

THE PROPOSED HENDRICK HUDSON MEMORIAL BRIDGE TO COMMEMORATE THE TERCENTENNIAL OF THE DISCOVERY OF THE HUDSON RIVER.-[SEe page 366.]

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN $\mathcal{\&}$ CO..
Editors and Proprietors

Published Weekly at
No. 361 Broadway. New York

NEW YORK, SATURDAY, MAY 5, 1906.

COURAGE AND SYMPATHY IN DISASTER.
Apart from the physical causes, the material losses, and the technical lessons of the San Francisco tragedy, of which we treated fully in our last issue, there are other considerations which, dimly perceived while the tragedy was enacting, stand out in bold relief now that distance gives them their proper proportion and significance.
For we feel that our chronicling of this stupendous event would be incomplete if we failed to pay tribute to the indomitable spirit displayed by the San Franciscans, when earthquake drove them to the hills to ciscans, when earthquake drove them to the hills to
watch the swift obliteration of their city by consuming fire. We may search all history in vain to find a dramatic parallel to that piteous spectacle of two hundred thousand half-naked and altogether homeless people watching, in hopeless impotence, from the encircling amphitheater of the hills, the wiping off the earth of over twenty square miles of this their picturesque and passionately-loved capital city of the West!
To the extraordinary courage and self-control of the stricken citizens, and the perfect discipline of the United States regular troops, is to be attributed the fact that this enormous horde of homeless and utterlyruined people should have come through such a terrible ordeal, without even a suggestion of those fatal panordeal, without even a suggestion of those fatal pan-
ics, or wild orgies of despair, which might well have followed in the wake of such a disaster.
This is not the time for indulgence in the commonplaces of moralizing; but again we feel that our record of this event would be incomplete without a reference to that spontaneous flood of practical generosity, which instantly rolled in upon the stricken people from every State and city of the Union. Capital and labor, railroad and factory, church and theater, all have joined hands in ministration, until some twenty millions of money and unknowt millions in supplies and necessities are now pouring into the devastated city.
The homeless refugees have scéattered, some never to return. The majority, however, will come back to a more beautiful city, which, in its broader streets, more stable and enduring structures, the better adjustment of its municipal improvements, and above all in the unconquerable spirit of its generous and gifted people, will retain for San Francisco its wellwon title of the Queen City of the Far West.

an opinion from panama.

In regard to the vexed question as to whether it is advisable to build a sea-level or lock canal at Panama, it will be admitted that if, among the engineers who are now working upon the Isthmus, there is found to be a consensus of opinion in favor of one particular type, such agreement ought to be taken as very strong presumptive evidence that this particular type of canal is the best one to build. Among the voluminous testimony which has been taken before the Senate during the past few months, there is on file a letter from Chief Engineer Stevens, dated before the publication of the conclusions of the Isthmian Canal Commission, which states that the whole engineering staff seems to be unanimously in favor of the construction of, a high-level lock canal. The letter says:
"Of the engineers who are now on the Isthmus in the employ of the Commission, of all ranks, of all degrees of experience and knowledge, I have yet to find a single man who is in favor of a sea-level canal. Most of them are very outspoken against such a proposition; and while it may be said that the are not men of world-wide reputation in technicàl knowledge and experience, I claim that an intimate knowledge of the conditions, obtained by a residence of months and years on the ground, is of far more value than any theories or conclusions, which maty be drawn from existing works in other parts of the world, which bear not the slightest resemblance to the proposition at Panama."

To the engineering mind a statement of this character, coming from a Chief Engineer resident on the ground, must have a profound significance; for we doubt if there is any other profession in which the younger members take such a keen interest in, and make such a thorough study of, the larger current problems of the day in their particular sphere of work, as in that of civil engineering. Climatic and topographical conditions exercise such a controlling influence on engineering works of magnitude, that the local experience of a well-equipped man in the field, even though he be young in years and practice, may easily outweigh, for the particular problem in question, the judgment of a ripe experience which is based largely upon other conditions in far-distant and widelyscattered lands.

TRIAL SPEED AND SEA SPEED.

Among the advantages claimed for the increasingly popular passenger ships of large size and moderate popular passenger ships of large size and moderate
speed, should be mentioned the fact that many of them are showing in regular service a rate of speed which is fully as high as that which they maintained on their trials in smooth water. Moreover, because of their great weight and momentum and their moderate speed, they are not so greatly affected by adverse weather conditions as the faster ships, and their coming and going is marked by great regularity and a close adherence to the sailing schedule. If a 23 -knot ship runs into a heavy head sea, it must make a much greater reduction in its speed than is necessary in a vessel of say 15 to 17 knots speed; and, consequently, it will be more liable to miss a tide and "suffer a night's detention, say at Quarantine, New York, than a ship of the slower type. As showing how the big vessels of the intermediate type are running well up to their trial speeds, we may take the case of the "Amerika," which, in a recent passage from Cherbourg to Sandy Hook of 3,140 miles, maintained an average speed of 17.31 miles an hour; while on its preceding easterly passage, it covered a distance of 3,088 miles in seven days, six hours, and twenty-four minutes, which works out as an average speed of 17.71 miles an hour. The high-speed liner, however, is not in any danger of being forced out of the field by its slower sisters; as witness the fact that the North German Lloyd have under construction a twin ship to the $231 / 2$-knot "K"icor Wilhelm der Grosse," and that the Cunard Company will shortly put a pair of $241 / 2$ to 25 . knot vessels in service. So rapid is the increase in the number of those who can affor to pay the highest rates for Atlantic travel, and so great is the demand for rapid transit on the part of those to whom time is an object, that we look to see a limited number of $25-\mathrm{knot}$ vessels built from time to time for the Atlantic service. The majority of the transatlantic liners of the future, however, will undoubtedly be of the "Amerika" and the "Baltic" type; for not only are these the ships upon which the companies depend for the greater part of their revenues, but because of their steadiness, absence of vibration, and the more lengthy sea trip which they afford, they are becoming increasingly popular with the traveling public.

A RETROGRADE STEP.

It is decidedly discouraging to learn that a special board of the United States army has been the first to acknowledge defeat in the attempt which is being made by all the gun makers of the world to produce successful, high-velocity, large-caliber guns. This acknowledgment of defeat is candidly made, in a recent report of the National Coast Defense Board upon the coast defenses of the United States and the insular possessions. The rock upon which the committee's hopes of producing a successful high-velocity gun have been wrecked is that ever-present trouble of "gun erosion." From the first introduction of smokeless powders, with the fierce temperatures which accompany the high powder pressures that are necessary to secure high velocity, gun erosion has been the perpetual bête noir of the artillerist. Do what he would to prevent it, he has been unable, so far, to find a remedy-which is little to be wondered at, when it is stated that while he is perfectly familiar with the results of gun erosion, he is still very much in the dark as to the exact way in which it does its destructive work. About all that he can tell us regarding this trouble is that the surface of the bore is gradually pitted and eaten away, the damage being most severe in the first few feet of the bore next to the powder chamber, and decreasing in severity until the muzzle of the gun is approached, when erosion begins again to be more marked. Broadly speaking, it may be said that erosion increases with the velocity; not because velocity itself induces erosion, but because high velocity can only be secured with high powder pressures, and high powder pressures mean enormously high temperatures in the gases-these temperatures being supposed to run up to something between $\cdot 8,000$ and 9,000 degrees at the moment of explosion.
Many explanations have been offered of this eroding action; but it is generally believed to be due to
the rush of a certain amount of the gases past the shell, and this is believed to be due to ineffective sealing, or obturation, at the base of the shell. The rush of the white-hot gas between the shell and the bore is supposed to burn away the surface of the latter in much the same way as a stream of boiling water will rapidly melt away a block of ice.
The problem may be mot in three ways; first, by accepting the situation, and using the guns until they become too badly eroded for accuracy, and then returning them to the shops to be relined. This is the plan adopted by the British. Another method would be to abandon high velocities and go back to the be to abandon high velocities and go back to the
heavier projectiles and lower powder pressures of nifteen years ago; while the third alternative would be to exhaust every effort to find some better method of obturation, by which the gases could be confined at the base of the shell.
Now of these three alternatives, we regret to observe that the Board on National Coast Defense has adopted the second, and proposes to go back to the velocities that characterized our earlier weapons of the eighties. To quote the words of the report: "In developing this energy," namely, 47,299 foot-tons, due to an initial velocity of 2,550 foot-seconds in the 12 -inch coast-defense gun, "the high temperature due to smokeless powder and the great increase in the volume of gas produce an erosion which materially shortens the life of the gun. There is little to warrant the hope that any material improvement will be speedily effected in the manufacture either of steel for gun construction, or in powder to overcome this erosion. these reasons the Board recommends the adoption 14 -inch guns," of 2,150 fon 14 -inch guns," of 2,150 foot-seconds velocity, because
"by increasing the caliber of the gun, an equal or greater fire effect can be secured by employing a diminished velocity," as compared with the high-velocity 12 -inch gun above mentioned.
We have placed in italics the clause of the above sentence to which we feel compelled to take strong exception, for it is contrary to the theories and the decided trend of modern gun construction. The energy imparte to a projectile varies directly as its weight and as the square of its velocity. A lowering of the velocity of a projectile calls for a relatively much larger increase in its weight if the same energy is to be obtained. But the increase of the weight means an enormous increase in the weight and cost of the gun and its mount and emplacement. This is shown in the figures given in this report for the relative cost of the 12 -inch high-velocity gun and of the low-velocity 14 -inch gun which is proposed as a substitute. The respective costs of the 12 -inch gun, its carriage, and its emplacement are $\$ 43,465, \$ 45,000$, and $\$ 100,000$; for the 14 -inch gun, the respective costs are $\$ 60,000, \$ 72,000$, and $\$ 150,000$. One 12 -inch gun, therefore, will cost $\$ 188,465$, and one 14 -inch gun $\$ 282,000$, an excess for each low-velocity piece of $\$ 93,535$. As it is proposed to emplace nineteen of these pieces, the country is called upon to expend a total of over $\$ 1,750,000$ in the construction of batteries which, look at it any way we will, will mark a retrograde step in the art of gun manufacture.
Furthermore, these 14 -inch guns will be distinctly inferior to the high-velocity 12 -inch in accuracy; for the trajectory, or curve of flight of the projectile, will be steeper, and the danger space considerably less, particularly at the more distant ranges. A given amount of error in the estimate of distance and elevation of the gun, which would mean a miss for the 14 -inch, would still involve, because of its flatter trajectory, a hit for the 12 -inch piece.
It is surely a little early yet for the army to throw up the sponge in this all-important problem of gun erosion. We have long believed that it can be solved by some method of sealing the base of the shell; and we submit to the Secretary of War that if ten per cent of the $\$ 1,750,000$ which it is proposed to spend were set aside for an exhaustive experimental investi gation of this problem, a way would be found to obviate gun erosion, and prevent this wholesale and all-too-early capitulation.

That the radio-activity of air may be due to the escape of emanations from subterranean regions, to heat in the earth's interior causing the expulsion of negative ions from certain oxides, or to ions received from the sun, is suggested by H. Nagaoka, in a paper on radio-activity and geophysical phenomena, published in the Phy-sico-Mathematical Soc. Tokyo Proc. The examination of the smoke from the volcanoes is proposed as a source of information which will enable us to decide the question. The possibility of terrestrial magnetism being due to the rotation of the earth, the outer crust of which is electrified by the presence of ions escaping from the interior, is pointed out. Supposing that elec tro-magnetic mass could be detected by a balance, it follows that those atoms whose electrons are moving the most rapidly will be the heavier, and the ratio of the atomic weights will not be the ratio of the number of electrons. Deviations from Prout's law could thus be expected.

PROF. SIR GEORGE H. DARWIN.
Prof. Sir George H. Darwin, M.A., F.R.S., LL.D., D.Sc., the English scientist at present in this country for the purpose of attending the Franklin bicentenary celebration at Philadelphia, is the second son of Charles Darwin, the great naturalist. The Darwin family for generations has included men distinguished in the arts and sciences; and while the originator of the Darwin ian theory, one of the most eminent investigators and thinkers England has ever produced, unquestionably overshadows the others, it has not been through his reflected glory that his sons have taken their deserved ly prominent position in the world of science. Sir George H. Darwin was born at Down, in Kent, England in 1845. He was educated under the Rev, Charles Pritchard, who subsequently became a Fellow of the Royal Society, and the Savilian Professor of Astronomy at Oxford. In 1864 George Darwin entered Trinity College, Cambridge, from which he was graduated in 1868 as Second Wrangler and Smith's Prizeman. From 1868 to 1878 he was a Fellow of Trinity College, and was re-elected in 1884. He studied law, and was ad mitted to the bar in 1874, but he did not subsequently practise that profession.
In the following year he returned to Cambridge, and devoted his entire time to the study of the mathematical and astronomical sciences, and particularly to experimental investigations on the pressure of loose sands, on changes in the level of the earth's surfaces, and on minor earthquakes. His interest in astronomical and meteorological studies and investigations had been aroused prior to this, and in $1870-71$ he ac companied the English expedition to Sicily to observe the eclipse which occurred during that period. In 1882 Prof. Darwin assisted Sir William Thomson (Lord Kelvin) in the preparation of a new edition of Thomson's and Tait's "Natural Philosophy," and in the following year was appointed Plumian professor of astronomy and experimental philosophy at Cambridge, succeeding the Rev. James Challis, M.A., F.R.S., to a chair which Prof. Darwin still holds with distinguished success. From 1885 to 1905 he was a member of the Council of the Meteorological Office of Great Britain, and he served on the Meteorological Committee of 1905. He was chosen a member and later, in 1879, a Fellow of the Royal Society. Last year he was elected president of the British Association for the Advancement of Science, and as the head of that association, he formally opened the Victoria Falls Bridge over the Zambesi gorge in central Africa in September of last year. In 1885 he received "a royal medal" from the society for his scientific work, and also one from the Royal Astronomical Society.
Prof Darwin is an honorary graduate of the universities of Glasgow, Dublin, and Padua, as well as a member of several British and foreign academies of science.
Prof. Darwin's published contributions to scientific literature include papers on consanguineous marriages, for the Statistical Society; jointly with his brother on Small Deflections of the Plumb Line Due to Movement of the Earth, British Association Report; a series of reports to the British Association on Harmonic Analysis of Tidal Observations, 1883 and later; several papers on the same subject in the Proceedings of the Royal Society; a series of memoirs on the Ef fects of Tidal Friction on the Earth and on the Moon, Philosophical Transactions of the Royal Society; papers on subjects cognate to the last, and on Figures of Equilibrium of Rotating Masses of Fluid and on the Mechanical Constitution of a Swarm of Meteorites, Philosophical Transactions of the Royal Society; a paper on Periodic Orbits, in 1896; and one on the Tides and Kindre Phenomena in the Solar System, 1898.

THE PROPOSED AMENDMENT TO THE TRADE-MARK

 LAW.A bill has been introduced in the House which has for its purpose the amendment of the trade-mark law of 1905 .
One section of the bill authorizes the Commissioner of Patents to establish classes of merchandise for the purpose of trade-mark registration. A trade mark may be registered at the option of the applicant for any or all goods upon which the mark has been actually used. This will enable both attorneys and applicant to know the scope of their trade-mark protection. Up to tre present time the Patent Office has registered under one application only goods of the same descriptive properties. By providing for the classification of trade marks, American practice will be brought into accord with the trade-mark practice of other countries so far as classification is concerned. If the bill becomes a law, this provision alone will have a most salutary effect. In foreign countries American marks are registered only for the class of goods covered by the do-
mestic registration. Hence, a large dry-goods house which uses one mark on perhaps several hundred kinds of goods, and which under the existing law is compelled to file a United States trade-mark application for each article of merchandise, is required to file exactly the same number of applications abroad, thereby incurring a considerable expense. By the provisions of the present bill all this will be obviated. One class will be covered in America, and one class in each of the foreign countries in which the trade mark is to be protected.

Still another section of the amendment provides that any owner of a trade mark who has a factory within the United States shall be afforded the same protection for marks used on the products of his factory as though he were domicile within the United States. Some foreign houses have established manufacturing plants in this country, and manufacture goods which are not marked in the same manner as those made in their native countries. The foreigner cannot register such a mark first at home and then re-register it here. It is to protect these foreign manufacturers that the provision in question has been inserted in the bill.

One other amendment deserves attention. It provides that "a description of the trade mark only when needed to express colors not shown in the drawing" need be filed. Inasmuch as almost every trade mark is more or less colored, the preparation of a detailed description of the mark has been a matter of considerable difficulty. Sometimes the registrant received more than he was entitle to; sometimes he was too narrowly limited. The amendment is intended to cure the

Copyright 1906 by W. M. Vander Weyde
SIR GEORGE H. DARWIN.
evil. Whether the bill will become a law or not, remains to be seen.

THE WHISTLING VIBRATION OF A DROP.

