MODERN USES OF CONCRETE.

[Entered at the Post Office of New York, N. Y., as Second Class Matter. Copyright, 1906, by Munn \& Co.]

Four-Foot Pipe Lines, Laid on Floor of Reservoir, and Weighted Down With Concrete Saddles.

View of the Completed Easterly Basin, Looking South, with Division Wall on Left and Gate House No. 5 in Distance.

The Foundations of Northerly Gate House No. 7 Through Which Aqueduct Water is Distributed to the Reservoir.

Concreting the 101.25 Acres of the Reservoir Surface, Showing Mixers, Cars of Material, and Method of Laying.

SCIENTIFIC AMERICAN

established 1845
MUNN \& CO.. - - Editors and Proprietors

No. 361 Broadway. New York

 the soientifio a meticun publications

NEW YORK, SATURDAY, MAY 12, 1906.

The Editor is al ways glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are
 wiil receive special atte

a FUEL EFFICIENCY TEST of AUTOMOBILES.

Never before has there been held in this country an automobile contest having so many participants as had the Two-Gallon Efficiency test, conducted by the Automobile Club of America on Saturday of last week Not only were the entries seventy-one in number, but the proportion of starters was large, there being sixtyfive machines in all. The main object of the test was to determine the fuel consumption per mile of the various automobiles. First, second, and third prizes consisting of a valuable gold punch bowl and a silver cup and medal, were awarded to the three cars that made the highest scores.
The score of each car was obtained by multiplying the total weight of the car when loaded (to which weight 800 pounds were arbitrarily added) by the distance run. Thus, in reality, the contest was placed on the ton-mile basis, which would cause the large, heavy cars to win over those of lighter weight if the former were not handicapped. This, it seemed, must be so, since ordinarily gasoline consumption does not increase directly with the weight, and a heavy car is found to be much cheaper to run per ton-mile than a light car. Despite this well-known fact, the committee in charge penalized the light cars by taking the weight of all two-cylinder machines as but 75 per cent of their actual weight, and that of the single-cylinder cars as but 70 per cent. The test favored the heavy four cylinder cars, therefore, and it seemed well-nigh impossible that any other type of car could win. The sur prising result was, however, that the winner happened to be a four-cylinder light-weight runabout of the aircooled type, a car which is a distinctively American invention. This machine, weighing with driver and observer 1,500 pounds, ran from 57 th Street and the East River to North Haven, Conn., a distance of 87 miles, upon two gallons of gasoline, at an average speed of $171 / 2$ miles an hour. When the fact is considered that the first 35 miles of road were in a very muddy condition, owing to a cloudburst occurring while the car was traversing them, it seems quite possible that a distance of 90 miles, or 45 miles per gallon, could have been covered had the road been dry. The automobile editor of this journal, who had the pleasure of being the observer on the winning car, believes that this distance could readily have been covered in fair weather and with dry roads, in view of the facts that the low speed had to be used on a considerable number of hills that could otherwise have been mounted on the high gear, and that the dampness of the air necessitated the opening of the needle valve of the carbureter more than is required on a pleasant day.
The car that won the second prize was likewise one of the latest types of air-cooled cars that American ingenuity has devised and perfected. The distinctive feature of this car's motor is that the cylinders are incased in aluminium jackets, through which air is forced by a powerful gear-driven blower, while in contradistinction to this system the motor of the winning runabout is cooled only by the natural draft of air as the car move forward, the motor in this case being placed transversely at the front of the car and also being provided with auxiliary mechanically-operated exhaust valves, to aid in the quick expulsion of the burnt gases. The needle valve of the carbureter also can be adjusted from the driver's seat. This is a very good feature, that is found on scarcely any other make of car. Both of these machines are familiar to our readers from descriptions published in our automobile number of January 13 and previously. A car of the same make as the winner holds the transcontinental record, which was made in less than 33 days.
The car which obtained third place was a well-known French make of 4 -cylinder water-cooled machine. This car had a score of 180,642 , as against the 200,100 of the winner and the 194,953 of the second car. It weighed 3,110 pounds, and covered 46.2 miles, while the second car weighed 3,270 pounds, and made 47.9 miles. The cost of running per ton-mile of the first
six cars, figured with fuel at 20 cents per gallon, is $0.613,0.517,0.556,0.559,0.500$, and 0.640 of a cent respectively. The fourth machine was a large French car with a record for fuel economy; the fifth was an 18-passenger bus; and the sixth a light tonneau having the same make and size of engine as the winner. A one-cylinder buckboard made 101.6 miles, and a singlecylinder tonneau carrying four people, 56.8.

pREVENTION AND MASTERY OF DISEASE.

It is probable that most of us have heard more or less about the remarkable success which attended the efforts of the Japanese to prevent and control disease among their armies in Manchuria; but it has remained for Major Louis L. Seaman to place the full facts before the world in a work to which he has given the appropriate title "Real Triumph of Japan." The high reputation of Major Seaman as an army surgeon, and the fact that his assertions are based upon personal observation during his presence with the armies in Manchuria, place the statements contained in his work, extraordinary though they be, beyond all question as to their veracity and accuracy.
It is shown by Longman's Tables that for nearly two centuries past, in wars that extended over any great period of time, on an average at least four men have perished from disease to every one who has died of wounds. In the late Boer war 8,221 officers and men were sent home on account of wounds, while 63,644 were invalided home by disease. Major Seaman quotes from Vital Statistics for 1898, in which the SurgeonGeneral of our army shows that while deaths from batthe casualties were 293, those from disease amounted to 3,681 , or 14 from disease to 1 from casualty. These surprising figures are compared with the record made by the Japanese. The Japanese statistics show that from February, 1904, to May, 1905, although 52,946 were killed or died from wounds, only 11,992 died from various diseases. That is to say, only one died from sickness to every four and one-half men who died in battle or from wounds.
This complete reversal of the statistics of the two leading nations of western civilization constitutes, according to Major Seaman, the real triumph of Japan; for it is a fact that in their war with China only ten years before, the Japanese lost about the same average as that which prevailed during our own civil war, namely, three from disease to one from bullets. In that war they realized that disease was even more fatal than the enemy's weapons, and in the intervening years they set out to master the invisible foe wit: a success to which the statistics, as above given, bear eloquent testimony. These results were obtained by careful study of military sanitation and hygiene, and by a most thorough bacteriological examination of the water along the line of march and in the vicinity of the camps. The water-testing outfit formed part of every sanitary detachment, and every foraging and scouting department was accompanied by a medical of ficer, who made an examination of the water to be used by the troops. In view of the extraordinary facts developed as the result of Major Seaman's investiga tion, it is not putting the case too strongly to say that as matters now stand, the medical corps has as much, if not more, to do with the winning of campaigns and the mitigation of the horrors of war as any other department of the army.

fireproof qualities of reinforced concrete.

In a recent issue we drew attention to the fact that, because of its strength, resiliency, and monolithic or one-piece construction, reinforced concrete was admir ably adapted to resist the shock of earthquakes, and we strongly recommended the system for the rebuilding of San Francisco. We now wish to emphasize the fact that armored concrete is equally well adapted to resis the fierce heat of such a conflagration as that which completed the ruin of the city. Mention should first be made, however, of certain additional facts which have come to light regarding the behavior of reinforced concrete buildings that were exposed to the most destructive shocks of the earthquake. The first case is that of the bell tower of the Mills Seminary, which, although it is some 75 to 80 feet in height, was not even cracked by the severe shaking to which it was subjected. The other two instances are to be found in Stanford University, where the Museum Building and Roble Hall, both built of reinforced concrete, are standing practically intact amid the widespread ruin, and in some cases the absolute demolition, of the other buildings of the University, all of which were massively constructed with a special view to withstanding earthquake shock. Two wings built of brick had been added to the Museum Building since its completion. These were thrown down, while the concrete structure passed through the ordeal satisfactorily. Roble Hall is built with concrete walls and floors of wood. The only damage to this building was due to the falling of a chimney, which broke through the floors, killing one of the inmates.
As to the ability of reinforced concrete to stand the
test of fire, although there are no advices at hand to show that any such construction was put to severe fire test in San Francisco, enough has been learned in ex perimental tests made for building departments, and particularly in an exceedingly fierce fire which oc curred to a concrete building in Bayonne, N. J., three or four years ago, to render it certain that buildings of this type would have passed through even the San Francisco ordeal satisfactorily.
One of the most conclusive tests by fire, loading, and water was that made last year by the Bureau of Buildings of New York city of a reinforced concrete floor, carried on two reinforced concrete girders, supported by four columns. The purpose of the test was to determine the effect of a continuous fire below the floor of four hours at an average temperature of 1,700 deg. F., the floor carrying a load of 150 pounds per square foot. At the end of four hours, the red-hot floor was to be subjected to a stream of cold water for five minutes, and then the upper side of the floor was to be flooded at low pressure. As the result of the test there was some flaking of the surface of the concrete, which did no material damage to the building. A stream of water knocked off the concrete from the bottom at one of the girders at the center, exposing the metal rods for a few feet, and there were some slight cracks of no material significance. With the exception of these defects, the whole floor system, in spite of the severe ordeal through which it passed, was found to be in excellent condition. The test was carried out under Prof. Ira H. Woolson, of Columbia University, and on the satisfactory results achieved the system received the approval of the Bureau of Buildings of the City of New York, for whom the test was made.
But the most severe test, the one which is generally accepted by engineers and architects as proving on a large scale the fire-resisting qualities of reinforced concrete, was the fierce fire which burnt out the mill of the Pacific Coast Borax Company at Bayonne, N. J., on the night of April 6, 1902. The building, which measured 200 feet by 250 feet, was four stories high in the main portion, and the remainder consisted of a single-story wing. The fire, which started from the bursting of an oil main and was fed by a large amount of inflammable material, was an exceedingly hot one; as was proved by the amount of fused cast iron from the machinery and copper from the dynamos and motors, which was found on the various concrete floors (themselves intact) after the conflagration. Everything that the building contained was completely burnt up, and nothing but the monolithic concrete structure remained. This was found to be in absolutely perfect condition, so much so that the building was put in firstclass shape at a cost of less than one thousand dollars. Evidence of the ability of such a structure to pass through a severe fire test, and yet maintain its integrity, was found in the fact that although the heat must have exceeded 2,000 degrees, the side walls, four stories high and 200 feet long, without any cross walls to tie them, were found, at the conclusion of the fire, to be absolutely in line, both vertically and horizontally.
The question of the extensive use of reinforced concrete in the rebuilding of San Francisco is greatly dependent upon the attitude which may be taken by the San Francisco labor unions, which hitherto have opposed the system so vigorously and successfully, that of late but little of it has been used. We note, however, from press dispatches, that the unions have signified their intention to suspend all restrictions which might hinder the rapid rebuilding of San Francisco, and it is to be hoped that this conciliatory and humane attitude will be extended to cover the important question of constructive materials.

the government as a cement manufacturer.

The government wants Portland cement, and wants it badly. With twenty-four big irrigation projects under construction, requiring hundreds of thousands of barrels of cement, the engineers are finding it next to impossible to obtain anything like the quantity needed. The unprecedented demand for this commodity all over the West has already overtaxed the capacity of the mills, and almost without exception the government's requests for bids are turned down. Apparently no manufacturers west of the Mississippi are able to supply new orders. In reply to inquiries from the government they state that owing to the unusual demand, new orders cannot be accepted for several months to come. Recently proposals were requested from eight manufacturers and dealers in cement for 2,000 barrels required on an Idaho project. Only one proposal was received, and that was at a rate fifty per cent higher than the firm would have sold a few months ago. Still later invitations for bids for several thousand barrels were sent to twenty-three dealers. Again but one firm submitted a bid, and this was nearly sixty per cent higher than the normal profitable rate of sale by this firm. Other attempts to purchase cement have been similarly unsuccessful.
The Reclamation Service is gravely concerned. It
has let contracts for structures involving millions of dollars, and a failure to secure cement as needed, entering as it does so largely in the work, will be disastrous. Owing to the inaccessibility of many of the government works, the transportation of cement is difficult and costly. This was particularly the case in Salt River Valley in Arizona, where the great distance from existing mills and the expensive wagon haul made the cost prohibitive. After making thorough investigation of the cost of bringing in cement for the Roosevelt Dam and other structures, the government erected its own mill, and for several months past has been turning out daily hundreds of barrels of firstclass cement at a price far below the cost of cement shipped in. It is known that materials required for manufacturing cement of good quality exist near several of the other projects, and private parties should embrace the opportunity to go into the business. From the present outlook, however, the government seems to have a choice of shipping from the far eastern seaboard or from Europe, or of manufacturing its own cement.

SOME FEATURES OF THE GREAT EARTHQUAKE

I was afforded an excellent opportunity to observe the effects of the great California earthquake of April 18, 1906, being in San José at the time of the shock Then, in about an hour, I left for San Francisco over the Southern Pacific Coast line, which traverses the west shore of San Francisco Bay from Palo Alto on the south to the center of the city on the north.
At San Bruno, fifteen miles south of San Francisco, the train was halted on account of damaged track, and the great majority of the passengers started on afoot. As for myself, I walked about twelve miles, when I was overtaken by the train which had finally managed to creep across the shaken track and proceed on its way.

I then went as far as the Valencia Street station, in the southern quarter of San Francisco. At that point I ascertained that it would be impossible to get through the city and across the bay to Oakland; and having started for the last-named point to learn the fate of my family, I concluded to turn back and proceed to San José, or wait at some small town on the peninsula until such time as I could make my way ia San Francisco.
I walked back some five miles, and then took a train back to San José, arriving there at six o'clock P. M., just twelve hours from the time of my departure. Meantime I had traveled fifty miles of the worst-affected territory and returned.
I am of the opinion that when the relative force of the earthquake has been approximately measured, it will be found that the point of greatest energy was in the vicinity of San José. I am quite sure from my personal observations that the shock at San José was much more severe than that at San Francisco.

There is no point that apparently received so severe a•shock as San José and some of the smaller towns next north of it on the peninsula, excepting Santa Rosa, and that town is almost exactly the same distance north of San Francisco as San José is south. Thus San Francisco might be taken as the center of the disturbance, with a constantly-increasing force both north and south for distances of fifty miles, from whence outward the force constantly diminished.

Now as to the disturbance in an easterly and westerly direction: The next day I took a train for Oakland, on the east side of the bay, and was surprised to observe that that strip of country had been far less affected than the strip that I had traversed the day before. There were a few chimneys down along the route, and when I reached my home in Fruitvale, a suburb of Oakland on the southeast, there was hardly any evidence that an earthquake had struck the section the day before.
Of course, the effect westward of San Francisco could not be judged, because there is the boundless Pacific; and if there were any upheaval at all, it came in the shape of a tidal wave, and I have yet to hear that any such phenomenon occurred in that direction. Eastward still of Oakland there was a constantly diminishing tremor. Stockton, sixty miles inland from the Golden Gate, reported but a comparatively slight disturbance. So there is the approximate area of the great terrestrial disturbance.
Now as to local effects. At the time of the shock I was in bed in a small room in the rear of the second floor of a large square-frame dwelling on North Third Street, San José. I had wakened some fifteen minutes before, and was trying to get one more nap before arising. Suddenly I was aroused from a half-slumber by the sound of a rush and a roar outside, and in a second the whole house was swaying from side to side and straining in every part.
Then there was a momentary lull, after which came the supreme shock. The house appeared to heave up and down and sway from side to side at the same time, just as if it had been suddenly cast upon a roll-
ing sea. The terrible force appeared to gain strength continually, and it seemed as if the whole structure would be wrenched in pieces and flung to the ground in a heap of ruins. In the meantime the roar outside had become almost deafening, and this was punctuated with crash after crash of falling buildings in distant parts of the town.
Then all was calm, and that calm was almost as terrifying as the storm that had just ended, for who could tell what was coming?
Upon rising I found my washstand, which had stood back against the east wall of the room, moved out from the wall at its south end about a foot, while all around the carpet was drenched with water that had been spilled from a large ewer that had stood in a bowl upon the washstand.
Hastily dressing, I went into the street. The sky above was perfectly clear and the sun was just rising. The air was balmy, and not a breeze stirred the leaves upon the trees. Looking up and down the streets, a gray dust could be seen rising, not only from the earth itself, but from the wreckage that strewed the whole city.

I turned the next corner going west, and came suddenly to a large square two-story frame dwelling, that had had its back broken at the second floor joist and had yawed off to one side, the first story meantime half collapsing and the upper story resting upon it intact. Hovering around its portals were some half dozen half-clad, distracted women, and I heard one of them remark that they had all. got out alive, and that there had been eight persons in the house at the time of the shock.

That was a sample of some of the work done in San José. I did not remain to inspect the town, but hurried to the train. When I returned in the evening, a friend told me that San José was a wreck. This should be qualified, however. There was hardly a building in town that did not show some effects of the earthquake. Not one chimney in a hundred was standing. The business part had been more badiy damaged than the residence part; hardly a front was intact, while many buildings had entirely collapsed. About thirty persons had been killed, including several entire families.

I took the 6:10 train for San Francisco, and it was a continuous succession of wreckage all the way up the track. There are about a dozen fair-sized towns between San José and San Francisco, including Santa Clara, Palo Alto, Redwood City, and San Mateo. Santa Clara was hit fully as hard as San José, but no one was killed. At Palo Alto the buildings of the Leland Stanford, Jr., University were badly wrecked, At Redwood City the new courthouse was about ruined.
Either coming or going I caught glimpses along the principal business streets of these towns, and there were regular windrows of ruins stretching up either side of the streets as far as there were any buildings of a considerable size.
The railroad as far as San Bruno was in fairly good condition, but it must be remembered that it is built over a very low and level tract of country, with no filled grades to speak of. But north of San Bruno there are several arms of the bay marsh lands reach ing up into the peninsula, and across these the railroad cómpany was compelled to construct grades that vary from four to ten feet in height above the marsh level.
Here it was that the earthquake put in some of its heavy licks. The earth embankments were sunk and cracked and the track twisted into serpentine shape for long distances.
And presently we came to the great cemeteries where the dead of San Francisco have been buried for fifty years. Thousands of headstones and monuments were overturned, and the elaborate gateways wrecked in various ways. Here I had a talk with a railroad employe who lives in the vicinity. He informed me that when the shock came, he was on his way to the small station to draw a pail of water. The motion of the earth was so violent that he was thrown of his balance, and he fell to the ground.
He said, however, that he was not very badly scared until he looked over into the cemeteries, and there saw "all the gravestones dancing a jig," to use the man's own language.
Now let us refer briefly to the various topographical characteristics of this region: San José stands about midway east and west in the upper end of the Santa Clara Valley. About twelve miles east stands the inner coast range, and about the same distance to the west stands the Santa Cruz or outer coast range. Neither of these ranges was badly shaken. San José stands about ten miles south of the southern extremity of the bay of San Francisco and upon a level plain composed of an alluvial soil.
The peninsular towns mentioned are at about the same level, but the outer coast range swings eastward, so that the valley land narrows down rapidly as one goes north.
The district traversed on the east side of the bay is
also at about the same level, and forms a comparatively narrow strip of land between the bay and the inner coast range.
Some might say that the terrible peninsula was the point of greatest insecurity, but San José, quite a distance south of the base of that arm of land and in the midst of a landlocked valley, got just as bad a shaking as did the peninsula.

