

Adiusting the Spectrograph at Guelma, Algeria.

Photograph of the Complete Corona Taken with the 40-Foot Camera on August 30, 1905, at Guelma, Algeria.

Prominences and Inner Corona of the Eclipse of August 30, 1905.

Demolishing the Station at Guelma, Algeria.
STUDIES OF THE TOTAL SOLAR ECLIPSE OF 1905 BY THE UNITED STATES NAVAL OBSERVATORY EXPEDITION.-[See page 153.]

SCIENTIFIC AMERICAN

Established

NEW YORK, SATURDAY, FEBRUARY 17, 1906.

The Editor isalways glad to receive for examination illustrated
articles on subjects of timely interest. If the photogranhs are
 sharp, the articieses short
will receivespecial
at regule
at regur space rates.

SPEED AND SAFETY IN RAILROAD TRAVEL.

In another column of this issue we publish a letter from a correspondent who proposes, as a safeguard against the perils of railroad travel, that the speed of trains should be regulated by legislation, no train being allowed to run above a speed of forty miles per hour. This suggestion is made as presenting a more effective safeguard than that offered by a correspondent in our issue of January 20, who believes that the use of block signals and the automatic stop is the best solution of the problem of combining high speed and safety. There can be little doubt that, if all things be considered, the best compromise of the several conflicting interests which have to be considered in determining this question, is that of combining high running speed of trains with the automatic block signal and the automatic stop. For it is certain that an attempt to restrict, by law, the speed at which our railroad trains shall be run, particularly if the limit were set at forty miles an hour, would not only retard the progress of our whole system of industrial tard the progress of our whole system of industrial
life, but would so far limit the capacity of our railroads that the lines would become congested, and the risk of accident be proportionately increased.
Our long list of railroad fatalities and accidents is not due to the high speed of trains; it is not due to the failure of the block signal system on such lines as use it; but it is due in part to the fact that enginemen play fast-and-loose, and in many cases are encouraged to do so by the management, with the fundamental principle upon which the block signal system is built up. This fundamental principle is that the commands of the semaphore arm or the colored light are absolute and final; that whether they say "stop" or "proceed," there is no possible appeal from their commands; that nothing is left to the discretion of the engineer, who must obey with the most literal obedience.
If the block signal were permitted, in the operation of trains, to exercise absolute authority, we believe that the percentage of accidents would at once be very largely reduced. As it is, however, that usually excellent trait of our national character which leads us to believe that nothing is so perfect but that it can be improved, has, in the case of the block signal system, led us astray; and in the attempt at improvement, we have robbed it of much of its value. On many roads the engineers are permitted to use their discretion by passing a signal and proceeding cautiously, the object, of course, being to save time by keeping the traffic of course, being to save time by keeping the traffic
moving forward. If we would secure the full benefit of the block signal system, this discretionary power should be removed from the engineer.
Furthermore, it may happen that even when the block signal is strictly obeyed, various accidents, which need not be recapitulated here, may prevent the engineer from stopping his train according to the signal; and it is in order to eliminate, as far as possible, these errors, due to the "human element," that the automatic stop has been introduced. Its advantages are so many and so obvious, that one would have thought that this device would have met with quick recognition, with universal recognition, we might say, on those roads which make use of any kind of an automatic signal system. Although various disadvantages have been urged against it by those who are responsible for keeping the traffic moving, we believe that the chief objection rises from the same considerations that led our railroad men to rob the block signal of its proper authority. They look upon the automatic siop as one more hindrance to that unimpeded movement of the trains, which is the prime object of the superintendent and his train dispatcher. We do not believe, however, that the ultimate effect of this device would be to hinder the flow of traffic. On the contrary, if the block signal were made more authoritative, if its commands were backed up by the automatic stop, we should rather be prepared to see the speed of trains steadily increase, as a direct result of the lessened risk of accident.
superheat and boiler pressures.
It is surprising that the advantages arising from the use of superheated steam should not have led to its earlier use on the locomotive; for it is only during the past two or three years that the superheater has begun to establish itself in locomotive practice. This development we owe chiefly to the Germans, who, with their characteristic thoroughness, are just now paying particular attention to the question of locomotive efficiency. The advantage of the use of superheated steam is that, by preventing cylinder condensation, it renders it possible to obtain from a simple locomotive an economy that compares favorably with that of the compound locomotive. It also permits of the use of a lower boiler pressure without any appreciable sacrifice of economy. This fact should render the superheater particularly attractive to the American master mechanic, to whom the high pressures which are now common are a source of increasing trouble and anxiety. The great increase in boiler pressure has been one of the striking features in the recent development of the American locomotive. The most rapid increase took place during the decade, 1890 to 1900 , when the pressure rose from 160 to 200 pounds to the square inch, several roads making use of the latter pressure. During the past five years 200 pounds has become common, and on some locomotives the pressure has risen to 210 pounds to the square inch; indeed, the writer has ridden on one make of compound, the needie of whose pressure gage was maintained at over 220 pounds to the square inch.
The increase in boiler pressure, like the increase in heating surface, has been due to the ever-present demand for greater power; but as far as the gain in power due to higher pressure is concerned, it has been secured at the cost of several disadvantages, such as increased leakage loss, a marked increase in boiler repairs, and a decrease of earning capacity due to the greater time spent by the locomotive in the repair shop. Now the introduction of the superheater offers a way of escape from the dilemma, a fact which is dwelt upon by Mr. H. H. Vaughn in a paper in the Proceedings of the Master Mechanics' convention, in which he states that, with the proper amount of superheat, it will be possible to return to pressures of 175 pounds or even less without loss of economy.

FORESHORE PROTECTION WITH CHAIN-CABLE GROYNES.

The experiments which are being carried out in Ireland with a novel method of protection against sea erosion, by means of cable groynes, devised by a Dublin engineer, will interest every government that is confronted with the problem of protecting its foreshores. In this system heavy chain cables are employed, to which are attached thorn bushes, or other suitable materials. The chains are laid at right angles to the foreshore, and at the sea extremity are held in position by means of concrete blocks or other suitable anchorage, while the shore ends are secured by means of strong iron pins. driven in between the links of the chain. When a light cable is utilized, it is held in position at intervening points between the two extremities by concrete sinkers. The cable is then freely covered with trees, bushes, and so forth, which catch the sand, gravel, and shingle. These groynes are found to accommodate themselves easily to the contour of the seabed.
A few months ago ten of these groynes were erected on the foreshore at Bray, near Dublin. At this point the shore line faces due east, and the conditions are very unfavorable to any protectional devices. The shore is very steep, and there is a triple line of railroad along the shore, protected by a seawall, which is constantly in danger of being undermined. On a stormy day, with the wind dead on shore, the waves wash right up to the wall at low water, and there is a continuous travel of heavy shingle, gravel, and sand, the marl being exposed and subjected to continual erosion through the sawing action of heavy traveling detritus.
With a view to testing the efficiency of the chain groyne system, which is inexpensive to install, the railroad authorities arranged for these ten groynes to be constructed on this principle. The groynes are each about 100 feet in length, commence at mean sea level and extend beyond ordinary low water. They are pinned down to the marl with strong iron bars pointed and capped. They are placed about 130 feet apart. They were installed before the last equinoxial gales, so that the efficiency of the system was submitted to a severe test. The gales raged with great fury from the northeast, but failed to dislodge the structures. Considerable quantities of shingle, sand, and gravel, however, were brought in and still remain, the depth of reclamaion at points ranging from $41 / 2$ to 5 feet.
The system has established its value, and already it has been decided to apply it to other parts of the British coast where other systems of foreshore protection are either impossible or difficult to carry out. It is anticipated that those at present in position will be
carried further out to sea, so as to offer a greater measure of protection.
The installation of groynes upon this method certainly possesses many advantages. The flexible hedge is very adaptable to the inequalities of the seabed, while should it by any untoward circumstance be carried away, it cannot be lost owing to the shore anchorage. Furthermore, they can easily be removed from one point to another more advantageous if desired. The cost of construction is less than that of any other groyning system, while they can be placed in position much more expeditiously. They cannot be impaired by the ravages of the shipworm, are inexpensive to maintain, while it is impossible to destroy the main portion of the structure. It is certainly possible to carry the groyning farther seaward than by any other system, and thus influence the travel of material over areas far greater than has heretofore been possible. The developments and results of the installations are being closely followed by continental engineers, since there are many points around the European coast line demanding protection from the heavy sea erosion now taking place, but where the exigencies do not permit of any of the usual groyning systems being erected.

ELECTRIFYING THE ST. CLAIR TUNNEL.

The announcement was recently made that electric locomotives were to be used in conveying passenger and freight trains through the St. Clair tunnel, and a contract has just been closed for the complete electrical installation, including six locomotives fitted with Westinghouse single-phase motors. This change of motive power is due not only to the difficulty of ventilating the tunnel, but also to the congested condition of traffic at this point. The St. Clair tunnel consists of a single tube about 21 feet in diameter, and over a mile long, with approaches which make the entire tunnel line over $31 / 2$ miles long. When the tunnel was built, to provide for ventilation, a pair of tubes were extended from the center of the tunnel to the entrances, where they were connected to large blowers. Evidently this system of ventilation has proved inadequate, for quite recentiy a serious accident occurred, when a freight train broke in two in the tunnel, and several lives were lost by suffocation in the foul air before the stalled section of the train could be drawn out.
The congestion of traffic at the St . Clair tunnel is due largely to the fact that the freight trains arriving at this point are too heavy to be hauled through by a single locomotive. Consequently, the trains must be divided, and this involves considerable delay. While the approaches to the tunnel are double-tracked, there is only a single track in the tunnel proper, and this also contributes to the delay of traffic. The electric lccomotives will be powerful enough to haul through trains of 1,000 tons, this limitation being due entirely to mechanical considerations; heavier trains may be conveyed through the tunnel with a locomotive at each end.
The adoption of the single-phase system is interesting as showing the trend of electrical engineering. While engineers abroad have been experimenting with the alternating-current motors, we in this country have clung to direct-current systems, because multiple-phase currents require a triple trolley, and the motors do not possess the speed-torque characteristics of directcurrent motors. Recently, however, the development of the single-phase motor has removed these objections to alternate-current systems, and we now have a'motor which combines the advantages of the alternatingcurrent transmission with an efficiency favorably comparable with that of direct-current motors.

THE ELECTRIC FUSION OF GLASS.

An exhaustive study has been made by M. Bronn, of Paris, of the numerous types of electric furnaces constructed for the production of glass, and his conclusions have recently been published in a technical contemporary (Bulletin de la Société d'Encouragement) from which we cull the salient and most interesting features Most of these furnaces are of the arc type, which, it is pointed out, have (among others) the disadvantage that there is considerable loss by radiation; in addition to this, when carbon electrodes are used, these latter throw off carbon dust. This latter becomes mixed with the glass, more or less, as its quantity increases with the length of the arc. Endeavors have been made to conquer this drawback by adding oxidizing materials to the raw ingredients, but so far with no great meed of success. Experiments have been carried out with metallic electrodes, but it was found that brass melted, while iron became magnetized and was drawn into contact. In some systems the arc is produced above the glass, an electro-magnet being used to deflect it against the material. In this way certain advantages are secured, but the pointed form of arc raises the glass to a high local temperature, and frequently burns through the side of the container. Tests made with furnaces with this kind of arc show that from 4 to 6 kilowatt-hours are requisite to produce 1 kilogramme (2 pounds $31 / 4$ ounces) of molten glass.

The glass was found to contain much more silicium than the ordinary mixtures, so that this electric fur nace should be useful if glasses of this kind are desired; it would be too expensive for ordinary purposes, however. Another furnace, which has some ad vantages over the arc type, is that in which powdered carbon or cryptol is used as the heating material. In these the ingredients to be fused are placed in a con tainer, which is then surrounded by the resistance material, thus insuring an efficient heat insulation, while at the same time considerably reducing the radiation losses. The resistance material must not be packed in tightly; the grains should also be of uniform size, and evenly distributed round the crucible. If required, the furnace may be arranged in such wise as to produce higher temperature at one part than at another. One difficulty with this type of furnace lies in the high current intensity employed, but this can now be regu lated, thanks to the invention of a suitable regulating rheostat, consisting of an insulated cylinder filled with the powdered material. A block of carbon at the bot tom forms one electrode, while the second consists of a rod of carbon, which is pushed down among the loose material. The conducting mass may be distributed around the crucible in several ways; in some methods, for instance, triangular strips of carbon are placed in contact with the crucible with a view to concentrating the current at certain points. In this way the glass may be fused at low temperatures as com pared with the temperature of the arc. The furnaces may also be regulated to give any temperature up to 1,600 to 1,700 deg. C., with a precision of from 10 to 15 per cent. The potential employed in connection with these experiments was about 100 volts.

