to the fisherman, for not only is the prey intelligent and resourceful, but he is a game fighter as well. Hook and line for bluefishing are used in trolling, "chumming," or in heaving from the shore. A light rod with arti ficial minnow or shrimp bait is usually employed in catching young bluefish, or "snappers," as they are called in the South.
The accompanying illustrations are from photo graphs taken at a typical bluefishing hamlet on the Jersey coast, Galilee near Seabright. The method here in general use is known as "chumming," though a small number of bluefish is caught by means of seines together with flounders, mackerel, and other marine inhabitants. The fishermen, who are hard-working and intelligent, use heavy surfboats not unlike large dories with square sterns. Realizing the value of auxiliary motive power, the owners of these boats have generally installed in them four or five horse-power gasoline en gines, discarding the oars, and thereby relieving them selves of considerable arduous labor, and consequently having more time to devote to the actual operation of fishing. The boats leave very early in the morning, and usually return by four o'clock in the afternoon The catch is generally sold to wholesale dealers hav ing warehouses at the landing place or in the village, though not infrequently the fishermen themselves pack and ship the bluefish to dealers in New York. As a rule, however, they prefer to sell to the middleman on the ground, thus avoiding the trouble of packing, icing, and freighting.
The bait used along the New Jersey coast is the mossbunker or menhaden, a gregarious fish about six or eight inches long, which is found in great schools off the coast. The bait is sold to the bluefishers by men whose sole occupation is the catchinz and selling of the mossburker. The latter is obtained by means of seines set on the shallows off the shore, and a large power boat is employed for gathering and delivering the menhaden for the next day's bait to the fishermen late in the afternoon after their return from the day's work. The mossbunkers are cut into small pieces, and these are used for baiting the hooks. The bait is fur thermore employed in a curious manner for attracting the prey to the vicinity of the boat. Each of the boats contains a meat grinding or chopping machine-a piece of apparatus hardly to be expected in a small fishing craft-and by means of this device a quantity of the menhaden is ground up into a thick oily paste, known as "chum." When the fishing boat has been anchored upon the banks which the bluefish frequent, a quantity of the "chum" is thrown overboard, and the tide or currents slowly float it along the surface in a great widening, oily streak, known as a "slick." This at once attracts the greedy bluefish, who rush at it in large numbers, gobbling down the floating fragments and eagerly seeking bits more generous in size. These they soon encounter, but as the larger pieces are un pleasantly associated with barbed hooks, the bluefish is soon flapping vigorously but ineffectually upon the bottom boards of the boat. The fishermen, of course exercise great care to throw out their lines within the area of the "slick," and move aboul from time to time as circumstances require, their anchors being rather primitive affairs which are easily raised and lowered At the end of the day's fishing the boats are run un on the beach, often upon short wooden rollers, and a quantity of sea water is thrown into the bottom of the craft. The fish are then cleaned and washed and
tossed into two-wheele carts, by means of which theyz are transported to the warehouses, to be shipped a few hours later to the neighboring cities, where they are consumed.

AN ELECTROLYTIC WIRELESS RECEIVER.

 y d. l. beardsleyMost Hertzian wave detecters are more or less complicated, and few are very satisfactory. The writer has experimented with many kinds, and has at last evolved one which has given the utmost satisfaction, receiving the most distant messages very clearly and sharply. This detecter is electrolytic in its action, and it consists of a cell in which a zinc anode and a platinum cathode are used with an electrolyte of dilute sulphuric acid. An important advantage of this

AN ELECTROLYTIC WIRELESS RECEIVER.
receiver is the fact that it requires no battery, as it is a battery in itself.
The following are the instructions for making it: Prepare a base about 3 inches square of hardwood. At one side, parallel to the edge, erect a standard of hardwood, $1 / 2$ inch thick, 2 inches wide at the bottom, tapered to $11 / 2$ inches at the top, and 3 inches high. Cut out two pieces of brass, $13 / 4$ inches long, $1 / 2$ inch wide, and 1-16 of an inch thick. One of these pieces, which will serve to support the anode, should have a $3-16$-inch hole drilled at one end, and the other strip, which is to support the cathode, should be drilled and tapped for an 8×32 machine screw. These strips of brass are to be fastened to the top of the standard $1 / 2$ inch apart by wood-screw binding posts, and should be provided with $1 / 4$-inch holes to receive the threaded shanks of the binding posts. Cut off a $21 / 2$-inch length of common battery zinc, and thoroughly amalgamate it. This may then be fastened to the untapped brass strip with an 8×32 machine screw, threaded into the end of the zinc. The depending end of the zinc should enter a small glass jar of about $11 / 2$ inches diameter and 2 inches high. For holding the cathode make an 8×32 machine screw of brass $11 / 2$ inches long with a knurled head. File down the end to a diameter of $3-32$ inch, and split it with a fine jeweler's saw. Take a very fine piece of platinum wire (if Wollaston wire

DETAILS OF CATHODE AND SUPPORT.

can be obtained so much the better, but very fine platinum wire will do) about $3 / 4$ inch long, and place one end in the fine saw cut, after which close the kerf onto the wire by means of a vise. The screw may now be threaded into the tapped hole of the cathodesupporting strip, and screwed in far enough to bring the platinum wire within the cup. The cup should be filled with a ten per cent solution of sulphuric acid. The electriral connections may be made as shown in the diagram; the aerial being connected to the cathode supporting strip, the other strip being connected to the ground, and the two terminals of a telephone receiver being connected respectively to the two strips. Place the telephone to the ear, and feed the cathode down by turning the screw until a click is heard. This will indicate the position in which the detecter will work to the best advantage.

Tax-Freed Alcohol Assu red.

The act removing the Internal Revenue tax on al cohol, passed recently by both houses of Congress, has been approved by the President and is now a law. It is expected large industries will be benefited by this legislation, and a way opened for the farmers in every section of the country to secure benefits of much utility and economy from their former waste products.
The act provides for the withdrawal from bond, tax free, of domestic alcohol when rendered unfit for beverage or liquid medicinal usc: by mixture with suitable denaturing materials, for use in the arts and industries, and for fuel, light, and power.
It also provides for the establishment of registered distilleries in which the denaturing of alcohol can be done, and regulations for rendering returns to the Commissioner of Internal Revenue. Penalties are provided for violations of the act. Manufacturers are privileged under certain regulations to recover the alcohol used in any process, for use in further manufacturing. The Commissioner of Internal Revenue may employ for a period of two years additional chemists, agents, inspectors, deputy collectors, clerks, laborers, and other assistants for the prompt and efficient operation and enforcement of the law, and without com pliance with the conditions of the Civil Service law. Two hundred and fifty thousand dollars is appropriated to purchase the necessary instruments, etc., for carrying out the purposes of the act.
The Secretary of the Treasury is required to make a report of the appointments and regulations prescribed, at a succeeding session of Congress, and also upon the need of any additional legislation. The act is to go into effect on January 1, 1907.
It is proposed to denature or poison the alcohol with wood alcohol, and it is expected so much of the latter will be needed for this purpose, that its production will be greatly increased.
It is believed many new distilleries will be located in the agricultural sections of the country, conveniently accessible for the utilization of the surplus grain and other products, for purposes of alcohol extraction. In large manufacturing operations the new alcohol will be of great value and utility, especially in the hat industry, where the present use of wood alcohol has proven so detrimental to the health of the employes.
The extensive use of alcohol in Germany has proven to be of much benefit. For power purposes it is found to be more efficient than gasoline, and less dangerous, while its cheapness, only seventeen cents per gallon, makes it a highly economical power agent.
The manufacturers' committee organized to promote and bring about this legislation is deserving of much praise, in the practical way the matter was brought to the attention of and pushed through Congress.

