

SCIENTIFIC AMERICAN

established 1845
MUNN \& CO., - - Editors and Proprietors
No. 361 Broadway. New York

NEW YORK, SATURDAY, FEBRUARY 3, 1906.

The Editor is always glad to receive for examination illustrated
articles on subjects or tiimely interest. If the photographs are articles on subjects ot tiinely interest. II the photographs are
sharp, the articles short, and the facs authentic, the contributions
wiil reeeivespecil atter antion
at regular spoce rates.

A CANAL BY LAKE AND LOCKS

There is a growing recognition, in the discussion of the Panama problem, of the advantages to be gained by impounding the rivers that intersect the line of the canal, and turning the valleys through which they flow into large inland iakes. If the line of the canal be flooded in this way, it is evident that every foot of water represents a foot less of excavation. This being the case, one might reasonably ask why the impounding dams should not be raised sufficiently high to give everýwhere the required depth of 35 or 40 feet, and thus get rid of excavation altogether. Theoretically, this would be the cheapest and probably the most expeditious way; but, as every one knows, the Panama Canal is located through the lofty Culebra divide, which projects far above any possible canal-lake level, and will call for an enormous amount of excavation, even if a high-level canal be determined upon.

Admitting, then, that the Culebra excavation must ever remain the dominating element both as to time and cost of construction, and that the portion of the canal which passes through Culebra must be of the minimum width compatible with the needs of navigation, the question arises as to how far the remainder of the canal, both on the Pacific and Atlantic slopes, can be formed by the canalization of the rivers. The question is not a new one; for when De Lesseps found that, for financial reasons, he was unequal to the task of cutting through a canal at sea level, and called upon his engineers to devise an easy and economical method of getting a canal of any kind across the Isthmus, the use of impounded lakes was suggested, and plans were drawn up embodying this feature. In all the long discussion and investigation of the Panama project, the canalization of the rivers has been made the subject of occasional suggestion; but it was not until the care-fully-worked-out plans which form the subject of illustration elsewhere in this issue were presented, that canalization, or the "lake-and-lock" method, was incorporated as the dominant feature.
As compared with other types of canal, whether high level with many locks, or sea level with one tidal lock, the canalization method has the great advantage that it combines economy and speed of construction with rapidity of transit for shipping when the canal is opened. The author claims that, in the present case, the time of transit would be but 8.8 hours, as compared with the 12.4 hours, which is the estimated time of transit through a sea-level canal, the saving in time being due to the greater speed that can be made by shipping in passing through the artificial lakes.

DOES A WATER FAMINE THREATEN NEW YORK CITY? New York city possesses a population of $4,000,000$ people. Of this number, $2,400,000$, representing the inhabitants of Manhattan and the Bronx, are absolutely dependent upon the water that flows in a river of very modest proportions situated about forty miles to the north of the city. Every drop of water that we draw from our faucets has to be taken from the natural flow of this river. The amount of this flow varies greatly in different months of the year, and there is also a great variation in the average annual flow. It has fallen as low as $30,000,000$ gallons per day, which it did in the month of October, 1880, and it has risen as high as $956,000,000$ gallons per day, which happened in February, 1881. At the present time, the city is consuming on an average $300,000,000$ gallons per day.
If the point of intake of the aqueduct which convey the water to the city were located immediately in the bed of the river, and were so placed that, when the aqueduct was running full, the surplus water of the river would flow past it and empty into the Hudson, it is evident that the city would have all the water it needed just as long as the flow of the river was 300 , needed just as long as the flow of the river was 300 ,-
000,000 gallons per day. If that flow were to fall below this amount, say to $250,000,000$ gallons per day then that would be the amount of water that the city would receive, and there would be a shortage of exactly
$50,000,000$ gallons per day. Now, in the four months of October, November, December, and January of 1880 to 1881, the average daily flow was respectively $30,000,000$ gallons, $94,000,000$ gallons, $72,000,000$ gallons. and $100,000,000$ gallons; so that if a similar dry season were to visit this section of the country, and if there were no storage reservoirs, and the intake of the Croton aqueduct were simply placed in the bed of the river, aqueduct were simply placed in the bed of the river,
there would be in those four months an average daily there would be in those four months an average daily
shortage respectively of $270,000,000$ gallons, $206,000,000$ gallons, $228,000,000$ gallons, and $150,000,000$ gallons.
The object of the great and costly dams, which have been built across the various valleys of the Croton watershed, is to catch all the surplus water, which flows in the river during the heavy rainstorms and during months of large precipitation, and hold it back for use in the dry months, when the flow of the river is small. At the time of the building of the Croton reservoir, it was sufficient to store only a moderate amount of the surplus water; but with the steady and rapid growth of the city, it has been necessary to build successive dams throughout the watershed, until finally the great Croton dam, which has just been completed, was put in service, thereby adding about 30 billion gallons to the total storage capacity.
A careful record of the river's flow has been kept for the past thirty-eight years. The records show that four times during one or other of the two months of December and January the natural flow of the river has fallen below $100,000,000$ gallons per day, and that in December, 1876, it fell to $71,000,000$ gallons per day. Diagrams which have been prepared in the Aqueduct Commission's office give startling evidence of the way in which the city has been skating on thin ice with regard to its water supply. At times the surplus in the reservoirs has been drawn down to a point which, taken in conjunction with the limited flow of the river, has brought the city face to face with water-famine conditions. Thus, in November, 1891, a point was reached in which the supply of water behind the dams had been entirely drawn off, and the only reserve that the city had to fall back upon was that contained in the small distributing reservoirs within the city, in which was contained at the time only about one day's supply. Within twenty-four hours the city would have found itself depending entirely on the natural flow of the river which, at that time, was only $50,000,000$ gallons per day; although the rate of consumption was $140,000,000$ gallons per day. Nature dealt mercifully with New York city in this crisis, and withheld the castigation which its improvidence so richly deserved. There was a fall of rain, which tided the city over until other following rains served to fill the reservoirs.
Regarding the present conditions, we are informed that had not the gates of the Croton dam been filled last spring before the structure had been completed to full height, and over a month's supply thus preserved for city use, New York would now be perilously near to a grave shortage of water. As it is, the extremely small snowfall of this year, and the possibility of a continuance of the present open weather, render it unlikely that the reservoirs will be rapidly filled by melting snows, as they were in the spring of last year. If we do have a season of light rainfall, there will be a feeling of decided apprehension in the Aqueduct Department. The two additional reservoirs with a combined capacity of 25 billion gallons, which are now being built in the Croton watershed, will not be available until 1908-9, and even they will merely serve to give a temporary relief. It is not necessary to point out the moral of the above facts, and the extreme urgency of pushing forward the completion of the Esopus water supply with all possible dispatch.

NEW CONCEPTIONS IN ASTRONOMY

After three centuries of what may be called accurate, or instrumental astronomy, three centuries filled with difficulties and discouragements, astronomers have finally arrived at conclusions given in this note. The conception is, that all that part of the sidereal structure visible in the most powerful telescopes, is made of space, suns, planets, moons, nebulæ, comets, meteors, and cosmical dust. The word "star" should be omitted from astronomical literature. It has no astronomic meaning. Every star visible in the most penetrating telescope is a hot sun. They are at all degrees of heat, from dull red to the most terrific white heat to which matter can be subjected. Leaves in a forest, from swelling bud to the "sere and yellow," do not present more stages of evolution. A few suns that have been weighed, contain less matter than our own; some of equal mass; others are from ten to twenty and thirty times more massive, while a few are so immensely more massive that all hopes of comparison fail.
Every sun is in motion at great speed, due to the attraction and counter attraction of all the others. They go in every direction. Imagine the space occupied by a swarm of bees to be magnified so that the distance between each bee and its neighbor should equal one hundred miles. The insects would fly in every possible direction of their own volition. Suns
move in every conceivable direction, not as they will but in abject servitude to gravitation. They must obey the omnipresent force, and do so with mathemat ical accuracy.
The first fact that strikes the beginner in astronomy is the amazing magnitude of space. The last that overwhelms the mind of a mature astronomer is this never-ending space. It is now known to modern mentalists, lately newly discovered-the ancient students of mind knew it-that our minds are unable to think of the following six words: Space, infinity, eternity, creation, beginning, and end. They are all unknowable, and the chief mathematicians of the world do not try to think of them-a sheer waste of time.
The distance from our "star," the sun, to its nearest known neighboring sun is twenty-five trillion miles. A trillion is a million million. A: object moving on a straight line without stopping, at a constant rate of one mile per minute (we think that a train running at the mile-per-minute rate is moving rapidly) would require more than $48,500,000$, nearly forty-nine million, years to traverse this appalling distance. Yet this is a mere yard-stick used to measure the distances of remoter suns. The next brainstupefying mystery met with is the velocity of light. It is known to be in motion always with the tremend ous speed of 186,000 miles per second. There are in one sidereal year $31,558,149$ seconds, and the time required for light to traverse the mighty void betwैeen our own and its nearest sister sun is 4.3572 years. The distance from the earth to the sun is 93 million miles, and to the nearest neighboring sun is 275,000 times 93 million miles. The next nearest neighbor our sun has is another, 590,000 times 93 million miles away. The distance from the earth to the sun is merely a foot-rule. The star Sirius is roughly of the same distance. But these are "near-by" suns Estimates based on luminosity, light-giving power, and other complex considerations, have been made regard ing the diameter of the visible universe. These range all the way from $10,000,15,000,20,000$, and even up to 30,000 "light years." A light year is the space travers ed by light in one sidereal year and equals $31,558,149$ multiplied by 186,000 . To find the diameter of the universe, multiply the product by $10,15,20$, or 30 thousand, as you please. The opinion of the writer inclines toward the thirty thousand. Now the words finite and infinite in this case are equally unknowable, for the ablest human mind is totally unable to think of either. Mathematicians have tried their hands, as a recreation, at weighing all the stars. That is, finding the quantity of matter they all contain. They discovered a mighty fact: the mass of all visible stars in the greatest telescope is so small in comparison with the quantity of matter that mathematicians can feel, not see, that it may be almost neglected. Therefore the main quantity of matter does not emit light. The universe is nearly dead. Photographs of the entire celestial vault reveal about one hundred million suns. These may be ignored. It is known to mathes: iticians that there is matter enough in existence to mas thirty two billion suns equally as massive as our own. Proof is had from velocities of rapid suns. T quantity of matter exists. A minute fraction a! in the form of visible suns. But what of the u: Is it in dead suns, planets, and moons? Suppose that matter hạs been divided into 32 billion suns, each having eight minute planets revolving around as in the case of our own. Then the number of worlds would be 256 billion. As the combined mass of all the planets in our solar system is but the 1-745th that of the sun, it has made no perceptible difference whether planets, habitable worlds, ever existed, or exist now. Planets and moons may come or go, without making more than miscroscopic differences in the stupendous universe. Is it possible that billions of exhausted suns are now wandering in waste places of space? And are they all surrounded by dead planets, still in revolution, counting off lifeless and useless years? This is the result obtained by late mathematical research. Many suns are known to contain several thousand times more matter than is now in our sun, such as Antares and Canopus. Sirius contains three and onehalf times as much, and Arcturus perhaps ten times the solar mass. Our sun contains 333,000 times more matter than the earth. The heat conditions of suns and also their motions toward and from the earth, have been discovered by that standing marvel of the nineteenth century, and more marvelous in the twentieth, that all-powerful work of human hands, the tele spectroscope. Could Newton, Kepler, La Place, La Grange, rise from their sleep of death and see what this marvelous instrument has accomplished, they would be amazed and wonder if they were really on earth again. No attempt can be made to describe it here for lack of space. Only one more powerful entity exists-mathematics.. Many thousands of cases of binary suns are catalogued. These are where two suns $r \in$ volve around their common center of gravity, usually in greatly elongated orbits. Planets with organic life could rot exist in revolution around either. The ani-
mals would be burned to a crisp when the two suns were near each other, or frozen solid when far apart. The nebulæ are enormous masses of gas seen in all parts of space. It is supposed that suns are condensed from them during vast periods of condensation. Many thousands are known. Meteors are primitive masses, each as "ancient as the sun." Suns and planets constantly receive them from space; in fact, it is thought that primeval gas first condensed into meteors, and that they then, flowing into many billions of centers, builded suns, planets, and moons. Comets are merely large meteors, or collections of millions of much smaller bodies, as bolides, uranoliths, chunks of meteoric iron, small granular particles no larger than grains of sand, and other debris, all assembled and in flight around suns. And such is the modern concept, in dim outline, of modern astronomy. One hundred million worlds like the earth could come to an end at once and make less difference in the cosmical struc ture than a pebble dropped into a river. The in scrutable mystery is, how beings so minute as men can possibly find out these simply wonderful facts

Prof. Edgar L. Larkin.

THE VOYAGE OF THE "DISCOVERY."*

Among the recent contributions to the literature of Polar exploration and research, is the account of the English "Discovery" expedition to the Antarctic. In two large volumes Capt. Robert F. Scott, commanding this, the National Antarctic Expedition, tells of the work accomplished during the two years' sojourn within the Antarctic circle. The narrative is written with simplicity, directness, and a certain charm of style. While parts of the account go into scientific detail for the benefit of future polar voyagers, the book will be found interesting even by readers not directly concerned in Antarctic exploration.
The institution of the "Discovery" expedition was due almost entirely to the efforts of Sir Clements Markham and the Royal Geographical Society. After the usual difficulties in securing necessary funds and governmental co-operation, the sum of $£ 47,000$ was finally raised by private subscription, and this with the $£ 45,000$ contributed by the government, placed the enterprise on a sound financial basis. It was decided to build an entirely new vessel for the purpose, and in March, 1900, at Dundee, was laid the keel of the "Discovery." The ship was built in accordance with the most advanced ideas of naval architects and explorers. In June of the same year, R. F. Scott, then First Lieutenant of H.M.S. "Majestic," was appointed to command the expedition. The year following was busily occupied in completing arrangements, procuring all necessary apparatus and supplies, and selecting the other members of the party, which consisted almost exclusively of naval men.

The "Discovery" left London July 1, 1901, and arrived at Lyttleton, New Zealand, on November 29. The final leave-taking from civilization occurred on December 24, when the ship sailed from Port Chalmers, where a last supply of coal had been taken aboard. After Mithing through the pack-ice, Victoria Land was first sighted on January 8, 1902. A southerly direction alcige the coast was continued, with landings at Cape' re, Lady Newnes Bay, Granite Harbor, and othe frts, for survey and investigation, until further progiss was made impossible by the ice pack in McMurdo Sound under the volcanic Mounts Erebus and Terror. The ship was now turned eastward in an attempt to solve the problem of the great Ross Ice Barrier. This was followed along its entire length to where it joins with King Edward VII. Land, the coast of part of which was explored. The Barrier was thoroughly investigated, at one point even by means of a balloon ascension. By February 8 the "Discovery" was again in McMurdo Sound, which was then found free of pack-ice. Winter quarters for the ship were chosen on the southwest coast of Ross Island.
The first winter in the Antarctic was occupied with meteorological, magnetic, and other observations and investigations, in becoming accustomed to the unusual conditions of livelihood necessitated by the region, and in making short expeditions into the surrounding territory. As soon as the approach of warmer weather permitted, sledge journeys for wider exploration were started. The first of these was Armitage's journey from Mount Erebus westward into the continent for about a hundred miles from the coast, ascending glaciers and mountains, to a smooth, open, snow-covered plain, over which he traveled till failing provisions forced a return. Another party, under Scott and Royds, made reconnoissances to the south. Another party under Royds left communications at Cape Crozier, for the guidance of a relief ship. On November 2, Capt. Scote started on his sledge journey along the Antarctic continent for 350 miles south of the winter quarters at Ross Island. Inexperience, loss of the entire dog-team, incipient scurvy, and late bettering of weather conditions, made this achievement note-
*The Voyage of the "Discovery." By Capt. Robert F. Scott, C. V. O.,
R. N. In two volumes, London, 1905 , Smith, Elder \& Co. New York Charles Scribner's Sons.
worthy. The farthest south was 82 deg. 16 min .33 sec., a point 250 miles nearer the pole than had theretofore been attained. Meanwhile the relief ship "Morning" had arrived. This southern journey of Scott's ended on February 3, 1903, after 960 statute miles had been traveled in 93 days.
As the ice did not break up, the "Discovery" was obliged to spend another winter at Ross Island. The second season passed in almost the same manner as the first, and with the beginning of warmer weather, preparations for further sledge journeys were energetically pushed forward. Several short but severe trips were undertaken, either for the purpose of local exploration or to arrange depots for the later journeys. The first of these, starting on October 6, was that under Barne, to the southward toward Barne Inlet. Capt. Scott himself left on October 11, for a western journey through the Ferrar Glacier, into the great waste of Victoria Land. After a journey replete with adventure and terrible traveling, the return was accomplished late on Christmas Eve. The sledge party traveled inland for 270 miles, and found that the vast continental plateau rises to a height of over 9,000 feet above the sea, a great, monotonous, undulating plain covered by the perpetual ice-cap. In an absence of 59 days, over 725 miles had been covered. Barne's party encountered great difficulty with bad going and severe weather, and was forced to return after having barely reached the mouth of the inlet which they hoped to explore. They discovered, however, important proof of the moving of the great Ice Barrier, when it was noted that one of the supply depots established thereon had moved considerably from its original location. This party returned to the vessel on December 13, after being out 68 days. The southeasterly expedition to the interior of the Great Barrier, under Royds, returned on December 10. The party marched day after day over the same monotonous and unutterably wearisome plain of ice and snow. Extremely valuable mag netic observations were made, as here these were absolutely free from possible disturbance, either from casual iron or from land-masses.
In January, 1904, 20 miles of solid ice separated the "Discovery" from open water, and an attempt to saw a channel was seen to be impossible. On January 5 the relief ships "Morning" and "Terra Nova" appeared As the ice gave little hope of breaking up, prepara tions were made to abandon the ship, and to transfer the valuable contents to the relief vessels. By Feb ruary 16, however, the "Discovery" was freed with the help of explosives, the miles of intervening ice having previously been broken up by stress of weather. From McMurdo Sound the little fleet ran north along the coast, the "Morning" soon leaving for New Zealand, while the other two continued to the north. Shortly after the "Terra Nova" and the "Discovery" separated and the latter turned to the westward between latitudes 67 and 68. The Balleny Islands were found to be identical with the three Russell Islands of Ross. It was also found that the extreme eastern part of the coast line indicated by Wilkes does not exist, and this disproves the hypothesis that the coast of Wilkes Land is extended eastward in a long connected line to Victoria Land. Thus it is probable that there is an important recession of the shore to the west of Victoria Land, which may be a broad peninsula. On March 15 Ross Harbor, Auckland Island, was reached, where the other two vessels soon joined the "Discovery." On April 1 Port Lyttleton was entered, and the final return to civilization accomplished. September 10 saw the "Discovery" again at Spithead, England, after an absence of three years and one month.
The two years of strenuous work were crowned with success. The eastern edge of the Antarctic continent was traced for 350 miles south of the winter quarters, thus completing a fair survey of about 1,000 miles, including coastal irregularities, of thís shore line extending mainly north and south. The explorations of the surface of the Great Barrier and the inland continental plateau were extensive, notwithstanding initial and complete ignorance of sledging and sledging methods. The complete survey of the edge of the Ice Barrier to where it joins the newly discovered King Edward VII. Land, proved that the Barrier has receded considerably since the time of Ross. It is not considered a land ice-cap, but is believed to be an icemass afloat on a great sea basin. The extreme southern dash was made on the surface of this Ross Barrier, a huge plain so flat that even slight objects could be seen for miles. It is bordered, on one side at least, by high mountains, some of which reach elevations of 12,000 to 15,000 feet, and these continued as far as could be seen from the farthest point south. The opinion has been advanced that possibly these mountains extend over the pole as a continuation of the mountains of Graham Land and the Andean chain. The geographical, meteorological, zoological, and magnetic and other physical investigations are of great value, and go far to show that the voyage of the "Discovery," as Capt. Scott says, "was not undertaken in a spirit of pure adventure, and that the members of the expedition strove to add, and succeeded in adding, to the sum of human knowledge."

