

Bird's Eye View of Station From the Northeast as It Will Appear When Completed.

The General Wating Room, 110 Feet Wide, 320 Feet Long, 150 Feet High.

SCIENTIFIC AMERICAN

ESTABLISHED 1845
MUNN \& CO., - - Editors and Proprietors

No. 361 Broadway. New York

TERMS TO SUBSCRIBERS
 the soientific american publications.

NEW YORK, SATURDAY, MAY 26, 1906.
The Editor is always glad to receive for examination illustrated
articles on subjects or timely interest. If the photographs are $8 h a r p$, the articles short, and the facts authentic, the contributions
will receivespecial attention. Accepted articles will be paid for
at

CONDITIONS OF THE RAPID TRANSIT TUNNEL.

It has been rumored for many months that considerable difficulty was being experienced, during the driving of the Rapid Transit tunnel below the East River from the Battery, Manhattan, to Joralemon Street, Brooklyn, in preserving the tunnel at the predetermined grade. It is a fact that, as now constructed, a considerable portion of the tunnel, about fifteen hundred feet in all, on the Brooklyn side varies from the re-established grade by amounts that increase from a few inches to twelve inches, the variations consisting in a series of depressions or hollows in the grade, giving the latter something of a wave-line profile. Also, in this section of the tunnel, the cast-iron lining has cracked longitudinally, chiefly at the top, and sometimes at the bottom. The effect of the latter mishap has been to throw the cast-iron lining from a true circle into an ellipse, the lateral axis being greater than the vertical axis by varying amounts which reach, in the worst places, a maximum of six inches. That is to say, each side of the shell is in places as much as three inches outside of its true position, while the top and bottom are each three inches inside the true line.
It is claimed by the Rapid Transit engineers that the result is due to the difficult nature of the material at this part of the river bottom, and also to the unusual methods employed by the contractor in driving the tunnel, methods which were not suited to the particular character of material through which he was working. The contractor, on the other hand, claims that the tunnel cast-iron lining, or shell, was not designed of sufficient strength to withstand the distortion stresses to which it is subjected, and that it was bound to crack and get out of line in the way that has happened. On the other hand, the engineers claim that where the contractor's methods were suited to the material through which the tunnel was driven, no trouble was experienced, that portion of the completed tunnel standing up to its work in satisfactory shape.
The effect of the depressions in the grade is that there is not sufficient clearance at these points to permit the cars to pass through without touching the roof of the tunnel. The matter is being remedied by taking out those sections of the floor which are too high to accommodate the re-established grade, and to a less extent sections of the roof are also being taken out. In each case new segments are being built in place, and the tunnel everywhere throughout the defective 1,500 feet is being restored to its proper internal diameter. It might be supposed that, when the sections of the floor were taken up, the sand would flow into the tunnel; but this is prevented by the air pressure which already exists for the regular driving process. For the roof repairs, which are of considerably less extent than those of the floor, the material above the roof is frozen before the plates are removed, the rigidity thus imparted to the overlying material serving, with the internal air pressure, to hold up the sand until the new roof has been put in place.
We wish to contradict the impression which has gone abroad as the result of the Mayor's statements at the last meeting of the Rapid Transit Commission, that these repairs are likely to entail either any delay in the completion of the work, or any increased expense to the city. The Rapid Transit Commission has held back $\$ 200,000$ due upon this work, to cover the expenses of renewal, and the repairs are being carried on simultaneously with the driving of the 1,000 feet of tunnel which remains to be completed before a junction is effected below the center of the East River. It tion is effected below the center of the east River. It
is confidently expected by the engineers that the tunnel will be completed by the end of the year, and that the first cars will be run through early in January next.
It should be explained that the difficulty in keeping a subaqueous tunnel of this character to true line and level is not by any means peculiar to this work under
the East River. The same problems were experienced
in the tunnels that have been driven below the North River, where the tube not on!y showed a tendency to get out of line, but was so distorted by the pressures to which it was subjected, that it was necessary to resort to a system of internal tie rods in order to hold it to circular form. Moreover, there need be no apprehension as to the future stability and safety of the East River tunnel. Although it might have been advisable to make the shell heavier, it is reinforced by concrete on the inside and by grouting on the outside, until the total thickness of the combined iron and concrete is on an average about twelve inches. After the work has been concreted and grouted up in this way, work has been concreted and grouted up in this way,
the material of the river bottom has no tendency to the material of the river bottom has no tendency to
produce any further displacement or distortion of the tunnel.

EFFICIENCY OF THE AMERICAN LOCOMOTIVE.

it is not likely that another series of locomotive tests as elaborate as those which have recently been published by the Pennsylvania Railroad Company, will be undertaken for some time to come. The plant was of the most modern pattern, and expense was not considered in providing every form of apparatus that could conduce to the accuracy of the results. Moreover, no less than forty engineers, skilled in investigations of this character, were continuously employed on the work. A summary of the conclusions, recently published, proves that the American locomotive, at least in some of its forms, is efficient and economical to a degree that was not generally supposed; and the fact that it has shown its ability to produce a horse-power for the consumption of 2 pounds of coal per hour brings it almost into line with the average of modern stationary steam engines. In the first place, it was found, contrary to common belief, that the large modern boilers with which locomotives have been supplied, evaporate as much steam per square foot of heating surface, even when forced to maximum power, as the smaller boilers. Most of the boilers tested delivered 12 pounds of steam per square foot of heating surface per hour, and one of the largest boilers delivered as high as 16.3 pounds. It was found in all the boilers that a high quality of steam was produced, and that the greatest evaporative efficiency was shown when the power developed was the least. When they were running under conditions of maximum efficiency, most of the boilers evaporated between 10 and 12 pounds of water per pound of dry coal. There was a gradual fall of efficiency as the rate of evaporation increased, which was, of course, to be expected, until, when the boilers were being pushed to the limit, the efficiency fell to between 8 and 6 pounds of water per pound of dry coal.
When the fuel was being burned at a low rate, the temperature of the firebox was found to be between 1,400 and 2,000 deg. F. The temperature increased slowly with the increase in the rate of combustion, the maximum observed firebox temperatures being between 2,100 and $2,300 \mathrm{deg}$. F. The smokebox temperature when the boilers were being worked at moderate power was about 500 deg. F. for all of the boilers. It increased gradually as the boiler was forced, until in the locomotives under test it reached from 600 to 700 deg. F.
On the important question of grate area it was proved that the boilers which have the largest ratio of grate surface to heating surface, have the greatest capacity. There was found to be but little loss of heat through imperfect combustion, always excepting the amount of fuel that was drawn off through the stack unburned, in solid particles. There seems to be no advantage in increasing firebox heating surface beyond advantage in increasing firebox heating surface beyond being capable of absorbing such heat as is not absorbed by the firebox surface. The draft in the front end, when the locomotive is running under low power, does not exceed about 1 inch of water, but it increases rapidly as the boiler is pushed, until maximum pressures of from 5 inches to as high as 8.8 inches are reached. The indicated horse-power, shown in these tests, reached a maximum of 1,100 in the simple freight locomotive, and in the compound passenger locomotive it exceeded 1,600 horse-power. The steam consumption per indicated horse-power showed for a simple freight locomotive an average minimum of 23.7 , the consumption, of course, depending upon speed and cut-off.
tion, of course, depending upon speed and cut-off.
Compounding has again fully vindicated the the ories upon which it is based, the compound locomotive consuming from 18.6 to 27 pounds of saturated steam per indicated horse-power per hour. When superheated steam was used, the minimum consumption was reduced to 16.6 pounds. The fact was brought out, furthermore, that while the steam consumption decreases with increase of speed in the simple locomotive, in the compound locomotive it increases, a condition which experience with the compound had led us to expect. Experiments with the throttle and cut-off proved that the locomotive performance is best, when carrying the same load, if a full throttle and a short cut-off is used.
as pull in the drawbar at low speeds than at high speeds. Thus it was found that at 40 revolutions per minute, the maximum percentage at did dawbar is 94 and the minimum 77; whereas at 280 revolutions per minute the percentages fell to 87 maximum and 62 minimum. It was found, furthermore, that the loss of power between cylinder and drawbar depends largely upon the character of the lubricant, the substitution of grease for oil on the axles and crank-pins increasing the friction from 75 to 100 per cent.
Coal consumption per dynamometer horse-power hour in a simple freight locomotive was found at low speeds to vary from 3.5 to 4.5 pounds. For the compound freight locomotive tested under similar conditions, the consumption fell to between 2 and 3.7 pounds. The two-cylinder compound, run at high speed, showed a consumption of 3.2 to 3.6 pounds per dynamometer horsepower hour; while for the four compound passenger locomotives it varied, according to running conditions, from 2.2 to over 5 pounds per hour. In all of the locomotives the consumption increased rapidly with the speed.
Finally, it was proved, in a comparison of the compound freight with the simple freight locomotive, that the economy of the former is greatly superior. Under similar conditions the least economical compound shows a saving in fuel over the most economical simple locomotive of about 10 per cent, while the best compound showed a saving over the poorest simple locomotive of nearly 40 per cent. It is only fair to state that the conditions of the trials, which provided for continuous operation of the locomotives at constant speed and load, were all favorable to the compound. We are pleased to note that these valuable tests are now being continued at Altoona, where the plant has been placed in its permanent location.

directed wireless telegraph messages.

The transmission and reception of two or more wireless telegraph messages simultaneously in the same zone of action, or selectively, as it is called, is a problem second only in its abstruseness to the telephonic relay, that scientific willo'-the-wisp over which inventors have struggled ever since Bell devised his.appartors have struggled ever since Bell devised his appar-
Many solutions, electrical, mechanical, and electromechanical, have been provided to secure selectivity, but at the end of a decade of wireless telegraphy it seems that all the labor expended in this direction has been virtually in vain, in so far as the coveted goal is concerned, though through the researches in electrical resonance excellent results have been achieved in tuning and syntonization, which important factors are largely accountable for the present degree of advancement in long-distance wireless signaling.
Since it is sometimes more convenient to enter a window than to go through a door, many inventors: have ceased trying, at least for the time, to discover the "open sesame" of selectivity, and have confined their efforts to the easier task of directing, within certain limits, the wireless waves. Artom, of Italy, was the first to evolve such an arrangement and attain favorable results; this he did by means of circularly polarized electrical radiations*, which he produced without resorting to reflection grids, as is necessary in the case of light waves.
Much simpler than this Italian physicist's method is. one recently made public by Marconi, while the experiments of the latter indicate that a wider range of usefulness will be given the previously inflexible wireless transmitter and receptor than has yet been known. Briefly, the scheme is this: When one end of an insulated horizontal wire (the other end of which is free) is connected to one side of a spark gap of an induction coil, and the other side of the gap is earthed, the electric waves emitted by the wire will reach a maximum in the vertical plane of the horizontal wire, and proceed principally from the end connected to the spark gap, the radiation being imperceptible in any otherdirection approximating 100 deg. from that in which the maximum effect takes place.
Similarly, if an insulated conductor is laid on the ground, or placed a short distance above it, and the end nearest the sending station is connected to one side of an electric wave detector, the other side of which is earthed-leaving the opposite terminal of the wire free-the maximum effect will be evident only when the receiving and transmitting wires are in alignment with each other. Marconi further points out that if the receiving horizontal wire is so arranged that it can be turned in a circle about its earthed end in a horizontal plane, the maximum and minimum effects observed during the process of swiveling will enable an operator to easily determine the direction of any transmitting station within the field of radiation.

A number of trials were conducted to ascertain the best lengths of the herizontal wires for both transmission and reception, the distance these wires should be elevated from the earth, and finally the greatest distance obtainable between stations thus equipped. The experiments were further varied by

A greater proportion of the cylinder power appears
employing the regulation aerial wire for sending, the complementary apparatus using the horizontal wire.
The whole series of tests cannot here be cited in detail, yet the following will suffice to show in a measure the results secured. In one of the experiments the transmitter, having a spark length of about 2 cm . ($3 / 4$ inch), was connected to a horizontal conductor 656 feet in length, supported at a height of $491 / 4$ feet above the ground; the receptor was furnished with a wire of equal length $31 / 4$ feet above the ground, and connected to one end of a magnetic receptor. Now, when the horizontal wires of both stations were in line, so that the maximum effects were obtainable, easily-read signals were heard at a distance of 25 km . ($151 / 2$ miles). When the receiving wire was swung around to 12 deg., nothing could be heard even when the receptor was moved to within 12 km . ($71 / 2$ miles) of the transmitter; and when placed within 5 km . (3.1 miles), the angles of the wires remaining unchanged; only weak signals were indicated.
In another trial the great Poldhu station with its vertical aerial was used for sending, and a receptor placed at Clifden, Ireland, 500 km . (310 miles) away, was provided with a horizontal conductor 754.6 feet in length, laid on the ground, and connected to one side of a magnetic receptor, the opposite side being grounded as previously explained. When the free end of the receiving wire pointed directly away from Poldhu, the signals were sharp and loud; but when the horizontal wire made an angle of more than 35 deg. with the line of Poldhu, the reception was absolutely nil.

In all of his experiments where the tests were made over considerable distances, Marconi employed his magnetic receptor; but where the distances were short, he utilized a Duddell thermo-galvanometer, since this delicate instrument permitted him to measure the current values of the electric oscillations set up in the receiving wires.
The horizontal wire, if it is proven to be anywhere nearly as effective as the usual aerial wire, will greatly reduce the expense of wireless telegraph installations, for the masts often cost as much or more than the instruments. The new arrangement will do much to further the commercial possibilities of this mode of transmitting intelligence if the mast can be eliminated, and the whole series of tests points to a new era of wireless telegraphy.
One of the noteworthy observations made by Mar coni was that electric currents set up by distant atmo spheric conditions can not only be detected, but the direction whence they originate determined; and this may mean that a new instrument is to be placed in the hands of the meteorologist. There are other aspects of the experiments which will be looked forward to with interest.
In the army and navy wireless telegraphy has proven an invaluable aid, and this has been due chiefly to the fact that messages could be sent and received over long distances, while the direction whence they came or whither they went was an impenetrable mystery to the enemy. Now all this is changed, and some extraordinary complications may be looked for. As a palpable problem it is a duplication of heavier armor plate, heavier guns; heavier guns, heavier armor plate, and so on to infinity.

THE MANUFACTURE OF TURPENTINE

Turpentine or spirits of turpentine-to the old pharmacists everything volatile was a "spirit," thus "spirits of wine," alcohol-is a product of several varieties of pine tree, and the turpentines from the different species vary in their composition and properties. But in this country, or in the eastern three-fourths of it at least, we know but one kind, that produced from the yellow or long-leaf pine (Pinus sylvestris) of our southern seaboard and Gulf States.
When an incision is made through the bark of one of these trees at a season when the sap is flowing, a thick, clear, gummy juice exudes, and on exposure to the air gradually hardens into a friable but somewhat sticky mass. The odor of this juice, which in the trade is known as gum thus, or "virgin turpentine," is the characteristic turpentine smell, and its hardening is due to the evaporation of its contained turpentine, leaving behind its constituent gum resin or "rosin."
Formerly vast sections of all the States south of the Virginias and the Ohio and east of the Mississippi River were covered with immense forests of yellow pine, and during more than half a century these forests have been the chief source of supply for the tur pentine and rosin consumed by the entire civilized world, with the exception of France, Russia, and east ern Europe, which are to some extent producers of turpentine for home consumption.

- The effect of this immense drain upon our natural esources, coupled with primitive and criminally wasteful methods of production, has been to reduce the acreage of the pine forests from apparently exhaustless resources to a comparatively limited territory. A quarter of a century ago the principal center of the naval stores business ("naval stores" including turpentine, rosins, pitch and pine tree tar) was Wilming-
on, N. C. Later it gradually shifted to Charleston, S. C.; for a decade or more it remained at Savannah, Ga.; but during the past five years the Florida ports of Pensacola and Jacksonville have been slowly taking precedence. At the present time the "turpentine belt" is confined to the Gulf States. Though all the available territory in the adjoining States has not been exhausted, the end is plainly in sight unless the devastation can be checked.
The reason for this deplorable condition will be understood from a brief description of the methods commonly pursued by "turpentine farmers" in collecting the "crop."
The turpentine season opens in the early spring, when the sap begins to rise in the trees, and continues until late in the fall, when cold weather puts an end to the return flow. The turpentine farmer, goes into the forest and selects a space containing the number of trees he proposes to work, and leases from the owner the acreage desired. Hiring the requisite num ber of negroes, he sets them to work "boxing" the rees. A few feet above the ground a shallow "box" or excavation is cut into the tree trunk, and above this box for some distance the bark is removed and the sap wood scarified. Often a second similar "box" is cut on the opposite side of the tree. The sap gradually exudes from the scarred surface or "face" and collects in the boxes, from which it is dipped out from time to time and collected at a central point. When the flow ceases or becomes sluggish, the face of the cut is scraped and rescarified to prevent the healing of the wound. During successive seasons the cuts are deepened and extended in height, until the tree dies from exhaustion or is blown over by a storm because of the weakening of the trunk.
Meanwhile, at some convenient central point in the orchard," a crude still has been erected for the treatment of the collected sap. Into this still or series of stills the sap is charged, and live steam being passed through it, the turpentine passes over with the steam through a condensing "worm," and is collected as it drips from the condenser. The residue in the still is osin, which after remelting and straining to remove twigs, leaves, and other impurities, is run while fluid into large rough wooden casks made on the spot. The sap from the first year's boxing produces the so-called "pale grades" of rosin, known in the trade as "water white" or "W. W.," "window glass" or "W. G.," "N.," "M," and "K" rosins. As the age of the "box" increases, the grade or color of the rosin deteriorates through the letters of the alphabet up to "D," "C," and "A" rosins, constituting. the darkest and cheapest grades. This, roughly speaking, is the cause of the classification, though other influences help to determine the color and grade of the product.