The Current Supplement.

The current Supplement, No. 1591, opens with a well-illustrated article on the "Lusitania," the new Cunarder, which has just been launched and which is the largest ship thus far designed. During the past twenty-five years engineers have applied internal-combustion motors to all manner of uses. They have adapted motors to the consumption of many different kinds of inflammable gases and vapor, and they have continually increased mechanical and thermal efficiencies, until at the present time the gas engine is competing with steam in almost every field. Dugald Clerk in a most exhaustive paper on internal-combus tion motors discusses the various forms of engines which have contributed to this industrial advancement, and throws out some helpful suggestions for their improvement. How some waste materials may be utilized will be of interest to the manufacturer. The wastes treated are amber, paraffine, fur, parchment paper, and mother-of-pearl. Stanley's new system of transmitting and utilizing low-frequency currents is described. The last installment of the article on "Canals: Ancient and Modern," is published. Among the minor articles of interest may be mentioned "Concrete as a Roofing Material," "Preparation of Modern Cereal Breakfast Foods," "Influence of Light and Heat on Germination," "The Collective Intelligence of Bees," "Photographs of Projectiles," and "Oolong Teas and Their Manufacture."

Two parts of aluminium and one part of zinc form an alloy to which has been given the name "alzene." It is equal in strength to good cast iron and superior to it in the matter of elastic limit. It takes a fine, smooth finish and does not readily oxidize. The color is white. It melts at a low red heat and is very fluid, running freely to the extremities of the mold and filling small or thin parts. Great care must be exercised in melting it, particularly when mixing the two metals, in order to preserve its smooth working qualities. It is somewhat brittle and hence unsuited to such pieces as require the toughness possessed by brass. The tensile strength is approximately 22,000 pounds per square inch and 3.3 is the specific gravity. -Iron Age.

REPLACING THE BROADWAY DRAWBRIDGE WITH A NEW SPAN.

The recent transfer of the old Broadway drawbridge over the Harlem ship canal to its new quarters opposite University Heights, and the subsequent placing of the new Broadway span, affords a very interesting illustration of modern engineering methods. This exchange of bridges was made necessary to accommodate an extension of the Subway across the Harlem. The old bridge, although in excellent condition, was unable to carry the additional load of Subway traffic and the proposed trolley extension. At first it was suggested that the old draw be remodeled so that it could carry the increased loads, but it was found that the structure would have to be almost entirely rebuilt. However, a new bridge was to be constructed across the Harlem at 207th Street, to connect with Fordham Road, and it was proposed that the old span be used for this structure, and a new double-decker built for the Broadway crossing Accordingly the new span was built on piles at 215th Street and the Harlem River. A few weeks ago this work was done, and the piles at each side of the center were removed to make room for the pontoons on which the span was to be floated to its permanent position.
On Thursday, June 14, the old Broadway draw was lifted off its pivot and towed quietly down to the central pier of the Fordham bridge, where it was soon mounted in position. The bridge was carried on four pontoons, two at each side of the center. The pontoons were 110 feet long by 32 feet beam, with sides 9 feet high, and capable of lifting 600 tons each. The draw was partly opened, so that it could be floated away without being. obstructed by the approaches. The pontoons were weighted with water and, from the decks of each pair, heavy lumber cribs were built up to the floor beams of the bridge. This was done at low tide, so that as the tide began to come in the span was slowly buoyed up by the pontoons, and to expedite matters the water was at the same time pumped out

No difficulty and but little delay was experienced in centering the span over its new bearing. Then water was pumped into the pontoons until they lowered the span gently into place. The entire task was accomplished in just an hour. The bridge was towed to its new quarters with steam up, and as soon as it was properly mounted and the pontoons removed, it was
and on the following morning the bridge was thrown open to public use.
The new span is 272 feet long and 39 feet wide from center to center of trusses, or 53 feet wide over all. Its total weight is 1,200 tons. The old span is necessarily of the same length and width, but its total weight, including the flooring, is only 1,100 tons. The

Towing the New Drawbridge up the Harlem River.
swung to the open position under its own steam. In this position it must lie at present until the approaches are completed.
The new Broadway span was ferried to its pier on the following Saturday. The methods adopted in the two cases were precisely similar. Such tension members as were liable to buckle under the reverse strains imposed were temporarily stiffened. The bridge was also diagonally mounted on the pontoons, so that it would pass freely between the approaches. The trip up the river required but thirty-five minutes. Only

Raising the Old Broadway Harlem Drawbridge.
of the pontoons. The bridge was, of course, built to rest on a central support; consequently, when it was lifted off the center pier, and supported on the cribwork near the ends, the strains in certain members of the frame were reversed. For instance, the tension members at the center of the bridge were placed under compression. To prevent these members from buckling, they were stiffened with wooden beams, as may be seen in the accompanying photographs of the bridge. The draw was towed down stream by four tugs, two in front and two behind, by which it was carefully guided to the new pier nearly a mile away.
one slight mishap occurred to mar the otherwise suc cessful achievement. One of the pumps used for filling the pontoons failed to wcrk, and as a consequence, when the span was lowered into place, one end refused to sink with the other, and the draw was tilted slightly. But this defect was soon overcome by boring a hole into the pontoon below the water line. Except for this trifling incident the entire undertaking passed off without a hitch. It was 5 o'clock in the afternoon when the span was hauled from the piles at 215th Street, and at 7:30 the bridge was open to pedestrian traffic. At 9 o'clock the work was entirely completed,
new approaches of the Broadway bridge were built on cribwork beside the old structure. The cribs were mounted on tracks, so that when the approaches were completed the old spans were removed and the new ones moved into position with a minimum of delay. The Subway tracks are now being laid on the bridge, and should be ready for use in the course of a couple of weeks. It is probable trat by the first of August Subway trains will be running as far as 231st Street.

Credit for the successful transfer of the bridges be longs to Mr. Terry, of the firm of Terry \& Tench, who planned the undertaking and gave it his personal supervision.