THE ADVANTAGES AND LIMITATIONS OF REINFORCED

 CONCRETE.A paper read by Mr. Charles S. Hill before the Association of Portland Cement Manufacturers so admirably reviews the merits and defects of reinforced concrete that it may not be deemed amiss to summarize it here.
The capacity of resistance to tension of concrete, says Mr. Hill, is much less than the ultimate compressive resistance; when a concrete beam, for example, is subjected to transverse loading, it fails by tearing apart on the tension side. The purpose of the combination of concrete and steel known as reinforced concrete is to supply the deficiency of tensile strength in concrete-to make possible the construction of a beam or other member almost entirely of concrete, but which shall, by having imbedded in it steel rods of desired shape and suitable cross-sectional area in proper positions, possess a high capacity to take tensile stresses. The fundamental theory of the combination is that the disposition of the concrete and the steel in the section is such that the two elements act as a single unit, all stresses being divided between the concrete and the steel where the latter occurs.
Actual construction of reinforced concrete 1.11 ll somewhat short of reaching this theoretical perfection; it is not possible to distribute the steel perfectly through the concrete nor is it possible to secure that absolute adhesion between the concrete and steel which is necessary to perfect transmission of the stresses from one material to the other. These defects have to be allowed for in practical design; they may be reduced to quite minute proportions by good design and good workmanship, and they may be so accentuated by poor design and poor workmanship that a weak and dangerous material results.
Premising reasonably good design and workmanship, the claims which reinforced concrete presents as a structural material are sound and important. The compressive resistance of concrete is about ten times its tensile resistance, while steel has about the same strength in tension as in compression. Volume for volume, steel costs about fifty times as much as concrete. For the same sectional areas, steel will support in compression thirty times more load than concrete, and in tension three hundred times the load concrete will carry. Therefore, for duty under compression only, concrete will carry a given load at six-tenths of the cost required to support it with steel. On the other hand, to support a given load by concrete in tension would cost about six times as much as to support it with steel. If, then, the various members of a structure are so designed that all the compression stresses are resisted by concrete and steel is introduced to resist the tensile stresses, each material will be serving the purpose for which it is cheapest and best adapted and one of the principles of economic design will be fulfilled. This is the economic claim which reinforced concrete presents as a structural material. Other important advantages secured in the combina. tion of concrete and imbedded steel are: that the protection of the metal elements from corrosion is practically perfect; that the fire and heat resisting qualities of a masonry structure are secured at about the cost of a more or less temporary unprotected steel structure. That concrete is an almost perfect protection of steel from corrosion, is a fact almost beyond reasonable dispute. Both theory and the evidence of actual experience support this statement. It is to be noted, however, that concrete, to be effective in preventing rusting, must be dense, without voids and cracks, and in close contact with the metal at all points. The fire-resisting qualities of concrete have been subjects of much dispute. Theoretically, concrete being a hydrated compound should disintegrate with the expulsion of the water of hydration by heat. Practically, however, such disintegration must be very slow because of the high temperature required to drive off the water and because of the poor heat conductivity of the material. To set against whatever weakness concrete may have in the respect mentioned, we have the indisputable evidence that concrete structures have met the requirements of the most severe municipal fire tests and have successfully withstood the attacks of actual conflagration.
The rapid growth of reinforced concrete in public favor has been little short of marvelous. It is now used for nearly every form of structure for which timber, steel, or masonry is suitable. Indeed, its greatest evil is that it has been crowded into uses for which there is small warrant for its adoption as compared (Continued on page 387.)

TYPICAL SYSTEMS OF REINFORCED CONCRETE CONSTRUCTION.
Of the interesting features of modern civil engineering, interesting because of their extreme novelty and successful application, reinforced concrete is probably most noteworthy because of its unique adaptability. How striking is the influence of steel reinforcement

Fig. 1.-These Beams Are Designed to Carry the Same Load. The Upper is of Reinforced Concrete, the Lower of Plain Concrete.

Fig. 2.-Types of Steel Reinforcing Rods.

Fig. 3.--A Reinforced Concrete Pier for Railway Traffic.
is best exemplified by a reference to Fig. 1. There two beams are shown designed to carry ordinary floor loads, the one made entirely of concrete and the other of concrete with a sheet of expanded metal imbedded in the tensile portion of the beam. The saving in mere weight of concrete alone is apparent; and when we remember that the adoption of floor beams entirely of concrete means an increase of thickness of nine inches, or assuming five to eight floors, an increase in the total height of the building (with extra cost of higher and heavier walls, together with heavier foundations to carry them) of from four to six feet, we see that even as regards initial outlay for materials, the introduction of steel reinforcement into concrete construction is of importance.

So far as economy in initial cost of materials is concerned, reinforced concrete is undoubtedly cheaper than either concrete or steel alone. It is not very easy to demonstrate this economy except by comparative cost in individual cases, but an approach to a systematic comparison has been made by Mr. Walter Loring Webb, as follows: A cubic foot of steel weighs 490 pounds. Assume as an average price that it can be bought and placed for 4.5 cents per pound. The steel will therefore cost $\$ 22.05$ per cubic foot. On the basis that concrete may be placed for $\$ 6$ per cubic yard, the concrete will cost 22 cents per cubic foot, which is 1 per cent of the cost of the steel. Therefore, on this basis, if it is necessary to use as reinforcement an amount of steel whose volume is in excess of 1 per cent of the additional concrete which would do the same work, there is no economy in the reinforcement, even though the reinforcement is justified on account of the other considerations. Assuming 500 pounds per square inch as the working compressive strength of concrete, and 16,000 pounds as the permissible stress in steel, it requires 3.125 per cent of steel to furnish the same compressive stress as concrete. On the above basis of cost, the compression is evidently obtained much more cheaply in concrete than in steel-in fact, at less than one-third of the cost. On the other hand, even if we allow 50 pounds per square inch tension in the concrete and 16,000 pounds in the steel, it requires only 0.31 per cent of steel to furnish the same strength as the concrete, which shows that, no matter what may be the variation in the comparative price of concrete and steel, steel always furnishes tension at a far cheaper price than concrete, on the above basis, at less than one-third of the cost. The practical meaning of this is, on the one hand, that a beam composed wholly of concrete is usually inadvisable, since its low tensile strength makes it uneconomical, if not actually impracticable, for it may be readily shown that, beyond a comparatively short span, a concrete beam will not support its own weight. On the other hand, on account of the cheaper compressive stress furnished by concrete, an all-steel beam is not so economical as a beam in which the concrete furnishes the compressive stress and the steel furnishes the tensile stress. This statement has been very frequently verified when comparing the cost of the construction of floors designed by using steel I-beams supporting a fireproof concrete floor, and that of a concrete floor having a similar floor slab but making the beams as T-beams of reinforced concrete.
A good idea of reinforced concrete construction can be obtained from Fig. 3, which is an isometrical projection of a portion of a pier strong enough to carry the heaviest railway traffic. The disposition of the steel work is shown in the piles, the main girders, and beams; and the manner in which the steel rods run ning along the tensile or bottom side of the girders and beams are bent up over the top of the pile, which is here the tensile member (the beams being continuous), and then down again to the bottom of the girders and beams, is most instructive
The sections of the steel employed vary in different systems, being round, flat, square, angle, and tee (Fig. 2). In all cases the simplest section is the best, as it costs less, and readily allows the concrete to be rammed into the closest contact with the entire surface of the armoring. In America the Ransome system is most extensively used-a system in which a bar of twisted steel is employed. Small sections are better
than large ones, for by their use we obtain a more uniform distribution of stress in the steel; we can also readily bend and work them into any required shape; and finally, the most economical disposition of materia) is obtained, the metal being placed at the maximum distance from the neutral axis.

Expanded metal meshing (Fig. 6) is increasingly

Fig. 4.-Method of Joining Columns and Floors.

Fig. 5.-The Monier System.

Fig. 6.-Expanded Metal.
employed, more particularly in the lighter forms of construction. It consists of sheets of metal which have been mechanically slit and expanded, so as to produce a network. This type of reinfcrcement has many and obvious advantages. Its mere existence is proof of good steel, and it forms an excellent key for concrete too thin to permit reinforcement in the form of rods; thus it is very useful for concrete plaster, ceiling, and partition wall work. A good example of reinforced concrete in which expanded metal is used may be found in the Monier system (Fig. 5). An improvement on this system is the Clinton method (Fig. 11) of using an electrically welded wire netting in combination with

Fig. 7. - Ransome System of Erecting Columns.

Fig. 8.-Wood Centering and Ransome Steel Bars for 50-foot Floor Span.

Fig. 9.-Concrete Power Plant in Course of Construction.
concrete. Clinton fabric consists of drawn wire of 6 to 10 gage, which may be made in lengths up to 300 feet. The system is therefore a continuous bond system, which prevents the entire collapse of a span unless the weight imposed is sufficient to break all the wires.
Columns and Piles.-Reinforced concrete columns are made with either square, rectangular, or circular sections. They are reinforced with from four to twenty rods, the diameters of which vary from $3 / 8$ to $21 / 2$ inches. The rods are placed as nearly as practicable to the circumference of the column, so as to give the greatest radius of gyration for the section; but they are never placed so near the surface that they have not at least one or two inches protective covering. The steel so disposed is able to take up the tensile stresses which may be induced in the column by eccentric loading, lateral shock, wind pressure, and the pull of belting.
Columns and piles are made in wooden boxes, each consisting of three permanent sides and a fourth side which is temporary and removable. Under the patent rights of François Hennebique the reinforcing is placed in these boxes, and adjusted by gages to within one or two inches of the sides. The concrete is laid and rammed, about six inches at a time, with small hand rammers. The open side of the box is built up by battens fitting into grooves in the permanent sides, as the work proceeds; this enables inspection of the work to be made, and facilitates the placing of the ties at the proper positions. The ties are made of round wire 3-16 inch diameter and are dropped down over the top of the steel rods. They are spaced from two-inch centers at the bottom and top, to twelve-inch centers in the center of length of the coiumn, and are intended to prevent the steel rods from spreading out under the action of longitudinal loads. Fig. 4 shows the method of joining columns to the floor.

In the Ransome columns as exemplified in a recently constructed factory building (Fig. 7) the vertical reinfurcement consists of round rods with the connections made about 12 inches above the floor line. In order that these rods might be continuous the ends were threaded and connected with sleeve nuts, thereby developing the full strength of the rods. Horizontal reinforcemen: was also used, consisting of hoops formed by a spiral made from $1 / 4$-inch diameter soft wire, having a pitch or spacing of 4 inches in the basement columns, and gradually increasing to a pitch of 6 inches in the top story (Fig. 12).
According to Mr. Henry Longcope the first innovation in concrete piles was the sand pile, produced by driving a wooden form in the ground and withdrawing it, the hole being filled with moist sand well rammed. The next method adopted was to drive a metal form into the ground and after withdrawal to fill the hole with concrete. This was not successful, as it was open to the serious objection that on withdrawing the form, the ground would collapse before the concrete could be inserted. Still another method was introduced, which consisted in dropping a cone-shaped five-ton weight a number of times from a considerable height, in order to form a hole, which was afterward filled with concrete. This method never passed the experimental stage. Coming to more successful systems we may mention a method of molding a pile of concrete, allowing it to stand, and then driving it into the ground, a cap being used to protect the head.

Of modern systems which have proven successful

Fig. 10.-Slabs of Concrete Ready for Roof.
opportunities for complete inspection before driving and the fact that they save time because they can be cast while excavation is going on. After being driven they can be loaded immediately. Naturally they present considerable skin friction. The making of these piles

Types of Reinforced Concrete Arches.

Gilbreth's pile must first be recorded. Gilbreth uses a molded corrugated taper pile, cast with a core hole the entire length of the pile, which is jetted down by a water yet and finally settled by hammer blows.
Features which recommend the Gilbreth piles are the

Fig. 11.-Clinton System Using Electrically Welded Fabric.

Fig. 12.-Ransome Floor System With Beams.
typical systems of reinforced concrete construction.
above the ground surface also does away with the possibility of their being damaged or squeezed out of shape by the jar occasioned by driving forms for adjoining piles.
Still another method is used by Raymond. Under this system piles are usually put in by either of two methods, the jetting method or the pile core method. The water jet system is used only where the material penetrated is sand, quicksand, or soft material that will dissolve and flow up inside the pile when the water is forced through the pipe, thus causing the shell to settle until it comes in contact with the next shell, and so on until the desired depth has been reached. The shells are filled with concrete simultaneously with the sinking process, and when necessary spreaders are attached to keep the hole in perfect line with the pipe. The $1 / 2$-inch pipe is left in the center of the pile and gives it greatly increased lateral strength. If desired, the lateral strength may be further increased by inserting rods near the outer surface of the concrete. By this method, piles of any size up to two feet in diameter at the bottom and four feet at the top can be put through any depth of water and to a suitable penetration in sand or silt (water sediment).
The pile-core method is the one most generally used for foundation work and consists of a collapsible steel pile core, conical in shape, which is incased in a thin, tight-fitting metal shell. The core and shell are driven into the ground by means of a pile driver. The core is so constructed that when the desired depth has been reached it is collapsed and loses contact with the shell, so that it can be easily withdrawn, leaving the shell or casing in the ground, to act as a mold or form for the concrete. When the form is withdrawn, the shell or casing is filled with carefully mixed Portland cement concrete, which is thoroughly tamped during the filling process.
The simplex system uses another method in which the driving form consists of a strong steel tube, the lower end of which is fitted with powerful tooth jaws, which close together tightly, with a point capable of penetrating the soil when driven and also capable of
opening automatically to the full diameter of the tube while being withdrawn. The point of the form closely resembles the jaws of an alligator. At the same time the form is being withdrawn, the concrete is deposited It is so evident that concrete is vastly superior to wood in the construction of piles that it is almost superfluous to mention the points of superiority. Concrete is not subject to rot or the ravages of the teredo worm, neither can the piles constructed of concrete be destroyed by fire, and no cost is attached for repairs. While it is not possible to give accurate statistics as to the life of a wooden pile, as it varies so much under different conditions, yet we know that in some cases a wooden pile is rendered worthless in a very few years, especially when the surrounding material is composed of rotted vegetation, or where the pile is exposed by the rise and fall of tides. It is also impossible to state the exact cost of a concrete pile, as it varies also according to conditions. Ordinarily speaking, a concreta pile will cost from one and one-half times to two times as much as a wooden pile; but in order to illustrate where a saving can be made, the following extract is given from a report on the piles driven at the United States Naval Academy at Annapolis, Md.:
"The original plans called for 3,200 wooden piles cut off below low water with a capping of concrete. To get down to the low water level required sheet piling, shoring and pumping, and the excavating of nearly 5,000 cubic yards of earth. By substituting concrete piles, the work was reduced to driving 850 concrete piles, excavating 1,000 cubic yards of earth and placing of 1,000 cubic yards of concrete."
In the work mentioned, the first estimate for wooden piles placed the cost at $\$ 9.50$ each, while the estimate for concrete piles was placed afterward at $\$ 20$ each, yet the estimate based on the use of wood piles aggregated $\$ 52,840$, while the estimate based on the use of concrete piles was $\$ 25,403$, or a total saving in favor of concrete of over $\$ 27,000$.
In several instances piles have been uncovered to their full depth, and they were found to be perfectly sound in every particular. By surrounding the oper ation with the safeguards provided, it is almost impos sible to make a faulty pile. The concrete is made as wet as good practice will allow. Constant ramming and dropping the concrete from a considerable height tend to the assurance of a solid mass, then the target on the ramming line or the introduction of an electric light into the form shows what is being done at the bottom of the form.
Floors, Slabs and Roofs.-The system of construction for floors, slabs, and roofs is determined by the extent of the work and the nature of the loads to be carried. If intended for small buildings and offices, the items can be made before erection (Figs. 9 and 10); but in the case of warehouses, factories, piers, and jet ties, where live loads and vibratory stresses have to be borne, a monolithic structure is secured by building in molds directly on the site. For the lighter classes of monolithic structure, expanded metal is admirably suitable; it is also much used for the roofs of reservoirs, and for thin partition walls. The meshing is simply laid over the ribs or floor beams, which have been al ready erected, and the green concrete is applied to the required thickness, being supported from below by suitable supporting work, which is removed as soon as the concrete has set. In cold storage factories, the floor beams and ceilings are invariably erected first, the floor being laid afterward. The ceiling is then solid with the floor beams on their under side, and the floor is solid with them on their upper side, the air space between being a great aid to the maintenance of a low temperature for refrigeration.
In the Monier floors the reinforcement consists of round rods varying from $1 / 4$ inch to $5 / 8$ inch diameter. The rods are spaced at about six times their diameter, and are crossed at right angles, being connected by iron wire bound round them. This artificial method of securing the rods takes considerable time, and is thus a somewhat costly process. To produce continuity of metal, the different lengths of rods are overlapped for about 8 to 16 inches, and bound with wire.
The Schlüter are similar to the Monier floors, but the rods are crossed diagonally, and the longitudinal rods are of the same size as the transverse ones. The Cottancin floors have their rods interlaced like the canes of a chair seat or a basket, and the Hyatt floors have square rods with holes through which small transverse rods pass. Over fifty systems of reinforcing are in use, and in most cases the only points of difference are the shape of the section and the method of attachment and adjustment.
Beams.-It is obvious that, as the span increases, a limit will soon be reached beyond which it is not economical to use plain floor slabs, for their dead weight becomes of such magnitude as to prohibit their use. We have thus to resort to a division of the main span by cross beams resting on columns, and the floor is laid on these beams, which are arranged to take as much of the load as to render it possible to reduce the thickness of the floor within reasonable limits. Rein-
forced concrete beams are typical of the type of construction in which the merits of two component materials are made to serve a common end; but in the particular case of steel and concrete, the actual part played by the steel is not at all well understood.
Speaking generally, beams do not differ in constructional details from floors. The same reinforcement is used in both, the only difference being, that as beams are usually deeper than floors, the shearing stresses become more pronounced, and greater provision has to be made for them by a liberal use of stirrups or vertical binding rods. In some systems the reinforcement consists entirely of straight rods, disposed in any part of the beam where tensile stresses are likely to be called into play. In others, specially bent rods are joined or welded to straight rods, and when welding has to be done it would appear that wrought iron is more suitable than steel.
It is usual to arrange the dimensions of the beams so that the whole of the compressive stresses are taken by that portion of the concrete on one side of the neutral axis; but in some cases, as with continuous beams or heavy beams of small depth, a proportion of the reinforcement is distributed along the compressed portion of the beam, the steel rods either taking up the excess of compressive stress over that at which the concrete can be safely worked, or else taking up the tensile stresses at the places where they occur over the supports. As a general rule we may take it that the economical depth for a reinforced concrete beam, freely supported at both ends, is one-twentieth the span, and is thus approximately the same as that of a steel girder of equal strength. Reinforced concrete beams are now made for spans up to 100 feet for buildings, and 150 feet for bridges. But for each class of work beyond this limit, the weight becomes excessive. Several arched ribs for much greater spans have, however, been successfully built.

The beams are made in much the same way as piles and columns; they can be made in sheds on the site, or in the actual position they are to occupy when finished. The ceiling and beams are erected first, the floor being afterward worked on the top of the beams. We thus obtain a very perfect monolithic structure in which any vibration set up by machinery, falling loads, etc., will be of much less extent than with an loads, etc., will be of much less extent than with an
ordinary type of building, in which there is often a great want of rigidity, the beams and arches being loosely connected and able to vibrate independently of other parts of the structure.
Concrete being as weak in shear as in tension, provision is also required to take the shearing stresses. Some American designers have to this end patented special forms of reinforcement bar, in which each main tension bar has projecting upward from it ties inclined at an angle of 45 deg . (Kahn system). These extend to the top of the bar and take the tensile stresses arising from the shear. The corresponding compressive stress at right angles to this is carried by the concrete. The system is efficient, and on large spans, where weight must be reduced to a minimum, it has its advantages.
Thus in the Ransome system (Fig. 12) the shearing stresses at the ends of a beam are taken up by inclined reinforcing rods imbedded in the concrete at the junction of beam with column.

Arches.-Concrete has long had an extensive application in the building of arches, but until the introduc tion of reirforced concrete the arches that could be economically and safely constructed were limited to spans of a few feet. The general rule that the line of resistance fell within the middle third had to be observed for simple concrete arches, as for those in brickwork and masonry; and the thickness of the arches at the crown was thus approximately the same whether built in either of these materials. The introduction of steel reinforcement, however, made it possible not only to reduce the thickness of the ring for a given load-carrying capacity, but by suitably providing for the tensile stresses to enable arches of much greater span and smaller rise to be built. Some general types of arches in reinforced concrete are shown in F'igs. 13, 14, 15, and 16. Fig. 13 shows an ordinary arch with top and bottom armature. In many cases where the tensile stresses can safely be carried by the concrete the top armature is omitted. In the Melan arches, shown in Fig. 14, the top and bottom armatures are connected by ligatures, and in the Hennebique arches (Fig. 15) stirrups are used. As a general rule, hinges should be built at the springings and the crown, for the calculations are much simplified, and the line of resistance goes through the hinges; the arches also adjust themselves better to the load and to any slow temperature changes, and when the centering is struck the arch can better take its bearings without cracking. The methods of calculation for arches are as numerous as those for beams, and generally speaking are as irrational. The Monier system is the one most generally adopted, and over 400 bridges built on this system now exist in Europe. In America expanded metal and Clinton electrically-welded fabric are often used. An example of the latter construction will be found in Fig. 17.

CONCRETING THE JEROME PARK RESERVOIR.