Tar is made by a crude process of distillation applied to pine chips, twigs, etc., by direct heat, and is merely an occasional incident in the industry.
The product, both "spirits" 'and rosin, is sold largely to neighboring grocers and country storekeepers, either in exchange for supplies or for cash, and is by them shipped from time to time to the central markets, the principal "naval stores ports" being, in addition to those already named, Mobile, New Orleans, and Tampa. New York is also an important market, but the receipts at that port are all reshipments from southern ports.
From the foregoing outline of the methods pursued by the pine-forest devastators, with the added element of carelessness as to fires, it will be easily understood how the area of the long-leaf pine has in fifty years been reduced from millions of acres to hundreds of thousands. The government, through its Department of Agriculture, has lately intervened with an attempt to introduce more economical methods, by means of a simple device which is not only more efficient and cheaper than the old practice, but calculated to maintain the yield of sap indefinitely; but until the strict supervision of France, which enforces the replacement of the destroyed trees by new ones, is introduced, the extinction of our pine forests will be merely delayed, not averted.
Combinations of producers and factors or merchants have had some effect upon prices in recent years; but no combination, however effective, in an industry so widespread as this, could have raised the price of a product from an ayerage level of from 25 to 35 cents to the present current prices for turpentine, which ranged in the past year from $553 / 4$ cents to 79 cents per gallon; or of the pale rosins from an average of under $\$ 3$ to $\$ 5$ and $\$ 6$; and of the low grades from a high limit of $\$ 1.50$ to $\$ 3$ or $\$ 4$ or over. The end of American turpentine and rosins is in sight unless the waste be promptly checked.

The chief use of turpentine is in paints and varnishes, where it is employed as a volatile thinning agent. It evaporates very quickly, leaving no residue. It has the peculiar property of forming ozone, which is practically a condensed form of oxygen, and as oxygen is the cause of the drying of paints and varnishes; turpentine to this extent serves a double purpose. Its rate of evaporation also is slower than that of benzine and similar products, so that for most uses it is some-
wnat preferable on that account; but aside from pure ly technical advantages, it is doubtful if it serves any better purpose in paints and varnishes than is obtained from the use of benzine and similar volatile thinners At any rate, a prepared paint or a varnish is not neces sarily inferior because it is not thinned with turpen tine, and it is becoming a very serious question with all manufacturers of such goods whether the time is not at hand when the consuming public will have to be educated to the use of benzine instead of turpentine in their products. The objection is in reality rather to the odor of the first-named product than to any lack of efficiency.

A NEW AND CHEAP PROCESS FOR GENERATING

 HYDROGEN.Consul-General Frank H. Mason makes a report from Paris
At a recent meeting of the French Academy the emi nent physicist, Mr. Moissan, presented a report from Mr. Georges F. Joubert describing a new and thus far secret process for the manufacture of hydrate of cal cium, a product which, by reason of its convenient fertility for the generating of hydrogen gas for balloon ing and other purposes, is likely to play an important role in the field of applied chemistry.
It appears that the Société d'Electrochemie, at St Michel de Marienne, has succeeded, like the Electro technical Company, at Bitterfield, Germany, in produc ing by electrical process calcium metal on a commercial scale and at a price so moderate as to permit its use for various industrial purposes.
The invention of Mr. Joubert consists in a process by which the reaction of metallic calcium upon a metallic salt produces the new form of hydrate of calcium, or, as it is commercially known, "hydrolithe." This resembles in appearance and qualities calcium car bide, with the difference that whereas the carbide with the addition of water evolves acetylene gas, the hydrolithe upon contact with water evolves hydrogen gas. When pure, 1 pound of hydrolithe will generate 18.46 cubic feet of hydrogen. When of the ordi nary commercial grade of purity, 1 pound of hydrolithe will create 16.05 cubic feet of gas.
Its most ready and obvious use is thus far for inflating balloons for military and other purposes. It is safe and easy to handle, can be used for generating gas wherever water can be obtained, and for long flights can.be carried as ballast instead of sand, and employed at will for refilling the balloon, which may thus be kept in flight almost indefinitely. As an illustration of the economy of weight that has been accomplished by the substitution of hydrolithe for the purposes of military balloon service, it may be stated that an ordinary field balloon contains, when inflated, about 17,657 cubic feet of gas, the generation of which by the means hitherto employed requires the employment of materials and apparatus which fill three wagons, each one of which weighs when loaded $31 / 2$ tons, and re quires in a campaign to be drawn by six horses. All this cumbrous and costly equipment can now be re placed by a two-horse wagon carrying a ton of "hydrolithe," which, with the addition of water that can be obtained anywhere, supplies instantly and in controlable quantities whatever gas may be required.

A RUSSIAN GASOLINE-ELECTRIC TRAIN.

Experiments have been lately carried on at St . Petersburg with a train using a new system of gaso line-electric locomotive, in which a gasoline engine is combined with an electric motor outfit. The train is made up of six steel cars mounted on two double-axle bogies. The platforms are connected with the bogies by means of ball-bearing pivets. The gage of track is 30 inches and the wheel diameter 12 inches. The rails of the Vignole type weigh 12 pounds per yard. Each car weighs 0.7 ton, and the load is about 2 tons. At the head of the train is placed a car which is like the others on the outside, but it contains in the interior a generating set consisting of a German gasoline motor of 35 horse-power running at 800 revolutions per minute. To the motor shaft is coupled a Bergmann dynamo. The gasoline motor is of the four-cylinder type and has 5.6 -inch bore and 6.4 -inch stroke. Copper water jackets are used on the cylinders. Speed regulation is secured by varying the proportion of gas in the mixture. The dynamo is designed to furnish 142 am peres and 120 volts at a speed of 780 R. P. M. The weight of the gasoline motor is 0.4 ton, and that of the dynamo 0.8 ton, while the total weight of the locomotive car, including 40 gallons of water, is 2.3 tons. On each of the bogies of the cars of the train is suspended an electric motor, which drives the axle by a 1 to 5 reduction gearing, These motors weigh 110 pounds each, and they operate on a current of 60 volts which is furnished by cables from the dynamo in the locomotive car. The two motors of each car are connected in series. Their speed is 1,000 R. P. M. A four-conductor cable connects all the cars with the locomotive. The motorman can regulate the speed of the train by a. controller placed on the front car. This new system is said to operate well

THE ART OF PIANO MAKING.-II.
In the preceding article on the art of piano making, as carried out at the Knabe factory, we showed that great attention is devoted to the selection and preparation of the wood, so that it shall conduce to the tonal qualities of the piano; described the building up of the rast, or frame; the construction and function of the delicate sounding board, "the soul of the piano". the manufacture of the late which serves to carry the combine tension of the strings, and hold the whole structure of the piano to its proper line and surface; and, lastly, we discussed the prin ciples of tone production, and dwelt upon the great care that is taken in the manufac ture and selection of the wire for the strings, and in the laying out of the scale.
The Piano Action.-One of the most in genious and carefully designed and constructed elements in the piano is its action, which is the name given to the delicate and complicated system of rods, levers, and ham mers, by which the stroke of the player's fingers, with its infinite variations of touch is conveyed to the sound-producing element, the trings.
The chief requisites in the piano action are

1. Lightness, so that the total inertia of the particular key that is struck, and its accessories, shall be as small as possible, and the response to the stroke proportionately quick
2. Elasticity of touch, or quick return of the key. 3. Sensitiveness to different speeds of attack, so that the performer can produce instantly, and to the proper extent, the effects which he desires.
The movement of the action may be briefly summarized as follows: The key, which is struck by the performer, is pivoted at a certain point in its length, and is arranged for transmitting motion from the finger of the performer through the action to the striking hammer. The action is so arranged that the hammer is not driven positively to the string, but to a point which is a short dis tance therefrom, and the hammer passes over this distance by reason of th momentum already impa ed to it by the action. The hammer, after striking the string, rebounds therefrom and is caught by the back check and prevented from further movement. When the key is released by th performer the parts of the action immediately as sume the correct position for giving another stroke Moreover, this position is taken when the key is only partially released; a ful return movement of the key not being required be ore giving another stroke With the striking mech anism for each key is asso from the strings just before the blow is struck, the amper closin upon the string when the player's finger is lifted from the key, un less it be prevent d from doing so through the oper ation by the per formerofthe "loud" or sustain ing pedal.
Apart from the energy with which the key is struck by the performer the blow given by the hammer is dependent upon the distance through which it mus travel from its po ition of rest un til it strikes the strings. The soft pedal is a device y which the whole of the ham-

Polishing the Case. Rubbing Down with Powdered Pumice Stone.
mers may be brought forward toward the strings, thus shortening the stroke and softening the tone. This is the system employed in the upright pianos manufactured by this company. In the grand piano the action of the soft pedal is to shift the hammers from the position in which they strike the three strings that go to the majority of the notes, to a position in which they strike but two of the strings. It is impossible
ciated a damper, which normally lies in contact with the strings. The same movement of the key that causes the hammer to strike its blow, lifts the damper

Complete Actions for Small and Large Upright and the Grand Pianos
as is consistent with great strength, the wood is so cut that the grain shall, in each member, lie in the direction which is most suitable to the strain which that particular piece must endure. Moreover, the clearance between the separate pieces is so small that the expansion and contraction under atmospheric changes must be reduced to a minimum; nd hence, in those parts upon which the maintenance of proper clearance depends, when not in-
within the limits of the pres ent article to enter into a detailed description of all the pieces that make up the complicated action of a piano, and for such information the reader this article and particularly to the one showing the three styles of
 the best quality comes from Germany in the form of large sheets, 4 feet square and tapering in thickness from 11-16 inch at one edge to $3-16$ of an inch at the opposite edge. The whole set of eightyeight hammers during the first process of its fabrication is operated upon as one piece. The wedgeshaped strip of wood forming the nucleus of the hammer head is held in the jaws of a specially constructed press, and the inner or cushioning strip of felt is glued on, and then a strip about 5 inches wide, with
action as used in the small upright, the large upright, and the grand. In the upright piano the hammers strike their blow horizontally, and the tone waves are thrown toward the sounding board; in the grand piano the blow is delivered upwardly in a vertical plane, and the tone waves are thrown away from the sounding board. For convenience of manufacture and assembling, the individual members of each part of the action are made of the same length between centers, and pivot upon axes that are in the same horizontal line. This enabies the whole of the action as assembled to be mounted upon common supporting rails, which are themselves carried in four metal brackets, one at each end and two arranged between them The system is shown clearly in several of the illustrations, and notably in that entitled "assembling the action."
Several different varieties of wood are used in the construction of the action, chief among which are maple, basswood, ash, cherry, and cedar. As it is desirable to make the various parts of the action as light
its edges chamfered down, is cut from the sheet of outer felt and glued down, under great pressure, in the jaws of a powerful machine, over the inner felt until it assumes the characteristic pear-shaped profile of the hammers. When the glue has thoroughly set, the felted strip is cut transversely into the requisite number of hammers. The thickness of the felt decreases gradually from 13-16 inches in the lowest bass hammers to $3-16$ of an inch in the hammers for the highest treble notes. How special a quality of felt must be used in a first-class piano is shown by the fact that each of these sheets costs $\$ 125$. We explained in the previous article that the scale of the piano strings is so arranged that the points at which the hammers strike the strings shall lie on a straight line; and one of the most careful adjustments is that of regulating the length of the hammer shank, so that the hammer shall strike neither above nor below this line. This adjustment is made by passing a file over the bottom end of the hammer shank until it is lowered to its proper relative position.
The Dampers.-Acting upon each string in its proper relation to the blow of the hammer is a damper, which consists of a piece of soft felt, that normally is held against the string by a light spring, but is lifted from it just before the hammer strikes a blow, and returns to contact when the player's finger is lifted from the key. It is necessary that the tension on the dampers should be mathematically co-ordinated to the force with which the string vibrates, and this adjustment is secured by a careful operation, known as "weighing off the dampers," in which the tension of the spring is tested by means of a weight, each spring being adjusted. so that it will exactly counterbalance this weight, and secure an identical speed of action of all the dampers when in use.

The Keyboard.-As in the case of the hammers, the eighty-eight members of the keyboard are, in the earlier stages of their manufacture, formed in one piece, consisting of a board of white pine, composed of several widths glued together with the grain so arranged that it shall run approximately in the direction of the finished keys. By reference to the engraving showing
now ready for assembling in the piano
Adjusting the Keys.-Each key is pivoted at about its mid-lengh upon a rounded saddle, resting on the key frame. It is kept in proper line by means of two nickel-plated pins, one fixed in the saddle and passing up through a slotted hole lined with felt in the center of the key, and the other pin projecting near the forward edge of the key frame, and engaging another slotted and felted hole near the front end of the key. It is necessary, because of the small clearance between adjoining keys, that they all move in a perfectly vertical plane, and one of our photographs shows the workmen employed in the task of adjusting the keys in this respect, the adjustment being made by bending the pins slightly to right or left, as required.
Regulating for Touch.-One of the points to which

Glueing On Veneer in 120-Ton Hydraulic Press.

Machine for Testing Action, Hammer, Felt and Cloth.
particular attention is paid in the construction of the Knabe piano, is to secure an easy, light, and rapid response of the keys to the stroke of the fingers. Normally, the keys are depressed at the inner end, being held down by the weight of the action above them. As the weight of the action varies greatly, being heavier at the bass end of the scale, it is necessary to weigh the outer end of the keys, so as to bring the excess load on the inner end to the same amount for every key, otherwise it would require greater strength to depress the keys in the bass register than in the treble. This balance is secured by inserting one or more lead plugs on the outer ends of the keys, the amount being determined by an operator who is specially trained for this work. Another important question affecting the

Installing Automatic Piano-Player Action.
five stages of the construction of the piano keys, it will be noticed that some of the keys bend to the left, others to the right, and it is necessary to have the grain running in the direction of running in the direction of
these bends in order to sethese bends in order to se-
cure the proper transverse strength. The board, as irst glued up, dressed, and finished to size, is about 1 inch thick by 2 feet wide by 6 feet long. The first step is to glue down along one of the long edges of the board a thin ivory strip, after which the top ivory is glued on. The board is then spaced off into the proper number of keys. A double line of holes is then drilled across the board at about its midlength, for the reception of the pins by which the keys are held in position on the key frame. The keys are now accurately lined upon the board and sawn out with a band or fret saw, after which the ebony keys are glued down upon the proper members. The whole set is

Assembling the Action.
the art of piano making.-II.
touch is the depth of stroke; or vertical distance through which the key is depressed in playing. This regulation is made by interposing little circular washers of felt or other cushioning material between the outer end of the key and the key frame below it. Speciallytrained workmen are detailed to do this work, and by long practice their fingers have become so trained, that they can detect the slight change in the depth of the touch amounting to as little as $3-1000$ of an inch, due to variations in the down-stroke caused by the insertion or withdrawal of a washer as thin as ordinary tissue paper. Concurrently with this adjustment great care is taken to insure that the
"release" acts in its proper time relation with the movement of the key.
Tuning and Tone Regulating.-When the action has been thoroughly adjusted, the piano is taken in hand by the tuners, and as an evidence of the thoroughness with which this important work is carried through at the Knabe works, we may mention that each piano undergoes no less than sixteen separate tunings viz.: Four chippings or preliminary tunings, ten regular tunings, and two fine tunings. Tone regulating or "voicing" is, perhaps, the most important of the final adjustments to which the finished piano is subjected The object of tone regulating is to weaken or destroy certain "upper partials" or overtones, which would otherwise give a harsh quality to the tone. This is done by pricking the felt with a needle-pointed instrument to soften the hammer near the point where it strikes the strings. This causes the hammers to remain longer on the strings, and secures the effect of dampening certain of the inharmonic overtones. It is a work that requires a most delicate ear, and the number of really first-class tone regulators in the country is very limited.
Veneering and Varnishing.-Not a little of the charm of a first-class piano lies in its inherent beauty considered as an object of artistic furnishing. The first-class makers recognize the necessity for bringing the form and finish of the piano up to the high level of its musical quality. The piano owes much of its beauty of finish to the art of veneering, and the world is ransacked in the search for fine veneers, mahogany being the most preferred, while rosewood, walnut, birch, English oak, and Hungarian ash are all largely used. The finest veneers are cut from near the root, or from the root itself. The body of the piano case is of quartered ash, and the veneers are all glued on in dcuble thicknesses, the grain of one layer running ransversely to that of the other.
The bringing forth of the latent beauty of the grain is due largely to the judicious use of staining; and a large amount of experimental research is always going on in the testing department of the Knabe works for new and more effective stains. Incidentally we might note that this testing department is unique in its way, for we believe that it is the only one of its kind in the world. Among its apparatus we find a Riehle 100 -ton testing machine, for tensile and crushing strength of iron or steel; a sonometer, an ingenious machine for determining the breaking strain of steel wire, or the number of pounds strain necessary to pull any certain size and length of wire to a certain pitch or tone; an action-testing machine for testing the durability of felts, cloth, hammers, and other parts of the action; and numerous other devices, all specially built for the one purpose of determining what particular material is the best, and best suited to its particular function.
The varnishing is a slow and costly process, involving seven distinct coats and twenty-one processes. First a coat of varnish is put on with the brush. The brush marks are then rubbed out with pumice stone, the pumice-stone marks by rotten stone, and finally the rotten-stone marks by the hand, there being no polishing agent to equal the human skin. These steps are successively carried out for each of the seven coats; after which the case presents the desired grain and luster.
The finished piano is now subjected to the final examination and test, and as a matter of fact passes through the hands of five different inspectors, after which it is ready for the showroom. The construction of a piano at the Knabe works takes from six months to two years, according to the style and design, the time being reckoned from the day when the rough lumber is taken from the stack to the wood mill. The finished product embodies all that careful attention to details of design and workmanship, and that distinctive singing quality of tone, which, as we have seen, are the qualities aimed at in the production of this instrument.

Salving " Fireproof ${ }^{\text {the Great }}$ Fire of and Their contents After the Great Fire of San Francisco.

