

NEW YORK, APRIL 7, 1906.

View of Power Station from River, Showing Coal Tower in Operation.

Coal Bridge and Cable Railway Over Which the Coal is Taken from the Ceat Tower to the Coal Bin.

SCIENTIFIC AMERICAN

ESTABLISHED 1845

 MUNN \& CO.. - - Editors and Proprietors Published Weekly atNo. 361 Broadway. New York
TERMS TO SUBSCRIBERS

NEW YORK, SATURDAY, APRIL 7, 1906

The Editor is always glad to recelve for examination illustrated Titcles on subjects of timely piterest. lif the photograpls are

 shurp. the articles short, and
will receive special attention.
wit revilar spe

the behring sea tunnel.

It is unfortunate that a project for the construction of a railroad in Siberia, to run from Behring Sea to a junction with the Siberian Railroad, should be handicapped at its very outset by identifying it with the absurd and impossible proposal to build the railroad tunnel beneath Behring Strait. Like the English Channel tunnel, the Behring Sea suggestion is one that seems to have taken a firm hold on the mind of what might be called the engineering romanticists, and it takes only a very slight occasion to open the flood gates to a whole mass of rhapsodical outpourings about these "engineering triumphs" and "masterpieces of modern construction," which are to bring "unlimited benefits to commerce." As a matter of fact, not even the English Channel tunnel, which would certainly command from the very day of its opening a heavy traffic, if not profitable financial returns, is likely to be built for several decades to come, if ever. As to the Behring Sea tunnel, it would be located at a distance of 3,000 miles from the Siberian Railroad, and about 2,000 miles from the nearest point on the most northerly of the transcontinental railroads in America.
Undoubtedly the activity in railroad construction which is evident to-day in Alaska will be permanent; and if the country fulfils its great promise of unexplored mineral wealth, no doubt the Alaskan railroads will be carried well up to Behring Strait. It is also certain that Alaska will ultimately be connected by an all-rail route with the railroad system of the rest of the United States. The prospects of a connecting railroad in Russian territory are at present apparently dependent upon the success of an American company, which has been seeking concessions from the Russian government. Their efforts, according to recent cable dispatches, have been successful, the Czar being favorably disposed toward the enterprise. This company, which believes that Siberia is as rich in gold as Alaska, offers to construct a tunnel and build a road 3,000 miles long from East Cape to Kansk, in the goverument of Yeniseisk, where it will join the Siberian railroad; and in consideration of this, the company is to receive alternate sections of eight miles un either side of the line, together with valuable mining conces sions. Should this road be built, its source of revenue would be entirely local, and any returns must necessarily wait upon its settlement by immigration and the development of the supposed mineral wealth.
That there will ever be a considerable amount of through travel by way of Behring Sea is very unlikely, or that a Siberian-Alaskan route would ever become, even in the event of the construction of a tunnel, a popular route between the United States and Europe. The construction of the tunnel would be an enormously costly undertaking. With its approaches it would be not far from forty miles in length, and because of the extremely high cost of lebor in that inhospitable region, the total cost would probably exceed one hundred million dollars. But the most serious question of all, as showing the impracticability of a tunnel, is that of the great depth to which it would have to be carried. The depth of water is variously stated at from 160 to 170 feet, which means that the sub-grade of the tunnel would have to be at minus 200 feet, in order to secure firm overlying material, and a rock which was impervious to water. Should any fissures be encountered at this depth, the tunnel would have to be abandoned; for the use of the pneumatic process would be out of the question, the corresponding air pressure of about 90 pounds to the square inch being, of course, fatal to life.

SEVEN-HUNDRED-MILE ELECTRIC TRANSMISSION. It is gratifying to note that the technical press has sounded a note of warning against the preposterous proposal to generate hydraulic-electric power at the Victoria Falls of the Zambesi River, and transmit it over a distance of 745 miles for use in the gold mines at Johannesburg. But, although the proposal to deliver this power at a figure that would be at once liver this power at a figure that would be at once
economical to the consumer and profitable to the com-
pany has been ridiculed by the technical press, the lay public is liable to be misled by a scheme which, on the face of it, would seem to hold out flattering prospects of success. At the present time the most important transmission of energy for commercial purposes is that from Niagara to Buffalo, where the distance covered does not exceed about 20 miles. The longest transmission, according to present information is that which is in successful operation in California over a distance of about 220 miles, so that the proposed transmission line in South Africa will be 340 per cent longer than anything that has yet been attempted. According to Prof. William E. Ayrton, who not long ago made a severe criticism of the scheme in the London Times, the Johannesburg mining district consumes about 150,000 horse-power, at n average cost of $\$ 100$ per horse-power per year. Niagara sends 24,000 horse-power to Buffalo, where it is sold at about $\$ 125$ per horse-power per year, and Bulfalo, as we have noted, is distant from Niagara only 20 miles. Furthermore, in the neighborhood of Johannesburg are abundant supplies of coal, of which an excellent quality can be delivered on the Rand for from $\$ 2.60$ to $\$ 2.00$ per ton. Even if the Victoria Falis plant were to be built, and a great transmission line constructed, it is not likely that the important minng industries in Johannesburg would be willing to trust the operation of their costly plants to the integrity of a few copper cables extending for over 700 miles through the wilds of a savage country.

CHEAP ALCOHOL FOR MOTORS.

Alcohol is so important a fuel that its industrial use should not be restricted by heavy taxation. No doubt the laws which render its use burdensome to those who would employ it as an engine fuel have been enacted in the interests of the common good, and yet some legislative encouragement should be given to the employment of low-grade industrial alcohol which is unfit for consumptıon without in any way removing existing limitations to the sale of wines and liquors. The benefits to be derived from a free use of alcohol in the arts have been clearly set forth by Prof. Elihu Thomson in a statement made before the Ways and Means Committee of the House of Representatives, which statement will be found summarized in the folowing:
At the works of the General Electric Company in Lynn it Deutz alcohol engine-a type of engine made in Germany especially for use with alcohol-was re= cently tested and the results have been such as to prove without doubt the entire suitability of alcohol, if cheap enough, as a fuel for internal-combustion ensines. This particular engine is to be sent to the Island of Cuba and coupled to a dynamo for lighting. It will be operated with the cheap Cuban alcohol, which s sold there at about 12 or 15 cents a gallon. A few gallons of this alcohol was obtained and used in the tests and it was found to be a high-grade spirit containing 94 per cent alcohol by volume and 6 per cent water, or about 90 per cent alcohol by weight. While it is not methylated or denatured, there is no question that the behavior in the engine of denaturated or methylated spirit would be identically the same as with the pure-grain alcohol.
To obtain this sample of Cuban alcohol it was necessary that an import tax of $\$ 4$ a gallon be paid with other charges, which increase the cost of material enormously as compared with its actual value in Cuba.
The experiments developed the fact that alcohol is suitable as a motor fuel even when it contains as high a percentage as 15 per cent of water. Notwithstanding the fact that the heating value of alcohol, or the number of heat units contained, is much less than that in gasoline, it is found by actual experiment that a gallon of alcohol will develop substantially the same power in an internal-combustion engine as a gallon of gasoline. This is due to the superior efficiency of operation when alcohol is used. Less heat is thrown away in waste gases and in the water jacket.

The mixture of alcohol vapor with air stands a much higher compression than does gasoline and air without premature explosion, and this is one of the main factors in giving a greater efficiency. It follows from this that, with alcohol at the same price as gasoline, the amount of power developed and the cost of the power will be relatively the same so far as the fuel itself is concerned, but on account of the higher efficiency of the alcohol, less cooling water is required, or a less percentage of the heat of combustion is communicated to the cylinder walls of the engine. The exhaust gases from an alcohol engine carry off less heat. They are cooler gases.
Exhaust gases from a gasoline or kerosene engine are objectionable on account of the odor. In the tests of the Deutz alcohol engine there was absolutely no such objection with the alcohol fuel, the exhaust gases being but slightly odorous, or nearly incadorous. Alcohol possesses a considerable tolerance as to richness or poorness of the mixture in the engine, and even when there is considerable excess of alcohol for the air the exhaust is not disagreeable in odor, a con.
dition which with either gasoline or kerosene leads to a smoky, bad-smelling exhaust. The importance of a fuel which does not produce disagreeable exhaust gas is greatest in the case of stationary engines of considerable power, as in that case the exhaust is emitted in one locality and may become a source of nuisance. This has often been experienced with gasoline or kerosene engines and has tended greatly to limit their application, particularly in densely built-up sections.

A large number of agricultural products are easily capable of being converted into alcohol, and such products as are unmarketable, either from overabundance of crops or defective growth or damage, are still avail able as sources of supply. Hence each agricultural district would be able to supply itself with all the motor fuel needed and at the same time produce for other districts. Inasmuch as alcohol can be stored in tanks for an indefinite period without change in its nature, any surplus production of alcohol can easily be taken care of. A prominent beet-root sugar manufac turer gave it as his opinion that from the waste of the beet-root sugar industry alcohol could be produced at a cost of about 10 or 12 cents per gallon. It is probably true that from other agricultural wastes such as fruit parings, fruit partly decayed, surplus corn, etc., a cost equally low might be realized.

It is reasonable to infer that, freed from tax, there is no possible substitute for this valuable fuel which could be supplied at such a low cost. It may be mentioned in conclusion that the efficiency-that is, the ratio of the conversion of the heat units contained in the fuel into power-is probably higher in the alcohol engine than in engines operated with any other combustible, and doubtless, on account of the comparative newness of the alcohol engines, there is still room for some improvement in that respect.

a Practical application of the aversion of

 EELS FROM LIGHTAccording to the Biological Society of Copenhagen a very interesting and novel experiment is shortly to be made in the northern portion of the narrow straits called the "Little Belt." Electric lamps are to be fixed at the bottom of the sea, with a view to prevent ing the conger eels from making their way out into the open sea, to the great detriment of the coast fishing industry. Eels belong to the Murænidæ, a family of physostomous fishes distributed in almost all fresh waters and seas of the temperate and tropical zones The two British forms are the conger (Conger vulgaris) and the common eel (Anguilla vulgaris). The conger is scaleless, and has a wide distribution in the sea; it reaches a length of 8 feet, but rarely exceeds 6 or 7 feet.
The eel is a peculiar creature in many ways, and its propagation has always been involved in mystery; the floating eggs of some species of eels have been found in the Bay of Naples, and the young have been recognized in small, peculiar, transparent fish, formerly known as Leptocephali, which, by the bye, undergo interesting transformations. It appears certain that eels migrate into the sea to spawn, that the spawn is pelagic, and hatches in the sea, where the young undergo their transformations. The males are smaller than the females, and the eggs are very numerous. Eels are much esteemed on the Continent and in England, London boasting of several eel-pie shops, and fish restaurants where stewed eels and eel soup are prominent items of the bill of fare. In Scotland there is a great prejudice against them, and also in some other countries stch as Abyssinia. Eels are imported largely from Holland and Denmark, in which latter country the experiment referred to is being made.
Another peculiarity of the eel is that it shows a marked fear of light; to such an extent is this the fact that the conger will not migrate to the open sea when the moon is at the full. This weakness is to be turned to good account, in order to confine the congers withia the limits of the Little Belt; this will be done by having the northern egress of the straits brilliantly illuminated by means of groups of powerful electric lamps securely fastened at the bottom of the sea, so as to control the point of exit in question.

THE CHANCES OF LIVING IN A MODERN BATTLE.

In Homeric days a battle was a conflict of armed mobs. The nearer you got to your assallant, the beter was your chance of killing or being killed. The bigger the man, the better were his chances in the strife. In these piping times of mechanical wartare, the situation is reversed. Battles are fought at ranges of a mile or so. The smaller the man, the less are his chances of being hit. An ingenious mathematician has figured out that perhaps the casualties on the Japanese side must have been considerably less than those of the Russians in the recent war, if it be assumed that the marksmanship of each was equally good.
The advantage of the Japanese was inversely as the cubes of their height and breadth. The average targets offered by each to the enemy are as the cubes of 1,585 and 1,642 , or as 106 to 118, an advantage in favor of the Japanese of about 12 per cent.

an open letter to the mayor.

To the Honorable the Mayor of New York City
In making the departure from the conservative policy of this journal, which is involved in our addressing the present open letter to the Chief Executive of this city, we believe that your Honor will credit us with being actuated solely by motives of concern for the interests of the great municipality over which you have always exercised such a faithful oversight.
We feel that sufficient justification is found for this letter in the fact that its subject matter is such as comes peculiarly within the province of a journal which, for the past sixty years, has devoted much of its space to the exploitation of the great engineering structures that have so largely contributed to the fame of the city of New York.
In the discharge of your multifarious duties, you must necessarily depend for information and guidance upon the representations made to you by the heads of your many departments; and in cases where the subject matter is of a purely technical character, as, for instance, in those coming within the province of the bridge department, the correctness of your final judgment must necessarily depend upon the completeness with which all sides of any subject of controversy are laid before you by your technical advisers.
The object of this letter is to present for your consideration certain facts regarding the present deplorable delay in the construction of the Manhattan Bridge. We believe we are justified in saying that among all the important public works now under con struction, there is none so greatly needed as this; and none, therefore, in which more strenuous effort should be made to facilitate rapid construction. Yet, as mat ters now stand, we are confronted by the astonishing fact that, after two and a quarter years of incum bency of office, your Bridge Department has not only done nothing toward the actual erection of the steelwork of this bridge, but the specifications are not even yet in shape for the bridge companies to put in their bids. Considering the urgency of the work, this alone, it would seem to us, is a delay which approaches, if it has not already reached, the proportions of a public scandal.
The situation is greatly aggravated by the fact that, when the present department took office, it found on file a complete set of plans for this very bridge, which had been designed by engineers of acknowledged authority on suspension bridges, and approved by a non-partisan commission of some of the most eminent bridge engineers in the world. That the indorsement of this commission was in the highest degree authoritative, will be evident to your Honor when we mention that it included the late Mr. Morison, a past president of the American Society of Civil Engineers, and Mr. Theodore Cooper, whose Specifications for Bridges are standard throughout America. The plans which your department found on file had been drawn with a special view to economy of cost and rapidity of erection; features which were gained largely by the substitution of the eye-bar chain for the wire cable. The expert engineering commission referred to indorsed the plans in every particular. Had bids been called for and the work pushed forward, it is certain that the bridge would at this time have been threefourths completed, with the prospects of its opening within the period of your present administration.
In spite of the city's urgent need of the bridge, the engineers of your Bridge Department, who must have been aware that the indorsement of engineers of the high professional ability of the members of the expert commission placed the practicability of the eye-bar plans beyond question, took the astounding course of ignoring these plans altogether, and committing the city to the delay and expense involved in preparing a new set of plans of their own.
This action has involved already an expenditure of $\$ 100,000$ for new plans; a delay of two and a quarter years in the construction of the bridge; and a lawsuit, due to an illegally-drawn specification, which may easily cost the city $\$ 500,000$ in damages. In justification of their action your Bridge Department has alleged that the eye-bar cable design would cost more and take longer to build than the wire-cable design. It has been suggested by this journal that in order to place the two sets of plans on an even basis, they both be submitted to an independent board of engineers for comparison. Your Bridge Department has always opposed, and very strongly opposed, this suggestion.
In order to ascertain from the bridge companies, who will be likely to bid on the Manhattan Bridge, their opinion as to the merits of the two designs, letters were recently sent by the Merchants' Association of this city to several of the leading firms asking for their opinion. They replied that they would be prepared to build eye-bar cables which would be up to the Bridge Department specifications; that the bridge would be cheaper to build; and that it could be built in less time than a bridge of the wire-cable type. They also stated that they would be prepared to bid upon the plans of the eye-bar cable bridge as they now stand on file in the Bridge Department.

Although some work has already been done upon the cable anchorages, we are in a position to assure your Honor that, by a piece of good fortune, they have been constructed of such a form and of such size and weight that they will serve their purpose equally well for either type of bridge.