The concreting of the westerly basin of the Jerome Park Reservoir, lying near the northerly limits of New York city, is, we believe, considerably the largest single job of concrete paving as yet undertaken. The total area of floor and side slopes of the basin is 101.25 acres, and the whole of this surface was coated with a layer of concrete, which varied in thickness from 6 inches on the floor to a maximum of 30 inches at the top of the slopes.
The figures of quantities involved are very striking. The work called for the use of 625 carloads, or 94,000 barrels, of Portland cement, 1,250 carloads of sand, and 3,125 carloads of crushed rock-a total of 5,000 carloads in all, which had to be hauled into the basin, distributed, mixed, and carefully laid in place. The task is further magnified by the fact that the preparatory leveling down and grading of the floor and slopes in volved the taking out of the basin of another 5,000 carloads of excavated material.
The Jerome Park Reservoir was designed to act as a local storage and distributing reservoir within the city limits. It is divided by a central wall running approximately north and south, which divides it into a west basin (completed last year, and now in use with a maximum full capacity of $773,400,000$ gallens) and an east basin, which is about $8 / 10$ excavated and when completed will have a capacity of $1,130,000,000$ gallons, or a total capacity of $1,903,400,000$ gallons. The reservoir is supplied by the old and the new aqueducts, both of which lead from the great Croton Reservoir. At the northerly end of the basin is a large gatehouse, No. 7, through which the water can be discharged into either basin of the reservoir; or, if preferred, it may be taken through the conduits, which are built with the divisional wall, to the central gatehouse, No. 5 , where the water can be let into either basin, or sent through the 48 -inch pipe lines laid on the floor of the reservoirs (of a pair of which we present an engraving), across the reservoirs to gatehouses Nos. 2 and 3, on the westerly margin of the reservoir, or to gatehouse No. 4, on the easterly margin. From these gatehouses the water may be fed to the city mains, or returned into the basins for the better circulation of the reservoir. From gatehouse No. 4 a 48 -inch pipe connects to supply the Jerome Avenue high-service station, or, if desired, the water can be passed on from central gatehouse, No. 5, south through one of two 11 -foot circular conduits built in the division wall, to be discharged at the southerly end of either of the reservoirs for the purpose of thorough circulation.
The water received through the old aqueduct can be let into either basin at the northerly gatehouse, No. 7, or it may pass south through the division wall around gatehouse No. 5; or it can be diverted into this gatehouse and into the pipe lines or the reservoir basins.
It is evident that in carrying through a job of concreting on this great scale, the question of its cost was very largely dependent upon the judgment shown in disposing of the large force of labor and the enormous amount of raw material to the best working advantage. A gap was left in the central dividing wall of the reservoir, through which was laid a broad-gage track for hauling in the material. Speaking generally, the plan of operation was to lay approximately parallel tracks, north and south, as they were needed, spacing them 200 feet apart. Each track became a center from which the concreting was carried out on either side for a distance of 75 feet. Scattered along the tracks at distances which were found to be the most advantageous, were fourteen concrete mixers, and the supplies of cement, sand, and broken stone were hauled into such a position, that in juxtaposition to each mixer was a carload of stone, another of sand, while the cement, in bags, was piled up conveniently to a runway leading to the hopper of the mixer.
The concreting was laid in alternate strips about $121 / 2$ feet wide, extending 75 feet at right angles to the tracks, 75 feet being found to be the maximum distance at which the work could be economically done. The strips were laid with approximately $121 / 2$ foot spaces between them, and after the first strips laid had become hard or set, the intervening spaces were also concreted. As soon as the whole area controlled by one track had been completed, the tracks after ten days were shifted onto the concrete. and commencing at the inner end thereof, the concreting of the space on which the tracks had lain was laid down, thus giving a fair, unbroken floor. Generally speaking, the batteries of mixers were arranged in twos, threes, and fives, according to the preparation of the ground. The concrete consisted of one of cement, two of sand, and five of broken stone, and for the mixing of it there were altogether fourteen mixers employed on the bottom of the basin, and two on the northerly slope.

At the time of the commencement of work, April 1, 1905, about thirty acres of the southerly end of the basin had been concreted. The remaining 71.25 acres were completed between April 1 and October 1, 1905, by a maximum force of $1,200 \mathrm{men}$; and this in spite of the fact that one month's time was lost through a strike.

During the progress of the work special considera tion had to be given to some seven acres of swamp which was encountered. The underlying material of the swamp was a plastic clay. The method of treatment was to excavate all the loose top soil, and lay a grillage or foundation of paving stones, of a size which one man could lift, loose or small stony material being filled into the spaces and compacted. The concreting was laid directly on this paving; and the method adopted was so successful that when the concrete was dry a 50 -ton locomotive was run over the surface without any detriment.
The filling of the reservoir commenced on October 26, and water was allowed to pass in slowly until the concrete floor and saddles over the pipe lines were covered for the winter. On March 13, there having been prior to this date a shortage of storage in the watershed reservoirs of the Croton, the water was allowed to pass freely into the basin until it had reached a level of 128.45 feet, which occurred on April 3. On April 9, after drawing 40 million gallons to replenish the depleted storage in Central Park reservoirs, the gates were closed, with the water standing at elevation 127.09 feet, which corresponds to 21.09 feet depth of water. On April 30, with an evaporation, etc., of about 0.017 of a foot per day, the reservoir stood at 127.08, thereby showing that the rainfall directly into the basin itself during these three weeks had about equaled the evaporation. The rainfall during this period was about 5 inches, and the evaporation, etc., about $41 / 2$ inches, which shows that the basin, considering the fact that it is new and has had but little time for silting action to take place, is a comparatively tight structure. Moreover, it is significant that in a few places, where water was observed seeping through the masonry when the water was first let in, the chemical action going on in the cement, and the silting effect of the water itself, are gradually sealing up even such slight leaks.

How to Make Concrete.

In determining the proportions of the aggregates and cement for a certain piece of work, it is necessary usually to take samples of the broken stone (or gravel) and sand which are most available to the site, and make measurements of the percentage of voids in the stone which must be filled by the sand, and the percentage of voids in the sand which must be filled by the cement. This is done by taking a cubic-foot box and filling it with broken stone in a thoroughty wet state. The box is then filled with as much water as is required to completely fill it in addition to the stone, which upon being poured off gives the relation between the volume of the voids and the volume of the stone. The required amount of local sand thus determined is then measured out and placed in the box with the stone in a damp state. Water is then used to determine the percentage of voids left in the sand, which gives the approximate amount of cement required, although an excess of cement is almost invariably used. Engineers everywhere differ regarding the best proportion to be used, but in general the above test, roughly made, will determine it well enough. The proportions which are most universally used are as follows: 1 cement, 2 sand, 4 broken stone; where extremely strong work is desired. Tests show that a 6 -inch thickness of $1-2-4$ concrete properly made is waterproof up to about 50 pounds to the square inch. This concrete is frequently used for facing dams. 1-3-6 is the proportion generally used for the interior of dams and large structures. It is entirely suitable for large foundations. $1-4-8$ is frequently used for foundation work, and when properly mixed makes good concrete, although it is about the limit of what is considered good work, and would not be suitable for very important structures. $1-5-10$ is equal to any concrete made with natural cement. It is a wellknown fact that the volume of concrete when mixed with water is somewhat less than the volume of the aggregates and cement before mixing. The contractors' rule is that the volume of mixed concrete is equal to the volume of the stone plus one-half to one-third the volume of the sand.
There has been much discussion among engineers and others as to the amount of water that should be added to the aggregates and cement for making the best concrete; and while it is not the purpose of this paper to enter into this controversy, it might be said that the modern tendency is toward wet concrete. The old way was to add just enough water, so that when all the concrete was in the form and tamped, it would show moisture on the surface. The tamping is a very important part of the operation, and the quality of the work is dependent upon how well this is superintended, as unless it is well and thoroughly done the concrete is liable to be honeycombed and imperfect, especially near the forms. With the growth of the use of concrete the old method of putting it in the forms nearly dry and depending on tannping to consolidate it has been more or less abandoned, and the more modern way is to put the concrete in quite wet, as less tamping is required and much labor and ex-
pense saved. One of the great objections to this scheme is that if care is not taken, the water will tend to wash the cement from the stone and sand; in other words, unmix it. However, it may be said that it is now generally understood that rather wet concrete properly handled makes better work. The amount of water to be added to the aggregates and cement varies from 1 water to 3 cement by measurement to 12 per cent of water by weight. In $188 / \mathrm{Mr}$. Carey, of Newhaven, England, made the statement that 23 gallons water per cubic yard of cement was the best mixture Quite frequently salt water is used in mixing concrete in cold weather to prevent freezing, and it seems to have no ill effects on the resulting mixture.-Cement Age.

THE IMPINGING FLAME IN CEMENT BURNING

The use of the impinging flame in cement burning has come to be recognized as the best method yet devised for increase of output and economy of fuel. This principle, as put into practice under patents granted to Mr. Byron E. Eldred, has attracted the attention of cement manufacturers ali over the country. In the Eldred process the air used to support combustion is modified by mixing with it a certain amount of waste stack gases of the kiln. The method of operation is shown clearly in the accompanying diagram. The waste gases are conducted through the pipe, B, by the exhaust fan, C. Air is then admitted at the opening, D, the amount of oxygen desired in the mixture being accurately controlled by means of dampers. The fan, C, discharges this mixture into the coal feeding apparatus, E, from which it goes through the pipe, F, into the kiln, A. The point, F, is so arranged with reference to the kiln that the hottest part of the tempered flame comes into direct contact with the material. One striking advantage of the process is the easy regulation of the mixture made possible by the manipulation of the damper at the air inlet, D. It is possible speedily to adjust the air mixture to meet conditions in the kiln; thus, when rings begin to form, an increase in the quantity of stack gases can

THE IMPINGING FLAME IN CEMENT BURNING.
be quickly made, which causes the removal of the mass. An experienced operator will have no difficulty with the Eldred method in obtaining a direct impingement of the flame and at the same time avoiding difficulties which formerly arose due to contamination of the discharging clinker. In using this process the cement company has been able to increase the output of each of its eight kilns about eight per cent, and to make a saving of about five per cent in consumption of fuel without causing any change in the quality of its product.

Official Meteorological Summary, New York, N. Y., April, 1906.
Atmospheric pressure: Highest, 30.47; date, 3ג; lowest, 29.44; date, 25 th; mean, 29.98. Temperature: Highest, 74; date, 30th; lowest, 31; date, 1st; mean of warmest day, 64 ; date, 30 th; coldest day, 40 ; date, 1 st, 2 d ; mean of maximum for the month, 60.1 ; mean of minimum, 43.3; absolute mean, 51.7; normal, 48.7; average daily excess compared with mean of 36 years, +3.0 . Warmest mean temperature for April, 54, in 1871; coldest mean, 41, in 1874. Absolute maximum and minimum for this month for 36 years, 90 , and 20. Precipitation: 5.78; greatest in 24 hours, 2.42; date 9 th, 10 th; average for this month for 36 years, 3.35 ; excess, +2.43 ; greatest precipitation, 7.02 , in 1874 ; least, 1.00 , in 1881. Snow: Trace; date, 9 th, 23 d. Wind: Prevailing direction, northwest; total movement, 9,712 miles; average hourly velocity, 13.5 miles; maximum velocity, 54 miles per hour. Weather: Clear days, 12; partly cloudy, 11; cloudy, 7. Thunder storms, date, 21st, 30 th .

The Current Supplement.

The current Supplement, No. 1584, is opened by B. S. Bowdish with an article on the Rapid Growth of Birds. An article on Artificial Gems will be of interest to the jeweler. Mr. James P. Maginnis continues his discussion of Reservoir, Fountain, and Stylographic Pens. A fourth installment of Valuable Alloys is published. Interesting to the naturalist is an arti-
cle on the domestic life of animals. The well-known meteorologist, Prof. Cleveland Abbé, writes on the relations between climates and crops. A most ingenious piece of mechanism is described in an article entitled "A Speed and Mileage Recorder for Automobiles and Railroads." The Tangent Galvanometer and Its Construction is described.

THE ADVANTAGES AND LIMITATIONS OF REINFORCED CONCRETE.
 (Continued from page 383.)

with the older materials. This condition must be charged in large measure to the fact that proprietary concerns have been chiefly instrumental in promulgating the use of the new material. Their purpose has not been that of true engineering to adopt the material only for such uses as it is particularly fitted, but that of the sales agent, to dispose of as much material as possible by forcing its use in every conceivable way. The natural result has been to see reinforced concrete used in many places where plain concrete would have served well enough, and in other places where every consideration called for the use of steel. The remedy for this evil will come with the passing of concretesteel work into the hands of engineers whose only object is to employ the material best fitted for their purpose, be it whatever.it may; and this transition has already begun. Another evil rising from the same cause and destined to be remedied in the same way is the tacit acceptance of empiricism as a rule of design. Already the theory of reinforced concrete is engaging the time and attention of many competent engineers, and a mass of reliable test data is being accumulated which will soon relegate empirical rules for reinforced concrete to the position they have long occupied in designing steel structures.
These strictures against empiricism will doubtless meet with opposition from some quarters, but they are entirely warranted. There is no place in engineering for guess-work whenever scientific determination is possible. It is becoming increasingly plain, moreover, that it is possible in reinforced concrete work. The common assumption of certain builders, that the laws, formulas, and methods of calculation used for ordinary materials cannot be applied to such a combination of two materials as is reinforced concrete, comes very close to being utter nonsense. The sooner such assumptions are banished from reinforced concrete work, the better it will be for the engineer and the building public; any attempt to weave a net of mystery about the new material is entirely wrong.

What Science Loses by the Earthquake.
Science has lost almost irretrievably in the destruction of one institution, not to refer to others, in which the most ardent hopes of the future were centered. The history of the California Academy of Sciences has many counterparts in other institutions devoted to pure science. It was begun forty years ago, and after a career of stress and poverty, at last as a beneficiary of the Lick estate, emerged into the full sunshine of wealth, and with splendid equipment was doing invaluable work in investigation and discovery. The latest expedition to be sent out by the institution is even now at work preparing a catalogue of the flora and fauna of the Galapagos Islands, where a company of scientists are exploring that remote group, and filling a gap which thus far has remained a blank page to science. In the department of entomology the academy has done immense service to gencral knowledge. Its collection of specimens was one of the finest in the world, and can never be replaced, and its museum oî natural science, fossils, Indian curiosities, reptiles of California and Lower California, Aztec and Mexican, birds, together with a complete collection of the flora of the Pacific coast, included much that can never be replaced and many things that are lost to the world forever.
The Astronomical Society of the Pacific lost its valuable records and many rare manuscripts, as did the Geographical Society of the Pacific. The University of California, with its great museum temporarily housed at the Affiliated Colleges, suffered no loss from either shock or flames. Every public library in San Francisco fell a victim to the catastrophe, the largest being the Free Public with three branches containing 150,000 volumes; the Mechanics', with 80,000 ; the Mercantile, with 60,000 ; and the San Francisco Law, with 41,000 ; and the library of the California Historical Society, with its priceless manuscripts and unreplaceable records. -There were in the city many noted private and professional libraries, which were all destroyed; no one had time to save books. Millions of volumes were reduced to ashes. Of schools and colleges destroyed, the most noted was St. Ignatius, a college of the Jesuit Fathers, located on Van Ness Avenue and the first established in San Francisco. The society also lost its magnificent church, built in the style of the Spanish Renaissance and richly decorated. College and church cannot be replaced for less than a million and a half dollars. Twenty-eight public schools of all classes were burned.

CONCRETE MIXING MACHINERY.

In the making of concrete, everything depends upon the thorough mixing of the component materials. The proportions of cement, sand, and stone vary, of course, with different conditions; but whatever they may be, it is important that there be enough sand to fill in the interstices between the stones, and that there be enough cement to fill in all the interstices between the grains of sand. Care should, therefore, be taken to coat each grain of sand with a layer of wet cement and each stone with a layer of this mortar. Concrete when properly made is of an even gray color, showing a perfect mixture and uniform coating of the sand and stones. This theoretical perfection of mixing is very closely approximated in large quantities of concrete by the use of special mixing machines. The first machine for performing this class of work was constructed on the lines of the brickmaker's pug millthat is, the mill used for mixing and breaking up lumps of clay. This is mentioned in Hunt's "Dictionary of Arts, Manufactures, and Mines" of 1875 . The next development was the trough mixer, consisting of a trough adapted to receive measured quantities of cement, sand, and aggregates, and a series of paddles adapted to mix the materials in the trough and move them toward the discharging end. Following the trough mixer came the cube mixer, an excellent machine which still survives. It consists of a large

United Concrete-Mixing Machine in Mixing Position.
cubical box of sheet steel with bearings at opposite corners and turning on a horizontal axis. A trap door at one side serves to admit the materials, which are thereupon thoroughly mixed by rotating the box. The cube mixer belongs to that class of concrete mixing machines known as "batch" mixers, in which the concrete is made in separate measured quantities

Gilbreth Machine Discharging Into a Wheelbarrow.
or batches, as distinguished from "continuous" mixers. which are continuously discharging mixed concrete at one end while being fed at the other. To the latter class belongs the trough mixer, which is still used to a limited extent. The gravity mixer, also of this class, was invented by Mr. Frank B. Gilbreth some years ago to meet special requirements. Having a concrete foundation to lay, it occurred to him it might be a good idea to set up an inclined chute leading from the street to the bottom of the excavation, and by means of a series of spikes in the chute to effect the mixing of the cement and aggregates shoveled in at the top of the chute. The experiment proved quite satisfactory, and led to the development of the portable gravity mixer, which has been quite extensively used. It is evident that the mixture of materials in a machine of this sort is largely a matter of chance, and for this reason the gravity mixer is most useful for massive foundations and similar large and heavy work in which, owing to the vast proportions of the work, occasional defects in the quality of the concrete can be ignored.

Another of the "continuous" type of mixers is the hand power machine, which is illustrated herewith. It has a long hexagonal body open at one end, and at the other it is fitted over a fixed hopper through which the materials are poured in. The body is geared to be rotated by hand, and contains a series of blades secured to the side walls. The blades are set at an angle with the axis of the mixer, and serve to feed the materials from the hopper to the open end. Mixers of this type are very useful for small work, such as concrete block making.
In this country a decided preference is shown for concrete mixers of the "batch" type, and this because it is next to impossible to thoroughly mix materials that are continuously moving forward. Mixing them by batches is a much more logical process, because the materials can be turned over and over and tumbled about until there can be no doubt of an intimate mixing. Many varieties of batch mixers are now in use. The first of these to come into general use com-
prised a rotary cylinder or drum, provided at one end with an opening to receive the batch and with an opening at the other end to discharge it. An excellent illustration of this type of mixer is to be found in the accompanying engraving of a "Ransome" machine. The illustration shows the drum partly broken away to indicate the peculiar arrangement of the vanes within. The circular wall of the drum is ribbed with a series of narrow steel plates or scoops, which extend diagonally from end to end of the drum, with a sharp upward bend near the front head of the drum. Riveted to each of these scoops near the bend is a blade or slide, which extends at a tangent thereto and its outer end rests on the edge of the next adjacent scoop. The machine reproduces the manual method of mixing the materials, namely, that of lifting them with a shovel and turning them over. Each scoop serves as a shovel, lifting up a portion of the batch, and owing to the diagonal set of the plate causing the material to slide toward the front or discharge end of the machine. Then, as the scoop nears the top of its orbit, it pours out the material onto the slide, which conveys it back to its starting point at the mouth of the drum. A thorough commingling of materials is thus insured. When, in a few moments, the concrete is properly mixed, the attendant operates the lever shown to the right in our illustration, lowering the discharging chute. The inner end of this chute catches the ma-

United Concrete-Mixing Machine Discharging a Batch of Concrete.
terial poured out of the scoops, and conveys it out of the drum to the wheelbarrow, car, or bucket. The great advantage of this form of discharge over that of the "tipping" mixers is that it does not require a high working platform for the machine, because, as the chute is fed from the top of the drum, its lower end will be high enough to clear the wheelbarrow or

Hand-Power Concrete-Mixing Machine.