SOME RECENT DISCOVERIES IN OCEANOGRAPHY.
The superficial area of the sea is two and a half times larger than that of the earth, while its mass or volume is enormous. Supposing that the basin holding the seas had been emptied at the time when Jesus Christ was born, and assuming that some enorm ous river had been allowed to run into it at the rate of 1,093 cubic yards per minute, the basin would still be empty, as it would require a total period of 600 years more before the seas would attain their present level. As may well be conceived, such a body of water must conceal many extraordinary things-but this is a possibility which has attracted attention only within comparatively recent times. The study of the earth itself has been attended with lesser difficulties, but we are now so familiar with our globe that its continents and islands are beginning to pall upon the curious mind, so that more attention is being given gradually to the ocean.
Two of the most prominent oceanographers of mod rn times are the Prince of Monaco and M. J. Thoulet In 1899, the Geographical Congress, which met at Berlin, appointed a committee to prepare and publish a bathymetric map. As the necessary funds were not available the Prince of Monaco generously came for ward and offered to take all the expenses upon himself, and the map was duly prepared in this way, under the auspices of Messrs. Sauerwein and Tollemer.
This valuable map has just been published and a copy was presented quite recently to the Académie des Sciences. It clearly shows the actual state of our knowledge regarding ocean depths, and the outline or profile of submarine lands, all the data being based upon soundings so far taken by hydrographers and oceanographers of all nations. Moreover, it also indicates the composition of submarine soils.
The map prepared and issued by M . Thoulet is one of the French coast (the submarine portions, of course), up to a distance of six miles from the shore; it shows the depths and-what is an entirely new feature-the lithologic composition of the whole zone in question, and indicates whether the ocean bed consists of mud, sand, stone, shell, rock, or algæ, etc. Devoted as it is merely to a fraction of the ocean, this map is much more detailed, while that of the Prince of Monaco is more a general bird's-eye view of the whole.
So far, but little is known about the bed of the ocean, but a few broad features may easily be picked up very soon, so that after a study of the Prince's map it is not difficult to translate the different shadings of color into differences of altitude, etc.; the student will then promptly discover that there are very many features of resemblance between the earth above and that below the bosom of the vasty deep. In fact, one is practically a replica of the other, both possessing hills, plains, mountain peaks, valleys, ravines, etc. The Atlantic Ocean, for instance, covers two vast valleys; one of these passes between the Cape Verde islands and the Azores, and is of great depth. It runs close up to Europe and comes to an end close to the British Islands, where a ridge or crest of land separates it from the basin of the North Sea., The other valley runs in the main parallel to the first, from which it is separated by an elongated strip of land of
which the Azores form a super-marine continuation. This strip does not exceed a depth of 9,850 feet, while its height amounts to 6,560 feet. The first valley, like its confrère, is also very deep, its bottom being situated at a depth of nearly four miles below the surface. Passing along South America, and leav. ing the Bermudas to the left, it passes along Newfoundland and Labrador, finally ending just south of Greenland. The sub-Atlantic landscape thus consists of two vast parallel valleys, separated from each other by a range of mountains. Further north the land lies higher and the sea is, relatively speaking, shallow. Between Greenland and the Continent, close to Iceland and the Channel Islands, there is a huge plain free from any depressions worthy of mention. It is quite clear that at one time England was connected to the continent.
The greatest ocean depths, however, are not found in the Atlantic, as there are veritable abysses to be met with on the other side of the globe. Close to New Zealand the water attains a depth of five and a half miles in the Kermadec and Tonga ravines, which in themselves attain a height of 29,530 feet, while they are separated from each other by a chain of mountains of 9,850 feet height. There is also the Aleutian ravine, which reaches a depth of 23,000 feet. Mostly, sub-aqueous scenery is monotonous; there are no abrupt declivities or precipices, excepting in the vicinity of the coasts or near islands of volcanic formation, everything being rounded off and smoothed down by the action of the water. Close to the land there is somewhat more variety. The European plateau, for instance, slopes gradually away down into the depths, and a fair view can be obtained there, provided a maximum depth of 1,300 feet be not exceeded. At first, abundant vegetation and animal life are met with, but below the depth mentioned the scene changes; first, the light grows dimmer and dimmer, and the deeper we descend the lower does the thermometer fall, except in the case of the Mediterranean, where the temperature is, relatively speaking, high, as this sea is contained in what is practically a closed basin. In the Atlantic, by means of special bottles invented by Dr. Richard, one of the Prince of Monaco's collaborators, the temperature of the water was taken for a depth of 19,686 feet. The surface temperature of 68 deg. fell to 38 deg. at a depth of 6,562 feet. "After 2,000 meters" (6,562 feet), says Mr. C. Sauerwein, another of the Prince's collaborators, "the temperature falls but slowly as greater depths are attained, the cold being practically uniform and not subject to any changes of season."
Cold, darkness, and monotony-such are the characteristic features of the ocean bed. The composition of the floor itself is the only thing that changes, though this is only the case close to the coast, as no alteration (or very little) seems to occur at great depths. Investigations made with drags, dredgers, sounding apparatus, and the like, have shown that it is an error to assume that the bed of the ocean is covered with sand, as this latter is essentially a coast formation only found in comparatively shallow water, close to the shore. Mud begins to take its place the further we go afield-mud, or rather, ooze. Its origin varies considerably; a part consists of the alluvial deposits brought down by rivers. This ooze is of various kinds. Blue ooze is found close to schistous coasts, and its hue is imparted to it by organic substances and iron pyrites; it covers the floor of the Mediterranean and of the Arctic Ocean. Red ooze is merely the blue variety changed in color by the peroxidation of the iron; it is also formed of the alluvial deposits brought down by rivers flowing through land rich in iron, such, for instance, as the Congo and some rivers in Brazil. Green ooze, finally, owes its color to glauconite; it is found along rocky coasts where there are no rivers. In many places the sand or ooze is mixed with volcanic elements originating from terrestrial and submarine explosions. The inorganic world, however, is not the only source from which the ocean bed receives its supplies of material. The remains of organic creatures also contribute no mean share. The upper strata of the sea swarm with teeming animal life-algæ, crustacea, eggs, larvæ, etc.-of all kinds, which die daily in thousands and slowly sink downward to the lowest depths of the sea, thus forming a continual rain of corpses of algæ, diatoms, et hoc genus omne which descend from heights far exceeding those of Mt. Everest (33,756 feet) and other lofty terrestrial peaks. Protozoidal forms, foraminiferæ and radiolariæ (over a million of which would not weigh an ounce, but which are so fertile that one specimen can produce 70 million direct and indirect descendants in four days) also play a highly important part in this work. Due to their shells, the foraminiferæ form large quantities of calcareous deposits. The globigerinæ and orbulinæ (members of this family) form a special ooze which is found in the bed of the Atlantic, while the radiolariæ form silicious deposits which abound in the Pacific and Indian oceans, where a special kind of ooze is also found, viz., the pteropod
ooze composed of the shells of pteropod mollusks which is found at the bottom of the Atlantic between Africa and America and near the Azores. These oozes, however, are not permanent, but merely represent a phase or stage. Red, blue, and brown clay is the only permanent compound; it is soft, greasy to the touch, and contains from 1 to 20 per cent of lime, a little vitrifiable earth, and organic remains. The oozes referred to above gradually turn into red clay, which thus becomes the final tomb of all that has lived, moved, and had its being in the sea.
A good deal more might be said about the strange beings which inhabit deep waters, feeding upon the bodies and excrementa continually raining down from the upper layers of the waters. But oceanography is not a pursuit of mere curiosity; its aims lie deeper and are of greater value, viz., the determination of the configuration and lay of submarine lands so as to facilitate the laying of cables, the discovery of spots where submerged peaks lie so near to the surface as to be a menace to passing ships, and the sounding of vast abysmal depths. Further than this, the sea and the sun are two great factors determinative of climate, and this is another reason why oceanography cannot fail to be of the greatest interest and value to mankind.
Meantime, the publication of the new maps in quesion has proved of immense value, and too much honor cannot be paid to the Prince and his collaborators for heir devotion to science-a devotion which so far has brought them nothing but empty admiration and eulogies.

SCIENCE NOTES

Some interesting facts concerning the mineral adulteration of textiles in every-day utility have been published by the Lancet, of London. According to this au thority, whereas one hundred years ago the rustling of a lady's silk dress was attributable to the high quality of the silk, it now rustles owing to the impregnation of 36 per cent of salts of tin. Epsom salts, which have hitherto been mostly employed for medicinal purposes, are widely adopted for giving weight to flannel. Similarly, the old-fashioned pure linen used for table cloths is now largely substituted by cotton filled with china clay, starch, and size, while our linen collars are also founded upon base materials with simply a linen facing.
The process of slow distillation of metals readily fusible in a perfect vacuum, elaborated especially by Herr Karlbohm, has for some years led to results so favorable that it was desirable to see these processes extended to metals less fusible. Vessels of quartz are now coming into more general use with the result that much progress has been made in their manu facture as described by Herr Krafft in the Chemische Berichte. When the quartz reservoirs are not too thin, they may be raised to the temperature of 2,552 deg. F., while sustaining a perfect vacuum, with out fear that they will be crushed by the effect of atmospheric pressure. At this temperature he has obtained the rapid distillation of a series of metals, among which are zinc, cadmium, silicium, tellurium, antimony, lead, bismuth, and silver. Copper and gold also distill at the maximum temperature of the experiments, but more slowly; their rapid distillation would require a higher temperature. The experiments have been confined to the laboratory, but the results have been so decided and encouraging that their application to the industrial rectification of metals is expected.

A series of interesting experiments to investigate by means of kites the relationship between the circula tion of the upper and the lower strata of the atmosphere, in order to know what winds to expect, are to be carried out by the British Meteorological Society, which has devoted a portion of the government appro priation to this work. An experimental station is to be established in England, and instruments provided for kite ascents and other methods of investigations The researches are to be international in character, for on certain days kites will be sent up simultaneously in England, France, Germany, and Russia. Mr. W. H. Dines, F.R.S., who is the leading authority upon this subject in England, will superintend the experiments, and he will be assisted by Col. Capper of the military balloon section at Aldershot, and Capt. Simpson of the steamship "Moravian," during his passages between Plymouth and Australia. The vessel will be provided with suitable kites, wire, winch, and the ingenious meteorograph, the invention of Mr. W. H. Dines, who has carried out important work in this branch of meteorological investigation on a government vessel off the west coast of Scotland. In these researches a string of kites was used, the largest of which was 12 feet high, with an area or 156 feet, and a weight of 20 pounds. The kites were flown on steel wire hawsers attached to a winch, wound by steam. A height of 10,000 feet was reached and recorded. The greatest danger attending these investigations is the liability of the steel wire being fused by lightning during thun derstorms.

MRRCURY ARC RECTIFIER FOR CHARGING STORAGE

 BATTERIES
by A. FREDERICK collins.

In garages it often becomes necessary to convert an alternating current into a direct current for the purpose of charging storage batteries, and heretofore this has only been possible by means of a motor-generator set, rotary converter, synchronous or mechanically driven rectifiers, and chemical rectifiers.
Obviously all the foregoing arrangements, except the chemical rectifier, necessitate moving parts that are subject to wear and hence require frequent adjustment, besides being expensive to install. An attendant who has had some experience with electrical appliances, must also be provided, and this further adds to the operating expenses. As to the chemical rectifier, it has never been developed to any degree of efficiency and has never been a very satisfactory piece of apparatus.

For these reasons there has existed for a long time a demand for a cheap device for rectifying or converting alternating current into direct current that should be at once compact and efficient and not apt to get out of order. The General Electric Company's mercury arc rectifier shown in the illustration fulfills these conditions to a nicety since it is lower in first cost, higher in efficiency, and more simple in its details than mechanical converters. It requires practically no attention, and for charging electric vehicle batteries it is almost ideal.
For a number of years the above company has conducted a special department for the development of apparatus used in storage battery practice, and the present appliance is the outcome of a long series of experiments. The mercury arc rectifier and the equipment furnished with it has been thoroughly tested; and no point essential to safety and economy in charging storage batteries has been overlooked or neglected. It is therefore especially serviceable for the charging of electric automobiles in private garages.

The complete equipment comprises essentially a panel, tube holder, and compensating reactance, and these various parts will be described sufficiently in detail to make their uses clear. On the panel, which is made of slate, are mounted the measuring instruments, namely the ammeter and voltmeter, double pole switches by which the direct and alternating current mains are brought into relationship, and also double and single pole switches for starting and operating the rectifier; fuses and circuit breakers are also provided for protecting the rectifier against heavy overloads.

The panel is mounted on one-inch supporting tubes and these, with braces, clamps, and flanges, enable it to be rigidly set up anywhere in a few minutes; to one of the supporting tubes a starting resistance is attached, as a reference to the illustration, Fig. 1, showing the rear view, will indicate. This resistance is connected in multiple with a pilot lamp mounted on

Fig. 1.-REAR VIEW of mercury rectifier.
the front of the board. The object of the starting resistance is to permit the rectifier to start before the load or charging current is thrown on. The object of the pilot lamp, which is connected in shunt across the

Fig. 4.-CONNECTIONS OF MERCURY ARC RECTIFIER AUTOMOBILE CHARGING PANEL.

Fig. 3.--FRONT VIEW OF A MERCURY ARC RECTIFİER

Fig. 6.-FIVE-AMPERE RECTIFIER FOR DENTAL MOTOR
starting resistance, is to show when the load or charging current takes the place of the starting resistance, the lamp remaining lighted until this substitution is effected.
The rectifier proper consists of a glass tube, Fig. 2, supported on the front of the switchboard, Fig. 3. In the bottom of the tube is placed the mercury, and, after the terminals are sealed in, the tube is exhausted. Two of these terminals, $A A$, are anodes or positive poles. Besides these there is a smaller anode or positive terminal, C, for rectifier; the odes, $A A$, lead switch, and the compensatto the main alrent line. The B, leads to the load, that is, side of the batcharged; while side of the line the compensatAllof this observed by reaccompanying 4 and 5.
trodes or poles with metal caps from burning

Fig. 5. SIMPLE FIER CONNE RECTIstarting the two main anto the dial then through ing reactance ternating curlower terminal, direct current to the negative tery tobe the opposite onnects with ing reactance. may be plainly ferring to the diagrams, Figs. The elecare provided for reducing to out as well as the front of the panel with spring clips, while binding posts for connecting the various parts of the tube with the apparatus are mounted on the panel.
Connected directly across the alternating current supply mains is the compensating reactance; and this
is sometimes mounted on the back of the panel or placed under it on the floor. From the reactance leads are brought out and are connected to a dial switch mounted on the front of the panel. The purpose of this switch is to vary the voltage and current within the limits of the rectifier, and the value of the former may be anything from 16 volts to 120 volts direct current. The negative side of the direct current circuit is obtained from the center of the reactance.
Three different sizes of the rectifier are now ready for installation, i. e., 10,20 , and 30 amperes, while any voltage found in commercial use on alternating current circuits can be employed with the mercury arc rec tifier. Outfits of standard sizes have been designed and these work on either 110 or 220 volt alternating current, 60 cycle, single-phase circuits. It has been found that for batteries requiring a range of voltage from 45 to 115 volts direct current, 220 volts alternating cur rent will give the best results, while for batteries for smaller power having a range of from 16 to 45 volts direct current, a 110 -volt alternating current gives the best results.
: According to the arrangement of the connections, the direct current voltage will be found to range from 20 to 55 per cent approximately of the alternating current taken from the supply mains, while the alternating current under similar conditions is from 40 to 65 per cent of the delivered direct current. The standard out fits will operate on any frequency from 25 to 150 cycles very satisfactorily. They are, however, designed especially for 60 cycles, but when used on higher or lower frequencies suffer but little in consequence.
The efficiency of the mercury arc rectifier depends largely on the voltage of the direct current used, since there is about 15 volts con stantly lost in the arc. Thus, although it is only about 60 per cent at 30 volts output, it reaches a maximum efficiency of 80 per cent at 115 volts. The shape of the efficiency curve differs from that of the motor generator set formerly employed, in that its efficiency at partial loads is as high as the full load efficiency. This is true also of the power factor, which is extremely high for a converting apparatus of this capacity and seldom falls below 90 per cent, while it frequently exceeds to a considerable extent this value.
Should it be desirable to charge at a higher rate than 30 amperes, two or more rectifiers can be connected in circuit and the capacity can in this way be doubled. The panels on which the instruments are mounted are arranged so two sets may be thus coupled up in multiple, although it is pointed out by the manufacturers that a single set especially designed for the current strength to be used is prefer able since it is simpler in construction and easier to operate. These rectifiers may be used with any kind of storage batteries and cannot possibly do any harm. According to the president of one of the largest storage battery companies in the country, charging by a recti-

Fig. 2.-TWENTY-AMPERE MERCURY ARC RECTIFIER TUBE.
fier is more efficient, that is, there would be less loss of energy than with a continuous current, as the charging is carried on at a lower rate, more time is alıowed for the chemical action to take place, and the gassing of the battery is less.

In Fig. 6 is shown a small rectifier outfit designed to meet the demands of dentists who are often confronted with the problem of operating dental motors where only an alternating current is available. This consists of a small 5 ampere tube arranged to operate on 110 volts, 40 to 140 cycles, and to deliver approximately 5 to 15 amperes at any direct current voltage up to 45 volts. The panel is not equipped with either meters or regulating devices, since it is the customary practice to provide dental motors with these.

THE TUNNEL UNDER THE SEINE RIVER. by l. ramakers.

Work has been commenced on the construction of ine No. 4 of the Metropolitan Underground Railway of Paris, the north-and-south cross town line, extending from the Clignancourt gate to the Orléans gate, and crossing both branches of the Seine.
The construction of a railway tunnel under the Seine at any point constitutes so difficult a problem that the Prefecture of the Seine deemed it expedient to invite competitive solutions. The commission in charge of the competition, which included both plans and methods of construction, selected the solution offered by L. Chagnand, one of the ablest of Parisian contractors, according to which the cost of construction will amount to $15,614,000$ francs ($\$ 3,203,000$) for a tunnel 1,093 meters (0.68 mile) long, with a station at each end.
In the plan annexed to the announcement of the competition the tunnel descended 40 millimeters to the meter (4 to 100) to a point vertically under the bank of the Seine. The next section of the tunnel was to be horizontal, with the rails 14 meters (46 feet) below the surface. This section was to extend from the Place du Chatelet to a point two-thirds of the distance across the small arm of the river, beyond which point there were to be two rising grades of 40 millimeters to the meter (4 to 100) separated by a level, corresponding to the Place St. Michel, the Boulevard St. André and the Place St. André des Arts.
The tunnels and stations were to be of the following types:
The tunnels were to be two in number, circular in section, excavated by the compressed-air method, and
means of caissons sunk vertically makes it possible to raise considerably the level of the rails under the river and, consequently, to diminish the grades of the approaches and the depth of the stations. In the plan adopted the lowest level of the rails is level 16.05, or 11.15 meters (36.57 feet) below the surface of the Seine while in the original plan it was level 13.10, or 2.95 meters (9.67 feet) lower.