Summing up, we beg your Honor to consider the following facts as between these two sets of plans:
That the eye-bar plans were drawn by engineers who, having in view the desirabinity of quick construction, adopted the eye-bar system because of its great facility of erection and smaller cost.
That these plans were submitted to an independent board of bridge engineers of high professional vc_{F} acation, who gave them unqualifip, ment.
That several bridge-manfacturing companies have stated (1) that they are preparad to bid unnn thplans; (2) that they can furnish eye-bars of the size and structural quality specified; and (3) that the bridge can be built more quickly and for considerably less money than one of the wire-cable type.
That the wire-cable plans, as completed by the Bridge Department, have never been submitted for the consideration of any outside board of experts.
That your Bridge Department officials have, on the contrary, thrown every obstacle in their power in the way of such discussion of these plans by an independent commission.
That the "strain sheets," or figures showing the calculations of strength of the various parts of the bridge, from which alone any comparison of the wire with the eye-bar design could be instituted, have never been made public, even to the contractors-an absolutely new procedure in the history of bridge building in America.

That this premeditated and carefully-guarded secrecy has raised an inevitable and very reasonable doubt in the minds of the technical world, in which we strongly share, as to the ability of the wire-cable plans to stand comparison with the plans for which they were substituted.
Finally, and in view of the above facts, we respectfully submit to your Honor, that in order to safeguard the interests of this city in this matter, it is advisable that you should instruct the engineers of your department to offer both sets of plans for bids, and thereby make sure that, whether the eye-bar or wire-cable type be selected, the city will secure the cheapest possible bridge in the least possible time. The Editor.

THE MODERN PHILOSOPHER'S STONE.

One interesting deduction can be made as a result of the disintegration of radium into helium-a deduction which has a great bearing on the ancient problem of the transmutation of baser metals into gold, and which has been admirably set forth in a recent paper by Prof. Frederick Soddy. Although we cannot yet transmute one metal into another, we know very well why that has never been accomplished. Radium evolves for every gramme weight 100 calories of
heat per hour and since in a year only one-thouheat per hour, and since in a year only one-thousandth part changes, it follows that the total energy in the complete disintegration of a gramme of radium must be enormous. It is roughly about a million times that given out by a similar weight of coal burning. If 30 milligrammes of radium were all to disintegrate suddenly, the effect produced would equal the explosion of about a hundredweight of dynamite. Uranium in its complete disintegration produces radium, and hence the amount of energy evolved must be as much greater than in the case of radium, as the whole is greater than the part. If we could artificially accelerate the rate at which radium or uranium disinte grates, we should, on the one hand, have achieved transmutation of a heavier element into lighter ones, and, on the other, have rendered available for use a new supply of energy a million times more powerful than any source at present known. If we succeeded in artificially transmuting uranium there is little doubt that the same means would be applicable to the other elements. Hence the supply of energy would be inexhaustible. But let us see what the old attempt of the alchemist involved. When he was concerned with building up a heavy element like gold from a lighter like silver, he was attempting a most profitless task. The energy absorbed would cost far more than the value of the gold produced. The energy of some hundreds of tons of coal would have to be put into the silver to turn it into gold. But where he was attempting to produce gold out of a heavier element like lead, not only would he have got the gold from the lead, but also a store of energy would have been released in the change of far more intrinsic and commercial value than the gold.
Is radium ever likely to be of any practical use? It may, or it may not, light our lamps or drive our motors. The assured certainty is that if it is ever made to do either of these things, man as we know him will quickly follow his steam engine and dynamo into the museum. At present we have not found how to control the gigantic forces, or to affect the tremendous processes we have so lately discovered, and we never
may. The important point is that by these discoveries the relations of mankind to Nature have undergone a certain change, and he has caught a glimpse of some latent possibilities within his legitimate destiny which cannot be effaced. Energy is the life of the physical universe. You cannot multiply the existing store by a million and leave things as they were. But the recognition of the internal energy of matter has done this within the progiess of the century which has just begun. A journey to the moon to-morrow may rank with the half-penniy $n \rightarrow r$ ride of to-day, or the warming ge rouse with the thawing of an Arctic continent To-day, so far as any use of the new knowledge is concerned, the one is as impossible as the other, but none would venture to deny to the future the possibility.

A NEW APTY SIGNALING APPARATUS.

Signaling from station to station is not the easy matter it seems. In order that an object on shore used as a signal may be seen by the observer on a tug, 9,000 yards away, there must be a strong contrast of color between the signal form and its background; else the form cannot be distinguished from the background. First of all, then, this contrast of color must be secured. How the obstacle may be overcome is pointed out by Capt. Thomas E. Merrill, of the Artillery Corps, in an article published in the Journal of the Military Service Institution. Broadly speaking, his apparatus is constructed very much like a huge window-shutter, inasmuch as it depends for its effect on the simultaneous movement of a number of hinged boards.
Capt. Merrill finds that the objects used to represent signals must be all either white or black and their background of the opposite color. The easiest background to provide is a dark one. A grass or earth slope, while of course not black, will generally answer the purpose. Then the signal forms must be white. A white surface in shadow shows dark at long distances. Therefore, in the general case it is necessary to use a surface whose face toward the observer is so inclined as to not be in shadow.
At Fort Heath a plane surface 15 by 40 feet with a fall of fifteen feet in the forty has been found to work very well when not in shadow, and on account of its inclination, fairly well even when in shadow.
The plane surface consists of inch boards each a foot broad and fifteen feet long extending across stringers that run parallel with the long direction, there being forty of these boards. Every fourth board from the top is hinged to the preceding board, and all the hinged boards are so arranged by a system of levers and counterweights that all can be simultaneously raised to a vertical position or lowered to a position where they form part of the plane surface.
The plane surface is painted white. The underside of the hinged boards and the stringers under the hinged boards are painted black. When the hinged boards are vertical the apparatus looks black from the front because each hinged board covers the preceding white boards to such an extent that they are invisible to an observer situated to the front and on a slightly lower plane.
The operation of the apparatus resembles that of the heliograph. Normally the white surface is in view. The observer on the tug watches the white surface. When a signal is to be sent the white surface disappears, due to the raising of the hinged boards. The apparatus has been found to work almost as rapidly as the heliograph and (an important advantage) is easily operated by one man.
The appearance presented to a distant observer when a message is being sent is as though a vertical square 15 feet on a side changed uniformly throughout its entire surface from black through all the intermediate shades to white and vice versa. At a distance one does not see, as the square changes from black to white, a succession of bands of white increasing in width until the entire surface is white, as one might at first thought expect, but just a uniform change in color over the entire square. For artillery target practice a single letter would indicate a prearranged command.
The signal apparatus described was used with complete success for the entire subcaliber and service practice of Forts Banks and Heath during the fall of 1905. During the service practice the range of the tug varied between 4,000 and 7,000 yards. The practice lasted from about $8: 30 \mathrm{~A}$. M. until about 4 P . M. the same day. It is safe to say that at least one hundred signals, each a single letter, were sent during the day. Not one was repeated and not one was misunderstood.

A Swiss company has received the order for equipping the Valle-Maggia Railway from Locarno to Bignasco on the single-phase system. The line is 17 miles long, with a maximum gradient of 3.3 per cent, and the gage is 3 feet $31-3$ inches. A trolley voltage of 5,000 volts is to be employed. It is intended to obtain the necessary power for working the railway from a waterfall.

A COMBINED LONG AND SHORT RANGE AUTOMOBILE SEARCHLIGHT.
An automobile searchlight, called the Besnard projector, has just been brought out, which is provided with means for suppressing, at will, the blinding effects of such lights. The optical part of the apparatus comprises a lens of long focus and a hyperbolic reflector. Optical diagrams of this reflector are represented in Figs. 1 and 2, which show that the projector is capable of casting both a long-range beam and a short-range or local cone of light. As shown in Fig. 1, the rays of the powerful long-range boam are rendered parallel by a lens and a hyperbolic mirror M.

Fig. 1. -Diagram of Arrangement for Long-Range Illumination.

The combined effect of the lens and mirror is to project the rays as if they emanated from the common focus f, whereas the flame is actually located at the second focus F of the hyperbola. Due to this arrangement, it has been possible to utilize a powerful lens cf wide diameter on a projector of comparatively small size. The dotted lines of Fig. 1 indicate the cumbersome dimensions that would be possessed by the projector, were the hyperbolic reflector not used. Fig. 2 shows the effect of the lens upon the rays coming directly from the flame F, which are refracted in a divergent beam that produces a very brilliànt and spreading light in a zone near the vehicle.
The long-range beam and the local cone combine, as in Fig. 3, to form a stream of light that overspreads the entire road from the origin of the luminous cone in front of the carriage to a very great distance ahead. The short-range light provides a luminous cone of such an extent as to permit of seeing objects in the immediate vicinity of the automobile, and this proves very useful on mountain or winding roads or at dan gerous turns. The illuminating power of the long-range beam has its disadvantages in certain sur roundings. For example, pedestri ans in cities are discommoded by the glare of the searchlight to such an extent, that Paris and several other municipalities of France have been compelled to forbid the use of blinding lights within the corporation limits. Then, again, it is apt to frighten horses and cause sericus accidents. Finally, there is no chauffeur who has not himself been blinded by the searchlight ot an oncoming automobile at the moment when it was most necessary for him to attend to his steer ing.
A very ingenious arrangement applied to the projector permits of obviating such inconveniences. In Fig. 1 a disk is shown which may occupy either the dotted position D, behind the flame, or that of D indicated by full lines in the top of the lamp. In the first position D, the disk intercepts the luminous rays which are directed toward the reflector, and thus suppresses the powerful long-range beam of light. However, the local illumination (Fig. 2) persists, and permits the driver to make his way in a lighted city, or even on the highway at a reduced speed. If, on the contrary, the disk be raised to the position D_{1} in the top of the lamp, the en tire light of the projector will be brought into play. Fig. 3 shows the intense light that the projector throws upon the road when in full operation, and Fig. 4 the non-blinding light produced after the disk has been lowered. - Translated from L'Automobile for the Scientific American.

The Kashmir electric supply ma chinery will be made in America.

Fig. 3.-The Brilliant Illumination Produced by the Combined Long and Short Range Beams.

Fig. 4.-Lighting the Road With the Short-Range Beam. a combined long and short range adtomobile searchlight
activity will ensue on the Pacific Ocean which will astonish the world. It is too late this year to get the full development, but one year from now, unless unforeseen causes intervene, there will be a wonderful Japanese fleet afloat, and every one of the nations which have practically monopolized the sea traffic in the Orient will have to look to its laurels.

This anticipation, which is current in Shanghai especially, is causing great uneasiness for the reason that many see in it a promise of the necessity for a frequent readjustment of freight tariffs and. a conse-

Fig. 2.-Diagram of Arrangement for Short-Range Illumination.
quent diminution of profit. At present there is some uncertainty as to these tariffs, the war rates having been abated as necessity demanded. Those best informed predict entire new schedules, and it is certain that many new plans will have to be inaugurated to meet the competition. Whether Japanese vessels can be successful under these conditions is another question entirely. Many well-informed persons argue that they cannot; that the thing will be overdone and will be ruinous to them. It is also asserted that the Japanese cannot operate ships as economically as Europeans, and that there is no special advantage in their favor. But whatever may be the financial outcome to the Japanese, it is entirely probable, in view of all the conditions, that some of the large shipping firms, and especially the American trans-Pacific lines, will, in the near future, proceed upon a different programme and require ships of smaller tonnage for China coast service. Not alone on salt water is Japan making her advance. On the Yangtse she will certainly have a large fleet and upon the smaller rivers and canals as well. The carrying trade at Hangchow via the Whangpoo and the Grand Canal she already shares to a great extent, the service being conducted by small towing launches and lorchas. Soochow, Huchow, and other canal cities will also receive attention, and it is understood that her small coasting ships to places like Ningpo with be numerous. The Chinese apparently offer no impediment to these plans; on the contrary, they appear to welcome them. In no way is the evident determination of Japan to inaugurate a commercial conquest of the Orient more apparent than in the announced diffuse intentions of her merchant marine. Instances to prove this are plenty. In fact, one has but to inspect the present sailing lists of the Osaka, Shosen, and the Nippon Yusen Kaisha and its allied lines to note that not a route has been forgotten at present. And in addition to that it is well known to everybody that the shipyards of Japan are the busiest places in the East to-day. The tonnage being prepared for service is enormous and the work goes steadily on. No other city in China will feel the effect of this invasion as will Shanghai.

The highest recorded velocity of underground water is said to be 144 feet in twenty-four hours. The new record is for water flowing through gravel near Tucson, Arizona. The observations were made during the last Christmas holidays by Mr. H. C. Wolff, of the Department of Mathematics of the University of Wisconsin.

PENNSYLVANIA RAILROAD'S EXTENSION TO NEW YORK AND LONG ISLAND.-THE LONG ISLAND CITY POWER STATION.-I.
The Pennsylvanıa Railroad Company has had under consideration for a number of years plans for establishing a terminal for its lines on Manhattan Island. The earliest of these contemplated a bridge over the Hudson River, with elevated approaches and terminal in the city of New York. The demonstration that electric traction was practicable for heavy train units made possible, however, an entrance by means of tunnels, which would enable the adoption of a well-rounded-out plan for a terminal, which would embrace not only the Pennsylvania Railroad main line business, but through connection with New England and the railroad system on Long Island. The announcement that the Pennsylvania Railroad Company proposed to enter New York city was made in May, 1902, and since that date the project in all its features has been actively under way.
It is the purpose of the present series of articles to describe the progressive development of the terminal plans in their transportation, engineering, and architectural features, the present article being a description of the first unit in the construction, which has been completed in operative condition, namely, the Long Island City power

View in Coal Bin, Above Boiler House, Showing Cable Railway and Coal Car Ready to Dump Coal into Bin.
approaches in the State of New Jersey and extending under the Hudson River to the boundary line of the States of New Jersey and New York; from this boundary the other, the Pennsylvania, New York \& Long Island Railroad Company, will construct the tunnels, terminal station, and yards on Manhattan Island, under the East River, and in Long Island City. The officers of these companies are officers of the Pennsyivania Railroad Company, the president being Mr. A. J. Cassatt.
The tunnel work proper is divided into two parts; the East River Division being under the direct charge of Mr. Alfred Noble, chief engineer, and the North River Division under the direct charge of Mr. Charles M. Jacobs, chief engineer; the general railroad facilities and the electrical and mechanical features of the railroad and terminal are under the charge of Mr. George Gibbs, chief engineer of electric traction. These three officiais, together with Brigadier-General Charles W. Raymond, chairman, constitute a board of engineers, to whom the general engineering features of the whole plan are confided. In addition, advisory committees consisting of officers of the road have been appointed to pass upon and work out the special problems relating to the required railway facilities, and pass upon the adequacy of the operating features as developed by the labors of the

Steel Framework and Stacks in Process of Erection.

Interior of Coal Bin, Showing General Appearance of Pockets.

Interior of Engine Honse, Showing Three 5,500-Kilowatt Turbo-Generators.
various departmental bodies. Messrs. Westinghouse Church, Kerr \& Co. have been selected as engineers and contractors for the electrical and mechanical engineering, acting under the supervision of the chief engi neer of electric traction.