SCIENCE NOTES.

Hardly any theory is all true, and many theories are not all false. A theory may be essentially at fault and yet point the way to truth, and so justify its temporary existence. We should not, therefore, totally re ject one or other of two rival theories on the ground that they seem, with our present knowledge, mutually inconsistent, for it is likely that both may contain important elements of truth.
A new industry, the making of mattresses, pillows, etc., of sponge, has been started in Florida. The sponge material is cleansed of all foreign matter by a scrubbing process in large tanks of water, then run through wringers, and the drying continued by subjecting it to a cold-air blast. It is then shredded by machinery, sterilized, and rendered odorless by chemical treatment, and subjected again to cold-air drying, when it is ready for use. It is claimed that the sponge mattresses are only about one-third of the weight, and cost only about two-thirds as much as those of the same size made of hair, that they are thoroughly springy, yet firm and durable, and that they are especially sanitary, the material being non-absorbent of moisture and emanations from the body. A pillow is made measuring 19 by 26 inches which weighs only one pound, feather pillows of the same size weighing three pounds. Other articles are a sponge cushion and a toy sponge ball as light as an inflated rubber ball.
The berries of different species of coffee generally contain from 10 to 15 grammes of caffein per kilogramme. M. Bertrand, in a recent communication to the Académie des Sciences, shows that there are exceptions to the rule. The coffee of the Great Comaro, to which Baillon has given the name of Coffea Humblotiana, does not contain the slightest trace of the alkaloid. This exception is the more curious, as this species much resembles the ordinary kind, the Coffea arabica. The absence of caffein in the coffee of the Great Comaro is not due to the influence, either of the soil or of the climate of the African island. Analysis of the Coffea arabica, cultivated in the same island, has yielded a normal percentage of caffein, 13.4 grammes per kilogramme of the berries. Other coffees gathered near DiegoSuarez in Madagascar, and quite distinct species, exhibit the same peculiarity, the absence of caffein. This fact is not accidental, but a distinct characteristic of certain species, previously found only in Madagascar.

Prof. Moreaux describes in a paper, read at a session of the Académie des Sciences, observations on a waterspout which passed through the communes of SaintMaur and Champigny on the 28th of August. The direction was from west-southwest oust in to have been formed to the south of Saint-Maurice, and passed over a space of about five kilometers in ice, and passed over a space of about five kilometers in
twenty-five minutes, from 10 minutes after 3 o'clock to 35 minutes after 3 o'clock in the afternoon. It was noticed at the observatory of Saint-Maur when it had completed about half of its course. Its passage was accompanied with a sound which is described as resembling that of a battery of artillery drawn on the gallop over a paved street. At the base of an extended nimbus hung the reversed cone characteristic of phenomena of this kind. The barometer, 11 millimeters lower than the day before, stood at 745 millimeters at an altitude of 50.3 meters, at 5 minutes after 3 o'clock, when the fall was increased. A strong wind was then blowing from the south-southwest. The temperature was 15 deg . C. These two conditions did not change. The waterspout passed to the north of the observatory within a distance of about one kilometer. It was preceded by a storm, and followed by a shower.

The ordinary methods for the determination of refraction, of which the influence is so considerable in all astronomical measurements, are attended with great difficulties. Observations must be accumulated during a course of years, and at the same time estimates must be made of the multiple effects of the numerous causes that may intervene in measurements taken by means of meridian and other similar instruments. M. Loewy, who has studied this subject closely, pointed out several years ago two methods by which the inconveniences might in great part be avoided. They were based on the comparison of the stellar distances by the use of a special compass, of which the opening remains constant; this consists of two mirrors cut from the same block of glass in prismatic form. With the aid of this optical apparatus before the objective of an equatorial, the distance between two stars may be determined, whatever the size, with much precision. The constant of refraction may be deduced under certain conditions. In a new communication to the Académie des Sciences, he has recently made known an improved method free from the practical imperfections of the previous theoretical solutions. By means of a single prism the refractions can be exactly measured at all zenithal distances, by taking advantage of the fact that the apparent distance between two stars is not diminished by the effect of refraction, provided the vertical circle of one of the stars is perpendicular to the arc of the great circle which joins them.

NOVEL METHODS OF DETERMINING THE AMOUNT OF ATMOSPHERIC DUST.
By DR. ALFRED GRADENWITZ
Many methods have been suggested to ascertain the amount of dust contained in air of large cities. The

Glass block with
ground spererical
segment con-

taining a resin \quad\begin{tabular}{c}
Pincers with

covering

glass.

\quad

Ladle for preparing resi

plate.
\end{tabular}

Preparing the Dust-Collecting Plates.

best known of these consists in drawing a certain amount of air through a cotton or glass wool filter, and in weighing the filter before and after the operation. This, as well as many other processes identical in prin ciple, are not of much value because of the great dif ferences in the specific gravity of dust particles. Air containing little dust but including many mineral components or even dust from heavy metals might for in stance result in an increased weight of the filter, whereas but a slight increase would result from the absorption of light organic matter. Moreover, it re quires many hours to draw in an amount of dust susceptible of weighing.
In other processes the number of the dust particles is calculated, for which purpose an apparatus is em ployed by means of which the air is drawn against a plate lined with a moist substance, after which the adherent dust particles are counted by the aid of a microscope. Their number for each liter of air is ascertained from the averages found for a number of sections, multiplying the number of sections by the average and dividing by the number of liters of air which traverses the apparatus.
An interesting method invented by John Aitkens is based on the observation that water is separated as cloud from air saturated with steam only when dust particles are present.
An especially simple and practical method has been recently invented by Dr. Vörner, of Leipsic, and Prof. F. Hofmann. This method is also based on the

The Dust Collector Set up in a Prominent Square in Berlin. אOVEL METHODS OF DETERMINING THE AMOUNT OF ATMOSPHERIC
counting of dust particles. Weight is not considered. In constructing his apparatus, Dr. Vörner availed himself of the fact that the dust deposited on polished black surfaces is easily seen. As neither polished ebony surfaces nor dark glass plates were available for his purposes, owing to the fissures revealed under the microscope, Dr. Vörner decided on preparing special plates to be used for the deposition of dust. After melting a blackened resinous substance, a certain amount of it was applied to a glass plate and allowed horizontally to solidify. On observation under the microscope, the fresh surface was seen to show an absolute uniformity and perfect polish. Though ordinary daylight was quite. sufficient for an observation of these dark plates, there was the disadvantage of the inconstancy of illumination, the details being seen more distinctly in the case of illumination by sunlight than with dim daylight. Dr. Vörner therefore used an incandescent gas lamp placed at a certain distance from the microscope, the light being concentrated by a large convex lens, so as to have the focus fall on the surface of the dark plate. The distance of the lens from the microscope being kept constant, the surface illumination thus obtained showed a strictly constant intensity, the light striking the plate at an angle of about 37 deg .
If a fresh resinous surface be observed under the microscope, some strongly refracting points will be found to spring up gradually in ever-increasing numbers, these points being nothing else than dust particles coming down from the air. The whole plate thus assumes the appearance of a star-lit sky, the suddenly appearing particles reminding one of shooting stars. It may be remembered that the above outfit is quite similar to the ultra-microscope constructed by Siedentopf and Zsigmondi. Experiments showed the dust particles to be fixed in position by the resinous mass.

Now, in order to keep the resin plates free from dust up to the moment the experiment is started, Dr. Vörner placed a glass ring $3 / 4$ millimeter in height on the semi-liquid resinous mass, and on which was placed a watch glass freed from any dust by heat, the space between the glass ring and watch glass being filled with vaseline.
Before beginning an experiment, the watch glass is removed with a pincette and exposed for ten minutes, after which it is replaced in position, the resin plate observed under the microscope and the number of dust particles per square centimeter calculated.

According to a modified process, Dr. Vörner has tried to ascertain the amount of dust contained in each liter of air by the aid of airtight boxes lined with vaseline and kept closed for at least twentyfour hours, during which time the dust from the inclosed air is entirely fixed on the walls and at the bottom. When placing a newlyopened resin plate at the bottom of the box before the experiment is begun, the dust can be readily gaged under the microscope.
Dr. Vörner has used his process in extensive experiments, intended mainly to ascertain the percentage of dust in the air of dwelling rooms, on streets, public squares, in parks as well as in schools, auditories, gymnasiums, and the like.
Experiments on the composition of the air of Berlin streets have been recently carried out at several places where dust collectors mort than 2 meters in height were installed. As no official data have so far been made public, we are unable to state what method has been used. Anyhow, these dust collectors were round sheet metal boxes more than 50 centimeters in height, the cover of which remained open and was allowed to receive the dust kept in suspension in the air. Some time afterward the sheet metal box was closed and taken to the chemists, who analyzed the dust contained in the collectors. It was intended by these observations mainly to ascertain what bacilli and what amounts of substances prejudicial to the organs of respiration are contained in the dust.

As, however, these experiments were soon abandoned, without any report being published, it would rather seem as though the apparatus was not efficient enough to warrant the anticipated results.
The writer is indebted for part of the above particulars to Dr. K. Stich, of Leipsic, who has carried out extensive experiments with the Vörner dust-gaging outfit, mostly in connection with a spraying apparatus constructed by himself for the laying of dust in large halls.

It is estimated that the annual consumption of coal in New York is fifteen and one-half million tons.

Lightning Stroke and Magnetism
The recent researches made in Italy by G. Platania show the magnetizing effect of lightning discharges upon volcanic rock. M. Folgheraiter found that in the volcanic regions a certain number of highly magnetic points or areas could be located, and here the effects of lightning were also observed, so that the magnetizing effect seemed to be due to this cause. However, the same points had never been investigated both before and-after the lightning stroke. The writer commenced researches upon the magnetism of rocks from the Etna, and tried whether the wall of a house which was built of blocks of basaltic lava and brick showed any magnetic effect, but this was too small to be appreciable. On the 20th of September last a severe storm caused the fusion of a telephone wire, leaving the earth wire which ran down along this wall intact,

The Experimental Outfit for Testing Street Dust.
and the lightning discharge must have passed down this wire. The next morning he found that the corre sponding part of the wall showed a strong magnetic effect for a distance of 6 inches, having the north pole to the left. The discharge current must have thus been directed from the bottom to the top. During the same storm, lightning struck Sig. Frorini's residence, causing some damage. The lightning rods of copper are held on insulators about 6 inches from the wall The house is a new one, and had never before received a lightning stroke. While the lava blocks forming the wall which lie far off show scarcely any magnetic effect, when we come near the lightning rod the action of the wall upon the needle is seen at 10 feet distance It seems remarkable that such strong effects are produced by an insulated wire lying so far from the wall.

The Current Supplement.

The current Supplement, No. 1570, opens with a con tinuation of our Paris Correspondent's observations on the Paris Automobile Show. One of the largest examples of the application of suction gas engines to the propulsion of boats for river navigation is furnished by the German vessel "Lotte." This craft, which is driven by producer-gas engines, is fully described and illustrated. Lieut. H. J. Jones's splendid monograph on armored concrete is continued. Dugald Clerk, one of the world's greatest gas engineers, discusses in a most lucid and authoritative manner the problem of the gas turbine. The human organism has often and aptly been compared with a fine piece of machinery An excellent article graphically illustrates how true this simile is. Rear-Admiral George Melville, former Chief Engineer of the United States Navy, discusses liquid fuel for naval and marine purposes. The imitation of geological phenomena by means of various experimental arrangements is undoubtedly a great help to the teacher. How simple apparatus can be constructed which will excellently demonstrate the effects which have been produced by various geological causes is told in a well-illustrated and thorough article. Of interest to the naturalist are brief but instructive descriptions of the bee louse, and the habits and life history of a social spider.

The Award of the Fritz Medal.
The second award of the John Fritz medal has been made to George Westinghouse. This medal was established by the professional associates and friends of John Fritz, of Bethlehem, Penn., on August 21, 1902, his eightieth birthday, to perpetuate the memory of his achievements in industrial progress.
the bates plan for lock and lake CANAL AT PANAMA.-II.
In the construction of a canal at Panama, there are three primary considerations which surpass all others in importance. They are:

1. To control the Chagres River and find some safe means of passing its enormous floods down to the sea without interfering with the canal.
2. To strike such a fine balance between the many competing advantages of the various types of canal possible, that the particular plan adopted shall represent the best average of certain desirable qualities in a canal of this character. That is to say, it must be built within a reasonable time, for a reasonable sum, and with such due regard to engineering requirements that there must not be the shadow of a doubt as to its permanent stability. Moreover, the transit of the canal, as completed, must be made in the least possible time consistent with its possession of the above desirable qualities.
3. The third consideration, which in some respects is the most important of all, is that of finding the best method of disposal of the enormous amount of material excavated from the prism of the canal.
The plans herewith presented of Mr. Lindon W. Bates, a hydraulic engineer and contractor of worldwide reputation, are of particular interest, for the reason that he has taken up the study of the Panama Canal problem from the standpoint of an individual and unbiased technical observer. After a most exhaustive study of the subject, in which he went carefully into the history of the deliberations of the many technical bodies that have studied the Panama Canal problem, Mr. Bates made a personal visit to the Isthmus, and on his return wrote an elaborate work reviewing the history and present status of the problem, and outlining the scheme which he considers to be the best adapted to the situation. It is the purpose of the present article to give such a digest of this work, that the essential features of Mr. Bates's plan may be made clear to the non-professional public.
I. Control of the

It is proposed to abandon swampy Colon and build a new town on the hill opposite Mindi.
Map Showing Fresh-Water Lake and New Harbor at Atlantic Terminal of the Canal.

Time necessary to construct, eight years. Total cost, $\$ 125,000,000$.
Plan and Profile of the Proposed Lake-and-Lock Canal.

Chagres: A glance at the accompanying map of the Panama Canal shows that it is located across an isthmus, about 40 miles in width, which is traversed by certain ranges of hills, that run approximately parallel with the coast, dividing the isthmus into a series of rather narrow valleys. The principal range of hills is the main Culebra divide, which extends parallel with the Pacific coast at a distance of about 10 miles therefrom. The slope from this divide toward the Pacific is drained principally by the Rio Grande, which enters the Pacific near Panama at the western terminus of the canal. The drainage of that part of the isthmus lying between the Culebra divide and the Atlantic is carried to the sea by the River Chagres, which at first flows parallel with the divide in a southwesterly direction, until it strikes the axis of the canal at Gamboa, where the river swings abruptly to the right and receives, on its way to the Atlantic, the drainage of several other streams, two of which are of considerable importance, namely, the Gatuncillo, which flows down from the northeast through a valley that lies approximately parallel with the upper valley of the Chagres, and the Trinidad, which flows into the Chagres from the southwest. Under normal conditions these rivers present no great activity, the Chagres being in the lower levels somewhat slug. gish; but under the influence of the tremendous downpour of tropical storms, the rivers become gorged with the waters of a mighty flood, the Chagres itself having been known to rise between 30 and 40 feet in 48 hours' time.