Since the great fire of San Francisco burned itself out, the safe experts have been the most important persons in the ruined city. The financial existence and commercial future of many individuals and firms depended upon the contents of vaults or safes warranted proof against any assault of man or the elements. As soon as circumstances permitted, safes were dragged out of the debris and allowed to cool. In many instances the eagerness of their owners proved fatal-the safes were opened before they had cooled sufficiently and, when air was admitted, the contents burst into flames. In other cases, the safes remained buried in the hot debris till their contents were baked and charred beyond recognition. The only chance to rescue anything from a safe buried in hot debris is to get it out as quickly as possible and to cool it by wrapping it in wet sacks or blankets. Then it is fairly probable that, on being opened, the contents will fairly probable that, on being opened, the contents will
be found uninjured or not hopelessly ruined. But.
if the safe is allowed to remain in the smoldering ruins, its contents are "cooked" and crumble into ashes as soon as the safe is opened and air admitted. Even coin is melted into a lump of bullion. A safe that looks all right outside, being neither cracked, dented, nor warped, may yet be "cooked" and its contents useless. If the books and records are burned, the owner may find himself ruined, whereas, if they are in reasonably good condition, he may be able to begin business again without any very serious loss.

It is sad to have to say that the San Francisco fire has demonstrated the worthlessness of many safes and vaults guaranteed by the manufacturers to be proof against burglars and fire. The manufacturers, dealers, and agents have in many instances been shown to have sold "fireproof" safes that were of little more value than wooden boxes, and the "fireproof" compositions with which they are lined might as well have been sawdust. It is to be sincerely hoped that the manufacturers of and dealers in these worse than worthless devices may be put out of business for all time.

Some of the "fireproof", vaults in office buildings have turned out equally valueless for the purposes for which they were intended. They had imposing steel doors, with locks, bolts, and elaborate combinations, but their backs were the walls of the building. The intense heat of the conflagration, the shock of the earthquake or the concussion of exploding dynamite brought the wall down and there was a "burglar- and fireproof" vault or safe without any back.
F. M. Smith, the "borax king," had three safes in a building at the corner of Sansome and Bush Streets. One of these, containing securities and diamonds, was found uninjured, but the papers and books in the other two were consumed.
The banks and safe deposit companies were, naturally, slow in opening their vaults and strong rooms not wishing to jeopardize their invaluable contents by haste. In every instance their contents were found to be unharmed. Several of the companies opened their vaults on May 7 and the renters of safety deposit boxes were delighted to find their treasures intact. For many days previously they had been making anxious inquiries, but had been turned away by watchmen and United States soldiers. Some of them took out the money or jewelry contained in the boxes, while others, after poring over their treasures for a little while, put them back again, feeling that their keepsakes and valuable documents, after passing safely through such ordeals as the earthquake and fire, were secure.

In one bank on Market Street the safe deposit boxes were unharmed, but a large vault, extending under the sidewalk and the floor of the bank, was broken by the wall from a neighboring building that fell upon it, crushing the ceiling of iron and cement and allowing ingress to the flames. In this vault were stored silver plate, laces, and other valuable articles, too bulky to be placed in the steel boxes. Many of these articles were in large tin boxes or even in trunks and suit cases. They were ranged on iron shelves, from which they fell and became a prey to the devouring flames.
On the same day (May 7), only seventeen days after the fire died out, the American National Bank resumed business in the quarters that it occupied previously in the ground floor of the Merchants' Exchange Building on California Street, being the first banking corpora tion to return to the old business center. The building was swept by flames and all the combustible material in it was consumed, yet in less than three weeks a bank was able to open again in it. It proves how rapidly a modern steel and concrete earthquake- and fire-proof structure can be refitted for use. On the opposite side of the main entrance the San Francisco National Bank resumed operations a few days later.
preservation of records from fire.
Prof. Edmund O'Neill, dean of the College of Chemistry at the University of California, offers some suggestions to persons whose records may have been destroyed partially by fire. He says: "The destruction of organic matter by fire is dependent upon two points -increase of temperature and the presence of air or oxygen. If excess of air be present on the elevation of temperature to igniting point, the whole mass will burn up completely. If the air is kept out, but an elevated temperature is maintained for some time, the paper will be slowly destroyed. Volatile matter is given 'off and finally the residue of carbon, more or less pure, is left behind. This carbonaceous residue is very friable and difficult to handle. The temperature of decomposition is not very high and varies according to the quality of paper. It begins below 300 deg. F. and becomes more rapid as the temperature increases. But a comparatively low temperature long continued will destroy the paper as effectually as a higher temperature.
"The safety of paper inclosed in so-called 'fire-proof' safes depends upon the heat insulation, and the more non-conducting and the thicker the layer of fire-proof material the longer it will take to transmit the heat to the inner chamber. But if the safe is covered with hot or glowing material, it is simply a question of time when the heat will be transmitted into the inner cham-
ber and cause the paper to decompose. The sooner the safe can be removed from its hot bed and cooled to normal temperature, the better it is for the papers contained therein. The better the safe the more slowly it will cool, and such safes should be left much longer before opening than the small and poorer ones. If air be admitted before the temperature has sunk below the point of ignition, the papers will take fire instantly when exposed to a current of air. The temperature of ignition is about 300 deg. F., and, if it is not certain that the interior of the safe is cooled below that temperature, it will be dangerous to open it. The cooling may be hastened by the withdrawal of the safe from its hot bed. Covering it with sacks or cloth or other porous material and pouring water upon it will also hasten the cooling to a great degree. The ignition may also be stopped by preventing the access of air, but methods for doing this are cumbersome. Steam from wet sacks would probably be the most efficient agent to prevent the access of air. When the interior of the safe is cooled below the igniting point, there is no danger in opening and removing the documents.
"If the paper be charred so that the writing is apparently illegible, the sheets may be removed one by one and laid on plates of glass. Frequently the writing may be read by holding the sheets at a certain angle so that the reflection of light from the inked surface is distinct. The legibility is sometimes increased by moistening the paper with water. Chemical methods of rendering the writing visible may be employed in some cases.
"Inks are of two classes-those in which metallic salts are used, and those in which organic coloring matters, mainly anilines, are employed. Inks of the first class are usually tannates or gallates of iron or logwood bichromates. Many methods have been tried in the laboratory of the University of California to cause the residues to assume a different color from that of the carbonized paper. The most successful results have been attained by brushing the paper with a diluted solution of hydrochloric acid. Subsequent brushing with a solution of potassium ferro-cyanide has sometimes proved effectual. Other reagents that have produced good results in particular cases are tannic acid and ammonium sulphide. It is intended to try the effect of X-rays and Becquerel rays. It is possible that they may prove successful. The problem is a complicated one, the composition of inks being so varied and the qualities and textures of paper so different. Then, the temperature and the time are not always the same, so that the procedure must vary according to circumstances. In some cases the writing is brought out very clearly, while in others the same method is not at all successful."

The importance of the safe expert is shown by the fact that the first business place set up on Market Street, San Francisco, after the fire was that of "Hughson \& Merton, Representing Eastern Manufacturers," and of the "G. W. Emmons Company, Safe-Moving and Draying." The establishment consists of a rough wooden shack and a khaki tent set up on granite blocks a few feet from the car tracks.

San Francisco Notes.
The sub-committee on history of the Committee of Fifty has intrusted to Prof. Henry Morse Stephens, of the University of California, the task of compiling an accurate and complete record of the San Francisco earthquake and great fire and of the relief work necessitated thereby. Mayor Eugene E. Schmitz, of San Francisco, has given an order that all the official documents be turned over to Prof. Stephens, and has asked Gen. Frederick Funston, commanding the Department of California, and the military authorities to co-operate with him in preparing the papers.
Prof. Stephens proposes to divide the history into three sections, devoted respectively to the earthquake, the fire, and the relief work. The history will end with the restoration of normal conditions and the beginning of the projected rebuilding of a greater San Francisco. Prof. Stephens will be assisted by C. H. Parker and D. E. Smith, readers in the history department of the University of California. Mr. Parker will collect the data, with copies of official proclamations and orders, and Mr. Smith will segregate and catalogue them. Both will have the help of several deputies.
A. C. Lawson, professor of mineralogy and geology at the University of California, is making an investigation of the movements and effects of the earthquake, gathering the personal opinions of various officials on duty during the disaster, and commenting on the manner in which affairs were managed during the period immediately following the catastrophe. Prof. Lawson contribution will be added to the general history.

A large deposit of clay has been discovered in Monterey County, California, from which can be manufactured an absolutely fireproof brick. A house built of these bricks cannot catch fire from the outside and flames inside are quenched by a vapor that rises from the brick when heat is applied to it. The brick is an excellent non-conductor, and remains cold an inch be-
low the surface while a hot flame from a gasoline torch is directed against it. Experiments have been made with the new brick, of which a report has been presented to the Merchants' Association of Monterey. The deposits of clay from which the brick is made are very extensive and the brick can be manufactured cheaply.
The Merchants' Association will conduct further experiments, and, if the bricks prove to be satisfactory, the building of fireproof structures will be revolutionized.
One of the remarkable incidents of the great fire of San Francisco was the immunity from damage of an old wooden shack owned by the American Marine Paint Company at the corner of Main and Harrison Streets. The ramshackle, half-century-old building stands unharmed, a little island in a sea of desolation. It reeks with oil and is filled with highly inflammable materials. Quite near to it a great pile of coal caught fire and burned for nearly a week. The officials of the company felt so certain that the place had fallen a victim to the devouring flames that they did not even attempt to visit it until two weeks or so after the conflagration, and then it was mere curiosity to see what the ruins looked like that led them there. Their astonishment when they saw their oil-soaked wooden store standing unharmed amid the ruins of "fireproof" buildings can easily be imagined.

California Fruit as Affected by the Earthquake.

The writer has made careful inquiry concerning the present prospects of the California fruit crop, and the response to each inquiry is to the effect that the recent convulsion will not diminish its value by a single dollar. The only considerable locality where fruit was the leading commercial interest was in the Santa Clara Valley, where the property losses were large, but fruit suffered no injury whatever. Apricots, the earliest fruit to ripen, will not be in large supply this year on account of climatic peculiarities, the result of too abundant rains, unseasonably prolonged. Cherries, at the present moment, are in splendid condition and the prospect, barring future eventualitien, is most excellent. Plums, should every indication be fulcilled, will be in larger supply and better in quality than for many years. In each of these fruits, now in an advanced stage, a careful inspection of the orchards over a wide area fails to show that a single apricot, peach (also in large prospective supply), cherry, or plum, was shaken from the branches by the shock which prostrated some of the finest and largest buildings in every community where its violence was greatest. It is yet too early to make observations on the future of the grape crop. It is invariably the rule in European countries, that "an earthquake year always assures a full vineyard," and if the rule proves good in California, the grape crop of the present year should prove a phenomenal one. A competent authority estimates the quantity of wine consumed in the late San Francisco fire as exceeding $20,000,000$ gallons, or nearly one-half year's production, mostly of old, high-quality wines; therefore there will be demand for every gallon which the vineyards can produce. The excellent prospect in every agricultural product is distinctly encouraging to the State, though many months must elapse before mercantile interests will benefit from the new supplies.

The Current supplement.

The current Supplement, No. 1586, opens with an article on the damage sustained by the Leland Stanford, Jr., University during the recent earthquake. Very striking pictures accompany the article showing the condition of the University buildings before and after the catastrophe. Some simple tests for the detection of food adulterants are published, which will enable the housewife to ascertain whether or not her provisions are pure. Mr. James P. Maginnis's article on Reservoir, Fountain, and Stylographic Pens is continued. An excellent article is published on the utilization of solar heat for industrial purposes by means of a new plane mirror reflector. A novel device for the making of curved stereotype printing plates for newspapers is described and illustrated. A new seating arrangement for street cars is described and illustrated. Mr. William L. Larkin presents a very complete account of concrete mixing machinery. A scientific account of the San Francisco earthquakes is published.

Paper Gas Pipes.

An interesting employment of paper relates to the production of gas pipes. Manila paper cut in strips, of a width equal to the length of the pipes to be made, is put in a receiver filled with fused asphalt and rolled solidly and uniformly around a rod or core of iron until the desired thickness is obtained. After the pipe thus produced has been submitted to strong pressure, the exterior is covered with sand and the whole cooled in water. The core is removed and the outer surface covered with a water-proof product. These pipes, it appears, are perfectly tight and more economical than metal pipes.-Rev. de Chimie Industrielle.

Cowxexpundames.

To the Editor of the Scientific American:
A curious case of spontaneous combustion came under my notice a few days ago. A number of matches which were lying loose upon a shelf ignited and burned without apparent friction or contact with a flame of any kind. The day, March 30 , about 11 A. M., was foggy and cloudy. I was seated with my back toward the shelf, when I suddenly noticed a flash not unlike that which takes place when a large lamp is lighted, and on looking around I saw the matches blazing on the shelf.

Had this occurrence taken place at night among papers, or in some person's pocket, it might have been the origin of one of those unaccountable fires which appear to be unpleasantly prevalent. Of course, spontaneous combustion is neither novel nor always unexplainable, and possibly may occur more easily with matches than with other articles. This appears to prove, however, that matches should be packed and handled with greater care than is usually given to them.
At the time that the case I mention took place, there was no fire near the shelf, nor anything on the same that would appear to be capable of causing friction. Is it possible that the ignition was due to an atmospheric cause, or could it be owing in any way to the chemical composition of the match or matches which ignited first?
This seems to me to be a rather serious question for fire insurance companies, as well as factory owners and householders generally. Matches should be handled with far greater care than is usually the case, and should, for instance, be kept entirely out of reach of children. I am convinced from what I saw in this case that certain kinds of matches at least are extremely liable to be ignited spontaneously.

East Orange, N. J.
William Dewart.

Fertilizing Power of the white Ant

To the Editor of the Scientific American:
Your article of February 17 last regarding the fertilizing powers of the white ant is correct. I left Montpelier, Idaho, in 1887, and since then have lived among the natives of this African east coast. Every season I have seen the wonderful effects the white ant hill produces on the Kafirs' maize and corn. Whenever there happens to be an ant hill in their gardens, its immediate vicinity can be at once distinguished, as the maize and corn are fully double the size of the surrounding crop. The statement that some parts of the country are uninhabitable on account of the white ants is incorrect so far as this vicinity is concerned, as they are easily prevented from entering buildings, and do not attack green crops to any extent. The bush country a few miles from this place is swarming with white ants, and has also a large native population, and my experience is that the ants do more good than harm if necessary precautions are taken with buildings.

Reg. Springle.
Mbabane, Swaziland, South Africa.

Earthquake at the Home of Luther Burbank.
by enos brown, caligornia correspondent of the scientific american.
Nowhere in the limited area to which the late California earthquake was confined were the terrific destructive powers of the convulsion manifested with greater violence than at Santa Rosa, the capital of Sonoma County and one of the most beautiful rural communities in the State. Santa Rosa has been the home of the most wonderful of horticulturists for over thirty years, and the scene of all those remarkable developments which have, in recent years, astonished naturalists throughout the civilized world. Notwithstanding the appalling catastrophe which has brought misery and misfortune to many friends and neighbors, the renowned scientist welcomed the representative of the Scientific American with great cordiality, and proceeded at once, to the exclusion of all other subjects, to talk upon the strange features of the shock as exhibited under his own personal observation. "I arose at 5 o'clock, as invariably my custom," said Mr. Burbank, "and was looking out of my window at the moment the shock began. A great spreading elm tree in the back yard seemed trying to uproot itself, and swayed in every direction. First the branches turned half way around to the right, and then reversed in the contrary direction; again the great tree marched toward the east, and then back to the west. The trunk then appeared to rise from the ground and try to eject itself from ${ }^{-}$the earth, and did not cease from its extraordinary motions until all movement of the ground had stopped. I then rushed into the garden, and naturally expected that a terrible scene of destruction would meet my gaze, but to my amazement not the tenderest leaf or the most delicate plant had been broken. Not even a single pane of glass in any of my greenhouses suffered from
fracture, neither had a solitary flower-pot been thrown from the shelves, yet within two blocks of my house, right in sight, a mile of the most substantial brick buildings in the county had been prostrated to the ground and were a few minutes later in a blaze. The beautiful court house was all but destroyed, while hotels, business blocks, theaters, and many private dwellings shared in the common ruin, all this happening in a space not exceeding one and one-quarter minutes.
"The first shock came from the west and then turned and came back from the east, afterward appearing to twist around in a circle, racking the buildings and involving them in utter destruction."
Not a brick or stone structure in a space 3,000 feet in length and 600 feet wide escaped destruction; the heart of the city was involved in a minute and onequarter in total ruin. Strangely enough, frame buildings, those even of the lightest construction, were comparatively unharmed, suffering no greater damage than from broken plaster or breakage of rotten timbers. The financial loss to the beautiful city will reach from $\$ 3,500,000$ to $\$ 4,000,000$ but a more dreadful consequence was the fatality attending the catastrophe, which cannot be accurately determined. Seventy-eight bodies were recovered. Had Santa Rosa been the only locality involved in the catastrophe, the loss of life and property would have caused it to have been recorded as the most terrible earthquake visitation known to the history of the State; but, overshadowed by the tremendous upheaval at San Francisco, the magnitude of the Santa Rosa cataclysm is almost lost to sight.

The work of rebuilding is now proceeding in energetic fashion, and a different aspect than at présent afflicts the spectator will soon be presented. Hundreds of workmen are busily engaged in erecting one, two, and three-story buildings, and it will not be many months before all visible signs of the disaster will have vanished. Every hotel of any pretension-and there were a number of them-was either destroyed by the shock or by fire, but the proprietor of one was equal to the emergency. The new St. Rose is the first to rise from its ashes, not as a structure of brick or mortar as before, but in the shape of a great tent, capacious enough for 250 bedrooms and fitted with every appurtenance of modern travel and comfort, with the added novelty of perfect ventilation and safety from seismic disturbances. The energetic citizens have determined on a new plan for their city, in which wide streets will be a prominent feature.

AN AUTOMOBILE SCHOOL.