The Power House.-The power house building, designed by Messrs. McKim, Mead \& White, is located on the Long Island shore of the East River, upon a rectangular block which extends 200 feet north and south, and parallel with the river, on Front Street and on West Avenue, and extends 500 feet in depth along Third and Fourth Streets. Although the immediate call for power does not necessitate the erection of a plant covering this whole area, the adopted design will permit the ultimate erection of a building capable of accommodating fourteen 5,500-kilowatt generating units, aggregating, in the total, 105,000 electrical horse power. The present building has capacity for half this amount of machinery. A unit size of 5,500 kilowatts was adopted, because at the time this sation was designed, the largest turbo-generator that had been standardized was of that capacity. The first demand for power for the Long Island Railroad electrification called for the service of three of these units, and we present an illustration showing these units in place.
Foundations.-In view of the heavy concentration of loads involved in a power house of this character, it was decided to secure a uniform reaction over the whole area of the building by the use of a heavy, monolithic, concrete mass, overlaid upon uniformly spaced piling driven everywhere to refusal. Piles from 30 to 35 feet in length were driven on centers that averaged 2 feet 4 inches over the entire area. The total number of piles required was 9,115 , the average designed load being 12 tons per pile. Cut-off was determined at 2 feet 6 inches below high-water revel in a water bearing stratum of river mud. The concrete cap over lying the piling is 6 feet 6 inches in thickness, while underneath the four great stacks the thickness has been increased to 8 feet 6 inches. Spruce piles, varying in length from 25 to 40 feet, were used. They were driven to refusal with a 2,000 -pound hammer, falling 18 to 20 feet. There were as many as eight pile drivers at work at one time, the greatest number of piles driven in one day being 232 , while as many as 83 were driven by one driver in one day.
The Coal Tower and Ash-Handling Structure. As one approaches the power station from the water, the most striking feature is the lofty coal-handling tower and the bridges leading thence to the boiler house. This structure stands upon the coal dock and reaches to a height of 170 feet. At the height of 163 feet a steel hoisting boom projects $431 / 2$ feet over the slip. The boom, tower, bridge, and a lofty brick structure extending from the ground level to the bridge not far from the power house, constitute a most complete and efficient plant for the transfer of the coal from the river to the coal pockets in the boiler house and for removing the ashes from the boiler house to the railroad cars. The tower consists èssentially of four heavy box columns, thoroughly braced in all directions. The hoisting apparatus is located on a flocr 25 feet above the dock in an inclosed engine room within the tower. The upper third of the tower room within the tower. The upper third of the tower
above the level of the cable railway carries the hoisting boom before mentioned, the receiving hopper, coal crushing and weighing apparatus, and the cable railway machinery. The upper third of the tower for about 34 feet above the cable railway is inclosed, form ing a two-story house, on the lower floor of which is the weighing mechanism and the engine for driving the crushing machinery and cable railway, and on the upper floor the crusher. Over the crusher is the heavy steel-plate receiving hopper. The distance from the coal tower to the boiler house, about 500 feet, is covered by four bridge spans which support the cable railway, and beneath it, and directly across Front Street, is the rectangular structure of the ash bin, to which ashes are delivered through another bridge lead ing to the boiler house at an elevation of 69 feet above the street. The ashes are carried by a telpherage system, which picks up the ash buckets from the ash cars in the boiler-room basement, carries them over this bridge into the tower, where they are dumped in a large bin capable of holding 300 tons of ashes. The material is dumped through grates in the bottom of the bin into gondola cars standing on the track below. The hoisting tower has been designed with a view to "one-man" operation, and the control of the whole system has been concentrated on a single floor at an elevation only a short distance above the coal barges from which the unloading is being done. By this ar rangement the objectionable features of the old method of placing the operator at the level of the boom are avoided. The coal is hoisted by a two-ton clamshell bucket to the boom, run into the tower over trolley tracks on the bottom chords of the boom, dumped into the hopper, crushed, automatically weighed, dumped into cable cars, run by gravity into the boiler house, and finally dumped at the desired position into the great 5,200 -ton coal pocket. The crusher has a capacity of about 400 tons in five hours. The tracks are
arranged in a loop between the tower and boiler house, and the whole system is capable of handling coal at the rate of 150 tons per hour when operating twentynine two-ton cars at a speed of 180 feet per minute around a track loop which is approximately 2,500 feet in length.
Boiler Plants.-The boiler plant for the Long Island power station consists of thirty-two Babcock \& Wilcox water-tube boilers set in batteries of two boilers each, eight batteries on the first floor and eight batteries on the second floor, immediately over the former. They are equally distributed on each side of the boiler house, with an 18 -foot space for firing between boiler fronts. The working pressure is 200 pounds to the square inch, and the total effective heating surface of each boiler is 5,243 square feet. Each boiler also carries an internal superheater capable of superheating the output of the boiler 200 deg . Fah. at 200 pounds pressure, the total superheating surface amounting to 1,116 square feet. Each boiler is fitted with one of the well-known Roney mechanical stokers. Directly behind the boilers and over the flues are the economizers, which are designed for 250 pounds pressure. By the use of these economizers the hot gases are so reduced in temperature that they enter the base of the stacks at about 350 deg. Fah. temperature. The four lofty stacks which constitute a striking feature in the photographs of the power plant are built of steel and are entirely self-supported. They extend 275 feet above the base. The internal diameter of the straight portion is 17 feet 10 inches at the bottom and 16 feet at the top. They are lined throughout with brick, whose weight is transferred at intervals of 20 feet to the steel shell by means of Z-bars riveted to the shell.

Loading Platform in Coal Tower.
The outside shell decreases gradually from $1 / 2$ inch in thickness at the bottom to $5-16$ inch at the top. The space between the shell and the brick lining is grouted full of cement mortar. The stack is fastened down to its base by a segmental cast-iron ring 23 feet in diameter, which is held down by twenty 3 -inch anchor bolts, that pass through a grillage in the bottom of the concrete foundation.
The Turbo-Generator Plant.-No attempt has been made to give the main building of the power station any elaborate architectural treatment, the general view, as shown in our photographs, showing great simplicity and quiet dignity of design. Any architectural character that it possesses is determined by the strict ly engineering necessities of the case, and it will be noticed at once that it divides itself into two main portions, the taller section being the boiler house, and the other the engine house. The only feature which can be considered to be ornamental is the name "Pennsyl vania," inscribed across the parapet of the engine house in neat terra-cotta letters. The boiler house proper is 82 feet high at the top of the parapet, and 118 feet to the parapet of the superimposed coal pocket inclosure. The interior height of the engine room from floor to trusses is 40 feet, while the exterior height of the engine room building is 70 feet measured from the ground to the top of the parapet. The over-all dimensions of the present building are 200 feet by 262 feet, although, as already stated, its ultimate dimensions will be 200 feet by 500 feet. At present the engine room contains three 5,500 -kilowatt Westinghouse-Parsons, single-flow steam turbines di-rect-connected to three-phase, 11,000 -volt generators of the revolving field type. The rating of the turbines above given is on a basis of 175 pounds steam pressure,
$271 / 2$ inches vacuum, and a speed of 750 revolutions per minute.
We have so frequently described this type of generator, that it is sufficient here to say that the steam flows parallel with the shaft through a series of alter nating stationary and moving blades, the size of the blades and the intervals between them increasing gradually. from the admission to the exhaust end of the turbines. The smaller blades are made from special bronze, the larger ones from steel. They are all orig. inally rolled in long rods of a general crescent cross section then sawed into the proper lengths, set in grooves in the drum and cylinder, and calked securely in place. The length of each turbo-generator unit is 47 feet, its width 13 feet, and its height 14 feet to the top of the gallery ring. Compare this with the di mensions of a four-cylinder piston engine of equal capacity, and its huge 32 -foot generator, which together would call for a floor space 55 feet long by 35 feet wide, and which would tower 35 feet above the floor. The turbine is governed by means of a "fluttering" main poppet valve. Steam enters, not in a continuous blast, but in puffs, the duration of which is controlled by the amplitude of vibration of a little oscillating pilot valve actuated by levers and worm gearing from the main shaft. The advantages of this intermittent action are that the turbine is always using boiler pressure steam, that the admission valve cannot get stuck, and that the continual movement of the governor balls in and out prevents wear.
A separate condenser is provided for each turbine. They are of the Alberger counter-current surface type, and each has 20,000 square feet of cooling surface. A somewhat unusual feature is the use of a small booster generator to prevent electrolytic corrosion of the condensing tubes.
Turbo-Generators.-It is one of the great advantages of the steam turbine as an electrical drive that because of its high speed of revolution there is a great reduction in the size, weight, and cost of the direct-driven generators. The "engine" type of generator is an enormous affair, 42 feet in extreme diameter and 445 tons in weight, running at 75 revolutions per minute, whereas the turbo type of the same capacity, running at 750 revolutions, is only 13 feet in extreme diameter, and weighs very much less. The armature is stationary and is inclosed in a large cylindrical yoke of cast iron. The revolving field consists of a four-pole structure formed out of solid steel disks milled to receive the winding. It is about 6 feet $81 / 4$ inches in diameter and about 6 feet long. Three separate sources are provided for exciting the fields of the main generators, namely, two steam-driven exciters, one motor-driven exciter, and a storage battery. In a later article we shall deal with details of the electrical plant, which. because of limitations of space, are excluded from the present article. The station was planned and built by Westinghouse, Church, Kerr \& Co., engineers, for the Pennsylvania, New York \& Long Island Railroad Company, which is the organization through which the Pennsylvania Railroad is carrying on its New York extension work. The design and construction were under the charge of Mr. George Gibbs, chief engineer of electric traction of the road, and under the general supervision of the Mechanical and Electrical Advisory Committee, New York Extension, a committee composed of officers of the Pennsylvania Railroad Company.

New Arrangement for Enabling Spectators 1
Follow the Words and Music at the opera.
A decidedly novel scheme for placing before the spectator the text of an opera libretto as it is being sung has lately been brought forward in Europe. In the upper part of the proscenium arch is arranged a screen upon which a magic lantern projects the line that is being sung. The text of the opera is arranged upon a transparent ribbon which is fed through the stereopticon by an electrically-operated apparatus under the control of the prompter, who changes the lines by pressing a button at the proper moment. This arrangement allows the spectator to tell at any moment just what is being sung by merely glancing upward at the illuminated screen. The new invention will doubtless prove a great aid to spectators and add considerably to their enjoyment.

The German naval authorities, according to the Cologne Gazette, have fixed the displacement of the latest type of torpedo boats at 570 tons, as against the 420 tons of S 131, the largest torpedo boat at present in the German navy. The new boats represent a considerable advance in several respects. They will have more powerful gun equipment, greater speed, and light-armored protection for the engines and boilers. The speed will be 30 knots, as compared with the maximum of 27 knots hitherto attained. The armament will consist of four 5 -centimeter (2 -inch) and two 8.8 -centimeter ($31 / 2$-inch) quick-firing guns; hitherto only three 5 -centimeter (2 -inch) guns have been carried. The bunkers will be considerably enlarged, so that, in spite of the increased consumption of coal, the radius of action will be much increased.

Marconi and De Forest Wireless Litigation
The United States Circuit Court for the Southern District of New York recently issued an injunction against the De Forest Wireless Telegraph Company as the result of a bill in equity filed by the Marconi Wireless Telegraph Company of America, alleging infringement of Marconi's fundamental patent issued July 13,1897 , and numbered 586,193 .

In a very ably written opinion Judge Townsend reviews the state of the art previously to Marconi's first experiments, discusses the nature of Hertzian waves, and outlines the essentials of a commercial wireless telegraph installation. The injunction restrained the infringement of claims 3 and 5 of the Marconi paten Claim 3, the broader of the two, reads as follows:
" 3 . The combination, in an apparatus for communicating electrical signals, of a spark-producer at the transmitting station, an earth connection to one end of the spark-producer, an insulated conductor connected to the other end, an imperfect electrical contact at the receiving station, an earth connection to one end of the contact, an insulated conductor connected to the other end, and a circuit through the contact, substantially as and for the purpose described.'
The specific infringement complained of consisted in the installation and use by the De Forest Wireless Telegraph Company of its stations between New York city and Staten Island. In this particular installation the transmitting and receiving stations were equipped with high vertical wires insulated at the top. At the transmitting station were a dynamo, directly producing an alternating current, primary and secondary coils, Morse telegraph key, a spark-gap, and a condenser, most valuable adjunct to the practical operation of wireless telegraphy, but not directly involved in the suit. The high-frequency oscillations created or produced, as in the Marconi system, were radiated from the vertical wires of the transmitter and, traveling across to the receiver, impinged upon its wires and traveled down to a so-called detector or variable resistance conductor, closely corresponding in function and result with the coherer of Marconi's patent, and alleged to be its equivalent.
One of the main points at issue in the suit was the use of insulated conductors, described and illustrated in Marconi's patent as metallic plates suspended by poles on wires and insulated from earth. The conductors of the 1898 system of Marconi are aerial wires insulated at the top, but connected with the earth at the bottom.
Both complainant and defendant, at the time the bill was filed, used a construction where the conduct ors were insulated at the top, but only interrupted or obstructed as to the earth connection at the bottom. The complainant contended that defendant admitted that it is immaterial whether the aerial is insulated from the ground at the lower end. Dr. De Forest said that he preferred to employ earth connections because they permitted transmission to greater distances. Both sides agreed that the function. of the earth was not satisfactorily understood; both agreed that such an earth connection is an advantage possibly due to a guiding and strengthening force to conduct the waves to the surface of the earth so that they may glide far ther through the ether.
In this state of uncertainty as to the whole subject the court thought that Marconi should not be deprived of the benefit of his real invention upon any narrow limitation as to the earth connection or interruption at the lower end of the conductor, when it did not appear that even in the case of the spark-gap or tube filing obstruction the earth did not discharge the same functions as it is now supposed to discharge, and when presumably the question is merely one of degree, the strength being theoretically greater in degree where the earth connection is merely obstructed by a transformer.
The rather sensational press reports which gave to Judge Townsend's decision an exaggerated effect must be taken with the proverbial pinch of salt. The injunction is not directed against the present De Forest system or against the present American De Forest Wireless Telegraph Company. It is issued against a defunct De Forest company and against the use of an apparatus which, we are informed, was an experimental and discarded form of apparatus used but a short time in 1902. It is claimed that the apparatus enjoined has never been used by the present American De Forest never been used by the present American De Forest
Wireless Telegraph Company. Indeed, De Forest and Marconi are now engaged in patent infringement litigation which may continue for several years before the respective rights of the parties are decided by the courts.
Almost simultaneously with the granting of the injunction, there appeared in the Patent Office Gazette a disclaimer of the invention covered in claim 1 of the patent in suit. The patent had been reissued and claim 1 so broadened that its terms cover every form of imperfect contact in every possible kind of system for producing signals by means of Hertz oscillations. In view of the limitations imposed upon the Marconi coherer by the disclosures of Branly, Popoff, and

Lodge, such a generic claim, much broader than those of the original patent for which it seems to have been substituted, should not have been permitted when the effect would be to enlarge the scope of the original invention.
In the original patent Marconi limited most of his claims to a combination in a receiver for electrical oscillations of his coherer, consisting of a tube and powder, and means for shaking the powder. But inasmuch as this had been disclosed by prior publications, he applied for the reissue, and by claim 1 attempted to cover not merely the coherer of his former claims or any such coherer in a receiver, or a coherer with means for shaking the powder therein, but every form of imperfect contact device, previously disclosed by others or which might be thereafter discovered, whenever combined with any electrical signal apparatus using Hertz oscillations. This claim, if allowed, would apparently cover the prior devices of Lodge and Popoti, the latter of which is claimed to have necessitated the disclaimer and reissue. Hence the injunction did not apply to claim 1 , and hence the disclaimer.

Decomposition of Dust upon Heated Bodies.