In experiments carried on by T. Terada and set forth in an article entitled "Whistling Vibration of a Drop," which was published in the Physico-Mathematical Soc., Tokyo, Proc., a capillary end is fused in a glass tube 5 millimeters in internal diameter, and the other end is connected to an air-bag of considerable capacity, which is pressed by a constant weight.
On wetting the nozzle with some liquid, such as water or olive oil, and then blowing through the liquid, a musical note of definite pitch is produced, the latter depending upon the dimensions of the nozzle, as well as the quantity and nature of the liquid. A microscopic examination shows that the liquid bubble is wide open while the note is sounding, and that the note is due to the vibration of the edges of the liquid. The pitch varies nearly inversely as the radius of the aperture, and inversely as the square root of the density of the liquid. It varies directly as the square root of the capillary constant. When the liquid is magnetic, like a solution of ferric chloride, the establishment of a magnetic field about it immediately lowers the pitch in some cases, and raises it in others. This phenomenon may be useful for demonstrating the magnetism of liquids, or for exploring magnetic fields otherwise inaccessible.

Motor car statistics for 1905 show that 27,840 machines were built in Ameriea. Of this number 22,970 were sold.

THE NATIONAL ACADEMY OF SCIENCES.

The National Academy of Sciences held its stated session in Washington city on April 16, 17, and 18 meeting as usual in the National Museum, with Dr Alexander Agassiz, the president of the Academy, in the chair. The meeting this year was convened a day earlier, so that on the adjournment of the Academy the members might participate in the anniversary ex ercises commemorative of the bicentenary of Benjamin Franklin, celebrated later in the week under the auspices of the American Philusophical Society in Philadelphia, Pa .
There were sixteen papers presented at the public sessions. Of these the first was "Recent Developments of Existential Graphs and Their Consequences for Logic," by Charles S. Peirce, and was a special presentation of a method of logic of his own devising. Prof. J. M. Crafts gave a paper on "Primary Stand ards for Temperature Measurements Between 100 deg. and 350 deg.," which was a report of progress in continuation of the work that he has so successfully car ried on during recent years. Of more popular interest was a paper entitled "Interference of Oviposition of a Sargasso Fish with a Flying Fish," by Theodore Gill. It appears that ever since 1872 the Sargasso fish has been famous as the builder of a remarkable globular nest made of the Sargasso weed, in the midst of which it makes its home. This fact was assumed by the elder Agassiz in consequence of the nest being used by the fish mentioned, and has continued ever since to be accepted by writers on ichthyology. During the last winter some eggs of the Sargasso fish were obtained by the Fish Commission and examined by Dr. Gill, who at once came to the conclusion that such nests could not be made by the Sar. gasso fish. It is well known that eggs of certais flying fish possess filaments that could readily become entangled with the floating seaweed, and consequently build such nests. The arguments in favor of this theory were skillfully presented by Dr. Gill. A highly technical paper: on "Commelinaceæ. Morphological and Anatomical Studies of the Vegetative Organs of Some North and Central American Species," by Theodore Holm, a non-member of the Academy, was presented through the interest of Dr. Gill.
The second day's programme began with the presentation of "The Distribution of American Men of Science," by J. McKean Cattell. It will be recollected that Prof. Cattell has recently published his book on "American Men of Science," in which he stars the thousand leading men in their leading specialties. In the printed table which he distributed there were five tables showing (1) the birthplaces and residences according to States, (2) the residences in cities, (3) the distribution according to colleges and other institutions, (4) the attendance at various educational institutions, and (5) tiee branches of sciences in which the men considered pursued graduate studies. These facts he presented.
Major Clarence E. Dutton, with the title "Radio-Activity and Volcanoes," showed that the origin of the former could be traced to the latter. This paper, although technical, on account of the timeliness of the subject attracted much attention.
Prof. Henry F. Osborn read a paper written by W J. Sinclair, a non-member of the Academy, entitled "Volcanic Ash in the Bridger Beds of Wyoming," in which the announcement of the finding of extensive quantities of volcanic dust in the Bridger beds in southwestern Wyoming was made. This was interpreted as explaining the peculiar formation of these deposits. which had been previously supposed to be due to erosion. The presence of volcanic dust would ex. plain in a reasonable way the lack of certain forms of life, and also show that a shorter period of time covered their formation. Over the title of "Faunal and Geologic Succession in Eocene and Oligocene Basins of Rocky Mountain Region," Prof. Osborn showed that the various expeditions sent out by the American Museum of Natural History had located very complete series of strata showing the entire Eocene formation, so that from the study of these, full information as to the life prevalent at that time and other facts would be available. This was very gratifying, as nowhere else w

Director Charles D. Walcott gave an account of the "Cambrian Faunas of China," with lantern illustrations. He told of the expedition sent out under the auspices of the Carnegie Institution to study certain geological horizons in China, and that as a result information has been obtained showing that a better series of Cambrian strata could be found there than elsewhere. Then passing to the discusision of the brachiopoda from there, he pointed out the new forms, and also indicated many specimens of which similar
(Continued on page 366.)

THE AUTOMATIC CONVEYER IN LUMBERING. by day allen willey.
The development of mechanical processes in connection with lumbering and other industries in which wood in its various forms constitutes the raw material, has reached such a point that power conveying machinery is being utilized in a remarkable variety of ways. To a certain extent it has taken the place of hand labor and other machines in getting logs out of booms and transporting them to the mill; it takes away the planks and beams into which they are sawed as fast as the material is cut, while at the same time another form of the apparatus removes the chips and removes the chips and waste material. The em-
ployment of a system which performs this labor enables the modern sawmill of large capacity to be operated with a very small number of hands, compared with the days compared with the days
when human labor was required to such an extent to handle the material in its various stages.
A form of log conveyer has been perfected and is in service which is notable for its capacity. It can be constructe to operate over distances ranging from 50 to 500 feet, and has been utilized in transporting logs up to a length of 50 feet each. The accompanying illustration shows a conveyer of the Jeffrey system, in which steel chain is employed provided with spurs, which are attached to the lengths at convenient intervals. The chain travels between wooden guides, and can be moved at a speed ranging from 50 to 100 feet per minute according to the horse-power employed. This averages about \approx horse-power to 100 feet with the conveyer fully loaded.

A 1,500-Foot Conveyer Used in Connection with a Pulp Plant.
much lighter than the log haulers, they can be operated at a greater speed, running at a rate varying from 150 to 350 feet per minute. If the mill is a large one and the quantity of waste considerable, high-speed conveyers are usually preferred. In one type the roller chain is employed. It is divided into sections of about three feet each, and runs in a trough of boards. The waste material is dumped onto the conveyer just as it comes from the mill: Chips, splinters, and even sticks

It will carry four logs ranging from 20 to 25 feet in length to every hundred feet if desired. In the illustration the logs are taken from a dam, being guided by hooks to the water end of the chain. Thence they are conveyed automatically to the mill, which is not shown in the picture. The chip conveyers are constructed in various forms according to the service re-
five and six feet long as well as sawdust are thrown into it, but the arrangement is such that it removes the material without clogging. In some cases the discharging end of the conveyer is carried over bins, into which the contents fall by force of gravity. It can also be dumped into vehicles automatically and removed if desired. In another form of chip conveyers, endless belts are used, which travel in a covered way. This apparatus is notable for the service it can perform under varying conditions. The iilustration shows a conveyer at the works of the Oxford Pulp and Paper Company. It carries chips a distance of 1,000 feet between the upper portion of the plant and the ground.

The modern pulp mill requires such a large amount of raw material. that in connection with it an extensive storage yard is usually arranged. The necessity of some system which will furnish an adequate supply to the machinery is imperative; but as the wood comes in various forms ranging from logs over two feet in diameter to pieces of but a few inches in thickness, any conveying machinery employed must be arranged to accommodate itself to the different dimensions. The conveyer which is depicted is installed for handling puip wood in lengths ranging from two to four feet, and carries the material either at an angle or on the level. Utilized for piling the wood in the storage yard, it automatically unloads itself. The trough of timbers through which it moves is divided into sections, some of which can be removed. As fast as the logs reach an open section, they drop from the trough to the pile beneath. The conveyer illustrated

Type of Heavy Conveyer for Hauling Logs to Sawmill.
Carrying Away Sawmill Waste by Chain Conveyer.

has a length of about 1,500 feet, and can handle from 300 to 600 cords daily. The horse-power required averages from two to three in every hundred feet when the conveyer is traveling at this rate per minute. In one installation of this sort the pulp roood is loaded upon the conveyor from railroad cars, carried to the storage yard, and dumped. At the storage yard the conveyer is de pressed to the surface of the ground, and this section is used to supply the mill from the storage yard The accompanying pho tograph shows one of the largest storage yards, which is served by two conveyers, owing to the large quantity of material which is handled. One of these is composed of jointd rods, but like the other referred to it is endless passing around wheels at each terminal.
Practically all of the conveying machinery used in connection with sawmills, pulp factories, and other woodworking establishments is operated by steam power for convenience, the wheels upon which the endless chains or belts move being belted to shaft ing or to the flywheel of a special engine. To operate the largest size rarely more than 50 horse-power is
needed, and the steam can be furnished from the boiler plant operating the other equipment.

THE ELECTRIC LOCOMOTIVES OF NEW YORK, NEW

 HAVEN AND HARTFORD RAILROAD.Great interest attaches to the new electric locomotives now building for the New York, New Haven, and Hartford Railroad, because of the unusual conditions they are required to meet. An overhead alternatingcurrent trolley system is to be installed on the line from Stamfor to Woodlawn. At the latter station the road joins the Harlem branch of the New York Central Railroad, which is to be equipped with a thirdrail direct-current system. The locomotives must thus be adapted to operate with both direct and alternating current. The alternating-current line will be fed from a single power station at Riverside, three miles from Stamford and nineteen miles from Woodlawn. Three turbine-driven generators will be used, which are so wound that they will supply either single-phase or three-phase current, and each has a rating of 3,750 kilowatts single-phase, or 5,500 kilowatts three-phase. Current will be supplied to the trolley system under a tension of 11,000 volts; hence no transforming stations will be necessary along the line. Each locomotive, however, will be provided with a pair of transformers to step-down the current to a working pressure. The purpose of having two transformers is to distribute the weight in the locomotive, and also to provide against total disablement of the locomotive in case of
of shoes is mounted at each end of the locomotive. The motors, of which there are four, each have a nominal rating of 250 horse-power, and a continuous capacity of over 200 horse-power, comprising a total of more than 800 horse-power to each locomotive. They
beams used in the framework of the car are utilized to provide conduits through which air is pumped by means of a fan in the cab to the motors and trans formers. As this air is taken from within the cab, it is fairly dry and clean. The air current, aside from carrying off the heat generated by resistances, also serves to keep the motor free from dust. The locemotives measure 36 feet 4 inches over all, and have a weight of about 85 tons. Tests of one of these locomotives have proved very favorable. A 250 -ton train can be handled on a through service with a speed of 60 miles per hour, while heavier trains will be hauled by two or more locomotives coupled together and operated in multiple. In local service a 200 -ton train can be operated at an average speed of 26 miles per hour with stops about two miles apart, and making a maximum speed of about 45 miles an hour. The frame, trucks and cab of the locomotive were constructed by the Baldwin Locomotive Company, and the electrical equipment is being installed by the Westinghouse Electric and Manufacturing Company.

A novel use of com-
are adapted to operate with a voltage of about 235 on alternating current, and from 275 to 300 on direct current. The motors are of the compensating gearless type, and contain some very novel and interesting me chanical features. They are suspended from frames, which fit over the trucks and rest on the journal boxes. Depending from each frame are four bolts provided at their lower ends with coil springs, on which the motor is supported. The armature is not directly connected to the axle of the truck, but is mounted on a quill which passes over the axle, with an all-round clearance of $5 / 8$ inch. On this quill the bearings of the fields are mounted. The quill is formed with a wide flange at each end, and projecting from the face of each flange are a series of pins adapted respectively to engage a series of pockets in the hub of the wheel. Around each pin is a coil spring with its coils progressively eccentric, and these bearing against the sides of the pockets serve to transmit the motive power to the wheels. To prevent wear, steel bushings are fitted over the pins and into the pockets, and between these the eccentric springs operate. This construction provides for a certain amount of vertical and lateral movement, while the motor is centered axially by the compression of the springs between the end walls of the pockets and the flange of the quill. Strong coil springs are fitted into the ends of the pins, and bear against the end walls of the pockets to take up the end play of the motor. In order to prevent the motors from pressing against the wheels when thrown by centrifugal force
pressed air is made by some railway companies in the Southern States of America, says the Railway News. When the loads of cotton for export are being taken to the coast, there is always some danger of such highly inflammable material becoming damaged through sparks from the lecomotives. To prevent this, the locomotive boilers are filled with compressed air. A train load of several thousand bales of cotton can be hauled by these locomotives at a rate of twelve miles an hour, although no fire whatever is used in working them.

A NEW METHOD OF HEATING SWITCHES.

The greatest difficulty that railroads have to contend with in winter time is the blocking of switches with snow and ice. While it is a comparatively easy matter to clear the main line of a heavy fall of snow, in the yards even a moderate fall of snow is apt to demoralize the schedule. If the storm is a dry one, the difficulty is confined to shoveling away the snow at the switches. This in itself is no small task in a busy yard, crowded with a maze of converging and crossing lines; but when the snow is wet and then freezes, the difficulty is increased many fold, and serves somietimes to completely tie up and demoralize the system. To overcome these serious conditions, various suggestions have been put forth. Attempts at heating the switches electrically have proved very expensive and quite dangerous, owing to the possibility of short circuits in the network of rails. Steamheated switches have also met with but little success,

THE OIL HEATED SWITCH AFTER A SNOWSTORM

method of laying the pipes for the oil-heated switch.
injury to one of the transformers. Current will be collected by means of a pair of pantograph-type, bow trolleys. Eight collecting shoes are also provided for the third-rail system, four of the shoes being designed to run under the power rail and the others on the top of the rail, thus allowing for conditions on the New York Central portion of the road. A pair of each type
at curves, they are adapted to bear against rails on the truck frames. This construction has proved an excellent one. The entire locomotive is spring-supported with the exception of the driving wheels, axles and journal boxes.

A novel feature of the new locomotive is the system of ventilating the motors. In this system the channel
due to the danger of condensation, and subsequent freezing, which would entirely block the steam pipes. A new system has recently been developed by Mr. Frank L. Young, of Boston, Mass., which is calculated to overcome the above-mentioned objections. In place of steam, heated oil of a special quality is circulated through pipes placed between the ties. The advantage
of oil over steam is that it retains its heat better, and will not chill at 20 to 25 deg. Fah. below zero. Furthermore, if it should chill, it will not expand and burst the pipes as water would when freezing. Steam must be delivered to the pipes at a high temperature, while oil can be circulated without pressure at any degree between 20 deg. below and 400 deg. above zero, and furthermore, the plant can remain idle in very cold weather when it is not required for melting snow. A test of this system was carried on at one of the switches in the yard of the Boston \& Maine Railroad at Boston last winter. The plant for heating the oil was located about 350 feet away from the switch, and consisted of a 3 -horse-power fire-tube boiler, a gear driver, a screw pump, and a tank. The heater ànd tank contained the special oil, which was carried to the switch in an underground line of pipe. The oil was forced through the pipes by the pump at any desired temperature, and returned again to be reheated. At no time was it found necessary to heat the oil above 270 deg. At the switch a number of covers or boxes were placed over the pipes, so as to retain the heat and keep the ground in the vicinity in a normal summer condition. The great value of this was that in time of a snowstorm the melted snow would drain off into the ground just as it would during a summer shower, as the ground would be kept from freezing by the heat of the pipes. The past winter furnished no very severe storms which could show the value of this system under extreme conditions. However, on March 15 last, a snow storm occurred which continued all day and a part of the night. From seven to nine inches of snow fell. A wind of between 30 and 40 miles an hour drifted the snow to a depth of two feet or more in many places. The accompanying photograph shows the condition of the switch immediately after this storm. It will be observed that not a particle of snow remaine about the switch except in a few places on the ties, which are insulators of heat, nor was there any collection of water to freeze afterward and cause trouble, because the moisture was all drained away into the dry ground. On the average eight inches of snow is equivalent to one inch of rain. Hence it will be evident that even a very heavy fall of snow would be melted and drained off without any serious difficulty.

the National academy of sciences.
 (Continued from page 363.)

forms had been found in this country. The final paper was on "Recent Solar Investigations," by George E. Hale, who showed with lantern slides the installation of the observatory erected on Mount Wilson in California, and dwelt especially on certain forms of apparatus specially desired for the study of the composition of the sun. In the domain of astro-physics Dr. Hale stands foremost in this country, and exceptional opportunities have been afforded him by grants from the funds of the Carnegie Institution.

On Wednesday the final session of the Academy was devoted to the consideration of a paper on "Some Recent Solar Eclipse Results," by W. W. Campbell and C. D. Perrine, of the Lick Observatory, and was a preliminary presentation of a number of photographs taken during recent eclipses by the authors. The peculiar features of the corona were the subject of their special consideration, but no final decisions were at tempted. Prof. M. I. Pupin discussed his work on "Feeble, Rapidly Alternating Magnetization of Iron," and described the difficulties encountered and overcome in the securing of an iron suitable for his special researches. Essentially, he found that the mechanical treatment of an iron had much more to do with accomplishing this result than its chemical composition. By what might be called a slow process of annealing, he believed that the molecules of iron arranged themselves so as to be most satisfactory in yielding a permanent kind of iron.