Gotham Mixer Equipped With Loading Mechanism.
other receptacle used. The drum rotates continuously, both when discharging and when being charged, at a rate of about fifteen revolutions per minute. It turns on four rollers. One of the roller shafts is fitted with a driving pulley, and also with a pinion which meshes with a gear ring on the drum and causes the latter to rotate.
Another interesting concrete mixer of the same type is the "Gilbreth rotary." This machine is unique in that it can be loaded or discharged from either or both ends. The openings in the opposite heads of the drum are large enough to admit a wheelbarrow, as pictured in our illustration. Within the drum is a stationary framework carrying a pair of rails, which serve as guides for the wheelbarrow. This framing also carries a set of "coating tables." The aggregates and the cement are picked up by scoops and cast violently against these stationary coating tables. After proper mixing a wheelbarrow is placed in the machine, and it receives the concrete as it pours out of the scoops. If desired, a chute can be used in place of a wheelbarrow, both for charging and discharging the machine. The "United" mixer, which is shown in two of our engravings, illustrates a different system of discharging the batch. The machine belongs to the "tipping" class, the mixing chamber being so mounted that it can be tipped up to discharge its contents. The mixing chamber is in shape of a drum formed with a large pyramidal chute or spout at its discharge end. The drum is mounted to revolve in a ring, which in turn is designed to rotate on an axis in the same plane as, but at right angles to, that of the drum. Mounted on this ring is an engine of the square piston type, which drives the drum directly by means of spur gearing.' Steam is fed to this engine through a flexible tube. This direct system of drive does away with a lot of complicated mechanism, which would be necessary were the machine operated by a stationary engine. Steam power is also used for tipping the drum. As shown in one of our illustrations, the rocking support of ring frame consists of a pair of mutilat. ed spur gears secured thereto, one at each side, and engaging horizontal racks on the main frame of the machine. Connected by a pitman with the axis of the spur gear is a piston, which works in a steam cylinder on the main frame. The piston has three positions, one for charging, the second for mixing, and the third for discharging. When the piston is moved to its extreme rearward position, it draws the entire ring frame and mixing drum back, causing them to tip back slightly. This lowers the charging chute, so that the materials can be more easily fed into the drum. The intermediate position of the piston carries the drum back to the horizontal, which is maintained until the materials have been properly mixed, when the piston is driven to the extreme forward end of its stroke, tipping the drum down, and permit ting its contents to pour out. The machine can, of course, be charged when in its mixing position if conditions permit of hauling the stone and sand to a sufficient height above the drum.
One of the simplest machines of the tipping class is the "Smith" mixer. The mixing chamber of this machine consists of two truncated cones, with their larger ends joined together and their smaller ends open. In one end a chute is fitted, by means of which material is fed into the mixing chamber. Within this chamber are a series of blades which project radially inward. One of our illustrations shows a longitudinal section of a Smith mixer, and indicates the form and position of the blades. It will be observed that they follow the general outline of a spiral screw thread, and are adapted to carry the material from the center of the chamber toward the ends. The thread, however, is not continuous, and as the drum revolves, the material drops through the gaps between the blades, and slides down the inclined conical walls to the center of the chamber. The arrangement of the blades and the conical form of the drum are excellent, not only because they insure a thorough stir-

Fig. 1.-A Concrete Mixing Plant-Smith Mixer in Discharge Position.

CONCRETE mixing machinery.
of miter gears, one keyed to one of the axles of the swinging frame, and the other carried by the swinging frame. Secured to the shaft on which the latter bevel gear is mounted is a small spur pinion that meshes with the gear ring on the mixing drum. Power is transmitted to the mechanism by a driving pulley. The drum is tipped manually by depressing a lever secured to the axle at the opposite side of the machine. Intimately connected with the subject of concrete mixers is the question of measuring out the materials, and delivering them to the mixing drum in an economical manner. Too little attention is paid to this question, and the majority of plants will be found to be working under most uneconomical conditions. A small mixer properly equipped with means for measuring out the batches and for expeditiously supplying them to the mixing drum will turn out twice as much work as the large machine operated in the usual waste ful manner. One of our illustrations shows a small plant comprising a "Gotham" mixer, driving engine and charging car. The car travels up a pair of inclined rails to a position above the mixer, where it tips (as indicated by dotted lines in the engraving) and pours its load into the charging chute of the machine. The car is large enough to contain a batch, and is loaded while the previous charge is being mixed. Instead of shoveling stone and sand into a waiting machine, the shoveling is done into the car while the machine is at work, and then dumped into the mixing drum as soon as the latter is emptied without the loss of a moment, thus making both the loading and mixing practically continuous. For very large work a more elaborate equipment is necessary. We illustrate herewith a vers' complete plant used in laying the concreto foundations of a large gasometer. A towe: is built at the edge of the excavation, and at the top of this tower there are two bins, one for stone and the other for sand. The bins are supplied by a belt conveyor, which feeds either stone or sand as desired, a chute being used when filling the sand bin to carry the material past the stone bin. Owing to limits of space at this particular plant, the stone and sand must be dumped in stock piles at a short distance from the conveyor, and then hauled to the conveyor in wheelbarrows. Just below the bins is the measuring platform, on which the measuring hopper is placed. This has a compartment of measured size for sand, and another for stone. Spouts from the bins above lead respectively to these compartments, and to measure out enough stone and sand for a batch, the operator needs but to open the gates of these spouts, letting the materials pour into the measuring hopper until the compartments are filled. Another gate is then opened to permit the measures of sand and stone to slide through a chute into the mixer below, and at the same time the cement and water is poured in. No measure is required for the cement, as it comes in bags of a measured size, and it is merely necessary to throw in one, two, or three bags, as the case may be. Each bag contains one cubic foot of cement, and it serves as a basis among some manufacturers for rating their mixing machines, as the size of the batch, of course, depends upon the quantity of cement used. A "Smith" mixer is used in the plant just described, and as soon as the concrete is thoroughly mixed, the machine is tipped up to pour the material into cars, which are run on tracks to any desired part of the foundation. The entire plant is an excellent example of practical economy with the exception, perhaps, that no convenient storage bin is provided for the cement, and it must be hauled by laborers from the cement shed to the measuring platform.

Linoleum for Cement Floors.

To make linoleum adhere to a cement floor, a glue is used which has been boiled until it is of the consistency of carpenters' glue, and to which sifted wood ashes have been added, stirring, to make a mass resembling varnish. Apply to the lower side of the linoleum, and press hard against the floor.-Die Werkstatt.

CONCRETE BLOCK MACHINES

The marvelous advance in the manufacture and use of concrete, reinforced and in block form, for residen tial and business construction has opened a new era to the present-day builder. It has made possible an absolutely fireproof skyscraper and a non-inflammable cottage. It has eliminated the constantly recurring expense incident to painting, shrinking, and cracking of house walls. It has made coal bills less in winter and assured coolness in summer. It has reduced the cost of fire insurance. It has made possible a structure which is a guarantee of its own durability, as concrete improves with age. Rain, frost, and heat and the violent changes of weather, which cause wood to warp and rot and brick to crumble, have no effect on the structure built of concrete. With all these advantages, concrete has the merit of cheapness; and so great has been the demand for its use, that more than a thousand firms and individuals are engaged in its manufacture, and more than three hundred makes of machine turning out concrete blocks are on the market
These machines cover a wide and increasing field Nor is their use confined to the production of blocks alone. They are employed to turn out shingles, posts, pillars, cornices, and ornamental designs, often of in tricate pattern. They vary in capacity from one hun dred to two hundred blocks a day with the hand ma chines to six hundred blocks a day for the power machine working under one hundred tons pressure In general they may be divided into two classes-the side-face and face-down. It may be put down as a guiding fact for the reader, that any machine with a vertical core is of necessity a side-face, and any ma chine using a horizontal core, a down-face machine As we have already stated, the side-face and down-face represent the basic difference between the two types In various machines of each type the sides of the mold are dropped down by hand or mechanism, leaving

Fig. 3.-Lifting Out the Block.
the product on the bedplate; and in others the product is raised to permit its easy carting away. Each type has its supporters. The side-face machine makers contend that only by their process is a perfect block obtainable, free from settling, and ready to lay in the wall as made. The down-face makers point out that only on their principle is a veneered face possible without leaving a line of cleavage. They also contend that only on a down-face machine can an accurate reproduction of a face design be made. Decision as to the merits of the two processes must be left to the reader. The former
style of machine can justly claim the credit of being the first of any kind put on the market, the H. S. Palmer, the N. F. Palmer, and the Normandin being the initial makes which really turned out blocks actually used in putting up buildings. During the past few years there

Fig. 1.-Carrying Away a Finished Hayden Block.
have sprung up so many variations of the side-face and down-face machines, that to describe even a small number of them would necessitate a volume. This article aims only to give a general idea of the types as represented by the various makes.
The early forms of block-making machines did not turn out blocks which could be used to build residences. They did make a product available for the erection of small structures, such as poultry houses and farm outbuildings. The simplest form of machine was extremely elementary, consisting of two plain-face sides, two plain ends, a rock-face side and end, a core, and two tampers. This was nothing more than a moldbox, and its crudity gives a fair idea of its limitations. With it two men could turn out one hundred blocks, 8 by 9 by 16 inches, a day, tamping being done on top and the core taken out by hand. Equally simple in construction was the Pettyjohn machine, in which the mechanism was lifted bodily, leaving the block on the pallet. This necessitated the removal of the mechanism from place to place. Still the machine was extensively used at one time throughout the West. Both these mold-boxes were built on the side-face principle.

Having attained some proficiency in turning out the small blocks, manufacturers set to work to evolve a mechanism by which rapidity of output could be combined with durability and change of size of product The use of the wooden pallet over the iron was an early step to obtain speed, and was first employed by E. W. Seamans, who introduced the small hand machine embodying the wooden pallet. It is true that the blocks lost in form and beauty somewhat, but the gain in time did much to popularize the innovation. A further step in the rapidity of output was obtained by the Dayton machine seen in Fig. 7, capable, with two men tamping, of turning out one hundred and fifty 24 by 9 by 8 -inch blocks a day. Here the block lay originally rock face down, and was tamped in that position. By using a spring canter it was then thrown into the position seen in the picture, the pallet board being held in place until the product was ready for delivery. Equaling this machine in simplicity of construction are the Cox fence-post and cement-brick machines. The former is shown in Fig. 8. Two men
working on it can turn cut from 75 to 100 posts a day, and one man can produce from 1,000 to 1,500 bricks on the latter. The compact form of the completed post is shown in Fig. 8 by the side of the mechanism. The mixture is tamped in the usual way, and the machine then removed by pressing the levers on the end. This does away with the necessity of handling the product, which can remain where it is until dry. Likewise simple and efficient is a machine for turning out concrete shingles. An output of from 10 to 12 squares is obtainable on the power, and about two squares per day on the hand machine, at a cost of $\$ 2.55$ per square. The product is the best yet found, is lighter than clay or terra cotta, can be made in any color or design, and adapted to any style of roof.
The variety of uses to which concrete product made into building shapes is being put shows the possibili ties of the block machine. House builders throughout the country seeking artistic, durable, and economically constructed homes, are turning more and more to the concrete cottage as affording the only combination of all these qualities, and here it will not be amiss to show how much can be done at moderate cost in this direction. In Fig. 6 a house put up at Columbus Ohio, of blocks made on the Hayden automatic machine is a good illustration of high-grade results obtainable at small cost. In this case the expense of putting up the building, which is finished throughout in hardwood and polished pine, reached $\$ 4,000$, inclusive of the cement walks. It will be evident to the most cursory observer that a cottage like this affords an investment of a permanent character. Figuring five per cent on the cost of the building as a yearly sum necessary for repairs on a wooden structure and unnecessary here, it will be seen that in twenty years the owner will have saved more than the whole cost of his dwelling.
To go back to the machines which make such re-

Fig. 2.--Tamping Concrete in Hayden Machine.
sults possible. The Ideal, a face-down type, seen in Fig. 10, brings into play the use of a lever by means of which the horizontal cores are withdrawn. As shown in the cut, the block is raised on a cast-iron pallet. The face was formerly on the bottom, and is now seen on the side against the faceplate in the rear. To prevent injury to the block in carting away, the makers have provided a carrier which protects it on three sides. This machine is easily portable, and makes any width of block from 8 to 12 inches in lengths of $4,8,12,16,18$, and 24 inches, and can be

Fig. 4.-Power Machine. Corner Panel Block Ready for Removal.

Fig. 5.-A Yard of Finished Concrete BlockS.
adjusted to turn out angle and corner shapes. Somewhat similar to this machine are the Winget and- Jackson machines. In the last-named machine the block is made close to the ground, and after being tamped is raised by means of a powerful spring to a table, the core being automatically withdrawn during the process of rising. The sides open automatically, and the block is left on end.

A machine which can be operated by one man, and automatically forms the mold and relieves the block and does both very quickly, is the Walton. This machine turns out "L" blocks 4, 8, 12, 16, 20, and 32 inches in length and $3,41 / 2,6$, and 9 inches in height, also 10,12 , and 14 foot circles and porch piers. It makes all shapes and sizes on the same pallets.
Capable of making blocks of great diversity is the Noyes F. Palmer machine (Figs. 3 and 9) with its attachments, its molds, 36 different fullsize and 288 fractional blocks.
Its core holes may be raised from 2 to 6 inches, and being a side-face machine its different face designs are obtained by fastening cast pattern plates against one side-plate of the mold. By a similar means blocks with curved or grooved ends or with faces of different material or color from the body are produced. The completed block on this men on this machine is left in position
seen in Fig. 9 by the turning of the two cranks, the upperone throwing open the sides of the mold and the lower withdrawing the cores, and simultaneously elevating the platen which orms the bottom of the mold. To the rear is another completed block.

Special timesaving features have been adopted by the various manufacturers, but the trend in all has been to reach a maximum of production with as little complication of parts as is consistent with perfect work. In consequence, the most pretentious machines have adjustable parts, easily and quickly put into place for all lengths and shapes conformable with the dimensions of the mechanism. Em-

Fig. 7.-The Dayton Machine.

Fig. 8.-Making Concrete Fence Posts
being in position to be carried away without reaching up or stooping over. A one-fourth-inch space is allowed on every laying side of every sized block. The automatic release of the block insures not only rapidity of delivery, but perfection of form; doing away with inserting and withdrawing the cores and locking and unlocking of molds by hand. The blocks can be veneered effectively. Some of these blocks are seen in Fig. 5. A type of power machine which its makers claim will turn out one 12 by 24 block a minute is exemplified by the Perfection seen in Fig. 4. The concrete is mixed in this case by a mixer and delivered close to a movable box which is filled and swung over the mold, dropping its contents into it. A pressure of 100 tons is then applied by means of a small engine which operates the entire apparatus. While the block is under pressure the center core is started by a foot lever and raised by the returning follower. The
bodying these time-saving features with simplicity of construction is the Hayden machine, distinguished for its solidity and compactness and for a low position which renders it possible to tamp in the most advantageous manner. Fig. 2 shows a tamper at work, and the ease with which the mixture is reached. The

The twentieth annual report of the commissioners for the Queen Victoria Niagara Falls Park, just presented to the Ontario Legislature, states that the utilization of the falls for power purposes has already reduced the volume of water flowing over by about 7 per cent, or from 222,400 to 205 ,000 cubic feet per second. Though this has caused no ap ect on the falls, a reduction three times as large is in contemplation. The
mechanism is controlled by levers which are simply and effectively operated. When the inside lever has been thrown, the mold is freed absolutely, and the com pleted block is automatically delivered away from the machine without the slightest jar. In Fig. 1 the advantage which comes from the nearness of the machine to the ground again is evident, the block
commissioners
consider that the public agitation to restrict the further abstraction of the Niagara River water is well founded. The reports show that eleven American and six Canadian companies are at present using the falls for power purposes, and that ten more charters have been given to companies granting them power to use the falls.

SOME VIEWS AND LESSONS OF THE SAN FRANCISCO DISASTER.

The remarkable set of photographs of the San Francisco disaster, shown on these pages, tell their own story so graphically as to render any comment upon them almost superfluous. The sight of the steel-and-masonry buildings standing, gaunt and fire-stained, but intact as to their structural integrity, amid the leveled ruins of the older buildings, calls up vividly and at once a visit which the writer made to the ruins of Baltimore, while they were yet smoking at the close of the second day of the fire.
on this question is the one showing the ruins of the tower and dome of the new City Hall. It will be noticed that the internal steel structure and the metal dome of the tower, even to the figure that crowns its summit, are standing intact, while the two-story circular colonnades, massive though they were, have been almost entirely thrown down. It is probable that the architects trusted to the great thickness and mass of the masonry to give it independent stability, and that it was not very strongly tied into the steel framework. Had the masonry and steel been thoroughly bonded together, we think it is probable that

A Window Plate Glass Shifted in Its Frame Unbroken.
office, seem to prove further that a structure which is massively built of cut stone or first-class masonry, if it be of moderate height, can also endure extremely rough usage without any material injury. The damage to the Hibernia Savings Society Building by the earthquake seems to have been slight, and its wrecked appearance is due to its being completely burnt out.
The illustration of the post office presents a very remarkable contrast; for while the building itself appears to be in perfect line and level, except in one corner, not shown, which was built over a swamp, the adjoining ground and all parts of the masonry of the building that were not carried by the building foundations proper are greatly upheaved and distorted. How comes it that the building should have stood so unmoved, while the surrounding terra in-firma was tossing like the waves of a troubled sea? The paradox is to be explained by the fact that while the sidewalks and streets rested upon either made or filled-in ground, or upon alluvial deposits formed in the ordinary course of nature, the important buildings of San Francisco such as this stood generally upon foundations which reached down to the underlying rock, or to a bearing upon a stratum which in immobility and sustaining power was equivalent to rock. It is possible that when the seismic tremors passed through the earth, there was no great permanent displacement of

The modern steel-skeleton building has abundantly verified the truth of the theories in accordance with which it was built. The engineer and the architect, working together, aimed to produce a building which, by virtue of its enormously strong and highly elastic and well-knit-together steel frame, and the fire-resisting material with which it was floored and clothed in, would be proof against hurricane and conflagration. Incidentally it was hoped, though not confidently predicted, that such a structure would pass through the yet severer ordeal of an earthquake. The Baltimore fire proved the first proposition, and now the San Francisco earthquake has established the truth of the second.
At the present writing, all the evidence at hand goes to show that, in spite of the severity of the shock, the steel frame of the tall office building has come through the ordeal triumphantly. Moreover, in spite of the earlier accounts to the contrary, it now appears (and the accompanying photographs bear out the statement), that the masonry walls, and presumably the fireproof floors, were not shaken loose from the steel framing-not at least, in the tall office and other business buildings. Proof of this, as far as the walls are concerned, is clearly seen in our view showing the Call Building and the new quarters of the Mutual Bank. This fortunate result is to be attributed to the more thorough system of tying the walls to the structure, which characterizes the construction of the latest buildings of this class.
Perhaps the most instructive photograph bearing
the tower would have been left standing practically intact to-day.

Very impressive is the view showing the great Fairmount Hotel, looking down like a modern Parthenon upon the crumbling ruins which strew the slopes of

An Upheaval of Street Car Tracks.
the rock. But the made ground and the alluvial soil were relatively unstable; and when the underlying rock was shaken, the overlying material was thrown into waves and ripples, much in the same way as the surface of a fluid is agitated if the receptacle that

the hill on which it is built. The earthquake had but little effect upon this costly structure, and what damage it sustained was due to its having been completely swept by the fire. Two of our engravings, those of the Hibernia Savings Society Building and the post

Crevice and Subsidence of Car Track.

Effect of Earthquake on the City Hall, Showing Steel Frame and Dome Intact; But Masonry Thrown Down.
holds it be shaken with rapid oscillations. When the shaking is over the fluid will resume its normal level; but the loose overlying alluvial material above the underlying rock, not having the fluidity or ease of the readjustment of the water, will permanently retain many of the hollows and billows produced during agitation. An excellent illustration of this action is shown in the sidewalk surrounding the post office, and in the upheaved and depressed tracks pictured in two of our smaller cuts. So also a view taken in Market Street shows that the whole mass of filled-in material of the street has been shaken down some five feet, just as grain or other loose material may be shaken down in a sack or other receptacle.
In this connection we may say that we have lit tle doubt that the great length of the flexible wooden piling extending from the base of the tal office buildings in the lower part of San Francisco down to the firmer material, served because of its elasticity, greatly to cushion and absorb the violence of the oscillations of the underlying rock as they were

Copyright 1906 by Graham.

Freak of Earthquake. Market Street Sinks Five Feet Below Curb.
this character would readily adjust themselves to the twisting and displacement of the ground in which they were laid, most of the adjustment taking place at the joints; while the piping itself would suffer an extraordinary amount of distortion before fracture took place. The following account of the behavior of the various types of construc tion under the fierce test of the conflagration is from the pen of our special correspondent in San Francisco, who writes us that sufficient was known at that time, Saturday, April 21, of the condition of those buildings which survived the earthquake and the subsequent conflagration, to afford a complete and satisfactory test of the stability of different classes of building material employed in their erection. For once and for all time the popular belief in the incombustibility or slow-burning qualities of redwood lumber was shattered beyond recovery and its use will probably be prohibited, at least in down-town districts, for all future time. The writer remembers distinctly the fire in Chicago and the results, displayed on that oc-

The Post Office Suffered Little. Only Sidewalks Are Twisted. Note Fissure in Which Man Stands.