In heated rooms we often perceive an unpleasant tickling odor, which irritates the mucous membrane of the larynx and causes coughing. It comes from burnt and decomposed dust, from which ammonia and other hurtful substances arise. This decomposition, which cccurs only when the dust is damp, is most frequently found with the usual iron stoves whose sides easily become. red-hot, in consequence of which the particles of dust lodging on the stove burn and vitiate the air. But the hot-air flues of furnaces also easily become overheated, in consequence of which dust lodging burns and the products of the burning mingle with the air. The Freie Deutsche Presse says that Prof. Esmarch, of Hanover, "found in his investigations that, on small heated bodies not above 70 deg . C. in temperature, the dust is always decomposed. On ground floors, indeed (where the air rushing in directly from the street is mingled with the dust from the horses' evacuations), the bad odor already begins to be perceptible when the surfaces are heated to 65 deg. Notable is the observation made by Nussbaum, that dust which proceeds from air artificially saturated with steam evolves vapors more evil-smelling and irritating than the dust from ordinary air. In order to prevent the vitiation of the air in a room, the heated surfaces must not be heated over 65 deg. to 70 deg., and every further addition of moisture to the air is to be avoided. Of course, the heated bodies themselves are to be kept scrupulously clean and are to be frequently washed off. But this cleansing does not fully protect from the decomposition cf dust, because the air sweeping past the heated bodies always brings dust upon the heated surfaces again. In furnace heating, the air must be carefully kept free of dust, i. e., be filtered."

Gentian as a Cure for Malaria.

The root of gentian, often used as a tonic, is considered in many malarial countries a remedy agains intermittent fever. Especially is this the case in Corsica in that section of the island near the town of Aleria, which is infested with malaria. The inhabitants recently protested violently against the introduc tion of quinine on the part of the medical authorities, declaring that they would not abandon the remedy which had been used among the islanders for centuries namely, the gentian root either powdered or simply masticated.

Tancret declares that he has extracted from this root a hitherto unknown substance, which belongs to the chemical classification of glucoses. This he calls genziomcrina, and experiments in the laboratory prove that it possesses the same deleterious action upon the malaria bacillus at does quinine. Here, then, we have another example of how popular instinct often anticipates with a certain sureness the discoveries of science.

The Current supplement

An excellent article on the Isthmus of Tehuantepec and its interoceanic railway opens the current Supplement, No. 1579. John F. Wallace, ex-Chief Engineer of the Panama Canal, gives his views on the way the canal ought to be constructed, and makes a strong plea for the sea-level canal. J. E. Petavel's report on the pressure of high explosives is concluded. "Some Notes on Fuel Briquetting in America" is the title of a very good article by Clarence M. Barber. F. F. Robin tells how filled capsules are made. Prof. Shaw's electric micrometer for measuring the seventy-millionth part of an inch is fully described by the English correspondent of the Scientific American. Something of the wonderful sensitiveness and accuracy of this instrument may be gathered from the fact that it must be used some twelve feet below the street level at night time, when all traffic and factory work have been suspended. A very good history of the marine turbine is published.

(Coxxexprantente.

The Soaring of Birds.

To the Editor of the Scientific American
I have evolved a theory concerning bird flight which seems to be novel, and as this question is apparently still open for discussion, I have decided to submit the same to your readers.

A close observer of bird life knows that there musi be some motive power other than that provided by the wings. While the air-current theory for soaring birds, and the wing theory for those that work the wings up and down, partially answer, how about those that almost seem to neglect spreading the wings when start ing from a perch and then fly in graceful curves, down ward and upward alternately, closing and opening the wings with each curve? In extending the wings the contraction of the muscles of the breast counterpulls against the shoulder joints, which are so formed as to create a vacuum or a partial vacuum. This, perhaps, may be regarded as the center of gravity; and thus, the air pressure being the same in all directions, the speed is acquired by the weight of the body back of the shoulders, less the weight forward of that point.
That the muscles of a flying bird's breast are vigorously exercised is shown by the dark color, while the breast of a domestic fowl is white.
Greenfield, Iowa.
Mrs. R. H. Lovely.

The Murren Railway.

To the Editor of the Scientific American:
The issue of February 24, 1906, No. 8, of the Scientiric American contains an article about the Mürren Railway.
Please allow me to give you some other information concerning that line.
The Mürren Railway, on its section LauterbrunnenGrütsch Alp, was opened to traffic on August 14, 1891. It was operated on the water-counterweight system, as described in the article mentioned.
Some years ago, the number of travelers in Switzerland increasing very rapidly, it was found necessary to enlarge the capacity of the line, and in 1902 it was electrified. The station Grütsch Alp was equipped with electro-motors.
It turns around two large pulleys, one at each station. The cars are attached to the cable, and by this method are very accurately balanced, so that the emptying of the tank during the descent is not necessary. The line is 1,695 meters long, and the journey takes fifteen minutes.
The large front-page engraving in the same issue, that you give as " A Turnout on the Mürren Railway," is not on that line, but on the Salève electric railway, near Geneva, Switzerland, but on French territory. It is built on the third-rail system, which is clearly shown in the photograph.
Zurich, Switzerland, March 14, 1906.

The Theory of the Hydroplane.

To the Editor of the Scientific American:
The paper by Ernest Archdeacon, "Sixty Miles an Hour on the Water," in your issue of March 3, is both interesting and important.
His statement, "the theory of the hydroplane, which is, moreover, identical with that of the aeroplane," is entirely correct. But the suceeding statement, that "the draft of water becomes zero, and the displacement also," contains error. The displacement can never become zero so long as the hydroplane has weight. The diagram of both the hydroplane and aeroplane is herewith given, with Count de Lambert's weight of 1,763 pounds. The resistance to motion in each case is fluid pressure and skin friction, the direction of both being fixed by the law of fluids, the first being normal to the plane, and the second along the plane, and for those easons at right angles to each other.

Numerical values are given for an inclination of 5 degrees, and the sine and cosine of the angle are used in the usual way. Gravity being oblique to both reactions, is resolved into factors, $1,755.948$ pounds, making normal pressure, and 153.381 pounds along the surface. Then the motive power is applied on c, canceling the small factor, and enough more to overcome skin friction, which is practically negligible. The diagram represents the activity at the instant of uniform motion, when inertia of mass no longer exists. $a b$ is a resultant of two motions, and no energy is discharged on that line. The motive power of the boat has nothing to do with normal motion or displacement, since it is perpendicular to it, 90 degrees away, and cannot possibly act upon it.

I can see no reason why a hydroplane could not be urged to a velocity on water equal to that of an automobile on land. Resistance of air need be no greater in one case than in the other.
Fairhope, Ala., March 7, 1906.

HOW ARTIFICIAL TEETH ARE MADE.

by hakry dillon jones,
Among the many industries in which America now leads the world is that of making artificial teeth. The lowest quantity of artificial teeth continually kept in stock by one of the Philadelphia factories is between eight and nine millions. The shipments are made to every country in the civilized world, and even to the interior of Africa and remote parts of the Orient.
Once every dentist made his own supplies in his laboratory. Now all artificial teeth are manufactured in great central factories, and shipped to distributing cen ters, where they can be matched a n d fitted to any jaws from the ready-made stock.
T h e growth of the artificial teeth industry is one of the most important of scientific advances. At one time teeth were made from various ivories (elephant and hippopotamus tusk being the favorites), from the teeth of some animals, $a n d$ also from human teeth.

None of these were satisfactory. The 1vory of the elephant and hippopotamus tusk was not impervious to the action of the decomposing agents, and soon became objectionable. The human teeth were better protected by enamel, but the mere thought of using such teeth was enough to make one shudder. In time from this crude beginning the porcelain or, as it was sometimes called, the "incorruptible" tooth was evolved, and this is in use to-day.
With the invention of porcelain makers were able to do that which they never could with the old ivory teeth, namely, to color them to match the real teeth, and thus diminish the chance of their detection in the mouth. In the great factories where teeth are now turned out by the million, labor of the most killed kind is employed to make the th, them, and assemble them properly for the use of the customer. Women perform an important part of this work, for their keen sense of touch enables them to quickly detect flaws in the finished article, and their superior education in the matter of matching colors makes it possible for them to detect a variation of the slightest shade in the teeth, so that teeth that to a man may seem perfectly matched will to woman's eyes show slight differences that are sufficient to im pair their value.
But before the fin ished teeth are sub mitted to the keen eyes of the girl exam iners for the fina test, they have to pass through a succession of processes. Porce

Examining Finished Teeth for Flaws.
lain teeth are composed of two parts, one being the body and the other the enamel. The first step in the making of the tooth is the mixing of the ingredients for the porcelain. This is done by experienced chem ists, for the material must be flawless. The body comprises various components, for each manufacturer has his own formula, and these of course are factory secrets. Broadly, however, it may be said that the "body" of the artificial tooth is made from feldspar (usually called spar), silex, and kaolin. The ename is made from feldspar with a little silex and coloring

Final Inspection for Defects.

Making the Molds.

It is necessary first to make a mold. The greatest care is taken by hand workers in the preparation of these molds, which must be shaped and tooled with the utmost precision, in order that the teeth may conform to the style desired. \ln one of the big factories the writer was shown an immense fireproof room in which were kept the molds of hundreds of different varieties of teeth.
When the composition for the body of the tooth has been placed in the mold, the cover is shut down, and it is put aside in readiness for the firing. Work-
men are busy all day long, in rows, filling the molds with c omposition a n d placing them aside for the men who go around collecting them for the ovens. The operators at the ovens bake the composition t 0 the proper hardness, and then send them to the trimming d e partment. Here workmen take the hundreds of molds that p ass through the ovens daily, turn out the hardened teeth, trim off the rough edges,
matter. For the information of the exacting reader it may be said that the feldspar is composed of silica, alumina, potash, lime, and oxide of iron. It is found in various parts of the United States, near Boston, Philadelphia, Wilmington, Del., and elsewhere. Kaolin is merely the Chinese name for porcelain clay. It is formed by the decomposition of the feldspar of granite hills, which washes down into the valleys below. It can be obtained in various parts of the country.
The coloring materials used in the making of the teeth are gold and its oxides; purple of Cassius, oxide of manganese,
oxide of co balt, platin balt, platina sponge or fil ings, oxide of titanium, ox ide of silver, and oxide of uranium.
The material

of the teeth is first heated to a white heat and thrown into cold water. It is then broken into small pieces, freed from impurities and ground in a mortar till it will pass through a sieve of No. 9 bolting cloth. When the material has been finally treated and fused and mixed with silex and kaolin, it is of a semi-translucent appearance. With this material the skilled workers in the factory mold the teeth to the desired shape. When new teeth are ordered-and there are fashions in teeth as well as in every other line of commerce-
and shape them for the second baking. When taken from the furnace, where they receive a final and prolonged baking at a tremendous heat, the teeth are ready for examination and the last touches by the women workers. After examining for defects and discarding the teeth that show to their practised touch and quick eye the presence of some slight flaw, the girls polish and finish the teeth ready for shipment.
There are faddists in teeth as in everything else. Sometimes a woman will order a set of teeth of the kind she has seen and admired in some one else. In most cases it is not difficult to match these teeth from

The Molds Are Hardened by Baking
the twenty-five shades of color that the big factories carry in stock. But occasionally there are orders for what are known as "freak teeth," teeth which have a peculiar color or a shape so different from any teeth before manufactured that it takes days of experimenting with chemicals and molds to produce the desired match. On the other hand, men frequently want teeth to match their own tobaccostained teeth. Then the coloring process has to be of the expert order, to prevent anyone detecting the presence of a false tooth.

According to information gathered by the American Iron and Steel Association, seventeen blast furnaces were in course of erection in the United States at the close of 1905 , and three furnaces were being rebuilt. Of the furnaces building two were in New York, four were in Pennsylvania, one was in Tennessee, two were in Alabama, three were in Ohio, two were in Illinois, one was in Michigan, one was in Wisconsin, and one was in Colorado. With the exception of the Michigan furnace all of these furnaces, when completed, will use coke or mixed anthracite coal and coke for fuel. The Michigan furnace will use charcoal.

ANTS AND THEIR WAYS.

The ant, despite its biblical reputation for industry, has characteristics which are not altogether admirable, and which prevent it from posing as a general good example for sluggards to follow. For instance, it is well known that certain species of ants are most determined and ferocious slave hunters and slav" keepers,
situation and thus try to ameliorate it. Besides this, ants are not merely warlike, they are positively "spoiling for a fight," and often support in their communities armies of idle and otherwise useless fighters, not only for defense, but for the purpose of depredatory incursions upon their neighbors as well. As we are to-day painfully trying to point the way to general

The student of the life and habits of the ant is often astounded by the prodigious strength and activity displayed by the insects. Certain of the possibilities in the strength of an ant are graphically illustrated in the accompanying engraving. In one picture, an ant is shown supporting in the air a globe weighing eight hundred times its own weight. To under-

Grasping a coin preparatory to lifting 1 t. A battle for sugar.
Lifting a coin. The ant hangs by one leg from a pair of forceps.

Ant warfare. Fighting and capturing caterpillars.
the wonderful powers of the ant.
and that they make destructive attacks on neighboring and less powerful colonies, for the sole purpose of carrying off the infant members of these into bondage. It is true that the slaves are afterward both well treated and protected, though it is doubtful whether this is done because of their value as chattels, or because the masters recognize the ethical iniquity of the
disarmament and universal arbitration, it would hardly do to follow the little insect in this particular. Physical strength is no doubt valuable and pleasing, but if we attempted to emulate, comparatively, the ability of the ant in this direction, the result would be numberless unfortunate accidents, or the development of a race of muscular monstrosities.

An ant lifting a globe eight hundred times its own weight. Ant dragging thirteen hundred times its own welght. Feeding on hone
stand exactly what this would mean if a man were to attempt a feat comparatively similar, we must imagine him suspended from a height by one leg and holding in his jaws a weight of nearly 130,000 pounds, or, say, a 75 -ton locomotive, if we assume that the man weighs 160 pounds. The mere contemplation of what such strength represents renders comment unnecessary, and
it enables us to comprehend how these little creatures can perform such marvels of labor in the building of their great communistic dwellings and colonies.
In two other views an ant is shown first grasping a coin with its jaws, and then holding it while hanging from a pair of micro-forceps. The remarkable strength of the jaws is well illustrated by this performance, for the coin weighs over five hundred times as much as the insect itself. It is said that the natives of Colombia, South America, use the jaws of a certain species of indigenous ants for closing wounds. They induce the insects to bit the two lips of the wound, and thereupon sever the bodies from the heads, which then serve as a suture.
In another engraving there is shown an ant displaying its pulling power by dragging a little silver coach toward the nest. This coach has a weight some thirteen hundred times that of the insect, and if it were possible for a man to pull a hundred-ton railroad train, his labor would be commensurate with that of the ant. In dragging the weight up an incline, the ant wisely eases its toil by moving from side to side like a horse going uphill.
Ants are undoubtedly to be numbered among the fiercest fighters, not only of the insect world, but of all living creatures as well. So strong is their fighting in stinct and tenacity of purpose, that if two of the soldiers have grappled, the hold is not released till one has succumbed. One of our illustrations shows a number of ants attacking and destroying two caterpillars. The caterpillar is often able to put up a stiff fight, and not infrequently a number of its little adversaries are killed, though in the end the caterpillar is invariably slaughtered and triumphantly dragged to the nest. Another of the engravings depicts a portion of a battlefield upon which the armies of two ant colonies are shown in mortal combat. The engagement has degenerated into a series of sanguinary individual fights, and large num herc of dead and wounded are shown scattered about the scene of action. The other of the larger illustrations does not show a simila battle, but is merely illustrat ive of the swarm ing of a number of ants upon a bit of honey, of which they are n ordinately fond. Sweets in general are high ly prized by these insects, and it is known that certain species of
ants keep Aphides (small louse-like insects) in their colonies, and milk these of a sweet fluid which they secrete. In other words, ants keep cows.
The "agricultural ant"' myth has apparently been in part exploded, for it has been shown that ants do not plant grass seeds or "ant-rice" for a harvest. It is probable that the error was due to the fact that the sprouted seeds stored up, and then cast away as inedible, take root, and thus form a partial circle of tall grass around the nest. It has, however, been recently shown that certain South American species of Atta cut and bring pieces of leaves into their cellars and comminute these till they form a pulp, which is heaped up and soon becomes invaded by a fungus which is carefully cultivated and used as food.