Now, for the safe and convenient navigation of a ship canal, it is absolutely necessary that there shall be no currents of a greater velo city than $21 / 2$ miles an hour; and hence it is obviously impossible to permit the Chagres floods to pour into the canal itself. Mr. Bates's proposal contemplates the formation of a series of massive sluice dams, of the same character as those used so successfully in controlling the floods of the Nile at Assouan. One of these would be built across the upper Chagres valley at Alhajuela, about 9 miles

The dotted outlines sbow the great increase in size of steamships.
Section of Proposed Forty-toot Canal, Showing One of the New Cunarders Passing Through.

The new town site would be formed by filling in part of the harbor wich the material excavated from the culebra cut.
Map of the Proposed Terminal Lake, Harbor, and New Town Site of Panama.
above Gamboa; another would be built at Gamboa where the Chagres first meets the line of the canal; the third would be built near the mouth of the Chagres on the Atlantic; and the fourth at the mouth of the Rio Grande on the Pacific. The impounding dam at Gatun would be solid and discharged by a spillway or barrage.
Now, the gates in the sluice dams at Alhajuela and Gamboa would normally be left open, and the basins back of them empty. But in times of flood the gates would be partly closed and the dams allowed to fill with the excess, their joint capacity, and in fact the capacity of the Gamboa dam alone, being far more than enough to take care of any single flood. When the flood had passed, the sluice gates at Gamboa would allow the impounded flood waters to discharge slowly into the canal, half of the water flowing toward the Pacific and the other half toward the Atlantic, the amount being regulated so that it would not produce a current of over $11 / 2$ miles per hour in the canal. The sluice gates in the barrages at the Atlantic and Pacific terminals of the canal, would be so regulated as to maintain at all times a predetermined depth of water in the central and terminal lakes.
II. The Lake and Lock Project: The feature of Mr. Bates's plan which distinguishes it sharply from the plans that have preceded it, is the free use which he makes of the system of canalization by means of impounded artificial lakes. The method is not a new one as applied to the Panama problem, for it was suggested during the earlier studies of the question by the French engineer, Godin de Lapinay; and, later, it figured in the emergency plans for the quick completion of the canal, which were drawn up by the French when it became apparent that they were unable to put through a canal at sea level. No one, however, has attempted the canalization of the Chagres and Rio Grande rivers on the bold scale that is proposed by Mr. Bates. Of the three alternative plans which he offers, we have selected the one known as Plan B, which contemplates the use of four locks with two levels, and the formation of three large fresh-water lakes. The central lake (Lake Chagres) is formed by the construction of a dam at Gatun which serves to hold the water at a level of 62.5 feet above the mean sea level. In the Chagres lake the channel would be excavated along the bottom to a depth of 40 feet and a bottom width of 150 feet. The waters would back up the Chagres valley for a distance, measured along the ship channel, of about 20.6 miles. From this point the canal would be excavated, at the same surface level of plus 62.5, through the foothills and the main range of the Culebra divide for a distance of 10.5 miles to Pedro Miguel, where there would be a lock. This stretch from Gatun to Pedro Miguel, about 31.1 miles in length, would constitute the summit level, 20.6 miles of it consisting of lake navigation, and 10.5 miles only consisting of canal proper, bounded by nearly parallel banks. The remainder of the canal, both on the Pacific and Atlantic sides, would be formed by creating two large terminal lakes with their surface held at an elevation from 26.5 to 33.5 feet above mean sea level, and dredging out the ship channel to a depth of 40 feet and a bottom width of 150 feet.
These two great terminal lakes are, perhaps, the most attractive feature in Mr. Bates's plan; for they not only serve to greatly reduce the amount of necessary excavation, but by flooding the swampy land lyịng adjacent to the canal termini they assist in the improvement of sanitary conditions. By referring to the accompanying maps showing the terminal harbors, it will be seen that the topography of the country lends itself admirably to the construction of these dams, for in each case the rivers, as they approach the ocean, pass through a natural depression of inconsiderable width formed in the ridges that extend approximately parallel with the coast line.

- III. Terminal Harbors: The provision of terminal harbors and safe entrances is 'an important feature in any great ship canal such as this, and in the plans under consideration it has received particular attention. As stipulated by the act authorizing the construction of the canal, these harbors should provide secure military and naval bases. By reference to our map of the Pacific terminus, it will be seen that breakwaters are designed whose arms are to inclose the whole harbor of Panama and I،a Boca, and extend from the mainland to the islands that face the entrance. As these breakwaters would fe built of the rock excavated from the canal, they would represent but little additional cost over that which would be involved if the excavated material were wasted at sea. The location of the canal is changed from the curved line of the old location to a straight line which extends from the upper end of the terminal Panama Lake, straight out through the harbor entrance, as shown on our map. It passes through locks which will be built adjacent to the barrage on good rock foundation in the Ancon-Sosa Saddle; while to the southwest, beyond a stretch of rising ground, is the dike, less than a mile in length, which serves to impound the waters of Lake Panama. At the Atlantic end a similar provision
of breakwaters serves to form a sheltered harbor at the entrance to the canal, and advantage is taken of depressions in the topography of the hills near the coast by placing the canal entrance, the barrage, and the locks in one depression, and the impounding dike in the narrow valley of the lower Chagres. In this harbor also the alignment of the canal will be straight ened and its length proportionately reduced. The creation of these two harbors, coupled with the large fresh-water lakes adjoining them, will provide such extended facilities for the safe harboring of ships, both of the navy and the mercantile marine, that it is not possible for any increase in future canal navigation to cause congestion at these points.
IV. Disposal of Excavated Material: One of the greatest problems, if not the most important, is the disposal of the enormous amount of excavated material, chiefly from the Culebra cut. In the plans under consideration, Mr. Bates brings the bulk of the Culebra excavation down to the Pacific coast, and dumps it inside the big harbor formed by the breakwaters above referred to, until a large area of the harbor, several square miles in extent, has been filled in and brought well above high-tide level. Upon the site thus formed he would build a greater Panama, providing a splendid and healthy site for the great growth which must take place in this important terminal city. At the Atlantic terminus he advocates the abandonment of the old town of Colon, and the creation of a new town, to be called Balboa, on the easterly slope of the hill that flanks on the west the locks and barrage at the canal en trance. From a naval standpoint the harbor facilities, as thus presented, are very attractive, inasmuch as fresh-water naval stations can be formed back of the hills of the coastal ridges, and the protection of the ships' bottoms against marine growth, which is one of the advantages of a fresh-water harbor, gives to this feature of the plans a decided military value.
V. Water Supply and Lockage: It is claimed, and with much show of reason, that the important question

ARRANGEMENT OF THE AERIALS FOR DIRECTING THE MESSAGES.
of water supply for lockage purposes, in view of the great increase in vessel dimensions, has never received the careful attention which its importance demands. Mr. Bates considers that with the great growth in tonnage passing through the canal, which is certain to occur as the years go by, the mere creation of a single storage basin in the upper Chagres valley would not provide, especially in the dry season, a safe reserve for lockage. This is shown by the following figures: The three dry months of the dryest year in which gagings have been taken at Bohio show an average discharge of 742 cubic feet per second. By moving the impounding dam from Bohio to Gatun, the waters of the Trinidad and Gatuncillo become contributory to the water supply, and the average flow in a dry season for the same months of these rivers, added to that at Bohio, shows that there would be never less than 1,000 cubic feet per second ayailable. It is assumed that the early traffic, when the canal is open, will amount to $7,279,000$ tons, the lockage for which will amount to $7,279,000$ tons, the lockage for which
would require a flow of 306 cubic feet per second. would require a flow of 306 cubic feet per second.
Evaporation from the lakes will account for 280 cubic feet per second, leakage will equal 257 cubic feet per second, making a total of 843 cubic feet per second that is necessary to maintain the canal at its proper levels. This will give a surplus for the three dry months of at least 157 cubic feet per second. Now, if we eliminate waters coming in from the lower Chagres tributaries, it can be seen that instead of a surplus there would be a shortage of lockage water. Hence the importance of the inclusion of the drainage of the two tributaries of the Chagres above referred to in the total available supply of lockage water. When we consider the possibilities of storage in the navigated lakes and canal, it is evident that the transit capacity is far more than is likely to be required for many generations to come.
VI. Time of Transit: The most surprising claim made on behalf of the lake and lock project is, that the time of transit through the canal would be considerably less than if it were built at sea level. This is based on the fact that large ships in passing through a canal inclosed by banks, must proceed at a much slower speed than when they are steaming
through a channel dredged in a navigable lake. It is claimed that the average speed through a sea-level canal could not exceed, safely, 4.23 miles per hour, including the time lost at the tidal lock on the Pacific, whereas in the lake and lock canal a speed of 7.08 miles per hour would be practicable. The higher speed in the waterway would more than offset the time lost in passing through the extra locks, so that the total transit time for the sea-level canal would be 12.39 hours, whereas for the lake and lock canal the time would be only 8.89 hours. The slow speed necessary in a canal inclosed by banks is due to the fact that, if a certain speed is exceeded, a ship, should it swerve from its course, has a tendency to swing, with accelerated turning movement, into either bank before the rudder can control it. This is due to the fact that the water cannot escape freely around the hull in a constricted channel as it can in a lake channel, where only the lower few feet of a ship's hull is in the chan nel and the body of the ship is in a wide expanse of water.
ViI. Time and Cost of Construction: The erection of the impounding dikes and the barrages and the locks would be simplified by the fact that a good indu rated clay rock exists at the selected sites, and that no difficulty would be experienced with the foundations. The creation of the inland lakes greatly reduces the total amount of excavation, which is brought down to a total of $118,430,000$ cubic yards, as compared with an estimated total of $300,000,000$ cubic yaris for a sea level canal. The estimated total cost is $\$ 125,000,000$; and allowing from a year to a year and a half for designing the special plant that would be required and placing it upon the ground, it is estimated that the canal would be opened for navigation by the year 1915.

That the author of the above-described plan has the courage of his convictions is shown by the fact that he is prepared to put in a bid for constructing the whole canal at the rate of $\$ 3,125,000$ per mile, reckon ing the canal as 40 miles in length, to be completed under a guarantee in eight years.

BRAUN'S NEW METHOD OF DIRECTING WIRELESS MESSAGES.

The first attempts toward directing wireless telegraph messages were made by William Marconi some little time before he had evolved his aerial wire system. His apparatus consisted of a small induction coil fitted with a battery to supply the initial energy, a key to break up the current into the alphabetic code, and a Righi oscillator for radiating the energy in the form of electric waves. In this case the oscillator was mounted in the focal line of a cylindrical parabolic reflector the length and opening of which was double the length of the wave emitted from the oscillator This arrangement permitted the waves to be concentrated into a beam which could be projected in any desired direction. The receiver consisted of a resona tor formed of two plates of metal with a detector con nected to and interposed between them; this was likewise placed in the focus of a similar parabolic reflector the opening of which was oppositely disposed to that of the transmitting reflector. With this combination it was possible to concentrate the waves into a beam but the scheme was not practicable, at least over any considerable distance, since the oscillator and resona tor systems were so limited in size that the emitted wave lacked the requisite amount of energy to be of commercial service.
In the Scientific American of October 7, 1905, the writer described a system for directing electric waves invented by Alessandro Artour, of Italy, who by an ingenious arrangement of the spark-gap spheres and aerial wires was enabled to obtain circularly and ellip tically polarized electric radiations, thus forming rays capable of being propagated in any direction and without the use of grids to reflect them. Considerable success has attended these experiments, messages having been transmitted over 300 kilometers, while an other station less than 100 kilometers distant and out side the effective line could not receive them.

Prof. Ferdinand Braun, of the Strasburg Institute, has recently brought out a new method for directing wireless messages in which it is not necessary to bunch the waves into a ray. His method is based on the theory of wave intensification and rarefaction by interference. Thus, assuming that two aerial radiat ing wires are tuned to the same period of oscillation and are energized by currents from the same oscilla tor, it should not be difficult to obtain interference phenomena provided the oscillations set up in one of the aerials have a phase difference of a small fraction of a second from those of the other.
While the time difference required between the two series of oscillations is exceedingly small, yet it is not easy to tune both oscillations to the same period and yet differentiate the time sufficiently to produce a lag necessary to bring about the desired interference.

This was finally accomplished in the laboratory by throwing the two series of oscillations out of phase by means of an inductance inserted in one of them
near the spark gap. The results on this small scale seemed to agree fairly well with the theory on which it was based and it was decided by the investigator to try out the system under conditions that prevail in practice, i.e., using loftier air wires and grounding the complementary terminal of the spark gap.
The place selected for making the out-of-door tests was the polygon military drill grounds at Strasburg. Three different stations were set up within this limited space, one for sending and the other two for receiving. At the transmitting station, instead of the usual aerial wire there were three radiating wires arranged at equidistant points from each other around the building and several meters from it. The aerials were sus pended from the tops of their respective masts in the usual manner. The lower ends of these wires led into the building which housed the transmitting apparatus The lower terminals of all the aerials were connected to one side of the spark gap, the opposite side of the latter being connected to the earth in the ordinary way. Now, when the disruptive discharge took place, the aerials $a b c$ were energized by the oscillations thus set up, but while the oscillations in the aerials $b c$ were exactly in step, those in a lagged slightly, due to the added inductance near the spark gap; yet the values of inductance and capacity remained identical, so that the length of the waves emanating from each remained constant. When all the aerials were emitting waves, those radiated by a would, in virtue of the fact that it was out of phase with b and c, set up an interference, with the result that an electrical shadow was cast in a direction at right angles to the plane of the aerial wires b and c, and hence the radiation of waves in that direction was a minimum. Oppositely, if the oscillations in the aerial a were made to take place in advance of those occurring in b and c, provided the difference in time was rightly proportioned, then a wave more or less amplified would result and its propagation would be in the direction previously stated, while the shadow due to the interference of the waves on b and c was projected from the rear of a.
In this system of amplifying the waves in one direc tion and diminishing them in another, the greatest difficulty seems to grow out of the fact that it is of the utmost importance to time the period of oscillation with absolute precision; and when it is stated that this difference of phase amounts to approximately only one ten-millionth of a second, it will be seen that the adjustments of the co-efficients are of an extremely delicate nature. From Prof. Braun's experience with high-frequency oscillations he concludes that the difference in time between the phases of the aerials can be adjusted to within one two-hundred-millionth part of a second, or more popularly expressed it would amount to a difference of only one second in six years.
Two or three years ago the scheme was tried to form a parabolic reflector of gigantic proportions by arrang ing a number of aerial wires around a radiating aerial wire so that the latter would be in the focal line. This arrangement failed to produce the desired results, since the wires thus placed permitted much of the energy to be lost through dispersion. Prof. Braun investigated the reflection of wires on a scale sufficiently large to show its utter impracticability. He employed waves having a length of 120 meters and placed the radiating aerial wire a distance of 30 meters or a quarter of a wave-length from the reflecting wires, which had an opening equivalent to the length of the waves to be emitted.
By utilizing the three-wire system the large and complicated reflecting-wire scheme is eliminated, the distance of transmission is increased and, what is equally advantageous, it is possible to direct the mes sages in any one of six directions. Without removing a single connection the waves can be sent in either one of two directions by merely increasing or decreas ing the frequency of the oscillations in a so that these will be a ten-millionth of a second faster or slower than the currents that surge through b and c. By changing the relative phase values of $a b c$, it is obvi ous that any of six different predetermined directions can be obtained at pleasure.
In the recent experiments made by Prof. Braun and his co-workers, while messages were being transmitted in one direction and received by a station in line with it, a second receiving station at right angles to the line of propagation, though much nearer the transmit ter than the first, was not affected.
Should it prove of advantage to transmit in more than six directions, five wires would be used, with the result that any one of ten stations, assuming they were located at equidistant points about the transmit ting station, could then be communicated with to the exclusion of all the others. The maximum distance covered in these preliminary trials was 1.3 kilometers; it is stated, however, that a commercial test is to be made at an early date.

On her return trip the Cunard turbine steamer "Carmania" steamed on an average $171 / 2$ knots. During the whole voyage she met with persistent head winds. Her best day's steaming was 420 knots.

THE SOLDIER-MOUNTAINEERS OF ITALY.

It is difficult for us who have practically no frontiers at all to realize the conditions that obtain in the Old World, where comparatively small nations adjoin one another like the squares on a chessboard; the boundary line in many cases being purely imaginary, and beyond it commencing a new language and a new country, with totally different manners and customs. In many places, however-as, for example, at the Franco-Spanish frontier, and also between Italy and Switzerland, and Switzerland and Austria-the boundary between the nations consists of a stupendous wall of snow-clad mountains; and as invasion is to be feared even across the lofty passes (did not the mighty Napoleon himself cross the great Alps with an army, carrying dismay and terror into Austria?) there are in European armies whole regiments that are carefully trained to fight literally "above the clouds." In other words, they combine the strength, endurance, and skill of the most intrepid Swiss Alpine guide with the ordinary profession of soldier. And there is nothing more interesting than to watch the maneuvers of these soldier-mountaineers-say, at Andermatt in Switzerland, or Aosta on the Italian side of the Great St. Bernard.

Andermatt is a village lying over 4,000 feet above the lower end of Lake Lucerne, and here will be found the headquarters of the Swiss Alpine troops, whose maneuvers should be seen to be believed, so daring are they, and so astonishing the spectacles presented by long files of panting men, small as flies on the wall of some terrible precipice, yet dragging literally inch by inch some big field gun up a tremendous slope by means of pulleys and hemp cables. One notices that these infantrymen are provided with alpenstocks and coils of silk rope, as well as snowshoes, ski, and other paraphernalia which we usually associate with the pleasure tourist in the high Alps-say at Chamounix, Zermatt, Grindenwald, or some other popular climbing center of the "Playground of Europe."