In the Chagnand project the grade of 4 per cent., which is the maximum grade allowed in the Metropolitan system, is employed only in order to pass under the Metropolitan line, the Orléans railway, and the Bièvre collecting sewer.
The internal section of the tunnel differs very little from that of a masonry tunnel of the ordinary type. Except under the bed of the Seine the tunnel will be excavated with the aid of a shield of special design. The walls will be composed of cast-iron rings 60 centimeters (2 feet) broad, the rings themselves being built up of voussoirs of varying curvature, according to

Erection of the First Caisson on the Quai des Tuileries.
their positions and the pressures to which they are subjected. The pieces are to be bolted together, the joints being made water-tight by the interposition of strips of creosoted wood. Cement will be injected behind this iron tube to fill any cavities that may exist between its exterior and the surrounding earth.
The metal lining will itself be lined, successively, with a layer of armored concrete of thickness equal to the height of the ribs, and with a coat of Portland cement. In the sections beneath the two branches of the Seine the metal tube of the tunnel is to be constructed as described above, but surrounded by a metallic framework which shall serve as the caisson, thus enabling the tube to be sunk vertically into place. The sides of
necting the bases of the large caissons and rising to the level of a horizontal ledge at the end of each. Upon these ledges and walls will rest a third small caisson, within which the sections will be connected and the temporary sheet-iron ends removed.
The two stations included in the plan, situated at the "Cité" and the Place St. Michel, will also be sunk by means of caissons similar to those employed for the tunnel under the Seine, but of greater dimensions.
The execution of the entire project of crossing the Seine will involve the employment of three very different methods of working:
(a) Compressed air and a shield will be used for the construction of three sections of the running tunnel. (b) Compressed air caissons will be employed for the tunnel under the Seine, part of the underground tunnel and the Cité and Place St. Michel stations, with their entrance shafts.
(c) Excavation by freezing process will be employed in the passage under the Orleans railway, in order to avoid the possibility of an interruption of traffic due to settling.
Of these three methods of working the second alone is in full operation. At present the first caisson, on the right bank of the larger branch of the Seine, is entirely submerged and has been sunk to within about half a meter of its final level.

The caissons for the stations will be built on the ground and, when completed and ready for sinking, will present the appearance of huge iron frames, 12.50 meters (41 feet) high, 16.50 meters (54.12 feet) wide, and 68 meters (223.64 feet) long.
As no suitable ground for the construction of the river caissons was available near the points where they are to be submerged, a construction yard has been established at the Quai des Tuileries. One of the illustrations shows the first caisson at the moment when the framework was completed. Its construction was effected quickly by the employment of improved methods, particularly the method of riveting with pneumatic hammers. The caisson having been built and the plates which make it water-tight riveted around it, it was launched side-wise-an operation which was facilitated by the elevation of its site, 40 centimeters (1.6 feet) above the level of the Seine. The caisson, which weighed 280 tons, was then towed to the point where it was to be sunk. Here the stream had been dredged to a depth of 5 meters (16.4 feet) in such a manner that the caisson could be sunk upon a perfectly horizontal bed. On the downstream side of the emplacement guiding piles

The First Caisson Launched Sidewise.

Construction of Iron Lining Tube.

the tunnel under the seine river

lined with metal. Each tunnel was to have an internal diameter of 5 meters (16.4 feet) and an external diameter of 5.30 meters (17.38 feet), the axis of the tunnel being situated 1.40 meters (4.6 feet) above the rails The stations, also constructed with the aid of compressed air, were to be short, metal-lined tunnels of circular cross-section, with an internal diameter of 6.50 meters (21.32 feet) and an external diameter of 6.90 meters (22.63 feet). The center of the section was to be placed 1.534 meters (5.03 feet) above the level of the rails and 1.190 meters (3.8 feet) distant, horizontally, from the middle line of the track. This eccentricity would leave room for a landing platform made of armored concrete. The advantages presented by the Chagnand project and which led to its adoption are of two kinds.

1. Instead of employing twin tunnels of small bore, it keeps the two tracks together in a single tunnel of the same dimensions as the other sections of the Metropolitan.
2. The construction of the tunnel under the Seine by
the caisson are composed of sheets of iron attached to the framework surrounding the steel lining of the tunnel. These sheets rise to the level of the foot of the arch and form a water-tight box which can be transported by fioating. The entire space inclosed between the sides of the caisson and the tunnel will be filled with cement concrete, in which the framework will be buried and which will form a layer of strong and indestructible masonry surrounding the metal lining of the tunnel.
Three caissons will be used for the larger and two for the smaller branch of the Seine. The ends of these caissons are closed temporarily with sheets of steel which must be removed when the sections carried by the several caissons are joined to form a continuous tunnel. These junctions will be effected by small caissons operating in the intervals, 1.50 meters (5 feet) long, which will be left vacant between the ends of the sections of the tunnel. By sinking two of these small caissons two masonry walls will be built, con-
had been driven, against which the caisson rested. These piles formed the first part of a solid stockade of piling serving, on the one hand, to protect the caisson and, on the other, to support a broad platform. The first work done after the caisson was in place was, of course, the construction of the iron lining tube of the tunnel. Then concrete was poured between the tube and the exterior envelope until the caisson rested solidly on the bed of the river. Then the shafts which give access to the working. chamber and the air locks which surmount them were put in place and the sinking by means of compressed air commenced. When the final level is reached the working chamber will be filled with concrete, the tunnel will be emptied of the water with which it was filled in order to ballast the caisson and facilitate its descent, the shafts will be removed and the openings through which they communicated with the interior of the tunnel will be care fully closed. In this caisson the telephone has been employed-for the first time to the writer's knowledge
-to assure permanent communication between the interior and the exterior. One instrument is placed in the working chamber, the other in the superintendent's booth on the platform of the caisson.

Engineering Notes.

What is probably the highest dock in the world has recently been completed at Port Florence, on the Victoria Nyanza, in Uganda, at an altitude of 3,700 feet above sea level. The dock has been constructed to accommodate the Nyanza fleet plying on the lake in conjunction with the Uganda railroad. it measures 250 feet in length by 48 feet wide and 14 feet deep. It is excavated out of the solid rock by native labor, and occupied twelve months in construction, at a cost of $\$ 20,000$. Both the time occupied and the cost of the undertaking were increased owing to plague visitations, which seriously interfered with the work.

After an accident which occurred to a flywheel in a large European electric station, the superintendent designed and had constructed a flywheel of wood more than 35 feet in diameter and 10 feet wide at the rim. The thickness of the rim is about 12 inches and is constituted of 44 thicknesses of beech planks with staggered joints. The boards are glued together and the whole is bolted. The inside of the flywheel is formed of a double wheel with spokes and the latter are fastened to two hubs. The twenty-four spokes and the hubs are of cast iron. The, weight of the flywheel is nearly 50 tons. On the first trial it attained a speed of 76 revolutions per minute, which corresponds to about 120 feet per second at the rim. It is probable that this is the highest peripheral speed which has yet been obtained with a wooden wheel, and it is one of the highest even from an absolute standpoint. As to size, the flywheel seems to hold the record.

In European countries the development of canal traffic is receiving special attention from the various governments, according to a recent report, published by the British Foreign Office. In Germany these waterways are to be brought up to date, for which purpose an expenditure of $\$ 83,643,750$ has been sanctioned this year. Of this total, $\$ 62,687,500$ is to be devoted to the construction of a canal from the Rhine to the Weser, including the canalization of the Lippe, and various cther accessory works. The balance is to be expended upon the construction of a large canal for barges between Berlin and Stettin, the improvement of the waterway between the Oder and the Vistula, and the canalization of part of the Oder. In France the modernization of existing, and the construction of new, canals will absorb $\$ 41,200,000$. The new works include the Canal du Nord, one from Cette to the Rhone, and another from Marseilles to the Rhone. A similar development is being carried out in Belgium, AustriaHungary, and the Netherlands, for which large sums have been appropriated by the governments.
Owing to the success that has attended the inauguration of the steamship service with the vessel "Coya" on Lake Titicaca in Peru, the highest navigable sheet of water in the world, another and much larger boat "Inca". is now in course of erection upon the shores of the lake. This latest acquisition is 220 feet in length by 30 feet beam and 14 feet draft, of 550 tons displacement, and propelled by twin-screw engines developing $1,000 \mathrm{I} . \mathrm{H} . \mathrm{P}$. , capable of giving a speed of 12 knots. The vessel was erected in England, complete in every detail, and was then dismantled, every section being packed and carefully numbered, and shipped in 3,000 cases to the port of Mollendo. From the seaport the parts were conveyed to the shores of the lake by railroad-a distance of 150 miles, and involving a climb of over 12,000 feet. The "Inca" is modern in every respect, being complete with elaborate passenger accommodation, electric lighting, and steam heating. There is accommodation for 24 passengers and every possible arrangement and facility for working freight.

At the last annual meeting of the Gas Association known as the Markischer Verein at Berlin, two interesting papers were read by Messrs. Pfudel, of Charlottenburg, and Bremer, of Berlin, concerning the replacing of cast-iron by wrought-iron pipes in the Berlin system. The cast-iron pipes, owing to the frequent breaks which occurred, gave rise to serious accidents, and they were then replaced by wrought-iron pipes without, however, taking the necessary precautions against rusting. At the end of a few years the pipes were entirely eaten through, and in their place was found an envelope which was mostly made up of rust. Then the company tried protecting the pipes by a coating formed of a mixture of tar, sand, lime, powdered clay, and pitch. A very good result was obtained with this coating, and it is found that pipes which have been buried for twelve years are perfectly preserved. The municipality of Berlin, after the disastrous explosion which took place in Handelstrasse, had the proprietors replace all the cast-iron branch pipes by the new system, so that soon there will be little danger of explosion.

tEE SIZE OF MOLECULES.

By the term molecule the smallest possible particle of a chemical substance is understood. For example, if a piece of cane sugar is broken into smaller and smaller fragments, a point is finally reached beyond which the subdivision cannot be carried without pro-

Fig. 1.-MAGNIFIED TEN THOUSAND TIMES.
A. Human blood corpuscle. B. Rice starch grain. C. Kaolin suspended in water. E, F. Bacteria. f, g, h. Particles of a colloidal solution of gold. i, k, l. Particles of a gold solution in the act of preciptation.
ducing something different from cane sugar. At this point we have reached the cane-sugar molecule.
Now, molecules are composed of atoms, which are the smallest possible particles of the chemical elements, and the dimensions of molecules vary greatly according to the number and character of the atoms of which they consist. The hydrogen molecule is a very small one, for it is composed of only two atoms of hydrogen. The molecule of cane sugar is comparatively large, containing 12 atoms of carbon, 22 of hydrogen and 11 of oxygen. But there are molecules of much greater size. The molecule of albumen is believed to contain nearly 1,000 atoms.
The subdivision of a lump of sugar, described above, is purely hypothetical, but many substances can be so divided very easily by dissolving them in water or

Fig, 2.-MAGNIFIED ONE MILLION TIMES.
a. Molecule of water. b. Molecule of alcohol. e. Molecule of chloro-
form. d. Molecule of solubie starch $e-h$. Particles form. a. Molecule of solubie starch. $e-h$. Particles of colloid
solution of gold. i. Particle of gold in the act of precipitation.
some other liquid. In solution they are resolved either into separate molecules, as is the case with cane-sugar, or into larger or smaller groups of molecules. In the case of substances with very complex molecules especially, it must not be supposed that all the particles in the solution are equal in size; on the contrary, there
are many reasons for believing that the groups of mole cules are in various stages of disintegration.
The "ultra microscope," invented by Siedentopf and Zsigmondy, has made it possible to detect, in a solution, solid particles of a diameter of 4 millionths of a millimeter. (The limit of the best microscopes is 75 times as great, or 3 ten-thousandths of a millimeter.) This new optical instrument has brought the largest molecules, such as those of albumen and soluble starch, into the realm of visibility. The accompanying dia grams, from a recent publication* of Dr. Zsigmondy, may serve to give a vague idea of the dimensions of this ultramicroscopic world. If one of the largest of molecules, that of soluble starch, could be actually magnified 10,000 times in every direction, so that its volume would be multiplied $1,000,000,000$, it would still be smaller than a pea. One of the five million corpuscles which are contained in a cubic centimeter of blood would, if enlarged in the same proportion, fill a large room, for its diameter would measure six meters.
In the Scientific American of November 11, 1905, some account was given of inorganic colloidal solutions, which consist of metals and other insoluble substances, in a state of extremely fine subdivision, held in suspension by water or other liquids. Zsigmondy has studied one of these solutions, colloidal gold, with especial care and has found that the suspended particles of gold differ very greatly in size.-Dr. Bechhold in Umschau.

Fhe Current supplement.
The current Supplement, No. 1572, opens with a description of some new bogie transport cars which were especially constructed to transport traction engines and motor-driven plows. Excellent illustrations accompany the article. Rear-Admiral George Melville's splendid paper on liquid fuel for naval and marine uses is concluded. For experimental purposes it is often desirable to have at hand an alternating current of low voltage. To secure this from a line circuit a transformer is necessary. Edmund S. Smith describes a small transformer that any one at all familiar with tools can easily build. The total cost of materials will not exceed $\$ 3.50$, while the only machine tool necessary is a small drill. T. R. Hopper writes on some simple experiments with currents of high frequency. The general question of solution has always been of importance to the metallurgist. J. H. Stansbie gives his views on the solution of solids and solid solutions in a way that cannot but be of help to metallurgists. F. M. Feldhaus gives an illustrated description of some old inventions. Among these may be mentioned a very early magic lantern, a lamp with a glass chimney invented in 1500 ; Leonardo da Vinci's parachute; a very modern-looking diving suit, dated 1500 ; a diving bell attributed to Alexander the Great; a paddlewheel boat of 1430, a turbine which bears the date 1575 , and a rapid-fire gun which goes back to the fourteenth century. How natural and artificial patinas are produced is told by B. Setleg. The practice of the cyanide process of gold extraction presents us with several new and interesting aspects of the problem of solution. These Mr. G. F. Beilby has considered in an article that bears the title "Gold Molecules in Solution." "Recent Foreign Methods for the Production of Celluloid and Similar Substances" is the title of an article which has been compiled and translated from French, German, and Italian periodicals. Alexander W. Roberts presents graphically some idea of the sun's distance.

A New Sweet Compound.

A new compound described by Dr. T. Gigli has appeared in the European chemical trade which is designed to imitate saccharine. It is known as "banana essence." The taste of this syrup liquid is at first caustic and then bitter, but soon after very sweet. Its specific gravity is 1.188 at 20 deg . C., and it gives an acid reaction. Analysis shows it to contain 54 per cent of saccharine in combination with a base analogous to pyridine. Heated on platinum foil it gives white fumes, then burns with a bright flame, leaving a thin layer of carbon. When the latter is burned, the ash is negligible. The syrup gives a precipitate with Ness ler's liquid and most of the alkaloid reagents. Adding dilute mineral acids we can separate the saccharine as a white crystalline precipitate, and ether dissolves it again. By evaporating the ether solution we have white crystals which melt about 225 deg . C. The author tried to prepare a solution of saccharine in pyridine, but did not obtain a product identical with the above.
M. Poincaré, the learned French mathematician and member of the Academy of Sciences, has carried off the John-Boulyai Hungarian prize of 10,000 crowns, or a little over $\$ 2,000$. This is the first cward of the prize which is granted every five years to the author of the most notable mathematical work produced during that period.

(fuxrewprandente.

Strange Growth of a Tree.
To the Editor of the Scientific American:
I would like to inquire, through the columns of your paper, if any of the readers of your most valuable publication has ever seen or heard of a branch of any kind of tree starting and growing up through the hollow of the mother tree. If so, I would like to hear from them, either through the columns of your paper or otherwise. I get the paper here. I have a piece of redwood, that I secured at Boulder Creek last summer, that started and grew right in and through the hollow of the mother redwood tree. The piece is about four feet long, and dropped out of the hollow of the log at the mill when the saw cut it free, the remainder being split by the saw and spoiled. John Douglas.

Watsonville, Cal., January 17, 1906.
[While it seems not at all impossible that a shoot of a tree should come up through the hollow trunk of the same tree, it might also be possible that the shoot originated from a seed dropped into the moist, hollow trunk and germinated there, forming a second tree growing within the first. It is very common that a small tree starts from another tree; it may be a different kind. The origin of the new tree is a seed from some fruit which was lodged in a decayed place in the old tree.-Ed.]

Should Railroad Speeds be Decreased ?