The remarkable development in the automobile industry, and the swift advances in automobile construc tion within recent years, have produced unexpected and unforeseen conditions, and one of the most striking phases in the situation is the lack of men trained to manage and care for t'ie high-powered cars which are being turned out of the factories by the thousand here and imported from abroad. The high salaries that have been offered for drivers and experts, and the pleasant character of the work itself, have attracted the attention of young men of all classes, and hundreds of these have applied to factories and garages with offers to work without compensation merely in order to acquire mechanical training in this line. The superficial automobile engineering education thus obtained has been accepted on the principle that a half-trained chauffeur is better than none at all. Manufacturers of popular cars have estimated that three-quarters of the troubles reported to them by automobile owners are the results of inefficient handling rather than of inherent defects in the mechanism; and to-day the selection of a driver has become almost as important as the choosing of the car. It was to relieve this condition that the New York School of Automobile Engineers in New York city was incorporated, and Prof. Charles E. Lucke, of the Department of Engineering of Columbia University, was invited to plan courses and to supervise a general scheme of instruction that would give thorough training in the principles involved in the construction and handling of automobiles of all types, as well as in the solution of the many practical problems confronting the chauffeur. That the plan of the school has been successful in attaining the object for which it was designed, is attested by the fact that of over a hundred students who have completed the course, none has failed to give satisfaction to his employer.

The building occupied by the school is equipped with shops and laboratories that cover the entire field, and students are accepted for the eight weeks' course only after an examination that proves sufficient ability to grasp the work. Various departments of the school are illustrated in the accompanying engravings.
The men are formed into graded squads of from twelve to fifteen each, and the course is divided into five departments, which include lectures and recitations, practice in the workships, and the study of transmissions and engines, of carburetion and lubrication, and of ignition. The men pass through this cycle four times a week. Various other phases of automo.
bile engineering are, of course, included in one or the other of the five general divisions, and the student is unfamiliar with no detail of the automobile at the end of the course.
Each of the general departments is in charge of an experienced instructor, who begins his work with extended lectures on the elementary principles involved, advancing at each period and holding occasional examinations to assure himself that every step has been thoroughly comprehended. For example, a squad in the carburetion department will study the primary action of the liquid seeking its own level, and will follow that with the application of the principle as
tered under all conditions of faulty lubrication, loss of compression, etc., and the motors and gear systems are isolated, so that in studying them the pupil's attention is not distracted by other parts of the car's mechanism. Engines of many types are provided for the purpose of familiarizing the student with them, and to facilitate this portion of the instruction the models are partially cut away, more clearly to illustrate their interior construction. Wh.ere a model of a particular type of engine has not been obtained, the students are provided with detailed plans and concise descriptions which they must study thoroughly. Various types of transmissions are mounted in frames and belt-driven,
given to the student in a complete car set on rollers, and in this way control of the car-starting, stopping, reversing, and braking-can be learned with greater rapidity, for the student is independent of the wor ries incident to steering and the speed limits. The first instruction in the handling of cars on the road is given on Morris Park race track, where for a week the students have simple running conditions, but are incidentally-and purposely-introduced to all kinds of possible trouble. Every difficulty will be encountered, and the failure of a student to get his car running and keep it running, will count against him in the granting of his certificate of graduation. The experience at

Burning Mixture From a Carbureter in an 0pen Crucible.

Circulating Pumps and Radiator Department.

Practice in Assembling Parts of an Automobile.

Overhauling a Car Prior to Traffic Practice.

Theoretical Work in the Lecture Room Before Studying the Principles in Practice.

Studying Various Systems of Ignition.
worked out in the various designs, finally taking each type of carbureter in action. For this purpose an exhaust fan with variable speed draws either warm or cold air through the carbureter in question, and the mixture is then burned in an open crucible, where the actual difference between good and faulty adjustment is illustrated by the color of the flames. The ignition department has been worked out with the special care which the importance of this detail of the subject war rants, and each step is so thoroughly explained and illustrated in each of the various systems, that the principles can readily be grasped and applied.
Engines and transmissions of all types must be mas
that they may be studied in motion and with any combination of gears. All classes of repairs, temporary and permanent, are taught in the machine tool shop, where practice with forges, lathes, drill presses, and shapers, supplemented with bench work, is included in the instruction. The students are taught how to make brake horse-power tests of engines, and in these tests the effect of various conditions, such as absence of muffler or jacket water, upon the engine are studied. One interesting feature of the course is the instruction in the avoidance of tire trouble and in the methods of making repairs when it occurs.

The first practice in handling change-speed gears is
the race track is followed by a week's experience oper ating through traffic and among city conditions, and beyond that the student only requires practice to become thoroughly competent for any work in driving or manufacturing that may be offered.
In the organization of the school's equipment the manufacturers of cars and parts, recognizing the advantage of having men trained in their designs, have offered all their specialties, and for this reason the course is remarkably complete and of the most practical benefit. One interesting feature of the situation is the eagerness with which owners of automobiles have taken up the special course open for them.

THE LORIMER AUTOMATIC TELEPHONE
Two Americans, the Lorimer brothers, have offered to the French government an automatic telephone system of their own invention. The apparatus will soon be put to the test of regular service at a telephone exchange and its adoption or rejection will depend upon its performance. As the apparatus is very complicated an explanation of its action and its advantages will be given without any minute description.
The apparatus now in Paris is designed for an ex-
change having not more than 200 subscribers, half of whom are connected with each section of the apparatus. Communication between two subscribers connected with one section is established entirely within that section, while communication between subscribers of different sections calls into action four pieces of apparatus of the sender's section and one of the receiver's. In the illustration these two sections, each designed for 100 subscribers, are shown in the central figure. An electric motor, shown at the lower left of
this figure, drives a horizontal arbor which lies between the sections and extends throughout their length. This arbor drives a series of vertical spindles, each of which gives motion, as required, to its column of superposed disks or drums. For throwing the parts of this complex apparatus in and out of gear mechanical devices have been used, as far as possible, in preference to electrical ones.

Current for the subscribers' instruments as well as for those of the exchange is furnished by accumulators

at the exchange-an improvement which does away with individual batteries and magneto-calls.
On the left of each of the two sections is seen an apparatus called a decimal indicator, which serves to identify the subscribers. It consists of a number of superposed circles of contact pieces. Each subscriber's wire is connected with one of these contact pieces
In the axis of the column of circles is a rotating spindle carrying contact brushes which transmit the subscriber's calls to the other parts of the apparatus As soon as the call is made the brushes stop, the num ber is transmitted and the brushes resume their rota tion. The sole function of the decimal indicator is to call the other parts of the apparatus into action as they are required. This ideal telephone girl instantly trans mits every order and at once turns to her other patrons all of whom she visits every three seconds in search of fresh commands. Meanwhile, what becomes of the call-that is to say, the number of the subscriber called up?
By various stages it is transmitted to the auxiliary organs of the section, which is composed of exactly similar divisions whose number depends on the volume of communication. Each of these divisions consists of five cylinders, C C C C C, alike in appearance but un like in function.
The topmost cylinder, called the primary connector, represents the plug of the calling subscriber which the operator inserts in the switchboard. It receives the number from the decimal indicator, the division starter (the single cylinder at the lower left), and the controller of the decimal distributor (the circle of contacts on the same axis with the indicator). The units of the number are received in the interior of the pri mary connector, the tens by the distributor placed above it.
The cylinder immediately under the primary con

After from one to four seconds the pointer is seen to move over all the other buttons, making a complete revolution and returning to the position of communication. During this movement the number called for has been transmitted to the exchange. The pointer is controlled by the signal transmitter at the exchange, as nas already been stated.
Having thus sent his call the subscriber takes down his receiver, applies it to his ear and presses a button which rings the bell of the person called up. The sound of the bell is heard in the caller's receiver and indicates that the communication is established. Failure to hear the bell indicates that the line is not free. In this case the receiver is hung up and the call is repeated a few minutes later. The whole operation is very simple.
Subscribers' instruments of this character suffice for all cases in which the exchange serves fewer than 10,000 subscribers. If there are more than 10,000 lines the subscriber's instrument has an additional lever which indicates the particular exchange (of 10,000 subscribers) to which the person called belongs, and puts at the caller's disposal an auxiliary wire connecting the two exchanges.
The caller is thus switched temporarily to the other exchange at which all the operations described above are performed, his own exchange serving merely to put his wire in connection with the other exchange.
Thus a subscriber of exchange K , wishing to talk to a subscriber of exchange W, turns his supplementary lever to the letter W, and is immediately connected with one of the wires running from K to W (unless all such wires are in use). Then, when he has indicated his number-which, in this case, is the number of the inter-exchange wire which has been assigned to him-the remaining steps in the transmission are made by four cylinders of exchange W, precisely as if the
space which has been included for the accommodation of a power plant and the tunnel approaches to the station. The site is bounded by Seventh Avenue on the east, Ninth Avenue on the west, and on the north and south respectively by Thirty-third and Thirty-first Streets. The whole of this area will be covered at the lower level by the station tracks. At the easterly end, the tracks will converge from twenty-one to four, and they will extend beneath New York city, two of the tracks below Thirty-second and two below Thirty-first Street, ultimately passing under the East River to Long Island City. At the westerly end, the tracks will converge to two tracks, which will pass beneath the North River in two separate steel-and-concrete tubes.
From what has been said above, it will be seen that the site of the station and yard is bisected by two important thoroughfares, namely, Eighth Avenue and Thirty-second Street. Eighth Avenue divides the site into two equal portions, the westerly half constituting the station yard, while the easterly half constitutes the station proper; and here it is that the imposing structure which forms the subject of our front page engravings will be erected. It will have a frontage on the avenues of 430 feet, and on the streets of 780 feet, the sides of the building forming a perfect parallelogram. Below the surface of the street, and within the area covered by the building, the station will be divided into three levels, on the lowest of which will be the tracks at a depth of 40 feet below street grade.
The question of the architectural treatment of a building of this magnitude, and to be used for this special purpose, was one that called for the most careful consideration, and New York city is to be congratulated on the fact that the Pennsylvania Railroad Company were willing to forego the opportunity to erect a huge office building above the station site, and

The fagades extend 430 feet north and south and 780 feet east and west.
the pennsylvania railroad station, new york, as seen from the southeast.
nector is the secondary connector which receives in like manner the number of the subscriber called up, and corresponds with that subscriber's plug in the ordinary system.
In short, the primary connector attends to the caller and the secondary connector to the person called, while the connection between the two instruments puts the two persons into communication.
The third cylinder is the signal transmitter which sends back to the caller electrical impulses which cause a pointer on a dial attached to his instrument to indicate the number called up.
Below this is the interconnector which indicates the hundreds and thousands and therefore the section (of 100) to which the person called up belongs. The interconnector always stands at 00 if the number of subscribers is less than 100 . The lowermost cylinder is a rotary commutator, which controls the relays that stop and start various parts of the mechanism at the proper moments.
In the apparatus shown in the illustration each of the two sections contains five of these vertical divisions, each of which is composed of five cylinders. Five divisions usually suffice for 99 subscribers. If the communications are very numerous one or more supplementary divisions may be added without disarranging the section.
The subscriber's instrument contains, in addition to the usual transmitter, receiver, and call bells, an indicator with four disks, for units, tens, hundreds, and thousands. By depressing the handle of each disk to the proper degree the desired number is caused to appear, as shown in the illustration. Then a quarter turn of the handle below sends the call and causes the pointer surrounded by a circle of metal buttons, which is shown just above the handle, to move from the position of communication to the next, or calling button.
call had come from a subscriber of that exchange.
It may happen that the apparatus of the exchange is overwhelmed with demands. In that case the calls are stored up and are transmitted, without the necessity of repeating them, as the divisions become free. This delay will be avoided if the apparatus comprises a sufficient number of divisions. It has already been stated that a section can be extended, by adding one or more divisions, as links are added to a chain, but it is preferable to install, at the outset, a sufficient number of vertical divisions to meet all probable demands.

If a division becomes out of order it can be cut out and repaired without interrupting the service of the section, for the decimal indicator selects available divisions and passes over the others. In ordinary service, too, this intelligent and silent foreman judiciously distributes the work among his subordinates, giving a fair share to each.

With the system now in use a break occurring in a subscriber's wire is not detected until an attempt is made to communicate, and then hours or even days may elapse before the wire is repaired. With the Lorimer system, on the contrary, any defect in a circuit is instantly indicated at the exchange by the ring. ing of a bell and the flashing of two lamps corresponding to the section and division to which the damaged wire is attached. Linemen are at once sent out and the break may be repaired before the subscriber has had occasion to know of its existence.

PENNSYLVANIA RAILROAD'S TERMINAL STATION, NEW

 YORK CITY.The excavation for the new Pennsylvania terminal station has a total width of about 500 feet and an extreme length of slightly over 2,000 feet. Roughly, it includes four large city blocks, with some additional
preferred to memorialize their final entrance into New York city by the erection of a magnificent and purely classic structure, commensurate with the importance of the company and the dignity of the great city in which it has at length found a fitting terminal.
The architectural design of the entire exterior is a Doric colonnade 35 feet in height, surmounted by a low attic, the total height of the elevation being 60 feet. In the center of the building, however, in order to accommodate the great waiting room, the roof of the structure reaches a height of 150 feet, and the line of the building is also pleasingly broken at the corner of Eighth Avenue and Thirty-third Street, where there is an elevation of four stories for the accommodation of the offices. The unusual extent of the building in area and its general type are suggestive of the great baths of ancient Rome; in fact, the architects of the building, McKim, Meade \& White, took the baths of Caracalla, which are still magnificent in their ruins, as the inspiration of this architectural plan. The dig nity and beauty of the building are enhanced by the contrast of the lofty "skyscraper" buildings of the vicinity; and when the structure is completed, the eye will turn with a sense of relief from the exaggerated perpendicular lines of the modern office building to the long, low perspective of this station, relieved at its mid-length by the lofty walls and roof of the waiting room. The exterior construction is to be of pink Milford granite, similar to the building stone of the Boston Public Library and the University Club in New York. This is a particularly effective structural stone, and its soft shades of color are decidedly pleasing to the eye.
The main entrance to the station for foot passengers will be at the center of the Seventh Avenue façade and opposite the intersected end of Thirty-second Street. Once inside the building the passenger will
find himself in a noble arcade, 45 feet in width and 225 feet in length. On either side will be shops where will be displayed wares suitable to the needs of the traveler. At the further end of the arcade the intending traveler will pass the entrance to two large restaurants, one to the left, the other to the right, and will then find himself at the head of a broad flight of stairs leading down to the floor of the general waiting room. This vast hall, the largest of its kind in the world, will be 110 feet in width, 320 feet in length, and will have a clear height from floor to ceiling of 150 feet. Within its spacious walls will be located ticket offices, parcel rooms, telegraph and telephone offices, and baggage checking windows, all so disposed that a passenger may proceed from one to the other in their logical order. Adjoining the general waiting room on the west will be two subsidiary waiting rooms, corresponding in their relation to the main hall to the two restaurants. Each waiting room will measure 58×100 feet. One of these is reserved for men, the other for women, and each will be provided with every convenience for comfort. The entrances for carriages will be by way of pavilions located at the corners of Thirty-first and Thirty-third Streets and Seventh Avenue. The carriages will descend on a slight gradient until they reach the level of the station proper. Entrance will be had by the Thirty - first Street incline, and the cariages will leave by the Thirty - third Street ascent as an exit.
To the east of the general waiting room isthemain baggage room with its 450 feet of frontage. The baggage will be delivered and taken away by special subway, 30 feet wide, which will extend under and along the enire length of Thirty - first Street and Seventh and Eighth Avenues. From the baggage room trunks will be taken to the
tracks
racks below by motor trucks and elevators. Cabstands will also occupy this level.
The passenger, after securing his ticket, checking his baggage, etc., passes through between the smaller waiting room entrances onto the great station concourse, an iron-and-steel-covered area over 100 feet wide, which extends across the entire width of the building. Crossing the concourse he will be confronted by a series of gates, bearing signs announcing the destination and time of departure of the trains on the various platforms below at the track level. The concourse and the adjacent areas are open to the tracks, and together they form a great courtyard 340 feet in width by 210 feet broad, roofed in by a lofty trainshed firon and glass similar in design to the famous trainheds of the new stations in Frankfort and Dresden, Germany. In addition to the entrances to the concourse from the waiting room, there are also direct approaches from Thirty-first Street, Thirty-third Street, and Eighth Avenue.
Below the main concourse, and located between it and the tracks below, is a sub-concourse, 60 feet in width, which will be used for exit purposes only. From the sub-concourse staireases and inclines will lead to the streets and avenues and to future rapid transit stations under Seventh or Eighth Avenue. Direct connection may also be made, in due time, with the proposed subway station of the Hudson Company's subways running up Sixth Avenue from the North River tunnels of that company. . The northern side of the station, paralleling Thirty-third Street, will be as signed to the suburban service of the Long Island Railroad
The third level, which will be at a depth below the surface of the street corresponding to the height of an
ordinary four-story building, will be entirely covered below the station building with twenty-one parallel tracks and their respective platforms. Within the station area, covering 25 acres of ground space, there will be 16 miles of tracks. A trackage area of this

Fig. 1.-The Newly-Discovered Right Arm of Laocoön Showing Its Correct Position and That of the Serpent's Coils.
amount will aftord ample facilities for the easy move ment by electric power of the many hundreds of trains per day that will use this station. Through trains from the West, after discharging passengers, will pro ceed at once to Long Island City, where the main train yard and terminals will be located, thus leaving the station tracks clear of any idle equipment. In like

Fig. 3.-A Correct Restoration of the Laocoön Group.
was worked out to facilitate, in greatest measure, the prompt and uninterrupted movement of the traffic The exposure of the building on all four of its sides to main arteries of street traffic gives the plan a flexibility which is rarely obtainable and also insures easy connections by underground subways with the future extensions of the city's rapid transit system.
Following this article on the station building, we shall, next week, ilustrate the huge work of excavation, which has to be carried out before the station itself can be erected.