Their signaling is done from rock to rock by means of huge painted linen disks, held upon the outstretched arms of the signaler. The wounded are carried strapped "pick-a-back" fashion on a curious kind of easel-backed chair, fastened on the stalwart backs of their comrades. It is a fact that these troops maneuver literally "above the clouds"; and there is no more impressive spectacle than a Sunday morning service in some little icy recess at nine or ten thousand feet, when the chaplain of the regiment mounts into a rude portable pulpit, and discourses upon the wonders of the Almighty to the assembled soldiers who are shivering in their furs, even though it be July or August. At one side of the pulpit are the members of the band, and these play the hymns which reverberate through the awful desolations of glacier and snow-peak, gloomy gorge, and sky-piercing pyramid.

The Italian Alpine troops are in some ways still more remarkable. Indeed, I doubt whether as a whole any army in the world goes through such curious maneuvers as that of Italy. I have seen a prince of the House of Savoy-H. R. H. the Count of Turinplunging into the River Arno at Florence at the head of his hussars, and the entire regiment swam across, each trooper with his arm about his trained charger's neck. I have also seen the same high commanding officer ride his regiment straight into the sea at Viarreggio; for it is necessary to accustom both cavalrymen and the mounts to the negotiation of deep water, against the time they may find themselves in an enemy's country with all the bridges destroyed.

As one leaves the Swiss town of Martigny, and begins the long, toilsome ascent of the Great St. Bernard Mountain, one looks forward to reaching the Italian frontier at Aosta, by way of the far-famed hospice of St. Bernard, whose dogs and monks are a household word the world over. At the side of the lake near the hospice, a few stones mark the Italian frontier. As we descend, the scenery assumes a soft Italian character, and the awful desolation of Mount St. Bernard gives place to walnut groves, chestnuts, vines, and fig trees. Soon the southern spurs of Monte Rosa appear; and just before we enter Aosta, the pass is alive with soldiers. Some of them are marching on ski over the frozen snow; others again are glissading down steep slopes.
The little town lies about 2,000 feet above sea level, and is surrounded by ancient walls flanked with towers. On every side rise great mountains, like the 10,000 -foot Becca di Nona, and the Mont Emilius, 11,670 feet. Aosta is an admirable climbing center, not only because the Italian Alpine troops have their headquarters here, but also because various Alpine clubs have built refuges and cut paths up colossal mountains, which would otherwise be inaccessible to any living creature save the Alpine bear and the chamois.

Aosta is filled with military barracks, and in these as well as in the open squares one sees embryo soldiermountaineers in the making. Here is a party of recruits, half extended on the ground leaning on their left arms, while their right are high in the air, raising
and lowering big weights. This exercise is to develop the muscles of arm and back for the long, tedious climb over high, snowy mountains, and across slippery glaciers abounding in treacherous crevasses, which may be covered by an insidious layer of snow, liable to give way at any moment after a burst of sunshine.
One great idea is to accustom these men to hauling and pulling; for while Alpine troops are on the march it is obvious they cannot take any pack animals with them, much less commissariat wagons. Each man is heavily burdened with rifle, bayonet, two or three hundred rounds of ball cartridge; several days' rations, a steel-pointed alpenstock, some silken or hemp ropes, snowshoes or ski, blankets, and other items, which in themselves make up a serious load, to be carried up great mountains by paths which to the uninitiated look only fit for goats.
And yet, on top of all this equipment the Italian so.dier-mountaineer is required, on occasion, to take over parts of machine-guns, portable telephones, camp utensils, and other articles. Down below, in Aosta, pack-mules were loaded up in trains with the barrels of mountain howitzers; also with their wheels, separately, and certain shelter-tents, picks and shovels, and other implements. These hardy beasts are led as high as it is possible to take them, but the troops themselves venture up wild icy precipices of the Alps where not even a mule could find foothold. At a certain point, therefore, the pack-mules are unloaded and led down again to Aosta, after their loads have been distributed among the hardy troops, who shoulder their added burdens with a smile, grip the ashen shaft of their alpenstocks, and scramble up the precipices and almost perpendicular crags the best way they can. Sometimes the most daring among them will reach a point of vantage, and then lower a rope up which his fellows are to climb one by one. These soldier-mountaineers are the most wonderful rope-climbers I have ever seen in action. It is no small matter for a man to climb up a rope at all in the ordinary way; then what must it be when he is loaded with nearly sixty pounds' weight of equipment? Down at the barracks in the town, all recruits go through regular exercises in rope climbing, bearing the whole of their equipage. The idea of the whole training is that one day it may be necessary to meet an enemy equally daring and skillful among these wild Alpine solitudes. For the French also have Alpine troops, and one may see these indulging in similar strange tactics on the colossal Mont Blanc itself. It is a fact that lightly-equipped French infantrymen, led by young officers, have gained the very summit of the giant of the Alps, which, as everyone knows, is n_{1} arly 16,000 feet high and is clothed in eternal snov!
All these soldier-mountaineers are crack shots; and it is difficult to see how one of the forts held by them amid the great granite bowlders and terrible pinnacles and spires of the Great St. Bernard could ever be forced by an enemy in the face of these troops, who would act as scouts, crawling up precipices, and planting themselves on wi'd and seemingly inaccessible spots, whence they wou d pour an invisible fire which nothing could withstan"u. These Alpine troops, when scouting or reconnoitering in the mountains, use a curious kind of rifle-rest, formed by three alpenstocks and one of the pillows they use at night when they sleep in the snow. For, strange as it may seem, these men when bivouacking at great altitudes do not trouble to put up tents, but merely dig out caverns in the vast snow-drifts, and line these with waterproof sheets and blankets, and there sleep amid dreary Alpine deso lations as comfortably as though they were down on earth in a comfortable city bed.
The life of the men is magnificently healthy and exhilarating, as may be seen by the bright eyes, rosy cheeks, and clear complexions of a party of scouts that come glissading like lightning down the slopes of frozen snow on their long curving ski, guided and supported by the alpenstock. The troops also carry Arctic sledges for the transport of their "wounded"; and sometimes realistic demonstrations are given, when one or several men will lie at full length on these sledges and be dragged or glissaded over glacier and snowfield.
Much has been said and written about aerial war-fare-I mean between; airships provided with explosives. This may be i dream of the distant future, but nothing is more practicable than a clash between the Alpine troops of say France and Italy in the tremendous mountains of the Haute Savoie, many thousands of feet above the level of the sea. And just consider what that warfare would be! No cavalry, of course, no wheeled artillery; but only busy soldiermountaineers clambering by ropes up dizzy precipices, hoping to pour their fire from a height.
Officers, too, shouting commands through megaphones, or using the field telephones from rock to rock, and encouraging their men to carry up the mountain guns and open fire with these until the vast silent domes and sky-splintering peaks echo and re-echo with a thunderous roar that sounds sharp and clear, even above the rolling reverberations of the avalanche!

Sighting for a Long Shot.

A Squad of Italian Soldiers About to Cross the Pass of the Great St. Bernard on Skis.

The Squad in the Picture Above This Crossing the Pass.

How the "Wounded" Are Transported on Sledges by the Italian Alpine Troops.

Climbing a Rope with All Accouterments is One of the Gymnastic Exercises of the Italian Alpine Troops. The soldiers may fall into deep crevasses in active service, and only a rope

GIANT CREATURES OF PREHISTORIC TIMES.
While the vast prehistoric period characterized by the domination of great and small animals like, and yet exceedingly unlike, those with which we are acquainted is tremendously interesting, not only to the student of paleontology, but to the layman as well, that prior age, older and greater, wherein the reptilian order flourished is still more fascinating to investigate. As the major part of the creatures inhabiting the earth to-day are mammals, we feel more or less familiar with that order. With reptiles in general, however, the case is different, for the existent representatives have so hopelessly degenerated, or are so totally different from their Cretaceous, Jurassic, or Triassic ancestors, that the contemplation of many of these giant creatures arouses in the mature mind that same wonder with which a child receives its first fairy tale. And to the uninitiated the science of paleontology seems almost to deal with magic-a magic through the exercise of which we are enabled to gather from the study of a few fossilized bones, not only the probable size, form, characterization, and appearance, but the general habits and methods of life as well, of organisms that existed not thousands, but millions of years ago.
The advancement of paleontology in this country, and in general, is due in many particulars to the American Museum of Natural History of New York city. The readers of the Scientific American are familiar with one of these, the great Brontosaurus restoration, which was executed by the Department of Paleontology of that institution, and which at present is the center point of interest in. the great Dinosaur Hall. Within a few months there will be added to the collection another mounted specimen of the giant saurians which, while inferior in size, is undoubtedly not less remarkable in its characteristics than the huge "thunder saurian" already on exhibition. This is one of the great carnivorous dinosaurs of the Upper Cretaceous or "Laramie" age; and as it greatly exceeds in size any known carnivorous land animal, Prof. Henry F. Osborn, Curator of the Department of Vertebrate Paleontology of the Museum, proposed to make this the type of a new genus, Tyrannosaurus. Thus the public has within recent weeks become quite familiar through the newspapers and periodicals with Tyrannosaurus $R e x$, or as the reporter delights to put it, King of Tyrant Saurians. It is not strictly correct to desig. nate this fossil discovery as quite recent, for the first bones found were 10 -
cated during the summer of 1902. In 1901 Dr. Hornaday, Director of the New York Zoological Park, while on a hunting and photographing trip through certain bad lands of Montana, picked up a fossil which was later found to be a Triceratops horn. This was shown to Prof. Osborn, and after a study of the photographs of the characteristic bad lands where it was found, the
importance of the discovery was deemed sufficient to warrant the sending of an expedition to this region. Accordingly, the American Museum dispatched a party to this part of Montana in the summer of 1902 under the leadership of Mr. Barnum Brown. The quarry was located about 130 miles northwest of Miles City, in Dawson County, on the old Max Siber ranch, and from

The Triceratops, a Formidable Creature of the Age of Reptiles, Existing When Tyrannosaurus Rex Flourished and Thought to Have Been Preyed upon by That Giant Lizard.

The Hadrosaurus, a Contemporary of Tyrannosaurus Rex, and Probably the Prey of the Latter. CARNIVOROUS DINOSAURS OF THE AGE OF REPTILES.
a small stream in the vicinity it took the name of Hell Creek Quarry. The region comprises one of the most rugged and picturesque bad lands of the West, according to Mr. Brown, whose long experience in work of this character makes him well qualified to judge. While a fossil-hunting expedition is often attended by weeks and months of painstaking but disappointing labor, the
instance in question was quite the reverse, for within a few hours the quarry had been definitely located, and after nearly eight millions of years of obscurity, Tyrannosaurus Rex was about to be haled forth into the light of scientific investigation.
In September of 1902 the entire number of the bones in sight was removed from the sandstone hill wherein the quarry is situated, and it was then believed that all the fossils at that locality had been recovered. At present these, comparatively small in number, but formidable in size, are already on exhibition in Dinosaur Hall, and they include six great vertebræ, a small humerus -supposed to belong to this animal-portions of the skull and jaws, and the ilium, pubis, and ischium. The last three are the pelvic bones, which are separate in -reptiles, while in the order Dinosauria the pubis and ischium were the two greatly developed, d o wn w a rdly-projecting members which, supplied with pads of cartilage, were used to rest upon, as shown in the accompanying illustration of the Hadrosaurus, a contemporary of Tyrannosaurus Rex. The Triceratops, illustrated in another engraving herewith, was also a contemporary of Tyrannosaurus, and was, it is believed, together with the Hadrosaurus, the principal prey of the great carnivore.
The large illustration depicts two great reptiles struggling for supremacy. These are Dryptosaurs, which, while much smaller than Tyrannosaurus and of an earlier period, were in all probability exceedingly like the latter in habits and general aphabits and general ap-
pearance. The restoration is believed to be correct, though it is not thought that the animals ever exhibited such agility as shownn, for none of the thousands of footprints of Dryptosaurus that have been examined is such as to warrant a conception of this character. The illustrations are after restorations by Charles R. Knight from among the large number which so excellently supplement the exhibition of paleontologic sepcimens at the Museum. We are indebted to the Department of Paleontology of the institution for permission to use the restorations in preparing these illustrations.
During the summer of 1905, a second expedition to the region of Hell Creek under Mr. Brown, while not sent ostensibly for that purpose, again made a number of excavations where the first Tyrannosaurus bones had been found, and at the very bottom of a four-foot cut a number of additional bones were discovered, including a large hip-bone from the same specimen. This success was immediately followed by the institution of further excavations, and a large cut thirty feet long, thirty feet wide, and twenty-five feet deep, produced many other portions of the skeleton. The operations entailed many weeks of labor in the field, and promise many more for the laboratory, for the matrix containing the bones, which were all on one
level, is a sandstone almost as hard as granite. The first nine feet of the cut were plowed and scraped out with the aid of horses; the remainder was removed by careful blasting. We can easily understand the extreme delicacy with which the latter operation must be performed, when we take into consideration the brittle nature of the fossils, the hardness of the surrounding concretion, and the frequently involved positions of some of the bones. In fact, it was impossible to remove many of the fossils individually, so the surrounding matrix was cut out in a block, leaving the segregation of the bones to the laboratory force. The largest block weighed 4,100 pounds, and it required fourteen days' labor to transport the same to the railway.

The discovery included so many representative portions of the skeleton of this great flesh-eating dinosaur, that its general appearance can be described with reasonable accuracy. Tyrannosaurus, when in the erect position which in all probability he habitually assumed, measured about 39 feet in length, and carried his head at a height of some 19 feet above the ground. Some doubt still exists about the possible size of the forearm. In the first collection made in 1902 there were a small humerus and a small femur associated with the Tyrannosaurus bones. The humerus was supposed to belong to Tyrannosaurus and the latter was restored with a short forearm like the Jurassic carnivores, but in the collection of this year there is a large bone thought to be a humerus, and in this case the entire character of the animal would be changed. The whole matter can be cleared up only by freeing these new bones from the inclosing rock. He was practically a biped, with an agile bird-like manner of locomotion. The huge feet, about four feet long and three feet wide, also show bird-like characteristics, with three enormous toes projecting forward, and one extending backward. The toes of all four limbs were provided with great tearing claws. Enough skull bones were found to determine all of the characteristics of the head, which was far larger and contained a greater brain than that of the sluggish Brontosaurus, and was provided with great, sharpedged serrated teeth, some of which were six inches long. Supplied by nature with such weapons, we can easily imagine that Tyrannosaurus made life miserable for some of his more inoffensive neighbors.

It is almost impossible to estimate the value of this find to the science of paleontology. It has already caused the reclassification of a number of the great denizens of the earth toward the end of the age of reptiles, among them the type Dynamosaurus, another carnivorous dinosaur, and the somewhat more primitive genus Albertosaurus, hitherto included in the type Dryptosaurus. The extreme rarity of fossils of this kind adds greatly to the value, a rarity undoubtedly due to the fact that the creatures were essentially land animals, that they were born, lived, and died in the open where their remains were speedily disintegrated and destroyed. In the case of amphibious Dinosaurs, on the other hand, the bodies usually settled to the bottom of the waters which they frequented, and were gradually covered over in the formation of the sedimentary rocks in which we find these fossils to-day. And so the preservation of individuals of the land species only occurred when the body accidentally became submerged in one of the waters of the region in which they lived. In three years' work carried on by the American Museum in the Cretaceous formations, parts of only three skeletons of this kind have come to light, one of these, an allied species of the same geological age, being found in Wyoming. From the traces of palms, rushes, and ferns, which are often found together with the bones of the Cretaceous period, the conclusion has been drawn that this region then possessed a sub-tropical climate, not unlike that of the West Indies of to-day. The region also included the great seas and lakes of salt or brackish water, the sedimentary remains of which are the bad lands of our age, the greatest fossil graveyards of the world.

REFRIGERATION WITH ELECTRIC MOTIVE POWER.