Sawmill Refuse as Fuel

The manufacture of lumber is the chief industry of Portland, says O. B. Coldwell in an article on the value of sawmill refuse as a fuel, published in the Journal of Electricity. The daily output of sawdust amounts to 568 wagon-loads. The sawmills all use this by-product for steam-raising purposes, but much remains over, and this is sold. The Portland General Electric Company uses from 100 to 150 loads of this refuse per 24 hours in its boiler plant, this being burnt in a Dutch-oven type of furnace, built out in front of the boilers. These are entirely filled with the fuel to reduce air leakage. A number of evaporative tests are given to show the value of this refuse for steam-raising purposes. The cost of fuel per kilowatthour in these tests varied from 0.57 to 0.83 cent, as compared with 0.97 cent, when oil was employed. Oil is displacing coal in California on account of its lower cost, but in Portland it will have to compete with sawmill refuse, and as these comparative trial tests show, the refuse is the cheaper fuel for steam-raising purposes.

ELECTRIC TRACTION ON THE SIMPLON RAILWAY.

y dr. alfred gradenwitz.
Although the first railway train has recently traversed the Simplon Tunnel, regular service on this important line leading from France and Switzerland to Italy will not be commenced before the end of May. Now this date is destined to be one of the most important in the annals of electric traction, this being the first instance in which electricity is used on one of the international European railway lines. It may be said that apart from the special advantages inherent in electric traction, and which were fully appreciated by the Swiss Railway, the ventilation difficulty in the case of steam operation was among the factors responsible for the choice of the electric service.
An interesting offer has been made by one of the most important Swiss electric companies, viz., to complete the whole of the electrical equipment of the tunnel by the date of opening, to place these equipments at the disposal of the Swiss Federal Railways, and thus to permit of a comparison between steam traction and electric service on a line especially adapted to illustrate the advantages of either system. In case, however, the electric service be not found at least as satisfactory as steam traction, Brown, Boveri \& Co. will have to reduce the whole of the line to its primitive state, suitable for steam operation.
As on account of certain circumstances this offer could be made only a few months ago, the construction of a special railway stock was quite out of the question, and the constructors have to content themselves with using two three-phase locomotives of 900 1,000 horse-power each, which had been ordered a short time ago by the Italian State Railways. The threephase system was accordingly adopted, which system has of late years given the most satisfactory results on numerous Swiss mountain railways.

The hydraulic power plants installed at either end

1,000-HORSE-POWER, 3-PHASE ELECTRIC LOCOMOTIVE FOR THE SIMPLON TUNNEL. reducing the load of the poles to a minimum. weight 42 tons. allowed 40 minutes in eitber direction. first of June of this year.
eral tracks are to be spanned without any intermediary supports, the chain suspension principle is to be used

The locomotives constructed by Brown, Boveri \& Co (one of which is represented in the accompanying figure) have three coupled axles, driven by two motors through connecting rods without the employment of spur getraruch as are ordinarily used. The motors are designed fos thy speeds, viz., 34 and 68 kilometers (21.1 and 42.25 miles) respectively. The drawbar pull of the locemotive is. 6 tons in the case of the low speed, and $\dot{\delta} 1 / 2$ tons with the high speed. The total weight of the engine is 62 tons, and the adhesive

Gradients of up to 10 per cent occur only on some short sections of the line, which otherwise possesses a constant gradient of 2 per cent from Brigue to the middle of the tunnel, while the southern incline from the middle to Iselle shows a constant gradient of 7 per cent. Passenger trains will be limited to a weight of 365 tons, and freight trains to 564 tons, 20 minutes being allowed for the former in traversing the tunnel in the direction from Brigue to Iselle, and 30 minutes in the opposite direction, while freight trains will be

The preliminary installation work was commenced a short time ago, and while the trial runs are to be begun in the months of April and May, the electric service according to contracts will be opened on the

One Person in Every Ten is llliterate.

According to the census use of the term an illiterate is a person not under te» years of age who is unable to write either in English or in any other language. In most cases the illiterate is also unable to read.
At the census of 1900 the number of illiterates enumerated in the United States, exclusive of Alaska, Hawaii, and all other outlying territory, was 6 ,180,069 . This was a p proximately one-tenth of the population at least ten years of age, the exact m a thematical proportion being 106.6 illiterates to 1,000 population.

The fact that one-tenth of the population above nine years have failed to obtain even the little education that is implied in the ability to read and write seems to indicate a
of the Simplon Tunnel, and which had so far served for operating the extensive machinery used in the construction of the tunnel, will after a few immaterial alterations and extensions be used in generating the current required for the electric service of the tunnel section. The current produced in each of these central stations, situated at Brigue and Iselle, respectively, has a tension of 3,300 volts at 15 cycles. As at first only the tunnel section proper connecting the two stations referred to is to be operated by electricity, this current is supplied directly to the trolley wire travers ing the tunnel without any previous transformation or long-distance transmission. The trolley line in the tunnel is mounted on span wires fastened to hooks that are fitted in the masonry. The span wires are arranged at intervals of about 25 meters (82 feet) each, no shorter distances being required on account of the fairly uniform temperature in the tunnel, which eliminates the possibility of any considerable variations in the sag of the wire. The rails were bonded on the usual Brown, Boveri \& Co. system. An electri cally-operated turnout is provided at the center of the tunnel, but under normal conditions trains will not pass each other in the tunnel. Switches arranged at the ends of this turnout permit the trolley wire of the tunnel being divided into sections.

In carrying out the electric service, the steam locomotives will have to be uncoupled from the trains arriving from Lausanne at Brigue Station, and after substituting the electric locomotives the trains will be conveyed by electricity through the tunnel as far as Iselle, where the electric locomotives will again be replaced by steam engines. While, at first, only the tracks required in carrying out these operations are to be equipped with electricity, five tracks placed side by side will at some places have to be dealt with Iron poles are used throughout in the station plants, the contact wires being mounted on span wires similar to those of the tunnel. At Iselle Station, where sev-
rather surprising degree of ignorance, reflecting upon the boasted efficiency of the common school systems. Therefore the patriotic American will naturally inquire whether this is not mainly due to the presence in our population of the foreign-born and the negro, and will be somewhat reassured to find that when the comparison is restricted to the native white population, the proportion of illiteracy is reduced to 46.4 per 1,000 , or less than one in twenty. For the foreign-born white the proportion is 128.5 per 1,000 and for the negro 444.7. Moreover, international comparisons, restricted as far as possible to corresponding classes of the population, are on the whole favorable to this country, indicating that in most European countries illiteracy is much more prevalent than it is here, although the United States is still far -behind Germany, Sweden and Norway, Denmark, and Switzerland. There is also ground for satisfaction and encouragement in the statistical evidence that illiteracy is steadily being reduced. In 1890 the number of illiterates per 1,000 was 133.4 for the total population, 62.3 for the native white population, 130.6 for the foreign-born white, and 567.6 for negroes, including Indians and Mongolians.

In Wales there are about 450 tin-plate mills of which 95 per cent were in operation at the close of November. In the United. States there are about 340 regularly operative mills, which have been in work at one time or another within the past year, the leading interest having some 242 independent interests. There are about thirty other mills not in regular work. It can be assumed that an average of not less than 400 mills were operated in Wales during 1905, while an average of scarcely more than 275 mills were worked in the United States. With substantially the same total production, says the Iron Trade Review, it appears that the output per mill has been between a third and a half greater in the United States than in Wales.

THE WRIGHT AEROPLANE AND ITS PERFORMANCES.
According to the statement sent to the Aero Club of America recently by Messrs. Orville and Wilbur Wright (which statement is, by the way, the first authoritative one made by the brothers in their own country), they have already solved the problem of the century, me chanical flight, with their motor-driven, man-carrying aeroplane. During the past three years in which they have been experimenting with it, they have made 160 flights averaging a mile each, but not until the ma chine had been changed and improved many times was such a degree of success attained as to make it possible to cover long distances at high speed with safety. As a result, the final flight of 241-5 miles made on October 5 last was longer than the 105 flights of 1904 taken all together
The success of the Wright brothers in being the first to make free fiights over considerable distances with a motor-driven machine heavier than air comes as the result of an earnest effort, made during the past six years, to learn and master the principles of gliding flight. With the results of Maxim's experiments before them, they knew that a motor-driven aeroplane could be made practical provided it could be made stable. Therefore, after adopting the two-surface machine of Chanute (which consists of two superposed, rectangular, slightly-curved surfaces), they spent some three years making glides and attempting to improve the stability of their machine. Their ultimate, and very brilliant, success is due mainly to the recumbent position of the operator, and to the horizontal front rudder maintaining the proper fore-and-aft stability. There may also be other patentable improvements for maintaining the transverse stability, such as a method of twisting the planes slightly at either end.
The next step was to fit the machine with a suitable motor and propellers. This was done the latter part of 1903, and on December 17 the first flight was made with the motor-driven machine. This flight lasted only 59 seconds, but during it the aeroplane advanced a distance of 852 feet against a 20 -mile-an-hour wind. The motor used on this occasion was a four-cylinder, air-cooled engine of 16 horse-power. In 1904 the Wrights continued their experiments with a motordriven flyer; and on September 20 they accomplished for the first time the feat of describing a circle, while on November 9 and December 1 they made two flights of 3 miles each, which were the longest up to that time. In order to perfect the machine the brothers found that they had yet to overcome "several obscure and somewhat rare difficulties" which they had met with in their 1904 flights. Last year was therefore given up to this, and from June to October frequent flights were made above a swampy meadow 8 miles east of Dayton, Ohio, in which city the Wright brothers reside. Not until the middle of September were the experimenters able to correct the obscure troubles just mentioned. As soon, however, as these were overcome, the length of the flights continued to increase, as can be seen from the following table:

Date Mile The.

 Diles. Min. Sec. Sept. $26 \quad 111 / 8 \quad 1809$ $\begin{array}{llll}\text { Sept. } 29 & 12 & 19 & 55\end{array}$ $\begin{array}{lrrrr}\text { Sept. } & 30 & \cdots & 17 & 15 \\ \text { Oct. } & 3 & 151 / 4 & 25 & 05\end{array}$ $\begin{array}{lllll}\text { Oct. } & 4 & 203 / 4 & 33 & 17\end{array}$Cause of Stopping Exhaustion of fuel. Exhaustion of fuel. Hot bearing.
Hot bearing.
Hot bearing
Exhaustion of fuel
These flights were made in a rectangular or circular course about three-fourths of a mile in length. In making the last one mentioned in the table, the machine made 29.7 circuits above the field and attained an average speed of slightly more than 38 miles an hour. Taking account of the fact that on the straight

A Bottom View of the Original Glider.
meter carried on the machine, and the records thus made agreed closely with the distances measured on the ground when the flights were in a straight line and the air was calm. It was impossible to effect an accurate comparison in this manner when the flights were made in a circle on account of the impossibility of tracing the course accurately on the ground.

The weight of the machine and operator as used last year was 925 pounds. The motor is said to have been

The Glider Flying as a Kite.

The Gliding Machine Soaring in Midair.
a 24-horse-power, four-cylinder, air-cooled gasoline engine weighing complete about 250 pounds, or over 10 pounds to the horse-power. The lightest aeronautical motor so far constructed weighs but 2.2 pounds per horse-power; so that with the same size machine and a light-weight motor more than the weight of an extra passenger could be saved. No effort was made at lightness of construction, the object of the Wrights being to have a machine that is substantial and of practical utility, rather than one of great lifting power. How much the lifting power might be increased can be seen from the fact that Maxim found it possible to raise 133 pounds per horsepower, while the present experimenters have raised only 38 , or (supposing that they actually used but 15 horse-power) 61 at a maximum. In view of the fact that the Wrights claim to have made every effort

One of the Brothers Starting on a Long Glide.

Owing to the fact that as soon as they had met with success the two brothers attempted to sell their machine to the French government for war purposes and that, having it unprotected as yet by patents, they did not wish to disclose anything about it, photographs or data of interest are not available for publication.
When the list of their flights given above was first announced last December in France, it was incredible to many people both there and here that so novel a device as a flying machine could be operated frequently for nearly six months in the vicinity of a large city without the fact becoming generally known. The Wrights refused to make a statement, and they gave the names of but a few persons who had seen them fly. With the communication recently sent by them to the Aero Club, however, they sent a list of names of seventeen men who were eye-witnesses of their experiments.
In order to dispel any lingering doubt regarding the flights, the reported accounts of which the leading German aeronautical journal, Illustrirte Aeronautische Mitteilungen, characterized as "ein amerikanischer 'bluff,'" a list of questions was sent to the seventeen witnesses. In all we received eleven replies.
To the first question, on what date or dates did you see the aeroplane fly, it was not possible to get exact information in every case. Ten of the witnesses agreed, however, that they had seen the aeroplane fly in the autumn of 1905, the majority in the month of October.
The second question, intended to bring out the length of the flights made on the various occasions, called forth answers which showed that the witnesses had seen the aeroplane fly for distances that varied from 15 to 28 miles, agreeing substantially with the Wright figures. The times given approximate fairly well with those of the Wright brothers.
In answer to the third question, Did the aeroplane fly in a circle or in a straight line? the replies indicated that the path covered was sometimes circular, sometimes elliptical, and sometimes rectangular.
The fourth question, Was the aeroplane attached in any way to any object, or was it absolutely free? called forth answers that left no doubt of its absolute freedom.

The fifth question, Did the aeroplane carry a man during the flight? was answered affirmatively.

In order to ascertain if possible the manner in which the machine was launched, the witnesses were asked in the sixth question whether or not the machine arose from the ground by its own power. From the replies received, it would seem that the aeroplane rested on a single rail 40 feet long, was pushed for a short distance by hand, and left the rail after having traveled 25 or 30 feet. The rail was level and raised about 6 inches from the ground.
The seventh question was this: Was there a wind during the demonstration, or was the air calm? Inasmuch as the eleven witnesses who replied did not all see the same flight on the same day, it was not to be expected that the answers would agree. At one time the. air was calm; at others there was a light or stiff wind.
As to the velocity of the wind, the subject of the eighth question, no very satisfactory information could be obtained. It seems, however, to have varied from 7 to 30 miles an hour.
Inasmuch as the course of the machine was approximately circular on its various flights, most of the witnesses agreed, in reply to the ninth question, that the flight was made both with and against the wind.
The tenth question was this: If the flight was made in circles, and there was a wind blowing, was there any difference in elevation when the machine was flying with and against the wind? From the in-

Rear View of the Machine Gliding Down Hill.

The distinctive features of this machine are the horizontal rudder for maintaining the desired elevation and the borizontal position of the operator. When these photographs were taken, no vertical rudder had been fitted. Two
of these are fitted to the motor-driven flyer directly behind the two propellers, which are placed symmetrically at the rear. A four-cyllnder air-cooled motor of 16 to $\% 44$ horse-power, a hed the feet of the operater, drives the propell

THE WRIGHT BROTHERS' AEROPLANE GLIDING MACHINE, TO WHICH, IN AN IMPROVED FORM, THEY HAVE APPLIED A GASOLINE MOTG AND PROPELLERS, AND
parts of the course a considerably higher speed was maintained than at the turns, the machine very probably traveled 40 miles an hour or over when advancing in a straight line. The distances traveled during the various flights were measured by a Richard anemo-
"to increase the scientific efficiency of the wings and screws in order that even heavily-built machines may be carried with a moderate expenditure of power," it does not seem that they have succeeded very well in obtaining the maximum lift possible per horse-power.
formation gathered it would seem that there was some slight difference in elevation, although this did not affect the control of the machine in any way.
As to the speed of the machine when it alighted, the subject of the eleventh question, it was natural
that the observers should not be in accord, since all had not seen the aeroplane glide at the same time. The craft seems, however, to have slackened in speed until it stopped. Some of the replies placed the speed it had when it touched the ground at the preposterous figures of 15,20 , and 30 miles an hour.
To the twelfth question, whether or not the aeroplane alighted on an even keel, rather vague replies were received. Two observers replied that the front was inclined upward, which was probably the case. Others thought that the aeroplane alighted on an even keel.
In addition to the replies given above from ten witnesses, seven of whom are residents of Dayton, we publish a letter in which all the questions are answered in a very satisfactory manner.