THE LAOCOÖN GROUP ASIT OUGHT TO BE.
The famous Laocoön group was found in a vault in Rome in 1506. Pope Julius II. bought the statue and placed it in the Vatican. There it remained until Napoleon in 1796 bore it to Paris as a trophy. In 1815 the group was returned to the Vatican.
When the statue was unearthed the right arm of Laocoön and of the younger boy were missing, and likewise the right hand of the older boy. The group was restored by Giovanni Montorsoli. Even in his day some doubt was expressed as to the accuracy of his reconstruction. At the time of its exhibition in Paris Radel expressed the opinion that the right arm of Laocoön could not have been extended high in the air, but that it must have been bent toward the head. According to a recent issue of Umschau, a young German saGerman saLudwig Pollak, has been fortunate enough to discover a fragment of an arm which undoubtedly formed part of replica of the Laocoön group and which has endered it possible to determine the correct position of the original arm.
The arm, illustrated in Fig. 1, was found by Polak in a small Roman "scalpellino" among a mass of marble statuary fragments. Thesefragments are commonly bought, refurbished, and sold Pollak was in formed that the arm had been discovered in the "via Labicana"; no further details were available. He saw that the fragment was the right arm of a Laocoön and bought it. The stone of which the arm is made is a coarse-grained Parian marble. In ancient times it had been broken in two places and repaired. The serpent was injured at the time of the last fracture; but its convolutions can still be traced. The body of the serpent has the smooth surface so characteristic of the restored group. In all probability the scales were painted. At the inner side of the upper arm three indentations are to be seen, which were evidently caused by the pick of some workman.

So different is this fragment from the Vatican group that it could not have belonged to it, but to an ancient replica about one-ninth smaller than the original. The arm was probably broken when the statue was removed from its pedestal in Rhodes and taken to Rome.
The newly-discovered arm renders it possible to correct the restoration. This Pollak has done, as shown in Figs. 3 and 4. The group gains considerably in artistic composition. The uplifted arm of the restoration has the declamatory effect of shallow pathos. By carrying the arm back of the head the suffering of Laocoön is made more intense.

Automobile Show and Carnival.
An open-air automobile show and series of tests of machines will be held at the Empire City race track the last three days of this week. Some of the interesting tests will be an obstacle race, a vibration test (made by carrying a pail of water), and a power test to see which machine will go the farthest through deep sand.

THE NEW VICKERS.MAXIM 12-INCH BREECH-LOADING

 WIRE-WOUND GUNby the english corregpondent of the scientifi american.
The new type of 12 -inch breech-loading wire-wound gun made by Vickers-Maxim, and herewith illustrated possesses several improvements, notably in the breech operating gear. This gun, which will figure largely in the new cruisers and battleships now being built for the British navy, has a total length of 556.5 inches, which is equivalent to 46.375 calibers, the length of the bore being 540 inches, or 45 calibers, while the shot has a travel of 459 inches, or 38.25 calibers, the length of the projectile chamber thus being 81 inches. At the breech the diameter of the weapon is 5 feet 6 inches, and at the muzzle behind the swell 1 foot 10 inches. The wiring jacket ranges from 80 wires at the breech through grad ual reduction to 16 wires at the muzzle. The weapon fires a projectile of 850 pounds with a charge of 310 pounds. The muzzle velocity is 2,850 foot sec onds, and the muzzle en ergy 47,874 foot tons. The powder pressures within the bore of the gun vary from a maximum of 18 tons to the square inch against a circumferentia strength of 34.4 tons per square inch at the breech to 7.65 tons to the square inch against a circumfer ential strength of 16.1 tons to the square inch at the muzzle.
This weapon is considerably larger and more powerful than the lates type of 12 -inch 50 -ton wire wound gun produced a the British government ar senal at Woolwich. This Mark IX. class is five calibers shorter than the new Vickers production, being only 496.5 inches in length41.375 calibers-yet the longer weapon is considerably stronger, especially toward the muzzle.
The breech operating mechanism for this latest Vickers 12 -inch gun is of a new type, containing several distinctive improvements, whereby a considerable increase in power is obtained when closing the breech. The mechanism is operated by a hand wheel with worm and worm-wheel gear mounted in a bracket carried on the end frame of the gun, as shown in the accompanying illustrations and the gearing is so arranged that to operate the mechanism completely seventeen turns are necessary- 12.2 turns to unlock the breech and 4.8 turns to swing it out to fully open position. The Vickers type of breech screw is used, mounted and retained on the stem of the carrier by interrupted screw threads.
In this mechanism a pure "couple" for rotating the breech screw is applied, and the inherent defect of the general type of breech mechanism, wherein the screw is rotated by a turning movement which sets up appreciable friction, due to a tendency to produce axial displacement of the breech screw, is obviated. By the
utilization of a couple, the whole of the available turning force applied to the breech screw is employed in seating the obturator, and all possibility of friction from the above-mentioned tendency is completely overcome.

The breech block carries the Welin screw in which the thread is cut in successive steps of decreasing radii. In unlocking the breech it is necessary to rotate it only through as much of arc as equals the length of one step of the thread. This disengages all the threads so that the block can be withdrawn. The advantage of this type is that a minimum amount of the thread has to be cut away, and the breech-block can

The extractor is of special design upon new lines. It is of great strength and is made in twe parts. The operation of the lock frame acting, because of a fine incline on the first part of the extractor which is the toe, first powerfully wedges out the primer before its rapid ejection by the engagement of the second part of the device which is comprised by the lock of the extractor.
The complete weight of the weapon exclusive of the carriage is 57 tons 8 hundredweight 2 quarters 16 pounds. Its penetrative capacity with capped shot so far as has been ascertained is 24.3 inches through Krupp cemented plate. Further tests with the weapon are, however, to be carried out, when definite data on the point of penetration will be available.

Injection of Trees.
Often the roots of fruit trees, more exhausted than the parts in the air, refuse to supply the branches with their subterranean sustenance. To cure or prolong the life of cases possessing still a certain vigor, recourse was had, says L'Illustration (Paris), of March 17, to powders, then to the injection into the trunk of a solution of sulphate of iron. This last expedient is valuable for treating chlorosis in vines. A Russian entomologist, Mr. Sigismond Monryetsky, wished to ascertain the laws that regulate the penetration of the liquid into the cells of the tree. By employing colored solutions, he proved that the liquid never penetrates into the old wood. It follows the young layers, de-
o sets of safety slides, one for percussion lock and the other for the electric lock, fitted to the box slide. On opening the breech the percussion striker is automatically fully cocked. A floating needle is arranged so that normally the point of the needle is always within the face of the lock frame. The electric lock is of special design, there being two levers, one on each side of the lock frame, and these are simultaneously operated on the first movement of the lock frame on opening the breech. The arrangement of these two levers is such that there is a small projection round their bosses which trips against the lock slides on the box slides. As the outer ends of these levers act directly on the electric needle, the latter is drawn away almost instantaneously from the lever on the first movement of the unlocking of the breech.
In the event of a miss-fire the lock frame can be drawn away sufficiently to eject the primer without opening the breech, owing to the arrangement of the spring bolts engaging the lock frame with the slide link in the carrier, and the engagement of the slide with the operating cam on the crank.
scending into the roots to feet), and rising to the top niform distribution. In conseof the tree, with a quence, Mr. Monryetsky recommends injection through a single hole made in the neck of the root.
In these conditions, the process seemed applicable not only for injecting nutritive elements into the tree, but besides for curing diseases determined by the presence of a bacterium. The experiments have confirmed the theory, in so far as that disease of stonefruit trees is concerned, which consists of an efflux of gum through a wound in the bark: plum trees, peach trees, almond trees, etc. Into these weak solutions of oxalic acid, of citric acid, of creosote, or of salicylic oxalic acid, of citric acid, of creosote, or of salicyli
acid were injected. The last gave the best results.

Erratum

In our issue of May 12 we published an article on the Economical Use and Properties of Reinforced Concrete, which we credited to Mr. Charles S. Hill. It seems that our excerpt was taken from a monograph jointly written by Mr. Charles S. Hill and Mr. A. W. Buel. Our excerpt was taken from that part of the monograph which Mr. Buel prepared, and should have been credited to him.

The Breech Open.

The Breech Closed.

RECENTLY PATENTED INVENTIONS.
Electrical Device.
REVERSING-SWITCH. - J. N. ANDERSON, Rev York, N. I. This invention relates to to
reversing-switches and admits of general use, reversing-switches and admits of general use,
but is of reculiar value in connection with but is of reculiar value in connection with
electric elevators and analogous structures in electric elevators and analogous structures in
which the general direction of relation is required to be changed at will. Mr. Anderson
has produced a switch for the direct control of the operator and capable of running the of the operator and capable of running the
elevator in two directions, the main circuit be ing opened and closed very quickly.

Of Interest to Farmers.

PLOW.--J. Q. A. JoHNSToN, Newburyport, Mass. One purpose of this improvement is
to provide a rotary plow adapted to be drawn over instead of through the ground, as cuskolder is employed carrying a number of inde-pendently-operating blades arranged in rows,
one blade in a row being staggered in relaone blade in a row being staggered in rela-
tion to the others, whereby the blades have a tion to the others, whereby the blades have a
spading operation on the soil in the operation spading oper
of the plow.

Of General Interest.

VULCANIZED MATERIAL AND process for making the same.-F. Ephratm, San Francisco, Cal. The invention relates to the
utilization of crushed or pulverized matertal utilization of crushed or pulverized material
naturally found in caoutchouc, rubber, or gum containing plants. The inventor has discovered that instead of removing as an impurity fibrous material already found in the crude fibrous material already found in the crude
rubber and adding the material made of the cotton waste it is much better to work up the
crude rubber without subjecting it to the crude rubber without subjecting it to the
special processes employed for ramoving the specia
fiber.
method of evaporating liquids. A. Y. Gerr, New London, Conn. The present
invention relates to a method of evaporating liquids in general, and especially for evaporating salt water and condensing the vapors for the production of water fit for use in the The principal object is to improve the method so as to secure a proper evaporation of the salt water without danger of clogging the
or of rendering the same ineffective.
NON-REFILLABLE BOTTLE.-E. K. Wood, San Francisco, Cal. The devices for prevent ing refilling of the bottle are secured in the neck of the bottle by means of a packing-ring,
seated in a groove in the neck and securing the devices with a lower cross-plate bearing against is outwardly facing shoulder. Sufficient room cork in order to securely close the neck of the cortle.
Range-finder. - H. C. Percy, Natchitoches, La. In the operation of this rangeimaginary triangle will be proportionate to the sides of the triangle of the table and that the
base of the table-triangle will be to the measbase of the table-triangle will be to the meas-
ured base-line as the sides of the table-triangle ured base-line as the sides of the table-triangle
are to the distance of the object from the are to the distance of the object from the
ends of the measured base-line. By a provision of verniers a much closer reading may be ob ained than by use of indicators.
OIL-PRESS MAT.-R. F. Werk, New Oris to produce an animal-hair mat which will is to produce an animal-hair mat which will
operate to secure a large yield of oil by reason of its superior draining qualities and which will develop through use a smooth glossy surface that is very advantageous because the
farface facilitates operation of charging the
surf formed cake into the press, and the cake will not adhere to the mat, with the result that the mat can be stripped with ease and facility.
Subject-matter of the invention forms a divi-Subject-matter of the invention forms a divi
sion of a prior application for Letters Patent sion of a prior application
formerly filed by Mr. Werk.
SKirt-supporter.-Lucy a. Philitis, Lucca, N. D. In this case the invention refers
to improvements in supporters for dress-skirts, the object being to provide a supporter o be permanently attached to a corset or like garment and that will firmly hold the skirt in place or closely against the back of the FORM FOR TROUSERS.-ALICE JONES, Deor pal. The invention relates to a device for preserving the shape or form of trousers
when pressed. It is also adapted to be used for the purpose of facilitating the pressing of
the trousers. The device is easily applied, and the trousers. The device is easily applied, and
can be folded up with the trousers when in can be folded up with the trousers when in
position in the same, so as to be placed in a position in the same,
drawer or in a trunk.
Implement for cleaning recepta-Cles.-P. H. Tallman, Blooming Prairie, Minn. This implement is for use in cleaning nterior surfaces of milk-cans and other re-
ceptacles formed of tin-plate, glass; or similar ceptacles formed of tin-plate, glass; or similar
materials. The can should receive a supply of detergent liquid that along with the scrubbing movement of the implement will thoroughly movement of the implement will
cleanse the inside surface of the vessel, the the
shape of the bushes adapting them to have shape of the brushes adapting them to have
contact with all parts thereof if handle rods and attached brushes are reciprocated longitudinally in the can and simultaneously rotated therein.
AWNING.-C. W. Russeli, Louisville, Ky. The object of the inventor is to provide an
awning arranged for convenient application
to a window, door, vehicle, or other device and adapted to be closed and folded to take up
comparatively little space. It can be readily set up by simply fastening the post in front of the window at or near the middle. By noving the runner up or down the awning can be convenien
for spacing.
EXTENSION AND OTHER TABLE.-R. L richardson, Keota, lowa. a plurality of side sections is employed for the top-frame of the said sections being formed of plate metal and each provided with longitudinally-extending
tubulation which is open at one side but extubulation which is open at one side, but ex-
ceds a half-circle in cross-section, whereby ceeds a half-circle in cross-section, whereby
said frame-sections are adapted for telescopic onnection in sequence and when so enga indicator mor bot
 Frinvic, Galveston, Texas. The object of this
invention is to provide means for plainly invention is to provide means for opand tle have been remioved and also to register the amount of liquid removed and that remaining in the bottle as the contents are from time to time partially decanted therefrom; and a further object is to provide means for dis-
playing within the bottle a trade-mark or label playing within the bottle a trade-mark or label
which cannot be tampered with. which cannot be tampered with.
AWNiNG.-F. A. Liearied, Chicago, Ill. This invention is an improvement in awnings. It is simple in construction, efficient in opera-
tion, and will not easily get out of order. The tion, and will not easily get out of order. The
action of the ropes in extending the side arms action of the ropes in extending the side arms
is positive and is not dependent upon springs is positive and is not dependent upon springs
or weights, thus insuring always a proper or weights, thus ins
extension of the arms.
irrigation-dam. - a. w. Applegate, Brawley, Cal. In this patent the invention
bas reference to improvements in dams for as reference to improvements in dams for
land irrization, and it is the object of the inventor to provide a weir board or gate that will open by water-pressure when the water eaches a predetermined level, thus dispensing washouts.
CALCULATOR.-K. H. J. Marckwordr, Guatemala, Guatemala. In this instance the nvention relates to registers. The object is
o provide a calculator more especially de: igned for conveniently and accurately carrying out arithmetical calculations, such as cal ulating wages, volumes, multiplication, desugar polarization and the like.
Casing-bowl.-W. h. Kesselman, Parkssburg, West Va. It is the principal object the water can be shut off from the inside of the casing and boiled out to enable the tools to get the full force of the blow in jarring. In owls as now constructed there is a conical wear in use. Another object is to cushion this surface and to provide for its ready remova and renewal.
non-refillable bottle.-J. de ha V EN, Roanoke, Va . The device is simple, and
little change is required from the ordinary little change is required from the ordinary
form of bottle. The neck is of sufficient diform of bottle. The neck is of sufficient di-
ameter above the shoulders to permit the ameter above the shoulders to permit the
ready passage of fluid by the valve, the part of the neck above the shoulders being slightly funnel or cone shaped in order that the parts munnel or cone shapeduco.
field or hunting flask.-R. Burger and A. Aschenbrenner, Berlin, Germany. This flask is for use in storing liquids, more articularly beverages. It is provided with
protective jacket. A layer of heat-insulating material is arranged between the two glas walls to prevent breaking of the glass by concussions or the like, at the neck of the bottle The practical value of the invention consists
in the liguid remaining in the bottle at the in the liquid remaining in the bottle at the or milk can be kept hot from morning till ening.
culvert construction.-h. Besser, Alpena, Mich. The principal objects of this
inventor are to provide means whereby nventor are to provide means whereby sewer place after manufacture elsewhere without recessitating the handling of the heavy sec tions now usually employed; furthermore. to provide means for strengthening constructions of this character and to provide for forming joints which will be capable of being made
tight and of such nature that pressure upon their exterior surfaces will not operate to losen them.

Hardware.

grip--J. Dunbar, Invercargill, New Zeal and. The improvement is applicable to such tools as rakes, hoes, spades, and forks, and
has for its object a means to connect the handies of rakes and hoes with the heads of such tools, enabling a broken handle to be easily
replaced and the heads of same adjusted to different angles, extending their scope of use fuliness, and in respect to spades and forks provides a means to connect a hand crosspiece with the sha
form a handle-grip
KEY-FASTENER.-L. A. Foster, Lagrange Tnd. This improvement has for its object the
provision of a novel construction by which to prevent a key when in a lock from being turned by means of nippers or the like from
the opposite side of a door. The construction
renders the cheapest locks as fully burglar-
proof as the most expensive proof as the most expensive one.

Heating and Lighting.

CUPOLA.-J. H. Koons, Delphos, Ohio. The invention pertains particularly to heaters
for cupolas or furnaces in which hydrocarbon for cupolas or furnaces in which hydrocarbo
oil is used as the fuel, the object being to provide a device of this character by means of which the oil mixed with air or steam will
be caused to enter the cupola under a high be caused to enter the cupola under a hig
degree of heat, resulting in an intense an practically even heat from an economical sup-
ply of burning fuel. by of burning fuel.
heating system.-F. Shurtleff, mo line, ill. The invention relates to steam-heat ing systems, and particularly to that class
known as "vacuum." The object is to provide an apparatus free from former defects and characterized by improved means for venting
the air from the radiators by ejecting device all located at one point and discharging such all located at one point and discharging such
air outside the building or rooms and for seal ing the system against return of the air.

Household Utilities.