The most primitive and most extensively used processes of producing low temperatures are through the agency of melting ice. This is dependent on the following principle. The melting of ice requires a well-

a small electric refrigerating plant.

of absorbing large amounts of heat. The arrangement and working of a refrigerating machine using any one of these substances is as follows: After freeing the liquid from any water, it is vaporized at low temperatures in a system of tubes (the so-called "vaporizer") and thus caused to absorb heat from the cooling medium (i.e., either the air or any other substance) surrounding the tubes. The evolved gas is drawn in and compressed by a suction and compression pump, which is connected with the vaporizer; then it is forced into another tubular apparatus called the "condenser," where it is liquefied again, while yielding the absorbed heat to the cooling water; it finally flows back as a liquid into the vaporizer. This process is thus a cyclic one, wherein the refrigerating liquid is used over and over again, so that only the amount of energy required to drive the pump and the necessary cooling water is used up.
The refrigerating apparatus proper or vaporizer is located either directly in the compartment to be cooled (this being called direct vaporization) or in a reservoir containing a liquid congealing at a low temperature, e.g., a salt solution, which on being cooled down to the required temperature is in turn conveyed by a special pump through the refrigerating compartment and back into the reservoir (this being the process of indirect vaporization). The latter alternative possesses the advantage that it allows of a local concentration of the process and of storing cold in the cooled brine, so that the refrigerating effect is maintained for some time even after the plant has been out of service. Accordingly this process is especially used in the case of permanent refrigeration of extensive rooms for cooling at longer distances or else for the production of ice on a large scale.
The advantage of artificial refrigeration over the cooling by ice may be excellently demonstrated in the
case of two identical cultures, one of which had been exposed to an ice refrigeration compartment and the other in a mechanical cooling plant. Whereas a whole colony of micro-organisms had been evolved in the former, the culture being partly consumed by putrefaction fungi, the latter at most shows only small traces of inoffensive mold, thus illustrating the efficient results of mechanical refrigeration.
While this process of refrigeration, which in many cases is utilized in the manufacture of ice, has been generally introduced in large plants, ships, etc., it has been impossible up to the present to use it economically on a small scale or to introduce it into general practice. The type of apparatus illustrated herewith has been constructed for this purpose jointly by the Berlin Electricity Works and the Gesellschaft für Linde's Eismaschinen. This electrically-driven refrigerating machine, which is being exhibited at present at the permanent electrical exposition of the Electricity Works, will be particularly welcome to architects and builders, for the installation of cooling plants in villas, dwelling houses, etc.
The ammonia refrigerating machine includes a horizontal compressor, consisting of two single-action cylinders with a plunger piston driven from a common crankpin and running in an oil bath. This machine is directly operated by a 1.3 -horse-power A. E. G. motor mounted with it on the same foundation plate. The condenser, where the vaporized liquid is reconverted into the liquid condition, is located in the iron supporting casing, wrought-iron serpentines being provided for the admission and discharge of the cooled water. The vaporizer is located in a cooling compartment shown in the photograph; but as the apparatus is intended for demonstration purposes only, its dimensions do not correspond to the full output of the machine. There is furthermore an isolated vaporizer beneath the motor for the case of the indirect process referred to above. In this event a small circulation pump would have to be added to the mechanism. The output of the machine is about 1,000 calories per hour with à gas temperature of -10 deg. C. in the vaporizer and a speed of 400 R.P.M., the corresponding consumption of energy being about 900 watts. In order to illustrate the significance of these figures, it may be said that this amount of heat would be sufficient to cool about 150 cubic meters of air per hour from 20 deg. down to 0 deg. C., irrespective of its moisture.
After the apparatus has been prepared for operation, its manipulation will be found extremely simple. It is only necessary to turn on the cold water and start the motor, while any friction parts, such as bearings, stuffing boxes, etc., should of course be properly lubricated from time to time. About 3 kilogrammes of ammonia, sufficient for a considerable period, are used as charge.

The small type of refrigerating machine described in the above is only intended to acquaint the general public with the arrangement and operation of such an apparatus, and to demonstrate that artificial refrigeration is readily available wherever electric current can be obtained, and that it can be secured at a relatively small expense.

Poisonous Effects of Egge.

L'Illustration recently published the following curious facts:
"Should we think that eggs possess a poison? That nevertheless is what M. G. Loisel declares. But we must understand each other. Eggs are poisonous in certain conditions merely, when we absorb them in a certain way. They are poisonous when injected beneath the skin, and no one thinks of applying them in that way. It is the yclk chiefly that is poisonous. The poison varies according to the species that provided the egg. The duck's egg kills the rabbit in a dose of 8 cubic centimeters; that of the hen kills only in a larger dose. By way of compensation, the turtle's egg is more noxious than that of the duck: it kills in a dose of 5 or 6 cubic centimeters. Therefore the turtle is more poisonous than the duck, and this last is more so than the hen. Rabbits poisoned by the yolk of an egg injected under the skin or into a cavity of the body die with the symptoms of an acute intoxication of the central nervous system. The white also of the turtle's egg is very poisonous. But none of these eggs is hurtful when absorbed by the digestive organs."

NEW AUTOMOBILE SPEED RECORDS IN FLORIDA.
The annual speed trials and races which have been held for the last three years at the Ormond-Daytona Beach, Fla., were run off last week under rather unfavorable weather conditions; but nevertheless they resulted in the complete triumph of a steam racer built by the originators of the steam automobile in America, the Stanley Brothers, of Newton, Mass. This machine not only made a reduction of $94-5$ seconds in the record for a steam machine, but it also made the fastest time ($2 \mathrm{~min} .471-5 \mathrm{sec}$. , or $108 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) in the five-mile race when run against the speediest cars that Europe can produce.
The new record of a mile in 281-5 seconds was made on January 26, in the mile trials. This is equivalent to a speed of 127.65 miles an hour, and is only $23 / 4$ miles an hour less than the fastest speed (130.4 miles an hour) ever made on rails, which was accomplished by an electric car near Berlin, Germany, in November, 1903.
In competition with the steam machine in the onemile trials were a special 8 -cylinder, 200 -horse-power Darracq racer, the 100 -horse-power Napier (which made a record of $342-5$ seconds for this distance last year), a 110 -horse-power Fiat, and a 100 -horse-power Ford. The nearest approach to the figures set by the steam machine was made by Chevrolet with the 200 -horsepower Darraca, who covered the mile in 30 3-5 seconds, or at a rate of 117.64 miles an hour. This stands as the new record for heavy-weight gasoline machines. The Napier did not equal its performance of last year, requiring $372-5$ seconds for the mile. Cedrino's Fiat made the distance in $363-5$ seconds, while the Ford machine made it in 40 seconds, or at 90 miles an hour.
The mile record of $571-5$ made by a 20 -horse-power light-weight, double-opposed-cylinder Stevens-Duryea machine last year was reduced to $523-5$ seconds by a 32-horse-power Reo racer of the same type. The new
national Dewar trophy, given for a one-mile race in three heats. The first and third heats of this race were won by the steamer in $321-5$ and 32 seconds respectively, while the best time by a gasoline machine in this race was made by Lancia with a 110 -horse-power Fiat, which won the second heat in $373-5$ seconds. It will be recalled that a Stanley steamer also won the Dewar trophy last year in 411-5 seconds, which was
won a 15 -mile handicap race in $13 \mathrm{~m} .422-5 \mathrm{~s}$., or at a rate of speed of 65.7 miles an hour.
The huge 8-cylinder car, which we illustrate, was specially designed and built by a noted French automobile engineer, for the purpose of breaking records at the Ormond meet. The machine is rated at 250 -horsepower. It has a duplex carbureter and spark plugs in the head and side of each cylinder. The power of its

Marriott in the Stanley Steamer Pressing Lancia on His 110-Horse-Power Fiat Closely in the OneMile Race for the Dewar Trophy.
The Stanley won the first and third heats in $32 \frac{1}{5}$ and 32 seconds respectively. The second heat was won by the Fiat in $37 \frac{3}{5}$ seconde.
but 3-5 of a second faster than the time made by a Napier machine. So sanguine is Mr. Stanley of lowering the record still more, that he has contracted to build a new machine which will do a mile in 25 seconds, or at a rate of speed of 144 miles an hour. As can be seen in the illustration, the new Stanley machine is built on much the same lines as the racer used last year. The body resembles a boat with a rounding deck, while that used previously was more the shape of a

The 50-Horse-Power Stanley Record-Breaking Racer Which Traveled a Mile in 28 $\frac{1}{5}$ Seconds at the Remarkable Speed of 127.65 Miles an Hour.
record is equivalent to a speed of 68.44 miles an hour. The cars which were second and third were a 45 -horsepower 'Wayne (time 1 m .6 s .) and a 12 -horse-power Maxwell (time $1 \mathrm{~m} .292-5 \mathrm{~s}$.)
The speed trials over a distance of one kilometer (0.621 mile) were also won by Marriott in his 50 -horsepower Stanley steamer in $18^{\circ} 2-5$ seconds, or at a rate of speed of $1211 / 2$ miles an hour. This is $54-5$ seconds faster for this distance than was made by a similar machine last year, and 43-5 seconds faster than the best previous record, which was 23 seconds, made by McDonald in a Napier machine last year. Chevrolet succeeded in driving the 200 -horse-power Darraca a kilometer in 19 2-5 seconds, which was about a second better than this machine did a month ago in France in making its first speed trials. The 100-horse-power Napier car covered a kilometer in $213-5$ seconds, and the 110 -horse-power Fiat in 22 4-5.
Other events which were run off on January 26 were a 10-mile middleweight championship, which was won by Vaughan on a 80 -horse-power Darracq in 7 m ., or at a rate of speed of 85.7 miles per hour, and a 10 -mile Corinthian handicap, which was won by Harding on a 45-horse-power Daimler (having $31 / 2$ minutes handicap) in $8 \mathrm{~m} .484-5 \mathrm{~s}$., with a scratch car-an 80 -horsepower Darracq-second in $6: 424-5$, which is equal to power Darracq-seco
The first record-breaking performance of the Stanley steamer occurred on January 23, when it covered a mile in $314-5$ seconds, and thus reduced by one second the record made last year by an 8 -cylinder Mercedes machine, which was over the specified weight of 2,204 pounds, and the record of which consequently did not stand. This first record mile was made in the afternoon subsequent to a drizzling rain in the morning, and the result was that the beach was not particularly fast, nor were the weather conditions of the best. The first record mile, which is equivalent to 113.2 miles an hour, was made subsequent to the winning of the Inter-
torpedo. The power plant is much the same as heretofore, and the Stanley method of construction, with a horizontal engine and spur gear drive, is employed. It is needless to say that very high pressure is employed in the boiler, which is of the usual water-tube type. Not only did the racer succeed in beating all the gasoline cars in its class in distances up to 5 miles, but a smaller machine consisting of a standard chassis also
engine is so great that the clutch could not transmit it, and the machine from various other causes was unable to run successfully in any of the races. Another machine which was finished at the last moment and shipped to Florida in the hope of breaking records was a 100 -horse-power Christie direct-drive car. Trouble is said to have developed in the cylinders of this machine, and while practising one day on the beach it ran into a piece of wreckage, smashing the front wheel. It is to be hoped that the Christie car which, we understand, has been repaired, will be able to run in some of the longer races.
The great reductions which have been made in time for the mile and for longer distances, make it impossible to prophesy where the craze for speed will end. While two miles a minute-the mark set for a gasoline machine of not over 1,000 kilogrammes (2,204 pounds weight) -seems to be about the limit with a gasoline machine, a specially-built steam car of this weight will probably be able to reach as high a speed as 150 miles an hour over a distance of one mile. That this record will soon be attained does not seem an improbability, in view of the great increase in speed shown by a special type of steam racer within the brief space of one year.

Germination of Orchid Seeds.

When the seeds of orchids are sown, especially those of the Cattleyia or the Lolia, it is found that the germination, which is quite irregular, is accompanied with the presence at the extremity of the plantule of a cluster of filaments due to an endophyte fungus. Recent experiments of the French scientist, M. Noel Bernard, have shown that the presence of this fungus is indispensable to the germination of the orchid seed. If the seeds are asepticized, they will not germinate; but if they are put in a pure culture of the fungus, the mycelian filaments of the latter penetrate the embryo; then the germination commences, and is pursued regularly. This observation shows a distinct case of normal parasitism, in which an organism cannot be developed without the penetration of a parasite.

Mr. Alfred G. Vanderbilt's 250 -Horse-Power 8-Cylinder Racer Which Was Specially Built to Break Records, But Which Did Not Succeed in So Doing.
Tbis car was considerably over weight. Its eight cylinders are cast in pairs und provided with copper water jajkets. The valves are on opposite sides and there are two spark plugs in each cylinder.
THE FASTEST AND THE MOST POWERFUL CARS AT THE FLORIDA SPEED CONTESI.

RECENTLY PATENTED INVENTIONS.

Of General Interest.

FRAME FOR HOLDING AND STRETCH ING FABRICS.-M. A. Weathers, Manches ter, N. H. In this invention the reference is employed in the making of mats, rugs, quilts and similar articles and for stretching such fabrics and others-as, for instance, lace curtains, women's face-veils, and the 'like-for tains, women's face-velis, ang. It is readily
drying the same after cleaning.
adjustable to fabrics of different sizes or diadjustable
BOX-OPENER.-C. Goldmann, New York, N. Y. It may be stated that the improvements are especially adapted to pasteboard and paper boxes of rectangular structure, and the inven-
tor employs opening devices for the box which tor employs opening devices for the box which dles for carrying the box when filled, said deopposite sides of the box as to enable the side to be torn from the remaining sides in such manner as to enable the contents to be re-
REGULATING-HINGE FOR PIANO SWINGING FRAMES.-I. E. Bretzfelder and R. K. Thumler, New York, N. Y. One
purpose of the inventor is to provide a construction of hinge adapted for connecting the
fixed skeleton frame of the instrument with the fixed skeleton frame or the instrument with the swinging frame or panel which supports the
book or sheet of music above the keyboard, the hinge being of such construction that the pintle may be removed when the parts of the hinge are to be separated, thus obviating the
withdrawal of the screws, and wherein the pintle will remain in the position in which it is adjusted until purposely withdrawn.
ClOTHES-TONGS.-F. L. Blompuist. Sanders, Idaho. Stated in general terms, the object of the invention is to provide a device
which is simple, light, strong, inexpensive and durable, and which may be more conveniently used in handling clothes in the process of ter. The device is made of hard wood for the sake of lightness. The absence of hinges springs, or other connecting devices make it springs, or other connecting devices make it
impossible for the tongs to catch in the gar ments handled and tear them.
COMBINATION-TOOL.-E. J. La Duke and I. G. O'Harra, Seattle, Wash. The invention has reference to measuring instruments such as used by artisans and handicraftsmen in laying out work. The tool is expected to be espe-
cially useful to the carpenter's trade cially useful to the carpenter's trade. The object is to produce a tool which will be, in
effect, a combination of a rule, try-square, effect, a combination of a rule,
bevel-edge, calipers, and dividers.
LAMP-BURNER.-E. ROSS and J. A his invention, Neb. One ofthe p burner this invention is the provision of a burner
with a combined air and gas relief tube having such relation to the outlet end of the wicktube that all of the gas and air will be extracted from the container as fast as gen-
rated therein and be fed to the flame and erated therein and be fed to the flame and consumed without smothering the flame, there-
by eliminating every possibility of the lamp by eliminating every possibility of the lamp
exploding, though either gasolene or a poor exploding, though either ga
quality of kerosene be used.
CRANE.-G. E. Soper, K
CRANE.-G. E. Soper, Kankakee, Ill. Mr. Soper's invention relates to small cranes or
hoists such as used in machine-shops, foundries, and similar places for raising and moving heavy machine parts. The object is to produce a crane of this class which is simple n construction, composed of few parts, and
which will have a desirable resiliency when supporting its load.
STOCK-COLLAR DISTENDER. - G. V.
Tucker and E. B. Aiguier, Newark, N. J. Tucker and E. B. Aiguier, Newark, N. J.
This invention pertains to improvements in devices for distending vertically and supporting so-called "stock-collars" worn by women, the object being to provide a device for this purpose of simple and novel construction for in lieu of whalebones, wires, or the like, so that after removing the distenders the stock may be readily washed or otherwise cleaned. FURNACE.-G. Watson, Pool, near Leeds, and H. W. Mason, Wakefield, England. The and more particularly to those adapted for the destruction of refuse. Its principal objects are the provision of efficient means for furnishing a forced draft to the furnace, means for protecting the metal parts from burning out, and
ash-pit.
SYSTEM FOR THE DESTRUCTION OF REFUSE.-G. Watson, Pool, near Leeds, and H. W. Mason, Wakefield, England. This im-
provement has reference to systems for deprovement has reference to systems for deand more particularly to those in which the
material is delivered to furnaces in bulk. Its principal object is to provide an effective system for this purpose. Instead of delivering the refuse to furnaces the containers may be
employed for discharging their contents into
UMBRELLA.-J. C. Westerfield, Belleville, N. J. The more particular object of the
inventor is to produce a construction in which inventor is to produce a construction in which friction is reduced to a minimum. It further relates to certain details whereby simplicity
and cheapness are attained in the construcand cheapness are attained in the construc-
tion. With parts in position it is used as any other umbrella. Should a rib or stretcher be
worn out or broken, it may readily be removed
and another inserted. Spiders, set-screws, and other parts are interchangeable.
horse-collar.-J. De W. Whipple, Tekamah, Neb. In this patent the invention rehorses, an object being to provide a collar that will readily adapt itself with yielding pressure to the neck and shoulders of an animal and practically prevent the formation of sores, as
often happens, from abrasions with the usual often happens,
Pasting device.-H. H. Walker, Ponca, Oklahoma Territory. This pasting device is specially adapted for use in offices and simiar places for applying paste to the edges of apers to be attached together. The object or produce a simple attachment for paste pot applied quickly to the edge of the paper and neatly, so as to prevent soiling of the fingers. METHOD OF MANUFACTURING SIDING METHOD OF MANUFACTURING SIDING.
C. Loetscher, Dubuque, Iowa. In this case -C. LOETSCHER, Dubuque, Iowa. In this case board used for the outside covering of frame buildings and to a method of manufacturing the same. The objects are to provide for a
more economical production of sidings and at more economical production of sidings and at
the same time to provide a siding-board havthe same time to provide a siding-board hav-
ing certain points of superiority over those in ing ce
use.

HOOK.-Lora Jones, Newton, Kan. This invention relates to hooks, such as are used
in connection with eyes for the purpose connection with eyes for the purpose of
castening the edges of a garment together, the hooks being secured along one edge and eye along the other of such garments, and adapted to be interlocked in a well-known manner. The object is to provide means whereby a hook may be secured to the edge of a garment at a point be sec
upon
eyes.