Charles Webbert,
1121 West Third Street
Dayton, Ohio, March 21, 1906.
Munn \& Co., New York:
Dear Sirs: Your letter of March 19, with inquiries concerning the Wright brothers' flying machine, is received.
I witnessed one of their flights in the early part of October. I do not remember the exact date. The younger brother was aboard the machine, and remained in the air about a half hour. I heard that a longer flight was made the next day.
The machine traveled in large circles, apparently about a mile around. I did not keep track of the number of laps, but I think some one present remarked that he had counted twenty-four. The flyer was absolutely free from the time it left the rail upon which it started until it touched the ground in making its final landing.
The machine was assisted in starting on the rail, but after leaving the track, which was only a few inches from the ground, it gradually rose by its own power alone until it had attained a height above the tallest trees; after which it continued on a level course The zind was light, and there was no noticeable difference in the height when traveling with and against the wind.
In landing, the machine approached the ground so gradually that I could not tell when it first touched. After sliding a short distance, it came to rest directly in front of the building in which it is housed. Mr Wright shut off the power while still a few feet above the ground. He stated on alighting that the heating of a bearing in the machinery had made it unadvis able to continue the flight. The machine landed on a level without any noticeable jar.

Yours truly,
(Signed) Charles Webbert.
The letters which we have received all agree that the Wright aeroplane has flown and carried a man for a considerable distance, and that the machine rose from the ground mainly by its own power, and executed free flights in any direction in which the operator wished to guide it, both with and against the wind. According to these eye-witnesses, the elevation of the machine was under the control of the operator at all times, and he was able to cause it to alight either very slowly or at a considerable speed without damaging it in the least.
There is no doubt whatever that these able experimenters deserve the highest credit for having perfected the first flying machine of the heavier-than-air type which has ever flown successfully and at the same time carried a man. We congratulate them upon the accomplishment of this great feat, and we hope that they will soon see their way clear to give to the world, as did Maxim and Langley, some of the immense amount of valuable data which they have undoubtedly obtained while delving into the rapidlydeveloping science of aerial navigation.
Descriptions of the original gliding experiments of the Wright brothers have already been published by us in 1902; and in the current Supplement will be found the communication made recently by them to the Aero Club of America, in which they detail the gradual development of their machine, besides an article on the construction of their machine, which tells of the improvements they have effected.

AN EXHAUST VALVE FOR LOCOMOTIVES.

A patent has recently been granted to Mr. William H. Dyer, of 411 Jefferson Street, Ionia, Mich., on a simple exhaust valve for locomotives, adapted to furnish more or less draft in the firebox, without danger of creating back pressure in the engine cylinder. This end is attained by providing two outlet pipes, one extending to the top of the smokestack, so as to lead off the steam without producing a draft, and the other terminating within the stack, so as to produce a draft in the usual way. The valve is so arranged as to open one of these outlets while closing the other, and thus by varying the position of the valve the draft can be regulated at will. Our illustration shows a longitudinal section of the valve. The valve-head is made up of two members, A and B, which are threaded onto the valve casing C. Communicating with this casing at
the bottom is the exhaust pipe, while from the top project the outlet pipes F and G. The casing C is formed with a taper bore adapted to receive the tapered plug D. This plug is formed of two end walls connected by three columns of the form, and in the position indicated in the cross sectional views, 2 and 3. These columns serve to close the pipes communicating with the valve casing. The valve is operated by a $\operatorname{rod} E$, formed with a socketed head adapted to engage a squared offset on the plug. The coil spring in the member B, pressing against the socketed head, holds

EXHAUST VALVE FOR LOCOMOTIVES.
the plug in engagement with a setscrew threaded in the member A. By means of this setscrew the plug may be adjusted to take up wear. The rod E passes through the outer wall of the smoke box, and is con nected with a hand lever in the cab of the locomotive Figs. 2 and 3 show two different positions of the plug In Fig. 2 the short outlet pipe F is opened, admitting the entire exhaust into the smokestack, and thus producing the maximum draft, while in Fig. 3 the pipe F is closed, and the pipe G is opened, permitting the exhaust steam to pass out freely without causing any draft in the smokestack. Intermediate positions would provide all the variations of draft desired.

CABINET FOR BREAD MAKING.

A patent has recently been granted to Mr. John W. Knackstedt, of Gardena, North Dakota, on a novel piece of kitchen furniture. The invention consists of a cabinet adapted for use in bread making to raise the dough. A lamp is used for heating the cabinet, and the design is such as to use the heat to the best advantage, insuring more perfect and certain results than under ordinary conditions. In the accompanying en graving one of the views shows the cabinet in section, from which it will be observed that it comprises an outer casing A and an inner shell B with a continuous circulating chamber between them. The shell B is divided by two transverse walls into three chambers, the bottom one being reduced in width by two upright partitions. In this reduced chamber the lamp

CABINET FOR BREAD MAKING.
is placed, and the heat from this lamp passes through an opening at the top into the intermediate or distributing chamber. The upper chamber, which is adapted to receive the pan of dough, is separated from the heat-distributing chamber by a perforated wall, and is also provided with an opening at the top, communicating with the circulating chamber. In operaion the heated air and the products of combustion of the lamp will pass from the distributing chamber
around the pan of dough and thence into the circulating chamber and all around the shell B, finding exit finally through the vents at each side of the bottom chamber. The heat can be readily regulated and the temperature of the cabinet can be ascertained from a thermometer placed in the outside shell A back of a transparent pane. The open compartments at each side of the lamp chamber can be used for warming various articles.

Decisions in Patent Cases.

The Supreme Court has just settled an important question of procedure in cases arising under infringement of patents. The National Enameling and Stamping Company brought suit in the Federal Circuit Court in New York against the New England Enameling Company, alleging infringement of its patents for improvements in enameling metals. The court found that three of the claims made were invalid, four were valid but did not infringe, and as to five claims referred the matter to a master for the purpose of ascertaining the damages under them.
The New England Company appealed from the findings of infringement and the National from the seven claims which did not infringe, but the latter appeal was dismissed by the Court of Appeals on the ground that it could not be taken until a final decree was entered in the case. The National Company thereupon applied to the Supreme Court for a writ of mandamus to compel the reinstatement of its appeal by the Court of Appeals.
The Supreme Court, however, affirmed the action of the Court of Appeals dismissing it, holding that pending a final decree in the case the only appeal that could be allowed was from the interlocutory order of injunction. Although there were twelve claims in the patent action, says the court, there was but one suit, and it could not be broken up into several by the terms of the interlocutory order. The application for a writ of mandamus was therefore denied.
Similar action was taken in the case of the Automatic Switch Company, of Baltimore, against the Cut-ler-Hammer Manufacturing Company, which involved like procedure in a suit for infringement of automatic switches for electromotors.
The court also settled the question of breadth of claims under trademarks. One St. Louis manufacturer of wire rope registered as his trademark a strand of distinguishing color, and when another began making that kind of rope he brought suit for infringement. The claim as registered, the court said, was too broad. The colored strand might have gone in the same directions or around the other strands and no distinctive color was named. Lacking the necessary definiteness, the claim for infringement could not, therefore, be allowed, notwithstanding it had been registered by the Patent Office.

The Edison Works.

Those who are unfamiliar with the imposing buildings of the Edison Company, Valley Road, West Orange, can only fully appreciate the magnitude of the work carried on, by a personal inspection of the large plant. In lieu of this, the information furnished by the Journal, of Orange, N. J., will be of interest. It states that hundreds are employed in the phonograph works, and to properly inspect the complicated machinery which turns out the various parts of the machines would take several hours. The laboratory is another large feature of the establishment. The general office is a very active department, for it is here that many competent clerks are busily engaged in attending to the details necessary in the operation of the various branches.
Several new buildings are in course of erection, the principal one being that designed for the new storage battery. Although the neighborhood is typically suburban, within these vast works is all the activity of an immense metropolitan enterprise, and this fact is fully apparent when one once beholds the whirring machinery and the animated scenes in the various departments.
From present indications it would seem as if in a very few years there would be one vast accumulation of buildings, and a transformation of the immediate vicinity into a small manufacturing city. Lucrative employment is afforded to hundreds of young Americans, and merit is appreciated and rewarded. It is a very suggestive thought that it is owing to one man's genius that not only in West Orange, but in many other towns and cities, thousands of people find profitable employment, and that the various products are sent all over the world.

The gas industry in Great Britain, according to the Society of British Gas Industries, consists of 1,250 gas companies and local authorities, and supplies $4,400,000$ consumers. The London companies-i.e., city and suburban within the 10 miles radius-included in the foregoing have 945,000 consumers.

RECENTLY PATENTED INVENTIONS. APPARATUS FOR LAYING ELECTRIC n. Y. The object of the invention is to provide an apparatus for laying and burying electric conductors on land and under water simply
and inexpensively to prevent the conductors and inexpensively to prevent the conductors
from being fouled by the anchors of from being fouled by the anchors of marine vessels and to prevent the conductors from be-
ing easily detected or grappled and cut in ing easily de
time of war.
Wireless telephony.-A. F. Collins, New York, N. Y. The invention relates to the art of transmitting and receiving articulate
speeck between two or more stations without connecting-wires, but employing the earth or other medium as a means of propagation ; and it relates more particularly to transmission of impulses into the earth or other medium by means of a direct or alternating current having a higher voltage and greater amperage than it has been found possible to employ and their amplification and intensitications at and their amplificationg
of Interest to Farmers. LAWN-MOWER.-H. P. TERRY, Elizabeth,
N. J. A supporting frame or yoke is provided N. J. A supporting frame or yoke is provided
for the structure, in which is supported a shaft for the main driving-wheels of the structure and combined with which is a rigid or stationary cutter or knife, together with a reciprocating cutter or knife, special means being employed between the aforesaid shaft
and cutter or knife by which the latter is opand cutter or knife by which the latter is op-
erated in the ordinary propulsion of the maerated in the ordinary propulsion of
chine over a lawn or other surface. chine over a lawn or other surface.
BROOM-CORN-CUTTING MACHINE-C. R. Huckleberry, Paris, Ill. The design in this
case is to provide a machine which may be case is to provide a machine which may be
drawn across a field by a team to rapidly cut drawn across a field by a team to rapidly cut
the broom-corn, and the machine is so constructed and arranged as to even the varying lengths of the cut-off brush ends and trim off the superfluous butt-ends of the stalks of the $;$ the same length before being delivered to the binder, which binds them in bundles.
RAKE.-W. W. Irwin, Juneau, Alaska. The to those pertains to rakes, and particularly to those mounted upon wheels for operation
by draft-animals. Its principal objects are to provide a strong and simple apparatus in which the teeth may be readily operated to said teeth may be raised bodily to clear the windrows and not drag down the piles when bunching.

Of General Interest.

SHOW DEVICE.-C. E. Isacke, New York, N. Y. 'The device is intended to be constructed
of paper or cardboard and to be used for advertising and display purposes, the object bea box or package of merchandise to be adve tised and for furnishing adjacent thereto or as a part thereof a card or surface on
the advertised matter may be produced.
apparatus for treating textile FABRICS.-O. Obermaier, Lambrecht, Ger-
many. This invention refers to an apparatus many. This invention refers to an apparatu
for treating textile fabrics, as in dyeing, ex traction of circulating liquids, It produce., by means of circulating liquids. It produces not
only a pressure, but also a powerful vacuum, in such a manner that during passage of liquid in such a manner that during passage of liquid ment the vacuum acts by pulling on one side,
while on the other side the pressure acts by pushing upon the liquids.
Drill.-L. W. Baney, F. E. Baney, and J. Osterholt, Platteville, Wis. With this im-
provement the turning of the drill to the right provement the turning of the drill to the right
causes an outward movement of the debris, the stroke of the drill assisting this debris, ment, each lug moving the debris outward to a sufficient extent that it may be engaged by
the succeeding lug on the next stroke. In its broadest sense the invention comprises a drillbroadest sense the invention comprises a drill-
shank having a series of projecting lugs spirally arranged on the shank.
STAYING DEVICE FOR SLIDING DOORS. -F. Dahlund, Esmond, N. D. The object of especially designed for use on heavy slidingdoors, freight-car doors, and the like-and arranged to insure an easy sliding of the door,
to prevent rubbing of the door on the wall or to prevent rubbing of the door on the wall or door-casing, and to prevent snow or ice from
locking or holding the door against movement. locking or holding the door against movement.
SHOT-FEED FOR DRILLS.-K. Brooks, New York, N. Y. Automatically feeding shot or grinding material to drills and similar tools
is accomplished by this simple and economic is accomplished by this simple and economic
device, and it is particularly adapted for feeding shot to rotary drills employed in boring wells. It is automatic in its action and means for regulating the quantity of material delivered by the device, the feed being
while the invention is in operation.
CORNET.-Z. A. Meredith, Tahlequah, Ind. Ter. This invention is an improvement in cornets and similar valved instruments, and
has for an object to provide construction and arrangement of the tubing and air-passages whereby to avoid short bends or angles; also,
to dispense with the usual second slide and to dispense with the usual second slide and
introduce in lieu thereof a second bell through introduce in lieu thereof a second bell through
which the tone is emitted in all instances

Machines and Mechanical Devices. ROTARY CUTTING DEVICE.-T. B. WIL riams, Orange, Mass. The invention has ref ices-such, for instance, as ordinarily employed for dressing or resurfacing the seats of
valves, faucets, and the like. The principal valves, faucets, and the like. The principa port for a rotatable spindle, located exteriorly to the a rotatable spindle, located exteriorly
structure and capable of being length ened or shortened in proportion to the different longitudinal adjustments of the spindie found necessary to be made under varying condition of use of the structure
MOLDING-MACHINE.-C. Reed, Portland, Ind. This inventor provides efficient and rapid adjustment of the machine's working parts provides for pressing the molding materials from two opposite directions, so as to make
the article solid and material completely fill corners and spaces around the cores; provides an entirely automatic arrangement, so that
neither product nor any part of the machine will have to be lifted before molded article is completed; provides for delivery of article to a truck by which it can be taken away from
the machine, and provides for making all kinds of articles movable by machinery and es pecially all kidds of building-blocks.
PIANO-ACTION--F. B. Long, Los Angeles, Cal. The object of the invention is to pro-
vide such new and useful improvements in vide such new and useful improvements in
piano-actions whereby the flanges for the ham piano-actions whereby the flanges for the hamare not liable to become loose and rattle on playing the instru
PULLING-MACHINE FOR STEAMBOATS, ETC.-F. W. Hayes and C. A. Billings, Wend for steamboats and other water craft for use as an aid or accessory for propelling them up swift streams or rapids, where the usual means of propulsion are insufficient. The in-
vention is also adapted for use as the sole means of pronulsion of for use as the sol canals or sluggish and shallow streams.
STAMP-AFFIXING DEVICE.-M. R. Burrowes, Sarnia, Canada. The object in this
invention is to produce a device which will Invention is to produce a device which will
operate to moisten the parts and apply the stamp with great rapidity and in a certain sense automatically. It comprises a magazine beneath which the envelop or other article may be thrust. As the envelop passes beneath the stamp-magazine it is moistened automatically by the moistening device, and the mechanism is then operated to affix a stamp in
required position. required position.
Nore.-Copies of any of these patents whished by Munn \& Co
 the invention, and date of this paper.

Business and Personal ZVants.
READ THIS COLUMN CAREFULLY.- You will find inquiries or certain classes of articles nembered
in consecutive order. If you manufacture these goods
write us at once and we will send you the naine and
address of the party desirg the information. In
every case it is necessary to give the
number of ine inquiry. umber of the inquiry. MUNN \& CO.

Inquiry No. 7994.

"U.

Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st

 Chagrin Falls, 0.Inquiry No. 7996.-Wanted, the name and ad.
ress of the manufacturer of the glass tombstone or
monument. Manufacturers' Agent is open for a few good lines.

1 sell patents. 25 nches long, by 16 inches.
1 sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.

Fine Lithographed Letter Heads, Bill Heads, EnveSt. Louis.
Inquirv No. 7999.- Wanted, makers of
ron thumb screws. with ball and cap ends.
The celebrated "Hornsby-Akroyd" Patent Safety Ou Engine is built by the De La Vergne Machine Company.
Foot of East 138th Street, New York.
 Metal Novelty Works Co., manufacturers of all kinds of light Metal Goods. Dies and Metal Stampings our
peecialty. $43-47$ S. Canal Street, Chicago. Inquiry No. 8001.- - Wanted. makers of balloons.
ivtes. aerial toys, machines and aerial nuwelies of
atility. Manufacturers of patent articles, dies, metal chmping, screw machine work, hardware specialties,
machinery tools, and wood fiber products. Quadriga Manufacturing Com
Inquiry No. 80
Inquiry
Intchet motor.
Inviry No. 8003.-W anted, manufacturers of
Inquiry No. 8003.- - W ant ed, manufacturers of
water stills and compressed air apparatus for aerating
Inquiry No. N004- Wanted, makers of automa.
matic cam cuting mathines for cutting large cams up
to 20 inches in diameter.
Inquiry No. No. ©
pillow ventilatorso

The Development of House Painting.
The art of painting for decorative purposes is as old as civilization. In the fragments of Babylonian, Assyrian, and Egyptian literature that have come down to us there are frequent allusions to this form of decorative art, and the writings of Theophrastus, Pliny, Vitruvius, and others contain many interesting details regarding the nature of the colors so employed. In the ancient Egyptian monuments we still find the remnants of decorative coloring, especially on mummy cases which have been preserved from the air. There are remnants of flat color on the friezes of the Pantheon, etc.; buried statues from the antique world show traces of tinting, and the walls of the exhumed buildings at Pompeii are notably rich in wall paintings.
These colors have been examined by several chemists, notably Sir Humphry Davy, and the results lead to the conclusion that the pigments at the command of the ancient artists and artisans were chiefly natural products, such as gypsum, chalk, bitumen, ochers, siennas, iron oxides, carbon blacks, manganese oxide, lead oxides, arsenic and mercury sulphides, the copper carbonates and silicates, etc., with a few simple animal and vegetable dye colors.
It is remarkable that while both Pliny and Vitruvius describe the production and use of white lead, no trace of such use has been found in these analyses, though red lead (which occurs as a natu ral color) has been encountered frequently.

During the first sixteen or seventeen centuries of the Christian era also the use of paint was predominantly for decorative and artistic purposes, and the development of the technical side of paint and color making up to the eighteenth century was largely along these lines. Part of the stock in trade of the great painters, even down to the days of Sir Joshua Reynolds, Vandyck, Rubens, Velasquez, and the rest was their secret formulas and processes for preparing colors, oils, and varnishes.
The reason for the slow emergence of the idea that paint could be used for protective as well as for decorative purposes is not far to seek: Mediæval, Renaissance, and in England, even, Georgian architecture was the art of designing and construction in stone or its equivalent man's house was literally his castle-his stronghold-and he whose position in life would not maintain a defensible strong. hold was not a man but a villain, sub ject to the commands and dependent for protection upon his more fortunate lord.
The houses of the better classes were therefore stone fortresses; those of the lower classes, flimsy hovels, huts, or cabins. The castle needed no paint; the peasant's shelter was not worth it.
With the rise of the common people into the stature and privileges of human beings, however, wood became gradually a recognized building material, the preservation as well as the decoration of the wooden house became important, and the demand rapidly stimulated the development of paint, making it a commercial industry.
The earlier industrial paint makers naturally looked to the artists for their knowledge of paint; consequently we find the original house paints to be merely adaptations of artists' colors, gradually modified to permit of production on a commercial scale. Thus, the early process for producing white lead, for exam ple-the old Dutch process-was merely an expansion of the artists' method of making "flake-white," a trench in the stituted for the hole in the artist's back yard. So, also, the older paint chemists -Scheele, Diesbach, Chaptal, Davy, Girardin, Vauquelin, and others-concerned themselves largely with investigation of the pigments then in use and the simplification of the methods and materials used in producing them. This fact can be verified by a glance at the pages
of a comprehensive book published less fifty years ago-the celebrated Practical Treatise on the Manufacture of Colors for Painting" by the French authorities, Riffault, Vergnand, and Toussaint. Large space is given therein to the production of Prussian blue from animal offal, of lakes from vegetable dyes, of Turner's yellow, orpiment yellow, and uranium yellow, of quicksilver vermilion, of the arsenical and copper greens, etc The chromate yellows and greens were then comparatively new pigments, as was French process zinc; much space is devoted to weird processes for making white lead, which have long passed out of memory; the coal-tar pigments and akes were still far in the future; there was no American process zinc, no sublimed lead, no "zinc-lead," no "quickprocess lead." And this book was the latest word on the subject by the leading European authorities at about the close f our civil war.
It is not overstating the facts to say that the introduction of ready-prepared paint making as a separate industry marked the first real impetus in the technical study of paints and the popularization of paint-using for protective as well as for decorative purposes. It began in his country about 1860 , and has since developed so rapidly that a competent authority has estimated the consumption in 1900 at $60,000,000$ gallons. A natural equence of the American tendency to simplify, to systematize and to economize time and labor, it placed protective and decorative paints within the reach of all and made this country pre-eminently the paint-using country of the world.
There are now in this country something like two hundred and fifty paintmanufacturing concerns, properly so called, ranging in size from a small plant with an output of a few thousand gallons per year to single concerns operating a dozen or more plants, with their annual output running into the millions.
The demands of these factories have stimulated the production and diversification of pigments, until the list is almost endless; and the study of the paint chemists employed by them has thrown a flood of light upon the properties of paints undreamed of by the older color chemists. The result has been a rapid diversification and specialization of products, until at the present time we can obtain from any paint factory, ready for use, a paint. for almost any purpose; exterior and interior tints and colors, floor paints, roof paints, barn paints, porch paints, carriage and wagon paints, enamel paints, car paints, locomotive paints, bridge paints, etc., in limitless variety.
Every manufacturer is constantly pushed by each of his competitors to produce something better and cheaper, and the result is that to-day's formula is displaced by to-morrow's discovery. In the pigments used there is much diversity and constant improvement; but after temporary experiments along other lines the entire trade has apparently come to an agreement that for the present, at least, there is no satisfactory substitute for pure linseed oil; consequently, he who examines these paints of the better grades will find, outside of the volatile thinners and the liquid "dryers" used, practically the entire liquid contents to be simply linseed oil.
Columns could be devoted to this unique vegetable oil; but it is enough to say that the United States annually conumes about $20,000,000$ bushels of flaxseed in producing it, and that nothing has yet been discovered that so satisfacorily fulfills the requirements of house painting.
A great deal has been said and written against prepared paints-chiefly in the interests of painters, who cling to their ancient tradition and perquisites of hand mixing, or by those who cater to this trade; but the incontrovertible fact remains that the consumption of these roducts after a half century's experience increasing steadily. This fact alone is sufficient answer to all objectors; nothing
that does not serve a useful purpose can permanently succeed. Frauds may flour ish for a time, but their. season is brie
G. B. Heckel

Names and Address must accompany all letters or no attention will be paid thereto. This is for our information and not for publication.

 References to former articles or answers should givedate of paper and page or number of question. Inquiries not answered in reasonable time should be
repeated, correspondents will bear in mind that
some answers require not a little research, and, some answers require not a little research, and,
though we endeavor to reply to all either by
letter or in this department, each must take Buyers wishing to purchase any article not adver-
tised in ind columns will be furnished with
addresses oof houses manufacturing or carrying
the same.
Special Written Information on matters of personal
rather than general interest cannot be expected without remuneration.
Scientific American Supplements referred to may be
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of
price.

| $\begin{array}{c}\text { Minerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$ |
| :---: | (9934) A. C. A. says: Please inform

me through the Notes and Queries column,
how the number of lines of force in a magnet
are calculated. A. To calculate the number of
lines of force in air through a given coil of
wire, multiply the amperes by the number of
turns of wire and this by 0.4 or by 1.257.
This is fully explained in Sloane's Handy Book
of Electricity, which we send for $\$ 3.50$.
(9935) B. F. B. asks: I wish to pro-
cure the best method for drilling glass. A. For
drilling glass make a solution of 1 ounce gum
camphor, 1 1/2 ounces spirits of turpentine, and
3 drachms of ether. Keep the end of the drill-
ing tool wet with this fluid. The sharp corner
of a freshly broken point of a file is one of
the best drilling tools for this purpose.
(9936) L. E. B. asks: Does the space
occupied by the spokes in a carriage appear
to be filled with black dots when the moving
carriage is seen through a lace curtain?
did not notice it when the carriage moved
rather slowly, but when it was moving at a
brisk rate. A. The phenomenon of the moving
wheel viewed through a mesh of lace is due
to the persistence of vision. Through the
openings in the lace we see only. a part of
the spokes, and then this part disappears. We
thus get a discontinuous view, broken more
rapidy as the carriage moves more rapidly. (9937) W. W. G. says: We would consider it a great favor if you will have the
kiindness to advise regarding driftwood fire powder. This is a powder which, as we un
derstand it, is thrown on the fire and pro duces the same lights as driftwood does. Kindly advise if possible where same can be obtained
A. We do not know the composition of the A. Wriftwood powder. You can, however, make
driftwood for yourself, which will give a color equal to any, by dissolving chloride of copper in water. Use a wooden pail for this, since
it will corrode a metal pail. Place pieces of wood endwise in the solution, and allow them to soak till they are well saturated. Then dry
them, and throw some pieces upon a bright fire. They will show the colors of the burning copper. A pound of coppe
make a great deal of driftwood.
(9938) F. S. J. asks: 1. Can you tell me what a wattless current is? How is it caused? A. The so-called "wattless current" is
the component of the total current which is in quadrature with the energy current. It tricians' Handy Book," which we send for $\$ 3.50$. 2. Why do telephone companies alway case where a lineman carried the ground wir Why not ground on a gas or steam pipe? They are all connected to the ground. A. W cannot tell why telephone companies "alway
ground on a cold-water pipe," since we have just examined ours and find it grounded on that a thing is always done in a certain way because we have never happened to notice it
done in any other way. There is no reaso for grounding on one pipe rather than the other. Gas pipes should not be used because
of risk of setting tire, if a break occurs there any point on the American coast wher is it? A. We do not know any place where there is no tide. There are places so situate
that a tide flowing one way meets a different phase of a tide from another direction and (9939) change of tide results.
(9939) T. W. B. asks: As it is an caused to flow between the poles in a circuit connecting two metals such as bismuth and antimony when the point of juncture is heated, I should like to know what voltage and am perage can be produced or caused to flow if of bismuth and the other of antimony, b joined together and heated in say 500 deg.
 word, or else the prefix "micro-," which i,
used as meaning a millionth part. Webster's Dictionary contains it. A treatise on elec
tricity would assume that the reader had dictionary and would not stop to define such a
term. You cannot maintain a bismuth-anti mony junction. at 500 deg. F., since bismuth melts at 514 deg. F. Nor has anybody yet
succeeded in making a thermo-electric gene which gave about half this was on the market one gave perhaps 1.5 amperes. We cannot en
courage you to expect to invent a generato which would give 20 amperes
(9940) H. E. E. asks: As a reader of your most valued publication, I am taking on
myself the privilege of asking you where it would be possible to secure information regarding the latest or the best system of wir
less telegraphy. I am seeking to build a sy tem between two stations, about three hun
dred yards apart. Have been unable to secure anything satisfactory on the subject except from the columns of the American, and that
is all so condensed that it doesn't help much in putting in a system. on the subject, which would enable an ama-
teur to build his own system and at a nominal
cost. A. Maver's "Wireless Telegraphy," cost. A. Maver's "Wireless Telegraphy,"
price $\$ 2$, is a very good book upon the subject, although Collins is somewhat more recent and is reliable. Its price is $\$ 3$. We can send
either or both upon your order. We have published in our Supplement No. 1363, price of instruments which will transmit much farther than you propose to send messages
We would advise you to get this, if you have not already done so, and to follow the instructions given therein. A large number of
people have built sets from these instructions. We would say, however, that no one can build the instruments at a nominal cost. The
coherer, the relay, and the induction coil must

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued
for the Week Ending March 27, 1906.

```
AND EACH BEARING THAT DATE
```


Blind fastener, Durn \& Anderson..
Bind Slat clipper, S. C. Smith...
Block. See Pulley block.

Bottle, siphon, J. G. Herrich....... .
Bottle stopper, H. K. Gilbert

Engine and Foot Lathes

Mustard \& Company

MEL $\begin{gathered}\text { DRILLING } \\ \text { Machines }\end{gathered}$

KEROSENE OIL ENGINES

Watch Tacoma Grow!

Leading manufacturing ciry of Pacifife Northyest. Best
steamship and railway terminals on Pacifc Coast. Six

 816,033
816,511
816,375
816,407
816,01

 816,333
816,464
816,038 816,083

TO THE LAND OF THE MIDNGeft SUN

From
NEW YORK to ICELAND SPITZBERGEN and NORWAY

Leaving June 23, 1906 by the twin-screw express S. S. equipped for pleasure cruising. Superb accommodations. Rates
including all side-trip expenses if

12 Other Similar Cruises
by well-known steamers Blücher,
Prinzessin Victoria Luise, Prinzessin Victoria Luise, Meteor, during
June, July and August
For programmes, rates, etc., apply HAMBURG = AMERICAN LINE Offices: 35-37 Broadway, N. Y. PHILADELPHIA SAN FRAN
BOSTONT
ST. TOUIS

SMALLEY

 "It Is Self Starting"

MANGIT

ELECTRO MOTOR. SIMPLE, HOW TC

ICAN S Sp
had at this

Will make for you $\$ 100$ A DAY

bartell fachine co 53 W. 8th St., New York, U.S.A.

Automatic
Water Supply

catagua.
Niagara
Hydraulic Engine
Co

140 Naseau St., N. Y
 Fift
Finta
Fila
Fila

\qquad

Gear, change speed, J. Thannheimer.......
Gearing device, automatic, J. Shoecraft..
Generator. Surrent generator.
Grain crushing apparatus, A. \& A. Simo
Grain erushing anparatus, A. \& A. Simon..
Grain elevator and wagou dump, R. J. Jo nes
Graphite setarator, J. DI. Davis........
Grinding disk, clemrance space, G. Gorton..
Grinding machine, L. W. Wpace
Grist mill, portabe, J.
Gun stock Wo

Lamp burner, E. D. Ho
Lamp holder, Ther, Stect

tric, J. F. Burns........
Leaf turner, M. J. Brennan.
Leather, dyeing, R. Rieder
Ledger, W. Wylie.

\qquad
\qquad
Mail box, W. A. Wheeler
Manifolding apparatus, J. Bengough, et al
Massage instrument, W. G. Shelton.......

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{V_{2}}
\end{aligned}
$$

Nail cap plate, G. R. W. Wman.
Vailing machine, H. Worgan
Nose ring, animal.
nt, Schubert \& Rechit
Nut lock, J. M. Scott
$\substack{81,4,40 \\ \text { seficise }}$

In Cash Dividends and Other Concessions
Since its Organization The Prudential has Voluntarily

Distributed to Industrial Policyholders over
$\$ 6,500,000$
More Than the Amount Called for by Their Policies This is Liberality
intherull
Sense of
the
Word
The Prudential

BABBITT METALS.-SIX IMPORTANT

JAGER Marine 4-Cycle Engines

1906
THOMAS AUTO=BI

 AUTOMOBILE ENGINEERS 147 Weat 6 tht streate New York Clity
PRof Under the personal direction of PROF Selool of Enginerrs, Columbia Univerity Ph.