A paper entitled "The Life History of Pterophryne," by Theodore Gill, was presented by title, and in the absence of the authors, biographical memoirs of Admiral John Rodgers by Asaph Hall and of George P. Marsh by William M. Davis were also presented by title only.
The final paper of the session was "On the Classification of the Cidaridæ," by Alexander Agassiz and H. L. Clark, and was presented by the senior author. He first called attention to the fact that the Cidaridæ represented a variety of sea urchins that had persisted since the Jurassic period, and said that numercus authors had attempted to make a classification of this family, but the results had not been satisfactory. Too much stress had been laid upon special features, such as the spines, which subsequently were found to vary in individuals, thus vitiating the classification. Finally, Mr. Clark had made a complete investigation of the family, and from a study of all of their characters had prepared a classification that was applicable to both the fossil and living members of the family. The biennial conferment of the Henry Draper gold medal for distinct contributions to astronomical science
was this year made to William W. Campbell, director of the Lick Observatory in California. As Dr. Campbell was present at the meeting, the actual presentation was made at the dinner given on Tuesday night by President Agassiz.
Only four persons may be elected during one year to the Academy, and the names undergo the most careful scrutiny even before they reach the electing body. This year three new members were chosen. They were Josiah Royce, professor of the History of Philosophy in Harvard University in Cambridge and famous for his historical and philosophical writings; Benjamin Osgood Peirce, also of Harvar University, where he fills the chair of mathematics and natural philosophy; and William Berryman Scott, who is professor of geology and paleontology in Princeton University. Prof. Scott has long been known as the leader of the Princeton expeditions to the West for paleontological material.

In addition, Prof. Wilhelm Ostwald, of Leipzig, and Prof. H. A. Lorentz, of Leyden, were elected as foreign associates.
The Academy will hold its autumnal meeting in Boston, Mass., beginning on November 20 next.

THE HENDRICK HUDSON MEMORIAL BRIDGE.

In a little over three years from the present date New York city proposes to celebrate the tercentennial of the discovery of the Hudson River, by the formal opening of the truly magnificent memorial bridge which forms the subject of our front-page engraving. That the event will have the enthusiastic co-operation of the State through which the Hudson River runs, is certain, while national interest will be as broad as the Union itself in an event which cannot fail to awaken interest throughout the whole world. It is not our purpose in the present article to dwell upon the facts connected with the discovery of the Hudson by the intrepid English navigator. It is enough to state that although he was English by birth, it was from the Dutch that he received the recognition and financial assistance which enabled him to set sail in the little "Half Moon." It was natural that, after the scant encouragement which he had received in his native land he should signalize his appreciation of his royal welcome by the change of his name from Heniry to Hendrick. This, according to the best authorities, is the name under which he sailed, and by which the centennial memorial should be known.
The voyage which resulted in the discovery of the Hudson was begun in the early spring of 1609 , under the direct orders of the Dutch East India Company. Hudson made land in latitude 44 degrees north, and then sailed south until he discovered the noble river which bears his name. For fifty leagues the adventurous navigators of the "Half Moon" pushed their way up the river, crossing its broad bays, stemming the swift currents where the stately mountains converge in the highlands to narrow its channel, and finding the country "a land as pleasant with grass and flowers and goodly trees as any they had seen."
From a study of the perspective drawing on the front page of this issue, an excellent idea may be gained of the great proportions and architectural and engineering beauty of the proposed memorial bridge. It will span the Harlem River at the point where it connects with the Hudson, and it must be acknowledged that, in view of the topographical and scenic features of the site, no better one could have been found within the limits of Greater New York. Apart from its intrinsic worth as a memorial structure, this lofty viaduct will form an important and greatly-needed link in the parks and driveways, which at present lie scattered over Greater New York, in a somewhat disjointed and unrelated way, and with no adequate means of communication from one to the other. The bridge will have particular value as forming an im portant extension of the Riverside Drive which reaches from Seventy-second Street, by way of the steel viaduct across Manhattan Valley and the Lafayette Boule vard, to the picturesque heights of Inwood. Here the viaduct will carry the driveway, at an elevation of about 170 feet above the water, to the opposite heights above Spuyten Duyvil, where the automobilist and the driver will find themselves in touch with the fine system of roads which extends up the easterly bank of the Hudson and radiates through picturesque Westchester County.

As a preface to our description of the memorial bridge, we wish to emphasize the fact of its monumental proportions, which are on such a scale as to render it by far the most important memorial structure of its kind ever planned. From abutment to abutment it will have an extreme length of a little under half a mile, or to be exact, 2,500 feet. It will consist of a central steel arch, measuring 825 feet from center to center of end pins, and two massive masonry approaches consisting on each side of a series of arches of from 65 to 90 feet span. The center steel span will be the largest but one in the world, being only 15 feet less in length than the celebrated steel-arch bridge
over the Niagara gorge. As herewith shown, the center span is carried on four great trussed arches of the three-hinged type, although if the larger appropriations asked for be granted, it is probable that among other improvements that will be rendere possible, will be the substitution of two-hinged arches for the three-hinged, as here shown-a change which will insure more perfect harmony of the steel span with the architectural features of the whole design. The viaduct throughout will have a width over parapets of 100 feet, and will provide for two 18 -foot sidewalks, and a central 60 -foot roadway. The main abutments are each pierced by two colossal arches of 65 feet span and no less than 120 feet clear interior height. Beyond these the northerly approach is carried on five arches and the southerly approach on two, the latter each being of 90 feet span.
A notable fact in the design is that the engineer and the architect have thoroughly co-operated in the production of the final plans. Too often, in fact almost entirely, it may be said, there has been no such collaboration in the design of municipal bridges, and some of the most important structures in New York city have suffered greatly in this respect. The architectural treatment is what might be called the modern classical. No attempt has been made at elaborate adornment, the colossal scale of the work rendering such adornment unnecessary and futile. The decorative features have been confine almost entirely to details of a kind that can be seen and appreciated from the driveway itself.

The strictly memorial character of the bridge will be greatly assisted by the fact that at the approach to the viaduct on the Inwood side and in line with the axis of the bridge, there is a natural hill or knoll similar to that on which Claremont is situated at the corresponding entrance to the Riverside viaduct, which will be utilized for the erection of a Hudson memorial. The knoll is about 35 feet in height and the roadway will swing around it on the east and west and meet in the plaza which forms the entrance to the viaduct. This memorial will take the form, probably, of a massive pedestal surmounted by a statue of Hudson, or possibly a model of the historic craft in which he sailed. This feature, however, is not included in the plans which are covered by the present and requested appropriation, but will probably be carried through by popular subscription.
As the tercentennial takes place in a little over three years from the present date, it is evident that a start on the construction of the bridge should be made at once. The city has already appropriated $\$ 1,000,000$, and a committee of the Board of Estimate, including the Comptroller, and the Presidents of the Boroughs of the Bronx and Manhattan, has recommended that a further appropriation of $\$ 2,000,000$ be made, thus bringing the total appropriation for the whole structure up to $\$ 3,000,000$. The proposal has the hearty indorsement of the Mayor, and it is probable that it will be carried through at an early date.

The Current Supplement.

An article on single-phase locomotives and motor cars in Bavaria and Sweden, by Frank C. Perkins, opens the current Supplement, No. 1583. Of technological importance is an article by Felix Lindenberg on the uses of natural asphalt in the arts. Valuable formulæ are given. Mr. James P. Maginnis's third installment on Reservoir, Fountain, and Stylographic Pens is published. The selection of Portland cement for concrete blocks is discussed by Richard K. Meade. Alexander G: McAdie presents the thir installmenit of his treatise on lighting and the electricity of the air. To the man who likes to experiment at home and learn something for himself of the elementary laws of physics, an article on experiments with a lamp chimney will be welcome. Other articles of interest are those on the Renovation of Worn-out Soils, the Mystery of Man's Capacity to Answer a Simple Question, Liquid Crystals, and Heat Insulation.

Self-Igniting Mantle.

Platinum sponge becomes incandescent on contact with gas and causes its ignition. This phenomenon has given rise to various arrangements for producing the flame direct. MM. Rouxeville and Michaud have patented in France a process in which the addition of any foreign apparatus to the mantle is avoided. They have recourse simply to a mixture in which platinum sponge is the essential ingredient, composed of refractory and adhering substances. Impregnated with this mixture in its upper texture, the mantle has the pow-er of igniting the gas, and of thus becoming incandescent. The stem may also be covered with the composition. and the same result secured.

A statue of Mathias Baldwin, founder of the Baldiwin Locomotive Works, has recently been presented to the city of Philadelphia by the officials of the works, and will be placed in Fairmount Park.

(forxequritututc.

The Beliring sea Tunnel.

To the Editor of the Scientific American:
In your issue of April 7 I read with much interest the article "Tunneling Behring Sea." I was over the ground in 1900, and think you are safe in saying that a tunnel is not the proper way to make the connection between Alaska and Siberia. But there is no reason why a ferry could not be run across Behring Strait.
It would have to be a special type of double pro peller boat. The Eskimos go across the strait in their skin boats. The heaviest ice that is ever in Behring Sea is that which goes down the Yukon River in the spring. There is a current in Behring Sea that sets north, and takes all the ice into the Arctic. There is no reason why a large car ferry could not make regular trips.
Stony Ford, N. Y., April 9, 1906.
[Some interesting details concerning the engineering difficulties that would have to be encountered in the construction of a railroad connecting Russian Siberia with Alaska via the Behring Strait is afforded by Mr. Harry de Windt, the well-known explorer, who is thoroughly conversant with the country through which the contemplated railroad would be built, as he passed through this region on his memorable overland journey from New York to Paris in 1901.
He states that it would be necessary to lay down over 3,000 miles of track. The chief obstacle is the Siberian "tundra," which a train would have to cross before reaching the Strait. Tundra is a native word signifying the vast expanse of swamp and marshland, interspersed with numberless stagnant lakes, which extends for thousands of miles across the Arctic zone in Siberia. In summer time the tundra is like a wet sponge, into which even a man sinks knee deep at every step, and consequently the natives seldom venture any distance from home save by lake or river. From May to October settlements are completely isolated by this vast ocean of swamp. It is only in winter, when the tundra has been covered with a layer of hard-frozen snow many feet in depth, that these people are able to move from one place to another in a dog or reindeer sled.
The tundra section of the line he estimates would cost about one hundred million dollars, for every wooden cross-tie would have to be imported into this treeless country. There is a general impression that, although the winter would probably impede the traffic, trains could easily run up to the Behring Strait during the summer, whereas this is the very season when the line would be rendered absolutely useless by floods and the yielding of the swampy treacherous tundra. As to the winter, during his three months' trip from Yakutsk to Behring Strait in dog and deer sleds, furious blizzards frequently piled up snow drifts twenty feet high and a couple of miles in extent in the course of a few hours.-ED.]

Stellar Universe in Miniature.

To the Editor of the Scientific American:
Having recently taken up the study of astronomy, I am much interested in the articles on that subject which from time to time appear in the Scientific American. Nothing perhaps is more difficult to the beginner than to form a just and adequate conception of the vast scale on which the stellar universe is constructed; and with a view to a diminution of this difficulty, I would like to suggest an imaginary illustration which I have found very helpful to that end.
Let us suppose a miniature representation of the heavens on a scale of one hundred millions of miles to the inch. On such a scale our sun would be represented by an incandescent particle, or minute globe (about one-hundreath of an inch only in diameter, but radiating its light and heat to a great distance around), the earth (a mere speck) would be located at a distance of about one inch from the sun, Mars at $1 \frac{1}{2}$ inches, Jupiter at 5 , Saturn at 9 , Uranus at 18, and Neptune at 28 inches. Now, in regard to the "fixed" stars, it is a somewhat remarkable coincidence that light (speeding at 192,000 miles a second) traverses in one year a distance which corresponds approximately to one mile on the above scale of one hundred millions of miles to the inch; therefore, Alpha Centauri (the nearest of the "fixed" stars), whose light takes about three and a half years to reach the earth, would be represented in our imaginary sphere by another incandescent particle-or rather (being double) by two such particles-at a distance of about three and a half miles from our own sun, with its attendant planets, and, in like manner; all of the other "fixed" stars would be placed at distances approximating in miles to the same number of years that it takes for their light to reach the earth, based on the determination of their parallax: thus Sirius would be distant about 15 miles, Vega 22 miles, Arcturus 28 miles, Polaris 45 miles, Capella 70 miles, and so on, in various directions. It will thus be seen that in order to represent, on this very diminutive scale, the starry sphere
(of which our own solar system forms so minute, but not "insignificant," a part) it is necessary to imagine a sphere of many hundreds of miles in linear dimen-sions-to say nothing of stellar systems which perhaps lie entirely outside of our own, and which, even in our best telescopes, are lost in the depths of space.
If it be objected that this imaginary illustration impresses one most with a sense of the comparative vacuity of space, it may be observed that space is nothing to a Creator who is invested with the attribute of Infinity; and it may be fairly assumed that the stars are not, generally speaking, removed to greater distances than are required by those physical laws to which, in common with all created matter, they are obedient.

1125 Paseo, Kansas City, Mo., April 18, 1906.
P. S.-Since writing the above, I have referred to the article, by Prof. Larkin, which appeared in the Scientific American of February 3, 1906, and taking the figures there given (which are based on a light velocity of 186,000 miles per second) I find that, if the earth be supposed at a distance from the sun of exactly one inch (which would give a scale of 93,000 ,000 miles to the inch) the fixed stars would, on this scale, be located at distances in miles corresponding with remarkable precision to their light years.

How one Tree Can Grow Within Another. To the Editor of the Scientific American:

I inclose herewith a singular proof of your opinion as expressed in the accompanying cutting concerning the possibility of one tree growing inside another.

My wife and I discovered this phenomenon while My wife and I discovered this phenomenon while
making a walking tour in Japan in 1895 . As is usual with natural curiosities in Japan, there was a small

A CURIOUS OLD CRYPTOMERIA WITH ANOTHER CRYPTOMERIA GROWING WITHIN IT.
Trunk said to be 65 Japanese feet in circumference and the trunk of the
nner tree to be 9 feet in circumference. The outer trunk is about 30
feet high. The outer tree was destroyed by the eruption of Osama
Yama 130 years ago. The inner tree is about 110 years old.
shrine with stone lanterns, and across the road a tea house for pilgrims. The trees were so curious that we stopped and had a cup of tea and a gossip with the voluble old landlady, while I made the accompanying sketch from a point of view from which it would have been difficult to have obtained a photograph on account of the bad light.

I obtained a photograph from the old woman, and I wrote up the data she gave me on the back of the photograph. I do not remember now the difference between a Japanese foot and an English foot, but it is very small, and to the eye the dimensions would correspond to English measure. F. M. Barber, spond to English measure. M. Barber,
Commander U. S. N. rta., late Naval Attache at Tokio. Commander U. S. N. rtd., late Naval Attach
14 Rue Cimarosa, Paris, March 2, 1906.

Earthquakes and Dam Construction at Panama.

To the Editor of the Scientific American:
In your issue of March 31 under editorial "Earthquakes and Dam Construction at Panama," you state that "there exists in an ancient church in the canal zone a masonry arch, which is so flat that by all the laws of equilibrium it should long ago have fallen in." I find in the Encyclopædia Britannica, vol. xviii., p. 208, that September 7, 1882, the façade of the cathedral at Panama was destroyed by an earthquake. I also have an impression that a very severe earthquake occurred there in the eighteenth century, but at present cannot verify it.
The Gamboa dam would be 50 feet higher than the dam at Gatun, but I can conceive of no reason why it could not be backed up by as great a thickness of earth and clay. Should the filling be composed of rocks in large masses immediately back of the concrete, then back of that the earth and clay continued, say, 300 feet at the base to 100 feet in thickness at the top, pro-
tected by rock fragments from scour in case the water is allowed to flow over the crest, I do not see why the Gamboa dam cannot be made as secure as the one at Getan.
To my mind the greatest danger from earthquakes would lie in the locks themselves, unless made monolithic of reinforced concrete; to make them reasonably safe from earthquakes their sides and bottoms, unless they rest on rock, should be so thick that they would be more expensive to build than many dams like the one proposed at Gamboa.
If we are to have locks, why not adopt the highlevel plan of Bunau-Varilla or Mr. Bates? But would it not be much better to patiently excavate the canal at sea level?
Franklin, N. Y., April 9, 1906.

Automobile Notes.