MAIL-POUCH FASTENER.-L. H. Hina ran, Port Jervis, N. Y. In operation the flap drawn down upon staples and the strap pulled to the left, moving all the locking-bol ts
into engagement with the respective staples The strap may be secured by a padlock, or the bolt of the end of the lock may be locked by a key. To open the pouch, simply remove the padlock or unlock the end lock, when a pull on the strap of the
imultaneously.
bottle-ClOSURE.-J. Herrington, Houston, Texas. This improvement refers to a class of bottles used as original packages for arious kinds of liquors and medicines, and has for its object to provide novel details of construction for a bottle and closure thereof
which will expose an attempt to refill it after its contents have been removed, and thus pre vent the reuse of the bottle for fraudulent pur-

SHade-FASTENING.-F. Weilert, New York, N. Y. The invention relates to devices for fastening the shade-cloth to a shade-roller ; and its object is to provide a fastening and position or conveniently placing the she shade roller, the shade-fastening being simple and durable in construction, easily placed in posi tion, and arranged to secu.
cloth to the shade-roller.

CONTROLLING-VALVE.-P. Voorhees and H. J. Trah, Logansport, Ind. This improvement pertains to valves for controlling the ticularly applicable to the rain-water conductors of buildings. The principal object is to provide means for directing to waste the first flow through the conductor at the be-
ginning of a rainfall, this being liable to be fouled by dirt accumulated upon the roof and in the gutters, and then automatically deliver ing a succeeding flow to the cist
container which is to receive it.
MEANS FOR RELEASING BOATS FROM THEIR FALLS AT BOTH ENDS SIMUL Row, Calcutta, India. This invention relates to a device whereby a boat may be released $1 . \mathrm{cm}$ its falls at both ends simultaneously, the er ire device being under the control of one
man. To release the boat from the falls the handle is rotated, which action causes the cams to rotate simultaneously, and thus re-
move the support of the rollers which immediately drop into position, causing the hooks to be disengaged. To replace the hooks in firs place, causing the lower edge of the sloping portion of the cams to engage the rollers, which are raised back into position.
DEVICE FOR HANGING AND CENTERING GRINDSTONES.-J. H. Norrell, Augusta, Ga In this patent the invention has reference
an improvement in hanging and centering grindstone on its frame, its object being to produce a simple, cheap, and efficient device. grindstones, it is for use in connection with wheels or even pulleys which are to be rotated by means of treadles and pitmen.
AUTOMATIC LEVEL-CONTROLLER. - L. Neu, 60 Rue Brule Maison, Lille, France. This invention relates to a device intended to pro-
duce the automatic starting and stopping of duce the automatic starting, and stopping of
apparatus for forcing liquids or other fluids such as water-raisers, gas-compressors, and the like. The invention has for its purpose an
operation in such a manner that the distribu ting member or the clutch when once started in one direction or the other shall be obliged
to complete its movement rapidly and shall
not be capable of remaining at the half-stroke. NON-REFILLABLE
BOTTLE. - H. W. in this case is to provide means for preventin the refilling of the receptacle after it is once emptied. This is accomplished by the
a stopper, and Mr. Lloyd preferably
plurality of these devices and provides means be introduced and means for automatically un folding the stopper after it is introduced and released in the neck of the bottle, the first named means operating to prevent the removal ATTACHMENT FOR STORE-COUNTERS OR HE LIKE.-P. S. Grindle, Brooklyn, Ala One of the principal objects of the inventor is to provide a structure adapted to be ro
tatably mounted beneath a counter, shelf, o other support within a store or other place hereby a barrel or box containing sugar, flour, way beneath the maunter at nent stowe access thereto may not be desired and which may be readily swung outwardly in convenient position whenever access is desired either t supply customers or for other purposes.
APPARATUS FOR MIXING PAVING COM POSITIONS.-G. W. C'richfield, Jersey City, N. J. In attaining the ends of this invention eptacles in which the asphaltic material and mineral aggregate are charged and by which they are heated uniformly, this heating being sure, and therefore the heat of the steamip impossible to in such a way as to rende heating-receptacles are arranged to discharge into peculiarly-arranged weighing vessels,
which themselves discharge into the mixer which themselves discharge into the mixer where the various mater
animal-trap.-G. J. Miller, Endicott, Wash. The improvement is in that class of traps which have spring-actuated bows or jaws dapted to be set in a retracted position and body. It is peculiarly adapted when made of small size for catching moles. It is an improvement upon the trap for which Mr. Miller formerly received Letters Patent.
adjustable table.-C. H. Gardinier, tonsselaer, N. Y. The improvement pertains may be used for various purposes, such as desks, studying-tables, china painters' tables, ick-room tables, artists' easels, etc. It is col apsible, folds into a small space, and is ad ustable to various heights and angle

Household Utilities.

WINDOW-SHADE FIXTURE.-G. C. VERGASon, Binghamton, N. Y. An object of this improvement is to provide a fixture which is
adaptable to window-frames of varying widths without marring or mutilating the exposed faces thereof, besides being strong and durable, and light in weight. The parts are easily as sembled for use and again dismantled and taken apart for shipment. Mr. Vergason employs duplicate hangers of special construc tion, combined with portions of which are ad justable slides, rigid with which are brackets
to which are secured the outer extremities of a specially-constructed expansible device for the brackets.
flushing device.-P. L. Guest, Columbus, Ga. One of the principal objects of the siphon. A stationary siphon is provided, and
side mate a regulating device for the inlet-valve of the tank is so arranged as to provide for shutting off the inlet when the water reaches a certain height and before the siphon commences to operate. Means provide for releasing inlet-
valve, so as to admit water upon manipulation valve, so as to admit water upon manipulation
by hand. Then water rises and starts the siphon, and when water is removed from tank through siphon the inlet-valve is again enwaged so that further introduction of water sition as before.
holder.-A. E. Martin, Toledo, and r. w. Kennard, Fernhill, Wash. In the present patnt the improvement has reference to holding ed for culinary use to support upon a kettle or other vessel its lid and a spoon or the like.
The invention has for its principal objects the provision of a simple, strong and very efficient holder.

Machines and Mechanical Devices.

CONVEYER.-G. Lucas, Passaic, N. J. veyers, it having for its principal object the provision of a simple and durable apparatus which will effectually transport material. The improved conveyer furnishes an unbroken con-
duit of considerable depth, by which many inds of material may be moved from one constitutes the conveyer proper is so supported onstitutes the conveyer proper is so supported
hat it may carry great weights without saging and yet readily adapts itself to changes of direction.
Note.-Copies of any of these patents will e furnished by. Munn \& Co. for ten cents each. the invention, and date of this paper.

Business and Personal <Uants.

READ THIS COLUMN CARRFULLY.-You

Marne Iron Works. Chicazo. Catalogue free.
Inguiry No. \#7\%7.-Wanted tho name and ad.

". s. Metal Poish. Indianapois. Samples free.

Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Inquiry No
Wanted.-Purcbaser for Monazite, Molybdenite and Wolfram. Apply Menasite, Box r73, New York.
Inquiry No. 7\%81.- For makers of vulcanizers,
rubber stamps, and supplies for same. I sell patents. To buy, or having one to sell, write
has. A. Scott, 719 Mutual Life Building, Buffalo, N. Y . Inquiry N. grys2.-Wanted, Bowe's quick-openThe celebrated "Hornsby-Akroyd" Patent Safety Oil Inquiry No. V7 83 .-For makers of botling ma-
chines; also for information rearding the manufac-
ture and bottling of carbonated drinks. WANTED.-Ideas regarding patentable device for
water well paste or mucilage bottle. Address Adheve, P. O. Box TT3, New York
Inquiry No. yg84. - For makers of saw machines,
or saw mills for squaring small timbers, from 1 inch up
o 8 inches.
-High-class machinists and tool makers. Good wages. No labor troubles.
Inquiry N 9985
Well gotten up typew
business. $\$ 2$ per 1.000
Inquiry No. g986.-For makers of smal castings
Manufacturers of patent articles, dies, metal tamping, screw machine work, hardware specialties,
machinery tools and wood fibre products machinery tools and wood tibre products. Quadriga
Manufacturing Company, 18 South Canal St., Chicago.
Mnguriry No. Fzs7--For makers of beving ma-

Inguiry Noa, 7790-For manutatatrers in CanaInguiry No. 7791-Fror makers of brass trimIninuiry No. 7792.-Wanted, makers of leaded

 niry No. 7798.-For makers of trunks, et.
Inquiry No , 7799.--For dealers, in larse quanti-
ies, of palm leaif tans.
Inquiry No. 7soo- For makers of electrical toss, Inquiry No. Fsool- Wanted.

atorairy No. 7803.- For makers of smal refriger-
Inquity No. 7804.-For makers of horseshoe
angets.
Inquiry No. 7805.--For small pocket mirrors.
Inquiry No. 7806.-For makers of farm-gate hang-
rs, gate hangers and hinges.
Inquiry No. 780%
which may be mailed.
Inquiry No. 9808 .--Wanted, metals for experi-
mental use.

Apaniry No. \%812-Wail. Wanted, makers of chemical
Inguiry No. 7813. -Wanted, makers of artificial
Inmairy No. 7814.-For manufacturers of alumi-

Inquiry No. 7S16.-For makers of zinc white and
Inainy No. $7817-$ Wanted an antomatic device
for iltitne severage from low level to a height.
Inquiry No. 7818 .-Wanted, makers of air tools
 Inaniry No . 8820 i. -For
ors and other such devices.

Inairy No. 7822.-Wanted, a device for striping

Engine and Foot Lathes
 SEBASTIAN LATHE CO., 120 CuIvert St., CIncinnati,

The Cupper CIIP

entangling and gives three time
the capacity of any other Clip fo ate capacity of any other. Clip fo
attachng papers together.
Best \& Cheapest. All Stationers.

Keystone Well Drills

 KEYSTONE WELL WORKS
 THE BARKER MOTOR has from the first shown itself to be
of superior design. of superior design. Mechanical
ideas of proven worth, combined
with the best materials and careful
itt the the leader of its class.
L. Barker, Norwalk, Conn.

Mustard \& Company | GENERAL IMPORTERS AND |
| :--- |
| COMMISSION AGENTS |

Plumbing Supplies, Safes and Scales. The largest Hardware, Machinery and
ING ROAD shanghai, china
ALL Aboutpaliv FREE

SUBSIITUIES FOR COAL

Are described from the technical
tandpoint in the following Scientific American Supplements.

Each Supplement named costs 10 cents by mail
 The article enumerates the principal peat
bogs and states their financial possibilities.
 able economic report. 1411 . A valu-
 PEEAT FUEL. Scientific American
Suplement 1492. The paper fully des-
cribes the Bessey process.
LIGNITE, PEAT, AND COALE DUST
 MOOR CULTIVATION ANB PEAT
INDUSTRE IN GERMIANYY
TIFIC AMERICAN SUPLEMENT 1481 SCIEN- An excellent critical review.
DOMESTIC COKE AND BRICOKE O VENS. By R. M. Atwater,
SCIENTIFIC AMERICAN SUPPLEMENT 1211 .
THE WHITE MINERAE. PRESSS American Supplement 12\%4. An article describing and illustrating an American
briquetting machine. Price 10 cents each, by mail. Order through your Newsdealer or from

MUNN \& COMPANY
361 Broadway
NEW YORK

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters or
no antention will be paid thereto. This is for
our information and not for publication. References to former articles or answers should give
date of paper and page or number of question
pairies not answered in reasonable time should be repeated; correspondents will bear in mind that
some answers require not a little research, and,
though we endeavor to reply to all either by
letter or in this department, each must take his wisn to purchase any article not adver-
Buyers wishing to corch in our colums will will furnished with
tised
addresses of houses manufacturing or carrying the same.
Snfial W written
renation on matters of personal without remuneration. cientific Ammerican Supplements referred to may be
had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Mineralse. sent for exami
marked or labeled.
(9878) E. J. J. asks: 1. Will a storage battery made up of a bundle of thin lead plates separated by thin layers of asbestine paper be efficient? A. A storage cell can be
made by the use of thin sheets of lead bemade by the use of thin sheets of lead be
tween sheets of asbestos. It would not be heavy enough to be efficient. This is the first way a storage cell was cloth. 2, What would be the surface required to give a current of 0 amperes? A. A storage cell may give 4 to
amperes per square foot of negative plates, 8 amperes per square foot of negative plates,
counting both surfaces of the plate. 3. What would be the effect of using a stronger solu tion of sulphuric acid than 10 per cent? A. Too strong an electrolyte will consume the return. Sulphate of lead will be formed, and the plate will be destroyed. (9879) F. E. W. writes: The stateents and process of reasoning of your corespondent J. F. in Notes and Queries No. 9840 re so obviously and fundamentally erroneous,
hat I am surprised that you should print it without some editorial comment. To begin with, there is no such quantity in mechanics as "accelerating velocity." Perhaps J. F. intended to speak of acceleration; but if we
grant that it was acceleration that was meant, grant that it was acceleration that was meant,
then the dimensions in which it is expressed then the dimensions in which it is expressed
are wrong, for acceleration is not "feet per second," but feet per second per second. In
fact, all through his argument J. F. has hopelessly confused the terms used in mechanics, nd finally concluded by an attempt to subtities which are as radically different in their nature as are volumes and areas. When we speak of a freely falling body, we do retarding media, but one that is acted upon by the force of gravity alone. It is only under this latter to such a falling body. To show that a ball to such a falling body. To show that a ball
of lead and one of cork will not reach the ground in the same time if they are dropped of quantities we have to deal with in the solution of the problem. Without going too deeply
into the question of dimensions, we define both weight and force as being the product of two factors, or
Weight $=$ Force $=\underset{\text { Velocity }}{\text { Mass }} \times$ Acceleration, Time
When a body is allowed to fall in a vacuum, it is acted upon by the force of gravity alone
This force is equal, by definition, to the product of the mass of the body by the acceleration therein produced,

$F=M \times A$.

Now, suppose the same body to be allowed to fall in air. The resistance offered by the air to the passage of the body through it is a force
(which we may call f) and acts in direct oppo sition to the force of gravity, so that the resul tant force, acting downward on the body, is less than in the first $=M \times A^{\prime}$. The ieft-hand member of this equation is
obviously less than that of the preceding one so therefore our right-hand member must also be less. But as the mass M is constant, the only factor that can have decreased is the acceleration, and therefore A^{\prime} is less than A This is the same thing as saying that gravity cannot accelerate a body so rapidly in a re sisting medium as in a vacuum, a statement that ought to be self-evident. Let us consider
now two balls of the same identical shape and size, but one weighing 40 pounds and ence that each ball meets with a resistance of pound when it is falling through the air at some uniform velocity $=v$, say. Then when the two balls are dropped in a vacuum, we
$40=m_{1} \times a_{1}$ for the heavy ball, and
$\begin{aligned} 40 & =m_{1} \times a_{1} \text { for the heavy ball, } \\ 2 & =m_{2} \times a_{2} \text { for the light ball. }\end{aligned}$
The masses m_{1} and m_{2} being proportional to the weights of the balls, the accelerations a_{1} and a_{2} are equal to each other, and the balls
fall in equal times.
Now, if dropped in air, when the balls are
falling at the velocity v, we will have
$(40-1)=m_{1} \times a_{1}^{\prime}$ for the heavy ball, and
$(2-1)=m_{2} \times a_{3}^{\prime}$ for the light ball.

FRANKLIN

Type G Four-cylinder Light Touring-car. Shaft drive. 1400 pounds. $\$ 1,800$.

How does "Franklin air-cooling" make a more powerful engine, and an abler car for less money ?

By creating a more efficient temperature in the combustion chambers than is possible in any other engine. By also getting rid of weight. By saving repair-cost and weight-cost; and by giving more days' work in a year.

he Franklin auxiliary exhaust does what no other inion ever did for a motor-car cylinder; lets out the hot, gases before they have a chance to over-heat the cylinIt prevents flame being carried out along the main es to burn or pit them, and cause them to leak comsion. It permits the cylinders, being cooler, to take in ger charge. and enables the charge to do its full work y and unhampered. nd here is an equally important fact: while Franklin ders do not over-heat, they also do not under-heat. A ain degree of constant heat is necessary for the best in a gas-motor cylinder. Franklin direct air-cooling

Send for the handsomest and clearest of all motor-car catalogues. 4-cylinder Runabout, $\quad \$ 1400$ 4-cylinder Touring-car, $\$ 2800$ 4-cylinder Light Touring-car, \$1800. 6-cylinder Touring-car, \$4000
H. H. FRANKLIN MFG. CO., Syracuse, N. Y. m. A. l. a.m.