View Showing How Well Steel-and-Masonry Buildings Stood the Test of Earthquake and Fire.
transmit. ted through the piling to the steel structure.
After all is said and done, it was undoubtedly the fire and not the earthquake that destroyed San Francisco. This is evident from a study of the photograph taken from the hills back of San Francisco, showing the destruction of the business section. The only visible evidence of the earthquake is the fallen chimneys; the wooden buildings, at least in this section of the city, appearing to be but little harmed. The earth. quake did its work in smashing the water mains and cutting off the water supply, and the fire

The Burning of the Business District as Seen from the Hills SOME VIEWS AND LESSONS OF THE SAN FRANCISCO DISASTER.
casion, of employing pine lumber in building construction and unhesitatingly pronounces the redwood to be in every way as objectionable as pine in the fierceness of its flame, quickness to ignite, and the intense heat arising from its combustion. In only one particular was the fire in Chicago worse than in San Francisco. In Chicago the wind blew a hundred miles an hour and with such force as to lift whole sections of burning wood which it carried a way blocks in advance and ignited wherever it chanced to alight. By this means the fire spread more quickly in Chi cago than in the
latter city, where its progress was more gradual but not the less certain. Streets a hundred feet wide offered no obstruction to the fire spreading, for the intense heat of the redwood caused the buildings opposite to ignite as soon as the fire gained requisite strength. On Mission Street wood construction predominated, and with this street as an axis the conflagration spread in other directions. Had there been no redwood the business district might have been saved.
Among the more prominent buildings destroyed, taking them in regular order, was the New Merchants' Exchange, finished January 1, 1905, fourteen stories in height and of steel construction, faced with granite on the first floor and with terra-cotta brick for those above. The earthquake caused the building but incidental damage, but fire subsequently gutted it completely. It is now believed that the frame of the structure is intact and can be used again. The terra-cotta is apparently but little injured.
The Union Trust Company's bank, at Market and Montgomery Streets, fifteen stories, lately completed, steel frame, terra-cotta facing, will be occupied for business in a few days, as, the writer is informed, will the Crocker Building, opposite, of like construction, which stands but little injured, apparently only needing new finishing for the inside.
The Palace Hotel was built before the adoption of steel-frame construction, but with solid brick walls which stand and can be made available if desired.
The new Chronicle Building, unfinished, sixteen stories, steel and terra-cotta, will be as good as new with interior furnishings replaced; the old part, however, fifteen years old, steel and brick, is in a precarious condition and will probably have to be demol ished.

The lofty Call Building was subjected to an intense redwood flame, but stands upright and majestic. The Colusa sandstone with which the structure was faced is badly disintegrated by heat, but the frame is said to be intact and may be used again.
The James L. Flood Building, Market and Powel, just completed at a. cost of $\$ 2,500,000$, was badly gutted, though the steel frame is in perfect condition as far as can be judged. This building was faced with Colusa sandstone, which offered but little protection owing to the intense heat.
The Ahronsen Building at Mission and Third Streets, finished one year ago, ten stories, steel frame, terracotta brick faced, with interior replaced will be good as new, though not subjected to the intensest heat, as it was surrounded with low buildings in every direction.

The "Fairmount," of steel and terra-cotta, unfinished, is comparatively little injured, and with interior renovated can soon be occupied.

With these examples it would appear that terracotta is far and away the best exterior material for buildings of any height. No stone that was evèr quarried can withstand the intense heat of a general conflagration. Though ordinary clay brick of good quality is almost equal in fine-resistance to terra-cotta, as proof against an earthquake shock brick is no better, if as good, as stone.

THE INGALLS BUILDING-COMPLETING THE ELEVENTH FLOOR

A STAIRWAY OF REINFORCED CONCRETE.

One of the possibilities of reinforced concrete is interestingly shown in the accompanying illustration from photograph taken during the construction of the main stairway in the New York house of Mr. George W. Vanderbilt. The stairway was designed by Hunt \& Hunt, architects, and was built by the Turner Construction Company.as sub-contractors. In the engraving the body structure of the stair is shown completed, but without the treads, sides, rails, etc. The stair is double, two branches starting from the ground floor, and rising in graceful reverse curves to meet at a landing somewhat more than half way to the story above. At the point of meeting of the two branches the stair touches the wall toward which the two lower branches curve, and is supported by the wall at the point of contact. Two branches again start from the landing, curving in a direction transversely across the corresponding lower arms to the floor above. The entire stair is supported at only one point between the floors, and that is where it abuts against the wall. All intermediate columns have thus been avoided, for these would not have been in harmony with the design. Had the stair been built of steel, it would have been impossible to obviate the intermediate supports except by making the structure exceedingly heavy and bulky, a feature which would have been objectionable.

The construction is on the Ransome system, in which the concrete is reinforced by longitudinal and transverse bars of twisted steel carried into the supports where necessary, and with the individual members, where possible, tied together by wire. The longitudinal bars, both in the body and the sides, are bent to conform to the curvature of the stair, and are continuous from the intermediate landing to the floor

THE INGALLS BUILDING-THE STEEL REINFORCEMENT FOR THE FLOORS.

Brick and stone buildings of the past were useless, nd as easily demolished in the San Francisco fire as a paper box.

CONCRETE STAIRWAY CONSTRUCTION IN THE NEW YORK HOUSE OF G. W. VANDERBILT.
above and the floor below. The transverse rods are spaced short distances apart, and have their ends bent at right angles to project into the lateral flanges, clearly shown in the photograph. The concrete construction is carried out to engage with the lopams in the wall and at the second floor landing, and thus is formed an extremely solid bond. The design is not considered by engineers a difficult one to execute, notwithstanding that the result is rather a freak structure. It merely proves that it is possible to build anything of concrete for which a mold can be constructed and set up, and that with the steel reinforcement the resulting structure is not only strong, and solid, but is often less cumbersome than a corresponding one built entirely of metal. In the present case, if the stair had been built of steel, it would have been necessary to design and manufacture each piece separately, with a consequent loss of time and at greatly increased expense.

The stair is designed for a live load of about 150 pounds per square foot, and was found to answer all requirements in a thorough series of tests, in which heavy bags of cement were dropped upon it at various points from a height of some 12 feet. The stairway was finished in white marble with brass railings, and the structure has turned out to be not only a pre-eminently practical one, but an extremely handsome piece of work as well.

THE INGALLS BUILDING - THE LARGEST CONCRETE OFFICE BUILDING IN THE WORLD.
Among the earlier large concrete buildings in this country is the Ingalls Building, of Cincinnati, designed for office, banking, and telephone exchange purposes, and undoubtedly the most ambitious structure of this kind up to the time of its construction. It was begun on October 2, 1902, and completed late in the following year. It has sixteen stories, a basement, a sub-basement, and an attic, measures $100 \times 501 / 2$ feet, and rises to a height of 210 feet from the sidewalk
to the cornice. The distance from floor to floor is 12 feet 6 inches for the office stories, and 17 feet in the telegraph exchange on the sixteenth floor. The con crete construction as compared with a similar structural steel design permitted a reduction in height of about one foot for each story, a saving due to the shallower floors. The construction is on the Ransome system, in which the concrete is reinforced by rods, bars, stirrups, and hoops of twisted steel, is solid and continuous throughout, and was essentially completed as the work progressed, the rate at times being one entire story finished every twelve days. The founda tions are of the spread type, and rest upon a good stratum of gravel and sand.
The boldness of the structural design, at least for that period in the development of the use of concrete is well shown by the spacing of the columns, which is such as to require girders of 16 to 33 foot span, and floor panels 16×33 feet between the main girders. The columns are 16 to 33 feet apart, center to center, and decrease in size from 34 inches by 38 inches at the basement to 12 inches by 12 inches at the roof. The footings vary in size according to position and load ng, and are built independent of the columns. Each has a rectangular pedestal, slightly greater in horizon tal dimensions than the column, and upon this is a cast-iron base plate provided with ciscular projections to form top seats for vertical round steel bars imbedded in each column to add compressive resistance thereto. Each column, according to its size, has four six, or eight such bars, 2 to $31 / 2$ inches.in diameter
of which have upward inclinations. These grooves engage with ribs of similar section on the face of the concrete, and thus form a species of dovetail joint. The exterior window and door frames are of cast iron for the first floor, and of sheet iron for the remaining stories. There are four hydraulic elevators running in concrete wells for passenger and freight purposes, and two for use in connection with the floors below the surface level. The space, beneath the sidewalk is utilized, and in this connection concrete retaining walls are employed.
For the installation of the concrete steel construction, three stories of interior forms and two stories of exterior forms were used. The method of employing these forms is illustrated in the first of the accompanying engravings. The interior forms of each story were removed in twenty-one days, and were used for the construction of the third story above. The exterior forms were removed in fourteen days, and applied in the construction of the second story above. At the time the photograph was taken the ninth floor, with. its beams and girders, and the columns of the story below, had been completed in about twenty-three days, and its interior forms had been raised to be used for the twelfth floor and the eleventh story columns. The exterior forms for this floor had been raised from the tenth floor and the ninth-story columns, which were completed in about fourteen days. As the forms were raised, the portable scaffold, shown at the tenth and eleventh floors, was raised coincidentally with the forms.
the tops of the bars below, with a joint made with an inclosing pipe sleeve filled with neat cement. At this point also may be seen the method of employing twisted steel uprights, diagonals, and horizontals in the columns and tops of girders at the supports, to resist wind and floor load stresses. In the foreground are shown the twisted steel U-bars used to assist in withstanding longitudinal sheer in the girders.

A GREAT CONCRETE RETAINING WALL

by orrin e. dunlap.
What is believed to be the highest concrete wall in xistence has just been completed by the Niagara Falls Hydraulic Power and Manufacturing Company at Niagara Falls. This remarkable work was made necessary by the slow but constant deterioration of the cliff to the rear of the company's power station, which is situated at the water's edge in the gorge, on the New York side of the river below the upper steel arch bridge. At this point the talus or apron of fragments has been cleared away to make room for the power house. The cliff is vertical, the rock being limestone at the top, resting on gray shales, which the rain and frost more or less affect. It is claimed by geologists that the recession of the Falls of Niagara is due to the destruction of the shales, leaving the heavy limestone without the support of the softer rocks beneath, so that from time to time huge blocks break away and fall into the river below. To-day, where it is possible to look under the sheet of falling water of the Falls, the limestone would evidently be

The Highest of Concrete Walls.

Character of Clift Above the Wall. a great concrete retaining wall

Bird's Eye View of the Pilasters of the Concrete Wall.

At the fifth floor level may be seen the swinging scaffold employed by the general contractor for the brickwork. At the second story is shown the marble facing and its strap-iron anchors projecting from the concrete wall. These anchors, which were used in addition to the dovetailing described above, are placed at joints in the marblework, and each has a small steel pin which passes through a hole in the anchor and is fitted into a recess cut into the marble. The black waterproof paint, seen at the third story, was employed to insure the marble against the possibility of stain from the concrete. This paint was applied at the time when the forms were removed, thus offering a means for a thorough inspection of the surface of the concrete as the building progressed and as the load increased It is claimed that this paint has since remained in as perfect a condition as when first applied. All the stories up to and including the ninth were in the process of being plastered, and all other branches of the work, such as the installment of the marble-work on the floors, doors, and partitions, the heating, plumbing, and electric work necessary for completely furnishing the interior were being completed, for each floo formed a perfect roof as soon as concreted.
The second photograph is a view of the third floor, showing the beam and girder forms filled with concrete, and the completion of the floor above about to be accomplished. At the extreme left is shown the method of providing round steel bars to furnish compressive resistance that the area of the column may be reduced. The bars are carried to a point fròm 6 to 18 inches above the floor level, and rest directly on
without support; that it projects out shelf-like, and no doubt will in time break away. Knowing that this action was taking place at Niagara, the Niagara Falls Hydraulic Power and Manufacturing Company felt that in time the deterioration of the shale back of its power station would injure the strength of the supports of the limestone above, and thus endanger the retaining walls of the forebays, while the possibility of falling rocks was a source of danger to the power house as well as the employes and workmen about the power station at the water's edge. While this prospective danger was unquestionably a very long way off, the realization of its occurring caused the company to take careful steps to avoid it, thus anticipating any likelihood of injury to its employes or power station.

It was these conditions that resulted in Chief Engineer John L. Harper designing the facing wall referred to. He found that the cliff had previously been faced up to the shale, at which time the possibility of extending it to the top was not considered. It was therefore deemed advisable to construct three pilasters to give the upper and heavier parts of the facing wall a more stable support. The wall is made of 1-3--5 concrete filled with a clean rubble. Its length is about 200 feet, and it is not less than two feet thick at any point. The wall drops to the level of the tail water, and extends fully 150 feet above the eaves of the power house, which are 30 feet high, making a facing 200 feet high composed of about 7,000 cubic yards of concrete. The pilasters are 5 feet wide and 80 feet high. In places the wall has a thickness of as much as 12 feet.

A series of experiments made by Chief Engineer Harper would indicate no danger of the water, resulting from seepage, freezing behind the wall, as it was found that the water never attained a lower temperature than 39 deg. F. at the outside of the bank in the most severe conditions of wind and weather. The removal of the water is abundantly provided for by means of weepers.
In one of the accompanying pictures of this notable work an arch shows. This was built for the purpose of protecting a natural grotto, in which a spring is located. This has been most successfully accomplished without in any manner detracting from the strength

Bas-Relief Made With One Part White Cement and Three Parts of Sand.

Bas-Relief Stamped in a Mold of Plaster and Made With One Part White Cement and Four Volumes of Sand.
and usefulness of the facing wall, by arching the grotto.
It is worthy of note that all the sand and stone used in this construction was dumped on the east side of the terminal railway tracks about 300 feet back from the edge of the bank, from which point it was carried by means of an aerial cableway to a concrete mixer that stood near the edge of the bank. The mixture was dumped into chutes that carried it to the point of use, without causing a separation of the concrete mixture, the mass sliding as a unit in the chutes which were steep, smooth, and small. The scale on which the work was done called for the placing of from 80 to 90 square yards of concrete every day.

THE ARTISTIC POSSIBILITIES OF CEMENT,

The use of cement is becoming more and more important, not only to the architect, engineer and builder, but also to the artist, for plastic and sculptural purposes, and few realize that, unlike Italian terracotta, it can be made to withstand the rigor of our northern winters, and is equally impervious to heat
and dampness. With certain treatment, a color, texture and durability is obtained, reproducing to a remarkable extent the old stone figures of another age. In a recent visit to Mr. W. R. Mercer's studio, the writer was able to convince himself of this. Hitherto, cement for plastic purposes has been of a cold, gray, flat tone, which did not lend itself to the ancient forms and ideas, but after some years of experiment, Mr. Mercer seems to have found a method by which he overcomes this defect. The lover of art is thus able to have within his reach some of the famous examples of ancient sculpture at a naturally much reduced price.
In the studio one may see fonts, urns, busts, basreliefs, etc., all destined for the decoration of a garden, which is Mr. Mercer's specialty. One of the great troubles encountered at the beginning of his experiments was the making of a mold that would incase the cement and not take it in so close an embrace as to render its release impossible without breaking the cast. This problem was solved by the use of flexible molds, prepared in such a way as to avoid the repeated failure caused by the casts sticking and the cement not properly hardening before the disintegration of the composition used in the mold.
It is hard to enumerate the difficulties that beset the artist at this juncture. Cement is a non-combus tible, hard, very durable and cheap material, which can be cast in a cold state by simply mixing with water-hence its great adaptability to the fine arts. It is, however, less ductile than plaster of Paris, and though this difficulty has been overcome by stirring, pressure and other methods of application, its gray color and unsympathetic texture have chiefly repelled the artist. In combating the color certain pigments vitiate the strength of the cement, others do not. Some act chemically upon it so as to transform the tint of the mixture. Certain cements neutralize or weaken when colored more quickly than others, while the rapidity with which the cement dries, whether in the sun or dark, or whether more or less subjected to dampness, will be found to influence the color, or even vary the natural gray tone itself. Further, the method of application of the color, whether injected entirely through the cement before setting, applied during setting from the mold, or incrusted upon the latter in a comparatively thin envelope during setting, modified the result.
As to the texture, certain masses of cement, falling upon the earth outside of molds, or hardening inadvertently in bags and boxes, have assumed this texture of stone, while other masses present a very unpleasing nondescript surface. When molds are used this non-ductility of the material requiring stirring may blotch the surface with areas where the finer particles seem to have collected in a sort of paste. On the other hand, when cast too dry, the cavities are not properly filled. Owing to these difficulties the cement will not always take the texture of the mold, therefore one must resort to other means. The mold itself may be incrusted with ingredients which will communicate their texture to the cement, or materials, coarse and fine, may be introduced into the original mixture so as to modify the result. In a word, the cement is merely a glue causing the gravel and sand to adhere to each other, and is used as a medium and not as a base. The process, which any one can work out for himself if he wishes, lies almost entirely in the adding of certain ingredients to the raw cement. The texture and color are matters of workmanship and taste. When the process is learned it will be possible to reproduce almost any work of art with the accuracy of the copies seen in the illustrations. Once the mold is made there is practically no limit to the number of reproductions.

The production of a white cement has been the endeavor of many investigators, and even at the present time, the problem cannot be considered completely solved. It is the powerful coloring action of the iron which has proven to be an insurmountable difficulty in the practical utilization of many a good idea. It has been an undoubted step forward that Julius Gresley, of Liesberg, Switzerland, contents himself with the production of white Roman cement and does not attempt to produce white Portland cement in which the high burning temperature and the hardness of the clinker substantially increased the chief difficulty mentioned. White cement will probably be always used for the attaining of artistic effects, and for this purpose the strength of Roman cement is quite sufficient. Gresley mixes clay free from iron, particularly kaolin and pipe clay, with lime in such proportions that the clinker is constituted according to the chemical formula
$x\left(\mathrm{SiO}_{2} 2 \mathrm{CaO}\right)+$
$y\left(\mathrm{Al}_{2} \mathrm{O}_{3} 2 \mathrm{CaO}\right)$ or
$x\left(\mathrm{SiO}_{2} 2 \mathrm{CaO}\right)+$
$y\left(\mathrm{Al}_{2} \mathrm{O}_{3} 2 \mathrm{CaO}\right)+$
$2\left(\mathrm{SO}_{3} \mathrm{CaO}\right)$
and thereby attains a white cement, answering all proper tests in regard to tensile and compressive strength and which either with or without added coloring matter lends itself excellently for decorative purposes. We publish herewith two illustrations from photographs of decorative work made of "Marbrit," the name under which the raw material for the production of the Gresley white cement is known, and these show the excellent results obtain able with this substance.

The Genesis of the Chauffeur.

Chauffeurs existed, says Figaro, long before there were automobiles. History tells us that along about the year 1795, there sprang up in France, principally in the eastern and central regions, fantastically dressed men with their faces blackened with soot and their eyes carefully concealed, who gained admittance to farm houses and other isolated dwellings at night and committed all kinds of depredations and outrages. They had an atrocious habit especially, from which they obtained the name that posterity has preserved for them. They first garroted their victims, and dragged them in front of a great fire, where they burned the soles of their feet. Then they demanded of them where their money and jewels were concealed. Such interrogatories could scarcely be resisted. It is from this that is derived the appellation of "chauffeur," which once so terrified old ladies, but which at present evokes in us only cheerful and pleasing thoughts of automobilism, and of voyages and excursions at twentyfive and thirty miles an hour, in which there is nothing but the roads and paved streets that are scorched.

Aluminium and lead will not alloy. They mix when melted, but separate when cooling.

A Sun Dial Cast in Cement in Imitation of the Font of Turtles.

A Cement Flower-Box. The Original Has Been so Closely Imitated That Even the Wear of Time Has Been Reproduced.

In addition to all the advantages offered by all other machines, the Hayden Automatic Concrete Block Machine offers the following exclusive features:

1. It is the only down-facing machine that makes concrete blocks It is the ony down-facing machine that makes concrete blocks in from the machine.
2. It is the only down-facing machine that makes concrete blocks in all widths of faces up to 12 inches and automatically delivers the finished block away from the machine.
3. It is the only down-facing machine that makes concrete blocks in all wall-thicknesses up to 16 inches and automatically delivers the finished block away from the machine.
4t is the only machine that makes faced concrete blocks with the same number of machine movements as blocks made of a uniform material throughout.
4. It is the only machine that allows $1 / 4$ inch space for mortar on the laying side of every block.
5. It is the only down-facing machine (mould boxes excepted) which makes concrete blocks at a point low enough to allow for proper tamping without bending over.
6. It is the only machine that moulds with absolute accuracy all the laying sides of the concrete block. The striking off is done oppos-
ite the face and thus the interiorand exterior may both be faced.