Tools! Tools! Tools!

A Fay \& Bowen Engine

Took One First and One Second Prize in the Palm Beach Races in February.
A Fay \& Bowen Engine came in first in the Chicago-Mackinaw Endurance run last Summer, running the 39 hours without a single stop A Reliable Two-Cycle Machine, started without a crank.
Our unique Make-and-Break Sparker is admitted to be the best.

Write for free catalogue of Motors and Fine Boats
Fay \& Bowen Engine Co.

A Loose Leaf Book
 Flat-Opening Self-Indexing

 perfectly fat opening and heets mat.
inserted or removed rom any part
int

USE	No.					${ }_{\text {coin }}^{\text {Com- }}$						
$\mathrm{V}_{\text {est }}$ Pocket	${ }_{4412}$											
Coat Pooket	4612	6 $61 / 2$	${ }^{6} \times$	14	50 50 50,	1.95 1.20 1.70						
		${ }^{5} 6$	${ }_{\text {c }}^{5} 5$		125 125 1	${ }^{1.75}$						
	${ }^{7732} 1132$	${ }_{11}{ }^{31 / 8}$		讋	125	${ }_{2.10}$						
19 other sizes carrited in stock Stook ruling: Quadrille, Unuled, Dollars and Cents, Faint Lines, Dooble Entry Ledzer and d 4 Column Price Book Ruling Send for sample sheets and complete catalogue of lar gest line of loose-leaf devices in the worla.												

 and making, A. Dellamore, et al......
Plastering construction, J. Barbagelata, Jr.
Plastic material, treating, A. A. Scott,

 Printer's galley, J. P. Rivett....
Printer's quoin, H. A. Hempe....
Printing and numbering machine,

Hair Life Revives

Under the Evans Vacuum Cap. Guarantee Backed by a Bank.

The scientific reason for a new hair growth is endorsed by scientists generally, and is by the EVANS VACUUM CAP method, guaranteed to produce a growth of hair to
is simply in that the exhaust of air brings a your satisfaction or your money will be is simply in that the exhaust of air brings a your satisfaction or your money will be
full supply of blood to the scalp, which acts refunded by the Jeffer son Bank of St. Louis. like a rhythmical massage. You can tell When you make up your mind send your from using the Cap a reasonable length of
tinie what your result is to the bank to hold-don't send it to
me; if you
us. We agree to send you the Cap on sixty timie what your result is going to be ; insyou us. We agree to send you the Cap on sixty
experience the tingling, freshening sensation days free trial (by prepaid express) and if at experienced circulation and a healthy, ruddy
of renewed the end of that time you are not convinced tinge shows on the scalp surface, it is proof that the Cap will restore your hair, notify positive and scientific evidence that nature is the bank and return the Cap to us. The still able to do her work in the production bank will refund your money in full. of hair growth, and the Cap will restore
your hair. $\begin{gathered}\text { We have no agents or traveling represen. } \\ \text { tatives, all orders come through the Jefferson }\end{gathered}$ The EVANS VACUUM CAP method $\left\lvert\, \begin{aligned} & \text { tatives, } \\ & \text { Bank. }\end{aligned}\right.$

A 16-page Illustrated Book Will be Sent You on Request, Postage Prepaid in Full by Us.
EVANS VACUUM CAP C0., 412 Fullerton Building, ST. LOUIS, MO.

For One Dollar The R.S.

 ELECTMRICALRSDVNAMOS TROLLETCA NOVELTIES THE CARLISLE \& FINCH CO

IVIUD
WEED'S TIRE GRIPS
ositively Stops Slipping or Skidding
They Make Bad 1 oads Good hey Make Bad lioads Good

WEED CHAIN TIRE GRIP COMPANY

[^0]
strang, roomy drawers. Holds as
much and coss no more than
good box trunk. Handiriveted
strongest trunk made. In smali
In
room serves as chiffonier. C.O.D.
with priviege of examination.
2i. stamp for Catalog.

9
CEM CITY WIND MIL

For 1 Mile or 1,000 Miles

The Type XI, Pope Toledo, is the Fastest, Most Powerful Stock Touring Car in America

35-40 h.p. Full Equipment Price $\$ 3,500$

$\mathbb{1}$EASE note carefully that we say one mile or a thousand miles-
Moreover, the Type XII, $35-40 \mathrm{~h} . \mathrm{p}$. Pope-Toledo, will run more mile at less cost for tires, fuel and repairs, and with less adjusting than any high powered touring car in the world. Transmission is ing a tensile new chrome nickel soo pounds and is, without question, the strongest, mission silent and smoothest running . This year we have adopted the "I" Beam form of axles, drop forged in our own plant from pounds. Both foot and emergency brakes act on the rear hub bands, thus relieving sion. Engine throttles down to a point making it possible to drive behind a team walking, or gives the maximum efficiency of the engine all on the high gear. Cata Touring Cars, Limousine and Runabouts, on request.
Be Sure the name "POPE is on Your Automobile

Pope Motor Car Co. Desk 2, Toledo, O.

ELECTRIC SEWING MACHINE MO-Mor:- The instructivns andanumerous inustrations of de
 cents by mail,from this ottice and fromall newsdealer

REAL MAIL SERVICE
Your office efficiency is determined by your "mail" i. e., the way your Brains are put through your Typewriter. If you lack either, the other's small value. T.ue best commercial brains in the world have decided the

VISIBLE

WRITING
Underwood Typewriter
does the best work in the shortest time

UNDERWOOD
TYPEWRITER CO
241 Broadway, New York

$$
\begin{aligned}
& \text { Swinletree attachment } \\
& \text { Switch, M. Si Farmer } \\
& \text { Switch, H. Richardson }
\end{aligned}
$$

 cuit for, C. A. Simpson,

Truck bolster, \dddot{j}...............

ault light, McGuigan \& Prididie.
ehicle bearing spring, motor, T.
Vehicle, dumpin, J., M. Goodwin
Vehicle heater, Swengel \& Brne

TRADE MARKS
Ale, carbonated ginger, Lowenstein \& C 0
Anesthetics, local, B. B. Larrence....... Anesthetics,
"Anti-set-of
Co.
Antisepte and germicale,
Anvilis, wiebusch $\dot{\varepsilon}$ सiliger

This Razor must Pay for Itself before You Pay me a Penny
—and a Postal gets It. I Guarantee to Keep your Blades Sharp Forever Without

Charge.

Motion Picture
MACHINES and FILMS STEREOPTICONS and SLIDES
For Public Entertainments, in
Theatres, Halls, Show Tents, etc.

50,719
50,635

 Always Right

The uncerainty of running is all taken out in the building The breakdown haboit has been overcome by following scien

 Ulfc line of constuction proven by practice to be correct.make take no co chances and allow no guesswork to onter int their
mat
 gines this year, manufacturing the motor complete from

 5 E. Congress St., Detroit, Mich.

A Perfect Ignition Device For Gas and Gasoline Engines

You Can Tell a Truscott-You Can Trust One

 triscoott boat mef. company, Dept. 263. st. Joseph, Mich.

B
B
C
C

 serving co. candies. American Carame
Caramels and

Cheese, neufchatel, W. . Lawrence \& Son.
Cheviots, haircloth, Edyystone Manufacturins

cigars, co seroots, and cigarettes made
cige
cigar tobacco, Cayey-Caguas Tobaco

Coats and trousers, J. Samuels \& Bro......: 50
Cocks, stop and waste, A. Y McDonaid.

 Flour, wheat, Sweet sinins Miliin Mo......
Flour, wheat, Pillsbury-Washburn Flour iiis
co

In
Kn

 Medicires for the reguiation of the liver and
puricication of the blood, A. H. Lewis
Muedicion

 Oill castor, Moricis Bros.
Oil cups, Lunkenheimer

\qquad tion, aipons, coats, and pants. Cievel

 ment
tor
torns \cdots ney Pianos, A Ane Baumeister

The Car With a "Doctrine"

Doctrine stands behind the construction of every Maxwell car. EXPERIENCE, not theory, is the keynote of the "Doctrine."

"Here's Your Hat!"

Cartoon by Opper

The above is a humorous interpretation of a tremendously serious fact With several members summarily asked to resign, five more under indictment, and one dead in state's prison, an abrupt crisis has been reached in the Senate situation has been admirably summed up by David Graham Phillips, as follows

 It is the duty of every intelligent American to get a sane, sound understanding of "The Treason of the Senate" the most scathing, truthful exposure of political corruption in years. Now appearing

30Days Free Trial largely upon the purity of the water you drink

used. Water flows directly from bottle to fauce
undoug coil of pure block tin and is cooled tin transit. NOTICE.-Our cooler is covered by broad basic patents and we
NOTM w:Il prosecute vigorously all infringements.
THE CONSUMERS CO., 3517 Butler St., Chicago

Electrical Engineering
 Engineering Dept. $\underset{\text { 17-27 Vandewater }}{\text { SPLITDORF }}$

SOCIALISM

The most important question of the day. Get posted.
Read the greatest Socialist magazine in the world. 300,000 circulation. Send 10 c. silver for one year's trial. GAYLORD WILSHIRE, Editor "Wilshire's Magazine," 300 Black Bldg.. N. Y. Clty

"We Analyze Everything"

 Investigations and Researches. Processes improvedPatent litigation, etc. GETA BIRD'S EYE VIEW OF YOUR BUSINESS

DO YOU
Want your PATENTS Developed? Experimentals, Models and mone ingstrumen Richter \& Poncet, 115 Court Street, Hoboken, N. Anyone sending a sletch and description may

Scientific American.

Labels.

PRINTS.
A Trip Around Candies, Johnston," for

 "Sapolin Carriage Gloss Colors," for carriage
gloss colors, Gerstendorfer Bros
"Star Enamel and Sapolin Floor Stain,;".
enor
enamel and floor stain, Gerstendorfer

 Canadian patents may now be obtained by the in-
notors for any of the inventions named in the fore-

Manufacturers

PERHAPS your factory would find better operating' conditions and market not so sharply competitive in the Santa Fe Southwest.
If you are desirous of investigating this field we will be glad to assist you, and correspondence is invited.

WESLEY MERRITT dustrial Commission
Santa Fe System

 YWKEJKINES Corliss Engines, Brewers MODELS $\underset{\text { Inventions developed. Special Machinery. }}{\text { E }}$ EXPERIMENTAL RUBBER PARKER, STEARNS \& CO., 228-229 South Street, New York Experimental Work. Designs for Automatic Machinery.
G. M. MAYER, M.E., 1131 Monadnock B1., Chicago, Ill.

DRYING MACHINES. | s.e. workelit |
| :---: |
| Hannioal. Mo |

Fire, Foot and Power Lathes

Experimentai \& Model Work

Magical Apparatus.

MTEEL TPFWREERTCPE ail st lies. NEW NOTRK STENCIL WORKS:
100 Nassau Street, New York. ELECTRICAL Empate oral hase nacas b-

HE SHOREHAM
WASHINGTON, D. C.

Che

Ceading Fasbiomable நotel

METROPOLITAN STANDARD OF EXCELLENCE. ABSOLUTELY MODERN and High Class in all detail. american and european plan

JOHN T. DEVINE, Proprietor

DON'T BUY GASOLINE ENGINES
 UNTIL YOU NVESTICATE, THE MASTER WORKMAN,

New Yori Peling and Pading Co.
 LIMITED
 Manufacturers of High Grade
 Rubber Belting

Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

Write for catalogue.
91-93 Chambers St., Nẹw York ,

CHARTER
 Gasoline, Send for Catalogue.
Charter gas engine co., Box 148. Sterling, ill.
What Is Daus'Tip-Top?

 TheFelis A. B. Daus Duplicator Co., Daus Blidg, 111 John St, New York CRUDE ASBESTOS \begin{tabular}{|c|c|}
\hline PREPARED

ASBESTOS FIIRE

tor Mant

 R, MARTIN,

$\begin{array}{c}\text { ASBESTAS FIBRE } \\
\text { for Manufacturers use }\end{array}$

\hline
\end{tabular}

 SCA

The Genuine Armstrong' STOCKS and DIES Acknowledged to be the best difien orent sizes and THE ARISTRONG MFG. CO., Bridgeport,

:STANDARD"
Two=Speed Automatic Coaster Brake Hub
 THE STANDARD COMPANY

STEAM USERS

Raingow praking

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.
Can't blow Rainbow out.
For steam, air, hot or cold water, acid and ammonia joints.
Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by PEERLESS RUBBER MFG. CO. 16 Warren St., New York

A Sixty Year Old Tin Roof

The old First Presbyterian Church at Princeton, N. J., has a roof of old-time hand-made tin. Although laid sixty years ago, it is still in perfect condition and has never been repaired. This is the kind of durability we offer in our ''Taylor Old Style' brand-the only roofing tin still made in the old-fashioned, handdipped way. Before deciding the roofing question compare the service given by good tin-the original, genuine "Old Style'' brand with that of the cheap composition roofs which must be guaranteed for ten or fifteen years to find any takers at all.
The machine-shop of the Georgia Railroad at Atlanta, Ga , was roofed with tin prior to 1848
This roof is still in seventy year's wear. This is the kind of roofing material we offer you to-day in our "Taylor
Old Style" brand. What other kind can even approach this record?
N. \& G. TAYLOR COMPANY established 1810
Philadelphia

Buys This Rubber Tire Wagon Union Quality. Fully Guaranteed. Best hickory
wheels, $3 / 4$ in. Rubber Tire, long distance, dust proof, Rubber Tire, long distance, dust proof,
high arched axles; oiltempered springs.
First quality material and filish Worth First quality material and finish. Worth
nearly double our Factory Price. We nearly double our Factory Price. We
ship for your examination, without
cent in advance, if desired, and allow
30 DAYS FREE TRIAL
Money refunded on all purchases not
We build 150 styles of Vehicles, from
 $\$ 26.50$ to $\$ 150.00$. 50 styles Harness, $\$ 5.00$ to $\$ 6$
Illustrated Style Book. Free for the asking. Unstrated Style Book. F
UNGGY COMPANY,

28 Saginaw Street, Pontiac, Mich

Sureness of Service

Of all the reasons why the Cadillac is the car you should own, the greatest is this.
Never-fanling servuceableness at a minnmum of operating expense. Whether runabout or touring car, it is an example of careful motor building-a car behind which stand the name and experience of the largest automobile establishment in the Every detail of workmanship and mate-
rial is wrought with that exactness rial is wrought with that exactness
which accompanies superior
skill and up-to-date
equipment. This (C) stands meet them perfectly
mairements a Cadillac to
mer der types are marvels of power and endur-
ance ; their perform ance; their performances are yet to be
equaled by any other machines of their class. The four-cylinder cars, built upon the same rugged principles that have made the smaller types famous, combine all that could be desired for touring service.
In design the 1906 Cadillacs are strik-
ingly beautiful; in finish they are truly works of art.
Send for Booklet N , and address of nearest dealer, who by actual demonstra-
tration, will convince you of the merits of tration, will
the Cadillac.
Model K, io h. p. Runabout, $\$ 750$ Model M, Light Touring Car, \$950 Model H, $\mathbf{3 0}$ h. p. Touring Car, $\$ \mathbf{2 , 5 0 0}$ Model L, 40 h. p. Touring Car, $\$ \mathbf{3 , 7 5 0}$ All prices f. o.b. Detroit
CADILLAC MOTOR CAR CO. Detroit, Mich.
Member Assn. Licensed Auto. Mfrs.

Your Storage Battery will always be full of "juice" and
ready to give fat, hot sparks, if you inready to give fat, hot sparks, if you in-
stall an Apple Battery Charger on your car, boat or engine Thousands of "'Au
Write for full information to-day THE DAYTON BLBCTRICAL MPO 98 St. Clair St., Dayton, 0.

[^0]: Stallman's Dresser Trunk