The Vanderbilt Cup race will again be run in America this year, over the same course as was used last year on Long Island. The date set for the race is October 6 , and the eliminating race which precedes it will take place on September 22. The first five cars that finish in the latter race will constitute the American team, and the choosing of the team will not be left to the racing board of the A. A. A., as it was last year. The requirement of 2 differential on the cars which compete has been withdrawn. The Darracq car, which won last year, had no differential and, ac cording to the rules as they then stood, it should not have been allowed to compete.
At an automobile meet held on Ventnor Beach, at Atlantic City, during three days of last week, Walter Christie with his reconstructed double-end, direct-drive, 110-horse-power racer, proved his claim that he has the fastest American racer by carrying off all the speed records. On April 26, the first day of the meet he lowered the best previous record of a mile from a standing start by $11 / 4$ seconds. He covered the distance in exactly 53 seconds, or at a rate of speed of 67.92 miles an hour. The second day of the meet he beat the 30 -horse-power Darracq racer, which won the last Vanderbilt cup race, twice in two heats of the mile race for heavy-weight gasoline cars. Although neither racer made very fast time, Christie covered the mile in $462-5$ seconds, and beat the Darraca in the final by about two feet. On the last day Christie made a new record for the beach by driving his car a mile in $351-5$ seconds, or at the rate of 102.27 miles an hour. His nearest competitor, the $\cdot 80$-horse-power Darraca, covered the distance in 39 seconds, or at the rate of 92.36 miles an hour. A stripped English Daimler touring car made a mile in $554-5$ seconds, which was at the rate of 64.53 miles an hour. Other noteworthy performances during the week were the covering of a mile in 1 minute and $2-5$ of a second, by the middle-w eight Reo Bird racer, fitted with two 16 -horse-power double-opposed-cylinder Reo engines; and the covering of a mile in 1 minute and 36 seconds by a 10 -herse-power Maxwell runabout, using kerosene oil as fuel. This was better time than was made by another Maxwell car using gasoline, although the best time made by any of these runabouts was $1: 253-5$, the car being driven by Mrs. J. N. Cuneo. A considerable number of races were run by standard touring cars, but in none of these were any records of special interest made.

A Contest of Spring-Wheel Cars.

An automobile event of a novel character is the concourse of spring-wheeled cars which will be held in France over a distance of 1,200 miles. Starting from Paris, the cars will make the trip to Lyons, Marseilles, Nice and return. Eight days, with distances under 240 miles a day, has been decided upon, starting on the 18 th of April. Two main classes of spring-wheeled cars are provided, and each class is divided into two sections. The first class includes wheels having elastic tires (no pneumatics) but no other elastic parts. In the second class are the spring wheels proper, having the elastic part between the hub and the tire. The first sub-section of each class takes in the cars whose total piston surface does not exceed 50 square inches, or for a four-cylinder motor a maximum cylinder bore of 4 inches. The total weight of the car in running order with the passengers and ballast is to be at least 3,300 pounds. In the second sub-section are classed the cars having a piston surface of 82 square inches, or a 5 -inch bore for a four-cylinder motor. The total weight in this case is to reach 4,000 pounds. The competitors. are to specify the character of the pieces which they expect to replace in the wheels along the route, and also hand in a drawing of the wheel and a complete tire or spring wheel as a specimen.

English shipbuilders in February launched 31 vessels, aggregating about 74,861 tons, as compared with 21 vessels, of 43,694 tons, in January, and 18 vessels, of 40,415 tons, in February last year. In the two months English builders have launched 52 vessels, of 118,555 tons gross, against 44 vesљels, of about 93,152 tons, a year ago.

CURIOSITIES OF NAVAL ARCHITECTURE--RGUND SHIPS and globular vessels. by heut.coo. c. field.

We have all heard of the "Three Wise Men of Goth am," who "went to sea in a bowl," and doubtless vee have, most of us, tempered our sympathy with their fate with the reflection that on this occasion their wisdom was at fault or they would not have tempted Providence in such an unsuitable craft for ocean travel. But were they so very foolish after all? Is a round vessel necessarily unseaworthy? At orie time and an other there have been found a good many people ready to answer this question in the negative. The late Mr John Elder, for instance, a noted shipbuilder in his day, was at one period a strong advocate for the construction of circular ironclads. Two warships of this kind were actually built by the Russian government on a modification of his plans. After all, a circular vessel is anything but a novel idea. Herodotus says: "Vessels that sail down the river to Babylon are circular and made of leather;" and, strange to say, such circular boats, made of a framework covered with skins, are in use at Bagdad at the present day. Perhaps, though, we ought not to consider any survival strange when we consider that we are dealing with the "unchanging East."
Somewhat similar, though much smaller, are the round coracles used in the East Indies to pass the rocky rapids of the Boani River. These little vessels are made of split rattan covered with oilcloth. They are called "parachals" and are in the form of a shallow saucer about two feet ten inches in diameter and only seven inches deep. Their crew consists of one man, who steers with a small single-bladed paddle. In this connection we may note that the coracles that have been in use in some parts of Great Britain for thousands of years are, though not circular, yet very nearly as wide as they are long.
In the early days of sailing ships-at any rate in European waters-the "round ship" was a usual and distinct type as opposed to the galley class of vessels, which relied principally on the oar for propulsion and were called "long ships" in contradistinction to the others. This merely referred to their shape and had nothing to do with the modern naval phrase which stigmatizes an inhospitable ship as "a long ship," the interpretation being that it is a vessel in which there is "a long time between drinks." We may note in passing that a completely circular vessel was sometimes used to carry war machines as in the accompanying illustration.
One has only to look at the ancient pictures of sea-fights in the middle ages that have come down to us to see that the single-masted "cogs" or "coques" that were the battleships of that period were very much of the shape of a walnut shell and though not actually circular were very much more nearly round than approximat. ing to the shape of modern ships. But as the progress of navigation and improvements in the rigging of sailing ships brought the sailor's art nearer to perfection, so the advantages of a longer and narrower hull became apparent. The introduction of steam accentuated this, and now for many years ships and steamers have shown a tendency to increase in length in greater proportion to their breadh of beam. The advent of armor and very heavy cannon in warvessels and the advantages of turning easily to use ard avoid the ram, for a time restricted this tendency in the case of men-of-war. It was at this period that cer-
tain naval officers and warship constructors pushed the idea of a wide beam giving a steady platform for heavyguns and with great powers with great powers of flotation to an extreme and advo-
cated the building cate the building
of circular ironclads.

Mr. John Elder, as noted above, was one of the first apostles of the circular ship about 1868. He designed one in the first place which was to act as a ferryboat between Liverpoo! and Birkenhead, arguingthatthe round form of vessel could carry far more in proportion to its weight and

The "Trident," a Proposed Globular Ship. given draft of wa
given ara
ter than could any other form. He also made plans for circular sea-going and coast-defense warships.

Later on, in 1873 and 1875, Russia launched the ironclads "Novgorod" and "Admiral Popoff" in the Black

Capt. Doenvig's Life-Saving Globe.
Sea. These circular ships, which were specially intended for the defense of the River Dneiper and the Sea of Azoff, were built from the designs of Vice-Admiral Popoff and for a time were considered to mark an advance in naval construction. But it was not for very long and both have now for some years been remover from the effective list. The "Novgorod" had a diameter of 101 feet and drew about 13 feet of water. She had a displacement of 2,490 tons, was plated with 9 inches of armor and carried a couple of 11 -inch guns in a central barbette. The "Popoff" was a rather bigger vessel, having a diameter of 121 feet, a displacement of 3,550 tons, 11 -inch armor, and 12 -inch guns. Neither of these quaint monsters of the deep was capable of steaming more than
six or seven knots, although each was provided with no less than six propellers. Their shape, of course, heavily handicapped them as regards speed. In their particular case, however, this was not a serious drawback and was more than counterbalanced by their great steadiness and light draft of water, which would enable them to fight at an ad vantage in the defense of rivers and estuaries, for which purpose they were especially designed. Mr. E. J. Reed, the eminent English naval constructor, who took a trip in the "Novgorod," says that with a strong breeze and a considerable sea the "vertical rise and fall in the center of the vessel seemed absolutely nil," and "I, who seldom escape some sensation of sickness at sea, felt perfectly at home and comfortable, throughout the voyage.'

Possibly it was this feature in the "Popoff-kas"-as those ironclads were called after their designer-that led to the building of the famous yacht "Livadia" for the Czar of Russia. This was a most extraordinary vessel. She did not give one the impression of being a round ship, as her bow and stern overhung the water like those of an ordinary vessel, but that portion of her which floated in the water was al most, if not quite, circular. Her bottom was absolutely flat, and she had three funnels placed abreast in the center of the ship. She was built at Govan by John Elder \& Co. and launched in 1880. She had a displacement of 4,000 tons and steamed about ten knots an hour. Far from realizing the expectations formed of her, the "Livadia" proved a thor ough failure, was removed from the list of imperial yachts, and having been re-named-ap propriately enough, the "Opyt" (Experiment) she was told off as a transport. As she is said to be capable of carrying 4,000 men it is possible that she has at last found a sphere of usefulness.
One of the naval officers to whom the novelty of the Russian circular ironclads greatly appealed was Com-mander-now Admiral-Sir G. H. U. Noel, R.N., and in his essay on "The Best Types of War Vessels for the British Navy," for which he gained the Royal United Service Institution's medal in 1876, he advocated "mastless circular vessels for coast defense." His ideal was a completely armored ship of 8,500 tons and of 210 feet diameter armed with a dozen 12 -inch guns. It is interesting to note that as regards this point in his design his ideas of nearly thirty years ago agree with our very latest theories. The enormous "Dread nought" will carry only guns of this caliber and no medium artillery at all. Capt. Noel's ironclad was to be, in short, a big circular floating fortress whose sloping armored sides gave very great protection from fire and whose sharp armored edge where the upper slope met the outward slope of the saucer-like under water part of the hull, would, he contended, render her, if not invulnerable to the ram, at least a very dangerous ship to attack with that weapon. His views receive a certain amount of corroboration from the fact that the edge of the armored deck of the unfor tunate "Victoria" cut completely through the stem of the "Camperdown" when accidentally rammed by her on that disastrous day off Beyrout in 1893. The twelve big guns were to be mounted on disappearing car riages, coming up to fire over the top of the iron ram part and sinking down to be re-loaded under its pro tection. The more upright part of the breastwork was to be made of 14 -inch armor, and the sloping por tions, as well as the under surface next the edge of
the circumference, to be $31 / 2$ inches thick. She was to have four keels, three propellers, and two rudders. This class of fighting ship has not hitherto materialized and there is nothing in the lessons of the recent Russo-Japanese war to make us think that we shall see anything of the kind in the immediate future.
But the circular form still has its attractions for the inventor, and only a year or two ago another circular -lay, almost globular-iron-clad was designed by Mr. Stokes, of New York. This modern Gothamite, determined to emulate his famous predecessors, intends his bowl to be the exact shape of an ordinary gas globe inverted. He claims that this will give the maximum of buoyancy and armor-carrying capacity. She is to be a much bigger affair than the "Popoffkas," having a displacement of over 11,000 tons. The "Trident," as she is christened by her inventor, is to have an armor belt no less than 18 inches thick extending from considerably below the water line to a few feet above it, where she is encircled by a gallery or bal cony. Above this everything is to be protected by 12 -inch plating. She is to carry a pair of 15 -inch guns fixed immovably in their places, so that to direct them to the right or left the vessel must be bodily revolved in the required direction, while elevation or depression are to be obtained by tilting the ship by movable

Circular Medieval Vessel with Stone-Throwing Engine.
pressure of water, so that work can be carried on at greater depths than with other contrivances. The craft is made of stout cast iron and weighs six tons. It can move about by the aid of a rudder and three screws driven by electricity and descends by the simple method of attaching a receptacle holding sufficient
and an outer sphere. The outer, which is provided with a kind of ridge or keel and a series of fans or blades, revolves upon bearings on the inner one and so moves the whole boat-if boat it may be calledalong in the water. The engines of 24 horse-power and the unfortunate passengers are boxed up in the inner ball, access to which is obtained through a manhole at the axis. There must be many pleasanter ways of "going down to the sea in ships," and it is to be feared that this weir vessel will never make its in ventor's fortune. It is, indeed, difficult to understand what advantages it presents for any purpose whatever.
The "Doenvig globe" is especially intended for carrying on board ship as a kind of life-boat in which the crew and passengers may escape from the violence of the tempest that has wrecked their vessel. She has some hand-worked means of propulsion which is said to give her a speed of $21 / 2$ knots under favorable circumstances. A couple of triangular sails are attached to a central ventilator which serves also the purpose of a mast. Inside there is a deck surrounded by a ring of provision lockers forming a circular bench, while below this compartment is a reservoir of fresh water. There are three scuttles in the upper part of the globe, where also is situated the manhole through which the shipwrecked mariners can get in- ballast to overcome

Circular Boats on the Euphrates. its buoyancy. When it is necessary to ascend this weight is disconnected by means provided in side the "Worke" and she "bobs up serenely from below."

The two latest attempts at globular vessels are the "Doenvig life-saving globe" and the "auto - propulseur Adam-Boudin," an extraordinary ball like affair that trundles itself along the surface of the water. It consists of an inner

Circular Coracle Used on the Boani River.
counterpoise weights which are pro vided for the purpose. She is to have three smaller guns in flxed turrets, and an armored conning tower. There will be no ports or scuttles in the "Trident." Air will be obtained by a system of ventila tion from the upper deck, while for light the ship's company will have to be contented with incandescent lamps. Her four propellers are placed equidistantly round her hull and enable her to turn round on her axis to direct her guns, and possibly may enable her to crawl through the water.
An Italian engineer, Signor Piatti del Pozzo, not very long since applied the principle of globular construction to a species of submarine boat which he termed the "Pozzo submarine worker." As its name implies, this queer spherical craft is not intended so much for traveling as for building and salvage operations below water. So while rapid progression is not possible, the shape gives strength to resist the

The " Auto-Propulseur" "Adam Boudin."

The "Popotikas": "Nov gorod" and "Admiral Popott'",
side of this odd vessel. She has been tested and seems to answer the purpose for which she has been built very well. It is evident that, properly trimmed and ballasted, a globular vessel of this kind could not lose-. any of her buoyancy by taking in water in roughest weather and would ride comparatively steady over the heaviest seas. This and the "Pozzo submarine worker" appear to be about the most useful and practical of the circular and globular craft that have been evolved from the ingenious brains of our modern inventors. Whether the building of similar vessels of a bigger and more powerful nature will ever be undertaken on any great scale is more than doubtful. Occasionally some such eccentricities of naval architecture may be designed and even constructed ; but they will remain eccentricities, and will serve only as the exceptions to prove the rule that the elongated hull with a flat deck must alnays be the best type of vessel.

Admiral Noel's Proposed Circular Ironclad Battleship.
how to construct an experimental polyphase MOTOR.
The polyphase current motor, though in more ways than one the motor of the future, remains comparatively little known. Nor are reasons for this rather negative state of mind far to seek. There is, first of all, the widely prevailing idea that the production of polyphase currents presupposes what is technically known as a polyphase generator, a costly machine, which but few are able to provide themselves with But entirely apart from all such material considera tions, the ordinary experimenter is simply overawed by the formidable problem of that intangible difference of phase, which as a matter of fact must be exactly one-fourth or one-third of a cycle. In other words, if 68 cycles are passed through in one second, the op orator must secure a lag of one current behind an other, corresponding to an interval of time not exceeding $1 / 180$ of a second.
The difficulty here calling for solution is kin to the mechanical difficulty which presented itself in the early days of the steam engine. Though sufficient steam was turned on, the engine would frequently refuse to start; it had stopped on a dead center. What was done to prevent this embarrassment? The trucks were fitted out with two cranks at right angles to each other, so that the impulse of one would be given a quarter of a period later than that of the other. Similarly, the armature of a diphase motor will not rotate, if it receives the oscillatory impulse of only a single alternating current; and even when two impulses are given it from two alternating currents that are moving perfectly in step, one with the other, increasing or decreasing their values at exactly the same time, no torque will be produced, and consequently the arma ture will not turn. But if the impulse of one current is made to be at or move toward its maximum, while the impulse of the other is passing through its minimum value, then the armature, even under a proportionate load, must immediately begin to turn. This coincidence of different values of the impulses of two alternating currents is precisely what is meant by the difference of phase between two currents, or the lag of one behind the other. Hence, to make two currents diphase, the mechanical disposition referred to as applied to the steam engine must in some way be realized electrically.