From this we see that Therefore the percent $a^{1}=3940 a_{1}$ and $a^{\prime}=1 / 2 a_{2}$ celeration due to gravity is only $21 / 2$ per cent or the heavy ball, while for the light ball it is 50 per cent. Therefore the heavy ball is accelerated most, and falls the faster. It is thus clear that the retarding force of the air due to the passage of the balls through it, which is quantity that can be subtracted from velocity, as J. F would suve it but from a enters the equations of motion in an entirely different way. A. There is perhaps no proper defense for having printed Query 9840 without a refuting comment, but it was done to show a type of reasoning which very often comes to our desk. Indeed, this matter of falling bodies retarded by the atmosphere is probably the most prolific in our correspondence, only a very small portion of which gets into print. The demonstration you give is probably quite too technical for the average
reader of Notes and Queries, whom we are always obliged to keep in mind in deciding what to insert in the column. The new expression for acceleration, "feet per second per second," is correct, but in the editor's experience with classes it is in no way an improvement over the older mode of expressing the same fact, if indeed it is not really a block to understand-
ing. To meet the needs of those whom we ing. To meet the needs of those whom we
must keep in mind, who are not versed in mathematical mechanics, we must avoid the equation as much as possible, and make our explanations in words. This is not as satisfactory to the mathematician, of course, but we are confident that it meets the needs of our average reader.
(9880) J. R. W. asks: Please explain the following phenomena in the Notes and Queries department of the Scientific Ameritwo friends and myself witnessed the falling of a meteor near Springfield, W. Va. The sun was shining and we were looking toward the east. A mountain about 1,000 feet higher than where we were standing lay one mile east of us. The meteor was brilliant red, and about
the size of the planet Mercury. When first obthe size of the planet Mercury. When first ob-
served it seemed about 500 feet served it seemed about. 500 feet higher than
the top of the mountain. It fell nearly vertithe top of the mountain. It fell nearly verti-
cal, and seemed to drop on the mountain about one-third way down from the top, and was so plain that we located where it seemed to fall, by a tree. On examining the place no trace of it could be found. A few days after I read an account of a large meteor falling in Clark you think the on the same day and hour. Do you think the meteor we saw was the same one
that fell in Clark County? The distance is that fell in Clark County? The distance is 40 to 50 miles. A. It is very easy to believe
that the meteor described as seen above a that the meteor described as seen above
mountain top was in reality 40 miles away. There is no possible way to estimate distances in the sky, in the line of sight. An error is most easily made in judging the distance of such à object.
(9881) M. L. C. asks: How could I arrange so that I would get electric sparks by sliding a silken cushion (or any other material)
along a glass rod back and forth? not possible to obtain sufficient electrical energy by rubbing a glass rod with a rubber held in the hand to produce sparks. A plate swiftly rotated as in the various machines is needed. The best which can be done with a roder and rubber in the hand is to have the rubber of
silk or woolen and lined with some strips of tinfoil connected to a wire which extends out so that the electricity which is generated may be conducted to the place where the spark is desired. Of course, the best way to get electric sparks is by the electrophorus. The making of this is easy. You can find out how to proceed by getting St. John's "How Two Boys Made Their Own Electrar Apparatus, a fine book we send for $\$ 1$
(9882) W. E. B. asks: Please inform me, through Notes and Queries, what material is needed, and how to construct the so-called water-pail forge. A. The materials needed to
construct a water-pail forge are a pail, some construct a water-pail forge are a pail, some
salt water, and some sheet lead. Place the sheet lead so as to nearly or quite cover the bottom of the pail, and have a strip extend up out of the salt water, so as to attach the positive wire to it. The negative wire is attached to the piece of metal to be heated, and the metal is dipped into the salt water. Instantly a flash of light occurs, and in a second or two it is white hot. The forge cannot be worked with much less than 220 volts
(9883) J. W. asks: 1. What is the increase of velocity of a falling object per second? A. The velocity of a falling body increases 32.16 feet or 980 centimeters each second of its fall. 2. How long would it take an ob-
ject to fall 3,000 feet? A. The time required to fall freely through any distance is found by the formula $S=1 / 2 G T^{2}$. In this formula, the formula $S=1 / 2 G T^{2}$. In this formula,
$G=32.16 ; S$ is the space, and T is the required time. To solve your problem, put 3,000 feet as the S^{5} and solve for T. 3. What is the speed at which an object will take fire through friction with the air? A. The speed at which an object will take fire from friction against the air varies with the density of the air. It is not speed which determines the matter sim-
ply, but time which must be taken into account. ply, but time which must be taken into account.
See books of astronomy for this under meteors since these take fire and shine by reason of the friction against the air as they fly wiftly through the air.

OLDSMOBILE

MODEL S. 4-Cylinder, 26-28 h. p. Price $\$ 2250$ (with complete lamp and horn equipment.)

Our Palace Touring Car, Model S, is the "top-notcher" of 1906. It is a genuine American car, discounting European product at Wall Street rates. Send for booklet telling how we have packed more style, speed, stability and brains into Model S for $\$ 2250$ than can be found in any car in the world for anything like the same money.

MODEL L, 2-cylinder, 2-stroke cycle, 20-24 h. p. Price $\$ 1250$. (with complete lamp and horn equipment.)

The Double-Action Olds is a car with two working strokes for every revolution of the crank It's the "Latest"-the "new thing" "-in automobiles. It is free of valves, guides, cams, an other mysteries that usually terrify the uninitiated. Its motor has only three working parts. It' a giant for hill climbing and difficult roads. Its price, $\$ 1250$. Write for our "Double-Action" Booklet.

THE DOUBLE-ACTION OLDS, Without Tonneau

For 1906 we have brought out, in addition to our well-known standard curved dash runabout (the "you see them wherever you go" kind), a straight dash or "piano box" runabout, which we sell at the same price, $\$ 650$. This style appeals strongly to a certain class of drivers. It is unique and attractive and possesses all the most desirable features essential to a satisfaction-giving runabout. It has a simple single cylinder motor, with 7 h . p. It is lever-controlled. Starts from the seat; has safety device to prevent all danger of back fire; effective and easily operated brakes, and many attractive and serviceable features, making it up-to-date and desirable in every -a big.value for the money, and essentially a car for business utility.
Use the Catalog Coupon below for further particulars.

OLDS MOTOR WORKS

Lansing, Mich., U. S. A.
m Canadian Factory, Packard Electric Co., St. Catherines, Ont. Member of Association Licensed Automobile Manufacturers

NEW BOOKS, ETC.

Modern Turbine Practice and WaterPower Plants. By John Wolf Thurston. New York: D. Van Nostrand
Company, 1905. 8vo.; pp. 244 Price $\$ 4$. $\stackrel{\$ 4 .}{ }$ Modern turbine practice is thoroughly de-
scribed in this book, whose object is to give scribed in this book, whose object is to give
such information with regard to modern tur bines and their proper installation as is necessary to the hydraulic engineer in designing a water-power plant, and no attempt has been made to treat the designing of turbines. The writer has designed turbines both in America and in Europe, and has been connected in eng neering capacting with waty 200000 her having been in charge of the hydraulic work during the planning and construction of some of the most important developments in Canada He has had an excellent opportunity to study the subject from the point of view of the tur bine builder and of the turbine user. In the first part of the book the author points out the direction in which improvement is to be sough in the present American turbine practice. turbine and its close relation to the hydraulic turbine, the writer has included a chapter on this subject. It is an excellent work, and will prove of great value to the hydraulic engineer The Industrial Problem. By the Rev. Ly$\mathrm{man}_{\mathrm{W}}$ Abbott. Philadelphia: George 196. Price, $\$ 1$.

This book contains the lectures on Chris tian sociology given under the auspices of the Rev. William L. Bull Lectureship during the present year. The four lectures by Dr. Abbott are on the Industrial Problem; the Political Solution-Regulation; the Economic Solution -Reorganization; and the Ethical SolutionRegeneration. It is unnecessary to state that these lectures ane Dr. Abour most acterist on this, the greatest problem of our inter.
Précis D'Hydraulique. La Houille Paris: J. B Ballière et Fils Paris: J. B. Ballière et Fils, 1905 12mo.; price, $\$ 1.50$. 317, 49 illustrations
Price, \$1.5
This work from the pen of Prof. Busquet ha for its aim the placing at the disposal of all
engineers, and others interested in the use of water power, of the principles to be followed in the construction of hydraulic power plants. M. Busquet first states the primordial laws of hydraulics which must be followed in plants of this character, and he then follows this with a discussion of the flow of liquids through pipes and in open canals. The latter part of and waterwheels, and there is a closing chapte on the "Creation of a Water Power." The book, while more or less technical in character, does not go into mathematics beyond the solution of ordinary arithmetical problems, and the employment of the first principles of geometry.
Sugar and Sugar Cane. By Nöel Deerr
Manchester, England: Norman Rod-
er, 1305 . 8 .; pp. 306 . Price, $\$ 3$. on the agriculture of sugar cane and on the manufacture of cane sugar. As there is no recent work in English covering the canesugar industry, the author hopes that this compilation may be of use to the Englishspeaking community connected with the industry. The book is a most comprehensive one, and will certainly be of the greatest possible is a book which we can recommend
Les Fours Electriques et Leurs Applications Industrielles. By Jean Escard. Preface by Henri Moissan. Paris: Vve. Ch. Dunod, Editeur, 1905. 8 vo.; pp. 511. Price, $\$ 4.50$

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending January 23, 1906.
ANDEACHBEARINGTHATDATE rSee note at end of list about copies of these patents.।

(itodoari= $=$ Dapton
$\mathrm{A}^{\text {drawing room awheel. }}$ equal to the hished in every way
 cases, card cases, speabing tube, etc., beveled plate
glass
The
The
Stoddard-Dayton Limousine Car has a special type of tikx 5 in. four cylinder motor; water-cooled
frame of hot rolled, high carbon, pressed steel sliding gear transmission; three speeds and re-
verse-
iedectective type, can change from high to
 cally noiseless i entire transmission on roller bear
 Send for our roob book $K-$ It's FREE
The DAYTON MOTOR CAR CO., Dayton, 0

PATENTS

Our Hand Book on Patents, Trade-Marks,
etc., sent free. Patents procured through
Munn \& Co receive free notice in the Scientific American MUNN \& CO., 361 Broadway, N. Y.

NEW YORK SCHOOL O AUTOMOBILE ENGINEERS

crices, etese addroes
hie manufacturess
wit ROOT BROS. CO., Plymouth, Ohi
Cuncret, amoverid Cancute Cancrete Bililing Plows
Sjientific American Supplement 1543 contains an
article om Concrete, by Brysson Cuning am.
The article clearly describes the proper composition and mixture of concrete and gives
the results of elaborate tests. Scientific American Supplement
proporition of gravel and sand
to be used in Scientific American Supplements 1567, 1568 , 156 1549, 157\%, and 1571 contain an elaborate dis-
cussion by Lieut. Henry J. Jones of the
various systems of reinforcing concrete, concrete construction, and their applications.
These articles constitute a splendid text book on the subject of reinforced con
ing better has been published.
Scientific American Supplement
irticle by Spencer Newberry in which prac-
in tical notes on the proper preparation of con-
crete are given.
Scientific American Supplements 1568 and 1569
present a helptul
concrete blocks by Speount of the making of Newberry. Scientific
eritical review of of of ciew
reinforced concrete.
 ifive a resume in which the various systems
of reinforced concrete construction are dis-
cussed and illustrated. Scientific American Supplement 1564 contains an
article by Lewis A. Hicks, in which the
inerits and Lefects of reinforced concrete are inerly
analyed.
cientific
 Webb.
Iach number of the Supplement costs 10 Iach number of the Supplement costs
cents.
a set of papers containing all the articles Order from your newsdealer or from

MUNN \& CO.
3ijl Broadway, New York City

Casting machine, ingot, JJ, Il
Cment post truss, L. Clark
Chandelier, W.

$\underset{C}{C}$

Cothes pin, A. G. Borneman ...
Clutch, friction, J. F. Wison....
Clutch, friction, J. D. Maxweli...
Clutch operating mechanism

C

Compass indicating. apparatus, B.
Compound engine, J. Venator B.
Compressor cooler,
concrete building block, Haller $\&$ Billings.
ley

Derrick,
Derrick,
Dial. J. Newman
Dia

Diaper,
Dilator, G.
Disk drill,
Disklay fix
Disslat
Dislay

Ditc
Doo
Do
Do

Druggist's prescription file, R. E. King.
Dust collector, J. V. O. Pam..........
Dust oollector, B. Kern, Jr...........
Electric circuit breaker, F. 0. Hartman.

Elevator gate, automatic, P. F. Blim......
Elevator or jack, Wenzelmann \& Overiot.
Elevators, retarding device for plunger
End cell switch, $\mathbf{j} . .$. Bijur
End gate latch, wagon,

Extractor. See Cork
Fabrics, oxidizing,
B.
.
Cleffacto
Fabrics, oxidizing, B. Cleff \ldots.
Feed water heater, o. L. Stump
Feed water heater, G. A., R., H
son
Feeding
Sich
and band cutting mechanism,
F
Felly, wheel, C. Heart
Fence machines driving mechanism for
coiler spindles of wire, Backlin \&
$\underset{\text { Fence machines, tension mechanism for wire }}{\quad \ldots}$

Fifth wheel, J. Kreiziger
Filing cabinet, F. W. Trobey
Filter, J. T. Cunningham
Fire alarm and thermo
Fire escape, J. J. F. Butior

NORTHERNN

Northern Touring Car- 20 h. p., 5 passengers, double four-inch tires, gas and oill lamp equipment, $\mathbf{\$ 1 8 0 0}$

In quietness, in style and elegance of appointment, in ease of riding and control, in accessibility and simplicity of mechanism, and in strength, the Silent Northern is not excelled. It is also the only dustless car and the only car at the price equipped

Northern encased mechanism, Northern Three-point Motor support, Northern removable oil box, Northern 24-inch fly-wheel and Northern direct drive, by which power is delivered to the rear axle with absolutely no loss, are
points of acknowledged superiority insuring highest efficiency on all roads, points of acknowledged superiority insuring highest efficiency on all roads, low
cost of maintenance and freedom from trouble. Four full elliptic springs and a long wheel base (106 inches) guarantee comfortable, easy riding. Write for Catalogue 21 and full information about

```
1906 MODELS
```

7 h. p. Sturdy Northern Runabout with lamp equipment
20 h. p. two-cylinder car. with gas and oil lamp equipment
$20 \mathrm{~h} . \mathrm{p}$. Limousine

$\$ 650$ 1800 2500

Northern Manufacturing Company, Detroit, Mich., U. S. A.

Wonder Electric Lighting Outfit

50 Cents Reference Library

This magnificent work-costing $\$ 750,000$ to produce-is a Dictionary combined with many features of an Encyclopedia. In fullness of definitions, number of words defined, five big volumes [11x91/2 inches in size], on every subject, defining every word in the English language, and giving its derivation onevery subject, defining every word in the English language, and giving its derivation
and pronunciation. We have obtained a limited edition, which we will close out on the easy monthly payment plan. Our bargain offer takes off two-thirds of the price and we pass the set on to you at less than half the price of any first-class
reference work. We send the complete work to your home for examination, without charge, and
if you decide to keep it a first payment of 50 cents secures a set-to ment of 50 cents secures a set-to
be paid for while you are using it.

$\$ 5$ Atlas FREE

To bring a quick response to
this offer we will give absolutely this offer we will give absolutely sons who order a set of the AM-
ERICAN ENCYCLOPEDIC DICTIONARY from this advertisement, a splendidly bound copy of the Modern Atlas of the World. The Atlas is 10×13 inches in size (bound in fine red cloth) and contains 100 maps in 6 to 12 colors;
states and te world and all coul

is $\$ 5.00$; but if your order is among the first 250 we send it to you fre

Sets in Five Massive Volumes

The set contains 5,000 pages, 250,000 words, 3,000 illustrations and 50,000 encyclopedic
definitions. In printing, paper, illustrations and binding this work is so nearly perfect that
GreatestDictionary Bargain Ever Offered

 field of human knowledge. A set in your home means a liberal education for your children and a constant source of refer-
ence for the older members of the family. The entire work has been recently revised and enlarged by a staff of American
 The volumes are bound in handsome half-leather binding,
durable as well as artractive. The $\$ 5.00$ Atlas will be given
free with the first 250 sets ordered from this advertisement. Remember that this magnificent Atlas will cost you nothing. In Reddition to reducाng the price of the Dirctionary
from $\$ 56.00$ to $\$ 2.50-$ payable in easy monthy paymens-we from $\$ 56.00$ to $\$ 20.50$-payable in easy monthly payments-we
give you the A tlas without charge. This low-price offer
in give you the this special edition, now almost closed out. Order
is limited to
to-day before ti it too late

MAIL THIS COUPON.

THE DOOM OF DUST

by a broom or carpet sweeper only a little of the visible dirt is removed, while the mul titudes of invisible germ-infected dust particles are simply stirred up from the floor servant carefully dusts them all down.

The dust is transferred-not eradicated The dust

YACUUM CLEANER
This machine actually sucks out all the through and dirt visible and invisible can be disposed of safely The air in a room thus cleaned is noticeably crystalline
You know that your house is clean. W found $121 / 2$ pounds of dirt in one "well kept dining room,

Be Sure your House or Office is Clean Buildings cleaned by the Vacuum Cleane stalled in your basement run by clectric other power, and your whole house or building kept clean at low cost of maintenance. For full particulars address
VACUUM CLEANER CO DINITY PIACE NHW YOR

Let Me Sell
 exclusivelv. if y you have a
Pritent for sale, call on or
WILLIAM E. HOYT Patent Sales Specialist
$\mathbf{2 9 0} \mathbf{C}$, Broadway, $\mathbf{N .} \mathbf{Y}$. City

Investigate

the Poultry Business

Write for a copy of my book
which describes the profit-
able combinations of Egg, Nis of Eg,

Tt gives the prices paid for eggs and ponitry
weer hy week for the past throer years. rt
tells how and when a hatch taken oft each teek in the year could be most proftably
warketed. It shows how you can make
mat.00 a large winter roaster. tit tells what. profts
can be made wit each. the
and the costs of production. popular breets, I have helped thousandsto.
poultry My money with
My Model Incubators and Brooders
 that win insure suceess without your spend-
more
Send for my complete literature.
CHAS. A. CYPHERS
3944 Henry Street, Buffalo, N. Y.