To the Editor of the Scientific American:
The contribution of Willard P. Gerrish in the issue of January 20, on "Safety on Railroads," has attracted my attention. I agree with Mr. Gerrish that the space interval for train operation is the only way to provide absolute safety, and it lies with the traveling public to determine whether they will railroad safely, or on chances, the latter choice being due to the present craze for fast riding-a craze that is far-reaching, affecting all classes of travel, from the boy on the bicycle to the Twentieth Century Limited. The former works hard to get there as fast as possible; the latter, the same. The officers of the company running this train, will tell you the public demands fast time and they have to meet competition, and the traveler has to stand in the breach. If he gets there safely, all well and good; if not, the company which is trying to supply his demand for fast time is called on to heal his wounds with grèenbacks. Now if the public is responsible for this craze and its attending evils, why cannot we have, along with rate regulation, rate-ofspeed regulation? We shall live just as long, and make as much money if we do not go from New York to Chicago in eighteen hours. The railroads will make more money in the long run, there will be less loss of life and valuable property. Now, Mr. Gerrish wants to make the long-suffering railroad use up its hard-earned surplus on signals, which he says are not capable of producing infallibility of operation, and as a further protection he wants automatic stops. My experience with the latter is that it is all right in ordinary conditions-for instance, they may be all right in the Subway where ice and snow are unknown; also, in "the good old summer time." But just at the time they are most needed, in a blinding snow storm, they are not capable of doing business, and the engineman, with his bunch of frailties, is the one to fill the gap. Some years since, a prominent road running out of Chicago tried a stop that would even shut off the steam, besides applying the brakes, if the engineman ran signals; but they either did not have a good thing, or did not know a good thing when they saw it. I would again say, let us have speed-rate regulation, backed by law, allowing no train to run above forty miles per hour, and I will show you reasonably safe railroading.
J. V. N. Cheney,

Division 40, B. of L. E.
So. Portland, Me., January 26, 1906.

Teaching of Science in Schools.

To the Editor of the Scientific American:
The letters that have recently appeared in your paper regarding the teaching of science in the schools are not only interesting, but the discussion is timely and important. The condition described in Mr. Perkins's first letter (October 21)-that of several men presenting themselves for examination for which they were hopelessly ill fitted-seems to harmonize but too well with what we might easily expect as the result of many elementary science courses in high schools. We could pass this by perhaps with a smile, were it not for the deep conviction that the student has not only failed to correctly estimate the purpose of his course, but has gained from it very little of anything that will compensate for the time and energy spent.
The general impression received from a survey of courses and results in secondary school work in physics is that there is a great deal of hit-or-miss work being done. This seems to be due not to any lack of care on the part of the instructors, who as a class are earnest workers, but rather to a desire to accom-
plish too much-and that coupled with a vague grasp on methods not always well understood. For example, the physics course is often given complete in one year. The pupil is perhaps getting his first insight into even the most elementary phases of the subject; yet he is given apparatus and set experiments to perform, often with purposely little explanation, and then expected to be ready for college work at the end of the year. We are not astonished that the average pupil gets so little out of his year's course in physics. The wonder is rather that this sort of procedure has so strong a hold upon secondary school work. In a few of our better schools the problem of science teaching is being solved in a manner which seems to be distinctly a step forward. Physics is made the chief (sometimes the only) science subject, and it is offered in two years. During the first year a popular plan is followed, while the work for the second year is college preparatory. Each course is complete in itself, though the first is generally required, whereas the second is optional. The pupil gets his general survey of the subject the first year, and comes to his college preparatory course with the single purpose, and hence the more time, to master fundamental principles-not in the vague hope of escaping some of his college physics, but with the definite object of getting ready for it. Thus the student who looks ahead to college work and the one who wants simply a clearer understanding of common phenomena are served, each to his needs. In an increasing number of schools physical science is being taught in the grammar and sub-grammar grades, not playfully, but so well that the pupil may come to his high school course with a good foundation for work of a college preparatory nature.
There seems to be a growing appreciation of the value of science study as a training in aecurate thinking. Moreover, in these days when the startling results of investigation are so closely woven into our daily activities, it is deplorable that the principles underlying these phenomena are not taught in the schools in a manner which shall arouse interest and make the study profitable. This can hardly be done in a course of one year, with pupils who lack previous instruction in the subjects, if the work is governed by the necessity of fitting for college examinations at the same time. In whatever school the subject of physics is first taken up seriously, the study could be profitably directed toward an understanding of those principles that are applied to so many things right at hand, and the hope of passing college examinations at the end of one year should not be allowed to confound this good work.

Lothrop D. Higgins.
Danbury, Conn., January 17, 1906.

The Lessons Taught by Parachute Descents.

 To the Editor of the Scientific American:In 1892 I became dissatisfied with the parachute then in general use, because of its unpleasant habit of diving, plunging, and oscillating. I attempted to do away with these objectionable features, and commenced a series of experiments. I have made in all two hundred and fifty-four parachute descents. Some of the results of these experiments follow. I first tried various alterations in a parachute which I had been using for some time, and which would come down slowly and steadily one day, permitting me to land with the ease of a bird, only to be followed the next day by such violent pitching and swinging (under apparently the same weather conditions) that to land without injury became a matter of difficulty.
I raised the center of gravity from a point $201 / 2$ feet below the supporting surface, to 19 feet, then to $18,17,16$, and lastly to 15 feet, before any decided results were noticed. Here the speed of descent, which had been gradually increasing, became very rapid, due, I believe, to the shortness of the ropes and to a consequent prevention of a wider spread of cloth, thus reducing the diameter of the supporting surface. One would naturally expect oscillations to become more frequent with the center of gravity at this short distance below the supporting surface, yet I found them occurring less frequently than they had been doing at $201 / 2$ feet. I then lowered the center of gravity to a point 22 feet below the supporting surface, when the speed of descent again became normal (decreased), oscillations remaining. However, I persisted in dropping the center of gravity to 23 feet, 24 , and finally to 25 feet. At this last point no increase in the speed of descent occurred, and the oscillations were fewer in number, but followed by so great an increase in their violence, that the difficulty of landing reached the danger point, and induced me to return the center of gravity to a point $201 / 2$ feet below the supporting surface, where I left it. This series of experiments convinced me that the mere raising or lowering of the center of gravity (alone) will not produce stability. I now reduced the area of the cloth (supporting surface) and first removed 68 square feet. This failed to produce an increase in speed of descent, surprising as it may seem. I continued to make reductions of area until I had removed 105 square feet of cloth.

The last cut was made after some hesitation, as I feared the speed of descent would increase very much. It did so, to an alarming extent, but this fault was partially compensated for by the ease with which the parachute could be guided, a fact that made it possible to avoid all obstacles in landing. I had sacrificed 105 square feet of supporting surface, leaving but 288 square feet. Yet I (who weighed 144 pounds) was able to land without any great inconvenience to myself. This feat would have been impossible had the oscillations continued, but they had disappeared, due no doubt to the increase of speed of descent. I now rebuilt this parachute by replacing the same amount of cloth that had been removed. I next tried what effect enlarging the opening in the top of the parachute would have. This opening is said to "prevent oscillations," by permitting the escapement of compressed air accumulating beneath the sustaining surface of the parachute. That air does accumulate under a parachute can be seen by the following experiment: Should the aeronaut fail to let go of the parachute immediately on landing, the expansion or other effect of this air accumulated in descent will cause the parachute to jump to one side or the other, jerking him off his feet. I never knew this experiment to fail. That the phenomenon is not due to a breeze is shown by its occurring when no perceptible wind is blowing. In my parachute this top opening was 8 inches in diameter. I increased the size to 9 inches, then to 10 , $12,13,14,15$, and lastly to 16 inches, at which point oscillations disappeared entirely, and the speed of descent, which had been gradually increasing-as each additional inch was added to the size of opening-now reached a point beyond which I felt I could not go with safety.
A reference to all of the foregoing experiments will show that, to secure the stability and control of the parachute (aeroplane) I was compelled to sacrifice safety, by adding to the speed of descent. (Notice the heavier than àir principle here.) The greater the speed the fewer the oscillations, and the less effect any prevailing breeze had to cause a horizontal drifting, and the easier the parachute was to guide.
Now, apply these facts to an aeroplane, and we see at once that a flying machine constructed on the aeroplane system is an exceedingly difficult thing to control. Add to this the desire of the inexperienced oper ator to avoid (what he calls) great heights, and his usual attempts to glide near the surface of the earth (where the wind always comes in puffs) and we arrive at the real cause of failures and accidents. With the aeroplane so close to the ground, the slightest dive or other variation in its course is very apt to result seriously, because the operator will be unable to control the machine quickly enough to avoid disaster. A greater height would have added to the safety by giving him more time to control its movements. What does a man care how much a parachute (aeroplane) tosses about at a height of five hundred feet or more above the earth? At no time need he feel any anxiety, nor is it necessary to make an attempt to control it until he is much nearer the ground. The faults of the aeroplane flying machine may be many, but why add to them by placing it in the hands of an inexperienced person for operation? More than one good machine has been discarded or remodeled, when the operator was the failure and not the aeroplane. That an intelligent attempt to guide or control some one or more of the various movements of a parachute (aeroplane) is productive of good results cannot be denied; and on nearing the earth, and just before landing, I always try to stop oscillations if possible. If not, I still have another method to try. For instance, we will say the wind is blowing from the west; my parachute would then be drifting east. Now, just before landing, I pull down and hold down the west side of parachute. This will cause it to swerve or dive west, or right against the wind, and it will continue this westward movement until the wind pressure stops further progress in that direction, when of course the eastward drifting would again commence. If, however, I have timed my pull-ing-down movement just right (and practice has enabled me to do so with some degree of certainty) my parachute will permit me to strike the ground just before the eastward drifting again takes place, or at that instant of time when the parachute has no horizontal motion. I also wish to say that, contrary to prevailing opinion, parachutes have always given me the most trouble by oscillating, diving, and pitching on a day when little or no wind was perceptible. With a fresh breeze prevailing I have experienced no difficulty from these causes.
J. J. Coughlin.

Versailles, Ohio, January 18, 1906.

Preparation of Mercurial Water. This is prepared with 10 parts of quicksilver, and 11 parts of nitric acid of the specific gravity 1.33 poured on it with the necessary precaution. It is allowed to repose until all the mercury is dissolved, then shaken vigorously, and 540 parts of water added.-Journal de l'Orfeverie.

maring valentines by the million.

Few people realize what a large industry has grown out of the custom of giving valentines on the 14th of February each year. The valentine idea seems to have originated in England, and is now practised by Englishspeaking people the world over. Germany, although it does not recognize the day, supplies many of the cards and novelties used in the United States. Of late years America has taken the lead in the valentine industry. Now we not only supply our own market, but export large quantities of valentines to all parts of the world. The largest valentine supply house in the world is located in this city, and here a large force is busy the
trations shows the machine which makes the paper lace. It consists of two rolls, one a die, and the other a matrix of the desired design. A wide paper ribbon passes between the rolls, and is cut by them. A brush bears against the matrix roll, cleaning off any adhering bits of paper, and another brush which bears against the ribbon removes the cuttings from the lace. The paper is chalked before entering the rolls, to prevent the lace from sticking to them and tearing. This lace paper is fastened with paper hinges to embossed cards. The hinges are made by a small hand-operated machine, which creases long strips of paper by folding them in and out like camera bellows, and from these strips the
ter, one of the simplest consists of a card with various celluloid ornaments attached thereto. The ornaments are cut out by hand with a punch and maul. The ornaments are then attached to the cards by means of a simple riveting machine, which is illustrated in one of the engravings. The small brass rivets are carried in a cup at the top of the machine, and are fed down into a channel by the notched wheel which may be seen near the upper end of the machine. At the bottom of the channel is an escapement which, at each operation of the machine, releases a rivet and lets it drop down under the riveting hammer. Valentines of this sort can thus be very cheaply made.

Making up the Silk and Satin Novelty Valentines.
Getting up Designs for Next Year's Trade.

Riveting on the Celluloid Ornaments.
Correcting a Proof Sheet of Comics.
The Embossing Machine.

Cutting Out the Cards with Scalloped Edges.
ear round working to meet the enormous.demands The accompanying photographs illustrate the various processes followed in the manufacture of the different kinds of valentines. There are three principal types of valentines, namely, the comic, the old-fashioned lace, and the "novelty" valentines, the latter being the most expensive. The comics, which seem to be by far the most popular, are photo-engraved and printed in color in the usual manner, and therefore need no special comment. Special machines, however, are required in the production of lace valentines, while the novelty valentines are largely made by hand. One of our illus-
hinges are cut off as desired. The cards to which the lace patterns are attached are printed in large sheets with a suitable design, after which they are embossed. The embossed sheets are now passed on to the folding table, where they are folded in sets of three, and then fed into the cutting machine. This machine is provided with cutters of various design, which cut out the cards with scalloped edges. The hinged lace frames are now glued onto these cards, thus forming the familiar old-fashioned lace valentines, which still find favor with a large portion of the public, and refuse to be displaced by the more modern designs. Of the lat-

The more expensive novelty valentines are made up with silk and satin puffs and bows of ribbon which must be applied by hand to the cards. The only machine work done on these valentines is the printing of the colored design and the blocking out of the cards. The rapidity and neatness with which the puffs and shirred borders of the various designs are made is remarkable. In making a heart, for instance, hot glue is lightly applied to the card along the outline of the heart. The puff is then made from a semicircle of silk, the edges being gathered as they are pressed into the glue by drawing and puckering them with the
fingernail. The borders are made of two pieces of cardboard cut to the proper curve and covered with colored silk, which is lapped over the cardboard and glued to the under side. This silk, also, is gathered as the edges are glued down, and the border pieces are then glued over the edges of the puff. In a similar manner many apparently intricate designs are very simply made.
Some of the valentine designs are carried in stock, from year to year, but each season demands its innovations, and expert designers are constantly at work endeavoring to get up new designs to please the sentiment of the lovelorn, as well as to touch the risibles of the practical joker.

THE TOTAL SOLAR ECLIPSE OF 1905

An eminent astronomer, a man who has led several eclipse expeditions, once remarked that he had never seen a total eclipse of the sun, because he had always been "too busy observing them." He meant exactly what he said. With a whole battery of telescopes, coelostats, and cameras under his command, for the perfect operation of which he was answerable, he saw no more of the majestic event occurring before his very eyes than a stoker on a transatlantic liner sees of the waters about him. It is not from the little army of men who composed the nine expeditions sent out from this country and the many more who were sent
strip that cannot possibly be more than 167 miles wide, rarely reaches 140 , and is usually between 50 and 100 . Furthermore, he is confined to dry land, because a swaying ship is too unsteady a platform for astronomical instruments. Moreover, it is safe to say that any astronomer, watching quietly beneath his domestic dome, and having the good fortune to witness a single total eclipse from its convenient shelter, would, speaking generally, sit there for more than three hundred years before another would darken the same landscape. The only one ever observed in New York city occurred in 1806, and London, in 1715, had not been visited by a total eclipse for six hundred years.
Although the sun rises and sets every day in the year and has risen and set for millions of years, we can safely say, without any attempt at epigrammatic pleasantry, that no one has ever seen it. The real sun is hidden forever from us by a series of outer layers or shells. To regard these shells as the sun itself would be very much like saying that our atmosphere is the earth. All that we know about the sun, the nucleus surrounded by these shells, is merely that it must be hotter than the fiercest furnace we ever built, and that it must amount to about nine-tenths of the total solid mass.
Of the outer shells we do know something. We know, for example, that the invisible core of the sun is surrounded by a layer of incandescent clouds known as
with dancing, sunny sickles-minute images of the partially obscured sun. Gradually the solar disk is reduced to a thin silver bow; daylight fast gives place to an uncanny, dull, suffused glow. Faintly fringed with silver light, the moon appears what it actually is -an immense black ball hovering in the sky. From a mountain top the shadow of the moon may be seen sweeping across the landscape with almost terrifying rapidity, blotting out everything before it. The swift ness of motion and the intensity of the blue-black shadow give a feeling that something material is rush ing over the earth. The corona flashes out in a weird aureole of pearly light.
The astronomical draftsmen whose duty it is to sketch the corona, bandage their eyes for fifteen minutes before the total phase, in order that they may be more keenly sensitive to every detail of the corona's ghostly beauty. Numerous photographs are also taken; but the sensitized plate, although it is affected by rays invisible to the eye, is incapable of adequately reproducing the delicate filaments of light that flash out for stupendous distances.
It seems not a very difficult feat to equip a party of men with a few instruments, set them down on a foreign shore for the observation of the corona and other solar phenomena. And yet the leader of such an expedition must have rare executive ability to systematize the work so that each man shall perform his duty

Prof. Bigelow's Meteorological Station at Puerta Coeli, Spain.

The 65-Foot Camera Coelostat and Spectrograph of the Puerta Coeli Station.

Polar Axis at Guelma, Algeria, and the Sailors from the "Minneapolis" Who Helped to Mount It.