In the commercial "diphaser" (a generator so constructed that it delivers two alternating currents differing by just one-fourth of a cycle) the characteristic feature is, that it is fitted with two similar armatures mounted on the same shaft, one of them, however, being shifted angularly in respect to the other, so as to generate two currents with the proper relation of phase. But there is a way of generating diphase and triphase currents, without the use of such diphase and triphase generators. If the reader is interested in the theme of this article, he should read carefully the experiments of Mr. N. Tesla, which are described mi nutely in No. 944 of the Scientific American Supplement (February 3, 1894). Mr. N. Tesla clearly establishes the fact that a polyphase generator is not in dispensable to operate a polyphase motor; he makes one alternating current from an ordinary uniphase generator serve the purpose of a polyphase generator, by dividing the current into two, and securing to the one the proper degree of lag relatively to the other. To explain how this simpler kind of polyphase ar rangement can be constructed and adjusted, very much more easily and cheaply than one would on first thought imagine, is the adequate raison detre of the present essay.
The small motor represented in the accompanying illustrations was actually constructed at a trifling cost, and without the use of any delicate measuring instruments. The finished machine (but without the electromagnet and a few accessory parts) is exhibited in Fig. 2. The general disposition of the diphasing apparatus will be readily understood from an inspection of Fig. 1. A is the knob at which the uniphase alternating current (104 -volt, 60 -cycle) has been tapped. At O this current is divided, one portion being conducted through wire J, electro-magnet $M M^{\prime}$, field coil C; the other portion through wire I, resistance coil R, field coil $C^{\prime \prime}$. At O^{\prime} the two are again united in one wire with exit at knob B. Now, if one of these currents between O and O^{\prime}, say the lower $O I R C^{\prime} H O^{\prime}$, is made to lag behind the upper $O J M M^{\prime} C L O^{\prime}$ exactly onefourth of a cycle, then the space at a, where the axes of the two coils meet, will be the seat of a diphase rotating field, and in consequence, any suitable armature supported there so as to be free to rotate must, owing to the torque to which it is subjected, spontaneously begin to revolve. In our case the difference of phase is a function of two properly varied factors: the self-induction of the upper circuit and the resist ance of the lower one. The self-induction of the first circuit is constituted partly by the electro-magnet, $M M^{\prime}$, and partly by the field coil C. The resistance of the second is R.
Out of stiff thin pasteboard make two tubes, each 3.5
inches long and about 0.75 inch in diameter. Around each of these tubes wrap about 33 feet of No. 22 copper magnet wire (B. \& S.), allowing the ends to project 4 inches. Next provide these coils with laminated iron cores, constructed as follows: Take a ribbon of Russian sheet iron (such as is used for stove and furnace trimmings). 18 feet long and a trifle less than 0.5 inch wide. Cut it into 50 (25 for each core) rectangular pieces, each 4.25 inches long. Prepare also 48 (24 for each core) pieces of paper, slightly longer and wider than the iron rectangles. Of these pieces of iron and of paper make two equal piles, placing iron and paper alternately. After filing these cores true and wrapping each tight with tape, insert one into each of the tubes, and you have your field coils finished. As for the resistance R, one of the flat coils used by tailors for heating their irons by electricity will answer the purpose very well. They are generally 3×3.5 inches, and are on the market for 50 cents and upward. The electro-magnet on the upper circuit is made up of 25 pounds of No. 12 copper magnet wire (B. \& S.) corresponding to a resistance of 2 ohms. This was found to be more than enough to prevent heating. It may be well to note that the self-induction of the field coil alone without that of this electro-

Fig. 1.-Diagram of connections for polyphase mOTOR.

Fig. 2.-AN EXPERIMENTAL POLYPHASE MOTOR.

Fig. 3.-diagram of connections for four-coil CIRCULAR FIELD.
magnet would suffice. In fact, if no electro-magnet is at hand, a second heating coil similar to the first may take the place of the electro-magnet.
Now connect everything as in Fig. 1. To test these circuits, turn on the current for only a few seconds. Should undue heat manifest itself in any part of the circuits, a few yards of German silver wire inserted into that circuit will bring the local heat under control. When the heat is not too intense after the current is on for three or four minutes, you may proceed to the final adjustment, namely, the securing of the required difference of phase between the two circuits.
This apparently over-delicate task is accomplished quite easily by tests with any small magnetic compass. (Should you have none at hand, make one. Magnetize by friction a piece of watch-spring one inch long and weighing one gramme or so; to make it balance, and to enable it to swing horizontally on a vertical axis, make a small indentation at its center.) Set the compass on a plane with the cores of the field coils, and at the point where the axes of the cores meet. Turn on the current; with the point of a pencil spin the compass rapidly on its support. The needle may possibly rotate so regularly that it overcomes all dead points, and so briskly that it is invisible. In this case,
you need no further test; you have struck the proper relation of phase that must exist between the two currents. It is more likely, however, that the needle will move only slowly and irregularly or only quiver. Should it manifest a decided tendency to move in one direction, try to help it on by removing from or adding to the coils of the upper circuit a moderate length of wire. Once you notice that the tendency to turn in either direction is given or increased by adding to or subtracting from the coils in one circuit, or by in creasing or diminishing the resistance R in the other continue this process of adding or subtracting, until the needle rotates as above described. The principle constantly applied in this last adjustment is this: an increase of self-induction in the upper circuit increases the difference of phase between its current and that of the line; while an additional resistance introduced into the lower circuit diminishes the difference of phase between this current and that of the line. Thus the increase of either factor produces a greater dif ference of phase between the two circuits of the field coils.
The motor is now adjusted. Remove the compass and put in its stead the armature, a circular piece of soft iron 1.25 inches in diameter and a little less than $1 / 8$ inch in thickness. You may vary your experi ments by using armatures or rotors of different types and materials. When needed, a short piece of glass tubing sealed at one end may be inserted through a hole in the center of the disk, to serve as a bearing Always set up the armatures as was directed for the compass.
A very interesting and highly instructive addition to the motor just described will be a four-coil circular field, as shown in Fig. 3. The core of this is constructed in a way similar to that in which the field coils of Fig. 1 were constructed. Take a continuous ribbon of sheet iron about 0.5 inch wide and 18 feet long, and also a ribbon of paper slightly wider. Make the first turn of iron so that the diameter of the inner circular field will be 2 inches. Roll up the iron ribbon so that each turn of iron will be separated from the next by paper, until you have a ring of square section. Wrap this ring core with tape. To provide the proper coils, divide the core into four equal sections marked in order $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$; only the two middle quarters of each section are to be covered by the coils, 16.5 feet of No. 25 copper magnet wire being wrapped around that portion of each section. Coils on sections 1^{\prime} and 3^{\prime} must be wound in exactly the same way; those on sections 2^{\prime} and 4^{\prime} must also correspond to each other. If you begin wrapping section 1^{\prime} say from the side toward section 2^{\prime} and make turns of wire clockwise, then section 3^{\prime} must also be begun from the side toward section 2^{\prime}, and the convolutions of its wire must also be clockwise, so as to develop two poles of the same name on the same side of the armature. If you begin section 2^{\prime} say from the side toward section 3^{\prime} and make the convolutions the reverse of clockwise, then section 4^{\prime} must also be wrapped beginning from the side toward section 3^{\prime}, and the convolutions must be made as in winding section 2^{\prime}, so that this set may also develop two poles of the same name on the same side of the armature. At the beginning and at the end of each coil allow the wire to project about 4 inches. Then connect the wire projecting at the end of coil on section 1^{\prime} with that projecting at the begin ning of coil 3^{\prime}, bringing the wires around the outer rim of the core. Insert these two coils thus compound ed into the circuit of say fieid coil C, between C and M^{\prime}. Connect coils 2^{\prime} and 4^{\prime} into a compound coil, and insert it into the circuit of field coil C° between H and R of Fig. 1, exactly adapting the directions given for connection and insertion of coils 1^{\prime} and 3^{\prime}.
You have now a four-coil armature; each single coil develops two poles, hence there are in all eight poles. But, owing to the special winding, the four poles of coils 1^{\prime} and 3^{\prime} are gathered into two, one located at the middle of section 2^{\prime}, the other at the middle of section 4^{\prime}; and in the same way, the four poles of coils 2^{\prime}. and 4^{\prime} are gathered into two, one located at the mid dle of section 1^{\prime}, the other at the middle of section 3^{\prime} Moreover, even these two sets of compound poles finally merge into two, one north and the other south. So this four-coil armature produces an eight-pole field, if you simply count the magnetic poles generated; but these reduce themselves to a two-pole rotating field.
On a vertical pivot at the center of the four-coil field set up different kinds of armatures, and they will ro tate under the influence of the two-pole diphase field. Thus, try an armature in the shape of a hollow cylin der of brass or copper one inch long and one inch and a quarter in diameter (Arago's rotations). Put a cork into the cylinder and a glass bearing in the cork. (Less than 10 grammes in all.) Another armature might be a small rectangular plate of soft iron 1.5 inches long wrapped at each extremity with 6 feet of No. 25 copper magnet wire, so as to develop two consequent poles. The piece of iron may be 0.25 inch wide and $1 / 8$ inch thick. It will also need a glass bearing. The brass and even the copper armature will not revolve very fast in the circular field; they will not revolve at all
in the field of Fig. 2. It is this very experiment which for a long time puzzled Mr. W. de Fonvielle while he was conducting his known researches of 1880.* All the other armatures to be used here must be more carefully balanced than those used in the two-coil field of Fig. 2, since the effects produced in the circular field are notably more energetic
This inexpensive motor, working satisfactorily as it does, will illustrate many principles bearing on the theory of polyphase machinery, and in particular those involved in experiments such as the following: insufficiency of an oscillatory field to produce rotation; character of rotating fields; effects of self-induction and resistance on the difference of phase; bipolar diphase motor; four-coil diphase field; rotation of magnetized and non-magnetized armatures; Arago's rotations; reactions of Foucault's currents on the field; synchron ism and asynchronism; three-wire diphase arrange ment; reversal of rotation; self-starting, slip, etc
Thus our experimental motor, though not recom mended as having any commercial value, will yet be found very serviceable in the lecture room.

THE SENSE OF SMELL IN SNAILS

 by dr. Alfred gradenwitzIn the higher animals the various senses are localized in separate organs. This distribution, as we go down the scale of animal life, becomes less and less specialized, until in cellular forms it is hard if not impossible to distinguish any special sense organ. Mollusks may be said to occupy an intermediate position on this ladder of evolution. While they are in a measure possessed of true organs of sense, still these organs answer other purposes besides re sponding to sensations alone. An interesting instance of this behavior is afforded by Helix pomatia, the common snail, which has been recently made the subject of an extensive investigation by Prof. Emile Yung, of the University of Geneva, Switzerland. While previous naturalists had ascribed to the snail a strong sense of smell, it was not known where the sense organ was located. Prof. Yung shows that the sense is distributed over the entire body, in so far as it is not covered by the shell. Some parts, however, possess the sense of smell in a particularly high degree, viz., the two pairs of tentacles, the lips and the edges of the feet.
The following is one of the experiments made by Yung in carrying out his investigations. When a brush wetted with a drop of water was brought near a snail, immediate contact was necessary to produce a visible response, except in the case of the large tentacles which also contain an eye. Whenever the brush was brought within 1 millimeter of the eye, the tentacle was perceptibly deflected. Evidently this effect could be produced by the sense of sight, of heat, or of smell. Special experiments, however, proved the first two hypotheses to be inadmissible. Hence the sense of smell must be the cause of the snail's aversion.
In further investigating this sense Yung substituted camomile essence for the water. The odor was perceived at a distance of 4 millimeters. Whenever the brush was brought nearer to the animal (see Fig. 1), the tentacle would be deflected. Similarly the back would be depressed and the edge of the foot would be turned, when the camomile essence was brought near these parts of the body (see Fig. 2).

* Comptes-reudus de l'Academie des Sciences, ler Semestre, 1880, p. 801.

Clearly the sense of smell is spread over a wide area. It may, however, be said that when -repeating the same experiment, the response was found gradually to decrease in intensity, the snail becoming used to the stimulus. The sense of smell.among lower animals

Fig. 1.-Snail Deflecting Left Tentacle at a Distance of 4 Millimeters from a Glass Rod Dipped in Camomile Essence.
plays an important part in the quest of food. Experiments made in this direction by Prof. Yung showed this rôle to be quite secondary in the case of snails, the food being perceived at maximum distances of only 15 to 20 centimeters, and 40 to 50 centimeters in some exceptional cases. The fact that snails are frequently found in kitchen gardens thus seems to be due not to their sense of smell, but to the moisture of the garden. The foregoing results are confirmed by histological investigations, the most sensitive parts of

Fig. 2.-Snail Contracting the Edge of Its Foot at 2 Millimeters from a Glass Rod Dipped in Camomile Essence. THE SENSE OF SMELL IN SNAILS.
the body being found to possess especially large numbers of sensorial cells.

The subdivision and localization of the organs of the senses is thus seen to be rather elementary in the case of snails.

A MACHINE FOR PICRING COTTON,

E FOR PILIAM dale.

Since the invention of the mower, reaper, and binder operated by animal power and steam engines,
the idea of utilizing mechanical means for harvesting the American cotton crop has been agitated. The revolution which was caused in agriculture by the modern methods of gathering the cereal crops indicated the saving in time and labor which could be effected in the southern cotton fields if a machine were perfected which would harvest the ripe cotton more expeditiously than the negro farm hand
A number of devices has been invented to take the place of hand labor in gathering the cotton crop With one exception, however, all of these have proved failures. The principal defect has been that the machines would harvest the immature as well as mature cotton. Those familiar with this branch of agriculture know that a field must be covered several times after the bolls begin to open, as, unlike grain, the cotton does not ripen with any uniformity. During the last harvesting season, however, a machine was employed in several of the Southern States, which proved to be not only a decided improvement over the ordinary hand method, but by its means only the ripe cotton was picked, the other plants being un. touched.
As the photographs show, this picker is notable for the simplicity of its construction. Power is obtained rom an ordinary gasoline engine such as is utilized in automobiles of the smaller types. In fact, the engine installed in connection with the picker utilized in the field trials was taken from an Oldsmobile and developed but 8 horse-power. In moving the picker over the ground, gearing is employed as in traction engines. Sprocket chains pass around sprocket wheels n the rear axle, thence upward and around the drivng shaft. The engine which is mounted on the rear of the truck frame, as indicated in the photographs, is employed not only to move the picker over the field but to operate the mechanism by which the cotton is harvested and placed in the storage receptacles. There are four of the latter attached to the sides of the machine. They consist merely of cloth cylinders which are open at the top, the bottom ends being held together by strings so that when the cotton is to be renoved it is only necessary to loosen the end by pulling the string, when the contents of the receptacle will fall out.
The lint is conveyed to the receptacles by tubes which are attached to the series of picking devices. The lower portions of these tubes, which are made of thin sheet iron, terminate in steel conduits of the same diameter inside. Each conduit or pipe contains a fan which serves two purposes. It "doffs" or cleans the cotton, blowing out any bits of leaves, casing, or other foreign matter which may have been caught up with the lint by the picker arm, and drives the lint through the tube into the receptacle with which it is connected, by air pressure.
The picker arms are dirigible in design and comprise eight in all, four attached to the forward section of the machine and four to the rear section, all of course being connected with the tubing leading to the cotton receivers and working in connection with fans. The picker arms are fastened to the conduits by means of hinged joints, and as the illustrations show, each consists of a case inclosing an endless belt which revolves upon pulleys placed at either end. This belt is provided with a series of curved teeth. At its outer end the upper part of the casing is cut away, so that the belt is exposed for several inches. When the cotton is to

Part of the Field Picked and Unripe Bolls Left on the Plants.

The Cotton-Picking Machine at Work.
be removed from a boll the operator directs the outer end of the picking arm in such a position that the teeth engage the lint. As fast as it is stripped from the boll it is carried by the endless conveyor to the blower casing, as it is called, doffed, and forced through the tube into the receiving bag. The picking head, as it might be called, is provided with a shield intended to prevent hulls, leaves, and twigs from being drawn into the picker, but, as already stated, any small particles of foreign matter are removed by fans.
The means for actuating the picker belts and doffer fan consist of a light shaft running longitudinally of the machine and parallel to the fore and aft extension tubings. This shaft is geared to the engine through the medium of gears and friction clutch, the lever of the clutch being arranged convenient to the driver. This shaft has a constant speed and is independent of the motion of the machine through the field. Power is applied to the picker belt and doffer fan from this shaft through an arrangement of light sprocket wheels and chains, which permit the dirigibility of the pick-

ing arms without in the least interfering with their flexibility.
There are seats provided on the machine to carry four operators, and each operator is provided with two picking arms, one for each hand. The arrangements of seats and picking arms is such that when facing in the direction in which the machine is traveling over the field, the two rear operators face to the right, one picking one side of the center row and the other picking one side of the left outside row. Thus all of the center row and one-half of each of the outside rows, in all equal to two rows, are picked.
During the trials which were made in the cotton fields in North Carolina and Alabama, it was found that eight horse-power was ample to give the machine necessary momentum with its force of hands, also to operate the picking and transferring mechanism. The rate of speed in the fields varies of course according to the amount of cotton to be picked. Where a large proportion of the bolls are open the field is covered in less time than where a small quantity of cotton is ready to be gathered, but it is obvious that with devices which can be guided as described, only the mature cotton nee be gathered. As the picking belts revolve at the rate of about 350 feet per minute and eight of the pickers are in continuous operation, the capacity of the machine is much greater than where expert negro labor is employed. During the tests in Alabama the machine moved at the rate of 31 feet per minute, picking three rows of plants simultaneously. In a day of ten hours it covered nearly five acres. The operators were young negro boys, constituting all of the manual labor with the exception of the engineer. In this trial the machine harvested 3,000 pounds of cotton in a day at a total cost of $\$ 4.75$, including fuel and wages. At the usual price paid for cotton pick-

A NOVEL TOY.
ing in this State the expense for harvesting the same quantity would be $\$ 15$, while the machine covered a given area in one-sixth of the time which would have been required by six expert cotton pickers. In harvesting cotton in North Carolina the same results were obtained.