IRONING-BOARD SUPPORT.-C. Schafer Violetville, Ma. In this instance the inven tion is an table or shelf to support ony o andinary ing-board, the construction being designed for sale independent of ironing-boards and to receive an ironing-board ordinarily in the posses sion of householders.
window-screen-G. D. Moncrief, Memphis, Tenn. The aim of this inventor is to provide a single sash-screen hanger which can be conveniently applied for use, easily opened
for any desired purpose, and may be fastencd in position for use. The screen may be read ily unlatched and thrown out at the lower
edge for the purpose of dusting or cleaning and quickly readjusted to position for use.

Machines and Mechanical Devices.

ANIMAL-RELEASING MECHANISM.-J. A Taylor, Saco, Mont. The invention pertain releasing horses from their stalls in case of object being to provide a simple means adapte to be operated from the outer side of a barn or stable, whereby the several horses that may be ir a
released.
MOLD-RAMMING MACHINE.-J. Poulson Phillipsburg, N. J. One of the principal ob jects of this invention is to provide for re ciprocating a series of rammers so that they will be picked up by the reciprocating device
and elevated to desired height and that when and elevated to desired height and that when forced against sand in the mold the rammers
will be shortened, or in other words, distance will be shortened, or in other words, distance
between the lifting means and the bits of the rammers will be decreased, so that as the sand rises in the mold the rammers will be in a strong blow upon the top of the sand and ram the sand with evenness throughout the length of the mold.
GAS-WELL APPARATUS.-F. J. Moser, Kane, Pa. The invention relates to deep wells, gas, the special object being to provide means for removing water from the bottom of the as desired without obstructing the flow of gas rom the well or interfering with the perfect working of the well or any part of it. Wate is removed utterly independent of normal ac Water is temporarily cared for that may drift into the well by storing it in a reservoir, so hat it produces only a minimum of hardship CALCULATOR.-F. W. Bennett, Waterlates to an apparatus by means of which mathematical calculations-such as addition, multiplication, subtraction, and division-may be performed mechanically. The underlying object is to simplify the parts of the machine and to enable the calculations to be performed by less movements and in shorter time than

MACHINE FOR DIPPING TOBACCO.-R. bailey, Winston Salem, N. C. A vat or tank is provided, in which is arranged a peculiarly-
constructed drum coacting with an endless constructed drum coacting with an endless
apron, the latter receiving the tobacco from a apron, the latter receiving the tobacco frum, so
feed-hopper and running under the drum, so as to carry the tobacco into the liquid con
tained in the tank, after which the tobacco is carried from the tank by the apron and passed with the apron through squeezing rollers or devices, which eliminate superfluous liquid, the abacco being discharged from the machine by
a scraper or other means coacting with the apron.

Prime Movers and Their Accessories.
INTERNAL-COMBUSTION ENGINE. - D. McR. Livingston, New York, N. Y. The object of this invention, which relates internal-combustion engine, is to provide a valveless engine in the cycle of which there will be maintained a stratification of scaveng-
ing-air and fuel, so that after each explosion a volume of scavenging-air will be blown
the same, and will be followed by the fue charge, which will then be compressed and
ignited in the usual or any desired manner. EXPLOSION-TURBINE.-A. L. Moss, San dusky, Ohio. In this patent the intention o Mr. Moss is to provide a new and improved
explosion-turbine in which are given in quick succession to the turbine are given in quick succession to the turbine insure a uniform and powerful reriphery to turbine.

Railways and Their Accessories.

CAR-FENDER.-J. A. SAGE, Stryker, Ohio. There is provision in this invention for a defice which will effectually prevent the car one which automatically adjusts itself to all curves in the railway-track. The invention
relates to an improvement in fenders for cars, relates to an improvement in fenders for cars, and more particularly for trolley and cable cars.
CAR-FENDER.-J. C. Jorgensen, Washington, D. C. A simple pressure of motorman's foot throws the brake-shaft into gear with the means for depressing the fender, and quarter-turn of the shaft winl lower the front of the fender into contact with the track, and may be maintained in firm contact with the track so that nothing passes under it un-
til released from the shaft. Lowered with ar moving at full speed, it strikes a person tanding on the track at the bottom of the feet, forcing them outwardly and causing such person to fall back into the netting.
TRACK-SANDING DEVICE. - F. BASON, Chicago, 1ll. One purpose here is to provide means for admitting atmospheric air, hot or cold, to the sand at or near the base of the acuum the compressed air employed, which compressed air forces the sand and atmoheric air to the ejector, said sand and atmo rom sources of supply, due to the passage of the compressed air through the device to its discharge portion.
Note.-Copies of any of these patents will e furnished by Munn \& Co. for ten cents each. the invention, and date of this paper

Business and Personal <Uants.

MUNN \& CO.

Inquiry No. S108.- Name ata address of manu-
facturers of American Diamond Light Oil Burner.
Pis Samples free Inquiry No. 8109.-For manufacturers of "the
raham Safety Lamp Filler. For bridge erecting engines. J. S. Mundy, Newark, N.J. Inquiry No. 8110. - For manufacturers of over
hot water wheel. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st.

Inquiry No. 8111.-For manufacturers of the
Gibert heel cushion; also Eagle Claw fish trap. For SALE.-Patent pipe leak stopper; all sizes, any
ressure, very simple. Hanson, 16 E . 84 th St. City. Inquiry No. 8112.-For manufacturers of com-
pressed air meters. I sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y
 Well gotten up typewritten letters will increase your
ousiness. $\$ 2$ per 1.000 . Inquiry No. 8114 --For manufacturers of carpet.
cleaning whee or other machines, also makers of
feather-renovating machines. The celebrated "Hornsby-A kroyd" Patent Safety Oil Engine is built by the De La Vergne Mzchine Company.
Foot of East 138th Street, New York.
 Models and Experimental Work, Electrical and Me-
chanical Devices, Small Machinery. J. Lenz, 310 HudStreet, New
 Manufacturers of patent articles, dies, metal
Mmping, screw machine work, hardware specialties st mping, screw machine work, hardware specialties,
machinery tools. and wood flber products. Quadriga
Manufacturing Company, 18 South Canal St., Chicago. Inquiry No. \&111. - For manufacturers of rubber WANTED.-To purchase or hire a second-hand steam oller, about 7 tons, for the building of Macadam roads
in Worcester County, Md. Applications should be sent to J. Edward White, County Treasurer, $\begin{gathered}\text { Snow Hill, Md. }\end{gathered}$
Inquiry No. 81 18. - For manufacturers of animat-
ed toys, such as men, etc. Automobile experts are in constant demand at high and pract ical, ftting men to drive, handle and repair.
Day and evening classes. Special course for owners. New York School casses. Special course fors, 146 West 56 th Street, New York.
Inquiry No. 8119 .- Wanted, address of Paris or
Und ed emeralds. manu facturer of reconstructed rubies WANTED.-The partial services of several men who have facilities for observing, and ability to comprehend mo performance and good features of differentauto
mobiles. The work will occupy little time, and be mobiles. The work will occupy little time, and
chiefly in the nature of correspondence. Address

Thomas B. Jeffery \& Company,
Kenosha, Wis. Department of Construction.

hints to Correspondents.
Names and Address must accompany all letters or or
no atention will patid thento thins in for
our information and not for publication. References. to former articles or answers should give
date of paper and page or number of question.

Scientific American Supplements referred to may be the oftice.
Books referred to promptly supplied on on receipt of
Minerals. sent for exam
marked or labeled.
(9979) D. C. asks: 1. It seems feas1be, and 1 understand, perhaps erroneously,
how nitro-glycerine or other compound of nitrohow nitro-glycerine or other compound of nitro-
gen, which has such a feeble grip on other ele ments, could readily by detonation be trans-
formed into gas which would violently compress the atmosphere and cut and tear things to pieces ; but how a proportional composition of hydrogen and oxygen, the former the light-
est of all gases, could compress the air or est of all gases, could compress the air or
cause an explosion at all is a mystery to me, unless there is an outward explosion, from solid matter to gas, such as that by dynamite, gunplosion, gas exploded by flame partly con plosion, gas exploded by fiame partly con-
sumed, thereby causing a vacuum and violent rush of air to fill the place occupied by the
gas consumed. Is it the air or gas that does the damage, cuts and tears the material to pieces? Whichever it is, it must become sharp such a deafening report when only in contact as gun-powder or nitro-glycerine, the substance is transformed into gas at an enormously high temperature, which causes a very great pressure and force of expansion, thus rending the walls of the containing receptacle, and hurling
the fragments to a great distance. In the case of the explosion of mixed oxygen and hydrogen the same result is reached. The heat of the
resulting steam causes a great expansion and resulting steam causes a great expansion and
rending of the vessel in which the combustion takes place. 2 . Some time ago I read in a ferous beds in Ireland were puse Atlantic Ocean by the ice at the time of the Glacial Period. Is this generally accepted as true by geologists, and if so have they any
means of knowing whether the beds were composed of anthracite or bituminous coal? I am aware that the coal fields near Castlecomer,
Ireland, are anthracite and I heard there were Ireand, are anthracite, and I heard there were
small bituminous fields in other parts of the sland. Can you inform me if this is the case
A. We have no detailed information regarding the displacement of the coal measures in Ire land. The textbooks of geology state a belief
that once coal measures covered the subcar boniferous limestone of the center and south western part of the island. You may perhaps obtain help in this matter from the professor
of geology in the university of your city. Such men are always willing to give informa-
(9980) F. W. B. says: My boat is 20 feet long by 4 feet 5 inches wide, with easy
lines, and my engine is supposed to be a high speed double-cylinder opposed-motor, bore inches, stroke 4 inches, weight less than 200
pounds. It is said to give 4 horse-power at 500 R. P. M., and I would like to know what size propeller you would advise me to use,
and what should be the proper pitch, and and what should be the proper pitch, and
whether it should be two fuke or three. A. The size of a screw depends upon so many
things, that it is very difficult to lay down things, that it is very difficult to lay down
any rules for guidance. However, the following rules are given sometimes for ordinary cases,
where the size and power of the boat does not where the size and power of the boat does not
exceed a speed of 20 knots per hour. First : The "pitch" of a propeller is the distance which any point in a blade, describing a helix will travel in the direction of the axis during move around the axis. The pitch of a pro-
peller with a uniform pitch is equal to the peller with a uniform pitch is equal to the
distance a propeller will advance during one evolution, provided there is no slip. In a case of this kind, the term "pitch" is analogous
to the term "pitch of the thread" of an or to the term "pitch of the thread" of an or
dinary threaded screw. Let $P=$ pitch of pro dinary threaded scre
peller in feet. Then

10133 S

In which $S=$ speed of boat in knots, $R=$ revolutions per minute of propeller, $x=$ per-
centage of slip. Assuming a speed of 10 knots er hour for your boat, with engine running at 500 R. P. M., and assuming a 10 per cent
slip, we get a pitch of 10133×10

$$
10133 \times 10
$$

$\overline{500(100-10)}=2.25$ feet.
This is probably high, due to the

Diameter of propeller $=$
$K \sqrt{\frac{1 . H . P .}{\left(\frac{R \times P}{100}\right)^{8}}}$
$K=$ constant $=17.5 . \quad$ I.
500 R. P. $=4 . \quad R=$
$P=2.25$. of propelier under these conditions, namely, four blades to the screw, made of cast iron,
would be approximately one foot diameter. To_{0} llow for any increased slip which may occur, and other contingencies which may arise, we
would not advise a screw less than 2 feet in ould eter, calculated on a pitch of 2 feet. This will easily allow for any increased speed deired over 10 knots up to 15 knots per hour. (9981) F. R. S. asks: Some two months ago a friend of mine on a steamer going to Jamaica noticed something which
I would like a little information upon. There was an operator on board the steamer for the ireless telegraph. The boat was equipped message was being received by the boat from shore the lights in the boat would dim, which ould naturally show an overload of current and there would also be a rumbling sound
bout the boat at the time of receiving the about the boat at the time of receiving the he receiving of the message would affect the ghts on the boat, and what would cause the umbling sound. A. An electric current lowcurrent in the vicinity, and it is to be ex arrent in the vicinity, and it is to be ex current in the vicinity of current for lighting purposes, producing such results as you de-
(9982) C. J. N. asks how to draw on glass. A. To write or draw on glass, it is degree of roughness. This may be done by grinding or etching, but much more easily by applying some appropriate varnish. A good matt varnish is made by dissolving in 2 ounces
other, 90 grammes of sandarac and 20 rammes mastic, and adding benzol $1 / 2$ ounce $11 / 2$ ounces, according to the fineness of the matt required. The varnish is applied to the cold plate after it has set. The glass may be heated to insure a firm and even grain. To nder the glass again transparent, after writ ugar or gum acacia. Stili better as a surace for writing or drawing is a varnish ugar. Dissolve equal parts of white an lcownol, and apply to hot glass plates. The
ander to a thin syrup, add
and film dries very rapidly, and furnishes a surace on which it is perfectly easy to write with pen or pencil. The best ink to use is India ink, with sugar added. The drawing
can be made permanent by varnishing with can be made permanent
a lac or mastic varnish.
(9983) J. N. B. asks how to prepare heepskins for mats. A. Make a strong lather with hot water and let it stand till cold; then wash the skin in it, carefully squeezing out a the dirt from the wool; wash it in cold water
till all the soap is taken out. Dissolve 1 pound each of salt and alum in 2 gallons o hot water, and put the skin into a tub suf ficient to cover it; let it soak for twelve hours,
and hang it over a pole to drain. When well drained stretch it carefully on a board to dry and stretch several times while drying. Before it is quite dry, sprinkle on the flesh side 1 ounce each of finely pulverized alum and saltpeter, rubbing it in well. Try if the wool be firm on the skin; if not, let it remain a day or two, then rub again with alum; fold the flesh sides together and hang in the shade for two or three days, turning them over each
day till quite dry. Scrape the flesh side with a blunt knife and rub it with pumice or rotten one.
(9984) B. J. N. asks how to remov stoppers in bottles. A. The best way is to
take a turn round the neck with a stout tring, hold the bottle firmly on the table with ne hand, grasp one end of the string with the ther, and get a friend to pull the other end ficiently to expand it and loosen the stopper have extricated broken stoppers in this wa with nothing to lift them out by but a little bit of sealing wax melted into the broken sur
(9985) W. F. J. asks how to mak waxed paper on a small scale. A. Place cartridge or other paper on a hot iron and rub it ith beeswax, or brush on a solution of wax by opening a quire of paper flat upon a table and rapidly ironing it with a heavy hot iron against which is held a piece of wax, which melting, runs down upon the paper and is ab sorbed by it. Any excess on the topmost layer readily penetrates ta the lower ones. Such
paper is useful for making waterproof and air proof tubes, and for general wrapping pur
(9986) A. J. B. says: 1. What would Fig. 1, with the end of the rope point A in
in point D and a force of 1,000 peunds pulling at point B, the other end of the rope? The direction of the two parts of the rope is
such as to make the angles between A and D, A and B, and B and D degrees each.
A. The force exerted at point A is the
resultant force of D and B, or 1,000 pounds 2. Please explain the term "triangle of forces." balance each other, they are proportional to
the sides of the the sides of the triangle formed by any
three straight lines parallel to their di-

ections. Example: In triangle $A D C$ of Fig. 2 we have angle C equal to 90 degrees Let side $A D$ or the hypotenuse of the triangle represent a force of 1,000 pounds. Then, by orces $A C$ and $D C$ can be found. Rule for right-angled triangles: The side opposite an acute engle equals the sine of that acute angle

Therefore $A C=$ sine of $D \times A D$,
$\begin{array}{ll}\text { herefore } & A C=\text { sine of } D \times A D, \\ \text { and } & D C=\text { sine of } A \times A D\end{array}$
From table sine of A and D or 45 d
Therefore $A C$ and $D C=707$ pounds.
(9987) R. H. M. writes: Query No 966 in issue of May 12 asks why water pipes freeze when the surface of the ground
thawing. Although the phenomenon thawing. Although the phenomenon may
not have come to your notice it is neverthe less quite common, as any plumber can tes ass quite common, as any plumber can tes
ify. The explanation that has been made
and o me is the ice cream theory-the thawing ice above takes heat from what is below. Be this as it may, it seems to be a fact that water pipes freeze when it seems there ought to be
no danger, and it is hard to convince the no danger, and it is hard to convince the
owner that freezing is the cause of the stoppage.
(9988) W. L. W. asks: Kindly advise me in your query column if you believe
that any two things in the world are exactly alike. In a recent argument I took the stand that there were lots of things in
the world just alike. My opponent took the the world just alike. My opponent took the
stand that there were not; that there were stand that there were not; that there were
no two grains of sand exactly alike, that or tacks or brads xactly alike in the world, and that even and steel in the world are exactly alike. It is probable that it is impossible to prove your opinion. A. We have no opinion whatever upon the question whether there are two things in the world exactly alike. We be lieve fully that a man can tell the same
story twice in exactly the same way, and that the same old questions come up to us with startling similarity. Among these Wandering Jews which are ever young and always ask. What is the use of discussing such a quibble? Why not start a new and fresh quid nunc?
(9989) S. C. H. asks: 1. What is the meaning of "ampere hours"? A. An ampere
hour is a current of one ampere flowing for ne hour. This phrase is exactly the same in form as "horse-power hour" or one horseamperage of any light or coil measured? A The amperes used by a light or coil are meas
ured by an ammeter put into the circuit so ured by an ammeter put into the circuit so
that the current flows through it. 3. What that the current flows through it. 3. What
are the necessary steps for a young man to et a position as electrician on board an ocean position, learn the business thoroughly and then apply for the place you want. Make it appear that you are the man for the place, and you will be likely to get it.
(9990) C. A. C. asks: Will you inform me about the specific gravity of liquid
fuorine? A. Hardin in "The Liquefaction of Gases" gives the density of liquid fluorine mation mis must be considered an approxi in which it was obtained. We can send you the book for $\$ 1.50$.

NEW BOOKS, ETC.