THE TOTAL SOLAR ECLIPSE OF 1905.
the photosphere, and consisting, in all probability, of countless granules having a diameter each of about 500 miles and floating in dark medium. The blazing disk that we call the sun is really the photosphere. After the photosphere comes a stratum 1,000 miles thick which was first discovered by Prof. Young and termed by him the "reversing layer," for the reason termed by him the "reversing layer," for the reason
that it reverses the lines of the solar spectrum. Lying above the reversing layer for a depth of 5,000 miles is the chromosphere. stained blood-red by the crimson glare of hydrogen. Tongues of flame leap from this red mass often to a height of 10,000 miles, and occasionally to a height of 100,000 and more-tongues that may best be likened to the heaving billows and tossed spray of the sea. Just as the dark moon is apparently about to glide into the sun during a total eclipse, the red flames or prominences, as they are called, flare up vividly for several minutes before and after obscuration.

Beyond the photosphere, far beyond the prominences even, extending outward for a distance that may sometimes measure 350,000 miles, lies the diaphanous, pallid corona, visible only during a total eclipse and, therefore, the phenomenon which received most attention during the eclipse which occurred last August.

Words can hardly describe the grandeur of the corona. As the moon steals in between the sun and the earth, and the solar disk is gradually gnawed down to a diminishing crescent, the foliage of trees is flecked
swiftly yet surely during the few minutes of totality. Of the untiring energy lavished by the eclipse observer in operations of observing every phase of the sun's obscuration from the second that the moon touches the edge of the sun to the second when it clears the solar disk, some idea may be formed by recording here briefly the work accomplished by the United States Naval Observatory's expedition sent out by this gov ernment under the immediate charge of Rear-Admiral Colby M. Chester, superintendent of the United States Naval Observatory. Months before the darkening of the sun was to occur, the necessary instruments were mounted in the Naval Observatory grounds and tested with the utmost care to make sure of their efficiency. Then they were transported several thousand miles to the site where they were to be used, to three stations widely separated. The first station was located at Daroca, Spain; the second was at Puerta Coeli, 12 miles northwest of Valencia, Spain, and the third at Guelma, North Africa. An enumeration of the appar atus carried at great expense to these distant parts of the earth would read like a page from an instrumentmaker's catalogue. At Daroca a 40 -foot camera was used, especially designed to photograph the inner corona and its surroundings, besides a polar axis carrying a 14 -foot camera, and a 36 -inch camera equipped with a Dallmeyer lens and spectroscopes. At Puerta Coeli, Spain, the second station, Rear-Admiral Chester had mounted a polar axis carrying a camera with a

6 -inch lens, of 104 -inch focus, besides an immense 65 foot camera equipped with a colostat and triple lens. At the third station cameras and polar axes were likewise mounted, the instrumental equipment comprising a 40 -foot camera, a polar axis on which a 15 -foot camera was mounted, a concave grating spectrograph, a small concave grating, a low dispersion spectrograph, a chromospectrograph, four small prismatic polari graphs for testing the polarity of the corona, and a 5 -inch portable equatorial.
Eclipses come seldom, and last a few minutes at the most, for which reason the members of the expedition must be drilled until they are able to perform their duties with mechanical precision. Each man does his work in response to a signal. For weeks before the eclipse occurred, the battalion of men by whom the various instruments were to be handled, skilled though they were, were trained thoroughly. Day after day cameras, cœlostats, and spectroscopes were manipulated to obbtain speed of operation and precision. Al though the instruments were tested months before in the observatory grounds at Washington, the finer adjustments had to be made on the spot, and with the greatest care. The sun shifts his path each day, but lens and camera must be exactly in line for him at the all-important moment of eclipse, with clocks accurately rated to follow his declining while the moon's disk is passing his face. One instrument will compass the corona, another will catch the chromosphere; one waits but the instant after the sun's disappearance, another waits for that last second before his return; one follows the apparition throughout totality, another turns quite aside from the sun to his vicinity. No one of them, however, can wait till the eclipse has come and be aimed to it. It must be ready, with clocks so rated that there shall be no slips nor misconnections. Add to these difficulties the fact that the instruments themselves are made in one country and shipped to another for use, and we have some idea of the obstacles which an eclipse expedition must overcome.
Among the many by-ways of eclipse investigation enly remotely related to things astronomical we may mention minute attention to variations in electric conditions of the air; fluctuations in the magnetic currents of the earth, caused by the immediate interposition of the moon between us and the sun; a close watch upon the barometer and thermometer, to see what changes the temporary withdrawal of the sun's heat may have, especially on changes in the wind.
Regarding the definite results of an expedition, it is as yet too early to speak with authority. An immense mass of detailed observations was collected, which will, in all probability, serve to confirm many already existing theories and hypotheses. The photographs obtained are the finest secured by the observatory in any of its eclipse expeditions, and the affair, regarded as a whole, deserves to be considered the most successful of its kind. Spectrographic results of undoubted value were secured, as well as color observations, which will, when published, be of exceeding interest to students of the sun. The photographs do not show the long equatorial streamers as well as some others have done because the sun, at the time of its eclipse, was at the sun-spot maximum, which seems to affect the streamers greatly, mixing them up and producing a tangle, which, while exceedingly interesting, is not so spectacular as the long equatorial streamers seen in photos of the sun when an eclipse has taken place near a sun-spot minimum. It will take a minimum of one year, and very likely two or three times as long, to reduce all the observations, study all the negatives and make public the results. Expeditions of that character are designed to get all the available data possible; totality lasts but a short time and there is all the time needed afterward to study the results. But an impatient public usually wants to be told something definite and remarkable a week afterward, and to that public these few words of explanation are addressed. Astronomers do not get up eclipse expeditions with the idea of making startling discoveries, nor do they expect them. There is always the chance of something being learned which will throw important light on that most important astronomical subject, the sun; but it is not looked for, as a definite object is sought. Rather are these expeditions made up to take advantage of the opportunities Nature offers us to investigate the sun with the hope that, by a persistent accumulation of data, some laws may be deduced which will assist us in fathoming other problems of astronomy, as well as the certainty that nothing but benefit has ever come to science from the painstaking and patient research into difficult and often obscure places of nature, of which the sun and stellar space are two.
The observations at the eclipse stations, taken in conjunction with those others which were made, would seem to indicate that the "eclipse cyclone," the name given to the atmospheric disturbance supposed to be caused by an eclipse, does not exist except in the imagination. The temperature dropped less than ten degrees during totality, a very small amount compared to the popular conception, and the barometer was not affected at all. There was a ten per cent rise in hu-
midity during the eclipse, but no other disturbance of note. It should be understood that the temperature did not actually drop ten degrees in the time of totality but that amount of drop was caused by the eclipse, the drop lagging ten to fifteen minutes behind the shadow. The same is true of the humidity.
The study of the photographs of the eclipse will inciude measurements, the making of drawings, com parison with other photographs and drawings, made by other expeditions at this time and expeditions at previous eclipses, production of colored charts, etc The entire force of the expedition is enthusiastic ove the success of the observations and photographs and believes that much of value to science will mark the eclipse of 1905 as one of the best observed and most thoroughly studied and, consequently, one of the most interesting and instructive eclipses of modern times.
Eclipses only rarely bring discoveries of a sensa tional nature. In 1868 Janssen and Lockyer found, independently, that the blood-red protuberances hereto fore seen only during the moments of totality could be followed by a properly adjusted spectroscope after the eclipse was over. Still, they exhibit marked differences when viewed at totality and in full sunlight, so that their study is still a part of complete eclipse pro-

USING THE HUMAN BODY FOR SENDING A WIRELESS MEssAGE BY THE DE FOREST SYSTEM WITH THE ASSISTANCE OF DR. OVINGTON'S MACHINE. IN THIS EXPERIMENT 200,000 VOLTS OF HIGH FREQUENCY EXPERIMENT 200,000 VOLTS OF HIGH FREQUENCY
CURRENT ARE PASSED THROUGH THE HUMAN BODY, WHICH SERVES AS A MAST.
grammes. Other marked results of these pregnant but fleeting moments have been Prof. Young's discovery in 1869 of a material termed coronium; of the same astronomer's discovery of the "reversing layer" in 1870; of enormously extended coronal streamers in 1878 by Prof. Langley, and Prof. Deslandre's discovery in 1893 that the corona rotates with the sun. All these were in a way spectacular discoveries, made possible by the happening of eclipses. But, generally, expeditions throw but a little more light on some large solar problem, the whole to be solved only after repeated attacks through many eagerly seized moments of eclipse.

With the fungi, exact studies may be made upon the influence of the different nutrients on the general form and upon the production of conidia, etc. It has been found, for instance, that, in the absence of potassium, Sterigmatocytis niger may produce no conidia or very curious modifications of the conidiophores. By far the most interesting problems with relation to the mineral nutrients are those which have to do with the rôles of these elements in metabolism. The effect of the lack of one or another element is made manifest by some general macroscopic change, and sooner or later, by disturbing pathological changes and subsequent death. It is reported, for example, that the absence of iron prevents the development of a healthy green color, and a scarcity of potassium is made evident, especially in reduced photosynthesis.

THE HUMAN BODY AS A WIRELESS TELEGRAPH TRANSMITTER AND RECEIVER.
Everyone knows that the human body is a conductor of electricity, but that it may be employed as a radiator and antenna instead of the usual aerial in wireless telegraphy may not be so well known.
During the recent electrical show at the Madison Square Garden, a series of experiments was performed by Prof. Ovington, of Boston, Mass., with high-potential and high-frequency currents. One of these consisted of substituting the body of the lecturer's assistant for the usual vertical conductor used in sending wireless messages.
A reference to the illustration shows how the connections were made, the current from the machine passing through the assistant's body, from whence the energy was radiated as wireless waves in the ether. The messages were sent from this novel radiating arrangement in the small demonstration hall at the extreme western end of the building, and were received by a De Forest receptor set up and furnished with the usual wire antenna located in about the middle of the main auditorium.
The potential and frequency of the oscillations were ery much in excess of those utilized in the commercial transmission of wireless telegrams and hence the waves radiated were exceedingly short.
It was Prof. Tommasini, of Geneva, who first demonstrated that the human body could be successfully substituted for an aerial of the same length and capacity. The body is not, of course, as good a conductor as are the metals, but this is offset by the fact that a current of high frequency penetrates the skin only a very small fraction of a millimeter. M. Emile Guarini, of Brussels, actually sent messages through space by connecting one human body to the positive side of a spark-gap, and another similarly connected to one terminal of the coherer.

German Army Autos.

The German army, which already has three battalions of telegraph operators and one of aeronauts, is to be provided in the near future with a volunteer corps of chauffeurs. At first it was proposed to establish an automobile post or station, but the project was abandoned on account of the great cost it would involve. The volunteer automobile corps is to be recruited from among the members of the German Automobile Club, and it is limited to the Prussian provinces and the states whose military contingent is under the direction of the Berlin authorities. The persons who wish to enter as volunteers are asked to apply to the Automobile Club, with a declaration in which they engage first to serve an unlimited time in case of war, second, to undertake three periods of maneuvers of ten days each, in the space of four years, and third, to carry out all the orders which are given them by the officer in command. On November 1 of each year the club communicates to the Minister of War the list of volunteers available during the following years, with their addresses and the necessary data as to machines, etc. The volunteers are required to wear a gray uniform while in service. Prince Henry of Prussia has been placed at the head of the corps.

Crossing the English Channel by Balloon.

A balloon of the English Aero Club left London February 4 and descended in safety at Bermouville, France, twenty miles inland. The entire time consumed from London to the place of descent was 4 hours and 10 minutes.

The occupants of the balloon were Messrs. Pollock and Dale, who are members of the Aero Club of the United Kingdom. The name of the balloon is the "Vivienne III."

A strong northwest gale was blowing during the passage across the Channel, which was made in an hour and three-quarters. Once the balloon ascended to 10,000 feet, where a snowstorm was encountered and the entire airship was incrusted with frost.

Lucerne possesses one of the most recent hydraulic plants which bas been set in operation in Switzerland. It is used for lighting and power in the city. The hydraulic plant uses a 1,000 -foot fall to run the turbines. The dynamo plant consists at present of four alternating current dynamos of 1,600 horse-power each, but the plant is to receive eight dynamos when it is fully completed. These machines have been furnished by the Swiss Oerlikon Company. Three-phase current at 6,000 volts is employed here and the machines run at 300 revolutions per minute. Part of the current is sent over a cable line to the town of Engelberg, which lies three miles off, but the greater part of the current goes to Lucerne over a high-tension line at 27,000 volts, the distance being 17 miles. From Lucerne a number of branch lines go out to different localities. For use within the city of Lucerne, the high tension of the line is lowered to 2,600 volts and the current is distributed in part by cables and part is converted into direct current for operating the tramway lines.

A NOVELTY IN WATCH DIALS

Major-General Baden Powell, of Mafeking fame, and the author of more than one valuable handbook on

a NOVELTY IN WATCH DIALS. military mat ters, is responsible for an invention illustrated herewith which scarcely needs description. It appeals alike to theshort sighted civilian and the soldier employed on night scouting. According t o one of the most fashionable jewelers in London, a number of eminent military and naval officers have had the "B-P" dial adapted to their chronometers.

A CURIOUS ARCHED TREE.

John S. Welter, of Upper Sandusky, Ohio, sends us the accompanying photograph of an oak tree which is a most striking natural growth. The tree is near the village of Wharton, Wyandotte County, Ohio. The roadway which it arches is forty feet wide. At the base the diameter of the tree measures two feet.

THE "AUTO-CARTE."

an ingenious device for showing the location of the car at any moment. The "Auto-Carte" is an ingenious little de vice which is mounted on the dashboard of the car, and which, by the unrolling of a band of paper, shows the exact position of the car upon the road at any moment. With the high speeds which are now used, signposts are becoming of little use, seeing that they cannot be read usually without slowing up. This is especially true when traveling at night. The "Auto-Carte" has been invent ed to provide for this case and it will no doubt be much appreciated, as it avoids the handling of maps and gives a sure indication of the road. The strip of paper has printed upon it a map of the road on a sufficiently large scale so that all the needed points can be indicated. It is unrolled automatically by a friction roller arrangement mounted be side the road wheel and connected by a flexible shaft and worm gear to the rollers upon which it is wound. The friction gear can be readily adjusted to suit the diameter of the car wheel should it wear down, and besides the apparatus can be adjusted if need be when passing by some well-known point, such as a town. By using this device the driver can see at just what part of the route the car is traveling, and he can read ahead for a distance of 5 miles, thus finding all the obstacles, turns, descents, etc., long before they are reached. One advantage lies in the fact that as the map is quite exact the driver is not obliged to ask the way, and this is an especially good point when passing through towns. The inventors pay attention to this latter point, and take care to indicate on the band the exact passage through the towns as much as possible. This point will be greatly appreciated. When traveling at night the "Auto-Carte" will prove a boon to chauffeurs, as it is always illuminated and enables them to travel with security at a higher speed than usual.

Bees, Insects, and Flowers.

It is a much contested question, whether insects in general and bees in particular are attracted by the brightness of flowers, or by their perfume. A few weeks ago M. Félix Plateau described at the Brussels Royal Academy the following case: If we place a mirror with a convenient inclination twenty or forty centimeters (from about seven to fourteen feet) from natural flowers, the insects that come and place them selves upon these flowers seem to pay no attention to the reflected images. The Belgian scientist thought himself authorized to conclude that it is not the sight of the flowers that attracts the insects.
M. Gaston Bonnier, who shares this opinion, has just communicated to the Académie des Sciences the result of observations showing, especially, how diffi cult it is to give a decision in so delicate a matter When bees are busy in the afternoon collecting wate upon the leaves of the aquatic plants, they do not touch the hones that we offer them upon those leaves or upon floats of various colors. If, on the contrary,
we make the experiment in the morning, the drops of honey are quickly carried away. The learned professor explains the matter by the "habitual" strictness with which bees obey their orders. When they are "commanded" to go for water, they would not allow themselves to gather any honey. In the morning, on the contrary, it is quite natural that the "ex plorer" bees sent reconnoitering to find a field of plunder hasten to describe to the swarms the honey which they find. What we know of the habits of bees renders pretty probable this ingenious interpretation.

A SIMPLE DYNAMOMETER FOR SCHOOL GYMNASIUM

 testing.by thomas r. baker.
At a trial of pulling strength between two classes of college boys in a "tug of war," the boys grasping, at convenient distances apart, the halves of a strong rope, and the classes pulling against each other with the combined strength of the members of each, the question as to how much a boy could pull in such a contest of strength was naturally suggested. No answer was at hand, not even in the books on mechanics that were accessible, and no means were available for determining this pulling strength experimentally.