While the general design of the cotton picker allows three rows of plants to be harvested at one time, it can be readily enlarged to take in four or possibly five rows, and it is probable that with other improvements its capacity can be greatly increased, just as the harvester and binder of the wheat field has been radically changed since it was first introduced on the farms of the West. The inventor of the cotton picker, Mr. George A. Lowry, is now experimenting with several additional devices which are intended to further increase its speed and efficiency.

A CONVENIENT DRAFTING INSTRUMENT.

In the accompanying engraving we illustrate a very handy little drafting instrument, which may be readily used as a scale, a rule, a square, a curve, a protractor, and a compass. The form of the instrument, as clearly shown in the illustration, comprises two arms forming a right angle with each other and thus providing a square. The longer arm is graduate to sixteenths of an inch, while the shorter arm is provided with a three-quarter scale. Connecting the two arms is a web with its inner edge curved to the arc of a circle whose center is at the point where the two arms meet. The oater edge of the web forms an irregular curve, which the draftsman will find convenient for various purposes. The face of the web is graduated to the degrees of a circle, thus providing a ready protractor. When the instrument is used as a compass, it is arranged to turn on a pin as a pivot. This pin is held in a notch in the instrument by means of a small leaf spring. It will be observed that the longer arm of the instrument is pierced by a series of holes one-eighth inch apart. These serve to accommodate the point of a pencil when drawing the arc or circle. A series of notches are provided for the pivot pin. These are one thirty-second of an inch apart, so that if it is desired to draw an arc whose length is measured in odd thirty-seconds of an inch, the pin is shifted back or forward to the required notch. Larger holes are provided adjacent to the pencil holes, so that the paper can be seen immediately in advance of the pencil point. Circles can be readily drawn without the bother of adjusting a pair of compasses. The convenience of this instrument for work away from the regular drawing table will be apparent to all draftsmen, as it does away with the inconvēnience of carrying around a lot of bulky instruments. This improved drafting instrument is being introduced by the Ready Manufacturing Company, of Rochester, New York.

A NOVEL TOY.

A very amusing toy for children is provided by the recent invention of Mr. H. E. Coates, of 820 K Street, Sacramento, Cal. The toy is in the form of an apparently docile mule which, nevertheless, is very balky, and will buck and kick in the most lifelike manner whenever any effort is made to make it move along. The toy beast is mounted on a wheeled base, the wheels being preferably toothed, in order to hold the base in position during the bucking performance. The forelegs of the animal are rigidly secured to the base, and on the fore-legs the body is fulcrumed so that it can be swung into the position illustrated in our engraving. The eyes of the mule are painted on a pair of slides, and the latter are connected with the ears. A cord runs from these slides under a staple in the base to a lever near the fore-feet of the animal. Another cord connected to this lever passes around a catch at the side of the base, and leads to the operator. When the cord is jerked slightly, the mule throws back his ears and shows the whites of his eyes. A stronger pull makes him lift his hind-legs and kick. The hindlegs and tail are connected by cords to the fore-legs, so that they assume a very lifelike position when the mule kicks. To add to the amusement, a toy rider is mounted on the animal, and it is part of the game to make the beast buck so violently as to throw his rider. Vicious as the beast may seem, he can be quickly pa.cified by slipping the cord off the catch at the side of the base, and then when the cord is drawn, the lever will swing forward against the staple, and the mule will meekly submit to be drawn anywhere around the room.

RETAINING DEVICE FOR BARRELS.

A patent has recently been granted to Mr. F. C. dos Passos, Augusta, Ga., on a device adapted to be placed in barrels to retain and compress goods in brine. The device is exceedingly simple, and is designed to take
the place of the unsightly weight commonly employed for this purpose. As shown in the accompanying engraving, it comprises a cover, which is place in the barrel and held in contact with the articles in the brine by a screw. The latter is threaded through a bar, which is held in place in the barrel by means of springs projecting from the opposite ends. The bar is of a concavo-convex form, and the springs. secured thereto are cut with double points. The device is placed in the barrel with the
concave side uppermost, and the spring points engaging theside walls of the barrel serve to x the bar against upward movement, and thus provide a good bearing for the screw. Access to the fish, pickles, or the like, below the cover, can be had by unscrewing this screw and tipping up the cover. The bar can be readily pressed down into the barrel, as required. The screw is
 o adjusted vent corrosion of the a that are liable to come in con the cover and the screw, which is preferably made of wood. When it is desired to disengage the bar, it may be inverted by swinging it laterally, when it can be readily drawn out. The spring points may also be adjustably attached to the bar, so that when they are loosened the bar may be removed without being inverted.

BOOK PURSE.

A very novel idea is presented in the accompanying engraving which shows a hymnal, prayer-book, or religious manual, fitted with a purse in which money for the contribution can be carried. The purse is large enough to hold a number of coins without increasing the bulk of the book, or detracting from its apparance. In the cover of the book a pocket is formed, and this is covered by a flap mounted on the cover of the book. Folding side pieces connect the flap with the book cover, to prevent the money from falling out when the purse is opened. The purse is closed by a tongue at the upper end, which is slipped under a loop, or strap, secured to the book cover. The tongue niay be withdrawn from the loop by pulling on an ear connected with the flap. The upper end of the pocket is provided with a recess, to permit of slipping the finger into the purse and under the coin. The purse does nut detract from the appearance of the book, but on the contrary the flap is artistically designed and serves as an ornament. The device will prove of great value to ladies, who have heretofore been obliged to carry their contributions in their gloves, with the danger of losing the money and the inconvenience of getting at it when it is wanted. The book purse is the invention of Miss Emima L. Sweet, of Wallace, Idaho,

a boor purse.

RECENTLY PATENTED INVENTIONS. Electrical Device ELECTRIC SWITCH.-L. R. Brown, South Orange, N. J., and F. H. Wentworth, New
York, N. Y. The principal objects of the invention are to provide means for making and breaking contact and leaving the various electrical connections of the device in such condi-
tion when not in use that no current will fiow tion when not in use that no current will fiow
through them; further, to provide means which can be operated by the time-clock or similar de parts for operating both waking and brean used in any kind of electric circuit and fo operating any kind of an electric instrument.

Of Interest to Farmers.
Belt-REEL.-D. F. Geiger, Barlow, N. D. In this patent the invention relates to improvements in reels for winding up and holding
driving-belts on shredders, threshing-machines, and the like, the object being to provide and the like, the object being to provide a
reel of simple and novel construction and so arranged that a belt may be easily wound
thereon. The frame preferably consists of thereon. The frame preferably consists of
angle-iron; but it may be of wood and other wise shaped.

of General Interest.

ART OF Mining.-A. G. Parker, Platte Center, Neb. In this case the invention relates to mining, and particularly to the removal of
placer deposits. It is particularly applicable to the working of placer-deposits which hav already been mined by the ordinary methods, the auriferous sands from very irregular surpressions. In this improved method the pressions. In this improved method the and contents entirely withdrawn. New placer
claims may be equally well operated upon, and claims may be equally well operated upon, and
in this case a much greater profit will result CLAMPING DEVICE.-A. E. Brown, Brookfield, and C. H. Rhedes, Herkimer, N. Y. This
invention relates to clamps such as used by silversmiths or goldsmiths in delicate soldering operations or similar work connected with
their arts. The invention is intended especially to be used in connection with the repairing of ilar articles While the invention is, or sim especially for use in the connection suggested especiall for use in the connection suggested the arts where similar functions are to be performed.
CONVEYER.-H. Brown, New York, N. Y. provision of automatic means for depositing the material upon the desired fioor of a building whether the material is being raised or known as "vertical" conveyers which is pro vided with a series of horizontal pans or
shelves for carrying the material to be trans shelves
pulp-screen.-C. e. Chapman, Fort Ed ward, N. Y. A purpose of the inventor is to
provide a construction especially adapted for screening paper-pulp, wherein as the fiuid leaves the pulp upon a screen the slivers will be constantly tossed up and down, separating and drying them. Another, is to provide for such action upon the slivers through the simultaneous conbetween the screen proper and independen thereof, which paddles operate in a body of
MAIL COLLECTION AND DELIVERY ox.-J. I. Fullweed, Cedartown, Ga. Mr Fullwood's object is to provide novel simple details of construction for a mail box to be fords safe and very convenient means for holding collected mail-matter and also for distributing other mail-matter addressed to patrons living on rural delivery and mal
routes traversed by Federal mail-carriers.

LIFE-SA VING RAFT. - H.. J. Matson, Lavre, France. The invention pertains to im-
provements in rafts or similar fioats and which are particularly adapted for use on marine vessels, the object being to provide a life raft or float that will be effective for its purpose simple in its construction, and that will be
found equally efficient on being launched either side up.
PROPELLER FOR MARINE VESSELS. L. D. Mallery, Longbeach, Cal. This invento employs a supporting-frame for the operative parts, in which is mounted a right and left
hand screw-shaft, through the medium of which the propulsion is effected. He also employs reciprocatory devices for imparting rotary motion to the screw-shaft in either direction, said shaft having coupled relation with the propeller-shaft. Special means are
employed for manually operating the reciprocatory devices, as well as for steering the essel.
adjustarle sheet-metal Pipe.-H. Latimer, High Bridge, N. J. In the erection
of sheet-metal piping, such as stovepipes, conof sheet-metal piping, such as stovepipes, con-
siderable difficulty is experienced in forming the joints between the sections, as these joints should fit with nicety though the pipe-sections vary in dimension. The object is to produce a form of pipe which is easily adjusted
extremities to fit the adjacent sections.
BURNER FOR HYDROCAREON VAPORS. stance the invention has reference to burners, and admits of general use, but is particularly
applicable to burners of a type for use in
connection with hydrocarbon vapors or the connection with hydrocarbon vapors or the
like, and is preferably employed in connection furnaces for smelting ores.
HARNESS.-C. C. King, Little Rock, Ark. By the provision of friction-rollers in the stir-
rups the shaft is permitted to move freely areover, thus reducing rubbing to a minimum the stirrup at different points on the back firmer support for the stirrup is provided, de creasing to a considerable extent the movement thereof and also equalizing and distributing the weight of the shaft. The improvement may be applied to existing harness.
SCREEN FOR IRRIGATING-DITCHES.W. E. Race, Lake, Idaho. This improved screen is entirely automatic in its action, re-
quiring no attention, the rubbish being released when the water above the screen attains a redetermined level, and the height of the leve may be regulated by the length of a depend-ing-bar which projects below a cross-bar. By
inserting a pin in different holes a greater or less extent of the bar may be allowed to project below the cross-bar, and as a consequence the catch will be released at a greater- or less height of the water above the screen.
Mailing-Envelop. - J. Sawdon, Stronghurst, Ill. This invention relates more esand fourth class matter, such as catalogues, merchandise, etc. The object is to provide an envelop for this purpose in which provision is
made for the binding of the contents of the ande for the binding of the contents of the
envelop and fastening of the same to the en. elope. A further object is to relieve the METHOD AND MEANS FOR PROCURING WATER FOR IRRIGATING AND OTHER pURPOSES.-I. Teilman, Fresno, Cal. The arranged to utilize the fall of water in waterway for operating pumps employed to lift the water from the well to the head of of the waterway being utilized for irrigating

AUXILIARY RUDDER.-W. M. TAyLer, Mecklenburg, Va. This improved rudder, while simple in construction, is yet efficient in operation, and when the desired end is attained
it is very quickly drawn out of action, which is a most important feature in devices of this class. Owing to its peculiar construction, the acticn of the fiowing water helps to close as well as to open it, thereby requiring ver
little power for its manipulation.

Hardware.
DEVICE FOR DRESSING SAWS.-T. W. tains particularly to This device for use as gage in connection with the operation of swaging the drag-teeth of cross-cut or drag saws. The object is primarily to provide
means which will prevent injury of the cutmeans which will prevent injury of the cut
ting-teeth by the application of the gage to KEY - HOLDING ATTACHMENT FOR LOCKS. - H. A. Seager, Monroe, Wash.
Means are afforded by this attachment for Means are afforded by this attachment for
holding the key of a lock from turning in either direction when the lock is in locked lock from being unlocked on the outside of the door and also preventing the accidental dis placement and loss of the key when the lock-
bolt is released from the door-casement. bolt is released from the door-casement.

Heating and Lighting.

hot-water heater.-J. A. Cepprimge and T. E. Stultz, Roanoke, Va. The inven-
tor's object is to provide a novel construction for heating the water circulating through radiators and the like for heating purposes. As the fire burns a thin annular sheet of chamber will become heated and rise, the colder water in the outer will enter the inne compartment at the bottom thereof and it is replaced by other water, and so on, as opera-
tion proceeds, the inner inclination of the tion proceeds, the inner inclination of the
inner-plate increasing heating effect of the fire.

Machines and Mechanical Devices.

CANDY-FOKMING MACHINE.-J. A. HeLthe present invention is the patentee's object in the present invention is the provision of a
new and improved machine more especially de signed for forming the plastic candy material into sticks of any desired shape and size and the desired length.
eccentric.-f. m. berger, basin, Mont. The design in this instance is to obviate objections to machine-eccentrics in general as to say, objections to all forms of such device known to this inventor whereby endwise mo ing-shaft having rotary motion and longitudinally disposed at an angle to the driven rod or shaft.
Cable or rope guide--G. Frink, Se attle, Wash. In this patent the invention has
reference to logging-machines; and the inveneference to logging-machines; and the inven tor's object is the provision of a new and im
proved cable or rope guide or fair-leader ar ranged to properly lead the cable or rope to the drum of the logging-engine from any direc
tion.

MACHINE FOR CALCULATING INTEREST and PERCENTAGE.-W. M. Eraly, Black-
well, Oklahoma Ter. The intention of this well, Oklahoma Ter. The intention of this
improvement is to provide a machine adapted for calculating interest and percentage and which at the same time when set to a date
from which interest is to be computed will automatically Indicate date after date until when the example is finished the day and date with the time, rate and amount, will appea in full view at the exterior of the machine: hotel-register.-J. P. Hart, Bridgeport Borough, Pa. The leaves whereon names
and addresses of guests are inscribed are loose and detachable in place of being bound to gether, a special means for fastening being
employed, whereby they may be quickly sepaemployed, whereby they may be quickly sepa-
rated. The carrier upon which leaves are laid and secured revolves upon a base having an antifriction-bearing vertically adjustable, an an antifriction-bearing, means being provided for holding revolving part central against lat eral oscillation. Register carrier has foldable top sections. Closed, they covel: and protect
the register, the same having spaces for ad vertisements and ornamental panels.
advertising Device.-H. A. De Rudie Los Angeles, Cal. The invention relates to pecially useful in connection with street-car advertising. The object is to produce a devic of simple construction which will contain web, such that these signs may be periodically ought into view.
DOUGH-BREAKER.-L. A. Reckwell and tion refers to improvements in machines for breaking dough for bread-making or the like, the object being to provide, in connection with machine of this character, a safety device by means of which the operation of the ma-
chine may be instantly stopped while the chine may be instantly stopped while the dent or other cause require the stopping.
ExCAVATOR.-A. M. Andersen, Moorhead Minn. The invention relates to excavators, nd trenches. It is especially applicable in laying pipe-lines. The machine advances by
its own traction when desired. a clutch car ried by the engine-shaft enables this traction o be thrown in or out, without stopping the
ngine. Mr. Anderson has invented anothe excavator, such as used in railroad construc tion-work, repairing road-beds, and in the con struction of ditches and irrigating-canals. It
is also useful for clearing a road-way of ice is also useful for clearing a
snow or similar obstruction.

Prime Movers and Their Accessories.

rotary engine.-A. h. Wright, South t. Paul, Minn. This improvement pertains to rotary engine designed to operate with steam belongs to that class in which the rotating stationary casing or stator and carries pressure of the working fiuid and transmits the same to the engine-shaft and rotor.
valve-gear.-W. Hartmann, Berlin, Ger many. In this instance the invention refers to valve-gears for use on steam-engines, gas-
engines, and other motors. The aim of the nventor is to provide a gear which is positive its action, requiring comparatively little working power, and arranged to prevent u
infiuence on the governor by back strains.

Railways and Their Accessories.

Raillroad-rail joint.-E. P. Sandefur, which will stand on a level with the rail under the heaviest train, thereby preventing low joints. The purways be ready for use, one which when astened in its place a train can pass over without danger or delay should the bolts from ccident or other ca
CAR-RAIL HORSE-BRIDGE.-J. S. HEATeN.
helbyville, Ky. The invention pertains to improvements in devices for bridges over firehose or the like on a car-track, so that move-
ments of cars will not be interfered with uring the progress of a fire, the object being o provide a bridge that may be readily put
n position and firmly anchored to prevent either lateral or lengthwise movement.