This is the strongest and heaviest concrete block machine made-weighing 1550 pounds. With the regular equipment, including a complete line of plates, the weight is 5000 pounds-one-third greater than that of any other block machine on the market.

The standard equipment of the Hayden Automatic Machine makes a greater variety of sizes and shapes of concrete blocks than any machine on the market.

Face plates of any special design required can be made to order and shipped from the factory within four days. Superior workmanship and absolute accuracy is warranted by our foundry machine shop which has been established for over eighty years. Prices will be quoted on specifications submitted for flasks for balustrades, porch columns up to seven feet in height, window lintels, door steps, balusters, and ornamental work of all kinds.

Each machine is sold with a guarantee against all suits for infringement.
An illustrated catalog will be sent on request.

HAYDEN AUTOMATIC AND EQUIPMENT COMPANY 26 Cortlandt Street, New York City

A Cottage Erected of Concrete at a Total Cost of $\$ 4,500$.

CEMENT AGE

A Monthly Magazine Devoted to the Uses of Cement
This magazine-written by recognized authorities on cement manufacture, concrete work, and the allied industries-is the largest and most replete publication devoted exclusively to the cement and concrete field.
It publishes data and diagrams of practical value to the engineer, builder, and architect who is interested in the technical phases of the latest and most approved examples of concrete work.
It explains to the lay reader the most recent developments of the concrete industry as shown in houses, factories, walls, farm buildings, and other structures erected of concrete, illustrated with photographs and plans that indicate the many new and popular It discusses the most improved applied
placing of concrete, citing specific examples and manufacturing, mixing, moulding, and builders whose observations are of importance to the building trades.

It reviews the latest concrete machinery, reports the important points discussed at the meetings of the various associations interested in concrete throughout the country, prints the official reports of the tests of cement and concrete, cites the building regulations concerning the use of concrete and exploits the best of the methods and machinery for handling this material, in this country and abroad.

It conducts departments for the discussion by its readers of valuable phases of concrete work, reviews of the latest literature on cement and concrete which appears informed of events in trade cities through departments devoted to these topics.

The Cement Age is producing the firstpermanent laterature on the subject of cement and concrete which has ever been published. It is indispensable to every engineer, contractor, builder, and owner interested in this new and rapudly-growing cement industry.

Edited by ROBERT W LESLEY, Assocate Am. Soc. C. I:
Publashed by BRUCE \& BANNING, I Madson Ave., New York.
[Fill out, cut out, mail to-day]
BRUCE \& bANNING,
I Madison Ave., New York.
Enclosed find $\$$ t.oo for which enter my

RECENTLY PATENTED INVENTIONS.
of Interest to Farmers.
INED POTATO AND CORN PLANTER. Combined potato and corn Planter
-W. a. Hall, Sr., Pardeeville, Wis. Thi improvement is in the nature of a check-row
planter designed more especially for planting planter designed more especially for planting fication to planting corn or other seed. It is fication to planting corn or other seed. It is des to plant two or more rows at a time, and to check-row them or aline the hill both ways, and to drop one potato or piece of potato rows and also the space between the hills in the row.

Of General Interest.

WINDOW-SASH.-J. B. McKeown, Union Hill, N. J. This improvements in means for securing glas in fire-proof window-sash, the object being the provision in lieu of putty of a metallic secur
ing strip or strips, the parts being so arranged that the strips may be pressed tightly agains a glass of any thickness.
TRUSS.-G. V. House, Mount Vernon, N. Y The inventor's purpose is to provide a device
for the end of the belt of a truss when it confor the end of the belt of a truss when it con
nects with a pad-carrying plate so that it will nects with a pad-carrying plate so that it win
cover and conceal the end of the belt connecting with the plate and at the same time partly over the buckle or other fasteniro device that receives the free end of the belt, thus giving
the truss a perfect finish when on the person and preventing the belt where it connects with the plate from becoming disengaged from it buckle and also preventing the latter from an noying fleshy persons.
MOSQUITO-NET.-.J. W. Graeme, United States Navy. Lieutenant Graeme's invention is hammocks, though it may be used for sports men's, hunter's, or other forms of hammocks It is especially valuable in tropical countries, particularly in ports infected with malaria and yellow fever. It can be conveniently applied
for use and when not in use can be folded in for use and when not in use can be folded in with the other bedding.
TUBE EXPANDING AND BEADING TOOL -W. McCormick, Hillyard, Wash. The invention pertains to boilers; and its object is to
provide a new and improved tube expanding provide a new and improved tube expanding
and beading tool arranged to quickly expand the tube in the flue-sheet opening, to form beads on the tube on opposite faces of the flue-sheet and to give a high finish to the outer bead.
Chain-LINK Shackle.-G. A. H. DresLer, Karlstrasse 25^{11}, Kiel, Germany. The ob-
ject in this case is a connecting-shackle for ject in this case is a connecting-shackle for
chain-links in which the ends of the open chain-links in which the ends of the open
liak are held together by means of a closing nember. The arrangement is such that this member is provided with recesses directed ers the connecting-studs of the link in the manner of a cap. The web or shank portion of the closing member is surrounded by a box or sleeve, which serves to rein
of the link by taking the strain.
Wire-reel.--W. E. Eichhoff, Cairo, ill The reel winds or unwinds any kind of wire
One object in view of the inventor is the proision of means for mounting the reel to the end that it may be adjusted to a variety of positions, whereby the reel is adapted to rotate
in a vertical, horizontal, or inclined plane, and in a vertical, horizontal, or inclined plane, and
provision is made for overcoming tendency of reel and its mount to tip or fall over in hillside use. He provides a wheeled truck on which
he reel proper may be mounted in a detached manzer, and equipped with platform for supporting extra coil of wire, tools, etc., when platform may be raised on the truck when the reel is dismounted, to serve as the bed of the tuck
Miner's Lamp.-T. T. Carter and S. J. Thompson, Bluefield, W. Va. The design in this nstance is to provide a lamp which can be readily fitted over the cap of the miner
tached thereto. The vizor, which is of will reinforce the usual cap-vizor, or metal will reinforce the usual cap-vizor, or it will
take the place of the ordinary vizor. Means are provided so that when the miner dons his ap the lamp will be with him. The vizor and shield-plate form projecting guards for the wearer's head.

Hardware.

tUMBLER-LOCK.-N. W. Webb, New York, N . Y. The object in this case is to provide a lock more especially designed for use as a proper working of the tumbler-pins, without danger of getting out of order, by providing
strong and long tumbler-pins and springs, with out unduly increasing the size of the plug and keys, to prevent unauthorized persons from
actuating the door-lock with a view to unlockng and opening the door.

Household Utilities

OVEN.-H. C. G. Kreutzanamp, New York, N. Y. In this patent the invention refers to
ovens such as used for baking food. The object is to produce an oven which is specially adapted to be used in connection with a gas stove, further objects being to provide im-
proved. means for regulating the distribution proved-means for regulating the distribution
of the heat within the oven and preventing radiation therefrom.

IRON-HEATER.-C. Petty, Bay Minette ala. In use the device is placed in front of opening in the hood turned toward it, and then pon raising the shield the irons may be in roduced and limited in inward movement or oward the fire by the fender, while they will be prevented from falling in this direction by the contact of the handle with the shield.
When sufficiently hot; the shield is raised and When sufficiently hot, the shield is raised and
irons removed. The irons are held out of conirons removed. The irons are held out of con-
tact with ashes and away from the influence tact with
of smoke.
SIGNaL-M. D. Campbell, Charlestown, Yass. The inventon relates to signals, and ic use for conveying information to tradesmen delivering goods. The signal comprises a suport having an opening, a mirror mounted in the opening, a holder surrounding the opening at one side, and cards provided with perforations furnishing characters carried by the
Commode.-W. C. Feely, New York, N. Y The purpose of this inventor is to provide a
wheel-supported commode which may be used lone whenever needed, but which can be at ached when required to the side of a bed, a further oquivalent article of furniture; and means for bodily adjusting the commode, together with adjustable back and leg rests for the user. Another purpose is to provide a construction of bed particularly ada
in connection with the commode.

Machines and Mechanical Devices. registering device for presses. W. J. Ramsater, New York, N. Y. While the
principle of this invention is capable of many pplications it is particularly designed for gistering the number of impressions made by provide for accurate registration of impres ments of the platens of the press unless thos movements result in the taking of an impres COTTON-COMPRESS. - W. Hill, Alexan dria, La. One purpose of the inventor is to
provide a construction of a compress which will stand a minimum of wear, and also to so safeguard the screw-shafts that they will be effectually protected against grit, dust, and
like material calculated to injure them, and, like material calculated to injure them, and
furthermore, to provide effective means for protecting the screw-protectors against damage through careless handling of bales to be com-
SAW-SWAGE.-S. T. Lipsey, Georgetown, S. C. One of the principal objects of the in vention is the provision of a saw-swage
adapted alike to the swaging of the teeth of band-saws, gang-saws, and circular saws irr spective of the gage thereof and also to pro-
vide means for overcoming many disadvantages vide means for overcoming many disadvantages
and objections encountered in the use of many and objections encountered in the use of many
saw-swages hitherto devised with like ends in
iew
PRESSER-MACHINE FOR BOXING PUR POSES.-G. N. Pond, Aspen, Col. In packag
ing fruits of different kinds, as apples and pears, in boxes and the like, each box is usually filled with the fruit to a height exceeding that of the upper edge of the box for about one-
half the thickness of a layer of the fruit, and when the lid is applied it is necessary to pres down and hold it while securing it in place either by nailing or otherwise. The principa
object of the inventor is to provide a machine for performing the work of holding down the for performing the work of holding
lid while securing the same in place.
hat-hanger.-M. W. Potter, Red Lodge Mont. The invention has reference to im
provements in devices for hanging hats on hooks or the like, the object being to provide a hanger adapted to be attached to
arranged as to be turned outward for engaging with a hook or the like and automatically
swinging into the hat when released from th hook.
TRANSMISSION MECHANISM.-E. NELSON useful under circumstances where it is desirable to transmit power at a variable velocity of
rotation. The object is to produce a mechanism which will be simple in construction and to be effected by frictional contact, and to further provide means whereby the transmission may become variable.

Railways and Their Accessories. DEVICE FOR ACTUATING SWITCHES.he Fulcer, Amsterdam, N. Y. In this patent vice for actuating a switch point by the motor
ver man in charge of the car, the device being simple and durable in construction and composed
of few parts not liable to get easily out of of few parts not liable to get easily out of
order. Means are provided to permit convenient removal of any dirt, snow, or the like accumulating in the pit below the switch-
The invention relates to street-railways. SAFETY GUARD OR FENDER FOR TRAMWAY and the like vehicles.-P. Lentz, 34 Sternstrasse, Gross Lichterfelde, near Berlin,
Germany. This device or guard is for train and the like, the catching apparatus of which is suspended from rocking rods by means of with the supporting-frame at the rear end by means of intermediate links in such manner
that upon being pressed back by the obstacle
its rear end is raised so that its front end i
lowered onto the track so that the catchin lowered onto the track so that the catchin
apparatus is readily able to receive person or object in danger and so that no injury can be occasioned thereto.
COMBINED STRAP-HANGER, SIGNAL BELL RINGER, AND REGISTER-RINGER. S. S. Brooks, Brooklyn, N. Y. When the sec-
tions of the strap-rail are in place they form a. continuous rail supported in very efficient manner by the oppositely-disposed attachingarms of the brackets. The parts of the rail
are easily assembled, one section being fixed in place, after which remaining sections may be easily adjusted with respect thereto. The rail be made as short as required.
Grain-door-w. J. Cocklin, Rising City Neb. The invention pertains to a door for door the cars may be rendered sufficiently tight to permit loading grain in bulk. The object is to simplify the construction of the door render it stronger or more durable, and permit it to be readily folded, so that it will not in
terfere with using the car for other freight

Pertaining to Vehicles

vehicle-body.-W. W. Ogden, Chatham, nd W. C. Yelton, Newark, N. J. Means ar provided by this improvement for joining either panels together and to the wooden frame of vehicle-bodies to avoid former objections-in ther words, to provide a waterproof shell add to stiffness and rigidity of structure, and afford absolutely smooth and uniform outer sur face for shell and adjoining strip. This is ac-
complished by improvements in the frame and complished by improvements in the frame and
joint-strip, which co-operate with each othe oint-strip, which co-operate
o secure the desired result.

Pertaining to Recreation.

GAME-COUNTER.-O. W. F'reld, Chicago 11. The invention refers more especially to
counters adapted for use in connection with games, as billiards and the like. A casing or supporting frame is employed in which are horizontally-alined counting members, each herefor within the casing, to be brought to osition to indicate or register a particula aumber of points of the game.

Desigus.

design for a badge.-W. C. Marten Carbondale, Ill. Within the borders of this
rnamental badge are arranged in upright crossed positions an axe and a wooden maul on a \log of wood. A wedge is balanced between
these implements. Surmounting all are the letters "W m A." Three links of heavy chain extend partly around the bottom of the badge, "I O O F." he log and chain ate the letters DESIGN FOR A CASING OF VENDINGThis ornamental design simulates an elephant the elephantine form being represented in tanding position, with head raised, mouth and throat widely distended, short tusks joining sides of the mouth, ears projecting laterally, and to one side.
No're.--Copies of any of these patents will e furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of
the invention, and date of this paper.

Business and Personal KUants.
READ 'THIS COLUMN CAREFULLY.-You will
ind inquiries for certain classes of articles numbered
constcutive order. If you manufacture these in constculive order. If you manufacture these goods
write us at once and we will send ou the name and
address of the party desiring the information. In
every case ititis necessary to give tile
number of ine inquiry.

Marıne Iron Works. Chicago. Catalogue free.
Inquiry No. 8065.-For builders or manufacturers
'or mining engines. J. S. Mundy, Newark, N. J.
Inquiry No. 8066.-For dealers in
sate. also for makers of rag paper paste. "U.S." Metal Polish. Indianapolis. Samples free.
Inquiry No. 8067. Warted, the makers of the
placket fustener called "- C-curity." I sell patents. To buy, or having one to sell, write
Chas. A. Scott. 719 Mutual Life Building, Buffalo. N. Y. Inquiry No. NO68.-For manufacturers of a sheet
of substance such as paper or farric. one side of which of substance such as paper or fabric. one side of which
to be paraftined or ciled and the cther side of which
to be coated with a glutinous glycerine substance. Well gotten up typewritten letters will increase your business. $\$ 2$ per 1.000 .
Inquiry No. © ©69.- Wanted makers of printing Four Patents for Sale or Trade.-Copies, models, prospects. information furnished. James E. Bennett,
Box 124, Momence. Ill. Inquiry \o. 8070.-Wanted 1 have for eale the U. S. and all foreign rights of new Great economizer. J. M. Colman, Everett, Wash. Inquiry No. 80\%1. - Wanteed, makers of boxes,
bottles. etc.. for toilet preparations. such as tooth The celebrated "Hornsby-Airroyd "Patent Safety Oil
Engine is built by the De La Vergne Machine Cormpany.
 Manufacturers of patent articles, dies, metal wachinery tools. and wood fib machunery toors, and wood fiber products. Quadriga
Manufacturing Company. 18 South Canal St., Chicago. Inquirr No. 80\%3.-For manufacturers of gradu-
ating machinery, such as is used to graduate scales, Automobile experts are in constant demand at high alaries. Our seven weeks' course is the most thorongh
and pract ical, fitting men to drive, handle and repair Day practical, fiting men to drive, handle and repair
Day classes. Special course for owners. New York school of Automobile Engineers, 146 West Inquiry No. Yog. - Wanted, small friction and
screw top tin cans. wooden mailng cases and small WANTED--Articles to manufacture in either wood
or iron, by well-equipped foundry ard Ypsilanti Macline Works, Ypsilanti, Mich. Inquiry No. ROF.- For manufacturers of ma
chine suitable for «rinding divi-divi. Inquiry No. 8076. - For minufacturers of ma
chines used to make ruğ frum oid cirpets. Inquir
brella ribs
 print ing on canvas bags in two colors.
Inquiry No 8079 - Wanted, address of com.
panies who moid electrose or imitation hard rubber. Inquiry No. 8080.-For manufacturers of meta Inquiry No. S081.-For manufacturers of machin-
ery for working agricultural and road forks. lnquiry No. 808\%.-W anted, address of manufac-
turer of Gardiner Gyroscope. Inquiry N . SO83.-For manufacturers of metal
as thin astin foil orthinner.
Inquiry Ao. 8084. Wianted, address of makers
 moistare by contact with con centrated sulphuric acid.
running down a series of shelves arranged in tower
fashion.
Inquiry No. No85.- Wanted, makers of automatic
lathes for pill and vintment boxes. tack barrels, etc. Inquir. No.
sawing machines.
8086.-For manufacturers of stump Inquiry xo. 8087.-For manufacturers of emery
wheels. such as are clamped on fly wheel of a sewing
machine. Inquiry
fer press.

Done

On this Machine, so simply constructed, the most marvelous results are obtained. It will make solid or hollow blocks, pillars, sills, lintels, coping, or ornaments of any kind, from 2 inches up to 6 feet. It will make two blocks of the same size and design, or of different sizes and designs at one and the same time
The Hercules will make more stone and better stone in less time and for less money than any other machine. We can't prove that state-
ment here, but if you will take the trouble to send for our handsomely illustrated 68-page catalog, it won't take but a few minutes to convince you-Ask for Catalog No. 2.

CENTURY
 CEMENT

MACHINE CO.
303 W. Main Street
ROCHESTER, N. Y.

Specified by All Leading Architects and Engineers

Portland Cement Concrete has become the recognized building material where strength, durability, and fire-proof qualities are demanded. From a residence to a factory, from a sidewalk to a bridge, there is no other building material that will give such satisfactory and permanent results. The wealth of beauty obtainable in Concrete architecture and design is in marked contrast to the low cost of Concrete Construction.

hints to correspondents.
 Refereneses to former artiteles or ansmers should give
date of paper and page or number of question.