An accurate dynamometer is an expensive apparatus, and therefore not convieniently procurable for incidental testing of this kind; and as the cheap springbalance form of the instrument could not be relied upon on account of its inaccuracy, I concluded to make a simple apparatus for pulling-strength testing involving the lever principle. The apparatus is shown

an arched tree over an ohio road.
in the accompanying cut. It. is essentially a thirdclass lever working in a strong wooden frame with spreading legs; and somewhat like the trestle used by mechanics. The pulling force is the power, and it is exerted through a rope attached to the lever, and running over a pulley supported by the upper part of

an automobile road indicator. the device tells the chaurfeur his exact location at any MOMENT AND THE CHARACTER OF THE ROAD BEFORE HIM.
the frame, to enable the pulling to be done in a horizontal direction; the weight is an iron ball, movable along the long arm of the lever, to adapt the leverage to the strength of the puller; the fulcrum consists of two steel rings fixed in the inclined legs of the frame The form of support adapted to the working of a

A SIMPLE DYNAMOMETER.
lever for making the tests was carefully determined by first making a model that would work satisfactorily. Two of the legs of the support are vertical and have a cross-piece, whose length is more than twice the width of the apparatus, bolted to their lower ends to serve for lateral bracing. The other two legs make an angle of about 45 degrees with the vertical ones, and their ends, which are let into the ground several inches, are made wedge-shape with the faces of the wedges to ward the puller, and vertical so as to enable the ground to offer the greatest resistance to any tendency of the apparatus to move in the direction of the pulling. Outside lateral braces extend from the ends of the crosspiece to the upper ends of the vertical legs, and opposed to this bracing, to increase the rigidity of the apparatus, a piece of inch water-pipe with a connector on one end screwed on as far as it will go, is fitted be tween these legs; and the bracing is effected by unscrewing the connection.
The lever is a piece of inch water-pipe seven feet long, and to guide it in moving in a vertical plane, it has a short cross-piece of inch pipe screwed to the fulcrum end, giving this end the form of a T. The ends of a steel bar which passes through the crosspiece project from it, and are made with knife-edges to work against the inner side of the ring fulcrum. The iron ball used as the weight weighs 16 pounds. The resistance capacity of the lever varies from 50 to 210 pounds, and the arm is graduated to indicate differ ences of two pounds. The pulling rope is about three fourths of an inch in diameter-a suitable size to be conveniently grasped by the puller.
The lever is adjusted to a horizontal position for pulling tests, and is controlled in its upward movement by a stop placed at the end, permitting it to rise only a few inches
The lever was graduated by bringing the pulling rope, one end remaining attached to the lever, over a pulley fixed in the ceiling of the room, and attaching a board for a scale-pan to the other end; then using carefully weighed bricks in the scale pan to lift the lever weight, adding bricks as the leverage was increased by moving the weight outward. It was found however, that the graduating could quite readily be done by means of an accurate steelyard.
To render the apparatus more readily transferable the frame is put together with bolts, and the lever is made removable.
This apparatus has proved interesting and valuable many of our students having used it to determine their pulling strength in pounds, to find out how much stronger in this respect one was than another, and to find who was the strongest among a crowd of boys making the tests. Moreover, the apparatus may serve a good purpose in gymnasium work as a strength de veloper. Indeed, it would seem to be a desirable ap paratus for common gymnasium outfits, and on ac count of its easy construction and small cost it is readily procurable.
The number of pounds that could be pulled was very naturally, found to depend greatly upon the foot resistance that could be secured, other things being equal. If the puller dug a hole in the ground with his heel, and pulled against this resistance, he could pul considerably more than he could simply against the resistance afforded by the level ground. Of the fifty or more boys who tested their pulling strength with the apparatus with ground heel-supports, their pulling varied from 125 to 210 pounds; and without these supports, from 35 to 50 pounds less was recorded upon the apparatus.

AN IMPROVED RAIL JOINT.

Pictured in the accompanying engraving is an improved rail joint, which has recently been invented by Messrs. H. Herden, S. E. Fitch, and J. H. Burgoyne Jr., of Galeton, Pa. It is a well-known fact that a railway, as usually constructed, is very weak at the points where the rails are joined. This defect is much more apparent when the bolts become loose. The im provement here illustrated consists in welding splice bars to each end of a rail, but at opposite sides. The bars will thus form integral parts of the rail. When connecting two rails, A and B, their ends are joined in the usual manner, allowing space for expansion and contraction, and are then fastened with bolts passing through the splice bars $a^{\prime} b^{\prime}$. The rails A and B thus virtually overlap each other, the rail B being supported by the splice bar b^{\prime} engaging the flange of the rail A, and the latter being similarly supported by the bar a^{\prime} engaging the flange of the rail B.
After the splice bars are spiked down to the ties, they will keep the rails in proper alinement, even if no bolts are used, and the ends of the rails cannot be depressed when a wheel is passing over that part of the joint. The so-called "hammering" at the joints is thus prevented. It will be evident that this joint, since it can withstand a severe test without the use of bolts, will reduce to a minimum the strains on the bolts, and

an improved rail joint.
prevent their liability of coming loose. The improved joint admits of a short bar, and simplifies the work of track laying. A rail can be readily taken out of the track and reversed, or it can be used in connection with rails which are not equipped with this improvement, by employing loose splice bars.

"Consider Her Ways."

Among the apparently useless evils of the world, the white man has always reckoned the white ant, the greedy devourer of everything vegetable and animal that comes in its way, making many a region unfit for human habitation, but now Dr. Arthur J. Hayes, who has recently visited Abyssinia with the surveying party sent out to set up the marks for gaging the annual rise of the Blue Nile, broaches another theory. He went through the Soudan to Lake Tsana, western Abyssinia, and returned to Egypt by the valley of the Athbara, and in his book, "The Source of the Blue Nile," he records his opinion that it is to the white ants that the mud spread over the Nile delta in the annual floods owes its wonderful fertility. He does not say that the ants supply all the mud that is deposited in the delta, but that its productive property is due to their work in the western borderland of Abyssinia. This discovery, if discovery it be, is as interesting as those of the value of the earthworm, and the possibility of inoculating land for the increase of a desired har vest. Perhaps the humble brown ant, and even the little black ant, are benefactors of the human race, and the mason wasps and ground spider have other uses than to cause naturalists to write delightful books.

WHEEL-BLOCKING SAFETY DEVICE FOR AUTOMOBILES.
Our illustration shows a novel device recently brought out by the Hayden Automatic and Equipment Company, for the purpose of blocking the wheels of an automobile should it start to descend a hill backward, owing to the brakes failing to hold. We illustrated a ratchet arrangement for this purpose in our recent Automobile Number. The present device can be applied to the front wheels of the machine, and hence it does not form any incumbrance that would interfere with the brakes.
As can be seen from the cut, the arrangement consists of a grooved drum, D, which is attached to the spokes of the wheel by means of screws. The movable
member, K, of the steering knuckle, S, has a suitable bracket upon which is pivoted, at A, a cam arrangement, C, having grooves corresponding to the ridges in the drum. A rod, B, and a bell crank, L, are used for moving C forward toward the steering knuckle when it is desired to free the wheels so that the machine can be run backward. At all other times C is drawn to the right so that it contacts slightly with the drum, by means of a small coiled spring (not shown). If, under these conditions, the wheel starts to revolve backward, it instantly jams against C and is held stationary. The bell crank, L, is connected to a suitable lever near the driver's seat, for the purpose of releasing the cam when the machine is reversed. This lever can be made to interlock with the reverse gear-shift lever if desired. The device is extremely positive in action, there are no teeth to break, and the slight rubbing action of the cam against the drum can be depended upon to keep the latter free from mud or grit. Some such device of this kind should be fitted to every highpowered automobile, and even on a light car it will sometimes be found very useful, such as when the machine stops on a hill from the stalling of the engine. In such a case the car will be held until the engine can be started again without the application of the brake.

A FRICTION SAFETY WHEEL-LOCK FOR AUTOMOBILES,

RECENTLY PATENTED INVENTIONS. Electrical Devices.

SELECTIVE CALL FOR TELEPHONES and telegraphs.-W. Palmer, Jr., Ricon, New Mex. The object of this invention is to provide a call by which the central office may call any subscriber on the line without ringing the bells of the others and by which the two subscribers when called may be enabled to comthe other subscribers on the same line to hear the other subscriber
their conversation.

Of Interest to Farmers.
COTTON-CHOPPER.-J. I. Roberts, Sparta,
Ga. The invention is an improvement in that Ga. The invention is an improvement in that
class of choppers which are adapted for use in class of choppers which are adapted for use in
thinning out rows of cotton-plants, thus leavthinning out rows of cotton-plants, thus leaving a series of stands of such plants duly
spaced apart. It may be employed for scraping the surface of a cultivated field for removing
small weeds and leaving fresh soil exposed, as small weeds and leaving fresh soil exposed, as crops.
FERTILIZER-DISTRIBUTER.-C. K. John-
son, Florence, S. C. The distributer is inson, Florence, S. C. The distributer is in-
tended especially to be used by cotton-planters tended especially to be used by cotton-planters
in fertilizing fields with guano. The machine is adapted to be advanced along the furrows in which the cotton is to be planted. The object
of the invention is to provide means for conof the invention is to provide means for con-
trolling the feeding of the fertilizer from the distributer.

Of General Interest.

SKIRT-SUPPORTER.-H. C. Deane, Salt Lake City, Utah. It is sought by this inven-
tion to provide a device for use in securing a tion to provide a device for use in securing a
skirt to a shirt-waist, and to provide for holding the skirt and shirt-waist with the proper set in the back. Placing of these garments with the holder may be readily and conven-
iently accomplished. The holder being formed iently accomplished. The holder being formed
of thin flat plates which lie close to the body of thip flat plates which lie close to the body
will not present an objectionable appearance will not present an objectionable app
when the belt is placed over the same.
LOG-HOOK.-J. 'D. Vaughan, Zwolle, La. Mr. Vaughan's. invention relates to a log-hook;
and the principal object thereof is the proand the principal object thereof is the pro-
vision of means for securing logs and the like vision of means for securing logs and the like
which can be readily disengaged to permit the weight supported to drop, even when a large weight supported to drop, even
weight is engaged by the device.
SAFETY-ENVElop.-J. Pellerin, Catalia SAFETY-ENVELOP.-J. Pellerin, Catalia,
Alaska. In the present patent the object. of Alaska. In the present patent the object. of
the invention is the provision of novel details of construction for an envelop which will pre-
vent the opening of the envelop if sealed without tearing the parts of the same, and thus ex posing the felonious attempt.

DEVICE FOR BENDING FORE-AND-AFT Sails.-J. H. Mitchell, Westerly, R. I. It has been the custom to bind the luff of a fore-and-aft sail to the mast-hoop by spun-yarn or
marline. This is tedious and insecure. Further, the luff sags away from the mast and interferes with the set of the former. To overcome this objection the mast-hoop, is provided with a in the eyelet-hole of the sail, thus not only securely holding the sail in proper position, but enabling it to be very quickly bent and unbent.

Heating and Lighting.

open Fireplace.-H. C. Cleaver, Eden street, London, N. W., England. The
fireplace consists, essentially, of a forwardlynclined open grate or apertured screen over which the burning fuel descends by gravity, a and automatically supplying the fuel to upper portion of grate by gravity, a fence or kerb situated at the lower margin of grate for limiting descending movement of fuel over the same, and flue (or flues) controlled by damper (or dampers) or other means leading from space beneath the grate to the chimney.
LIFT-PLATE.-E. C. Cole, Chicago, IIl. The invention is an improvement in ranges, and has or its object to provide a novel construction
whereby the lift-plate may be tilted to hold it any desired position whenever required. In combination with the lift-plate and lifter, is an ornamental bracket having a vertically-elon-
gated opening through which the lifter is passed, and a hook or hooks for engagement with the lifter.

Household Utilities

SCREEN.-J. B. Moseley, Danville, Va. secial object of the inventor is the provision of a screen which is simple in construction and which may be readily attached to or detached
from a table and which will at from a table and which will at the same time be easily manipulated to enable articles
removed from or placed under the screen.

Machines and Mechanical Devices.
TURPENTINE-BOX - CUTTING MACHINE. -R. L. Ivey and R. D. McDonald, Deland,
Fla. In this invention the machine is adapted to cut in the side of the sap-bearing tree a pocket forming the so-called "turpentine-box," having inwardly-converging walls and a flaring mouth to facilitate access to the sap accumulated in the box for convenience in removing the same.
PAN-AND-ROLLER MILL FOR-CRUSHING

AND GRINDING.-J. C. WEGERIF, Rawreth valve may be readily regulated to suit specific Rectory, Battlesbridge, Essex, England. One of gravity of oil or spirit. the main objects in this case is to enable equality of pressure to be maintained throughout the entire length of line of bite or mutual contact between pan and roll in direction no mal to the surfaces of both and to insure as far
as possible the maintenance of equal rate as possible the maintenance of equal rate of
wear of the grinding-surfaces of both pan and roll or rolls throughout their entire width. Another, is to subject particles under treatment not only to usual crushing stress, but also to cross-grinding or tensile stress tending to tear each individual particle asunder.
MEAT-CUTTER. - A. W. Johnson, New Brunswick, New Jersey. The chief objects of the invention are to provide means for guiding
a rank cutting-blade in such a manner as to a rank cutting-blade in such a manner as to prevent it from coming into contact with the bed and to force it to cut uniformly-thin slices, to provide means for guiding three kinds of blade without mechanical skill, and to provide for firmly holding and regularly feeding the meat.
Grabot-machine.-J. D. Brazier and D, has referenc, Vicksburg, Miss. The inventio ing cotton locks and seeds from the hulls as the material comes from the boll-screen. The objects are to provide for the rapid and effective
separation of the materials mentioned and the separation of the materials mentioned and the distribution thereof in separate places.
MOLDING-MACHINE.-H. Besser, Alpena, Mich. The principal objects of this inventor are to provide means for rapidly disassembling the mold parts of a machine so as to free the molded object with little effort and in a very
short time, to provide means for molding artishort time, to
cles of various sizes and shapes by simple adjustments of the mold parts. It relates to a machine for molding plastic materials to form building-blocks, and other articles capable o being formed of a plastic substance.

Prime Movers and Their Accessories.
CARBURETER. - J. MCIntosh, Lansing, Mich. The invention relates to a carbureter or vaporizer designed particularly for use in con
nection with internal-combustion engines, but useful in other connections. The leading, object is to provide devices for automatically regulating action of carbureter upon excessive sucking efforts therein, so that when the engine runs at high speed the ratio of air to fuel will is to insure thorough spraying of the object fuel, and consequently to attain thorough ad mixture of air and fuel. Further, to easily adjust the float, so action of oil or spirit supply

Railways and Their Accessories.

Grain-door.-J. E. Drake, Blue Rapids, Kan. Mr. Drake's invention relates to a new grain door for railway cars which is an im-
provement on his previously patented invenprovement on his previously patented inven-
tion. The door is formed of two sections so tion. The door is formed of two sections so
arranged that either the upper section or both arranged that either the upper section or both
sections may be conveniently swung up and secured in open position. The car may be filled through the upper section. A panel in the lower door section may be raised to permit the ontents of the car to flow out before the door ing the door sections in open position.

Pertaining to Recreation.

Game apparatus. - B. D. Martin, Tampa, Fla. In this case the object is to provide a game apparatus which is simple and durable in construction, not liable to get out of order, and arranged to afford amusement to the players and to require considerable skill to successfully propel a disk of hard wood, metal,
or other material over the surface of a board, or other material over the surface of a board,
by the use of a finger or a mallet, in the least number of strokes.
GUN-SIGHT.-L. Hillabrandt, Johnstown, N. Y. One purpose of the invention is to proo provide therefor a removable fine and auxiliary sight which is preferably in the nature of a ring having a spider inner section including vertical and horizontal bars and a central peep or which may be in the form of a disk proided with a peep-hole or scratch-sight.

Designs.

DESIGN FOR A COVER-DISH.-R. L. igner produces an oblong formed cover-dish igner produces an oblong formed cover-dish
whose body taprs with a beautiful curve to the bottom, which is encircled with a waved
the edge. Handles are on the ends. The cover has an exquisitely twisted handle; and the descent of the former to its bottom edge is in fine proportion to the whole effect. Mr. Johnson has also designed another cover-dish. The form is blong. Scrolled handles are on the ends of the dish, the body of which symmetrically dips is surface puffed and ornamentally fluted at the

Note.-Copies of any of these patents will Please state the name of the for ten cents each. the invention. and date of this paper.