Pertaining to Recreation.

Game Device.-A. Eherald, New York. Y. The invention relates to improvements devices with which a variety of games may
played by any number of persons, the winner being indicated by the highest number on rotary part that may be disclosed through
chosen opening in the top of the casing when the rotary part comes to rest, the object being to provide a device of this character
that will afford amusement with a degree of ncertainty as to results.
gamedoard. - R. F. Elburn, Chester will be pleasing and interesting and also an aid in teaching children how to count. The holes in the box-cover may extend entirely through the same. The game-pieces or men
figuration, the only requisite being that each theatrical DEvice.-h. M. Pettit, New York, N. Y. An automobile or other
vehicle is provided with wings and means for preading and vibrating the wings to give the desired effect, and also means for propelling the actomobile along a way or track and for o that it may give an ved rom the track, from a cliff to a track located on the oppo site side of the chasm at a lower level. Safety devices insure the performance of the act without danger to occupants of the vehicle.

pertaining to Vehicles.

neck-yoke.-C. E. Hess, Saco, Mont. eck-yokes, and particularly in the connections etween the yoke and a wagon-tongue, the bject being to provide a novel device for deachably securing the yoke to the tongue without danger of the parts becoming accidentally eparated, and, further, to provide ball-bearings or the yoke.
 vention pertains to an improvement in what
are known as "cushion-tires," and more speifically to the particular class of cushion-tires in which a resilient core is inclosed in an o the felly or rim of the wheel. The object is to increase the resiliency of the tire and to secure it to the felly in such manner as to avoid all danger of creeping or other disBRICK TBUCK
cexick-TRUCK.-M. K. Sachs, Houston, nned with relates to a truck debicks along a track and on pallets or dryingboards. The principal object is to provide load, the lead readily lifted from its under and left in an elevated position upon the truck, and the truck moved away.
NON-SLIPPING TIRE AND BRAKE.-J. A. OUNG, New York, N. Y. In the present patinventor's more particular object being to pro-
duce a wheel provided with a tire constructed duce a wheel provided with a tire constructed for the purpose of preventing slipping and pro-
vided with a brake peculiarly adapted for this form with a brake peculiarly adapted for this form of tire.

Designs

DESIGN FOR A BOX.-W. Jones, New York, N. Y. In this instance the ornamental design shows a clock upon the box cover.
Two columns rest on a base and support a dial Two columns rest on a base and support a dial
flanked by two smal'er columns and with a head piece. An original feature is furnished by a mouse clin,bing a weight chain suspended near the pendulum.
Note.-Copies of any of these patents will Please state the name of the patentee, title of the invention, and date of this paper.

Business and Personal Wants.
READ 'THIS COLUMN CAREFULLY.-You will
find inquiries for certain classes of articles numbered in consecutive order. If you manufacture these goods
write us at once and we will send you the name and
aadress of the party desining the information. In
every case it is necessary to give the
number of the inquiry. MUNN \& CO.

Marine Iron Worta Cuta
lnauiry No. S056. For manufacturers of ma
chinery for making dry y east.
In quiry \mathbf{N} N. 805\%.-For manufacturers of a ma
hine that will cool a refrigerator instead of using ice. Handle \& Spose Mchy. Ober Mfg. Co., 10 Bell St.

1 sell patents. To buy, or having one to sell, write
Chas. A. Scott, $\gamma 19$ Mutual

Litnographing adds solidity and strength to your
y. Letterheade, $\$ 2$ per 1,000 .
Stilwell. $\begin{aligned} & \text { on Pine }\end{aligned}$ Street, St. L

Inquiry No. S060.-For manufacturers of a ma-
chine for extracting or distilling nicotine from tobacco. The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Machine Company.
Inquiry No. Sot of
line engines of 4 to 6 borse-power, suitable for auto.
Metal Novelty Works Co., manufacturers of all kinds of light Metal Goods, Dies a,nd Metal Stampings our Inquiry No. 8062.-For
spring motor with governor.
Manufacturers of patent articles, dies, metal
trinping, screw machine work, hardware specialties, machinery tools, and wood fiber products. Quadriga Inquiry
Inguiry No. \&n63.-For manufacturers of novel
ties and specialties.
For Sale.-Canada, Mexico and European patents
On End-Gate Fasteners. A good selling article in the United States; also U.S. patent on hoe

Adolph Abraham,
Corby Building,
Inquiry
ng or street sweeping machines.
Automobile experts are in constant demand at high
alaries. Our seven weeks' course is the mast thoroug:
and practical, ftting men to drive, handle and repair
Day and evening classes. Special course for owners.
New York School of Automobile Engineers, 146 West

HINTS T© CORRESPONDENTS.

Scientific American supplements referrea to to may

(9955) J. A. K. asks: 1. In your issue of March 24 , page 258 (9921), you say that
the buoyant power of a tank, open at the botom, decreases as it is sunk deeper into the water, since water enters and compresses the
air into a smaller volume. You say that the abore is true, since the only point involved is
the volume of water displaced. Is it not the Weight, instead of the volume, of water dis-
placed that is involved? Would not the difplaced that is involved? Would not the dif-
ference in buovancy depend on the comparative
difference in density of air and water, at the difference in density of air and water, at the
surface and at a distance below the surface? surface and at a distance below the surface?
If the compressibility of water is greater than that of air, would not the buoyancy increase
with the descent of the tank? Which has the with the descent of the tank? which has the
pr:eater compressibility-water or air? I have no books which will answer this question for me. If the compressibility of water is less, travel a greater distance in water than in air
A. The reply to your inquiry regarding the compressibility of water and air is that water
is nearly incompressible, and air is compressed to half its volume by an increase of pressure of 15 pounds per square inch. This increase
is produced by sinking the box to a depth of 34 feet in water. When the box is 34 feet half the box; the rest will be filled with water, which is of almost the same density as
at the surface. Water is compressed only 44 millionths by a pressure of 15 pounds per
square inch. The velocity of sound in water is not due to its density. It travels slower in denser substances. Sound travels much faster
in iron than in water or air. The velocity of sound is produced by the elasticity of the substance, as well as by the density of the sub
stance. The velocity in any substance varie directly as the square root of the elasticity divided by the square root of the density. See
any textbook of physics. 2 . In the same ssue, page 258 (9928), you say that July is the midsummer month of the southern hemis-
phere. Is not the sun directly over the Tropic of Capricorn on December 21, and hence is not December the midsummer month of the southou call our attention is a slip in the types, The midsummer in the southern hemisphere is
at the same time as the winter in the northern nemisphers. Every one knows that fact, and no one will be misled by the error, which was (9956) J. P. M. asks: Would you kindly decide this argument: 1. A says you
cannot make water hotter than 212 degrees, as it then becomes steam. C says water can be
made hotter than 212 degrees. A. Water canmade hotter than 212 degrees. A. Water can-
not be heated above its boiling point in an pen dish. When the barometer stands
30 inches, water boils at 212 deg. Fahr. the sea level the temperature of boiling wa uctuates about 5 degrees, due to changes in fair weather. Water in boilers can be heated
above 212 deg., and is always hotter than 212 deg. in steam engine boilers when steam is up. 2. A argues that all watches are the same as
far as works are concerned; that is, a $\$ 5$ watch far as works are concerned; that is, a $\$ 5$ watch
or $\$ 100$ one has just the same amount of that good watches have extra works in them. A. The works of cheap watches are very coarse and rough. Those of fine watches are highly finished, and run with much more perfect regu-
larity. Some watches have more wheels than larity. Some watches have more wheels than
others. This is a question the nearest watch (9957) E. P. writes:
the issule of March 24, 19 query 9919), I notice that you put an interval of 5, 6, or 11 years between years having 53
Sundays. In the list of such years you omit the years 1916, 1944, and 1972 . Now these
leap years will begin with a Saturday and end leap years will begin with a Saturday and end
with a Sunday, having 53 Saturdays and also 53 Sundays-the two extra days a leap year has over 52 weeks. Should not these years be included in the list, and the interval placed at 5 or 6 years only? A. By some inadvertence
we missed the leap years mentioned by our cor respondent from the list of years having 53 Sundays in the present century.
(9958) B. W. writes: Query 9916, by
A. R., Scientific American, March 17, 1906,
page 238, "Will you account for the universal
idea among seafaring men that ice sinks?" idea among seafaring men that ice sinks?
Answer: The floating or sinking of ice in water depends upon the relative specific gravity of
each. Clean ice will always float in water until it dissolves into water. Ice may become
so loaded with other matter as to cause its specific gravity to be greater than the water beneath it, and it sinks. My business from 1871 to 1878 caused me much travel over the
Missouri River, from Springfield, Dakota, on the north to White Cloud, Kansas, on the
south, a distance of about one hundred and ear. The Missouri River water is dirt thick The Winnebago Indians call it Ne-shuda (shuda,
dirt: Ne, water), dirtwater. The river's wide alley is a windy country, and clouds of fine sand may be seen almost daily passing over its waters. It is very winding in its course
southward, and has a swift current. Ice upon southward, and has a swift current. Ice upon
its surface sometimes forms four feet in thick ness, and generally sinks when warm weather omes. The thickness of the ice having the dirt upon and within the ice remaining intact in weight, the specific gravity of the remaining ice becomes greater than that of the water,
and it sinks. The same rule of nature is ap plicable to account for the sinking of icebergs within southern latitudes. There ice is slowly ormed in glaciers, and weighted by sand and their gradual descent to the ocean, into which hey are dropped. As the iceberg journeys outhward into warm latitudes and currents he ice is gradually melted, the stones, sand, and dirt remain in their original weight, the than that of the water, and what is left of the iceberg sinks beneath the ocean. "The uni-
versal idea among seafaring men that ice nks" is correct under certain conditions. A. The origin of the universal idea cannot be
explained by the fact that it is sometimes true in exceptional circumstances. The editor in resh-water ponds. Every one believed that the ice sank when it disappeared in the spring.
The query referred to asks for the origin of that idea, not for an explanation why ice may accretions of foreign matter. That is a very different question. The editor thinks the idea ice in a night during a warm rain, as he has often known it to do. We used sometimes to say it had gone out, sometimes that it sank. ably is true. The ice disintegrates, or breaks up into prisms and floats in small pieces, so
that the surface looks to be entirely composed of water, as it largely is. Seen from a distance one can see no ice. Where has it gone?
"It has sunk," say the native and the sailor while it is really floating just at the surface in small pieces, too small to be seen. (9959) E. J. writes: I would like you to answer this: I have a core $5 / 8$ inch
diameter, 7 inches long, made up of No. 22 . The primary is wound with two turns No. 18 , layers, one on top of another, then insulated them. I did this all through the coil. I used
4 and 5 volts in the primary, and have been unable to get a spark $\% / 8$ inch long. I made the tinfoil as per sketch. A. A coil made
with a primary with only two turns of wire
will not give a tain two layers of wire. The use of so much insulation between the layers of the secondary is unnecessary, and reduces the spark, since it removes the wire too far from the primary.
Fo say that you "used four and five volts the say that, you "used four and five volts in
the primary" means nothing. If you had said you used so many amperes, we could then
judge the matter. Two or three good cells will give current enough for a little coil such as you describe. Probably a quarter to three from it. It is better to get a good book like $\$ 1.00$, and follow the directions carefully in $\$ 1.00$, and follow the directions carefully in
building a coil. Time and money will be saved by first finding ou
afterward doing it
(9960) A. N. asks: 1. I am winding secondary of a 1 -inch spark induction coil duction Coils"). Would it increase the insulation in each of these sections to wind the wir on in layers, separating each by paraffined
paper, or would this heighten the tendency of the spark to jump through it
advise you to change the construction of the coil you are making after Nerrie's plans. Follayers in secondary is not needed, else Norrie improve your coil by putting paper between the layers, because you will separate the lay
ers farther from the primary. The oute layers will be in a very weak magnetic fiel if you put the paper in as you propose. Fol
low plans closely. 2 . How far will 1 -inch ceiver described in Supplement No. 1343 A. A 1 -inch spark will send a wire'less mes a coil only capable of making a spark 1 inch ong. A great coil witu the terminals 1 inch coil will with its terminals as far apart as i can send a spark. A 1-inch coil might per
haps send a signal one mile over water, and
1,000 feet over land. 3. In regard to ohms,
would not a fine wire offer less resistance t a. small current than a large current? There
fore, ought not some voltage be given in stat ing number of ohms resistance? A. The the current which is flowing through the wire An ohm is an ohm without reference to the amperes flowing through the wire. Amperes
should not be stated; if they should, all the books would state them. The writers kno their subject. 4. If a relay is wound for 100 10 ohms resistance? A. A 100 -ohm relay has 100 ohms of resistance in its coils. It is usua operate, rather than the resistances through which they will work. With magneto ringers it is usual to specify the resistance throug is one which will ring through that number of ohms. 5. How thick glass will 1 -inch spark
pierce? A. With a proper condenser a 1 -inch spark coil might pierce glass a few thousandth of an inch thick, though we have our doubts
about its piercing any thickness of glass. We have never tried it, and no data exist for s small a coil. 6. In X-rays, do you take
phatograph of the image on the fluoroscope or through a camera, or just let the shadow fall cast by dense objects are allowed to fall photographic plate which is wrapped in black paper. No camera is used for making an X-ray picture, or skiagraph. 7. In an in
duction coil, if there is enough current t duction coil, if there is enough current to
jump through air, why does not it jump through the thin insulation? A. Yaraffine shellac, and the rest are better insulators than
is the air, so that the spark jumps through air between the terminals of a coil rather than through the insulation in ordinary discharges Sometimes
coil ruined.
(9961) H. T. asks: The "ion" the periment. Into a drawn-out piece little ex glass tubing of this form put various sal solutions, such as $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathbf{M g} \mathrm{SO}_{4}$, etc., and nough to act as a sort of movable stoppe in the capillary tube. In introducing a cur
rent of about 8 volts, I found that the mer ent of about 8 volts, I found that the mer
cury traveled speedily toward the electrode and back again, when the current was re-
versed. If the experiment was carried on for some time, the mercury "thread" seemed to polarization and frequently broke in two omething to do with that. Has this experiment been tried before, and is there any reaon why the metallic ions might not be the ause of the motion of the mercury? A. The
xperiment you send us you will find in Hopkins's "Experimental Electro-Chemistry," page 12 , which we can send you for $\$ 3.00$. It was
published a good many years ago, we think, published a good many years ago, we think,
first by Wallace Gould Levison, in the Amer can Journal of Science. The direction
migration of the mercury to the negative indicates that its ions are electro-positive. The tube used
(9962) A. K. D. asks the advisability of using an electric motor in a barn for engine about 300 feet away, to which a dynamo is attached. The engine develops 18 used, what horse-power motor could be suc-
cessfully used? cessfully used? A. We see no reason why an
electric motor could not be used in a barn electric motor could not be used in a barn
for threshing or running any farm machinery. The commutator could be protecte from dust, The commutator could be protecte from dust,
and the danger from fire be made so small as not to be considered. A 10-horse-power dynamo should deliver $9 \bullet$ per cent
power, or 9 horse-power, to the motor.
(9963) C. W. says: Inclosed please ind ten cents in stamps in payinent for the opy of Scientific American containing your
explanation of the so-called puzzle of cutting sixty-four squares to make them sixty-five. I know that you published the correct solution
within the last few months, but have mislaid or lost my copy of the paper, so send for one. There are some "wise guys" in this neck of quare out of nothing, and won't believe me until they see your paper. A. The paper you issue of July 8, 1905 . We publish your letter eems to die hard, have begun to come into our office again. We wish our friends would anything but 64 . Credulity seems to be easy the human mind.
(9964) S. asks: Will you please sate whether or not it is possible for a man volts of electricity? A. The killing of a man f the current at all, certainly not directly upon the voltage. It is the amperes which The volts simply determine how many amperes This is according to Ohm's law. Amperes are equal to volts divided by ohms. Ohms are recurrent. This is just like pressure and quantity in flow of water in pipes, and the friction of the pipe to oppose the flow of the water
current at a high pressure the man will be be furnished the man may not be killed. It the resistance of the man is large, say 5,000 hms, and the voltage moderate, as say 500 and that will not instantly kill, but it will give a smart shock. Voltages such as you name are not usually large except upon longery dangerous, since the amperes are usually arge also. But the small generators and the lectrical oscillators which have such high current from these is insignificant and harm less. From what we have said it is evident t all. They simply push the current, elecricity, along. Men do not take volts of elecricity. Men take amperes, and amperes do the work.or damage as the case may be