 Books referred to promptly supplied on receipt of
price. Minerals sent for examination should be distinctly
marked or labeled.
(9965) R. B. asks: Could you please tell me why a lamp chimney becomes heated
when placed on a lighted lamp, glass being diathermanous for luminous rays of heat?
A. A lamp chimney becomes heated because there is a hot mass of matter inside it. So does the earth's atmosphere by the sun's rays.
The atmosphere absorbs about 40 per cent of the rays of the sun, so that they do not reach inous from solid particles of carbon in the flame. This radiates heat. The glass inter-
cepts. much of that heat, and by this it is cepts much of that heat, and by this it is
itself heated. There is no substance which can transmit all the heat which strikes it. Glass
becomes hot in the sun's rays.
(9966) H. N. asks: The ground is frozen about two feet deep in winter, and
water pipes buried four feet and imbedded in sawdust are secure from frost; but in spring, When the surface of the ground for several
inches deep has turned to mud and the air is inches deep has trind
quite warm, the troubles begin with the pipes freezing. 1 am told that the frost travels
downward when warmed above. What is the scientific explanation? The warmer the weather gets, the worse the pipes freeze. A. We
have never before heard of the phenomenon you describe, that frost penetrates the earth deeper
in the spring after the surface begins to thaw. in the spring after the surface begins to thaw.
We suggest certain considerations which may We suggest certain considerations which may
help to a solution of the problem. Ice is a non-conduetor of heat. When the surface of a
lake is covered lake is covered with ice, freeezing of the water
on the under side of the ice goes on very
slowly snow and ice or frozen ground. Hence the frost does not penetrate as deeply as it would upon an open and dry surface of ground. After
the surface snow or ice has thawed, the earth and frozen ground below are still several degrees below freezing, and as the cold water from the
surface settles into the earth deeper and deeper, surface settles into the earth deeper and deeper,
it freezes again below the frost line, when the ground was covered with a solid layer of ice ing during the winter.
(9967) C. W. B. asks: 1. will you kindly answer through the columns of your
valuable paper the following question: cific gravity of a liquid showing 60 deg. gravit Would that be 0.6 gravity, or is it $60-180$ gravity, 180 being the difference between the
point at which water starts to freeze deg.) and starts to boil (212 deg.)? I I
neither, will you kindly explain what pe neither, will you kindly explain what per
cent 60 gravity would be by the Baume hydrometer? A. The Baume scale is graduated gravities at all. A different scale is used for for liquids lighter than water. Thus 60 deg. Baume would be a specific gravity of 1.652 for a substance heavier than water, and 0.745 are two 60 deg. in the Baume scale. 2. What is the atmospheric pressure to the square inch
on the top of Pike's Peak? At what temperature does water start to boil on the Peak? A. Pike's Peak rises 14,147 feet above the sea. When the barometer is at 30 inches at sea level
and the thermometer at 32 deg., at the top of and the thermometer at 32 deg., at the top of
Pike's Peak the barometer would stand at 17.5 inches, and water would boil at 185.9 deg. F. The pressure of the atmosphere under the same
conditions would be 8.575 pounds per square
(9968) G. B. asks: Is there a Portland or a hydraulic cement made which on
being mixed with the proper proportions of seing and water can at once be dropped int the bottom of a lake of water and will se
and harden there just as good as though it and harden there just as good as though it lime for such purpose? A. Replying to your
inquiry, we would say that there are several hydraulic cements and lime which will harden under water in the manner you describe. Hy draulic lime is like common lime except that can be made by mixing together in suitable proportions thoroughly slaked common lime water, and then burning it in the forre of
bricts or rounded balls in an ordinary lime

Kiln. With mortars of hydraulic lime the olume of sand should not be less than two
times that of the lime paste, in order: to se cure the best results regardless of cost. The
usual proportions are, in common mortars. Hydraulic cements, in mortars of proportions varying from one part ement and two parts of sand to one part
cement and four parts sand, set better and attain a greater strength under water than in
the open air; in the latter, owing to the evaporation of the water, the mortar is liable o dry instead of setting. This difference is
(9969) R. L. B. says: I have been ing cement and concrete for fence posts, bu have found these posts so weak and brittle that they were useless. I have heard that cement
may be used successfully for this purpose. Please explain to me how this may be done. ou to use concrete and not cement, as the ormer is much cheaper. We would recommend the following mixture for your gate posts parts fine crushed stone or clean gravel. In order to give the posts the neceassary strength,
whether they are made from concrete or ce-

with it will be necessary to reinforce them of a good-sized rod passing through the center of the post, or better by means of four smaller rods placed near the four corners of the post,
as in manner indicated in cut. If four rods as in manner indicated in cut. If four rods
re used, it will be necessary to employ some evice to keep the rods properly spaced as the method would be to use strong twisted wire spaced so as to come either end of post, and also in
length.
(9970) R. D. O. says: I would like to have you tell me whether it is practicable to uild a fireplace out of concrete. Will it with-
tand the action of fire as well as brick? How hick should the walls be to protect the studding in the adjacent walls, as it is to be built In a finished house, and the woodwork cannot be made to accommodate it? A. Concrete will
hot stand the heat of a fireplace, due to the act that after it is thoroughly dried out, a will be in such a place, it will tend to
rumble away. It may be used around a firethe fireplace which are in fire in any way are protected by a lining of (9971) A. A. T. says: I want to know ow to mix up Portland cement, and what put in it to make concrete plaster $11 / 2$ inch up a weight of 150 pounds, the plates to be upported at each end. Would it be advisable
o make them with a support underneath? want to make something that will do away
with lumber for greenhouse benches. A. It will ee possible for you to use concrete slabs of the size you mention; but, in order that they may it will be necessary for you to use at least
wo pieces of one-half inch round or square rou through the slabs. The proportions for $: 1$ part Portland cement, 2 parts clean sharp sand, 3 parts fine crushed stone. In order that the rods may be held in place
while in the mold, it would be better to wind tiff wire around them so as to keep them
(9972) L. H. H. asks: 1. What size spark ought an induction coil give in order to elegraph "line"? A. A coil giving a 4 or 6 nch spark will work over a distance of one
mile for wireless signals under ordinary circumile for wireless signals under ordinary circumin Supplement No. 1527, and one for a 6 -inch park in Suplement No. 1124, each 10 cents. 2. What is a polarized relay?
elay is one with permanent magnets, so that he current starts. 3. Would a 150 oohm relay such as used on commercial lines work on the bove-stated wireless telegraph line? A. We
hink a 150 -ohm relay will be sufficient for a stance of one mile.
(9973) J. C. L. writes: In answering Queries in your issue of April 7, page 294, it s necessary for your reader to have clearly in mind the meaning of the word "tide." The
word tide as used by sailors at sea means orizontal motion of the water; but when used landsmen or sailors in port, it mean henomenon of the tides is, after all, the tidal current, for it is the tidal currents that are referred to on charts, where we have arrow-
heads and co-tidal lines. They begin from slack
water, or no current, and requiring three hours
to attain a maximum as given, they immedt attain a maximum as given, they immed tely slack off again during another three hours,
ntil another slack water is reached, and on, making four times of slack water every lunar day. In the Caribbean Sea we have practically no tide the year round, the vertical motion never exceeding ten inches when free from wind effects. Where tidal currents come from opposite directions and meet we have th
heaped-up effect, with scarcely any tide at all, seen at a point on the southeastern coast of
Ireland and on Vineyard Sound between West Chop and East Chop just before you get ast Chop is only about nine inches, and West Chop is even less than that ; so much so that we often find the water higher at low ide than at high tide. This is due to th
wind driving the water to a greater heigh than the height due to the tidal effects. A though the tide is so small, the current is con-
siderable. It is because the tides work in both directions, that the currents there are so treacherous. Along East Chop the tide will be ing in at the other, thus producing a cross current over the shoal which causes a cros many disasters. A. Certainly the word "tide" has a large number of meanings. It implies the holidays in "Christmastide." It applies t the motion of water in "ebb" and "flood" tide,
and to currents generally in such phrases as a "strong tide." But there can be no doubt
that the general sense which admits of no the rise and fall of the water in the semidiurnal motion of a wave over the oceans o simple word; if we wished to refer to a current, we should say a tidal current. We have
usually found seafaring men employing the word in the same sense as we have employed it. Indeed, we often find our language colored
by the long experience we have had at sea and by the long experience we have had at sea and
mong sailors. Our correspondent in his lette among sailors. Our correspondent in his lette
uses tide and tidal currents in the same sense as we do. The instances he gives are of in had we gone more fully into the subject than (997
(9974) A. J. K. asks how to make solid emery paper. A. Emery paper is fre efficiency the fresh parts biting too much, and the paper getting soon worn through in many places. Emery has been tried on linen, but with little success. A paper or board has been stituent part. It is advised to employ fine and uniform cardboard pulp, with one-third to half its weight of emery powder thoroughly mixed
with it, so that the emery may be equally dis with it, so that the emery may be equally dis-
tributed. The mass should be poured out into cakes of from 1 to 10 inches in thickness. it is said, will adapt itself to the form of the articles and will serve until completely worn
(9975) G. W. S. asks: 1. What causes the percentage of oxygen in the air to remain constant when such enormous quantities ar direct combustion? A. The plant world takes breaks it up again, forming other products and restoring the oxygen to the air again. The much decomposition as there is formation in the long run. will not a given tank eservoir empty itself more rapidly of water if provided with a vertical outlet pipe extendlength, than if provided with the same size hole discharging directly into the air? Would Is the increasing velo in the upper part of the pipe, thus drawing The quantity of water discharged throu rerical pipe is not increased by lengthenin the pipe. As the velocity of the falling water pipe and has a smaller cross section. Thus there is an air space around the water in the not fill any vertical pipe through which it fows freely. You could not draw water out
of the side of such a pipe. This would prove that the pipe was not full of water. There
is no pressure on the side of such a pipe.

NEW BOOKS, ETC

Bookkeeping by Machinery. By Erwin W. Thompson. New York: Publishe by the Author, 1906.8 vo.; pp. 176. doubtedly seek to install the latest and most highly perfected machinery in their shops and factories, these same corporations seldom trouble themselves to similarly eliminate han
work in their offices. They appear to look upon the employment of an army of clerks as a necessary evil. In the latter case the use
of machines has been mostly limited to typeof machines has been mostly limited to type
writers, letter presses, duplicating machines and an occasional adding machine, and no many offices have their mechanical devices chinery" is the title of a new book, which describes the use and co-ordination of the various means of mechanical computation now on the
market, and shows that. much of the drudgery
of bookkeeping may actually be performed by machinery in a more accurate and rapid man from the by hand. The book is barely fre wise, to lapse into catalogue phrases, but pro rom the impression of having bather tha the maker of the machines.

Halt Industrie. By Felix Lindenberg. 12mo.; 46 illustrations; pp. 320 Price, $\$ 1.50$.
The author has undertaken in this book to isticsin in an extended manner the character as artificial the production of natural as well sions of the manifold uses of incluce this ma erial is capable. The description of the value nd practicability of asphalt in connection mportance of this aspect of the subject as the rants. He also includes an entire series uses of asphalt, which serve as the foundation or other and different industries, such as, for instance, the manufacture of tiles and insulat ing plates, of tubes of asphalted paper or wood, of pavements, etc. This book will doubtless prove its value to the asphalt manufacture nolds of industry elas
Chemistry of the Proteids. By Gustav
Mann. London: Macmillan \& Co.,
1906. 8vo.; pp. 606. Price, $\$ 3.25$.

This elaborate and thorough book on this
interesting and important branch of chemistry, while based to a great extent on Cohnheim's "Chemie der Eiweisskörper", is Corertheless argely original, particularly in the later de velopments of this abstruse subject. While much of the contents is interesting purely from a scientific standpoint, the work will be ound of value in many industries dealing with chemistry. The author's experience in his profession and his familiarity with the latest productions and developments therein have enonly him to write a treatise which is not ise as the magnitude of the subject permits. The author's references to quoted authorities are carefully executed throughout
Heat and Light from Municipal and
Other Waste. By Joseph G. Branch,
H. O'Brien Printing and Publishing

Company, 1906 . 8 vo .; pp. 305; 56 illustrations.
It is undoubtedly true that despite vast expenditures of money, many of our American
municipalities are far behind those of Europe in the solving of economic problems concerning the safety and health of their citizens. Parof municipal and other waste of the disposal ortance of the subject is commensurate with the fact that there is no more serious menace o the health of any community than its refuse. The author of this book deals with the subject from the standpoint of the statistician, the many valuable suggestions, not only for the mprovement of existing methods and systems, at for the deveropmet of others as well. ing necessity can be pathered from the facshat the disposal of refuse in foreign cities arely exceeds one cent per capita, while in only one American city, New York, is this figare even approached. In the latter case the cost two cents per capita, while in the remaining
arge cities of the United States the cost ranges om thes of the United states the cost ranges reason for the great difference is the tilization or lack of utilization of the incinerted wastes for the production of heat and

Modern

mi Machine-Shop Construction, EqUIPMENT, AND MANAGEMENT. By
The Norman W. Henley Publishing Company, 1906. 4to.; pp. 343. Price, $\underset{\text { This }}{\$ 5}$
uilding, equipping, and managing a modern machine shop or manufacturing plant, is a arge and interestingly-written volume illusook is in three parts, the first of which treats of the construction of such a shop and describes and illustrates buildings of approved orm and arrangement. The second part deals with the equipment of the shop with modern ols, machines, and appliances, and the vision of the plant int inistrative and mechanical pur poses. Part III. treats of the all-important uestion of management, and discusses some ystems, while at the seme and time-and-cost ard a plain concise same time putting for his kind which may be economically adminisered and which will give all the important nformation necessary for operating a business

Much riginally published in Machinery, The Iron Trade Review, and The Foundry, and was ad with much interest by practical men en ged in manufacturing enterpides. Besides f this material, the author has added ten new chapters. The work will be found of great alue to manufacturers and practical shop pursuit of information on the subjects of which it treats.

THE LATEST

1.-A Face-Down Machine
2.-An Upright Machine
3.-A Two-Piece Block Machine 4.-A Cement Brick Machine

So perfect and
convenient is each
phase that it oper-
atese though opare ates as though made
for each type alone.
Wonderful in its
Automatic features all phases oper-
ated by One Simple This Clachine received the GOLD
IEDAL at the Port-
land Exposition
over all competi-
ters.

Another Valuable Feature. Its product makes The Wiowet Connany turis
 the winget concrete machine co., Columbus, 0.

Orient

A Remarkable Motor Car for \$400

 Motor Car in the worrd. Energetic agents wanted in un
tory. Wrytit for free catalog, and for ageny proposition.
WALTIIMM M FG. CO., Waltham, Mass.

Instructive Scientific Papers ON TIMELY TOPICS

Price 10 Cents each by mail ARTIFICIAL STONE. By L. P. Ford.
paper of immense practical value to the architect and builder. ScIENTIFIC AMERI-
CAN SUPLEMENT 1500.
THE SHRINKAGE AND WRPRING excellent presentation of modern views;
fully illustrated. SCIENTIFIC AMERICAN
SUPPLEMENT 1500. CONSTRUCTION OF AN INDICATANEROID BAROM illustrated. SCIEN TIFIC AMERICAN SUPPLEMENT 1500.
DIRECT-VISION SPECTROSCOPES. written, instructive and copiously illustrated article. So. 1493
HOME MADE DYNAMOS. SCIENTIFIC tain excellent
 scribe their construction.
anateur can make them.
DYNAMO AND MOTOR COMBINED. DYNAMO AND MOTOR COMBINED.
FMly described and illustrated in SCIENTIFIC
AMERICAN American Supplements. 844 and 865.
The machines can be run either as dynamos ELECTRICAL MOTORS. Their Con struction at Home. SGENTFIC AMERICAN

Price 10 Cents each, by mail

MUNN Q COMPANY MUNN
Broacway

 Ironing machine, seam, Hail \& Martin.....
Jewel grinding and polishing machine, G. H
 Knitting machine pattern, W..............................
Lamp burner, L. Lorenz
 Leather splitting device, H. Ochin, o. Secrest.....

 Lubricant receptacle, W. T. Kanderson
Mail delivery apparatus, J. J. Nohr....
Malt turning machine, Malt turning appharatus, green, H. G .
Mannure spreader, L . A. Keene.
Massage, applicator for mechanical
Masage implement, J. Barke
Match box, J. W. Saunders.
Match box, automatic, H. G.

 Mechanical movement, H. D. William
Merry-go-round, G. B. MeKinney
Metal expanding machine, H. E. Whit
 Metallic tit.
ham
Mineral bo Miner's tool, R . W. Minerd
Mold box, W. Hisher

 Motor control, alternating current M.
Motor controller, electric, J. Bind
Motor retersing mechanism, rotary,
\qquad
\qquad

Musical instrument, mechanical, C.
Musical instruments, action for strin.....
Nailing machine, T. J. M. Theure
Nut lock, G. Harwell........
Nut locking device, Kootz \& S.............
Nuts upong rail securing bolts, machine...
placing and removing, W. E. N. Balsle

Oil can, C. R. Harless......
oil gage, C. F. Schwenker
oiler, shatt, T. Hughes
Ore separator, E. A. Sperry
Oiler, shaft, T. Hughes
Ore separator,
Oven, bake, J. A. A. Sperry
Package tid

Paper fixture, toilet, H. J. Wiliaims,
Patterns, machine for transferring, H . 88

T. Furbish $\ldots \ldots$.

Photographic shutters, color screens, etc...,
photoraphic lens
mount
 Picture machine, motion, Cahili \& Jenkins,
Piles, means for proteting, A. M. Hunt..
iling, metallic, \mathbf{W}. Hunter A.

Pipe wrench, F. A. A. A. Adson
Planing machine, G. A.
Pnsign
Planter, corn, R, E. Cheesman …...........
Plastic articles, die for making ornamented
J. L. Mahoney

Fowler
gows, me
gory

The Pope-Hartford Model F
will carry fiye people fifty miles an hour and take them up a seventeen per cent. grade on the himh. gear. For the price, it gives more power, more comfort, easier control, makes less noise, and, with ordinary care,' requires fewer repairs than any other 4 -cylinder gasoline touring car. It has sliding gear transmission, with thre speeds forward and reverse, bevel gear drive through propeller shaft torrear axle, control by throttle and ignition levers on, but not revolving with the steering wheel. Compared point for point with other machines, this model is easily one year thead of any other $\$ 2,500$ car on the market.
$20-25$ H. P. Price (with extension top $\$ 125$ extrá) $\$ 2,500$.
The Pope-Tribune Model Vis our 1906 2- cylinder touring cat, efficient and dependable. Price, $\mathbf{\$ 9 0 0}$.

Pope Manufacturing Co.
HARTFORD, CoNN,
$=$
\%

A REAL LAUNCH AT SMALL COST

H. D. Baird's latest and greatest e cimplest, strongest, most powerful and speedy engine of
gasoline engine. Simplest,
its class- drives boat 6 to 10 miles per hour- anyone can install and run it
always safe and certain to go. Not a toy, but a real engine sold under 5 year guarantee. certain to go. (hescriptive catalogue FREE SAINT CLAIR MOTOR CO., Dept. I7, DETROIT, mICH.

Buffing and Drilling Outfit NO MACHINE SHOP OR GARAGE
COMPLETE WITHOUT ONE Drills up to $1-2$ in. Carries a 5 in. Buff COATES CLIPPER MFG. CO.

Worcester, Mass.
Miracle Concrete Blocks
 There are big opportunities and big
proftst in making concrete products. Miracle mouble Stagreered Air Space
Blocks take the lead.
 Theer have passed the experimental stape They are Our Big Book. It ifies ionpoiet if if ormation
 In short it is the largest book and contains more solid
information on the concrete industry than any otner
book published. Send 24 cents in stamps and ask for catalog No. 10. MIRACLE PRESSED STONE CO., Minneapolis, Minn. BABBITT METALS.-SIX IMPORTANT formulas. ScIENTiFIC AMERICAN SU PPLEMENT 1123.
Pricel10.ents. For sale by Mun $\&$ Co.and all news.
dealers. Send for cataloue.

Gasoline Engines
Just a little investigation and comparison with
others will show their superiority. Strength,
Simplicity, Efficiency and Economy are the Simplicity, Efficiency and Economy are the
distinguishing marks of every I. H. . power. Adapted to use in shops of all kinds, pumpiug
industrial plants, experiment stations, etc Horizontal, Vertical, Portanle types. Sizes
from 2 to 15 horse power. Write for catalogue. International Harvester Company of America $\boldsymbol{z} \mathbf{O}$ Monroe street, Chicago, III.

 Canceretb Billiling Plocts
Scientific American Supplement 1543 contains a
article on Concrete, by Brysson Cunningham
ander article on concrete, by Brysson Cunningham.
The article clearly describes the proper com-
position and mixure of concrete and gives
results of elaborate tests. Scientific American Supplement 1538 gives the
proporition of gravel and sand to be used in Scientific American
1569, 1570 , and 1571
 crete construction, and their applications.
These articles constitue a splendid text book
on the subject of reinforced concrete. Nothon the subject of reinforced c.
ing better has been published.
Scientific American Supplement 997 contains an
article by
tical tical notes on the proper preparation of con-
crete are given.
Scientific
present a merican
a helpful
Supplement of the making of
1568 and
1569 Scientific
critical $\begin{gathered}\text { American } \\ \text { review of }\end{gathered}$ crinforced concrete
Scientific American
give a resume in
of which the various systemems
of cussed and illustrated. Scientific American Supplement 1564 contains an
article by bewis
merits and defects of reinforced concrete are the analyzed
Scientific American Supplement 1551 contains the principles of reinforced concrete with
some practical illustrations by Walter Loring
Webb. Scientific American Supplement 1573 contains an article by Louis H. Gibson on the prin-
ciples of success in concrete block manufac-
ture, illustrated. Scientific American Supplement 1574 discusses
steel for reinforced concrete. Scientific American Supplements 1575, 1576, and
1577 contain a paper by Philip L. Wormley, Jr., on cement mortar and concrete, their
preparation and use for farm purposes. The
paper exhaustively discusses the making of mortar and concrete, deposisiting of concrete,
facing concrete, wood forms, concrete sidefacing concrete, wood forms, concrete side-
walks, details. of construction of reinforced
concrete posts. Each number of the Supplement costs 10
cents. A set of papers containing all the articles
above mentioned will be mailed for $\$ 1.80$. Order from your newsdealer or from MUNN \& CO. 361 Broadway, New York City

 ism, L. E. Morison

都

Shet, metal, polishing, J. Nelson
Sheet metal working machine, L. S. Flatau,

Sign support, A. P. Claridge.
Signaling and safety system, block,
Huey

Skirt supporter, A. W. Bucy
Snap switch, H. Geisenhoner
Soda water, fountains, saneriary s...........
ceptacle for, F. H. Hecker, reissue.. Sound record, G. A. Manwaring

Spinning machine, J. W. Martin...................
spining machines, separator attachment
ring,
Spining,$~$ rings, making,
Splint
$\left\lvert\, \begin{aligned} & \text { Spinn } \\ & \text { Splint } \\ & \text { Sprate } \\ & \text { Stacke } \\ & \text { Stack } \\ & \text { Stair }\end{aligned}\right.$
$\left\lvert\, \begin{aligned} & \text { Stair } \\ & \text { Stak } \\ & \text { Stave } \\ & \text { Steaa } \\ & \text { Stan }\end{aligned}\right.$

Stea
Stea
Stea
Stea

\qquad
\qquad

 Submarine drag bucket, E. J. Conlon.
Sucker rod coupling, L. Chroninger...
Superheating compound, H. L. Harten

 recording and reproducing mechanisn
of P. O. Pedersen
Telephone mouthpiece Fisher \& Culin Telephone switch hook, indicating device forman
Telephone switches,

Freantle Pambler

The Right Car at the Right Price

There is a system of rigid tests and thorough inspection of each part and feature of the Rambler cars, whereby every possible weak spot is found in the factory, not on the road.