MOST DURABLEOF ALL HIGH SPEEDENGINES

THE SIMPLEST OF ALL
HIGHGRADEENGINES

THIS REMARKABLE FOUR-VALVE ENGINE

CUTS FUEL BHLLS ONE-THIRD

Any Single-Valve Engine, no matter how high the type, is a money-waster as compared with this-and fuel, attendance and repairs cost money.

There are more Atlas Engines and Boilers in service than any other kind. The reason lies in their quality, everywhere recognized as the highest.

ATLAS ENGINE WORKS
Plant and Expcutive Orfices, INDIANAPOLIS
BRANCHESAND SELLINGAGENCIESANALLCITIBS

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 7848.- Wanted, address of a manu-
facturer of silk-covered head tacks, also glass nead
For logging engines. J.S. Mundy, Newark, N. J.

Inquiry pressors and graniue-cutting machactury
 Handle \& Spok Chagrin Falls. 0.

Inquiry No. FS51. - For manufacturers of machin
ery for making buttons from shells; also for decalcu manie or transfer illustrations.

Wolfram. Apply Monasite, Box 773, New York
Inquiry No. \%852.-Wanted, informati
ing the Braum- Viga calculating machine.
1 sell patents. To buy, or having, one to sell, writ
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. Inquiry No. 7853.- Wanted. information on pric
of aiuminum paper, also makers and sellers of same. The celebrated "Hornsby-Akroyd "Patent Safety Oul
Engine is built by the De La Vergne Machine Company Inquiry No. Foot of East 138th Street, New York.
and machinery for making cementant shingros of mould tiling, also the address of manufacturers matking power
and hand power concrete mixers of different designs.
stamping, screw machine work, hardwars ษpecialties,
machinery tools, and waod fiber products. Quadriga
Manufarturing Comp Manufacturing Comp 7 ,, 8 South Canal St., Chicago. Inquiry No. 7855.-For manufacturers of papier
waché. W ANTED.-To secure a party to manufacture a pate
Ratchet Drill. Address Drill, Box 773, New York. Inquiry No. 7856.-For manufacturers of hand
power spoon-making machine (from a sheet of brass). Bates \& Peard furnace for bright annealing all non-
ferrous metals. Witrout oxidation. No pickling or ferrous metals.
cleaning required. C. M. Dally. Agent, 29 Broadway New York.
Inguiry No. Y85\%.-For manufacturers of a ma-
chine converting peat into fuel. I have for sale the U. S. and all foreign rights of new
patent Improvements in Water Tube Types of Boilers. Great economizer. J. M. Colman, Everett, Wash. Inquiry No. 7858.-Wanted, information on ship-
plumbing. also manu

business. $\$ 2$ per 1.000

Inquiry No.
cast gears, also of moving picture slot machines. Inquiry No. 7860.-For man
slow-speed rotary quartz crusher.
Inquirr No. 7861 .-For manufacturers of nib-
making machines, also machine for making the pin. Inquiry No. 7862.- For manufacturers of a ma
chine for making bricks out of sand and lime.
Inquiry No. 9863.-For manufacturers of wire. Inguing No
tile ditchers.
Inquiry No. 7865.-Fror
chines for renovating butter.
Inquiry No. Y866.-For manufacturers of machin-
ery for making and nailing wooden boxes. Inquiry No. 786\%.-For manufacturers of veneer-
ing machinery. Inquiry No. وی68. - For manufacturers of light
metal wheels.such as are used in the construction of
corn cultivators. Inquiry No. glich9.-For parties making mounted
spring that wuald be able to coil up 50 feet of No. 14
insulated wire.
 of pen holders with spring inside where pen is inserted.
Inquiry No. 7871 .-For manufacturers of razor-
grinding machines. Inquiry No. g.
Mower Grinder Co
 Inquiry No. 7874 .--For manufacturers of the Tor-
nado stalk cutter. Inquiry No. 7875.-For manufacturers of lathes
or machines which will turn out any shape of briar
tobacco pipes. Inguipy No. 'gsy 6 .- Wanted, the name and ad-
dress of the manufacturers of the Babcock milk tester. Inquiry No. $7 \mathbf{8 7 \%}$. - For makers of cheap electric
pocket lamps, and smail electric noveltues.
 Inquiry Nos. 7879 9.-Wanted, a water still, of
capacily of 100 galluns daily. laquiry No. 7880.-For manufacturers of blowers.
Inquiry No. \%881.-For makers of vulcanizers,
rubber stamps, and supplies for same. Inquiry No.
ing hose couplings.
Hinquiry No. 7883.-For makers of bottling ma-
chines, also finformation rearding the manufac-
ture and bottling of carbonated drinks. Inquiry No. 7884.-For makers of saw machnnes,
or saw mills for squaring small timbers, from 1 inch up
t 8 inches. to 8 inches.
Inquiry No. 7885.-For makers of luminous paint. Inquiry No. 9886. - For makers of small castings
cast in metal moulds, to Inquiry No. \%s87. For makers of sewing ma-
chine needle-threaders, , Inquiry No. 78s8.-For manufacturers of
making machinery, for illuminating purposes. Inquiry No. 7889.- Wanted, addresses and cata-
lokues of companies manufacturing small dynamos. Inquiry No. \%890.-For manufacturers (in CanaInquiry No. 7891.-For makers of brass trim-
mings for gosoline launches, etc. Inquiry No. 7892.-Wanted, makere of leaded
glass windows and doors.

Engine and Foot Lathes

BY THE BROOKS SYSTEM

BROOKS BOAT MFG. CO. Originators of the Pattern System of Boat Building 402 Ship Street

Bay City, Mich., U. S.

Notes and Oueries.

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters o
no attention will be paid thereto. This is for
our information and not for publication. References to former articles or answers should give
date of paper and page or number of question. Inquiries not answered in reasonable time should be
repeated; correspondents will bear in mind that repeated; correspondents wil bear in mind tha
some answers require not a little research, and
though we endeavor to reppy to all either b
letter or in this department, each must tak his turn
Buyers wishing to purchase any article not adver
tised ine our columns will be furnished with
addresses of houses manufacturing or carrying addresses of houses manufacturing or carrying
the same. Special Written Information on matters of personal
rather than general interest cannot be expected Scientific American Supplements referred to may be
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(9888) R. E. A. says: In reading descriptions of steamers, warships, etc., I am
always confused as to the exact meaning of the erms "displacement," "gross tonnage," "net tonnage," "register,", and "tonnage." A. The
term "displacement" refers to the weight of term "displacement" refers to the weight of weight is exactly equal to the weight of that body. If we could weigh the water that would fill the hole which a floating vessel makes in
the ocean, we would find that it weighed exactly as much as the vessel itself. "Tonnage" refers to the carrying capacity of a vessel, and
this is determined by measuring the internal this is determined by measuring the interna capacity of the ship; that is to say, the whole
space within the hull and deck houses. This amount in cubic feet divided by 40 gives the amount in cubic feet divided by 40 gives the
gross tonnage. If we subtract from that the space which is given up to engines, cabins, etc.,
we have the net tonnage, or the tonnage that can be given over to a cargo. The registered
tonnage is the official tonnage as registered at tonnage is the offic
the Custom House.
(9889) F. O. asks: 1. I am desirous of obtaining a formula for making a cement
that will make wood firmly adhere to glass. A. Take 2 ounces of a thick solution of glue,
and mix with 1 ounce of linseed oil varnish, or and mix with 1 ounce of linseed oil varnish, or
$3 / 4$ ounce of Venice turpentine. Boil together, agitating until the mixture becomes as inti
mate as possible. The pieces cemented should mate as possible. The pieces cemented should
be clamped together for a space of forty-eight to sixty hours. 2. Please give a simple rule, if there be one, that I can tell what day of the week a date is on prior to our present year. A.
To find the day of the week any event in the
recent past occurred, we must consider that recent past occurred, we must consider that
each common year begins and ends on the same each common year begins and ends on the same
day. 1905 began and ended on Sunday, 1906 begins and ends on Monday. A leap year ends one day later in tho week than it begins. The
days of the week therefore fall backward as days of the week therefore fall backward a
we go back in the years one for all years and one more for every leap year. Find the num ber of years elapsed since the date we wish to
find. Find also the number of leap years, find. Find also the number of leap years,
by dividing the number of years by four,
and reducing this number by one if the date and reducing this number by one if the date
is in the last century, since 1900 was not a leap year, and by two if the date is in
the eighteenth century, since 1800 was not a leap year. The sum of the leap and common years will be the number of days of the week
by which the day of the week has been moved by which the day of the week has been moved
backward. Divide this by 7 to find how many whole weeks this gives and what remainder there is. Now count the days of the week
backward as many as the remainder after dividing by 7, and you will have the day of the week required. Thus, on what day was' the
Declaration of Independence made July 4, 1776 ? July 4, 1906, is Wednesday. Since
1776,130 years have passed: 32 of these would 1776,130 years have passed; 32 of these would
have been leap years; but we subtract 2 , for have been leap years; but we subtract 2 , for
1800 and 1900 , which leaves 30 leap years. The day of the week has moved back one day
for each of the 130 years and another day fo each of the 30 leap years, or 160 days in all. This equals 22 weeks and 6 days, and 6 days back from Wednesday is Thursday, which was
July 4, 1776. New Style was introduced in England in 1752; the 3d of September was called the 14th. This is the first day of New
Style, and the day before was September 2 Style, and the day before was September 2,
1752 , the last day of Old Style. The rule
given above applies to all dates September 14, 17.52 , which day was Thursday. F'or dates in the future the same rule may be followed, excepting that we must count forward in the week instead of backward. Thus,
on what day does January 1, 1920, fall? Jañuary 1, 1906, occurs on Monday. Fourteen years intervene, three of which are leap years.
This sets the day of the week forward 17 days, This sets the day of the week forward 17 days,
or 2 weeks and 3 days, and 3 days from Monday is Thursday. January 1, 1920, will be any date may be found. This method is not
new, but has been published before, perhaps many times. It appeared in Popular Astronomy, December, 1905 , and was derived by the author of that paper from Newcomb and Holden's "Popular Astronomy." Such processes
are of considerable interest and value, but unless one preserves them they are soon lost.
One's memory cannot be relied upon to retain

BURGLARS:
 from Burglars and
Sneak Thieves.
Bedroom doors or Sneak hieves.
Bedrom doors or
street doors cannot
and street doors cannot
be op on ne d even
after other fasten-
of Bell rings violently on slighest pressure. en Mitadiustim, no wires,

A MONEY MAKER Hollow Concrete building Block
Best Fastest simplest, CCheape
Machine. Fully guaranteed. THE PETTYJOHN CO.
615 N. 6 th Strett, Terre Haute, Ind
 AUTOMOBILE ENOLGINEERS 142 Weat 5 th street. New York Clty
PBOF. Cnder the personal direction of Ph. LUC.
 SPECIAL COADEvening GIasses.

Make Money

legitimately, positively and absolutely. Not in shares of gold mines, copper mines, or in oil wells, but in

GUARANTEED 6\%
 INVESTMENTS

Plus Dividends on Profits of Business
secured by Real Estate in New York City and in Greater New York suburbs
Safest, Soundest and Most Profitable Investment Ever
N. Y. BRIDGE AND SUBWAY REALTY C 0.
299e BROADWAY (Barclay BIdg.) NEW YORK I. B. BROOKS
President
L. SMADBECK
Treasurer Established 19 Years on Broadway References : Banks, Commer
cial Houses and Corporations.
Clergymen, lawyers and booklet
Clergymen, lawyers and others of unquestionable
tanding wanted to act as our representatives in local standing wanted to
Towns and Cities.

NEW BOOKS, ETC.
Radium, Radioactive
Aluminium. With Exptances, and search of the Same. By Myron Metzenbaum, B.S., M.D. Cleveland: The Babbitt \& Crummell Company, 1905. The results of the investigations described in this monograph constituted an exhibit at the Building of Mines and Metallurgy of the St. Louis Exposition, and received the bronze
medal for Original Research into the Chemistry, Physics, and Medical Value of Radium. The monograph consists of a paper on Induced Radioactivity and Aluminium, which appeared short abstract from a chapter on Radium, Its Value in Medicine, contributed to the Interna-
tional Clinics; and of material collected from an article on Radium published in the Cleveland Medical Journal. Upon application to Dr.
Myron Metzenbaum, Cleveland, Ohio, a copy of the monograph will be sent free of charge.
The American Annual of Photography FOR 1906. Edited by Spencer B. Hord
G. Gennert, 1905. 8vo.; pp. 354. Price

75 cents in paper; $\$ 1.25$ in cloth.
The American Aunual comes to us this year splendidly-illustrated publication containing n unusual number of interesting special articles besides the customary technical formulx. Among the special articles referred to may be mentioned as particularly noteworthy the Value of Snapshots, by W. I. Lincoln Adams; How to Make Ovals, by H. M. Gassman ; A Summer Outing, by E. S. Kibbe ; Immersion Photogra-
phy, by Dr. Miller. On such subjects as "What is Art?" and "The Broad Movement in Pictorial Photography," the discussions are too indefinite to be of much value to anyone. Still, they have their place in an annual of this kind.
Electroplating. By Paul N. Hasluck Philadelphia: David McKay, 1905 18mo., pp. 160. Price, 50 cents This is one of a series of handbooks edited of the matter on electroplating published in this of the matter on electroplating published in this
journal, to which have been added several artiles by Mr. G. E. Bonney. Complete informaton is given concerning the tanks, vats, and elher apparatus, the batteries, dynamos, and
electrical accessories, and the appliances for preparing the work. Silver, copper, gold, and
nickel plating are treated, as well as electronickel plating are treated,

Machine Design. By Albert W. Smith and Guido H. Marx. New York: John Wiley \& Sons, 1905. 8vo.; pp. 369. Price, $\$ 3$.

Machine design nowadays is a subject which is considered of paramount importance by the
mechanical engineer, and there can hardly be too much good literature relating to this sub-
ject. The design of many machines is a result ject. The design of many machines is a result of what may be called machine evolution. The first machine was built according to the best was sometimes wrong, and some part yielded under the stresses sustained; it was replaced by a new part made stronger; it yielded again, and again was enlarged, or, perhaps, made of some more suitable material; it then sustained the stresses satisfactorily. Some other part yielded too much under stress, although it was entirely free from actual rupture; this part was then stiffened, and the process continued nil the whole machine became propery pro portioned for the resisting of stresses, and it "machine evolution." The attainment of econ omy is an important factor in machine design, and is also dwelt upon. Four considerations of prime importance which are treated are adaptations, strength and stiffness, economy, adapta
and ap
one.

Physics. By Charles R. Mann and George R. Twiss. Chicago: Scott, Foresman \& Co., 1905. 12mo.; pp. 453. Price, $\$ 1.25$. A great deal of time is now devoted to the subject of physics in our high-school and college classes, but the interest of students in the
subject does not seem to be as great as it subject does not seem to be as great as it should be. This is; largely due to the methods
of teaching, because the young mind is naturally very much interested in the phenomena urally very much interested in the phenomena
of nature. In the present work the subject is taken up from a new standpoint, avoiding such features of the study as have heretofore tended to befog and confuse the young student. Mathematics is used only where absolutely necessary, and, on such occasions, the equations are made so simple that the student is able to follow the logic they symbolize. Definitions are withheld until the concept is implanted in the mind, mhereupon the necessity for the definition planted in the memory. Throughout the entire book a questioning attitude is maintained, so that the teacher instead of maintaining a didactic attitude rather enters into the study with the student. This tends to arouse the interest of the student, and teaches him to observe the phenomena about him, and trains him to draw his conclusions and verify them by experiment. The book follows a continuity chapter. The illustrations are taken from actual photographs of the various things, so that the student is given an idea of the practical application of the subject.

Honest Power Honest Price

Anyone can speed-up a motor in the factory with a heavy flywheel, so that for a period of ten seconds it will show a high brake horse-power; but that is a mere trick. It is no test. REO rating is not "faked" in that way. It is obtained by an actual ten-hour dynamo test. It is accurate; it is honest; and, above all, it is thoroughly proven by unquestioned performance.

Those were REO cars that captured five out of seven prizes in the National six-day economy test.
It was a REO that broke the middle-weight speed record on the Syracuse race track, a REO that lowered it: class record 23 minutes in the "Climb to the Clouds" up Mount Washington, and a REO that won three cups in one day on Paddock Hill, Cincinnati-beating all twenty competitors; eight of them having nearly double its rating and price.

Write for the REO book that tells why.

REO Four-seat Runabout, 8 h. p, 1,000 pounds, 25 miles per hour.

$$
\text { With folding seat to arry } 2 \text { extra passengers, } \$ 675 \text {. }
$$

REO-GRAPH showing the inside of a typical motor in actual moving operation, sent to you for six cents in stamps addressed to Dept.

REO Motor Car Company Sales Department, LANSING, MICH.

R. E. OLDS, President
R. M. OWEN, Manager

FIGURES _ FACTS

There are 30,000 more articles in The New International Encyclopædia than in an other encyclopædia in the English language.
There are 10,000 more biographies than in any other.

There are 10,000 more biographies than in any other.
The variou departments of The New International Encyclopædia, bound separately, would make 200 average size volumes, costing hundreds of dollars.

隹

THE NEW INTERNATIONAL ENCYCLOPAEDIA

there are 20 volumes, containing 16,328 pages, 67,097 titles, $20,600,000$ words, 700 full-
page illustrations, besides over seven thousand illustrations in the text. There are 100
full-page colored plates 400 . full-page colored plates, 400 duotints, and 300 maps and charts, making a complete atlas of

the world.
Every bit of information in The New International Encyclopædia is of interest to the average man. There is not "as dry as an encyclopædia" article in the entire work.
The arrangement of The New International Encyclopædia is so The arrangement of The New International Encyclopædia is so simple and complete,
answer can be found on any question without an instant's loss of time. Everyone knows the value of having an encyclopædia to-day; The N Encyclopædia is the best and the most recent in existence at the present you to compare it with any other.
This Coupon is Worth Two Interesting Books, Free
 The other book contains pages descriptive of The New Internafional Encyclopxdia, specimen pages, fac
simile illustrations from The New Internatonal, showing the work's scope, and the easy payment plan
by which one
It will tane can you lecure this great work without a a large initial expenditure
these two vanue to fill in the coupon. Mail it and
DODD, MEAD \& C0., Publishers, 372 Fifth Ave., New York City
SPECIAL OFEER: To anyone sub-
The New International in response to this ad=
vertisement within 30 days aiter its appear-
ance, we will send an Extra Volum
Free, entitled, "Courses of Reading
Free, entitled, "Courses of Reading
and Study."

Constructional Steel Work: Being Notes on the Practical Aspect and
the Principles of Design. By A. W. Farnsworth. London: Charles Griffin \& Co., Ltd., 1905. 8vo.; pp. 248. Price, $\$ 3.50$.
The employment of mild steel work is rather an innovation in Great Britain, but its use is increasing to such an extent that we are not
at all surprised to see English works on the subject. The present volume also deals with an account of the methods and tools of manufacture.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending February 6, 1906.
AND EACH BEARINGTHAT DATE [See note at end of list about copies of these patents.
 Adding machine, Hinchman \& Schroeder...
Advertising projecting apparatus, Wetzler \&
Ornstein

 Air brake system and automatic valve, $\underset{\text { F. }}{\text { ham }}$.
 Air coupling, automatic, Sexmith \& M
Air cushion for vehicles, M. Downer
Air purifying apparatus, A. S. Swan... Air cushion for vehicles, M. Downer
Air purifying apparatus, A. P. Swan.
Amusement device, Keen \& Ayers....
Amusement device, E.S. Benedict


```
Baby tender,G.G. P. Steinbach.
```

Bag. See Punching bag. Waters.....
Balancing device, W.
Baling machine, fiber, A. M. Sheakle
Baling machine, W. Liber, A. Waters........
Balls from sheet metal, manufacture of

mann , C. Coben Binder, tempor

Block molding machine, A. J. Love........
Boat, high speed motor, T. H. Wheless.:
Boat, life saving, A. Baumgart
Boats

 Botte closure, F. W. H. Clay......
Bottle drip attachment, M. Metrie
Bobeling machine, T. Pankow Bottle stopper, J. J. Allison.$\ddot{\text { Ben }}$
Bottle stopper, W. F. Mahony
Bottle wrapper, F. W. R. Brad

 Brakes and
Wrazing sunt

Brazing Bridule R

 Button, crochet work, I. Kalli
Button, hinged leaf,
Cabinet, H. F. McDonell Case
Cabinet, kitchen, W. M. Henso............
Cages, drinking and
bird, H. Quitner

Car announcing device railw
Car coupling, S. Wir. W. Wibel,
Car, dump, Hart \& Yost
Car, eletric, L. B. Stillweli
Car fender

Car, freight, O. W. Meissner
Car, railway tank, G. L. Southard
Car step, D. A. Faut

Cartridge, A. H. Emery.
arre smokeless powder,
Cash carrier, pneumatic tube, D. S. Hager
Cash register, W. F. Bockhoff.
Catamenial bandage, E. S. Dix
Catheter, embalming, H. M. Cripen
Cellulose compound and making the
 Cement fence post mold, G. H. Terry.
Centerless engine, Blodgett Centerless engine, Blodgett \&
Centrifugal milehines, means filer........
overdriven, G. Dinkel Chairs,
high, , J. Kugel
Change making machine, T. S. Wilkes Chimney cap, Colegrove \& Reed.: Chuck, drill, P. J. Hoerscheid.. Cigar for asthma, A. Mendelsohn.
Cigar retainer and cutter, S. P. Milier.. A. H. Randall, Jr.
Closet tank, F. H. Lindenberg
Coathes and frame, C Clike washer, Wr
Code

syacio The Latest Word In Sanitation

The name Sy-Clo on a closet means health insurance for your home or any building in which the closet is placed; it means freedom from all those diseases which are usually traceable to noxious odors and poisonous gases arising from ordinary closets.

Sy-Clo stands for more than mere flushing; it stands for a wonderful syphonic action of great power-an action which literally pulls the contents of the bowl into the drain, cleansing the non-reachable parts, instantly .sealing the outlet channel with a water trap to an unusual depth, and absolutely preventing all danger of gas.
The Sy-Clo Closet stands for an interior cleanliness and purity impossible in an iron closet, and unknown in any closet but one made of china-like the Sy-Clo. Hand-moulded of china all into one solid piece like a vase, the Sy-Clo is without crack, joint or rough surface to collect dirt or disease germs. It is as clean inside and out as a china pitcher, being made exactly the same way and of the same material.

The surface of the Sy-Clo Closet cannot chip off, is not affected by acid, water or wear, and hence cannot rust or discolor as an iron closet does. The Sy-Clo is strong, simple, durable; it cannot get out of order and will last, with ordinary care, as long as the house in which it is placed.

It costs but little more than the common closet, and when health and comfort are considered, it really costs less; in fact, plumber will tell you that S Y-Clo is absolutely the latest word in perfect sanitation.

Send for booklet on "House-
POTTERIES SELLING CO., Trenton, N. J.

LATEST EDITION

OF Supplement Catalogue

Just Out!

Write for it. It costs nothing.
The new Catalogue contains 65 pages and gives a list of over 17,000 articles.

If there is any scientific, mechanical or engineering subject on which you wish special information, you will find in this Catalogue some paper in which it is thoroughly discussed by a competent authority.

Scientific American Supplement papers for the most part have been written by the world's most eminent engineers and scientists. They contain information that is not always accessible in books.

MUNN \& COMPANY, Publishers 361 Broadway, New York

Valuable Books

Scientific American Reference Book

12mo. 516 Pages. Illustrated. 6 Colored

 The result of the queries of
three generations of readers

Home Mechanics for Amateurs

TwEnty-THIRD EDITION EXPERIMENTAL SCIENCE.

Mine cage safety device, I. M. Adams....
MIne door opener and closer, F Zoerkier
Mine elevator safety device, I. M. Adams. Moistening device, P. A. A. Peterson....
Molding box, universal, J. L. Gleason..
Molding machine, J. Rogers....
Molding machine, P. Bonvilain
Molding materials

Pencin sharyener, H., H. A. Schwarz.
Perforating machine. H. S. Beren
Phonograph attachment, Z. T. Grove
Phonograph ater
Phonograph horn, C. A. Senne
Phonoraph horn. folding, J. T. Brow
Picture displaying apparatus, Zac

McConnell
Plow
Plow, J. H. B. Baer
MUNN \& CO. Pus. 568 page 420 illus. Price $\$ 2.50$.
 "ix

\qquad

SENSITIVE LABORATORY BALANCE.

Regal Marine Engines

REGAL GASOLINE ENGINE CO.
Coldwater, Mict.

\qquad

sterilizing apparatus, liquid, j. c. cuiliè Stitch sseparator and pricking up machine,

 Telegraph transmitter, '. C. Bacial.

- A MGITT

Ghe Best Combination of 1906
 THE BIGGEST BOOK AND MAGAZINE OFFER

Make out a subscription order as printed below for The Metropolitan Magazine for one year and a Tabard Inn Library Membership and we will send you your own choice from the list below of any Tabard Inn Exchangeable Book. That is the Magazine for a year and a New Book for $\$ 2$. ro. The regular subscription price of the Magazine is $\$$ I.8o.

FORM of ORDER

THE TABARD INN LIBRARI
${ }_{16 \text { II }}$ Chestnut St., Philadelphia
Dear Sirs:-I enclose herewith $\mathbf{\$ 2 . 1 0}$ for which you will enter my name for THE METROPOLITAN MAGAZINE for one year beginning with thenumber, and send me by mail prepaid a new copy of the following Book.
 the Book to be in a Tabard Inn Case and TO BE EXCHANGEABLE FOREVER at any Tabard Inn Library in the United States.

Name..

Full Address

Make Your Book Selections from the Following List. All Late Books or New Editions

1. The House of Mirth-Edith Wharton
2. The Gambler-Mrs. Thurston
3. Hearts and Masks-Harold MacGrath
4. The Conquest of Canaan-Tarkington
5. Fair Margaret-F. Marion Crawford
6. The House of 1000 Candles-Nicholson
7. The House of 1000 Candles-Nicholson
8. The Wheel of ifit-Ellen Glasgow 9. In Old Bellaire-Mary Dillon
9. The Czar's Spy-Wm. LeQuex

NOTE.-THE METROPOLITAN MAGAZINE

Address: The Tabard Inn Líbrary $1611 \underset{\text { PhiLADELPHIA }}{\substack{\text { Chestnut }}}$ Street
11. The Call of the Wild-London
12. The Hon. Peter Sterling-Ford 12. The Hon. Peter Sterling-Ford
13. The Kindred of the Wild- Roberts 13. The Kindred of the Wild- Roberts
14. Lhe Long Arr- . M. Gardenhire 15. A Maker of History - Oppenheim
16. The Man on the Box-MacGrath 16. The Man on the Box-MacGrat
17. The Prisoner of Zenda-Hope 18. Rupert of Hentzau-Hope 19. The Virginian-Owen Wister 20. The Prospector-Ralph Connor
is taking front rank among the leading
offers a better list of contributors; none oftrers a better list of oontributors. none
or artices. of such wide populat interest.
or yourself. The magazine may be sent
mono

SORE THROAT Hydrozone
 to Sore Throat Suiferers, I will send One 25 Cent Bottle Free One 25 Cent Bottle Free tisement with Io cents to this adverand packing. Hydrozone is a harmless germicide, indorsed and success- fully used by leading physicians, Not fully used by leading physicians. Not label. Ask for Booklet on Treatment of Diseases. Sold by Leading Drug- gists. Good until March, Igo6.

$\begin{array}{r}811,535 \\ 811,812 \\ \hline 81,27\end{array}$

TRADE MARKS
Abradant, Carborundum Co. ©
Abrading materials and tools, Pike Manufac49,394
 49,390
49,549
Belting, canvas stitched and
York Leather Beiting Co.
Belting, leather, Graton and 49,495
Biscuits, cra ${ }^{\text {kers, }}$ and wafers, Hitcher Bis- 49,546Boots and shoes, leather, M. N. Arnoid.....
Boots and hhoes, leather, Roberts, Johno
\& Rand Shoe Co. 49,539 toBoots, shoes, and slipe. \ldots and \ldots apper and sole
leather, leather, Packard \& Field.....Boots, shoes, and slippers, leather, StetsonBurial caskets, coffins, and fixtures therefor49,547
49,52849,510
49,53049,541
49,48049,550
49,501
49,514
Canned corn, S. N. Hyde Co Cards, playing, New York Consolidated CardCards, playing, United States Playing CardCards, playing, A. Dougherty........... .
Cartridges, Eley BrothersUnion Metallic Cartridge Co Co.........
rillings and sheetings. Massachusetts CotElectric machines, certain named, Diehl
Manufacturing Co.
Eddystone Manufacturing Co., textile,Fabrics, printed and dyed to textile, 49, Eddystone
Manufacturing Company49,443

Malt, non-intoxicating tabie, Lauritzen Mait

Iedicine for certain named diseases, P. R R	

LABELS.

PRINTS.

 American School of Correspondence, Chicago, III.

MACHINERY AND SPECIALOPARTS

\$5 BOLGTANOS MITTLEGIANT $\$ 1$ AN EXPERIENCED And suceessenulad artiser would

Rochester Sterilizing 0utfit

Fitted to a light, strong, three coated and heavily baked enameled stand with gas or gasoline burner under aean sterilizer or an shelf write for for further description to

WILMOT CASTLE CO., 1\% A Elm St., Rochester, N. Y., U. s. A,

Positively the Last

Booklovers' Shakespeare

Three years have now passed since we first took hold of the Booklovers' Shakespeare and in that time three large and entire editions of the work have been distributed through our
Library Club. The past is a record of phenomenal success, the popularity of the work is Library Club. The past is a record of phenomenal success, the popularity of the work is
uninterrupted, and we would gladly purchase another edition were we able to secure it at

WHICH FLOOR DO YOU PREFER?

If the one to the right let us tell you how easily it is done in thousands

Ilew Varif Peling and Pading Co.
 LIMITED
 Manufacturers of High Grade Rubber Belting

Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

Write for catalogue.
91-93 Chambers St., New York
"After centuries of experiment
and failure, science achieves the
hygienic smoke."--NEW YORK TRIBUEE.

 }
 \section*{STEAM USERS
 \section*{STEAM USERS

 pajubaw Proking

 pajubaw Proking

 The original and only genuine

 The original and only genuine red sheet packing. red sheet packing.

 The only effective and most

 The only effective and most economical flange packing in ex economical flange packing in existence.istence.

 Can't blow Rainbow out.

 Can't blow Rainbow out.

 For steam, air, hot or cold

 For steam, air, hot or cold water, acid and ammonia joints. water, acid and ammonia joints. Beware of imitations. Beware of imitations.

 Look for the trade mark-the

 Look for the trade mark-the word Rainbow in a diamond in word Rainbow in a diamond in black, three rows of which extend black, three rows of which extend the full length of each roll. the full length of each roll.

 Manufactured exclusively by

 Manufactured exclusively by 16 Warren St., New York} 16 Warren St., New York}
 State Power Needs.
CHARTER GAS ENGINE CO., Box 148, STERLING, iLL
 DUd

It Will Tackle Any Screw no matter how tough the proposition

 GOODELL-PRATT COMPANY Greenfield, Mass.

Boats Knocked Down'i

Civil Engineering and Surveyors' Instruments

 4-cylinder motor; water-cooled; frame of hot-rolled,
high carbon, pressed steel; sliding gear transmis-
sion; three speeds and reverse selective type, can change from high to intermediate or vice versa,
at speed of 25 miles, without clashing or noise, up
hill or down; practically noiseless; entire transmis. hill or down; practically noiseless; entire transmis-
sion on roller bearings; mechanical lubrication;
$30-35$ horse-power. Proportion of power to weight, $30-35$ horse-power. Proportion of power to we
one horse-power to every sixty pounds. \$2250.
Send for our 1006 book $K-I t$'s $F R E E$ Sendfor our 1906 book $K-I t$'s $F R E E$
The DAYTON MOTOR CAR CO., Dayton, 0

SPENCERIAN STEEL PENS.
tro Stanoard American Baano FOR OVER FIFTY YEARS Have been subjected to the test of years and are recognized for all purposes The Best.
SPENCERIAN PEN CO.
349 Broadway, New York.

Perliaps You Want To Know