The Dynamics of Living Matter. By Jacques Loeb. The Columbia Uni-
versity Press, $1906 . \quad 8 \mathrm{vo}$.; pp. 233. versity P
Dr. Loeb's book is undoubtedly one of the of biology which has importions to the literature of biology which has been issued for some time.
t is based on a series of eight lectures delivered at Columbia University in the spring of 1902, which were intended to present the
author's researches on the dynamics of living
matter, and the views and theories to which these had led him. In the preparation of the ook the lectures were supplemented to give a experimental biology, but still without altering their character. Dr. Loeb considers living organisms as mere chemical machines which pos-
sess peculiarities of automatically developing, ess peculiarities of automaticaly opinion, given at the very beginning of the first succeeding ones are constructed whon which the that the fundamental difference beten living machines and artificial machines is the fact that the latter, which can be created by man, do not possess the power of automatic development, preservation, and reproduction; but he declares that nothing contradicts the possibility hat the artificial production of living matter may one day be accomplished, for living organisms are doubtless nothing more than chem-
ical machines. Dr. Loeb's book is of undoubted cal machines. Dr. Loeb's book is of undoubted unscientific reader as well, will find in its pages woch fascinating information.

Pocket-Book of Mechanical Engineering. Tables, Data, Formulas,
Theory, and Examples for Engineers and Students. By Charles M. Sames, figures. Price, $\$ 1.50$.
While there are many excellent engineering andbooks before the public, the practical enineer as well as the theorist will find this work a concise, comprehensive, and up-to-date
ompilation of mechanical engineering infornation. The mechanical engineering inforontents are so classified that reference to any subject may be made at a minimum of effort; it may be conveniently carried in the dealing with reinforced concrete is especially號 recommended
merican Shoemaking Directory for 1906. A List of Shoe Manufacturers Giving the classes of and Canada. tured, the trade for which they man ufacture, names of buyers and superintendents, capacity of factory, number employed in leading factories, alphabetical list of manufacturers, Boston offices, location of towns, population, railroads, express companies, etc. Revised to April 1, 1906. Boston: Issued from the office of American Shoemaking. Paper
flexible leather. Price, $\$ 1$ or $\$ 2$.
A New and Physiologic Explanation of a Common Psychologic Phenomcago: Press of the American Medical Association, 1906.
Breeding Plants and Aximals. By W. M. Hays. Minneapolis: The UniDuring the last few years many pp. 189. ies have been evolved relating to the problems oreeding both animals and plants. The ordinary possibilities in horticultural developent, and the working out of systematic methods of breeding and of disseminating the various field crops at the Minnesota experimental station, has attracted wide attention n scientific circles. In this work Prof. Hays, Assistant Secretary of Agriculture, has put in ng of animals and plants, including the breedof leading authorities as well as the results of his own extensive experiments. The book escribes comprehensive plans for the improvement in varieties of field crops, and includes chapters on breeding cattle, horses, and other nimals for specific purposes.
he Primordial Energy. By Benjamin
W. Sands. Springfield, 1906. Pp. 18 This extremely interesting pamphlet is based apon a lecture delivered by the author in 1905, after rearly ten years spent in study and experiment to determine the truth or
falsity of the new discoveries set forth. He falsity of the new discoveries set forth. He has proven, to his own satisfaction at least,
that all the various kinds of energy are but that all the various kinds of energy are but
different phases of magnetic vibrations, which dife declares to be the primordial force of nature. The two illustrations of photographs made by magnetism and by means of ozone largely discusses radiant energy in various forms.
Practical Guide for Firemen. By W. H. Published by the Author, 1906 . Published by the Author,
16 mo. ; pp. 93 . Price, 50 cents
The intention of this little work is shown in its title. It is practical and concise, and deof interest word and illustration many points of interest and value to the man in the engine
room. The style is well calculated to make the instruction interesting, while the Appendix contains information which will assist in obviating
many troublesome situations often encountered by firemen and engineers. The two hundred useful in many ways
The Universal Kinship. By J. Howard
Moore. Chicago: Charles H. Kerr
$\&$ Co., 1906 . 8vo.; pp. 329 . Price, $\$ 1$. By this title the author indicates the purose of the book, which is to prove the kinship
of all the inhabitants on the planet Earth, from the lowest protozoa to the highest an!mal, man

Nor does Mr. Moore limit this kinship to the physical, but he declares it to be an ethical one as well. The thesis of the book is un-
doubtedly contra to many existing theories, doubtedly contra to many existing theories, and son, as well as for the readers for this reashown in many phases of the discussion though the author's opinion of his fellowman is rather more hopeful for the future than optimistic concerning the present.
Slices from a Long Loaf. By H. C. Stiefel, Ph.D. Pittsburg: Bissel Block.
221.
It is seldom that a book which proposes even in a measure, to discuss scientific, industrial, or manufacturing subjects can be as en-
tertaining as this one by Dr. Stiefel. It is account of a voyage of five Pittsburg tourists down the beautiful Allegheny River from Oil City to Pittsburg, and it tells many things tha happened during the expedition, humorous an otherwise, and gives in facts and figures rea tions, which are from photograp and draw ings, many are exceedingly humorous, while others illustrate numerous phases of the iron coal, and oil industries. The reader will find much truth and some fiction in the book which beginning with the author's humorous preface to the finis on the last page, is thoroughly entertaining.
Modern Materia Medica. New York: The Druggists Circular, 1906. 12mo. pp. 306. Price, $\$ 1.50$.
This book is intended to supply the evident need of some work of ready information con cerning the many new additions to the materia medica. It embraces all the newer remedies ntroduced up to thegition year, incluaing the nutritives wich are replac treatment of certain maladies and in convalesence. The information given is complete, con cise, and accurate, and the user will probably find it unbiased. It is expected that this work will take a place next to the Pharmacopœia and the National Formulary, and will fill a ong existing want in the library of the prac ical and up-to-date pharmacist.
Enigmas of Psychical Research. By James H. Hyslop, Ph.D., LL.D. Bos-
ton: Herbert B. Turner \& Co., 1906.
12 mo . Price, $\$ 1.50$.
In this volume Prof. Hyslop, an undoubted authority on the subject, discusses that phas of psychical research which may be classified as super-normal. Certain chapters are devoted to the history of psychical phenomena, crystal gazing, telepathy, mediumistic phe f like nature. The author interestingly illus of like nature. The author interestingly illus-
trates each subject by many examples taken from cases carefully investigated by that re sponsible and eminent group of scientists composing the Council of the Society for Psychica Research. The book will be of interest to those who wish to keep themselves well in formed in this fascinating if little understood subject, and many readers will doubtless appre ciate the value of scientific knowledge of this character, which assures us of a future life, if only as a plea for social morality. Dr.
Hyslop's discussion is earnest and judicious, and is undoubtedly free from dogmatism and propagandism.
Elementary Electrical Engineering in Theory and Practice. By J. H .
Alexander, M.B., A.I.E.E. Now York.

$$
12 \mathrm{mo} . ; \text { pp. } 208 \text {. Price, } \$ 2 \text {. }
$$

This eminently practical little volume is based on a series of lectures delivered by the
author before a class composed chiefly of young artisans, and it is intended rather to present fundamental principles and practical applications of the same than to enter into theoretical and involved discussion. The lectures were illustrated by means of models, apparatus, lantern slides, and blackboard diagrams, etc., and
these were, of course, unavailable for the purpose of the book. The illustrations, which were carefully gotten up to take the place of these, are clear and answer the purpose excel which might tend to confuse beginners or those not fully familiar with mathematics, have been omitted, but many of the chapters include exercises worked out at full length, which will undoubtedly be of assistance to the student in
illustrating the character of the problems to be illustrating the
met in practice.
Nordamerikanische Eisenbahnen. By
W. Hoff and F. Schwabach. Berlin:

Verlag von Julius ${ }^{\text {8vo.; pp. } 377 \text {. Price }} \$ 2.50$. 1906. 8vo.; pp. 377. Price, $\$ 2.50$
Unfortunately for American readers, this book, which appears to be one of the best of
foreign observations regarding American railforeign observations regarding Ameiran printed in German, and it is to be hoped that its translation will not be long delayed. The authors have treated their subject at considerable length, with clearness, with no mistaken ideas of fact, and with fairness. The subject of American railroads, always a difficult one riety of interests involved, has been ever an riety of interests involved, has been ever an it was in the interests of the German railroad world and under the auspices of the
Prussian Ministry of Public Works that tinis Prussian Ministry of Public Works that this
extensive tour of investigation was under-
taken. Tho authors, on the whole, appear to have been favorably impressed with many of the obtaining transportation conditions, though vantages with which many American are fa miliar The wisely make Amercans are da ferences arising from capitalization, rail ard express service, freight rates, express companies. etc., and draw the general conclusion hat the Prussian rates, both passenger and reight, are somewiat lower than those in this country. It must be agreed that this is far and away the most thorough comparison that as ever been made between the railway in the United States and a foreign railway systhe chief value of the report probably lies in rganization and management in this country o the American reader the value lies in the comparisons the report contajns.
The Book of Boats. A Brief Story of
Sodern Launch. By Raymond Cav-
anagh. St. Paul, Minn.; Randall
Printing Company, 1906. 16 mo ; pp. 123.

Tbe author of this interesting booklet discusses water navigation by means of small raft from its earliest inception, as exemplified by the crude raft of prehistoric man, to the high-speed motor craft by our latest types of high-speed motor craft. The evolution of the is Cescribed and illustrated in its most interesting phases. The illustrations show many re marizable and curious vessels designed and constructed by savage builders the world over, and are the result of exhaustive investigations in the literature of the subject as well as in various museums. The last chapter dis-
usses modern types of pleasure craft, and cusses modern types of pleasure craft
ill ustrates several types of motor boats.
The Art of Writing and Speaking the
English Language. Word Study, Grammar, Composition, and Rhetoric.
Old Greek Press, 1906 . 32 mo . Price, $\$ 3$.
As the title of this work indicates, the uthor has chosen a rather ambitious subject; terest and utility, it is the art of writing and speaking one's own language effectively. Not only is it the basis of culture, but it undoubt edly is the basis of business as well, and in no department of human endeavor is the value effective English to be more highly rated These four little books, "Word Study," "Gram written particularly with the adaptation good English to business in view, notwith standing that they would he of unquestionable value to the student of English in general The subject is treated clearly and without waste of space, and the facts are presented to the reader in an excellent manner.
Wireless Telegraphy. By Gustav Eich horn, Ph.D. Philadelphia, Pa.: J. B
Lippincott Co., 1906. 8vo.; pp. 110. Lippincott Co., 1906. 8vo.; pp. 110. 79 illustrations.
Notwithstanding the many excellent contributions to the literature of wireless telegraphy that are at present before the public, there as the practical side the theoretical as wel which are necessarily somewhat obscure. The author of this book has wisely not attempted to make it a compilation of the many so-called voted his efforts to a simple and comprehensive description of the fundamental principles and working methods of modern telegraphy by means of electric waves. Consequently the work will be found of value not only by the student, but by the practical expert as well For the latter, particularly, is the wide ex
perience of the author valuable. The book is excellently illustrated with many engravings and diagrams, and probably brings the literature of the subject as nearly up to date as is consistent with its rapid growth.
Native Economic Plants of Montana By J. W. Blankinship. Bozeman,
Montana: Montana Agricultural College Experiment Station, 1905. 8vo.; pp. 36 .

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
May 15, 1906
ANDEACHBEARINGTHATADTE

See note at end of list about copies of these patents.]

Anusement device, W. F. Mangels.
nimal or fishtrap, $\dot{\text { W. }}$. Gabrielson.
apron slat, enless, E. FF Fatzinger
automatic digger and convever. Stauch
atomobile

820,938
820,830
820,805
820,640
820,632
820,829
820
820,691
820,503
820,433
820831
820,608
 Bear
Bear
Bea,
Bed
Beet
Beet
Beet
Belt
Billi
Bill
Bind
Bind
Biac
Bloc
Blo
Bow
Boil
Boil
Bolt
Boo
Boo
Bot
Bot
Bot
Bot
Bot
Bot
Bot
Bot
B

 But
Butt
Butt
Butt
Butt
But
Cab
Cab
Ca

Calculating and typewriting machine, com bined, Laganke \& Smith $\because \cdots$. Calculating machine, Laganke \& Smith...

Capsul
M
Capsule
Car

Car f
Car
Car,
Car
Cars,
Cat
sar step, extension, G. G. G. Wohi..........
Cars, locking and releasing mechsism or for
standards of logging, G. W. Du Bes,
reissue

Case. Sastener, Wh. Kernochan............
Cacking case.
Cement block and post machine, white \&
Wiloce

entrifugal machines, means for hanging
and
and $\begin{aligned} & \text { nalizing overdriven, G. Dinkel }\end{aligned}$
Waller
Cain, J. A. Hanger
Cair iren, H. W. Wolens.
Chocolate cutter, L. H. H. F. J. Finnegan.:

Circu
Classi
Clock
Coth
Cloth
Clot
Cot
Clo

Clot
Clut
Clut

 n.i.........
ould......
or costove
or covering 8 Hx kix

Engine and Foot Lathes

GUNSMTITH, TOOL MAEERS, EXPERI-
MENTAL \& REPAIR WORK, ETC.

 W. F. \& JNO. BARNES CO.
1999 Ruby Stabished Rockroter, h.L.
 etc., sent tree. Patents procured throu
Munn \& Co. receive free notice in the Scientific American MUNN \& CO.,
Brance Office: 625
F St., Washington, D.C.
ASHOrt HuT- If You Want to Engine, Boiler, Power Equipment, Electrical,
Steam, Pneumatic, or any other Mahinery
annthino int the Machine line-TELL US what you anythingin the Machine line-TELL US what you
Want and we will see that you get full descrip-
tions, prices catalogs etc tions, prices, câalogs, ett.. from all frst-class
manufacturers. No chargefor this service. MODERN MACHINERY DAILY NEWS
Security Bldg., Suite 10

Used by forty of the leading
Automobile and motor boat
manufacturers. Suitable for manufacturers. Suitable for
any gas or gasoline engine us-
ing make and break or jump sparkignition.
EVERY BATTERY GUARANTEED to give satisfaction or purchase
money refunded. WITHERBEE IGNITER CO.
27-31 Thames St. - NEW YORK

A MONEY MAKER

Hollow Concrete Building Blocks
Best, Fastest. Simplest, Cheapest
Machine. Fully guaranteed. THE PETTYJOHN CO.

Eurexa mactine Co.

420 N Jackson St., Jackson, Mich., U.S.A. ROTARY PUMPS AND E N GINESS Their Originand Development.-An important series of
papers piving a bistorical resume or the rotary pump
and engine from 1588 and illustrated with clear draw-

Picturesque New England

Boston \& Maine Railroad is beantraty inistrated New England Lakes
Rivers of New England
Seashore of New England
Mountains of New England The Charles River to the Hudson Picturesque New England (His-
toric and Miscellaneous)

POST CARDS Set of twenty Post Cards reproducing typical New England Scenery in its natural colors, sent on receipt of thirty cents. on recept or thity cents.

Addrass PASSENGER DEPARTMENT
Boston \& Maine Railroad, Boston, D. J. Flanders, Gen'l Pass. and Ticket Agt.

$\xrightarrow[\text { METAL POLISHES--FORMULLAS FUR }]{\text { Putz Pomades, Pastes, Liquids, Powders and soorr for }}$

Low Round Trip Rates to Colorado and the

M1 Ashestos and Magnesia Products

 KEYSTONE FAERIRINSULATOR ELECTRICAL SUPPLIES.

MOTORCYCLES

 HARRY R. GEER C0., 1015 Pine St., St. Louis, Mo HOW TO MAKE AN ELECTRICAI

 R.ADIUM AND THE RADIO-ACTIVE

McKELVEY CONCRETE MIXERS

Puping ayparatus. A. E. Guy

SPARK COILS

Their Construction Simply Explained 160 describes the making of a $\begin{gathered}\text { Supplement } \\ \text { Scinch spark }\end{gathered}$ coil and condenser. 1514 tells you
engine ignition.
Scientific
Scientific. American Supplement
1522 explains fully the construction of a 1522 explains fully the construction of a
jump-spark coil and condenser for gas-engine
ignition ignition.
Scientific American Supplement
1124 describes the construction of a 6 -inch
spark coilitific American Supplemen Scientific American supplement
1087 gives a full account of the making of
an alternating current coil giving io 5-inch spark.
Scientific American Supplement 1527 describes a 4 -inch spark coil and con 1402 gives data for the construction of coil of a definite length of spark.
above-mentioned set of seven paper

will be supplied for 70 cents. ny single copy will be mailed for 10 cts | MUNN Q COMPANY, Publishers | |
| :--- | :--- |
| 361 Brọadway | Now York |

able Books Scientific American Reference Book

12mo. 516 Plates. Price Illustrated. 6 Colored

Home Mechanics for Amateurs

TWENTY-THIRD EDITION EXPERIMENTAL SCIENCE.

 it into to to toinues
handsomely
buckram. REVISED and ENLARGED EDITION
Cyclopedia Of Receipts,
Notes and
Queries. Queries.

15,000 Receipts. 734 Pages

The Worki s of arrange

 1901 APPENDIX.
Price, bound in cloth, 81.00 Price, bound in celoth, 81.00

 Telegraphic system, J. W. Lattig, et ei.....
Telephone receiver attachment, Cimmer.
man Telephone switch, W. E. McCormick.....
Telephone sytem. two.division, J. H. Lendi
Templet for placing expression lines, F. L.

 Tool, compoumnd, o. Matheney
Toothed element, fexible, F. Hutchins....
Torpedo tube cap, revolving, H. E. Grie

TRADE MARKS.
Antiseptic or disinfecting chemical com-
pound, Hance Bros. \& White.
Axes, hatchets, and adzes, Suppiee Hard

 Beer, and lage beer, Harrard Brewing co...
Beer, lager, John Fiesner \&
Brewing Co. of Baltimore City
 820,612
80,612
820,926
820,599
820,797
8 820,
820,
820 $.820,5$
r. 820,6
ron,
820,7
$.820,5$
.