This system covers every step from the design and selection of the raw material to the finished product and begets a car that is right and stays right without tinkering and adjustment.

If this, in connection with abundant power, elegant appearance and simplicity of control, appeals to your judgment we invite your most critical examination of our Model 14.

In it is embodied every modern feature that has proven worthy of adoption and the facilities of the largest automobile plant in the world enable us to present it at a price far below anything approaching it in quality and equipment.

Main Office and Factory, Kenosha, Wis. Branches:

Milwaukee, 457-459 Broadwa Boston, 145 Columbus Avenue Philadelphia, 242 No. Broad Street New York Agency, 38-40 W. 62nd Street Representatives in all leading cities

Thomas B. Jeffery \& Company

 CAN YOU BUY THE LATEST AND BEEST AUTOMOBILE NEUSTADT AUTOMOBILE AND SUPPLY CO. "our 1906 catalogue and discount sheet,

To Book Buyers

We have just issued a new 48 - page catalogue of recently published Scientific and Mechanical Books, which we will mail free to any address on application.
MUNN \& COMPANY
Publishers of Scientific American 361 Broadway, New York

Over 55 Companies operating Thurman Patents in America, and as many more in Canada, England,
and Europe.
free catalogue
General Compressed Air House Cleaning Co. ST. LOUIS, U. S. A Manufacturers of the Celebrated Thurman direct-
connected Gasolene Driven Air Compressors

BOOKS ON
 CEMENT and CONCRETE

Calcareous Cements. - Their nature, manuifacture and uses, with some obser vations upon cement testing. By Gil man Second edition revised and enlarged. 254 pages. 63 plates ... $\$ 4.50$ Cement.-A Hand Book for Cement Users. By C. C. Brown. Third edition Cement.-Directory of American Cement Users. Containing varieties of cement work and specifications, concrete mix ing for special uses, cement walks curbs, sewers, etc., estimates and meas urements, cement manufacture and testing, cement machinery. By C. C Brown. 8vo, cloth.
cement Industry.-Description of Port land and Natural Cement Plants in the United States and Europe, with Notes on Materials and Processes in Portland Cement Manufacture. 235 pages, 132 illustrations
Cement.-Portland Cement Sidewalk Construction. Based upon the experience of many successful contractors. Com-
piled by P. B. Beery. Paper cover, 27 pages. Chicago, 1903.
Cement.-Portland Cement. Its Manu facture, Testing, and Use. By D. B.
Butler. Second edition, revised and enButler. Second edition, revised and en-
larged. 8vo, cloth, 396 pages. London, 1905 . $\$ 5.00$ Cement.-Practical Cement Testing. By pages, 142 illustrations. New York pages
1905
Cement, Limes, and Plasters. Their terials, Manufacture, and Properties By Édwin C. Eckel. 8vo, cloth, 712 $\begin{array}{ll}\text { By E E, illustrated. New York, } \\ & 1905 . \\ \$ 6.00\end{array}$
Cements, Mortars, and Concretes. Their Physical Properties. 8 By Myron
Falk. 8vo, cloth, 184 pages. New York, 1905.
Baker. 1905 Hand Book. By W. H
Cement and Concrete--A Treatise. Deneers, Covering the Manufacture, Properties and Testing of Cement, and the Preparation and Use of Cement Mor tars and Concretes. Special attention is given to the Costs of Cement and various conditions By Louis Carlton Sabin 504 pages, 161 tables of test Cement.-Hydraulic Cement Its $\$ 5.0$ ties, Testing and Use By Frederick ties, Testing, and Use. By Frederick
P. Spalding, Professor of Civil EngiP. Spalding, Professor of Civil Eng1Second edition, rewritten. $12 \mathrm{mo}, \mathrm{x}+$ 300 pages, 34 figures. Cloth $\$ 2.00$ Concrete.-A Handbook on Re-enforced and Contractors. By F. D. Warren. 8vo, cloth, 268 pages, illustrated. New York, 1905
Concrete.-A Treatise on Concrete, Plain and Re-enforced. Materials, Construc tion, and Design of Concrete and Re enforced Concrete. By Frederick W. Taylor and Sanford E. Thompson. 8vo, cloth, 585 pages, illustrated. New York,
Concrete--Re-enforced Concrete. By A. pages, illustrated New Yo, cloth, 434
$\$ 5.00$
Concrete Blocks.-The Manufacture of and Their Uses in Building Construction. Revised from Articles in Engifully illustrated. New York, 1906. $\$ 2.00$
Concrete Steel.-A Treatise on the Thecrete Construction. By W. N. Twelve trees. With numerous illustrations 12mo, cloth, 218 pages. London, 1905.
concrete.-Hollow Concrete Block Build1905
Considère Reinforced Concrete. By A French, with a preface and additions by Leon S. Moisseiff. 188 pages, 20 figures
nule.-Reinforced Concrete. With fur-page and folding plates and 512 fig uro and diagrams. By C. F. Marsh Concrete--Reinforced Concrete Construc tion. Giving in plain and simple lan guage the leading principles and ap plications of this modern construction. lustrations and tables

MUNN \& COX:

Publishers,

Telephone transmitter,
Telephone $\begin{aligned} & \text { transmitter, } \\ & \text { Telephone } \\ & \text { transmitter }\end{aligned} \begin{aligned} & \text { Corwin } \\ & \text { mouthpiece, Parker. } \\ & \text { H. }\end{aligned}$ J.

 ires on the rims, of vehicles, appliance for
putting, L. G. Morrill Tobacco pipe cleaner, W. M. Kendail.
Tobacco pipe condenser, C. G. Buschow...
Tobacco plug holder and cutter, combine
J. H. Cobb

Traction engine, o. o. Heggem \ldots.........
Trimming knife and gide, J. B. Ailon.
Triple gagen, butt gage, and tool holder, F
Gyssler
Trolley wheel guard, Lane \& Gulnick

 urbine, gas, Shoemaker \& Lithgow

 Typewriting machines, securing means fo
the hangers of, Ht A. Moyer
 ave and ignition mechanism for intern
combustion engines, H. Austin
Vave, gate, W. E. Crist............... Valve indicator, G. G. P. Vince.int.
Vapor generator, R. F. Driscoli.:

Vasher. See Gas washer.
Vasher making machine, H. Hart.
Washing machine, R. L. Wearne

 Theat temperer and heater, I. J. Milis.:
Wheel fastener, E.. A. Johnston.........
Wheel mount, vehicle, G. D. Munsing,
819,3 histle, P . A. Mortensen.
Window screen, flexible, J.
Winow sill, W . Corbett
Wireworking
 Wireworking tool, Mciokinn
Vrench, L. T. Wever Vrench, C. H. No Noyes :

DESIGNS.

TRADE MARKS
Ie, James Hanley Brewing Co
linger, A. S. Holberg.....

 Awls, and punches, belt, Green Tweed \& Cols.
Axes, adzes, and hatechets, F. W. Peek.
xes and hatchets xees and hatchets, National Cutlery
Bacon and hams, John Morrell \& Co
Baking powder, Sprague Worn Baking powder, Sprague, Warner \& Co......
Balls, golf, A. Apaling \& Bros. $\quad .$.
Beer ing bottles, Cleveland \& Sandusky Brew
ing Co.

 Boots and shoes and leather for their manu-
facture, leather, Rice \& Hutchins. 52,000 , Boots and shoes, leather, A. S. Fearey.....
Boots and shoes, leather, E. S. Woodbury Boots and shoes, ieather, \ldots.. Wieibie........
Boots and shoes, leather, Randall-Adams Co
Boots and Brandy, cognac, A. C. Meukow \& © Co.......
razing compound, R. Y. Bowby \& Co...

Candy, Dilling \& Co.
Candy, H. L. Hildreth
Candy, chocolate coated, Hook \& Cowniel America
Co and
Co

 819,5
819,5
819,5
819 $\begin{array}{r}819,574 \\ 819,036 \\ 819,374 \\ 88 \\ 8,838 \\ \hline\end{array}$ give

HOLLOW CONCRETE WALLS AND PARTITIONS

TWO-PIECE SYSTEM

WOULD YOU LIKE TO LEARN

THE AMERICAN HYDRAULIC STONE CO., Century Bldg., Denver, Colo. "In the Enginering News of October 5 th and rith, roos, were published the papers awarded the first
and second prizes in a widely advertised competition, each of which papers is a very able treatise advocat-
ing our systen and secon drizes in a wide y advertise
ing our system of concrete construction

INDUSTRIAL OPPORTUNITIES

EHIGH VALLEY RAILROAD
Desirable sites for manufacturing purposes can be obtained on reasonable terms.
If you want to establish a new industry or relocate one already established, information to your advantage may be obtained from
P. H. BURNETT, Industrial Agent,

On Water

 Or Wheels-Dixon makes the Graphite that makes the Motor go. Dixon's Motor Graphite for Motor Boats, Motor Cycles and Automobiles. No lubricant like it. It means more power, more speed, more ease, less wear and worry. Write for book on motor lubrication. It's knowledge worth having. Address,

Josepp Dixartment W, Jersey City, N. J.

DETROIT Motor ${ }_{190}^{\text {Nem mad }}$
The Smoothest Thing That Runs

 We are masing 15, 000 Auto-Marine Gasoline engines
this year, not merely WE MANUFACTURE THE MOTOR COMPLETE
AND GUARANTEE EVERY MOTOR WE MAKE AND GUARANTEE EVERY MOTOR WE MAKE

Write for Catalog describing Auto-Marine Motors
to 20 H. P. and Auto Ad justaste Governor. DETROIT AUTO-MARINE CO. F. G. Hall, Mgr, 95 Liberty Street, New York The only builders of Auto-Marine Engines

Another Good Thing from.
RECIPROCATING AUTOMATIC DRILL

Useful for drilling holes where Braces, Breast Drills
or Hand Drills are inconvenient. Maximized Power and MOODELL-PRATT COMPANY, Greenfield, Mass.

 Scientifíc Ficmerican.

SOCIALISM

The most important question of the day. Get posted
Read the greatest Socialist 300,000 circulation. Send 10c.silver for one year's trial. GAYLORD WILSHIRE, Editor
\qquad

FOR SALE

150 Phonograph Spring Motors.
150 12, Counter Sions. 150 Pearl Push Buttons. 1814 E. 40th Street, N. E., CLEVELAND, OHIO. Proposals will be received at the Bureau of Sup-

 chine. Applications for proposals should refer to

STEEL TYPGWRITGR THPE

 STUDY ELECTRICITY
at home with your own Laboratory write
or our Electrical Manual of directions foo
oo experiments. Let us tell you the low ice of our Laboratory. 8
8
\square

GLECTRIICBOOK FFEE

SORE THROAT Hydrozone
 1 1

One 25 Cent Bottle Free to everyone sending me this advertisement with io cents to pay postage and packing. Hydrozone is a harmfully used by leading physicians. Not genuine without my signature on label. Ask for Booklet on Treatment of Diseases. Sold by Leading Druggists. Good until July 10, 1906.
Croof. Chartes loserchand
Wilford's Waterproof Cloth
light, strong, soft and durable. Made of twisted pure flax thread. It is pliable-will not crack, and is much stronger than cotton. It is positively salt and fresh water proof. The proper goods for Hatch Covers, Boat Covers, Sail Covers, Tarpaulins, Side Cloth, etc. Ten years of success-Every piece stamped. Test its merits with a trial order.

EDWARD A. BUNKER
P. O. Box 1579 NEW YORK

ELECTRICITY

Oldest and best school in world teaching INONGYEAR Students actually construct Dynamos, Motors
and electrical instruments. Graduates hold
good positions. Fourteenth year opens Sept. good positions. Fourteenth year opens Sept.
send for free Catalog to Bliss Electricai
School, 214 G Street N. W., Washington, D.C

The

Adirondack

 MountainsAre now about the most central of all the great resorts. They have through Pullman sleeping cars from New York, Philadelphia, Boston, Buffalo and Niagara Falls via the

A night's ride takes you from any of these places to the center of the mountains in time for breakfast next morning.

 Remeries haviig tonic art ad alterative prop-
Remeries, internal, H. F. Edasin.

 Siks, Ackerman \& Goedecke
Soap, hand. Admets
Sharmaty
\qquad Spices, sprague, Warner $\mathbb{\varepsilon}$ co $0 ~$

LABELS

"Acme," for percales, Carson, Pirie, Scott
 Coal Co. Coal,", for coal, Borderland
"Dunedin," for percales, Carson, Pirie, © Scott

PRINTS.

"Jumbo Indexes Sportsmans' Playing Cards,",
for playing cards, United states Playing

A printed copy of the specification and drawin

$\frac{420 \text { N. Jackson St., Jackson, Mich., U.S.A. }}{\text { MOTORCYCLES }}$ "SPRINGFIELD" SPEEDOMETER

Beause the Mcechanical Principles
used in its construction are correct.
used in its construction are correct.
Absolutely Accurate. All Speess.
Pointer Always Steady.
Combines Trip and season Od

Springfield, Mass.
Established 1865.
Ride a Curtiss-the only Mile a Minute Motorcycle

Holds the World's record of
10 miles in 8 min. $542-5$ sec Same Motor used on Capt.
Baldwin's famous Airship. Send stamp for catologue of
Motorcs cle or Motors , tores cle or Motors.

A Remarkable Offer

To Readers of the SCIENTIFIC AMERICAN

If you are a reader of the SCIEN= TIFIC AMIERICAN we will send you a set of

The New

 AMERICANAupon such easy terms of payment, you will not feel the cost.
Thus you may have in your home the most important Work of Reference ever published.

Will You Accept the Offer Before It Is Too Late?

The Scientific American believes there should be an Encyclopedia in every home. Not a cheap, worthless affair, rehashed from foreign sources, but a strictly first-class American work. One that, when you consult it, you will know its authority cannot be questioned. Such a work we offer you in the NEW AMERICANA.
The AMERICANA is the first and only work of its kind made by experts from original sources-not copied from foreign works, by office editors, the usual custom in making encyclopedias and reference works in this country.
The AIIERICANA is new from cover to cover-new and beautiful type-new maps, new engravings and color plates, new text illustrations, and best of all, new and original treatment throughout by the foremost scholars and expert authorities.
The AMERICANA is the accepted authority in our Schools, Colleges, Universities, Public Libraries, and Courts of Justice.
The AIIERICANA has been purchased by the U.S.

WHAT THE AMERICANA MEANS IN THE HOME Government to supply its War Ships and Army Posts, and is in daily use in the libraries of the various Governmental Departments at Washingtor.

The AMERICANA is made by Americans, and upon the American Plan. You will catch the spirit of it as you turn the pages of the work, and note its conciseness yet comprehensiveness, while the names of the eminent writers of the signed articles are ample assurance of its accuracy and authoritativeness.

The AMERICANA has commanded the services of so many distinguished Americans-North, South, East, West, Canada, South America, fully justifying its title.

"America's National System of Reference."

> "I am truly delighted with the tone and arrangement of this strictly American publication.
> -B. J. Cigrand,

> "The work breathes the spirit of to-day even in the description of things ancient. It explores the dark arc light and radium, ${ }^{\text {ane }}$ aid of the arc light and radium.
"I consider it in every respect the best encyclopedia published.'

$$
\begin{array}{r}
\text {-P. N. Johnston, }
\end{array}
$$

-P. N. Johnston,
Refenca Librarian, New York Public Librar

[^0]REQUEST BLANK.

SCIENTIFIC AMERICAN COMPILING DEPT

 258 Fifth Ave., New York CityWithout obligating myself to purchase I would like to receive FREE your 120-page Book of Specimen Pages, Maps, Duo Tones, Color Plates, Portraits, etc., of th ew Americana, with particulars of your special price and easy terms of payment.

Name.
Occupation.
Street.....
Town and State
CUT OUT AND MAIL TO=DAY

New Yori Beling ano Pading Co.
 LIMITED

Manufacturers of High Grade

Rubber Belting

Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

Wujite for catalogue.

91-93 Chambers St., New York This " Taylor Old Style" Tin Roof Was Laid 22 Years Ago
The Harrington Block at Portland, Oregon, was roofed with Taylor Old Style in 1884. Since then it has been giving excellent service, requiring no repairs whatever since the day it was laid. Its present perfect condition indicates that it will prove the usual "'Taylor Old Style". durability for many years
 to come.
The "Taylor Old made in the same way as that which has proved
its durability in hunits durability in hun-
dreds of instances like dreds of instances like
that cited above. Have that cited above. Have
you read our booklet, you read our booklot,
R Guide to Good
Ros Roots ${ }^{\text {sent for the asking. }}$ It will N. \& G. TAYLOR COMPANY Philadelphia

Bausch \& Lomb-Zeiss

STERE0 Field Glasses These Glasses are the smallest lightest
most powerfut and
give best oftical regive best optical re-
sults. No others like
them. Send to-day for
catalog. Bausch \& Lomb Optical Co. ROCHESTER, N. Y.
New York, Boston, Wasbington, Cbicago. San Francisco

NONE BETTER Dragon Portland Cement

Made 17 years. Used by 35 R. R. Systems and 25 Iron and Steel Corporations, and for Many Notable Structures, N. Y. Stock Exchange, N. Y. Custom House, Chamber of Commerce, etc.
THE LAWRENCE CEMENT CO. OF PENNA. Mills at Siegfried, Pa.
Sales Offices: $\left\{\begin{array}{l}\text { Harrison Building, Philadelphia }\end{array}\right.$ \{ No. 1 Broadway, New York City pamphlet giving full information free

IMPROVED
 Shield
 CEMENT

With 5 parts sand breaks 210 lbs. in one year.
Economical for Concrete.
Unsurpassed Sand Carrier.
THE LAWRENCE CEMENT CO. 1 BROADWAY. NEW YORK

Manufacturers and Sellers of
Over 23,000,000 Bbls. Cement

STEAM USERS

Rainiow Pading

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints.
Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by
PEERLESS RUBBER MFG. CO.
16 Warren St., New York

THE "LEADER."
12 H. P. Gasolene Auto-Marine Engine

CLLAUDE SINTZ,

Civil Engineering and Surveyors' Instruments DRAWING INSTRUMENTS, MATERIALS AND SUPPLIES We are the largest hoosein the World. Try us on blug print papme Tracing clotr, drawing

KING FOLDING CANVAS BOATS

Are lighter and more durable than wood. Puncture-proof non-sinkable,
cannot tip over. A revelation in boat construction. Can be carried any

THE MIETZ \& WEISS
 OIL ENGINES Stationary $11 / 2$ to $80 \mathrm{H} . \mathrm{P}$
Marine $31 / 2$ to $100 \mathrm{H} . \mathrm{P}$. Use KEROSENE and FUEL
OILS. Direct connected Gen-
 erators, Pumps. Air Compressors.
Hoists.etc. Thousands in use in
all parts of the world Hoists, etc. Thousands in use
all parts of the world.
AUGUST MIETZ AUGUST MIETZ
 Arcurateq aplopiotsios RINDEI ATcưatiza

[^0]: ## FREE ON

 No mere advertisement can convey an adequate idea of the vast interest and immense utility of the Americana, or of its exceptional value and sumptuous appearance. REQUEST Let us send you therefore a handsome i20-page book containing specimen pages, maps, full-page plates, duo tones, color plates, and text illustrations, with portraits of celebreties, full-page photographic plates of the most interesting and up-to-date subjects the object of making the Americana quickly and widely known, before placing the work in the hands of dealers for general distribution, we will accept orders direct at a large reduction from the established price. Those interested are requested to make application immediately. The work s sold exclusively in connection with the SCIENTIFIC AMERICAN, and cannot be otherwise obtained.

 SEND IN AT ONCE