Carnegie Institution Appropriations for Retiring College Instructors.
The first selections from among retiring educators to receive disbursements from the Carnegie Foundation, organized last year by the well-known philanthropist to provide retirement pensions, or, as they are to be known, allowances for teachers in the universities, colleges, and technical schools of the United States, Canada, and Newfoundland, have recently been made by the directors of the institution. The total amount to be distributed among the fifty educators retiring at this time approximates $\$ 70,000$ a year. This sum does not very materially decrease the income from the $\$ 10,000,000$ in Steel Corporation bonds which Mr. Carnegie set aside for the purpose. The professors and teachers who will receive the benefit of this year's disbursement have been members of educational indisbursement have been members of educational in-
stitutions scattered throughout the entire country. Among well-known men on the list are John Krom Rees, of Columbia; Henry M. Baird, of New York University; Hiram Corson, of Cornell; Charles A. Young and William A. Packard, of Princeton; Edward W. Morley, of Western Reserve; George Trumbull Ladd, of Yale; Henry P. Bowditch, of Harvard; Francis A. March, of Lafayette; Dr. E. R. Merrill, formerly president of Ripon College, Wisconsin, and P. H. Chandler, of Ripon.

The production of acetylene gas without water is now said to be possible, calcium carbide shaken with dry soda crystals being found to generate gas freely.

The New Drawbridge Span Located in Position.

Towing the Old Drawbridge down the Harlem River.

RECENTLY PATENTED INVENTIONS.
Electrical Devices.
REGISTERING DIFFERENTIAL - SPEED indicator.-J. Richard, 25 Rue Mélingue, Paris, France. The invention relates to an improved registering differential-speed indica-
tor, and is useful in the study of alternating tor, and is useful in the study of alternating currents and for other purposes where it is
desired to measure fluctuations of speed. The desired to measure fluctuations of speed. The
displacement of the differential train is record ed and amplified, so that a slip equal to a small fraction of a revolution can be observed

Of General Interest.

PIPE OR CONDUIT.-C. H. WILSon, Red Oak, Iowa. A pipe or conduit is employed comprising a metallic frame, around which is
applied or molded concrete or other comapplied or molded concrete or other com-
posite material of which the structure may be formed, the frame becoming thereby embedded within such material. In manufacturing sec certain members of the frame at each section are left free of composite material at ends of the section, thereby enabling adjacent ends of
successive sections to be united, after which successive sections to be united, after which
further composite material may be applied to joints between sections in completion of the pipe.
COMBINED SCOPE AND DISTANCE FINDER.-T. H. Mitchell, New York, N. Y The inventor's object is to provide a finder ranged to permit the user to conveniently and quickly determine the scope of the object to between the camera and object, to allow quick convenient, and accurate adjustment of camera according to the distance obtained, to
produce a sharp focus of the object and the produce a sharp focus of the object and th
subsequent production of photographic view subsequent production of
of high quality and merit.
CALENDAR.-J. N. Parker, Bedford City, Va. The calendar comprises a series of leaflets, a suspension-board, and triangular links connecting the ends of the leaflets and the links being connected to the board and the links being connected to the board and the in the leaflets whereby to permit the leaflets to hang parallel. Each leaflet may be made
of blotting-paper or preferably with calen dered-surface on one side and a blotting-surface on the other. At the beginning of each
week the leaflet of the previous week is removed and used as a blotter.

Hardware.
SAW-SET.-J. F. Dorman, East Tallassee, Ala. The inventor's object is to provide a saw-set arranged to permit of accurately set-
ting a large number of teeth in a short time ting a large number of teeth in a short time
without the aid of skilled labor and insuring long life to each saw-tooth, as the latter ar hammered while being set, and hence are not liable to break off or spring back to former position. The several parts can be readily adjusted to permit of setting saws of different width, thickness, shape of teeth, etc., and by
using a plunger or hammer the tooth is gradu ally hammered down onto the anvil, so as t remain perfectly set without danger of spring ing back.

Machines and Mechanical Devices.

East Oak Street, Norristown, Pa. In this case the invention has reference to improvements in machines for washing clothing, the object
being to provide a washing-machine of simple and novel construction that may be of comparatively small size, yet capable of rapidly thoroughy MECHANICAL MOVEMENT.-F. N. Liv
ingston, Ballard, Wash. The invention peringston, Ballard, Wash. The invention per-
tains to a new mechanism for transforming reciprocatory into continuous rotary motion, and, conversely, for transforming continuous principally as a substitute for the crank-shaft, although it may be put to other uses, as
suggest themselves to skilled mechanics.
Calculating-machine.-C. A. Merlicke, Hanley, Assiniboia, Canada. The ob ject of this invention is to produce a simple mechanism which will enable charges or ac counts of different kinds to be easily computed. It is especiaily applicable in com
puting interest upon notes, but is capable use in various connections for the general pur poses stated, and when in the latter the character of the scales and tables would be changed to suit particular units of measurement or re quirements.
WASHING AND SCOURING MACHINE.R. F. E. Okrassa, Antigua, Guatemala. The washing and scouring of coffee, grain, and like materials, is to provide a scrubbing-machine arranged to insure a quick and thorough washing and scouring of the coffee, grain, or other material and a complete separation of liquid used as a washing medium.
hat-machine.-C. P. Wildenberg, New York, N. Y. This machine is for use in sup
porting wires and shaping them in order to porting wires and shaping them in order to
produce frames for ladies' hats. Principal ob jects of the invention are the provision o means whereby the several wires forming part of a hat-frame can be conveniently and
accurately supported by means of hooks even
when the frame is of unusual shape, having conveniently removing the frames from the machine.

Railways and Their Accessories

AIR-SUPPLY APPARATUS FOR AIR apparatus not only keeps the air-supply up to ts standard pressure at all times, but also utilizes the power in compressing this auxiliary charge as a means for stopping the train thus securing a double effect, since the power
used to oppose the stopping of the train in one instance operates through the boosterinforce the pressure in the reservoir for subsequent stops in the application of the air brakes.
SLACK-ADJUSTER. - C. O. anderson Omaha, Neb. In this case the invention re lates to means for automatically taking ailway-cars, due to wear on the brake-shoe or other parts. The apparatus may be use on either hand or power brakes and will not interfere with the employment of the usua anually-operated stack adjustment.
STEP-HOLDER FOR CARS.-J. Edwards, ew York, N. Y. The improvement pertain running-boards or steps of street-cars, such as used usually at the sides of so-called "sum ner cars." Where such cars are operated on ouble tracks it is usual for the inner boan
r step to be turned up out of the way, this tep being usually mounted upon pivots or hinge connections for this purpose. The ob ject is to provide simple means for supporting the running-board and for holding same in olded position out of the way.
Door-fastener.-J. P. Snelgrove, at anta, Ga. The fastener is especially adapte or car-doors, although it may be used upon any class of sliding doors. It obviates the necessity of cleating the door and when sealed cannot be unlocked without breaking the seal. It is easily assembled, and broken parts can of breakage from swinging outward of the directed outward, which stress the latch is especially designed to resist.