820,619 820,528 820,849 8

820,46
820,43
820,84
820,44
8

ilord's Waterproof Cloth
light, strong, soft and durable. Made of twisted pure flax thread. It is plable-will not crack, and is much stronger than cotton.
It is positively salt and fresh water proof. The proper goods for Hatch Covers, Boat Covers, Sail Covers, Tarpaulins, Side Cloth, etc. Ten years of success-Every piece stamped. Test its merits with a trial order.
EDWARD A. BUNKER
P. O. Box 1579 NEW YORK

GAS ENGINE DETAILS:-A VALUA-

Wonder Electric Lighting Outfit

$\$ 60$

Summer Excursion Rate from St. Paul, Minneapolis and Duluth (From Chicago
$\$ 75$), June 1 to September 15, 1906, to the Pacific Northwest and the
Puget Sound Country
This very low rate places within reach of
all, an outing on the shores of the all, an outing on the shores, of the
"Mediterranean of America," at the
summer resorts and in the beautiful summer resorts and in the beautiful
North Coast cities of Seattle, Tacoma, and Portland, or in any of a thousand
delightful places in the great mountain ranges. It's a country you should know.
No more pleasurable trip in all America,
with the side trip, en route,

Yellowstone National Park Gardiner Gateway A region of crowning scenic, glories-
"Wonderland of the world., If you
will send a post card to A. M. Cleland General Passenger Agent, St. Maul, Minn., you will receive a folder giving, full in-
formation by return mail, "Wonderland 1opo,", six cents. For full information
about rates and trains write
C. A. IIATTHEWS, G. A. P. D. 208 S. Clark St., Chicago, III.

Northern Pacific Railway "Direct to the North Pacific Coast Country."

PREE FOM YOUR DESX

 One man under ordi- twenty-seven experts nary conditions could have seen a hundred. not gather in a lifetime And the best of what ness infor-
 contain. Where the ployer or employee, average business man you need these books
sees one article, reads in y our office, on one book, meets one your desk, or in your business man these library.

J. H. Bunnell \& Co., Inc., 20 Park Place, $\begin{gathered}\text { novelties. }\end{gathered}$ New York

To Book Buyers

We have just issued a new 48 - page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application.
MUNN \& COMPANY Publishers of Scientific Americas 361 Broadway, New York

I KNOW

P. H. BURNETT, Industrial Agent 43 Liberty St., N. Y.

Whitewash Your Buildings

ELECTRIC LAUNCH MOTOR - THE

 DUSTLESS
Gouse Cleaning ITacbinery

Stationary Plant

private residences. Uses
wer from lighting current. $\$ 350$ and up. State size
of house. Private plants for office build
ings, department stores, etc. ings, department stores, etc,
Portable plants for residen Portable plants for residen-
tial cleaning business, $\$ 2,000$ and up. We sell exclusive
city rights. Over 85 eompanies city rights. Over
now operating.
General Compressed Air House Cleaning Co

Sillere's Band Saws

20-in. Foot or Belt Power 26-in. Belt Power 32-in. Belt Power 36-in. Belt Power

Hub Boxing and Spoke Tenon "Ohio", Feed and Ensilage Cot
nufactured by
THE SILVER MFG. CO. SALEM, OHIO

Instructive Scientific Papers ON TIMELY TOPICS

Price 10 Cents each by mail ARTIFICIAL STONE. By Li. P. Ford. ${ }_{\text {pape }}^{\text {A }}$

THEF SHINEERAGE AND WARPING excellent presentation of modern views;
fully illustrated. SCIENTIFIC AMERICAN
CONSTRUCTION
CONSTRUCTION OF AN INDICATANEROID BAROMETER. By N.
Monroe Hopkins. Fully illustrated. SIEN-DIRECT-VISION SPECTROSCOPES. By T. H. Blakesley, M.A. An admirably
written, instructive and copiously illustrated written, instructiv
article. ScIENTI
MENT No. 1493 .
HOME MADE DYNAMOS: $\begin{gathered}\text { SCIENTIFIC } \\ \text { AMERIAN SAN SUPLEMENTS } 16 i\end{gathered}$ tain excellent articles with full drawings. $\underset{\text { RICAN }}{\text { PLATING DYNAMOS }} \mathbf{\text { SUPPEMENTS }} \mathbf{7} \mathbf{S O}$ SIENTIFIC AMEscribe their construction so clearly that any
DYNAMO AND MOTOR COMBINED. AMERICAN SUPPLEMENTS 844 and 865 . ELECTRICA ELECTRICAL MOTORS. Their ConStruction at Home. SCIEN FIFIC AMERIC
SUPPLEMENTS $759,761,767,641$.
Price 10 Cents each, by mail
order through your newsdealer or from MUNN $\&$ COMPANY 361 Broadway

Boilers, range, Hayes Manufacturing Co...
Boilers, water
 Railway Educational Association..52,700
Boots and shoes and leather used in thei
manufacture, leather, Rice \& Huthis manufacture, leather, Rice \& Hutchins.
Boots and shoes, leather, A. Priesmeyer Shoe
Co. She Co and shoes, leather, T. F. F. Peirce
Boots
Son

Canned, botunderie and preserved fruits an
vegetables, Wilson Grocery Co.......................... vegetables, Wilson Grocery Co. $\ldots \ldots . .$.
Canned fruit, California Canneries Co....
Canned fruits and vegetables, Griggs, Coope

 Carpets and rugs, woven, Bigelow Carpet
Champagne or sark
wine Co
 Chemical preparations, cer
Kesson \& Robbins \ldots.
Cigarettes, G. H. G. Wing.
 cigar tobacco, Cayey-Caguas Tobacco Co
Cigars, Havana, Havana Commerial Co.
Circuit controllers or switches, Albert $\&$ M. Anderson Manufacturing
Cleaning preparation. T. Joern

 Cotton damask, Rosemary Manufacturing Co
Cutton goods, bleached, Fall River Bleacher
Culinary utensils made of copper ware
 Denims, blue, Massachusetts Cotton Miils.
Disinfectants, germicide, Albo Chemical
Dress shields, I. B Dust pans,
Eyelets
for D'Oeillets Metalliques (ancienne Maison
G. Bac) Mrancer
 ire extinguisher in powdered form, Neve
myss Fire Extinguisher Co.
Fireproof starch, Frice Fireproofing Co.... Fireproof starch, Frice Fireproofing Co..
Fishing rod, Horton Manufacturing Co..
Flat-iron polishing pad, Greader Manufact
 Flour, wheat, Isaac Harter Milling Co2,69
Flour, wheat, Sweet Springs Milling Co....
F
F
F
F
F
F

 Food, stock, M. W. Sava. \ldots.
Food substances, prepared fatty, oleaginous
or unctuous, N . K Fairbank Co.......
 Gas burners, Crescent Burn
Ge. Co.
Gelatin, American Guiue Co.
Gelatin, American Glue Co
Gloves, J. Adler \& Coo
Gloves, Abraham \& Straus

 Spencer, Bartiett \& Co. .

United Electrii Light Co.
Lentern burners, R. Dietz
Leather, enameled, Barnet Leather Co.......
Lime and plaster, Rock Plaster Co. of New
York and New Jersey
Separator Co. Cent..........
Magazine, weekly, Engineering and Mining
Journal

Metal, solder, babbitt, or other antifrictio
Selby $\begin{aligned} & \text { Smelting and Lead Co........... } \\ & \text { Milk and } \\ & \text { and }\end{aligned}$ cream, evaporated, Falk Mercantile
Milk, condensed, Borden's Condensed Milik
Neuralgia cure or specific, E B. White. Wh
Oil confection, castor, Castor Oil Tablet Co
Oil for table use and cooking, olive an

'Break the Railroads' Throttling Grip
 Beginning with the June

 Number, the Business Man's Magazine will inaugurate a relentless campaign in the interest of every man who buys a mile of transportation or ships a pound of freight.A series of twelve articles by Hon. Charles E. Townsend, Congressman from Michigan, will give conclusive proof of existing railroad abuses, hitherto unpublished, and point the moral of logical remedy, and the means of its accomplishment.

Read the June Number of the
 Magazine
The demurrage evil ; the purpose and manipulation of the artificial car famine; the abuse of the private car system; the delay of perishable freight that means destruction; the rank injustice of discriminating charges for identical transportation service

The Business Man's Magazine has declared a righteous war for equity in freight rates and no rebate-for a flat two cent mileage tariff and no subter-
fuge. The opening gun will be fired in the June number. It is the duty of fuge. The opening gun will be fired in the June number. It is the duty of of monopolistic wrong, and help apply the remedy that will be pointed out.

THE BUSINESS MAN'S MAGAZINE, Detroit, Mich.
10 Cents a Copy at all Newsdealers
\$1.00 a Year of the Publishers

"The Stately Homes of England"
of which Mrs. Hemans sang so sweetly, undoubtedly had the advantages of antiquity and historic associations, but for positive comfort, beauty of design, practical arrangement and tasteful adornment they could not match the luxurious modern dwellings illustrated and described in

"American Homes and Gardens"

the new monthly magazine for all Americans appreciating the "home."

This unique publication, every issue of which is a veritable edition de luxe, introduces the reader to the interiors of the finest homes in America, shows how they are built, arranged and decorated, explains how furniture may be arranged to the best advantage, and gives authentic and expert hints upon the laying out of house gardens and the planting of proper flowers. It tells how bric-a-brac should be displayed and pictures hung so as to get the best effects.

Every issue of 72 pages has a handsome colored cover and contains an article upon some particular mansion, with various external and internal views, views of garden, etc., where possible

All home lovers are delighted with the magazine, as are also architects, builders, contractors and prospective home builders, whether at a cost of a modest $\$ 3,000$ or the more magnificent " million-dollar dwelling." It is intended alike for the economical and the luxurious.

72 pages each issue. 25c. per copy. $\$ 3.00$ a year, in advance
MUNN \& CO., Publishers, 361 Broadway, New York

Gasoline Engines

otbers will show their superiority. Strength, Simplicity, Efficiency and Economy are the distinguishin

 distinguishing marks of every I. H. C. power.Adapted to use in shops of all kinds, pomping, ndustrial plants, experiment stations, etc.
Horizontal, Vertical, Portable types. Horizontal, Vertical, Portable types. Sizes
from 2 to 15 borse power. Write for catalogue. International Harvester Company of America O Monroe Street, Chicago, III.

Motion Picture
MACHINES and FILMS TEREOPTICONS and SLIDES
For Public Entertainments, in
Theatres, Halls, Show Tents, etc.
Cheatres, Halls, show Tents, etc.
Catalogue No. 9 Free
. 52 State St, Chicago, III.

The

Adirondack

 MountainsAre now about the most central of all the great resorts. They have through Pullman sleeping cars from New York, Philadelphia, Boston,

A night's ride takes you from any of these places to the center of the mountains in time for breakfast next morning

For a copy of "The Adirondack Mountains
and How to Reach Them,". which is No. 20 of the Ne York Central Lines' "Four-'rrack Sack Mountains and adjacent territory, with
dack
useful information in regard useful information in regard to hotels, camps,
lakes, rivers, etc., send a two-cent stamp to
George H. Daniels, Manager General Adver George H. Daniels, Manager General Adver-
tising Department, Room 26, Grand Central C. F. DAL
Pass. Traffic Mgr W. J. LYNCH
Pass. Traffic Mgr
CHICAGO

[^0]
To-day my showrooms envelop the earth, and, while

$\begin{aligned} & \text { To-day my showrooms envelop the earth, and, while } \\ & \text { I have ninety and nine imitators, I am still first-first }\end{aligned}$
in quality and first in output.
Every one of my thirty years has been a year of
$\begin{aligned} & \text { progress-both in quality and sales. The year } 1906 \\ & \text { is emphasizing my supremacy-my salos breaking all }\end{aligned}$
emphasizing my supremacy-my sales breaking all
To-day I am the oldest and still the newest. No
that I was first am I best, but that I am best am I first.
I am the product of the second generation of Reming-
ton genius and artisanship-made and sold by men
Models represent age plus youth-the experience of
the old combined with progressiveness of the new.
In my present form I embody all the qualitics which
mental as to create a new standard of typewriter work.
REMINGTON TYPEWRITER
New York and Everywhere

MODELS $\underset{\text { Inventions developed. Special Machinery. }}{\text { EXP }}$.

BE A WATCHMAKER
MODEL AND EXPERIMENTAL WORK.
Electrical and Mechanical Instruments. small Mach'
EDWARD KLEINSCHMIDT. 82 W. Broadway, Nev Yort

$\underset{\substack{\text { EMtuc } \\ \text { stuc } \\ \text { EMEN }}}{ }$

 Advertisers who have handled minins machinery

WANTED

A Thoroughly Competent Master Mechanic Familiar with all details of modern shop practice and management, and experienced in the manu-
facture of Threshers and Traction Engines. Adress, stating qualifications, experience, etc Room 4 No. 131 E. 4th St., Cincinnati, 0.
Patented Articles Wanted organization, desires patented articles of merit to
manufacture and market. Our specialists know the
mest best'methods of introducing such commodities. If you
have a patent to place in competent hands, write us today describing fully, and submit samples or illustra-
tions. Address "D. E. G.," Box 1828, New York City.

Neer Yori Befing and Pading Co.
 LIMITED

Manufacturers of High Grade

Rubber Belting

Diaphragms, Dredging Sleeves, Emery Wheels ; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

Write for catalogue
91-93 Chambers St., New York

CHARTER
Stationaries, Portaales, Hoisters. Pump
ers. Sawing and Boat Outats, Combined Gasoline, Gas, Kerosene.
Send for Catalogue.

State Powaralogue. Charter gas engine co., Box 148, sterling, ill What-Is Daus'Tip-Top?

 TheFelir A. B. Daus Duplicator Co., Daus Bldg, 111 John St., Ieen Forl

RECORDING TOL? ressure Gauges, NSTRUMENTS. Pressure, Gauges, Vacuum Gauges, Volt
meters, Amperemeters, Wattmeters, and
Thermometers make hermometers, make continuous record
Day and Night. Will pay for themselve
 GOLD MEDAL, ST. LOUIS EXPOSITION
TOOL KNOWILDGE CHEAP

In fact you can have it free :
This cut represents our new Tool
Catalogue No. 2.2 . It is cloth. Catalogue No. 22. It is cloth.
bound and contains 950 pages all bound and contains 950 pages an
about Toools. Full descriptions
and thousands of illustrations.
 MONTGOMERY \& CO. 105 Fulton St., N. Y. City

WHERE ANSWER PROOF \qquad
 NeUSTADT AUTOMEBILE AND SIIPPIY CO. R 1306 catalioeriz Avo nisconvi so.

Buffing and Drilling Outfit
NO MACHINE SHOP OR GARAGE rills up to $1-2$ in. Carries a 5 in. Buff Booklet 192 gives prices and particulars
COATES CLIPPER MFG. CO. Worcester, Mass.

STEAM USERS

Raindow Packing

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints.
Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by PEERLESS RUBBER IIFG. co. 16 Warren St., New York

Keystone Well Drills

Detroit Motor ${ }^{\text {Nem made }}$ AUTOMARINE MotOr 1906 The Smogthest Thing That Run
 On unesting maxthine buitit for the purpese
From Youndry to user, the DETROIT

 WE MANUFACTURE THE MOTOR COMPLETE
AND GUARANTEE EVERY MOTOR WE MAKE
 3 H. P. will develop 4 H. P., $\$ 44.00$. Engine only

Write for Catalog deseribing Anto-Marine Motors
to 20 H. P. and Auto Adjustable Governor.
DETROIT AUTO= 1 ARINE CO.
E. Congress St. Detroit,
75 E. Congress St., Detroit, Mich
F. G. Haiut, Mgr., 95 Liberty Street, New York
F. G. HaiL, Mar., 95 Liberty Street, New York
The Bourse, hhilidel phia
The only builders of Auto-Marine Engines

It's a Fine Piece of Work

-

A REAL LAUNCH AT SMALL COST

"LITILE SKIIPPR

 SAINT CLAIR MOTOR CO., Dept. 17, DETROIT, MICH.

Civil Engineering and Surveyors' Instruments
DRAWING INSTRUMENTS, MATERIALS AND SUPPLIES We are the largest house in the world. Try us on BLUE PRINT PAPER. TRACNG CLOTH, DRAWING A. S. ALOE $\underset{\text { write for Catalog. }}{\mathbf{C O}} 5 \mathrm{O} \underset{\text { "Sent Free," }}{\text { Olive }}$ Street, $\underset{\text { Sticited. }}{\text { Louis, Mo. }}$

KING FOLDING CANVAS BOATS

An Automatic Accountant

that never makes an error, that isan accurate
recorder of the actual working time of operatives in factories and workshops and a
sure and silent witness as to amount of work done is the more-than-human machine, the
infallible

Calculagraph

Mechanicallv subtracts the time of day an work, and prints the actual working time. It makes no clerical errors-does not "forget" rate. One machine can make records for hundred men. Every factory, workshop and them. The first cost of the CALCULAGRAPH us give you fuller particulars.
Write for explanatory litera
CALCULAGRAPHCO. 1433 Jewelers' Bldg.

Olds Gas Engines and Pintsch Suction Gas Producers are built in he same plant-engines 2
We know each complete plant (producer and engine) will run right before it leaves the factory, perfectly adapted to the coals you will use-operating asts are 1-3 to $1-5$ of steam, 1-2 of gasoline--adapted to all kinds of work.
Send for detailed information applied to your requirements. OLDS GAS POWER CO 947 Chestnut St., Lansing, Mich. Formerly Olds Gasoline Engine Works

Pintsch

 Suction Gas Producef

Medicated and Iron (lad Gloves

[^0]: PATETS
 5 Trade Marks DESIGNS
 COPYRIGHTS \&C.

 ## Scientific American.