NEW BOOKS, ETC

The Art of Lead Burning. By C. H.
 Company,
The author justly states that the mystery which has always surrounded the work of the lead burner, like that of all other handicrafts utside of or and effects that have a bearing upon it. The uthor has produced a thoroughly practical ook which can be used with advantage by the practical mechanic. The greatest fleld for the lad burner is in the chemical trades. The
illustrations are numerous and enlightening.
Lippincott's New Gazetteer. A Complete Gazetteer or Geographical Dictionary
of the World. Edited by Angelo Heilprin and Louis Heilprin. Philadelphia and London: J. B. Lippin
cott Company, 1906. 4to.; pp. 2,053. Price, sheep, $\$ 10$ net; half morocco $\$ 12.50$ net; patent index, 50 cents extra
A noble book, indispensable in every library public or private, and will be found useful in public for just half a century. The present edition is not the usual patched-plate book, but is a brand new edition, being printed from ew type from cover to cover. This publica the globe in its minutest details as it exists in the twentieth century. Statistics of popula tion, production, mining, manufactures, physical history, exploration, general history, etc., have
been gathered from the latest official censuses, domestic and foreign. Each one of its 100,000 notices, varying in length from a single line to mount of words, speaks for itself. A vast of special information not to be found in of-
ficial reports or the ordinary books of referficial reports or the ordinary books of refer-

Technisches und TÄgliches Lexikon By Oscar Klinckfleck. Berlin: Boll \& Pickardt, 1906. Pp.
This technical and practical German, Eng lish and French dictionary is to be published ages seventeen installments of about 48 pachnical each. The author's professional and duce a book which promises to be of great value not only for purposes of translation, but present time the first two wh present time the first two numbers have beeals
issued. As the title indicates, the book deals principally with technical terms, including those of military, naval, and general scientifi parlance, but it will undoubtedly be extremely useful in the discussion and translation
Ventilation of Buildings. By William G. Snow, S.B., and Thomas Nolan,
A.M., M.S. New York: D. Van
Nostrand Company, 1906.
32 mo .; pp. 85. Price, 50 cents.
Messrs. Snow and Nolan have concisoly and clearly defined the essential principles of ven-
tilation in this practical little book. The me tilation in this practical little book. The me but have been left for another volume in "Sci ion, particularly work deserves wide circula health, physicians, and others where time i lacking to go thoroughly into the theory and principle of the subject, and where a practical handbook is a first requisite. It also might where this important and is not dealt wit exclusively as a division the curiculum. Steam Turbines. By Carl C. Thomas

New York: pp. 287. Price, $\$ 3.50$. Pror. Thomas, well known as a sity, has produced in this book a theoretica work on the subject of the steam turbine of no little value. The book is well illustrated
with diagrams and engravings, and treats the difficult subject in a clear and brief manner It is not a handbook for the use of the un trained, practical engineer, but is of une Prof. Thomas, despite the fact that the de velopment of this particular utilization o steam has been so rapid that many of the
problems involved are still to be solved satis-
factorily, has given the fundamental principles
of steam turbine design in their logical order.
Foremost among these is the velocity of steam
flow under given conditions. Many of the laws
have been developed into simple and direct ex-
pressiens and are coupled with numerical and
graphical solutions illustrating the principles
involved.
INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued
for the Week Ending

April 24, 1906.

AND BACH BEARING THATDATE

The barker motor

THE LEADER OF ITS CLLSS.
.L. Batker, Norwalk, Conn.

$\stackrel{\text { Hor Eithor }}{\text { Ha }}$ or Power

FOR ROLLING
 THREADS.

BLAKE \& JOHNSO
BLAKE \& JOHNSON,

[pyen "How to Remember" semeratios
4E=2 $2=x=$ ead-Colored \& Flate Pencils, Rubber Bauds, 44-60 East 23d Street, New York, N.

Price 10 Cents each by mail Artificial stone.

SHPLEMENT	
Ent No. 1493 . ${ }^{\text {colic }}$	¢
Me MADE DYNAMOS Sci	
	$i_{\text {Too }}$
dYNAMO AND Motor combined	
desmied	
ECTRICAL MOTORS. Their 	$\left.\right\|_{\substack{\mathrm{Trer} \\ \mathrm{Tr} r}}$
Price $10 \overline{\text { Cents each, by mail }}$	
Order through your neessdealer or from	
MUNN @ COMPANY	Turbine, elastic fluid, J. Wilkinson......... Turbines, controller mechanism for multipl

HE ROOT BROS. CO., Plymonth, Ohio architect and builder. SCIENTIFIC AMERI-
CAN SUPPEMENT 1500.
THE SHRINKAGE AND WARPING
OF TMMBER. By Harold Busbridge. An excellent presentation of modern views
fully illustrated.
SUPPLEMEENT 1500. CONSTRUCTION OF AN INDICAT-
ING OR RECORDING TIN PLATE Monroe Hopkins. Fully illustrated. Sy SIEN DIRECT-VISION SPECTROSCOPES
By T. H. Blakesley, M.A. An admirahly written, instructive and copiously illustrated
article. SCIENTIFIC AMERICAN SUPPLEHOME MENT 1493. tain excellent articles with full drawings.

DYNAMO AND MOTOR COMBINED American Supplements 844 and 865
The machines can be run either as dynamos ELECTRICAL MOTORS. Their Con

Price 10 Cents each, by mail MUNN ® COMPANY

Skylight construction, J. Has
Slack adjuster, W. G. Price.
Slasder comb,

\qquad Telephone exchange system, E. Land
Telephone, extension arm. T.J. Skeller.:.
Teleppone signal, A. V. R. Fechtenburg.:
Telephone system, R. H. Manson.
 Telephonic device, It Kitsee

Temperature regulator, C. Bargamin
Ticket, A. I. Blanchard.

Tire, vachicle, pneumatic, E. B. D.
Tire, wheel, H. Maerker.
Toilet case, H. H. Byrne
Toilet case, J. P. Stubbleieid.
Tongue or shaft
Tools, diamond fastener for, C. D. P. G1
son
Torpedo, automobile, T. H. Wheless..
Tower structure, skeleton, R. L. Allen
Toy, mechanical, A W. Pococt
Transmission mechanis,
Tranter, tobacco
See Fly trap

Truss, G. Hove House.... Black
Tube expanding and
Cormick
Tumbler fexibie,
Tock,
lock

DRILLCMさCK

YT Asbestos and Masnesia Products EYYSTONE HAIR INSULATOR

 M, W2 SOMNS=MANYILLE CO.New York, Milwaukee. Chicago, Boston, Philadelphia, St. Louis. Pittsburg, Cleveland, New Orleans, Kansas
City. Minneapois, Little Rock, San Francisco, Los Angeles, 'Seattle, London.

WEL $\boldsymbol{\substack { \text { DRILLING } \\ \text { Machines } }}$

 williams bros., Ithana,

"It Is Self Starting"

Pou USE GRINDSTONES?

 The Cleveland stone co. SENSITIVE LABORATORY BALANCE. Balance winh weigh up to one pound and mill tura with a

TRADE MARKS
Beer
Ale and stout, C. Machen \& ${ }_{\text {diner }}$
e, ginger, White Re
Antiseptics for internal and external use, T .
${ }_{\text {s, }}^{\text {Anda }}$ American Toui Col
${ }_{\text {le }}^{\text {sease }}$, base, cricket, basket, and foot, A. J.
h tubs and sinks, standard Sanitary
teries, dry, Nungesser Electric Battery
teries, dry and wet, Ericsson Telephone
Beer, lager, William Peter Brewing erage, dry preparation for making intoxicating, J. C. En, Limited.
s and cakes, Huntley \& Pa
Boot and shoe dressing, F. H. You
manufacture, leather, Rice \& Hutchins.

Cibars, Rodriguez, Arguelles \&
Cibars sanche
Cleaning compund E. C. Davis
Clocks and watches, Western Ciock Manu
facturing Co. Cloth having a poiishea ©inish, j. Miilos Coats, vests, and trousers, sskes
Coffee, Clarkum, Coggin \& Joinson Co

Buys This Rubber Tire Wagon
 high arched axles; oil-tempered springs First quality material and finish. Worth nearly double our Factory Price. Wc ship for your examination, without
cent in advance, if desired, and allow
30 DAYS FREE TRIAL Money refunded on all purchases no
 $\$ 26.50$ to $\$ 1$ 50.00. 50 styles Harness, $\$ 5.00$ to $\$ 6$ UNION BUGGY COMPANY, 28 Saginaw Street, Pontiac, Mich.

:STANDARD

Whitewash Your Buildings A Perfect Ignition Device
 For Gas and Gasoline Engines

Faucet Water Motors

"Probably No One Thing

Has Given a Greater Stimulus to Saving Than Has the Development of Insurance, and the Endowment Policies in Connection With It."-From the Principles of Economics, by Fetter

Under this plan you can save money and insure your life at the same time.

Every Up-To-Date Man Should Look into Endowment Insurance. For an annual payment by him (which is never increased) he is guaranteed the return of a sum of money, with dividends added, all to be drawn out upon reaching a certain age.

He also has the Company's pledge to pay the full amount of policy in the event of death, even if it were to occur the day after the payment of the first premium

Prudential Policies have many benefits such as cash loans, cash dividends, cash surrender values, paid-up insurance and automatic extended insurance. No restriction as to residence, travel or occupation of policy-holder.

Would you like to learn more about The Prudential's Excellent Endowment Policies? If so, fill out and mail coupon to-day. We will send the information by next mail.

The Prudential

JUST PUBLISHED Electrician＇s Handy Book

Prof．T．O＇Conor Sloane，A．M．，E．M．，Ph．D． Handsomely Bound in Red Leather， with Titles and Edges in Gold Pocketbook Style

Price $\$ 3.50$ A thoroughly practical up－to－date book of 768 pages，covering the entire field of electricity．Contains no useless and can be easily understood by the student，the practical worker，and the

every－day working electrician．The ad－ vanced electrical enginieer will also re ceive great benefit from its perusal and
study． study．

Gas，Gasoline and Oil Engines

Including Gas Producer Plants

By Gardner D．Hiscox，M．E． Price $\$ 250$
The only complete American book on the subject for Gas Engine Owners，Gas Engineers，and intending purchasers of gas engines，treating fully on the con maintainance of gas，gasoline，kerosene， and crude petroleum engines．
The new rewritten，enlarged and re－ vised I5th edition of this work has been prepared to meet the increasing demand Its 450 pages give general information for everyone interested in this popular motive power，and its adaptation to the increasing demand for a cheap and easily managed detor requiring no licensed engineer．It is fully illustrated by 351 Engravings and Diagrams．

MODERN MACHINE SHOP CONSTRUCTION
Equipment and Management By Oscar E．Perrigo，M．E． Nearly 400 Large Quarto Pages，Illustrated by over 200 Engravings Specially Made by the Author Price $\$ 5.00$
A work designed for the practical and every－day use of the Architect who de－ signs，the Manufacturers who build，the Engineers who plan and equip，the and for the information of every Stock－ holder，Director，Officer，Accountant， Clerk，Superintendent．Foreman，and Workman of the Modern Machine Shop and Manufacturing Plant of Industrial America．

SEND FOR DESCRIPTIVE CIRCULAR

Electric Wiring， Diagrams and Switchboards

By Newton Harrison，E．E．

nstructor of Electrical Enyineering in the Newark

 PRICE \＄1．50A thoroughly practical treatise cover ing the subject of Electric Wiring in all its branches，including explanations and and greatly simplify the subject．Prac－ tical every day problems in wiring are presented and the method of obtaining intelligent results clearly shown．Only rithmetic is used．

MUNN \＆CO．，Publishers， 36I BROADWAY，NEW YORK

Paint，liquid，Geol Derange Co．Wetherill \＆
Paints and colors．C．A．Wwilley Co．
Paper，blotting，Eaton－Dikeman Co．
Paper，blettion
 Perfumes，Inciuding extracts，essences，etc．，
Periodicalmer montion

Potatoes，ririsb and seseet，Eastern Shore of

Tewdow perfüed．e．Palimer

Railway C © ． $\mathrm{A} . \mathrm{T}^{2}$ Tompson Scenic

Remedies for certain named diseases，M：
Remithtenstein

FREE FOR YOUR DESS

A Loose Leaf Book

The follow

Concrete Number of The Scientific American Published May 12，1906．Price 10 cents

[^0]

MILLS FORALL MATERIALS.

Clearing Sale Silighty Typewriters
 $F \mathrm{FR} E \in E=A$ New Odell Typewriter ${ }^{\text {mproved }}$ No. OnCredit

Scientific Jmerican.

Learn Plumbing Plastering Bricklaying
The greatest demand in the history of the world exists today for mechanics. Coyne Bros. Co. Trade Schools NEW YORK chicago

Experimental ${ }^{\circ}$ Model Work

NOVETIISS \& PATEETIDD ARTGLES

STELEST:

Telegraphy
Wh Macical Apparatus. 25c. Parlor Tricks Catalogue, free.
MARTINKA \& CO... Mfrs., 443 Sixtb Ave., New Vork. MASON'S NEW PAT. WHIP HOIST

STHELTPTVITER THE

Learn watchmaking

We teach it thoroughly in as many months as it
formerly took years. Does awa with tedions appreti-

 quaty Give up tbe old expensive vise metbod
and use our quick and powerful nand
power benders. Form angles in stocis up Wallace Supply Co., $\quad 921$ Giarden City Block, Chicago, III.
W. B. KNIGHT MACHINERY CO.

Mfrs. of Special Machinery and Tools

New York Belining ani Pading Co． LIMITED

Manufacturers of High Grade

Rubber Belting

Diaphragms，Dredging Sleeves， Emery Wheels；Air Brake， Steam，Suction and Garden Hose，etc．，Mats，Matting， Interlocking Rubber Tiling． Also manufacturers of moulded and special rubber goods of every description．

Write for catalogue．

91－93 Chambers St．，New York灰章 CMARAER Stationaries，portables，Hoisters．Pum
ss．Savina
with byoname boat outats，Combine
Ga soline，Gas，Kerosene． Send for Catalooue
State Charter gas engine co．．Box 148，Sterling．ILL What IS Daus＇Tip－3Top？

 TheRelir A，B．Daus Daplicator Co．，DausBldg， 111 John St．，Iew Fork

 Mones．Lists Free．Machines，Bicyclep．Toul ecte．Eave PREPARED R．$^{\text {P，MARTIN，}}$ | for Manufacturers use |
| :--- | :--- | :--- |

LUFKIN
TAPES AND RULES

 （8）No EXPERITNCE NECESSARY 0 泪

Bausch QLomb

 MicroscopesIlthis is an inyitation to send for our

 morrares everswhere bes
workers hio know the ebsi
Bausch \boldsymbol{Z} Lomb Optical Co． ROCHESTER，N．

 economical flange packing in ex－ istence．

Can＇t blow Rainbow out．
For steam，air，hot or cold water，acid and ammonia joints．
Beware of imitations．
Look for the trade mark－the word Rainbow in a diamond in black，three rows of which extend the full length of each roll．

Manufactured exclusively by PEERLESS RUBBER MFG．CO．

16 Warren St．，New York

DETROIT MVton New Model AZJOLOMARLNE MOLOT 1906 The Smoothest Thing That Runs
 From foundry
MoTOR passes in its various stages under one organization head We are making 10,000 Auto－Marine Gasoline engines
this year，not merely assembling parts made in various factories． WE MANUFACTURE THE MOTOR COMPLETE and guarantee every motor we make
 Write for Catalog describing Auto－Marin DETROIT AUTO．ITARINE CO 75 E．Congress St．，Detroit，Mich 95 Liberty Street，New York
The Bourse，Philadielphia The Bourse，Philadelphia
The only builders of Auto－Marine Engines

Miniature Electric Railroad

WITH TROLLEY CAR，TRACK AND BATTERY

Write for Catalogue＂B＇
A full line of locomotives and trains，tracks，bridges namos and motors．
The Carlisie \＆Finch Co 233 East Clifton A
CINCINNATI

You MAI PXCEED THE SPEED LIMIT BUTYOE WIL NEVER BE STOPPED BY THE
 STRONG－FAST－SAFE

5）
Thorough mechani－ cal finish－so fine and minutely wrought as to bespeak more than ordinary pains and skill－is one of the many features that make the
CIIILILG
for its smoothness of running and virtually trouble－proof in its construc－ tion．This carefulness of building，coupled with me－ chanical principles of proven correctness，result in never－ failing dependability of ser－ vice－in surprising economy of maintenance．

Cadillac value is most apparent under the severer tests of travel．Ask your dealer to give you a demon－ stration．His address and illustrated Booklet N sent on request．
Model K， 10 h．p．Runaboat，$\$ 750$ Model M，Light Touring Car， 8950 Model I, 30 h ．p．Touring Car，$\$ 2,500$ Model L， 40 h ．p．Touring Car，$\$ 3,750$ All prices f．o．b．Detroit．
Cadillac Molor Car Co．， Detroil，Mich．

Electrical Engineering
and Experim ental Work of Every Description We have every facility for producing first－class work
promptly our factory is equipped with modern ma－ Ener ${ }^{\text {C．}}$ F．SPLITTDORF
TOOL KNOWILDGE CHEAP

[^0]: This number will contain articles on reinforced concrete and its applications；concrete block machinery；concrete mixing machinery； applications of concrete in general．

 The information conveyed will be essentially practical．A special effort has been made to select those phases of the industry which will be of interest even to the man who is closely identified with it．
 Munn \＆Company， 361 Broadway，New York