Pertaining to Vehicles.

WAGON-WHEEL.-I. T. HURD, Lansing, Mich. The effect aimed at in this invention is the provision of a new and improved wagon nd farm wagons and arranged to combine trength with durability and to allow forming metal.
Note.-Copies of any of these patents will Please state the name of co. for ten cents each. the invention, and date of this paper.

Business and Personal टUants.
READ THIS COLUMN CAREFULLY.-You will in consecutive order. If you manufacture these goods address of the party desiring the information. In
every case ithis necessary to give the
number of ine inquiry. MUNN \& CO.

Marine Iron Works. Chicago. Catalogue free. Inquiry No. 8185.-For manufacturers
on-fock" for the wall-paper printing trade.
lis. Samples free. Inquiry
quantities.
Handle \& Spoke Mchy. Ober Mfg. Co.. 10 Bell st
 1 sell patents. To buy, or having one to sell, write Inquiry No. 8188.- Wanted, the name and ad-
dress of a second-hand dealer in screw and drop pres-

WANTED.-Architectural draughtsman, capable de Nobles, Regina, Sask, Canada. Inquiry No. 8189.-For makers of mail order Metal Novelty Works Co., manufacturers of all kinds
of light Metal Goods. Dies and Metal Stampings our pecialty. 43-47 S. Canal Street, Chicago.
Inquiry No. 8190 - For makers of or dealers in
nagnets or loadstones of considerable power. For SAle.-Water front in New York harbor with

Inquiry No. 8191.-For manufacturers or jobber
f a hand or tubular lantern using calcium carbide to
prouce the gas for fuel ln same. The celebrated "Hornsby-Akroyd" Patent Safety On Inquiry No. 8192 . Manufacturers of patent articles, dies, metal machinery tools. and wood fiber products. Quadriga Manufacturing Company, 18 South Canal St., Chicago. Inquiry
preparing.
alaries alaries. Our seven weeks course is the most thorongh ay and evening classes. Special course for owners
New York School of Automobile Engineers, 146 West 56th Street, New Yor

 Inquiries not answered in reasonable time should
repeated; correspondents will bear in mind that
some answers require not a little research, and
though we endeavor to
his turn.
$\begin{gathered}\text { Buyers wishing to purchase any article not adver. } \\ \text { tised in our columns will be furnished with } \\ \text { addresses of houses manufacturing or carrying }\end{gathered}$
mand addresses of houses manufacturing or carrying
Speciel Same. Written Information on matters of personal
rather than general interest cannot be expected without remuneration.
Scientific American Supplements referred to may be
had athe office. Price 10 cents each. had at the office. Price 10 ents each.
Books referred to promptly supplied on receipt of
prree.
Mineras sent for examination should be distinctly
marked or labeled.
(10032) W. J. B. asks: Is it preferable to have all south poles on one side and all
north poles on the other to work independent north poles on the other to work independent
armatures suspended above them, or will alter armatures suspended above them, or will alter-
nate polarity, north and south, give as good results? A. We do not see that it makes any are connected by itself, as your sketch shows that it does It is more symmetrical to connect all the same, and then in any repair you
from what point each wire comes.
(10033) F. S. asks: 1. Is there any destructive local action in a storage batter the plates? A. No. 2. Will the presence of a minish the resistance to a current passing through a liquid? A. It increases the inter
(10034) B. W. L. asks: If a bridged, grounded telephone wire came in contact with ne wire of a lighting circuit carrying 5,000
volts, would there be any disastrous effects to either? A. It would be very bad for the telephone. You would need to put in a new one, since there would not be much left of the old.
2. If one wire of this lighting line were to break and fall across the telephone wire, what would be the probable effect? A. If thes call out the fire department immediately. In the description which you give of what took place in your case, we judge that there was no came into contact at all, The swinging of the light wire near your telephone wire would pro duce all the phenomena you describe; while the ground showed that the wire had not broken and fallen anywhere along the line.
(10035) J. R. H. asks: Do you have a Supplement that treats of intercommunica ting telephones and setting up and construction
of same? A. We have no article giving pracof same? A. We have no article giving prac-
tical details on this point. You can find varTelephone Practice," price $\$ 3$ by mail.

INDEX OF INVENTIONS

For which Letters Patent of the

United States were Issued

for the Week Ending June 19, 1906.

THIS is a matter of great interest to the public, and of still greater interest to thousands of individuals. People with the fairest interest to thousands of individuals. People with the fairest minds-and that means most peopie-have been disturbed and unsettled by the developments and denunciations of the past few months. What these people want is the truth-the plain unvarnished truth. To give them this truth is the object of this announcement.

The Mutual Life Insurance Company was organized in 1843, the first of its kind in America. In 24 years it had become the largest in the world. For 39 years, in spite of the keenest competition, it has held the lead, passing unharmed through panics, failures, strikes and wars; meeting with promptness its every obligation and having over 470 millions of assets to-day; this being 78 millions in excess of the 392 millions required by law as a reserve fund for paying all the Company's insurance risks, 'as certified by the New York Insurance Department ; and all other legal liabilities.

The recent Insurance agitation was unique. The investigation certainly was thorough. As every one knows the Mutual Life was on the firing line. The smoke has now cleared away. What do we find?

In the first place we find that the Mutual Life is still the largest and staunchest Life Insurance Company in the world. Without defending or in the least belittling the abuses and extravagances recently brought to light, everybody should keep in mind the fact that the solvency of this Company has not for a moment been affected thereby. Concerning the work of the finance committee which has been attacked in the press, this Company's auditing committee consisting of Messrs. Truesdale, Auchincloss, Fish and Dixon stated on February 15th, 1906 :
"The Committee certify that the investments of the Company are of the highest order and well selected," and "have found the valuation given safe and conservative, in many instances less than the market value, and in none in excess of such value."

In the next place, extravagance has been stopped, and those responsible for it have gone; a new management has been installed, and retrenchments have been affected that have already saved vast sums of money and will save much more as time goes on. Legislative reforms have likewise been anticipated, and the Company is now as sound at the circumference as it always has been at the core.

In the next place, the ending of the first quarter presents an excellent opportunity for comparing this year with last.

The amount paid policy holders is $\$ 9,608,436.50$, an increase of
$\$ \$, 070,835.26$. The receipts for premiums were $\$ \$_{5}, 082,484.57, c$ decrease of $857,995.29$ for the period. This is a shrinkage of less than $5^{1 / 2}$ per cent. The amount paid for expenses was $\$ 2,935,552.44$, a reduction of \$I,547,279.36.
This remarkable showing is a good thing to be kept in mind by every-body-those now insured in the Mutual Life, and those who should be. It cannot be accounted for by the smaller amount of new business written. Of the saving for the quarter, the sum of $\$ 390,961.52$ is in items not connected with the obtaining of new business.

In the next place we find that this Company is doing business-more business than any other company in the world with one exception. Far from being paralyzed or demoralized it is forging right ahead. Policies by the hundred are being written each day; honest trustees, keenly alert, are directing its affairs; faithful and experienced men are doing its intricate work; loyal agents are explaining its advantages and discriminating people are obtaining its protection.

In the next place we find that there need be no question as to the future. A policy in the Mutual Life is just as good as gold. No obligation could possibly be better. A bond of the United States Government is no safer. It will, therefore, be a misfortune if any one is misled by the writer who prints for revenue or for notoriety, or by the attorney who is out for his clients, or the competitor who is out for himself, or even by the gentlemen who have organized themselves into committees under an honest misapprehension of the facts. Such incidents may tend to hinder business, but need deter no one who needs insurance.

With economy, which means rapid improvement in regard to earning of surplus for dividends, everywhere at work in the Mutual Life; with its immense size as the basis for moderate general expenses; with smaller liability for renewal commissions to agents than any other Company; with the cost of new business limited by law for all Companies, how can any one possibly better provide for the uncertainties of the future than through a policy in the first Insurance Company in America, and the strongest in the world-

The Mutual Life Insurance Company of New York

New York

The Mutual Life issues a policy at a notably low rate, which provides most far-reaching protection. Send your address and let us inform you as to the particulars.

Engine and Foot Lathes SUPPLIES. BEST MATERIALS. BEST WORKMANSHIP. CATALOGUE FREE
SEBASTIAN LATHE CO., 120 Culvert St,

GUNSMTHRS, TOM
MAKERS,
EXPERI MAKERS, EXPERI.
MENTAL \& REPAIR WORK, ETC.

 W. F. \&iNo Bine inve

Lead-Colored \& Slate Pencils, Rubber Bands
Erasers, Ink, Pent Poldersinulers, Water
Colors. Improved Calculating Rules. 44-60 East 23d Street, New York, N. Y
Grand Prize, Highest Award, St. Louls, 1904 .

The

Adirondack Mountains

Are now about the most central of all the great resorts. They have through Puliman sleeping cars from New York, Philadelphia, Boston, Buffalo and Niagara Falls via the

A night's ride takes you from any of these places to the center of the mountains in time for breakfast next morning.
nd How to Reach Them " which is No 2 nd How to Reach Them," which is No. 20
of the New York Central Lines " Four-Track Series, ", containing a fine map of the Adirondack Mountains and adjacent territory, with
useful information in regard to hotels, camps, akes, rivers, etc., send a two-cent stamp to George H. Daniels, Manager General Adver-
tising Department, , Room 26, Grand Central
Station, New York,

Rotary engine, W. Lister.
Rotary motor, P. Ellis...
\qquad

Safety pin, J. ... Traili...
Safety seat, W. H. A. Lew
Sand mixer, W. G. Stockha
Sash holder

Saw swage and shaper, W. Barkla.
Sawing machine, Gray \& Horning.
Scale, attachment, automatic, G. Hoepner.
Scale, weighing, E. N. Gilifilan...........
Screw, locking, F. J. Herde.........

dow, A. Dennis.....
Shade fuxture, S. Stewart
Shade for artificial lights.

\qquad

IF YOU OWN , yon shoud houl AUTOMOBILE

It consists of Colored Charts bound up with explanatory letter-
press in strong cardboard binding, size $91 / 4$
by $13 / 4$ inches. Price $\mathbf{\$ 1 . 5 0}$. By Mail, $\$ 1.57$ T. Y. WHITTAKER,

Asbestos and Magnesia Products

To Book Buyers

We have just issued a new
48 - page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application
MUNN \& COMPANY Americ
 For Automobiles Makes
All Roads Ride Alike" Saves your car and tires and permits of
comfortale riding on bumpy roads. Helps
your springs on smooth roads. Easily atyour springs on smooth roads. Easily at-
tached to any car, Free Booklet.
BALDWIN CHAIN \& MFG. Co 200 Chandler St., Worcester, Mass. Pou USE GRINDSTONES ? mounted and supply your. All steres kept in ntock. Rememioer, we make a
speeialtof selecting stones forall spe,
cial puroses. Send The CLEVELAND STONE CO. 2d Floor. Wilshire, Cleveland, 0 . J-M"' ASBESTOS ROOFING. ELECTRICAL SUPPL
LLE CO= New York, Milwaukee. Chicago, Boston, Philadelphia, St. Louis, Pittsburg, Cleveland, New Orleans, Kansas

361 Broadway, New York

Motor Value

The Cadillac is undeniably the greatest automobile value ever offered-not alone in fairness of price, but in the satisfaction and everlasting service received for that price. In fact, there are few establishments, if any, sufficiently well equipped to produce cars the equal of

C. 1011 ll.

actual factory cost
of less than our selling price. This is but one of the many benefits a Cadillac purchaser derives from the wonderful combination of equipment, skill and experience that backs up every car we build.
The Cadillac couldn't be better if you paid just twice the price. Your dealer will tell you why. His address-also our finely illustrated Booklet N -will be sent upon request.

Model K, 10 h. p. Runabout, $\$ 750$ Model M, Light Touring Car, \$950 Model H, 30 h. p. Touring Car, $\$ 2,500$ All prices f. o.b. Detroit

Cadillac Motor Car Co. Detroit, Mich.
Member Asso. Licensed Auto Mfrs.

Principles of Home Decoration

JOY WHEELER DOW
A Series of Monthly Papers in
American Homes and Gardens

$M_{\substack{\text { R. DOW is contributing to AMERI } \\ \text { CAN Homes AND GARDENS }}}^{\substack{\text { series of }}}$ series of monthly papers ons in susehold decoration. under the terior hou sehold comprehensive title Home Decoration." The papers are richly ill iltrated and are written in the keenly critical spirit for The papers are richly illustrated and are written in the keenly critical spirit for which Mr. $\mathbf{H o w}$ is well which Mr. Dow is well known. They admirably. summarize the whole subject of household decoration, and abound with ausebold decoration, and hatso and suggestions the photographs published with the artihe photographs published with the arti cles are supposed io emphasize some crinciple of decoration, showing what principle of decoration, showing what is admirable and what is to be carefully
 The July issie was a general introduc tion of the subect, together with exam ples of of one or two typical Enggishs living rooms. The August issue treats of rooms. The August issue treats of the subject of Halls. Subjects to follow will subbect of Halls. Subjectst to follow will relate to the Dining Room, the Drawing Room, etc. Room, etc. Every one who is interested in home decoration will be interested in and re decoration will be interested in and re
 American Homes and Gardens

MUNN \& COMPANY 361 Broadway, New York 25 cents per Copy, $\quad \$ 3$ per Year

 Telephone, Merryman \& Allen.
Telephone relay, E.t. Element.
Telephone transmitter, W. W.
 $\underset{\substack{\text { A. } \\ \text { Telephony, } \\ \text { Beyl } \\ \text { I. Kitse..... }}}{ }$ Thermony, 1 eltric couple................824, 030,
Thermometer case Thermometer case, cilinical, J. J. Feath......
Thermometer shaking apparatus,
Th. Grosche Tie plate, D. F . Vaughan.......... 823,826,
Tilling furnace, J. C. Cromwe.........
Tilting platform, J. E. Briggs.......... Timepieces, synchronizing me. mec
Tire, Hright \& Corson.... Tire, Wright \& Carson. Tires, implementts for puttin
T. F. Pilliner........
Toobaco pipe, Fhank. A. A. Schulzer
Tool

 $\underset{\text { Track }}{\text { race }}$ brake, T. Anderson

 Valve year, engine, J. Hanser....
Vault, burial. T. A. Stevenson.
Vault, portable burial, W. Parr Vaut, burtable ${ }^{\text {Turial }}$ A. W. W. Pars..
Vehicle, motor, A. Frode. Parry
 Vending device, coin controlled, $\dddot{\boldsymbol{G}} . \dddot{w}$. MereVending
Vending
machine,
machine, cigar,
G. Vending machine, postage stamp, M. De
lude

 oting machine, G. Stacy
Wagon, dumping,
Waron, dumpung
 Wardrobe, portable, A. M. Scherff

 Wire gage, J. G. Cailian.
Wire gage, lock forming device.........................
Wire hoop tock fightener, I. U. Campbell. Wire tightener, I. U. Campbell.....
Woden plate, compound, H. Buy ten
Woodworking machine, E. W. Lucas
Wint. Woodworking, machine, E. W. Buy Lucas.
Woodwworking tool. M. Enight......
Wrench, T. W. Jester.
 824,081,

DESIGNS.

OLDSMOBILE

Palace Touring Car. Price, $\$ 2,250$ THE NON=STOP CAR

In addition to the wonderful records of the $\mathbf{1 0 0}=$ hour non=stop runs made in Chicago and Cincinnati and the $\mathbf{2 0 0}$-hour non=stop run made in Detroit, the Oldsmobile Four-cylinder Touring Car has made a record run from New York to Poughkeepsie without changing the high-speed gear. Of this run " Motor Way" says:
'One of the most extraordinary runs ever made by a motor car took place in New York on Saturday, when a $26-28$ horse-power Oldsmobile four-cylinder touring car traveled from New York to Poughkeepsie, over a distance of 75 miles, without changing the high-speed gear. The entire journey over steep hills that are famous, was made on the high-speed gear, the lever of which had been sealed by the technical committee of the New York Motor Club, before the car left the local agency.
"Under the conditions of the test the control lever was thrown into the high-speed pasition and sealed by Mr. Ferguson in the presence of several members of the club and members of the press. It was necessary to start and operate the machine entirely on high gear, as the drivers were not allowed to change speeds even for reversing. was to the fact that the car has a range of from 3 mils an at the same time have sufficient power in reserve to climb all the hills en route.'

We want to tell you more of the wonderful possibilities of this wonderful car. Address Dept. S. A.

OLDS MOTOR W0RKS, Lansing, Mich., U. S. A.

Inexpensive
Classified Advertisements

SALE AND EXCHANGE. NEW ENGLAND FARMS, summer homes, hunting
campand country real estate of every descrittion.
Circular free upon receipt of address. Dept. 17 P. F . capms and country real estate of every
Circular freo upon reaip tor address De
Leland, 113 Devonshire int., Boston, Mass. MOTION PLCTURE MACHINES, Fiim Views, Magic
Lanterns, Slides and similar Wonders For Sale. Cata-
 STATE RIGHTS FOR SALE in inew valuable Regis-
ering and Canceling Balot Box patent Hor particuaring and Canceling Batilat Box ppaten.
lars adress E. K. Tolman, Worcester, Mass. WOULDLIKE NAMES of parties who will manu-
acture and sell on royalty a trousers creaser. Made in facture and sel and royalty a trousers creaser. Made in
steen or stel and
Lorain, Phillipsburs, Pa. Will sell patent. H. McD. MAANLOVE AUTOMATIC DRIVEWAY GATE.-

SEGOND HAND AUTOMOBILES.

BUSINESS OPPORTUNITIES.
 HIGH-CLASS PROPOSITION for capital or partiner.
Heveral patents and inveriti, ns. Applications lith
 AGENTS EAiN $\$ 75$ to $\$ 250$ a Month Selling "Novelty
nives." Your name, address, photo under eath han lies; aliso emblemame, lodges socicieties, etc. Finely tem
 WOULD LIKE TO BUY OUTRIGHT, or on royalty, capital to manufacture and for which there could be
made big demand. J. O. Stein, 129 Case Avenue.
Cleveland, Ohio. WANTHD.-Names of parties making leather board.
Asoo of mannutaturers of clothmade from plantain tree
pulo Mich. F. R
 MEN AND BOYS WANTED to learn plumbing,
plaseerin, bricklaying. Special offer life scholarsh1p
fifty aollars, easy payment
 BARGAIN for one wishing to engage in Sawmill
Machinery Manufacturing Business. Machines best on Machinery Manufacturing Business. Machines best on
the Market. Protected by Patents. Profts are large,
Sole owner retiring. Machinery, Box 773, New York. THE CONTROLLING INTEREST in Rivet Forge
used by the largest Bridge and Structural Com-
panies
 SIGNAL ALARM, pat. Dec, 1905. The
device for refrest until the pan is emptry. Need no battery. No Wind
ing. Cost litle to manafacure. Right for sale. For
particulars ddress Theophile Paquette, 108 Lake St., LLET US BE. YOUR FACTORY.
ties manufactured under contract
models developed
 Company, Momence, Ill.
AGENTS W AN
AGENTS WANTED.--Rubber Grip Burner fits any
kerosene lamp prevent breaking of chimneys, smok-
ing or flickerng

POSITION WANTED

MACHINERY FOR SALE.
BARNES' LATHE FOR SALE-SWing, 41/ inches,
length, i2 inghes. Fill set of serew-cutting plates
Lathe in perfect condition, been used by a mechanic Arthur W. Butterfield, Griggsville, 111 FOR SALE.-At Taunton, Mass., patterns, pat
ents, drawing; 4 to 25 horse-power gas or oil en
gines.

 Heads, Envelopes and Checks, gives standing.
Write today for prices, mentioning this paper.
Stilwell, 709 Pine St., St. Louis. PATENTS FOR SALE. I HAVE FOR SALE the U. S. and all foreign
rights of new patent Improvements in Water Tube
Types of Boilers. Great economizer. J. M. ColTypes of Boilers.
man, Everett, Wash.
Great economizer. J. M. Col
 buy rights. James R. Moodie, 73 Inverleith Row
Edinburgh, Scotland.

PARTNERS WANTED.
WANTED, A PARTNER. I have a complete plan
for making an aparatus to be driven by gravity.
Wanted a capitalist to develop the invention. D. Gingold, 297 Cherry St., New York City.
SITUATIONS AND PROFESSIONAL OPENINGS.
A \$5,00 position is open for the right man to
manae a factory in the South Must possess sucess
 WANTED.- Experienced and Responsible Patent
Rights Salesman to sell territory for a new gasoline

HOTELS AND RESORTS
JAMESTOWN, OPPOSITE NEWPRORT. Tharn-
dyke Hotel and 8 new cottages, furnished. Charm-
ing location on shores of Narragansett Bay, 5 minng location on shores of Narragansett Bay; 15 min
utes to Newport by ferry. P. H. Horgan, New
port, R I

PROFESSIONAL CARDS.
LANDSCAPE ARCHITECTS.
Son, 302 Euclid Ave., Syracuse, N. Y. Y.
years LANDSCAPE ARCHITECT.
North St., Rochester, N. Y.
Wm.
Wetablished
Webster.
1853 .
560

 facturing Co.
Cigars, Jua. Hansen.
Cigars, Havana, Havan
Cinchona alkaloids, derivatives or, $\begin{gathered}\text { Coreinigige } \\ \text { Chininfabriken Zimmer \& Co., Ges. mit }\end{gathered}$
Zimer
 Coffee, Dolan Mercantile CO
Coffee extract, Cafolin Co.
Collarettes and chains, J. J. Sommer........
Coloring matter for mortar and bricks, min.
eral Chattanooga Paint Co...........
 Cotton damask, Rosemary Manufacturing Co.
Cotton plece ooods, York Manuacturing Co.
Cotton piece goods, Indian Head Mills of

 Dumb waiters, J. G. Speidel...................
Engines, explosive, Foos Gas EAgie co.
Engines, stationary steam, Southern Engine
 Feed water heaters, Stewart Heater Co....
Fences, wire and combination wood and wire
Hodge Fence \& Lumber Co.... Hodge Fance \& Lumber Cood and wire,
Fertilizers, Rasin-Monumental Co. of Anne

 Files and rasps, Carver File Co.............
Fireworks, torpedo, E. H. Wagner....
Flour, wheat, Sweet Springs Milling Cour
Flour, wheat, Golden Earle Flour, wheat, Golden Eagle Tea Co
Flour, wheat, Randolph Milling Co
Food preparation of bone marrow
Foods made from oats, cereal, American Foundry facings, United State Graphite
Furniture, bent wod, Thonet Brothers....
Gears, Benjamin atha Glass, articles, cut, Libbey Gläs. Co.........
Glass or briight metal polishing preparation Gloves and mitts, base ball, A. G. Spalding
$\&$
 Guns, rifles, pistois, and parts thereot, söt,
Hibbara, Spencer, Bartlet \& Co. Hair and whisker dye, Charles N. Crittenton Hats and caps, waterproof, Hirsh Broters
Hats, ladies, Carolyn $\&$ Co.
Hat.

 Grines in sheet form, unmanufactured,
Gams, jellises, charcoal Iron Mills................ Jams, jeliies, marmalades, peserved and con-
served fruits, Sunlit served fruits, Sunlit Fruit Co.........
Knives and razors, Hibbard, Spencer, Bart-
 Laces, shoe, Narrow Fabric \mathbb{C}
Laxative. M. H. Johnston.
Lead and oxids of lead white

 Lead, white, National Lead Co.. 53,981
Leather dressing, Alfred Adresen \& 84,015
Leather, sheen, calf, goat, and kid, A.

 Medical, preparations,
yomeopathic, Mun
Homoeopathic Medicament, Vereinigte Chininfabriken Zim
mer \& Co., Ges. mit beschrankter Haf-
tung

 Music and music books, sheet, L . Feist
Needles for band sewing and machine, Sin
Manufacturing iil, castor, National Lead Company.
oil,
libricating, Singer Manufacturing oil, lubricating, Fiske Brothers Refing Re. Coo
Oils, illuminating, Standard Oil Co., of Ne

oryercoats and suits, Friend Bros. cio. Co,
Oacking, piston rod and valve, Garlock Pack Paint, coai tar, Barrett Manuacuring co
Paint for ship and boat bottoms, preserva Paint, liquid, A. S. Laliberte.
Paints, roof, E. W. Grafton
Paper, carbon, Carter's Ink Cor Co........
Paper holders and cutters, roll, Nationa Paper holders and cutters, roll, Nationa
Candy Mold and Manufacturing Co. Coilo
Paper, printing and writing, Dill \& Colins Paper, wrapping, Dayton Paper Novelty C
Piano players, mechanical, Aeolian Co....

Pope-Hartford Model G, 2 -cclinder touring car, perimprovements suggested by a season's use. It is a family touring car with ample storage capacity, seating five people comfortably, a sericeable and reliable model, simple in onstruction and built especially for the man who enjoys driving and caring for his own machine compare it point for point with any other 2-cylinder car on the market and let us prove its superiority by a demonstration.

BODY: Divided front seat and double side entrance tonneau. SEAT
ING CAPACITY: five. MOTOR: two cylinder, horizontal opposed
ING spark. TRANSMISSION : sliding gear, three speeds forward and re verse. DRIVE: Shaft with bevel gears. BRAKES: double-acting
brakes expanding in drums, attached to each rear wheel hub double-
acting band brake, attached to rear of transmission shaft. With top, PRICE, WITH OIL LAMPS
Pope-Hartford Model F, "The King of Hill Climbers generally pronounced the wonder of the Automobile shows. BODY: Divided front seat, double side entrance. SEATING CAPA-
CITY: five. MOTOR: Four-cylinder, vertical, water cooled. VALVES: located in top of head, all mechanically operated and interchangeable
HORSE POWER: 20-25. IGNITION: jump spark. TRANSMISSION
stiding sliding gear, three speeds forward and reverse. DRIVE: bevel gear.
BRAKES: double acting, expanding in drums, attached to each rear wheel hub, and one on rear of transmission shaft, both operated by
foot lever. CONTROL, spark and throttle levers on top of steering PRICE, - - $\quad \mathbf{\$ 2 , 5 0 0}$
Pope-Tribune Model V, is an up-to-date, light touring two-cylinder motor, developing i4 H. P. It is simply constructed and ree from complicated parts.
Pope Manufacturing Co., Hartford, Conn.

New York Standard Watch Co., 401 Communipaw Ave., Jersey City

Your Vacation

may be spent in one of Nature's playgrounds, where buoyant, clear air, 1,200
closely linked lakes and streams, genial sunshine, virgin woods and high-
lands, splendid trout-fishing, cooking that will make you lands, splendid trout-fishing, cooking that will make you fat, canoeing, loafing-
and running across mighty nice people will re-create you in mind and body.-
Alrond Algonquin Park and surrounding district in Ontario, Canada, is the place, and
the Grand Trunk Railway System is the way. Through car connections the Grand Trunk Railway System is the way. Through car connections
from Boston. New York, Buffalo and Chicago. Write for our resort booklets
on Algonquin Park, Muskoka Lakes, Georgian Bay, and Temagami Region to
T. H. Hanley, N. E. Pass. Ag't GRAND TRUNK RAILWAY SYSTEM, 360 Washington St., Boston

	F Fever, intermittent, gentian Fever, typhoid, in $\mathbf{N} . \mathrm{y}^{2} . .$. Fever, yellow, and mosquitoes Fireproof construction …… Fireproofing, at San FranFire shiso				
			Ocean races for small boats. 490Oceanography, discoveries in.Odors in subway, to prevent 251		
	Flies, Flieor Flor parabolic ard				
			$\begin{aligned} & \text { Oysters ordered by telephone. } 500 \\ & \text { Ozone apparatus, new....... } 8 \end{aligned}$		
		L		34	
		Lagging, magnesia for 9			
			Painting, house, develop...Palitonon, Roman.*95Panama Canal		
ete		Langley, S. P., death of.... ${ }^{* 207}$		San Fransesccoo notes,	
syst			Panama Canal, sanitation. $. \cdots+214$	Sanding tracks, device for. 13 Santa Rosa, earthquake at. 435 256	(e)
	Fruit, preserving, new meth-		Panama Canal, tripemes...igh: $* 2126$ Panama, earthquake problem. 266 Pater		
			Panama, present conditions. . 450		
		Leter, open, to mayor $\ldots \ldots .283$			
		Letter writing ancent**32			
				Sor, saros-Dumonts.	
	¢ ${ }_{\text {c }}$				Trade of U. S. with euroee. ${ }^{253}$
		Light, standard of 271		Seerecy in processes........ ${ }^{499}$	
	Gas engines for elec. generat. 474 Gas, hydrogen, process.ent.				
				Sheme	
	Gasoline electric train. Gasoline locomotives		Phosphorescence in animals.* 135 Pototograph, hist., Japan Sea ${ }^{*} 74$ Ren		Tree, arched, curious Tree growing within an
					Tree growth strange..... 151
	Generator, hot air........9		Pretemeter, mercury a a...... ${ }^{327}$	Ship construction, experim.: 88 Ship subsidy bill 1	
				Stiol	
		Locomotive performance, com- parison performance, com- 302			
	Glaciers, stud of of.........5534				
		Locomotives. single-phase $\quad \cdots, 4$Long Island Cinty power sta.. $* 345$			
			Pipe galleries in subway.... 66Pipe, steam, covering a...$: 494$in	Signaling apparatus, a	
	Glidden trophy tour: ${ }_{307}^{67}$	$\underset{\text { Lion }}{\text { Long }}$ Island R.R. transmis-		Signaling apparatus, fog....455	Tunnel, St. Clair, electrifying 146
		Lube, concentrated ${ }^{\text {Len }}$			
		M		${ }_{9}$	
		$\xrightarrow{\text { Mot }}$	Racer, Cristie new, the.. ${ }^{* 472}$		
					Water famine in New York? 108
		Motor car			
					standing and seated ${ }^{\text {chain }} \ldots \ldots \ldots \ldots$

Silvers Band Saws

20-in Foot or Belt Power 26=in. Belt Power 32=in. Be!t Powe 36=in. Belt Power
Hub Boxing and Spoke Tenon "Ohio" Feed and En". Feed and

THE SILVER MFG. CO. SALEM, OHIO

Tools! Tools! Tools!

and all you want to know about
them. Our Tool Catalogue No
2i is a cur colth-bound book of 90
pages. If you want to "know
pat pages. If you want to " "know
it all, about Tools you should
send for this book at once send for this book at once
Sent post-paid on receipt o
$\$ 1.00$ which will be from your first purchase from
us of \$10.00 or over.

CIONTGOMERY \& CO 105 Fulton Street, N. Y. Cit

Regal Marine Engines

Regal Gasoline Engine
Start A Mail Order Business.
 beginnersine sares cinner and orfirs you a chance to
get in business for yourself. Full particulars for stamp
A. FRANKLIN-HOWARD CO., Kansas City, Mo.

 ${ }_{T}$ Two minutes from D. L. W. Depot

Watch Making and Engraving School
 LEARN WATCHMAKING

s

LABELS

PRINTS.

Canadian patents may now be obtainod by the in
ventors tor any of the juventions named tin the tore.

CHARTER

Stationaries, Portables, Hoisters Pump-
ers. Sawing and Boat Outits. Combined
with Dynamos. Send for Catalogue. state Power Needs CHARTER GAS ENGIL
 WM. H. BRISTOL Electric Pyrometers

 Thermometers, make continuous records
Day and Night. Will pay for themselves.
Every instrament fully tarantee and
sent on 30 days' triai.
 GOLD MEDAL, STistol Comoany. Waterburv, Conn CRUDE ASBESTOS PREPARED R. H. MARTIN, for Manufacturers use 220 B'way, New York.

ANA OLDS

Olds Gas Engines and Pintsch Suction Gas Producers are built in the same plant-engines 2 to $1,600 \mathrm{~h}$. p. - producers 4 to $2,000 \mathrm{~h} . \mathrm{p}$.

We know each complete plant (proit leaves the factory, perfectly adapted to the coals you will use-operating costs are 1-3 to 1-5 of steam, 1-2 of gasoline-adapted to all kinds of work. Send for detailed information applied
to your requirements.
OLDS GAS POWER CO.
947 Chestnut St., Lansing, Mich

"Maxisctl"
The Car of Contentment -I You can't argue a Maxwell owner out of his conviction that the Maxwell is the "car for him." He has a proven fact and a practical demonstration for every theory or fad that you may present. "Performance," he says, is a whole lot better than "promise." He is contented because he can't see how a car could give more satisfaction than the Maxwell. Multiple Disc Ciutch Three-port Suspension of
Motor and Transmission (Unitit Nibration
 quention Wou get it when hou nend tor our cata-
logue. Write Department 2 Z .
 MAXWELL BRISCOE MOTOR CO.

STEAM USERS

Rainoow Packing

The original and only genuine

 red sheet packing.The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints. Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by
PEERLESS RUBBER MFG. CO. 16 Warren St., New York

The GRIFFIN?Mill

The Greatest Pulverizing Machine in the World

OVER 50 PER CENT. OF THE PORTLAND CEMENT MANUFACTURED IN THE UNITED STATES TO-DAY IS GROUND IN THE GRIFFIN MILL.

The Griffin Mill pulverizes more cement than the combined output of all other machines used for this purpose.
Thoroughly tested by continually successful and constantly increasing use during the past sixteen years.
Portland Cement Clinker reduced from $1 / 2$ inch to required fineness in one operation, with no auxiliary apparatus. No other machine made will do this.
Buy the GRIFFIN MILL and get the BEST. It holds the world屚 record from every standpoint.

Send for Catalogue and full information.
Bradley Pulverizer Company, 92 State St., Boston

© COMBINATINN SCREW DRIVER:

WIVMETIEIUBRICATES