SPARK COILS

Their Construction Simply Explained
Scientific American Supplement
160 describes the making of a $11 / 2-$ inch spark Scientific American Supplement
1514 tells you
SL2 explains fumerican Supplement
Scigntifer 1522 explains fully the construction of a
jump-spark coil and condenser for gas-engine ignition. Sientific American Supplement spark coil. Sific American Supplement an alternating current coil giving a 5 -inch Spaientific American Supplement
1527 describes a 4-inch spark coil and con
spar
denser scientific American Supplement of a definite length of spark.
The above-mentioned set of seven papers will be supplied for 70 cents. Any single copy will be mailed for 10 cts . MUNN Q COMPANY, Publishers 361 Broadway

Flour mill rolls, truing device \because orr,' c . Daw

P

Gar
Gas
Gas
Gas
Gas
Gas
ase

Ho

Molding machine, Ha. Besser \ldots............
Money chaning machine, D. Peterson
Motor. See Water
Motor. See Water motor.
Motor, Cramer \& Haak
Motor reversing

13-26 Merchants

To find the right kind of a pencil for a merchant's use, look for "Merchants" in the index of Dixon's Pencil Guide, turn to pages 13-26, and you find it described by name and number.

Other pages for every person and every use.
Dixon's Pencil Guide, a 32-page book, right pencil for your special use. The book
, W
JoSEPH DIXON CRUCIBIEE Co., Jersey City, N. J.
RADIUM AND THE RADIO-ACTIVE

Parker, Stearns \& Co., 226 South St., Dept. G, New York

THE MIETZ \& WEISS

Letters That Bring In Money

How to Talk and Write to Win Success

These books teach young men how to write original, forceful letters that win good positions and good salaries; - teach young women how to write entertaining attractive letters that secure social prestige and a circle of admirers; - teach salesmen tactful letters that bring in money and give no offense ; - teach correspondents how o write clinching business-bringing letters;-teach stenographers how to master correspondence; - teach advertisement writers how to write strong, "pulling" copy, They form a complete college course in business English-to be read at leisure-to be put in daily practice at once. . Many successtul men are earning large salaries merely becaase the kis the the concisely, forcerul. This set of books conprise the in sold for $\$ 25.00$. Every business man, employer and employe should have this ready for referen
If you want your letters and conversation to have the "vim" and "go" of words "that win, if you want to embody in your correspondence and speech that "magic" touch, snap and personality, that sounds a golden echo in your cash drawer-Sherwin Cody's four little volumes will enable you to do it.

The Study of Words.
Never before has the study of words been made so simple, so
clear. so concise as in the first of these compact, hip-pocket

 their spelling, their pronounciation, their defnitions. Many
pioneer
pideter titers- even the theads of of several colleges
-have pinder wher
adopted this book as a a source of convenient reference.

Simple Rules

Volume II is no ordinary dry, uninteresting grammar. It elells
more in its few pages than the welghty volumes used by

The Methods of Master Writers
Volume III explains the "tricks" and the simple principles of
-effective writing; the methods of writers who are masters. It

 the power of simplicity harmony of style, imarination, reaility:
the une of model in in writing fiction, and d a priceless appendix
which explaids Composition
The frst esential of any successful composition is that it be
interesting.
This convenient volum explains
how
End ise

may be made not only co
effective
compor
It explains

Write for free copy of The Buckboard Story live agents in unassigned territory.

Tools! Tools! Tools!

and all you want to know about
them. Our Tool Catalogue No
22 is a colth-bound book of 950
pates If you want to them. Our Tool Catalogue No.
22 is a clothbound book of 950
pages. If you want to ". now Sent post-paid on receipt of
\$1.00 which will be refunded
.rom vour first purchase from from your first purchase from
us of $\$ 10.00$ or over. MONTGOMERY \& CO 105 Fulton Street, N. Y. City

liPress Your Pants LITTLE WONDER
 G. E. Proctor Co., 140 Nassau St., N. Y ELECTRIC LAUNCH MOTOR. - THE

Automobile Knowledge
Money in Your Pocket practical, money-arly school that provides complente mone-saving training
by mail in operating, repairing, constructing by mail in operating, repairing, constructing and de
signing every kind of motor vehicle and motor boat
We have special courses for owerers, shop and fac We have special courses for ownerers, shop and fact.
tory employees, chauffeurs, motor-boat and motor-cycle There are only two ways of learning anything.
One is slowly and tediously to gain the experience
yourself yourself; the other (and better) way is to take ad Though we offer you the long, hard-learned prominent work in the development of the new
vehicle, we offer this experience in such form that
to teach it cost only a few cents each day- the few minutes and
the feew cents that you ordinarily waste ducted by well-known men, of long experience and proved ability both in automobile engnneering and
correspondence instruction. It is strongly endorsed
by prominent manufacturers, club and association officials, vacing men, trade-paper editors, and other thority to what they say.
In the automobile industry, the demand for com petent men is so great that ability, no matter ho service. This makes it easy for an ambitious man
to qualify quickly for good wages and prompt adFor further information, send us your name on the accompanying coupon. This will cost you only
a moment of time and a postage stamp, which will
be well spent for interesting and convincing litera-
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ FILL OUTT TEAR QFF MALL TO-DAY•••८७८८e

 courses
Motori
Name.
Street and No

Valuable Handbooks I R I I
 The Technical World Magazine is a new magazine with a new field. It is

 not a dry, scientific magazine way over the heads of ordinary people, but a live, useful and intensely interesting monthly that appeals to every intelligent man possibilities who wants to know how and why things are done it fake that are more fascinating and the romances of invention as a basis study. It gives a simple entertaining explanation of the everyday things that . education th miss-inspiring, entertaining, and instructive.The rechnical W orld Magazine will not only post you on the great eninteresting form, knowledge which you will find useful every day-repairing a lawn mower, running a small engine, doing home carpentry work, installing electric bells, telephones, putting a new valve
in the kitchen pump, etc. It shows how hun-
dreds of little jobs may be done at home without sending for the carpen
the mason or the electrician
We know you will want the magazine if you to fill out the coupon below and mail it to us with a dollar bill at our risk and we will send you the magazine every month for twelve months. If you don't think it worth \$1.oo say so any time during the year and we'll refund your
money. If you subscribe before April 7th we

The Technical

World Magazine

coupo

If you find you don't want the magazine,
fust ask for your money back and keep just ask for your money back and keep
both the magazine and the hand book
for your trouble. That's fair, isn't it? We could not afford to do this if we did not have confidence in the merit of the magazine.
We have taken ten thousand new subscriptions during the last two months on thes terms without being called on to refund a single dollar.
We have been able to secure a special edition of these valua handsomely and substantially bound in art buckram. They conhandsomely and substantialy bound in art buckram. They coninformation on the subjects treated. Fach hand-book has been written by an acknowledged authority and is profusely illus
trated with full page diagrams, half-tone cuts, line drawings, etc. trated with full page diagrams, half-tone cuts, line drawings, etc.
and contains valuable tables, formulas, "short cuts," etc. Size o page, 7×9 inches.

WANTED: $\begin{aligned} & \text { We want a live energetic man to solicit sub= } \\ & \text { scriptions in this town. Easy work and big }\end{aligned}$ For particulars pay. Many solicitors areearning $\$ 6.00$ a day. TECHNICAL WORLD MAGAZINE

Civil Engineering and Surveyors' Instruments
DRAWING INSTRUMENTS, MATERIALS AND SUPPLIES We are the largest house in the world. Try us on BLUE PRINT PAPER, TRACING CLOTH, DRAWING
INES, or SURVE YING and ENGINEERING INSTRUMENTS
A. S. ALOE $\underset{\text { Write for Catalog. }}{ } 515 \underset{\text { Ulive }}{\text { Ole " }}$ Street
ube. See Pile tube.
Tunnel shield. Parmelee \& Williams.
urbine, elastic flide, P. C. Oscanyan
urpentine collecting spout, crude

\qquad

Shovel support, steam, L. P. Martin.
Show case. AT, Hallock
Show case corner, J. A. Henderson

Spittoon, F. Reinschmidt \ldots.
Stacking method and apparatus, straw, Gunn
Hoods, C. J. Monfort
Steam trap, T. Marcote
Steel, hardening R. A. Hadield

Telemeter, Joors \& Mercenier A. Fitiel.....
Telephone toll apparatus, G. A. Lo......
Telephones and telegraphs, selective cal

Threshing machine, A. Kylonen .
Tire heating apparatus,
Tobacco box, pocket. I. Z. Cohen.
Congue switch E. B. Prior.....
Tool, pneumatic, w. Er Bader.

-
State...............

A Wonderful New Invention! Sixteen Times Louder than all other Talking Machines

Absolutely new principles. The Latest Invention. Reproduces Col-

umbia and all other cylinder re-
cords. Also Twentieth Century
cylinder records half a foot long.
Astonishing results. Splendid Latest Invention. Reproduces Col-
umbia and all other cylinder re-
cords. Also Twentieth Century
cylinder records half a foot long.
Astonishing results. Splendid Latest Invention. Reproduces Col-
umbia and all other cylinder re-
cords. Also Twentieth Century
cylinder records half a foot long.
Astonishing results. Splendid Latest Invention. Reproduces Col-
umbia and all other cylinder re-
cords. Also Twentieth Century
cylinder records half a foot long.
Astonishing results. Splendid Astonishing results. Splendid Astonishing results. Splen
for dancing parties. A perfect substitute for the orchestra
For sale by dealers everywhere, and in all the of the
COLUMBIA PHONOGRAPH COMPANY, Gen'l

"IwentiethCentury" Oraphophone COMPANY, Gen'l Creators of the Talking Machine Industry,
Owners of the Fundamental Patents,
Largest Manufacturers in the World GRAND PRIZE PARIS, 1900. DOUBLE

Cut out and fill in attached coupon and mail at once
 360 DAYS APPROVAL and We Pay the Freight. If you do not find the Kalamazoo exact-
$l y$ as represented, the trial does not $l y$ as represented, the trial does not
cost you a cent. It will pay you to incost you a c
vestigate.
Send Postal for Catalog No. 346.
 TurnaltUpside Down

Motion Picture
MACHINES and FILMS STEREOPTICONS and SLIDES Theatres, Halls, Show Tents, etc.

SENSITIVE LABORATORY BALANCE. By N. Monroe Hopkins. This "built-up" laboratory
balance will weigh up to one pound and will ourn witha
quarter of a postage stamp. The balance
by any amateur skilled in the use of tonls, aud it will
 A young man of 30 years has 82 chances out of 100 of living to receive payment to himself of a 20-year endow. ment policy

TRADE MARKS.

Bed
Boi
Boo

 Co. varnish, \ldots S. White Dental M
facturing Co.

 Gloves, Abraham \& Straus
Gloves, Fownes Brothers $\& ~$
Hair drying powder, Waldeye
Harnes. Hair drying powder, Waldeyer \& Betts.....
Harness, saddles, colllars, and bridles, Pad
ucah Saddlery Co

ps, incandescent
candescent Lamp C C

Mullins Steel Boats
 The W. H. Mullins Co., 118 Franklin Street, Salem, Ohio.

 HIS is a story of outdoor boy life, suggesting a large number of diversions which, aside from affording entertainment. will stimulate in boys the creative spirit. In each instance complete practical instructions are given for building the various articles.
(I] The needs of the boy camper are supplied by the directions for making tramping outfits, sleeping bags and tents; also such other shelters as tree houses, straw huts, log cabins and caves.
(I] The winter diversions include instructions for making six kinds of skate sails and eight kinds of snow shoes and skis, besides ice boats, scooters, sledges, toboggans and a peculiar Swedish contrivance called a "rennwolf."
II Among the more instructive subjects covered are surveying, wigwagging, heliographing and bridge building, in which six different kinds of bridges, including a simple cantilever bridge, are described.
(II In addition to these, the book contains a large number of miscellaneous devices, such as scows, canoes, land yachts, windmills, water wheels and the like. A complete table of contents sent on request

MUNN \mathcal{E} COMPANY

361 Broadway ". scientific american" New York City

The Scientific American Boy

By

A. RUSSELL BOND

12mo. 320 Pages. 340 Illustrations. Price $\$ 2.00$ Postpaid

Just Published

Tnexa

[^0]器

Febreary 3. 1906.
Scientific American

615 N. 6th St., Terre Haute, Ind. ELECTRO MOTOR, SIMPLE, HOW TO

FREE $\begin{gathered}\text { cataloguecontaining unparaleleled dist of splen- } \\ \text { dia type writer bargains. } \\ \text { Send for it to-day. }\end{gathered}$ Rockwell-Barnes Co., 659 Baldwin Bldg.. Chicago, III.

NMMMMALTEXPERIENCE DESIGNS COPYRIGHTS \&

 Scientificic American.
HEARY CAREYBAIRD \& CO.

Colleges and Schools

PARSELL and WEED, 129-131 W. 31st St., N.Y. City Portable concrete
Block Machine

 costnd.woter and Portland cement
onind materialis required.
 inightly Typewriters Nowno grow ronatat har:

 Masons Moedical co. fuisk., w. v." We

PRINTS.

A printed copy of the specification and dr of any patent in the foregoing list, or any in print issued since 1863 , will be furnished this office for 10 cents, provided the nam

advantage than wasting them in the barber shop ?
NOTHING TO ADJUST, NOTHING TO LEARN. SIMPLYLATHER WELL AND SHAVE.

RUBBER

EXPERLTENTAL WORK Scientificallv

Models. Exper. Work, Gears, Dies, Tools, Small Machy.
Ecient. Insts. M. P. Schell, 506 Mission St, San Francisco

MODEL AND EXPERIMENTAL WORK,

$\$ 5$ WOLGIANO'S LITTLE GIANT $\$ 1$

OULTRY BOOK FREE

Each set in a beautiful velvet-lined box. 10 NEW BLADES, 50 Cents.
Each set in a beautiful velvet-lined box. 10 NEW BLADES, 50 Cents.
Each set in a beautiful velvet-lined box. 10 NEW BLADES, 50 Cents.

New Yorix Peting and Pading Co.
 LIMITED
 Manufacturers of High Grade
 Rubber Belting

Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

Write for catalogue.
91-93 Chambers St., New York .After centuries of experiment and failine, seienoe
achieros the hysienic smoke."

Absolutely
Inter-
changeable. Changeable. Any
number Extra
Poison Condensers Poison Condensers
may be interserted
between Bowl and
Stem. Stem.
Length. Stem and Bowl together, $51 / 2$ inches.
 If sour dealer hasn't got it, send direct to
THE ©A
$\mathbf{8 0 7}$ Times Bidge, (new), PIPE NEW. 07 Times Biag, (new), - NEW YORK

Stationaries, Portables, Hoisters, Pump.
ers. Sawing , and. Boat OutAts, Combined
with Dynamos. Gasoline, Gas, Kerosene
Send for Catalogue Send for Catalogue
State Power Charter gas engine co., Box 148, sterling, ill.
 DUdOU Also 100 useful articles. incuding Safes.

What Is Daus'Tip-Top?

Bausch2Lomb. Microscopes
 Mmenet, those that are ussed in in the eqaaning
laboratories everywhere and by individual Bausch \& Lomb Optical Co. MANUFACTURERE
ROCHESTER, N. r.

MACIC LANTERNS

FLOORS	S wort themmow	Roors
Ceilings		Partitions

Why Pedal Up Hills do motorcycle. Sets $\$ 35.00$ vert it it into a durable
plete, clamps to frame. If no bicycle, ask us as about THE SELF-STARTING
 MOTORCYCLE EQUIPMENT CO. 2 Lake Street, Hammondsport, N. Y.

STEAM USERS

Ranur maxim

The original and only genuine red sheet packing.
The only effective and most economical flange packing in existence.

Can't blow Rainbow out. For steam, air, hot or cold water, acid and ammonia joints. Beware of imitations.
Look for the trade mark-the word Rainbow in a diamond in black, three rows of which extend the full length of each roll.

Manufactured exclusively by PEERLESS RUBBER MFG. CO. 16 Warren St., New York

AGOOD INYESTMENT

 Goopell-PRATt MOTSINGER AUTO-SPARKER

Used by forty of the leading
Automobile and motor boat
 any gas or gasoline engine us-
ing make and brea
spark ignition.
spark ignition.
EVERY BATTERY GUARANTEED
to oive satisfaction or purchase
to dive satisfation or purchase
mones refunded.
WITHERBEE IGNITER CO.
27.31 Thames St..$~$ 27.31 Thames St. . . NEW YORK

I. H. C. Gasoline Engines will be tound the very best and the most
economical for use in Blacksmith Shops; Repair Shops, Small Machin
Shops, Private Work Shops, Experimental Shops, Private Work Shops, Experiment
Plants, Manual Training and Industrial Schools, Private Suitable also for all kindsof pumping. They are strong, simple, highly efficient and
easto operate They are eononic of fuel and
develop the maximum of horse poper at the
devimu develop the maximum of horse power at the
minimum coit. They require but ilttle room
and no piping. Variety of sizes and styles:

 egines berire investing. Do not, therefore
buy an engine of any kind before seeing our
catalog. Write to-day. We will mail it promptly
. International Harvester Company of America
zc Monroe Street. Chicago, Ill.

Che "HAMMOND"

All Languages in any sityle of Type on one Any width paper may be used on the Hammond. VISIBILITY is NO' a NEW FEATURE with the
HAMMOND. It HAS BEEN a VISIBLE WRITER for 20 years. WAS THE ORIGINAL.
THE HAMMOND TYPEWRITER COMPANY New York Sales Office, 167 Broadway
Our Adjustable Draughting Table

[^0]:

