

Vol. XGIII.-NO. 20.
NEW YORK, NOVEMBER 11, 1905.

Conveyor for Bags of Coke, Clichy Gas Works.

ESTABLISHED 1845

MUNN \& CO..
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

terms to subscribers

 the scientific a merionan publications.

NEW YORK, SATURDAY, NOVEMBER 11, 1905.

The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are articles on subjects ot timely interest. If the photographs are
sharp, the articles short, and the facts authentic, the contributions
will receive special attention. Accepted articles will be paid for will receive special atte

AN AMERICAN FLOATING EXPOSITION

In the year 1901 an officer of the Department of Commerce and Labor suggested that for the further ance of our export trade it would be an excellent idea to equip a large steamer as a floating exposition of American products, and dispatch it on a tour of the principal ports of the world. At its first mention the idea is a decidedly attractive one, and it receives no small measure of indorsement in the fact that it has already been successfully tried by Great Britain and, we believe, by Germany also; while we understand that as part of the comprehensive scheme for the extension of her foreign trade, which Japan has now under serious consideration, that country has planned the fit ting out of a similar vessel. We are pleased to note that a strong company which has been formed in New York has advised the Department of Commerce and Labor that they have decided to adopt the suggestion originally made in the Geographic Magazine in 1901. It is proposed to equip a steamer of about 8,000 tons for the special purpose of the expedition, and fit up the various decks with exposition booths of much the same character as those to be seen in any of our great in dustrial exhibitions, with the one important exception, however, that only exhibits of a thoroughly serious character will be accepted, all exhibits of a trivial or purely speculative and doubtful character being refused. The steamer, in addition to devoting three decks to exhibits, will have living accommodations for about 200 representatives of exhibitors. A route has been laid out which will include a visit to practically every port of importance in the world, and will involve a journey of about 60,000 miles, the trip around the world being made in about fifteen months' time.
The plan is to allow each person who subscribe for forty square feet of space or more, to display his goods and send on the steamer a representative, whose duty it will be to see that the exhibit is properly arranged at each port, to meet the merchants and deal ers invited to inspect the exhibits, explain the utility and advantages of the goods, quote prices delivered in the country of consumption, and ascertain what the markets of the country demand, the conditions of competition, and everything affecting the extension of our export trade in each particular locality. The representative will also appoint local agents at the various ports of call. In connection with the visit of the floating exhibition, extensive missionary work will be carried on at each port of call previous to its arrival. By means of circulars printed in the various languages, to be distributed hundreds of miles back in the interior, it is hoped to arouse widespread interest, and nothing will be left undone that judicious newspaper discussion and legitimate advertising can accomplish to prepare the ground for the work of the expedition. The expense of the trip is to be borne entirely by the sale of space on the vessel, of which about 20,000 square feet will be available. Attention is called to the fact that the enterprise is not designed with a view to any profitable return in money to the promoters, but is intended to be a dignified, broad-minded plan to further the cause of America's export trade.
We consider that this ambitious scheme is one of that class whose work is creative, and whose success depends almost entirely upon the thoroughness with which its well-laid plans are followed out. If none but the very best of American products are carried; if the greatest care is exercised to select competent representatives, who should be possessed of at least a fair knowledge of the language of the principal countries to be visited, and if the preliminary missionary work is judiciously and comprehensively carried out, this ex position should prove to be a most powerful factor in the extension of our export trade.

SANITATION OF THE PANAMA CANAL ZONE
That the two prevailing diseases that render life unhealthy at the Isthmus of Panama can be successfully controlled by the use of simple precautions and remedies, is the opinion of Col. W. C. Gorgas, U. S. A., who is the Chief Sanitary Officer of the Isthmian Canal zone. In a brief but comprehensive and lucid article, to be found in the last annual report of the Smithsonian Institution, this officer describes the sanitary conditions at the Isthmus, and shows the cause and cure of the two great scourges of that country, yellow fever and malaria.
Briefly stated, the sanitary problem is to protect the fifteen thousand men that are likely, before many months, to be employed on the canal, from these two diseases. Yellow fever is conveyed from man to man only by the female Stegomyia, who has previously bitten some human being suffering from yellow fever. Therefore, yellow fever cannot originate in a place where there are no infected Stegomyia, until a yellow fever patient has been introduced and has infected the local pest; or until the mosquito, infected at some distant point, has been introduced. Practically, the introduction of a yellow fever patient is the only method by which the locality can be infected.
At present yellow fever is endemic nowhere on the Canal Zone except in the city of Panama, and the immediate object of the sanitary measures is to get rid of the infected Stegomyia at present in the city. This can be accomplished with great certainty by establishing a system whereby the health authorities are certain to be informed of every case of yellow fever, and then fumigating the house in which this case occurred, so as to destroy all the mosquitoes within its borders. The same thing must be done with all contiguous houses. It has been found by experience that this kills all the infected mosquitoes at that particular focus. By doing the same thing at every other focus as yellow fever occurs, all the foci in the community are gradually destroyed, and when the last focus has been got rid of, yellow fever is at an end. A more expeditious method is to systematically fumigate every house in the town.
The Stegomyia is a house mosquito, and being cleanly in her habits seeks principally the clean rain-water barrels and water containers, and never travels far from her birthplace. Therefore, as an additional sanitary safeguard, every receptacle for water should be so screened that mosquitoes cannot have access to it. The safest precaution is to pipe the water supply in from a distance, so that the people will not need to keep a supply of water in vessels. As a further preventive of standing water, yards must be thoroughly cleaned, sewers must be put in, so as to discourage the throwing of waste water into the yards, streets should be paved and swept, and garbage collected so as to decrease to the minimum all trash that is capable, in any way, of retaining fresh water. These precautions are exactly those which the government carried out at Havana, with results so flattering that yellow fever has been wiped out of that once famous, or rather infamous, center of the scourge. When Panama has thus been freed from yellow fever, as it most certainly will be, no more cases can occur until a yellow fever patient is introduced from some infected point without. This will be absolutely prevented by a proper system of quarantine.
An even more important problem than that presented by yellow fever is the control of malaria throughout the Canal Zone. The ten thousand natives of the district are distributed in about twenty small villages along the route of the canal, and these people are very generally affected with malaria. A recent microscopic examination of the blood of these people, taken at random at various points along the line, shows that out of several hundred cases, fifty per cent contained mosquito parasites in the blood. Four times out of five, if the female Anopheles bites a native she becomes infected, and when she bites one of our nearby laborers, he in turn becomes infected. Hence, if our laboring force is not to be completely used up, as was that of the French government, preventive sanitary measures must be taken.

There are two ways of approaching this problem; either by doing away with the infected human being, or by doing away with the mosquito. Since it is out of the question to do away with the infected natives, the remedy must be sought in the extinction of the mosquito. If some substance could be introduced into the circulation of the infected man and kill the parasite, and at the same time not be injurious to the man, the desired object would be effected, and in quinine has been discovered the suitable poison. This vegetable substance is harmless to man and fatal to the malarial parasite. Most of the effective tropical sanitarians, the Germans and the Italians conspicuously, have achieved a great success by inducing as large a proportion of the population as possible to take regularly small quantities of quinine, and they have succeeded, without adopting any other measures, in doing away with malaria in the several localities,
The disease may also be successfully attacked from
the side of the mosquito, and the Anopheles may be as effectively exterminated as the Stegomyia by covering up water containers, clearing up the yards, preserving the surface of the road so there will be no puddes, instituting a regular system in all towns for the collec. tion of garbage, and by the use of oil. Since the malaria problem along the route of the Panama Canal is, because of local conditions, more serious than in any place where the above-mentioned methods have been tried, the government intends to make sure the work of extermination by applying both systems, and it is confidently expected that, by the time the work is in full swing, our laborers will be completely protected from the two great tropical diseases.

COLLOIDS, SUSPENSIONS, AND RELATED PHENOMENA. Van't Hoff's "Laws of Chemical Equilibrium in Rarefied Gases and Solutions," published some twenty years ago in the transactions of the Swedish Academy, might have escaped general attention had they not found an advocate in Ostwald. In this famous essay it is shown that dissolved substances behave like gases, but the argument is not easy to follow even now, when the facts have become familiar. It will be recalled, also, that Van't Hoff's laws, apparently, did not apply to acids, alkalies, and salts, that is to say, to the substances called electrolytes, which, when dis solved, conduct the electric current and are decompos ed by it. These apparent exceptions, however, were soon explained and the great riddle of solution answer ed by Arrhenius. Recent work in theoretical chem istry has been largely devoted to the development of the Van't Hoff-Arrhenius theory, which is now firmly established.
We know more than a hundred thousand definite organic or carbon compounds, and a great many in organic ones, all of which have fixed melting or boiling points. Many of them are also characterized by definite crystalline form. Very few of these definite and sharply-characterized compounds are found in living organisms and consequently they contribute little to the comprehension of vital processes.
Most of the substances which occur in animal and vegetable organisms do not crystallize or possess fixed melting and boiling points, and Van't Hoff's theory does not apply to them. A solution of albumen, for example, exerts an osmotic pressure so small that the mass of the albumen molecule computed from this pressure by the formula used for crystallizable com pounds is too large $(15,000)$ to be generally accepted There is no reason why the albumen molecule should not be very large, but it seems wrong in principle to apply the usual formula for calculating molecular weight to such a substance, which does not form a solution in the ordinary sense of the word.
There are, also, inorganic bodies which have very large molecules, if we may judge from their inability to pass through porous membranes. If a solution of salt or sugar is put into a bag of parchment paper or a sausage skin free from grease, and suspended in vessel of water, the salt or sugar gradually diffuses through the envelope, but many apparently dissolved substances, including silica as well as albumen and gelatine, do not diffuse under these conditions. These facts were discovered in 1830 by Graham, who gave the name crystalloids to the diffusible substances, most of which crystallize, and the name colloids to the non-diffusible substances, most of which do not crystal lize. Van't Hoff's theory of solution applies to crystal loids, but not to colloids. The study of colloids, which may fairly be called the foundation of knowledge of the vital process, has been reserved for the twentieth century, and great progress has already been made.
Silica, alumina, ferric and zinc oxides, arsenic and antimony sulphides, are some of the many inorganic colloids. Of especial interest, partly for practical rea sons, are the colloidal metals. Within the last ten years silver, gold, platinum, bismuth, and other metals have been brought into "colloidal" solution by various methods. In Carey Lea's process, solutions of metallic salts are decomposed under special conditions; in Bredig's the metal is pulverized by the electric arc under water; in Paal and Mueller's the metal is held in sus pension by dissolved substances. Under the most powerful microscope the dark brown, red, and green liquids thus produced appear as homogeneous solutions, the metallic particles being invisible, but the ultramicroscope of Siedentopf and Zsigmondy, which distin guishes objects as small as four millionths of a millimeter (1-6,000,000 inch) in breadth, resolves these and other inorganic colloidal solutions into separate particles and thus confirms Graham's view of their nature In principle, indeed, every solution, even of a salt, is a suspension. De Bruyn and Von Calcar have crystallized salt from solution by centrifugal separation, and De Bruyn and Wolff have shown that solutions of sugar, like turbid liquids, disperse and polarize light.
True suspensions, formed by filtering the coarser particles from a mixture of starch and water, or by pouring alcoholic solutions of resins into water, behave like inorganic colloids. Both are subject to "cataphoresis," that is, they are moved by an electric cur-
ent. Most of the inorganic colloids move toward the positive electrode, and Biltz has discovered that col oids of opposite polarities precipitate each other
Like the true suspensions, again, most inorganic col loids are precipitated by salts. Salts of trivalent met als (alum, ferric sulphate) are eight times as effective as salts of bivalent metals (barium chloride, copper sulphate), and fifty times as effective as salts of univa ent metals (common salt, potassium iodide). The clarifying property of iron and aluminium salts ha long been known and utilized. The Mississippi, Nile and other rivers carry in suspension immense quanti ties of solid matter which the salt sea. water precipi tates at their mouths as bars and deltas. Schloessing suggests that the humus layer of the soil would be quickly washed away by rain but for the decomposi tion of organic matter with the formation of carbonic acid, which, like other acids, possesses great clarifying or precipitating power.
The gelatine-silver emulsion with which photographic plates are coated is comparatively insensitive until it has been "ripened" by prolonged heating, which ag lomerates the very fine particles of silver salt into larger ones. In my opinion the process would be greatly accelerated by the addition of a salt of a bivalent or trivalent metal
Most organic colloids differ from inorganic colloids and suspensions in remaining unaffected by salts of univalent metals-at least, by the mere traces, often not to be detected chemically, that suffice to precipitate suspensions. Some are not affected even by salts of bivalent metals. Organic colloids also present a dif ferent appearance under the ultramicroscope, an al buminous solution showing a mass of connected parti cles, which separate, diminish, and finally vanish only after fermentation or copious dilution. This agrees with the theory advanced by Quincke, thirty years ago, that organic colloids form a sort of network, like a sponge or a mass of foam, and consist of dilute solutions imprisoned by walls formed of concentrated solutions. Buetschli has extended this theory to proto plasm and applied it to the explanation of vital processes.
Neisser and Friedmann, as well as the writer, have shown that bacteria in suspension behave like organic colloids, being precipitated only by such salts as precipitate albumen and unaffected by common salt, barium chloride, etc. The bacterium was found to have an albuminous envelope which protected it from precipitation, and certain inorganic colloids which behave like organic ones were found to be similarly protected -for example, Paal's "bismuthose."
The albuminous envelope of the bacterium is sus. ceptible of a curious modification. Serum from an animal infected with typhus bacilli precipitates typhus but no other bacilli, and similar laws hold for cholera and dysentery. This phenomenon, known as "agglutination," forms the basis of Vidal's diagnostic test for typhus. Now, Bordet has discovered that this agglutination and precipitation occur only in saline solutions, showing that the effect of the serum has been to make the bacilli more closely resemble inorganic particles in suspension. In a similar way, serum from a rabbit previously inoculated with bovine serum forms a precipitate with bovine, but with no other serum. A similar specific "precipitin" reaction exists for each warmblooded species, but the precipitation occurs only in saline solutions
We see, therefore, that the precipitation of colloids and suspensions by salts, a phenomenon whose importance has only lately been appreciated, plays a prominent part in the formation of the earth's surface and the life process of the organic cell.

"THE SCIENTIFIC AMERICAN BOY."

Every typical American boy is pretty much of a "Yankee genius," no matter what part of our great country he hails from. He can always be depended upon to provide his own diversions, even out of the most limited resources. This is an excellent trait, and should be developed to the fullest extent because of its bearing on the future career of the boy. "The Scientific American Boy," by A. Russell Bond, has been written for the purpose of stimulating this resourcefulness in boys. Genius is not a subject that can be taught, but is rather a faculty that must be developed. "The Scientific American Boy" is, therefore, not a book of instruction, but is rather a story of the doings of a club of boys, written in such a manner as to awaken the interest of the readers and induce them to emulate their example. The scene of the narrative is an island on the Delaware River, where the club spends several vacations in camp. Under the leadership of "Bill," who is the "Scientific American Boy," and with the occasional assistance of Bill's Uncle Ed, who takes a great interest in the boys, the club proceeds to develop the resources of the island, providing for their needs out of the materials at hand, and building the greatest variety of useful devices and contrivances for their own amusement and diversion. All the acts of the club are chronicled in detail, complete working draw-
ings being given in every case, so that they can, if desired, be exactly reproduced by any American boy of average intelligence. The subjects covered are quite varied. The boy campers' needs are supplied by directions for making tents, straw huts, log cabins, caves, tions for making tents, straw huts, log cabins, caves,
and the like, and a chapter is devoted to camping outfits. Complete instructions are given for making half a dozen different kinds of skate sails, and 'a large number of snow shoes and skis, besides sledges, toboggans, ice boats, and scooters. Among the miscellaneous subjects may be mentioned scows, canoes, land yachts, and the like. A number of subjects may be classed under the head of Engineering. These are surveying, bridge building, heliographing, wigwagging, how to build a gravity railroad, a windmill, and a waterwheel. Considerable space is devoted to bridge building, simple directions being given for making six different types of bridges, including a simple cantilever bridge. The latter is illustrated with photographs showing a full-sized cantilever bridge of 12 -foot span, which was actually built by four young boys, according to the instructions given. The volume is hand somely bound, and contains 320 pages, well illustrated with 320 drawings and 18 half-tone page plates.

SOME CURIOUS USES OF AMERICAN WOODS by l. lodian.

The giant sequoias of California, thousands of years old, have been preserved to this day because of their enormously thick bark. From time to time, in the course of ages, forest fires have swept through the big tree lands, destroying everything, yet only scorching for a couple of inches' depth or so the almost fireproof bark. The flames having carbonized that much of the bark, could not penetrate farther; for the carbonized portion formed an absolutely fireproof covering for the remainder of the interior bark.
In the felling of the giant redwoods for timber, tons upon tons of the foot-thick bark would accumulate as a result of the cutting up of the giants. It was often found seriously in the way, interfering with the re moval of the logs; otherwise, it would have been al lowed to remain on the ground until it rotted. So there was nothing to do but burn the unsightly heaps
But one day many years ago, a shre $\dot{d} d$ Connecticut Yankee named Atkinson, a woodturner by trade, began to think about this waste a bit, during his prolonged residence in his new home on the Pacific slope. True, the bark was too soft to make wooden nutmegs ou of it, but it might do for something else. So he though and thought; and in the course of time had produced a whole variety of useful articles from the hitherto wasted bark; dubbed it "atkinsos," or vegetable asbes tos, and made an honest living for years therefrom The industry spread; and now redwood-bark articles are-in fact, always hàve been-common property for anybody to make in the West or East. Almost all Pacific State homes have examples in their rooms of the useful articles made from this bark, of which there are two kinds, soft and hard.
Some of these redwood-bark articles are pin cushions, pen wipers, table mats (for receiving hot plates) flatiron mats (to prevent scorching), bathroom nonabsorbent mats, fishing floats, temporary corks, life buoy filling, "cork" jackets, cold-storage insulation house sheathing, heat insulation (will burn under great heat if attacked both sides, but is about six times a more efficient heat-insulator than woven asbestos). Also coin mats, moisture-proof match safes, bicycle handles, silk-hat brushes, chair-seat mats, sound-deadening insulation, mattress fillings, cork-carpet substi ute, and a variety of other uses.
The bark is entirely odorless, of a rich brown color, and is singularly non-absorbent. A piece kept under water for a month will absorb no more moisture than a piece of cork. It has a short, brittle fiber-cork has no fiber whatever-and is consequently not so liable to brittly snap as is the Quercus suber. It lacks, however, the elasticity and local toughness of cork, and is slightly heavier in its specific gravity, but is much more easily worked in manufacturing into articles.
Curious Natural Brushes.-These are produced from one of the palmetto species on our southern coasts The "bristles" of the brush and the solid wood portion thereof are all one. No "coming out" complaint with those bristles!
The brushes are made in two ways. The extreme root of the tree is a mass of fibers. These are cut off close up to the trunk, which is sawn off about an inch up, and the slab is cut up into simple brushes for the bath, toilet, hair, etc. Another couple of inches will be sawn off the trunk, well soaked, and the pithy wood jagged out from between the fibers by a crude kind of steel or jagged comb. Once the pith is thoroughly dried and hard, it will stand immersion in hot bath waters without softening.
These curious natural-made brushes are only locally known, and are occasionally sold to tourists. They are unknown to commerce in the American brush trade. No attempt has ever been made to establish any industry in them. Yet they are possibly the
ongest-lived brushes extant. A bath brush used for half a dozen years looked, true, as if it had had plenty of use, but was good enough for another half dozen years.
The fibers and wood are of a bright sandy hue, and, f kept clean, almost preserve throughout their agree ably slight odor, reminding one of dried corn leaves.

SCIENCE NOTES

The sweet wines generally produced in this country are those in which none, or only a part, of the sugar in the grape has through fermentation been converted into alcohol, the fermentation being prevented or checked at any aesired stage by the addition of grape brandy. This adding of alcohol to stop fermentation is called "fortifying." Of the sweet wines, ports and angelicas are the two kinds most largely produced and consumed in this country

The symbiotic relationship of fungus and root to Mycorhiza offers a fine opportunity for careful investi gation. The studies which have already been made serve only to put the reader in a state of hopeless confusion. The universal phenomenon of irritability as manifested by tropic phenomena has been a fruitful field of investigation. The general methods of irritable response have been determined; and the best work of uch investigators as Haberlandt, Noll, Czapek, Newcombe, MacDougal and others has more recently been directed to the deeper problems relating to the internal mechanism of response and to the exact methods of ransmission of the stimulus, as well as to the immediate changes in the cells affected.
The U. S. Biological Survey is engaged in mapping the natural life zones and crop belts of the country for the primary purpose of aiding the farmer to decide what crops are likely to prove a commercial success in his locality. The work is done by studying the geographic distribution of native animals and plants in all parts of the country, and plotting the results on maps showing the distribution of each species. In order to obtain the necessary data the status of the various species must be determined by office study and their ranges laboriously worked out in the field. The progress already made is gratifying, and a large number of maps are now approaching completion. The individual-species maps serve as the basis of a composite map showing the natural transcontinental belts and their more important subdivisions.
The development of viscous flow is largely on the experimental side, particularly for solids, where Weber (1835), Kohlrausch (1863, et seq.) and others have worked out the main laws. Stokes (1845) deduced the full equations for liquids. Poiseiulle's law (1847), the motion of small solids in viscous liquids, of vibrating plates and other important special cases, has yielded to treatment. The coefficients of viscosity defined by Poisson (1831), Maxwell (1868), Hagenbach (1860), O. E. Meyer (1863), are exhaustively investigated for gases and for liquids. Maxwell (1877) has given the most suggestive and Boltzmann (1876) the most carefully formulated theory for solids, but he investigation of absolute data has but begun. The difficulty of reconciling viscous flow with Lagrange's dynamics seems first to have been adjusted by Navier.
The overcrowding of the medical profession in Germany is a matter of grave concern. There are now in the empire 29,200 physicians, which doubles the number found in 1876. In other words, there is one physician in Germany for every 1,700 inhabitants. In the city of Berlin 46 per cent of all the physicians have an income of less than $\$ 700$, and five per cent of the whole number do not have a sufficient income to return it for taxation. On the other hand, in the legal profession in Germany 80 per cent of the lawyers have an income exceeding $\$ 2,000$. It is estimated that the preparation of a man for the duties of a physician in Germany costs about $\$ 6,000$, and thus it is seen that the income is often less than 10 per cent of the fixed charge on the capital invested. This leaves practically nothing for the reward of his own personal services, nor for wear and tear.
Within the last decade there has been an enormous increase in our manufacturing interests, so that it is not surprising to find that the output from the factory now constitutes 65 per cent of our annual production of wealth. A study of the figures presented to us in the annual reports of the Department of Agriculture and other branches of the government dealing with agricultural development alone, without reference to statistical matters shows that coincident with the development of factories in a community there has been a corresponding increase in the value of farms and farm lands, as well as of the products of the farm. The great era of manufacturing upon which this country is now entering is bound to have a beneficial effect upon agriculture, for aside from the great possibilities of other industries, it is clear that as factories continue to increase in number and enlarge their output, agriculture must necessarily grow to meet these conditions.

A SIX-CYLINDER 400-HORSE-POWER RACING GASOLINE POWER BOAT.
by the english correspondent of the scientific american
Great interest is being manifested among naval and marine engineers in Great Britain in the gasoline motor racing boat built by the Brooke Motor Company, of Lowestoft. This craft, although primarily designed for racing purposes, is yet of substantial construction, so that it may be possible of utilization in a seaway. The boat, which is propelled by a 400 -horse-power engine, is one of the most powerful craft of its type that has yet been constructed.
The boat is just under 40 feet long, with an extreme breadth of 5 feet 6 inches. The draft at the greatest immersed section of the hull is only 12 inches. In view of the enormous power this launch possesses, and with regard to other conditions, great attention has been devoted to the questions of strains due to propulsion, pounding in a seaway, etc., in the design of the hull.
The motor supports are of ample strength and extend the full length of the launch. In conjunction with the American elm keel they form a substantial backbone to the whole fabric, giving great longitudinal strength and affording a solid foundation for the 400 -horse-power motor. A bilge stringer of Oregon pine and two side stringers of slightly smaller scantling are fitted at each side, extending and tapering to the end of the boat. A heavy gunwale of American elm completes the longitudinal distribution of the wood construction. The transverse strength is attained by timbers of selected American elm, considerably augmented by grown oak floor frames, all well molded at their throats and all carried hard up to the bilge stringers at each side. Although the strength of the hull as described above is by no means inadequate, yet it has been increased by the addition of steel angle-bars, stringer plates, and tie angles. The fore
δ inches, and at the normal speed of 1,000 revolutions per minute the nominal 400 horse-power is developed. The cylinders are water-cooled, the jackets being cast with the cylinders. Two entrances are provided in each jacket for the circulation of the cooling water, above the combustion chamber and the exhaust valve. The induction valves are arranged on the starboard side of the engine and are of large diameter with angular seats, and are set down below the main level of the water. The exhaust valves are placed on the opposite side of the engine, and are interchangeable with the inlet valves. By slightly sliding the camshaft operat ing the exhaust valves, the latter are caused to lift on the compression stroke to facilitate starting. The inlet and exhaust crankshafts are driven by large outside two-to-one gear wheels, and to insure perfect alignment are run in seven bearings each.
The crank chamber, which is made of cast steel, is formed of two sections, and is provided with six large inspection doors on each side. The crankshaft runs in five intermediate bearings on bored surfaces, and the bolts securing them to the bottom of the crank case extend up through the top of the same, in order
purposes where large horse-power, speed, and light hulls are required

MICROPHOTOGRAPHY

INTERESTING MICROPHOTOGRAPHS OBTAINED WITHOUT
costly apparatus
by d. r. winslow.
Microphotography is a field into which apparently few amateurs care to venture, and yet, in this branch of photography, there will be found more to interest and instruct than in the prevailing habit of promiscuously "snapping" friènds, acquaintances, and familiar scenes. The supposed expense of the thing is the foremost reason given by the amateur for letting this interesting branch of photography severely alone. The secondary reason is lack of confidence in his ability to make satisfactory pictures. All that he knows about the subject is the little he remembers having read in articles entirely too technical for his understanding. From these he has absorbed the erroneous idea that the work requires costly apparatus and at least a year of training. The outfit ordinarily considered absolutly indispensable for this branch would cost not less

The "Brooke I."-A 400-Horse-Power Motor Boat.

The 400 -Horse-Power Gasoline Motor of the "Brooke I."

Lowering the 400-Horse-Power Motor Into the Hull of the "Brooke I."
part of the boat, as well as the rest of the hull, is fitted with steel frames supplemented with beams or cross-tie angle bars. These frames are very necessary at this part of the hull, for racing launches of high speed and light draft are subject to severe panting stresses and thumping under the bows, as their enormous propelling power drives them into head seas, and they may, unless properly stiffened, bulge in the frames and planking at this locality.
While the diagonal lines of the boat are long and narrow, showing just a slight roundness as they extend from bow to stern, the underwater body has been made fairly flat, merging into a nicely rounded bilge, which in its turn is gradually lost as it approaches the transom. She has been given a very fair freeboard combined with a good fore turtle deck, insuring ample protection in any ordinary weather, and for negotiating bad weather, a light portable structure is fitted over the well, with a small aperture aft for the steersman. The engine is of the vertical, six-cylinder type, the cylinders cast separately, thereby greatly facilitating their accessibility. The bore is 10 inches, the stroke
to act.as the holding-down bolts of the cylinder heads Two types of ignition are available-low-tension mag neto and the high-tension system with accumulators and coil.
Splash lubrication is adopted for the lower ends of the connecting rods and intermediate bearings. The gudgeon pins and pistons are provided with forced lubrication. The motor is fitted with a light flywheel carrying an expanding internal metal-to-metal clutch, which transmits the engine power through universal joints, reverse gear, and thrust block to the propeller.
The design of this boat, in which the aim has been to secure the maximum of strength consistent with the minimum of weight, and the high power of the motor, have provoked much discussion in marine engineering circles, and the behavior of the craft in varying weather conditions is being awaited with profound anticipation. It is conceded that this launch provides an interesting development of the application of gasoline engines of great horse-power to small light hulls, and the results of its trials will exercise a far-reaching effect upon the design of this class of craft for various
than $\$ 300$, and to operate such an outfit would require many months of training.
The microphotographs used to illustrate this article were made by an amateur, and the only piece of apparatus used, in addition to his camera, was a small microscope which cost one dollar. With the cheaper microscopes, the kind usually sold for twenty-five cents, pictures equally satisfactory, if not as highly magnified, can be made. No experience is required to make these pictures, and the only preliminary preparation necessary can be made with a sharp knife and a small saw. Any camera may be used, provided it has a ground glass for focusing. It should, however, be furnished with some sort of shutter, as the removal and replacement of a-lens cap is impossible.

The microscope need not cost over twenty-five cents. It is the kind that has long been considered a mere toy and often sold as such; a short brass barrel fitted at one end with a magnifying glass mounted on a small stand which slides into the brass barrel, and at the other end with a rather powerful objective, an apparently cubical piece of glass polished on two opposite
sides. The twenty-five-cent glass will give good results, but in the higher-priced glass the magnifying power is greater; therefore larger images will be secured. A mount for the microscope is made of a piece of wood about 2 inches wide, $3 / 4$ inch thick and 5 or 6 inches long. At one end a hole is cut large enough to accommodate the barrel of the microscope, making a snug fit. There are various ways of making the hole: a sharp penknife or an auger and compass or bracket saw can be employed, or, in the absence of these, a red-hot stove poker will serve. After the hole has been made the barrel of the microscope is inserted, the edge being flush with one side of the board.
The support, if it has the dimensions given in the above description, will stand alone on its end, and therefore, requires no clamps or braces to attach it to the camera. In use it is merely set up on end on the bed of the camera and in front of the lens board. It is evident from the manner of using the support that its length should be such that when it is set on end on the camera bed the center of the microscope objective will be in line with the center of the camera lens. Unless the camera is provided with a rising and falling front, this length must be accurately meas ured. If, however, the camera has a rising and falling front the length may be guessed and the front adjusted to the ength of the support
For subjects to be mi crophotographed the pho tographer has an almost limitless variety from which to make a selection. Anything that can be seen in the microscope can be photographed, and any
hing worth seeing in the microscope is worth photographing. The naked eye of the amateur, however, cannot be relied upon in making the selection of subjects; for quite often what to the naked eye appears
to be a very unpromising subject is found, when viewed under the microscope, to contain much that is interesting. The insect world will supply subjects by the thousand and in the field of botany many thousand more subjects may be secured. Foodstuffs are worthy
with the compound or professional microscope. Expensive mounting fluids, dyes, stains, etc., are not re quired, as the subjects are to be preserved on the pho ographic print and not on glass slides. To mount a subject it is only necessary to lay it on the objective There is always sufficient moisture on the glass to hold the subject in place, and in the case of parts of insects, there is more or less of a peculiar secretion surrounding them. OnIy on very rare occasions will it be found necessary to use other means of securing the subject to the ob jective, and when this is found to be required, a little water will answer as well as any mounting fluid.

To make a microphotograph, mount the subject on the microscope objective; pull the bellows of the camera out about half way and stand the microscope support on end on the camera bed. The camera should face the window and be as close to it as possible. The distance between the lens of the camera and the microscope depends upon the lens, but a trial will soon regulate the distance. With one lens the support may have to be set an inch from the camera, and with another it may be necessary to have the microscope objective almost in contact with the lens. The correct focus is best secured by moving the microscope backward or forward, although with some lenses it is necessary to manipulate both camera and microscope to secure the best result. Movement of the bellows, in most cases, only serves to increase or diminish the size of the image on the ground glass. The lens should be wide open, that is, no stops should be used. The field
of investigation, and the hair, skin and blood of the human body furnish very excellent subjects for microphotography. Mounting the subject is quite simple, as it does not require the skill necessary in work

Section of a fly's wing.

Section of maidenhair fern leaf.
The leg of a house fly
The
 being perfectly flat, stops will not help to secure a
sharp focus. They will, on the other hand, diminish sharp focus. They will, on the other hand, diminish
the size of the circle thrown on the ground glass and, therefore, cut down the size of the picture. The ex-

posure in microphotographic work, as in all other work with the sensitive plate, depends entirely upon the quantity and quality of the light obtainable. The amount of exposure to give must be judged by the oprator, using the appearance of the image on the ground glass as a guide. From thirty to forty-five sec onds would be about the right exposure on a brigh day with the sun unclouded, using a fast plate. Al the light that reaches the plate must come through the microscope objective. To prevent any light getting in between the microscope and the camera lens, the space no matter how small, must be covered with a piece of black cloth. If the light is very bright better result will be obtained by using a ray-screen. A piece of yel ow isinglass hung in front of the microscope will an wer the purpose as well as an expensive ray-filter
First attempts are rarely successful in any under taking, and microphotography is not an exception to the rule. A few plates must necessarily be wasted and much of the photographer's patience will undoubtedl be lost, but the goal is worth the game. With a little of the "stick-to-it" quality even the very beginner will be successful in microphotography

UNIFORMITY OF ORGANIC AND INORGANIC BODIES.
 \section*{by dr alfred gradenwitz}

The present tendencies of scientific investigation are o prove the existence of a continuity, not only between the various branches of the same science, but even be tween ranges of knowledge which formerly were re garded as widely distant from and entirely foreign to each other. Physico-chemical laws have thus been shown to control the activity of the world of organized beings as they do that of inorganic bodies. There re mains, however, the much-discussed problem of the crigin of life, and this leaves an unsurmountable gap cetween organized and inorganic matter. Burke's re cent experiments have been interpreted by many as being nothing short of a creation of life from lifeless inorganic matter, though the experimenter himself seems to be far from drawing so bold a conclusion from his interesting results. Nor is the writer inclined to think that the partisans of that theory are right, or that the mystery of life will ever be explained away by physical laws. Very interesting is the work of a French scientist, Prof. Leduc, of Nantes, who has been successful in elucidating the mechanism of the forma ion of cells and in demonstrating the striking ana ogies existing between cellular and crystallized bodies
The main factor operative in the formation of all cellular bodies, both inorganic and organic, has been shown by Leduc to be the phenomenon of diffusion, which according to him follows a law quite analogous o the law of Ohm
Leduc's fundamental experiment is as follows
A ten per cent solution of gelatine is spread in a uniform layer on a glass plate, and after it has become solidified, drops of various solutions forming a precipiate with one another are distributed symmetrically over its surface. Potassium ferrocyanide and copper sulphate or iron sulphate may be used, and these solutions, on diffusing in the gelatine, are precipitated as they come in contact with one another. Now, these precipitates are found to constitute geometrical figures of perfect regularity, strikingly demonstrating the uniformity of diffusion. (See Fig. 1.) The shape of these figures can be varied indefinitely according to the kind, number, and position of the drops and the color of the solutions and precipitates. Contrary to the opinions of previous investigators, it was found that the diffusion goes on more rapidly if the solution is less concentrated. Even the slightest influences, e. g., acidifying or alkalinizing the solution, are shown greatly to alter the resistance to diffusion. The rate seems to be proportional, the remaining factors being the same, to the molecular concentration of the diffusing substances. The shape drawn by the précipitate on the gelatine accordingly depends on the ratio of the molecular concentration or the osmotic tensions. If these are equal, for instance, the forms are rectilinear. From the above facts is inferred a physical explanation for a large number of biological phenomena, which have so far remained mysterious
Diffusion, as above said, occurs according to a law nalogous to the law of Ohm, the intensity corresponding to the rate of diffusion, and the potential difference to the difference of osmotic pressure, the only divergence being the variability of the resistance according o the diffusing substances. Organic membranes are of different permeability to diffusing substances, thus giving rise to the phenomenon of osmosis. Now, the above experiments show that colloids behave, from the point of view of diffusion, in exactly the same manner as membranes.
On repeating the fundamental experiment referred to above, Prof. Leduc succeeded in producing artificial cells (see Fig. 2) of polygonal shape, quite analogous outwardly to natural cells, and in which a cytoplasma and a core could be distinguished. In each cell during its formation, and in fact as long as there is any diference of concentration in the gelatine, lively molecular movements are apparent, consisting as in live
cells of a double current, the dissolved substance going from the center to the periphery, and the water from the periphery to the center. This molecular activity, being the life of the artificial cell, can be kept up by maintaining in the neighborhood of the latter a convenient medium and by feeding the cell, i. e., reconstituting any iosses of concentration.

Three stages may be distinguished in the life of an artificial cell, the first stage being that of organization, when the drop constituting the core forms the cell in connection with the gelatine, giving rise to the production of a cytoplasma and a surrounding membrane. The second stage is the period during which the osmo tic pressure tends to equalize the concentration between the various parts of the cell and the medium in which this is placed. The third stage, being that of decay, corresponds to the diminution in the double molecular current due to a diminution in the difference of concentration. As soon as the equality of concentration is established, the active existence of this cell will have come to an end, the cell being now lifeless and conserving only its outward form. These cells are influenced just as are live cells, with respect to their organization and evolution, by moisture, dryness, acidity, aikalinity, or the addition of various substances to either the gelatine or the drop constituting the core.

All the phenomena of diffusion are accounted for on the theory of field of force of diffusion suggested by Leduc. If a drop of any aqueous solution be inclosed within a mass of distilled water, the dissolved molecules will be carried away by diffusion in all directions, being replaced by the water, which moves in an inverse direction. The drop thus really is the focus of a field of force, the directions followed by the moving molecules being what may be properly called the lines of force of this field.
In connection with the above experiment, the osmotic pressure is stronger in the drop of solution than it is in the pure water; the center of this drop is what is called a positive pole of diffusion, while if the conditions are reversed, this is called a negative pole of diffusion. Prof. Leduc shows the striking analogies that exist between fields of force of diffusion and magnetic or electric fields by photographing the spectra of such fields. An example is shown in Fig. 4.

A field of force of diffusion exhibits the same behavior as a field of magnetic force, where ether currents, as it.were, carry along the iron filings, as the water carries along the globules of the blood or powder particles used as pigment. The phenomena of attraction or repulsion according to polarity also dem onstrate this analogy.

Polygonal figures can be obtained by a number of poles of diffusion, giving rise to a cellular structure. The cells thus produced arè much more sensitive than those having solid membranes, and respond to any out ward influence. (Figs. 5 and 6.)
Diffusion then is the force controlling the phenome na of crystallization. If a crystal be formed in a solution, the dissolved molecules will travel toward its core, replacing the water which is carried away; this is what Leduc calls a field of force of crystallization. By causing fields of force of crystallization and diffusion to interfere with each other, Leduc has been able to reproduce and to photograph all fern-like and other forms as observed in crystallization. (See Figs. 7 and 8.) The polygonal figures and fern-shaped formations observed on metals, such as antimony, are obviously of the same origin; they are also found to be illustra tive of the various forms assumed by the most primitive organisms
Fig. 9 shows the result of introducing into an artificial cell a very small soluble crystal, with the pro duction of a species of fertilization analogous to this action in a live cell.
The theory of these fields of force in Iiquids permits a great number of phenomena which had so far been mysterious to be explained on a physical basis, e. g., amœboidan motions, Brownian motions, agglutination as well as the orientation. called tactism and tropism The hypothesis that live cells have been formed by a similar process, and that the problems of morphology and morphogeny are susceptible of a solution by experimental methods, seems to be warranted by the results of the above experiments.
If a crystallizing substance be added to a colloidal solution, there are obtained ir the place of amorphous homogeneous bodies, regular forms which, while differing from those of crystals, are highly interesting as evidencing the mechanism of crystallization. These forms are obviously due to the presence of the forces of crystallization during the solidifying process. The constant morphogenical action here exerted appears to play an extensive part in nature, as vegetable and animal tissues result from the solidification of mixed solutions of colloids and crystalloids.
In Fig. 10 is illustrated a field of crystallization, as cbtained by spreading out on a glass plate a solution consisting of a mixture of a crystallizing substance (viz., sodium chloride) and a colloid. It has been suggested that these fields of crystallization be utilized
to characterize the various substances. As will be seen, the field in question strikingly shows two axes of crystallization, with perpendicular lines rising on both sides. The diagonals of the crystal coincide with the axes of crystallization, and all of the four sides forming the projections of the four side faces of the crystal bear prisms constituting another crystal deplaced through 45 deg. with regard to the core. The axes of crystallization of the latter are perpendicular to the four side faces.

Something About spanish Olives.

The olive industry in Spain is increasing in import ance within late years, mainly owing to the efforts which have been made to use improved processes, so as to compete successfully with the Italian industry. One of the leading branches of the olive trade is the prepa ration of green olives. This is carried out on a large scale at Barcelona. There is a large internal con sumption of the olives and besides, the annual export now reach 7,000 tons. The olives are put up in bottles or kegs. To carry out the pickling process, the olives are well sorted, as only those which show no faults can be kept. They are then placed for several days in cold water, which is renewed frequently. Then they are placed in a brine bath, which consists of a salt and soda solution, and are covered with the liquid In some cases different aromatic substances are added to the bath so as to give a special flavor to the olives Ripe or nearly ripe olives are but little in demand and are not consumed to a large extent. As to the extrac tion of olive oil this has been carried out heretofore by primitive process. Each small cultivator extracted his own oil by a press which he hired, generally mak ing payment in oil or farm products. The olives were ground up in a horse-mill before pressing. The ground olives were then put in a lever press, using boiling water for the extraction. The presses are of heavy build, but the process is a slow one and the olives need o be stored on hand for some time. They are thus likely to ferment and give an inferior quality of oil. It is estimated that there are some 3,000 or 4,000 of such primitive oil-presses in use in Spain at the pres ent time. The pomace which remained was formerly used for fodder or as combustible, but now it is general ly sold and more oil is taken from it by an improved process. Some of the large producers saw the necessity f working on a greater scale and commenced to introduce large cylinder presses and grinding mills, which gave an increase in the quantity as well as the quality of the oil. The use of these machines is now becoming general in the large factories. As to the remainder of the olive oil process, the oil is placed after extracion in large earthenware jars or tin tanks and is then filtered. In some cases the air is kept from the oil by means of a layer of alcohol which is placed on the surface. The inferior grades of oil are used in soap manufacture.

Official Meteorological Summary,

Atmospheric pressure: Mean, 30.11; highest 30.57; lowest, 29.51. Temperature: Highest, 80 ; date, 9 th. owest, 37 ; date, 27th; mean of warmest day, 70 ; date, th; coldest day, 44; date, 27 th; mean of maximum for the month, 63.5; mean of minimum, 50.3; absolute mean, 56.9 ; normal, 55.5 ; average daily excess compared with mean of 35 years, +1.4 . Warmest mean temperature for October, 61, in 1900. Coldest mean, 50 , in 1876. Absolute max. and min. for this month for 35 ears, 88, and 31. Average daily deficiency since January 1, -0.1 . Precipitation: 2.67; greatest in 24 hours, 1.60 ; date, 19 th and 20 th; average of this month for 35 years, 3.68 ; deficiency, -1.01 ; excess since January , +1.41 . Greatest precipitation, 11.55, in 1903; least, 0.58 , in 1879. Wind: Prevailing direction, west; total movement, 8,605 miles; average hourly velocity, 11.6 ; max. velocity, 48 miles per hour. Weather: Clear days, 15; partly cloudy, 10; cloudy, 6. Frost: Light, 22d and 23 d ; heavy, 27th, 30th, and 31st.

The current supplement.

The current Supplement, No. 1558, opens with a well-illustrated article by Frank C. Perkins describing the Crewe Railway Signal. The theory of coherer action is fully described. "How to Build a Small Alter-nating-Current Dynamo Without Castings" is the title of a most instructive article by N . Monroe Hopkins. Full working drawings accompany the article. Dr. 0 . N. Witt contributes one of his simply-worded and interesting articles on chemical solubility. The discussion of old age and its causes is concluded. Mr. A. R. Hinks writes on the Milky Way and the Clouds of Magellan. A great many kinds of figs are found in commerce. The complicated biological relations which connect these various figs, and the curious process by which the fruit is developed, are described in an article published in the current Supplfment. One of the most interesting papers read before the British Association was that by Francis Darwin on the perception of the force of gravity by plants. The first installment of this paper is published in the Supplement.

(Coxxexprondantex.

The Leap-Frog Car.

To the Editor of the Scientific American:
Suppose the north-going car is exactly on the top of the south-going car, the rate of speed of both being 4 miles an hour, but in opposite directions. Then the south-going car is traveling 4 miles an hour with reference to the motionless ground. But the north-going car? Its rate of speed is 4 miles an hour, but its absolute rate with reference to the motionless ground is equal to its own rate of speed less the absolute speed of the car it is traveling on, that is $4-4=0$. So the upper car is stationary with reference to the motionless ground, and the cars are passing at 4 miles an hour.

A pretty problem is this: Suppose part of the north-going car is on the ground rails and part on the south-going car. Assume that part of the northgoing car on the ground rails is traveling north at 4 miles an hour, and the south-going car is traveling south at 4 miles an hour. At what rate of speed relative to the south-going car is the part of the northgoing car which is on the south-going car traveling?
Wick Court, near Bristol, England, September 30 1905.
[The answer to this question is evidently 8 miles an hour, or the sum of the speeds of the two cars.-Ed.]

A Curious Rainbow Phenomenon.

To the Editor of the Scientific American:
Question 9811 reminds me of an experience I had about the year 1874, in southwestern Wisconsin. I was living on an east and west ridge of high ground sloping both to the north and south. South of me was farming land, visible as far as three and a half miles. North was timber; also on the east and west was timber for one-fourth mile. There had been a shower of rain about 4 P . M. in midsummer, and it was still "drizzling" when I went out into the clearing looking south to see about the weather. I noticed just west of me over the timber a full-sized rainbow with its north end near me. It seemed strange to see a rainbow at that time of day, to westward, so I took particular notice of it, and it seemed to move eastward. I could tell by the color of the foliage on the trees just to westward. In a few moments the colors appeared on the open ground coming eastward and approaching where I stood, at first about one hundred yards away, then closer and closer till I saw them (the colors of the rainbow) all about me, and by extending my hand I could see them between my eye and my hand. The same rate of travel being kept up soon put the colors to the east of me, and on they moved to the end of the field eastward, and there again colored the foliage on the trees to the east, and the circle of the bow appeared smaller as it receded, and after a few moments more it was the usual customary rainbow in the east. I have been seeking for some one ever since who has had a similar experience, but I have found none, and if nothing comes of it through the Notes and Queries column, I will give up trying to find a duplicate case.
Louisville, Ky., October 21, 1905

Some observations of Bird Flight.

To the Editor of the Schetthic American:
I recently found myself in a position to confirm the conclusions about the connection of upward current of air and the soaring of birds, etc., as set forth by your correspondent, J. E. Walker, in your issue of the 14th. About the last days of the past September I was gazing into the sky, and noted an extraordinary number of gossamers going south and rising rapidly. Some that were low showed streamers, and when I procured a field-glass and examined them closely, I found that all su.ch, for hundreds of feet upward, had these streamers pointing almost directly upward from the great bunch or center of the gossamer. This indicated a strong upward current, which seemed to be so local as to have had its origin only about a fourth of a mile northeast of me; but this may have been an erroneous impression. Later, I began to notice an occasional butterfly, of the usual large brown kind, known as the "milk-weed butterfly," sailing rapidly with the current when high up, while later still I saw many making spiral mountings, with not a wing-flap, in the well-known manner of turkey vultures, hawks, etc. The number of these rapidly increased, as did that of the gossamers, as if they had become suddenly aware of the uprush of warm air and determined to take advantage of it. Much later still others of this species came past me, sailing with the wind, at a very rapid speed, equaling that of the usual bird in direct flight. These were all rather low down, some having to rise to pass the tree-tops. I saw no birds taking advantage of this peculiar condition, except that I noted the chimney swifts hawking at very great heights, where the insects had so evidently gone.

Inasmuch as I have always observed vultures,
hawks, and other soaring birds engaged in these rising circlings under peculiar atmospheric conditions, usually those just preceding a change, I am inclined to the same view with Mr. Walker-that soaring creatures take advantage of these upward currents; and I am strongly inclined to doubt that they can soar under any other conditions for any great distance in a direct line. It is well known, however, that by drifting away with a strong breeze and constantly circling against it vultures can rise, but this is easily accounted for by the two different shaped surfaces which the jird presents, "going and coming."

James Newton Baskett.
Mexico, Mo., October 18, 1905.
AUTOMATIC APPARATUS FOR WATERING PLANTS.
The essential part of the first device is a long, untwisted wick such as is used by lamplighters. These wicks are about five feet long and the threads of which they are composed are easily separated. The wick is protected by a glass tube about three feet long and about one-quarter inch bore, which is bent in a flame

Fig. 1.-AUTOMATIC APPARATUS FOR WATERING PLANTS.
into a siphon or U-shape with one leg very much longer than the other. The wick is drawn through the tube with the aid of a flexible wire, and is allowed to protrude at both ends. It takes up water slowly at first, and the tube containing the wick should be left over night in a vessel of water.
To use this device for watering potted plants, three or four pots are placed near together, and a pail of water is put near and above them, on a bench. The short leg of the tube is immersed in the water and the flow is started by sucking at the other end. The strands of the wick are distributed among the pots, being placed in contact with the earth but not with the stalks of the plants. One or more strands are assigned to each plant, according to its need of water and, of course, the entire flow may be given to one pot, in which case the end of the tube is inserted in the soil. In very hot weather it is advisable to cover the pail and wrap the tube with wadding to prevent the wick drying. The German inventor of this device says that he has always found it to work perfectly. It was designed for watering house plants during the absence of their usual caretakers, but it seems adapted to garden use as well. Furthermore, it is not apparent why a tube ron, or lead nswer the well as the tube.
ond device, Germany a ago, is still consists of a glass.bulb point at point itself near it is a ing, through vessel may water. d it is he earth plant to ity of water days or water flows hole with Fig. 2.-AUTOMATIC the dryness
 The apparING PLANTS of rubber, tin, should not purpose as fragile glass The secpatented in few years simpler. It pear - shaped drawn out to one end. The s closed but lateral openwhich th e be filled with
When fillthrust into near the which it supproper quanfor several weeks, as the from the greater 0 r according to
of the soil. atus is furnished in a number of sizes, holding from a gill to a gallon.
Either of these devices offers a convenient means of applying liquid or soluble fertilizers, which may be
added to the water in any proportion desired. Adapted from Umschau.

Engineering Notes.

The New York Central Railroad has placed orders with several manufacturing companies for a total of 25,000 freight cars, calling for the expenditure of about $\$ 25,000,000$. The tremendous scale on which the rail roads are now providing equipment indicates the pressure under which they are working to care for the traffic that is being offered to them.

Forced draft dates back of course to Stephenson's "Rocket," and its first use for marine purposes was by Mr. Robert L. Stevens on the Hudson River steamers in our own country prior to the civil war. During that war Mir. Isherwood built a number of gunboats which used forced draft, but it had fallen into disuse until about 1882 for naval vessels, when it was introduced into the English navy, and still later was applied in the merchant service.
The history of early engines has been amplified by discoveries recently made by the Engineer, of London The oldest known print of a steam engine is in the Birmingham Public Library and shows a machine built in 1712 by Savery and Newcomen. A search made by the journal mentioned has brought to light an old en graving dated 1725 and entitled "The Engine for Rais ing Water by Fire." It is unique in containing the first illustrated description of a steam engine. This machine is somewhat different from that portrayed in the earlier engraving, for the boiler is fed with a portion of the hot water coming from the bottom of the cylinder or hotwell. This fixes the date of the improvement described by Desaguliers in his "Em perimental Philosophy" as follows: "It had beerı found of benefit to feed the boiler with warm water coming from the top of the piston rather than cold water, which would too much check the boiling, and cause more fire to be needful. But after the engine had been placed some years, some persons concerned about an engine observing that the injected water as it came out of the induction pipe was scalding hot when the water coming from the top of the piston was but just lukewarm, thought it would be of great advantage to feed from the eduction or injected water and accordingly did it, which gave a stroke or two of advantage to the engine."

An excellent example of a concrete building in which are embodied new fireproof ideas is furnished by the power house recently completed for the Baltimore Electric Power Company. This power plant, which covers an approximate area of 72 by 180 feet, is con sidered absolutely fireproof. It rises to a height of 70 feet above the main floor, and every foot of this space is conserved and utilized to the best advantage. The manner in which the concrete is reinforced in this building has many features of interest. Instead of using the ordinary steel rods for the reinforcement of the floor slabs between the I-beams, the engineers se lected Clinton electrically-welded fabric, first because with the long lengths in which it comes they were able to make the reinforcing continuous for the whole width of the building. This continuous bond is a great feat ure in adding strength to the structure. In the second place, the cross wires not only serve to hold the main reinforcing members in their exact positions, but they take up whatever strain may be exerted in the opposite direction. The feature of having a reinforcing ma terial which the workmen cannot misplace is one of the strongest points of this system of reinforcement because it obviates the necessity of using many highpriced inspectors to watch every detail of the work, and guards against the mistakes which may be made by the misplacing of ordinary reinforcement. The upper third of the building contains the coal pockets. In supporting the great pressure to which these floors are subjected, the continuous bond shows to the very dest advantage. As the thickness of the slab is but six inches, it is obvious that but for the continuous bond this floor, with its five-foot spans, must have been heavier and also of the more expensive segmental arch construction. Water is supplied to the condenser from the bay, 600 feet distant, through conduits which fur nish a particularly interesting example of the application of Clinton reinforcement. These conduits are five feet in diameter. The entire circumferencs is rein forced by a continuous bond of wire fabric. These conduits are buried under 30 feet of clay, and the reinforcement is so placed as to resist this pressure on the under side of the four-inch crown. The reinforcement spreads away from the exact circumference on the bottom of the conduit in such a way that the bot tom is embedded. in the concrete to a depth of 12 inches. The concrete is thus laid in order to resist the upward pressure of the water, as the conduit is several feet below the level of the bay. This application of the Clinton fabric is similar to that in the construction of concrete piles, which to an increasing extent are supplanting the wooden piles.
a VISIT TO A FRENCH GAS WORKS. by Jacques boyer.
In the evening of the very day on which Napoleon I. was crowned at Notre Dame de Paris, Philippe Lebon, the gifted founder of the manufacture of illuminating gas, was stabbed and killed by an unknown person in the Champs Elysées, which at that time were deserted and unsafe after nightfall. But his invention survived him. The Englishman, William Murdoch, of Redruth in Cornwall, substituted coal, which abounded in that region, for wood, which at the beginning of the nineteenth century had already become scarce and dear. Soon afterward he went to Scotland, where he continued his experiments and lighted with coal gas his property at Old Gunnoch. He next (1803) applied his system of illumination to James Watt's factory at Soho, near Birmingham, and two years later a spinning mill at Manchester also adopted it.
But the timorous talked of the dangers of suffocation and of explosions, to which the gas, which was still imperfectly purified, exposed the citizens. Scientists confirmed these assertions, and the first gasometers erected in London, by Samuel Clegg, so terrified the people that no workman would venture to light the gas jets which had been placed on Westminster bridge. But Clegg soon overcame this difficulty by lighting a torch and applying it to the burners with his own hands. On another occasion, before a committee of the Royal Society of London, he bored a hole in the gas holder and put a lighted candle to it, to the great alarm of the spectators, but without causing the slightest accident. Gradually the eyes even of the most prejudiced were opened to the truth. The German, Winsor, introduced gaslight in France, and Panwells started gas works in the Faubourg Poissonnière. Soon the Carrousel, the Rue de la Paix, the Rue de Castiglione, the Place Vendôme, the Odéon, the Luxembourg, and the galleries of the Palais Royal were illuminated successively with the new light derived from coal.
Let us visit, then, camera in hand, the two most in-
teresting establishments of the Paris gas companythose of La Villette and Clichy. The former is some thirty years old, while the latter, constructed according to the plans of M. Maurice Louvel, is provided with improved apparatus, designed to simplify the op-

Fig. 8.-"Hectolitres-verseurs," or Measuring Tubs, Used in Measuring and Bagging Coke.
erations as much as possible. In fact, although the same general method of gas making is adopted in the nine plants which supply Paris and its suburbs, there are many differences of detail between the works of Saint Mandé and Ivry, which were built in the infancy of the industry, and that of Landy, which is now in course of construction. The latter, when completed, will cover an area of 40 hectares (100 acres), exclusive of an equal space reserved for future extensions, and its 3,000 distilling retorts will produce 400,000 cubic meters $(14,124,000$ cubic feet) of gas daily.
In order to save expense for labor, the Paris gas works are located on railways (like La Villette, on the Northern, Eastern, and Ceinture lines), on water courses (like Boulogne and Alfortville), or on both (like Clichy). A track usually runs beside the retort rooms, so that cars may be unloaded very near the furnaces.
At Clichy the coal trains compete with boats (Fig. 1). From the latter, the coal is hoisted to a platform 82 feet above the Seine, where it is dumped into cars, which are drawn to the storage yard by a small locomotive, an operation which is performed very expeditiously. The huge coal heaps are watched very carefully, for they are liable to spontaneous ignition. The temperature of the heap is determined roughly by means of iron rods plunged deeply into the coal.
But in order to obtain gas of good quality, attention must be paid to the character of the coal supplied to the retorts. If this is too hard, the gas will possess little illuminating power; if too rich in bitumen, the apparatus will become clogged with tar. The product of French and Bel gian mines is, therefore blended skillfully with English boghead and cannel coals.
The loaded and weighed cars of the various coals are run into an immense build ing, where the furnaces are grouped in "batteries," or transverse rows of eight, on each side of a passage 20 feet wide. The furnaces of one battery are in contact with those of the next, back to back. The retorts are

Fig. 2.-Quenching Glowing Coke.

Fig. 4.-Tank for the Chemical Purification of Gas. (Shown Open and in Process of Being Filled With the Purifying Mixture.)
tubes of refractory clay of semi-elliptical cross section and 10 feet long, and are arranged in three tiers.
In the spaces between the coupled batteries, in an atmosphere overheated by the contact of the hot pipes and the frequent opening of the glowing retorts, are the workmen dripping with sweat and covered with black dust. The crew of a battery is composed of two stokers, three retort chargers, three openers, and two coal passers, whose duty it is to bring coke for the fires and coal for the retorts. There is also a man, ironically dubbed "Mylord" in the slang of the trade, who stands by the furnaces, watching for leaks and performing various small and occasional duties.
The work of these men is performed as follows: Three retort men manipulate the "spoon," a hemicylindrical spade exactly 10 feet long, which the passers have filled with 75 kilogrammes (165 pounds) of coal (half the charge of a retort). At the foreman's signal two of the men lift the spoon with the aid of a bar slipped crosswise under it, and the third grasps the handle at the end of the shank. Then all three move toward the retort, in which they deposit the charge in an instant and with mathematical precision. At the proper instant the third man depresses and turns the handle to empty the spoon. In less time than it takes to describe it, the second spoonful is added, and the opener shuts the door of the retort and closes it hermetically by two or three turns of the screw. The men then pass to the next retort, and the entire battery is charged in a few minutes.

About four hours later the sound of a whistle indicates that the foreman considers the distillation finished. The retorts are now opened. An opener, bearing a burning scrap of paper in his hand, approaches a retort and "lights" it, opening the door very slightly to avoid the explosion which a sudden entrance of air would occasion. This done, he opens wide the door, or plug, and proceeds to the next retort. At the same moment a second opener pushes up to the open retort a marmite, a heavy sheet-iron vessel mounted on two wheels, and with long pokers rakes into it the 2 hectoliters ($51 / 2$ bushels) of the coke which form the first residue of the combustion.
Then these men proceed to the yard, dragging after them this white-hot furnace on wheels, which they quench with floods of water (Fig. 2). This task is the hardest work of the whole process. Bathed in sweat, though clad only in cotton jackets and trousers, the men work amid dense clouds of white smoke. They continue this severe labor for six hours through biting winter winds and snowstorms. Stalwart peasant lads of Brittany and Auvergne for the most part, they spend only the winter in Paris and, at the first breath of spring which heralds the approach of the dull season in the

Fig. 9.-Loading a Wagon from the "Drague."

Fig. 5.-The Great Meters of the Clichy Gas Works.
coal, it is time to empty the first. Moreover, the work of these men is not without influence on the quality of the product. Atmospheric conditions affect the draft of the furnaces and, consequently, the rapidity of distillation, which should take place at a temperature between 1,000 deg. and $1,100 \mathrm{deg}$. C. to produce gas of maximum illuminating power. The proper temperature having been attained, the volatile principles of the coal escape through vertical tubes, which unite in a horizontal collector running around the upper part of the furnace, whence they pass into a common reservoir called a barillet, which is a large sheet-iron cylinder half full of water. In its passage through the layer of liquid the gas is partially freed from tar and sulphurous and ammoniacal impurities. From the reservoir the still impure gas is drawn by aspirating pumps through groups of tubes called "organ pipes" (Fig. 3) where, as it cools in its progress, it deposits tar, naphthaline, and other heavy hydrocarbons and another portion of its ammoniacal impurities.
After this first physical purification, the gas, still drawn forward by the same pumps (which at the same time diminish the pressure in the retorts) is freed from the minute drops of tar which it still carries with it by passing rather rapidly through a Pelouze \& Audoin condenser. This consists essentially of a series of metal plates with fine perforations which are not opposite each other, so that the tar drops are dashed against the plates and adhere to them.

Now comes the chemical purification, which takes place in sheet-iron tanks, one of which is shown in Fig. 4, in process of being charged with the purifying mixture of sawdust, lime, and oxide of iron. This mixture is spread on sieves, through which the gas passes slowly. To renew the mixture it is only necessary to expose it to the oxidizing action of the air. After it has been used a number of times, however, it is rejected, and then sold to manufacturers of Prussian blue.

The gas is now freed of every impurity which could diminish its luminous power or vitiate the atmosphere of a room in which it is burned, and it is ready for storage and distribution to consumers. First, however, its volume must be measured. In the great hall of the Clichy works (Fig. 5) we see the meters employed for this purpose, through which flow daily, at midwinter, about 400,000 cubic meters of gas. They are ten gigantic sheet-iron cylinders, 13 feet in diameter and height, ranged like so many monstrous casks in a hall 200 feet long. At the center of each, behind a pane of glass, appear figures indicating the quantity of gas received. Now, as the supply pipes are 32 inches in diameter, before the unit wheel has registered one cubic meter the next has entered the apparatus, so that the wheel appears to

be always in motion. The gas next flows into the gasometers, those immense bells of riveted sheet iron with whose appearance everyone is familiar. Their lower edges dip into wells of water, and they can move up and down, guided by rollers which press against columns of cast iron. These enormous reservoirs are fed by jointed pipes, and rise to their full height or sink almost into the ground, according to the quantity of gas which they contain. Each of the gasometers at Clichy is 43 feet high and 178 feet in diameter, holds 30,000 cubic meters (108,000 cubic feet) of gas and costs nearly a million francs ($\$ 200$,000).
From the gasometers, pipes lead to the distributing office (Fig. 6) where there are three small gasometers furnished with man ometers, which indicate the pressure on dials. The pressure is regulated accord ing to the demand by the aid of disks of lead placed on these small gasom eters. The mains, the valve gear of which is shown in the foreground, conduct the gas to the 1,540 miles of pipes which ramify through the soil of Paris. In the works of the Paris gas com pany the coke is disposed of by means of very efficient machinery devised by the engineers Gigot, Louvel, and L Bertrand, and driven by electricity.
There are cars and automatic dumping carts, but the most interesting devices are the convoyeurs, hectolitresverseurs, and dragues.
The conveyor (see front page) is used chiefly in piling up bags of coke It is composed of a chain with buckets, in which the sacks are placed for transportation to a considerable distance and elevation to a height of 60 or 70 feet. The apparatus is supported by iron columns and girders. The hectolitre-verseur, or measuring tub (Fig. 8), is used in measuring and bagging coke. It is placed under the sieve and operated by one man. When the tub is full it is dumped by means of a handle, but it rights itself automatically. The coke is poured into the sacks through an apparatus having the form of a funnel.
The drague, or dredge, disposes coke for city delivery. It is a chain with buckets, mounted on an iron arm which can turn about a horizontal axis, and is so arranged that its weight tends to press the lower part of the apparatus against the pile of coke. The buckets discharge their contents into a hopper, from the bottom of which the coke, freed from dust, runs through three spouts into three hectolitres-verseurs. The bagging is done on the platform of the apparatus, which is at the height of a wagon, so that the sacks are easily removed.

Finally, the by-products which result from the distillation of coal.constitute an important source of revenue to the company. At La Villette there is a special and mysterious factory for the utilization of coal tar. In this sanctuary, jealously screened from profane eyes, the tar is transformed into benzine, phenol, and naphthalene, from which substances other chemists extract brilliant dyes and delicate perfumes. At Clichy the ammoniacal liquor of the gas works is converted into ammonium sulphate, which is largely employed as a fertilizer.
The manufacture of gas, therefore, is now a very successful industry because it involves, so to speak, no waste. The graphite which encrusts the interior of the retorts is used for electric light carbons, crucibles, and lead pencils, and even the ashes of the coke burned in the furnaces are bought by French brickmakers to mix with clay which is too stiff to be used alone.

Nearly all of the best arable land of the country has now been taken up, and those who are most vitally concerned with soil production realize that henceforward the main problem for the man who intends to make cultivation of the soil his occupation will be not so much a question of greater acreage as of greater production from a given acre. If America hopes to continue her phenomenal development, she must be able to produce not only the enormous quantities of food required for her own increasing industrial population, but a large share of the food for other nations as well.

Curious engineering feat at niagara.

by orrin e. dunlap.
The city of Niagara Falls, Ont., has had a great deal of trouble in getting a sufficient supply of water at its intake in Victoria Park. This has been especial ly true in winter, and several times the Canadian city has had to call upon the city of Niagara Falls, N. Y., to supply it with water for fire and other purposes by means of a line of hose stretched across the lower steel arch bridge. The Niagara Falls Park and River Railway, the electric line that skirts the cliff on the Canadian side at Niagara, and which develops its own power, has also had trouble, the intake being a joint one. Both interests made complaint to the commis

The Concrete Colimm After It Has Been Thrown into the Stream.
separated by strips of tarred paper. The purpose of these several wedges and paper strips is to break the mass in six parts as it falls in order that it may conform to the bottom of the river, while the parts will be held in place by the chain that extends through the center. The scene of the work is only about 600 feet up from the brink of the Horseshoe Fall, but when prostrate the column is not expected to make any difference in the flow of the waterfall. When prostrate, the top of the column will be 20 inches above the level of the ground, and in order that ice may be floated off, an opening will be left between the end of the dam and the river. The column will be tipped by jacks working under timbers at the bottom of the trestle, and when it falls it is expected to tumbie slightly up stream. The column will be allowed to dry several weeks before it is tipped into place in the Niagara River.
Niagara Falls and locality have witnessed many strange feats of engineering, but this construction of a dam up in the air and then tipping it over to the spot desired is certainly very new. However, it well portrays the adaptability of concrete work to peculiar and difficult situations such as those often found at Niagara.

The Rantu.

Roughly speaking, the whole of Africa south of the equator, with the exception of the dwindling Bushman and Hottentot elements, is inhabited by Bantuspeaking peoples, who are extremely heterogeneous, and who exhibit sufficient
sioners of Victoria Park, alleging that the water at the joint intake had been lowered by works of construction for power development. The park commissioners held a hearing on the matter, and it was decided to grant a measure of relief. Mr. Isham Randolph, consulting engineer of the Chicago Drainage Canal, was called into consultation by the park commissioners, and he advanced a plan to remedy the alleged trouble.
In carrying out this plan, the park commissioners

Column during construction.

The concrete column drying out.

Submerged Dam Built on Shore to be Tipped into the River. CURIOUS ENGINEERING FEAT AT NIAGARA.
have constructed a concrete column 50 feet high and 7 feet 4 inches square on top of a trestle that stands 20 feet above the ground level. This column it is proposed to tip over into the river, to form a prostrate column, designed to raise the water level at the intake considerably. The column is made of concrete having proportions of one, three, five, and is reinforced throughout its entire length by a very heavy chain that runs through the center, the chain having a weight of about 800 pounds. The approximate weight of the column is 200 tons. About every eight feet of its height there is a wooden wedge that extends nearly half way through the column, the wedges being about 12 inches thick at the outer edge and tapering to 6 inches toward the center, and the blocks are further
similarities in physical and cultural characteristics to warrant their being grouped together; the true negro may be regarded as a race; the Bantu are mixed peoples. It will be noticed that as a rule the Bantu approach the Hamites in those physical characters in which they differ from the true negroes, and owing to the fact that the physical characters of Semites in the main resemble those of Hamites, the Semitic mixture that may have taken place will tend in the same direction as that. of the Hamitic. The diversity in the physical characters of the Bantu is due to the different proportions of mixture of all the races of Africa. What we now require is a thorough investigation of these several elements in as pure a state as possible, and then by studying the various main groups of Bantu peoples their relative amount of racial mixture can be determined. The physical characteristics of the Bantu vary very considerably. The skin color is said to range from yellowishbrown to dull slaty-brown, a dark chocolate color being the prevalent hue. The character of the hair calls for no special remark, as it is so uniformly of the ordinary negro type. The stature ranges from an average of about 1.640 meters (5 feet $41 / 2$ inches) to about 1.715 meters (5 feet $71 / 2$ inches). Uniformity rather than diversity of head-form would seem to be the great characteristic of the African black races, but a broadheaded element makes itself felt in the population of the forest zone and of some of the upper waters of the Nile Valley. It appears that the broadening of the head is due to mixture with the brachycephalic Negrillo stock, for, whereas the dolichocephals are mainly of tall stature, some of the brachycephals, especially the Aduma of the Ogowe, with a cephalic index of 80.8 , are quite short, 1.594 meters (5 feet 2% inches). The character of the nose is often very useful in discriminating between races in a mixed population, but it has not yet been sufficiently studied in Africa, where it will probably prove of considerable value, especially in the determination of amount of Hamitic or Semitic blood. The results already obtained in Uganda are most promising. Steatopypy is not notable among men; fatty deposits are well developed among women, but nothing approaching the extent characteristic of the Hottentots and Bushmen.

The test of a scientific theory lies in the number of facts which it groups into a connected whole; it ought besides to be fruitful in pointing the way to the discovery and co-ordination of new and previously unsuspected facts. Thus a good theory is in effect a cyclopædia of knowledge, susceptible of indefinite extension by the addition of supplementary volumes.

DOUBLE ANIMALS
 by J. carter beard.

There not infrequently occur, even among human beings, instances of diphyterous birth in which two individuals are inseparably joined together.
Helena and Judith, the Hungarian sisters, who were born in 1701, and who lived twenty-two years; the famous Siamese twins, who died in 1874 at the age of sixty; the South Carolina negresses, Millie and Christina, who were exhibited at Barnum's museum on Broadway, and the Bohemian sisters, Rosalie and Josepha, are well-known examples, but many others exist. Often the union is much closer and more intimate than in the cases mentioned-so much so, indeed, that the consolidated individuals seldom if ever survive long after birth. Among the lower animals diphytera is, as might be suspected, far more common than it is among human beings, and it is quite possible that by persistent selection and breeding a race of double monsters might be established.
The most curious phase of the phenomenon perhaps, and one that seems to occur occasionally among human beings-though among mankind it is alternate and not simultaneous-is rather psychological than physiological, and consists in a double personality which to all appearances occupies the same physical organism. A case in point among the lower animals is the chameleon, long famous for its power of changing its color at will, a power which popular accounts have often greatly exaggerated.
It is certainly a remarkable animal in many respects, nearly allied to no other, and forming a genus entirely by itself.
To all appearances, and according to the researches of those best capable of forming an opinion on the subject, the nervous centers in one lateral half of this animal go on independently of those on the other, and it has two lateral centers of percep-tion-sensation and motion-besides the common one in which must reside
the faculty of concentration. Notwithstanding the strictly symmetrical structure of the chameleon as to its two halves, the eyes move independently of one another and convey separate impressions to their respective centers of perception. The consequence is that when the animal is agitated its movements resemble those of two animals, or rather perhaps two halves of animals glued together. Each half wishes to go its own way and there is no concordance of action. The chameleon therefore is the only fourlegged vertebrate that is unable to swim; it becomes so frightened when dropped into water that all faculty of concentration is lost and the creature tumbles about as if in a state of intoxication. When a chameleon is undisturbed every impulse to motion is referred to the proper tribunal and the whole organism acts in accordance with its decrees. The eye, for example, that receives the strongest impression pronagates it to the common enter, which then pre center, which then preails upon the other eye to follow that impression and direct its gaze toward the same object.
The chameleon, moreover, may be fast asleep on one side and wide awake on the other. Cautiously approached at night with a candle so as not to awaken the whole animal at once, the eye turned toward the light will open, begin to move, and the corresponding side to change color, whereas the other side will remain for a longer or shorter time in a torpid, motionless, and unchanged state with its eye fast shut.
Another most remarkable instance of the double animal is one in which two individuals are born separately and afterward become one indivisible being. This is the case with the Diplo-

Chameleon, Showing the Side That is Awakening and Beginning to Change. Its Other Side is as Yet Fast Asleep and Motionless. DOUBLE ANIMALS.
pletely fused, but otherwise the twin animals remain independent. This double trematode well deserves its name of Diplozoon paradoxum.

rtificial Train oil.

Under this descriptive title we understand a dark product derived from rosin-oil and one that is widely used in commerce playing at the same time no inconsiderable part in the smaller chemical branches of trade and industry, says Chemische Revue.
The light-colored train oils known in commerce under the name of fish oil or blubber are, as a rule, pure train oils, or, at the worst, somewhat adulterated, but rarely if ever purely artificial products. In the main the dark oils are derivatives of rosin oil and their production is attended with some difficulty because of the demands put forward by consumers, which are extremely strenuous.

As a criterion by which to judge the quality of the artificial train oil we are compelled to enumerate the fol lowing characteristics: Color, odor, viscosity, its feel on the surface, and, of course, absence of gloss; as for the color, it must show a light-brow: shade when the light falls upon a thi film of it. It must also be perfect: clear and possess a consistency nct greater than syrup. When rubbed between the thumb and fingers it must disclose a great degree of lubricity and yet not be sticky, such as, for example, any presence of mineral, sperm oil, or paraffine oil causes. In competition with the foreign oils it is very difficult indeed with the prices prevailing at present to produce an artificial train oil in Germany from domestic products which is capable of meeting all these demands. The chief ingredient in the production of artificial train oil is the so-called rosin stock oil. Conforming with the characteristics of the oil to be made this should be thickflowing and possess the least possible odor and gloss. The lighter and clearer the rosin stock oil is, the better it is adapted for the manufacture of
panying drawing. The diporpa is ciliated and freeswimming, and exercises its power of movement in roving; about in search of a home which it finds, if at all, on the gills of some fresh-water fish-the bream, the gudgeon, or the minnow-from which it derives its nutriment. Meeting or being joined by others like itself, it selects a companion to which it is no figure of speech to say that it becomes greatly attached.
There is upon the back of each of the animals a sort of a knob, and opposite to it a sucking apparatus by means of which it is able to fasten itself securely to any surface to which it wishes to adhere. When two of the animals become a single individual, they do so by twisting over so that each seizes the knob of its companion with its sucker, and thus situated they actually grow together as shown in the center figure of the cut. The knobs and suckers are com-
train oil. A cloudy and for that reason also a darker rosin oil is less suited for the purpose. Blue oil constitutes the next most important raw material from which to make our train oil, of which the properties, properly speaking, are of more consequence for the purpose than those of the rosin oil. The very pungent odor and high fluorescence, particularly of the blue oil of Galicia, are as a rule so difficult to remove that we have at the start the fundamental reasons for the inferiority of the final product.
Less important as raw materials are nitric acid and molasses, by means of which nearly all the artificial train oils are made. First a mixture of two parts of rosin oil and one part of blue oil is prepared-these ratios varying according to the desired viscosity-to which is added only pure and rather concentrated nitric acid, which probably deprives the mixture of its natural fluorescence through the nitro compounds formed with the hydrocarbons of rosin oil, besides deodorizing it and turning it dark. From 1.5 to 2 per cent of nitric acid is sufficient for the purpose, viz., to deodorize it and kill fluorescence. The smell of rosin oil does not disappear entirely, which indeed is of little moment, for in the finished product it is not unlike that of the natural train oil. The addition of from 2 to 4 per cent of molasses also assists the color as well as in disguising the odor. During the whole process the tem, perature in the kettlean open kettle and a direct fire are imperative --must be kept from 60 to 80 deg. C. When the product has the desired appearance the fire is drawn and contents of the kettle al. lowed to cool.

WATER COOLER AND REFRIGERATOR.
A recent invention provides a water cooler formed with a casing, in which various articles may be stored and kept cool by the ice of the water cooler. This combined water cooler and refrigerator occupies com-

WATER COOLER AND REFRIGERATOR.

paratively little space, and is thus particularly adapted for use in dining cars, restaurants, sample rooms, and the like. The construction of the device is very simple, and is clearly shown in the accompanying section view. The water cooler consists of a vertical cylinder, which is centrally supported in a large drum. The latter serves as the refrigerator, and is provided with a door at one side, through which access may be had to the interior. A pipe leading from the water cooler to the faucet on the outside of the refrigerator passes between the bottom of the drum and a false bottom consisting of a perforated plate. This plate supports a rack, which is designed to rotate around the water cooler. In order to permit easy movements of this rack, it is provided with rollers which fit into channels formed in the false bottom, as shown. The rack consists of two ring-like plates supported by a number of posts. The various articles to be cooled are laid on these plates, and as the rack can be rotated about the cooler, any desired part of it can be brought within easy reach. The water of condensation will pass through the perforated false bottom to the concaved bottom of the drum. At the center of this bottom wall is a large opening normally closed by a cap, in which there is a trap. The trap may be opened to drain out any water which has collected in the drum. When it is desired to clean the water cooler the cap is removed, giving access to the coupling between the water pipe and the cooler. When this coupling is released, the water cooler may be lifted bodily out of the drum water cooler may be lifted bodily out of the drum
casing. The inventor of this combined water cooler and refrigerator is Mr. John W. Brown, of Knoxville, Tenn., P. O. Box 23, Station A.

TRANSMITTING DEVICE.

There are certain sources of power which have a very limited value, chiefly because of their intermittent or irregular character. Windmills, for example,
vary with every gust of air, and wave motors must obey the whims of the ocean. The value of the power developed would be greatly increased, were some intermediary mechanism provided between the source of power and the work, which would absorb sudden variations, shocks, etc. This intermediary would also permit the coupling together of a number of these variable prime movers without loss of power. The power of several windmills, for instance, could be combined to operate a single machine. Such an intermediary mechanism has just been invented by Mr. Frederick S. Keyes, of Warren, Mass. As illustrated in the accompanying engraving the device comprises a series of wheels, mounted to turn freely on the driving shaft, and connected by spiral springs. Each wheel consists of a shallow drum, A, open at one side, and within which a series of movable abutments, B, are mounted. These abutments are radially disposed, and are provided with rollers at each end, adapted to bear against the side walls of the drum. At its inner end the abutment is formed with an extension, C, carrying rollers which bear either on the hub of the wheel or on a pair of annular flanges, D, projecting inwardly from the side walls. Aside from the movable abutments, each wheel is formed with a relatively stationary abutment, E. The movable abutments serve as connecting members between the sections of circularly arranged spiral springs, F, which lie concentric to the hub. On the outer face of each wheel a series of lugs, G, are formed, which project into the next adjacent wheel. The last movable abutment, or that at the end of the springs, bears against these lugs, as shown in the illustration, so that when one wheel is rotated, it acts upon the next through a cushion of springs, and the second wheel in turn transmits the power through a cushion of springs to the third wheel, and so on through the entire series. The purpose of dividing the springs into short sections by means of the abutments will be apparent. Buckling is entirely prevented, and friction of the springs against the sides of the wheels is thus obviated, while owing to their roller bearings the abutments are given perfect freedom of motion. In our illustration the mechanism is shown as applied to a wave motor. The rack, J, which is attached to a float, receives vertical reciprocating motion from the action of the waves, and imparts this to the pinion, K. This pinion is connected to pinion, L, by a ratchet clutch, which transmits motion in one direction only. The pinion, L, meshes with teeth, M, on the first wheel, A, causing the same to turn intermittently, but in a constant direction. The last wheel of the series enconstant direction. The last wheel of the series en-
gages a set of lugs on the disk, N, which is keyed to the main shaft.

BALANCE ADJUSTER FOR VEHICLES.

Two-wheeled vehicles, while very convenient and useful for certain purposes, yet possess the serious fault that they cannot at all times be perfectly balanced over the axle. If the forward end is overweighted an unnecessary load is imposed upon the horse, and if the rear end is overweighted the tendency will be to lift the horse off his feet. To remedy such conditions Mr. Patrick J. McGinn, of Salisburg P. O., Rhodesia, South Africa, has invented a vehicle which may be readily adjusted to the proper balance. The accompanying engraving shows this vehicle with a portion of the body broken away to reveal the adjusting mechanism. It will be noted that the body of the vehicle is not directly supported on the frame, but rests on front and rear straps which are slidably mounted on the side rails of the frame. This permits the body to be moved backward or forward with respect to the axle. Beneath the floor of the vehicle a bar, A, is mounted which is held in place by means of two rods anchored respectively to the forward and rear cross bars of the vehicle frame. The bar, A, is formed with rectangular openings, B, as indicated in the section view, Fig. 2. Directly above the bar, A, is a bracket which is bolted to the under side of the floor. A socket piece adapted to receive the lever, E, is formed with trunnions, which are mounted in bearings in the side walls of the bracket. A dog, C, is hinged to the bottom of the socket piece. The northe socket piece. The nor-
mal position of this dog is mal position of this dog is
indicated by dotted lines indicated by dotted lines
in Fig. 2, which shows its in Fig. 2, which shows its
outer end projecting through an opening in the bottom wall of the bracket and engaging one of the rectangular openings, B. When the lever, E, is inserted in the socket piece, it engages a projecting toe of the dog, C, lifting the latter to the position illustrated by full lines. Mounted to slide vertically in the end of lever, E, is a pinch-block, D, which pro-
jects through the socket piece and engages one of the openings, B. It will be observed. that the lower face of the block, D, is inclined. Now, when it is desired to adjust the body of the vehicle, the lever, E, is inserted as illustrated, lifting the dog, C, and then when the lever is swung to the rear the pinch-block, D, serves as a fulcrum, so that the body of the car is moved rearwardly. When the lever is swung forward, the block, D, owing to its inclined face, is lifted out of engagement with the opening, B, and falls into the next opening to the rear. The lever, E, may then be operated to slide the vehicle body still further back. If it is desired to move the body forward the lever is placed in the socket in re-

balance adjuster for vehicles.
verse position, so that the lower face of the block, D, inclines toward the rear. Then on moving the lever forward the body will be moved forward on the frame.

AN IMPROVED WATER-CURRENT MOTOR.

A water-current motor of simple construction has recently been invented, which is provided with an efficient means for governing the speed or power developed. The motor is designed to be submerged well below the surface of a stream, so that it will not be in the path of driftwood or rubbish coming down with the current and will not be affected by the rise and fall of the current at different seasons of the year. The construction of the motor is clearly illustrated in the accompanying engraving. A pier of masonry is built out from the bank of the stream and supports an upper horizontal beam and a lower sill. A shaft is mounted to turn in bearings in the sill and beam. Rigidly secured to the shaft near its opposite bearings are a pair of blocks from each of which four arms or spokes radiate. Mounted between the upper and lower sets of spokes are four frames which, with the vanes they carry, serve as wings against which the current acts. The wings, which are indicated at E in the engraving, are hinged to the outer extremities of the spokes. On the main shaft of the current motor are a number of collars, D, formed with teeth adapted to stop the inner ends of the wings as they are swung against them by the current. It will be evident that the wings on one side of the main shaft will be forced against these stops by the weight of the current, while those on the other side will swing free from the shaft, assuming a position parallel with the direction of the current, and thus offering no appreciable resistance to the flow of the stream. The motor is thus caused to rotate, and the motion is transmitted by means of suitable gearing to any point desired. It will be noted that the vanes of the wings, E, are formed with trunnions which extend into the vertical posts of the frames. The trunnions at the outer ends carry cranks which are attached to connecting rods, A, so that when these rods are raised

an improved water-current motor.
the vanes will be swung open. Levers, B, are ful crumed in the upper spokes and to their outer ends the connecting rods, A, are attached by means of links. L.oosely mounted on the main shaft is a.collar to which the inner ends of the levers, B, are connected in such manner that they can be raised and lowered by shift ing the collar on its shaft and yet are free to revolve about the collar, which is kept from turning. A rod connects the collar with a bell crank, C, which, in turn, is connected to a ball governor not shown in the illustration. This governor, which is of the usual centrifu gal type, is geared to the power shaft of the motor and operates to automatically raise or lower the rods, A, thus controlling the inclination of the vanes, and regulating the speed of the motor by varying the surface area on which the current can act. In this way uniform action of the motor is secured regardless of the speed of the current. The machine may be used as well at the mouth of a harbor, for the wings are selfreversing and will adjust themselves to the ebb and flow of the tide. Mr. H. H. Granger, of Davenport, Wash., is the inventor of this improved current motor.

Ever since the present sewing machine was brought

 o perfection, efforts have been made to devise a sysem whereby sewing may be carried out direct from two reels of thread, thereby dispensing with the winding of spools and threading of shuttles, but with indifferent success. The problem, however, has now been solved by Mr. Dennis Flanagan, a Lancashire mechanic, after some fourteen years' continuous experiments. The feature of this invention is the distinct simplifica-tion of the sewing machine, there being a small num ber of parts. There are no vibratory or eccentric mo tions, every movement being positive in its action. As there are no spools to wind, the loose balance wheel is dispensed with. As a reel of cotton is regularly wound a uniform stitch is obtained, while the double take-up gives an elasticity to the tension. The machine sews perfectly on both fine and heavy materials.
The horse suffers from many ills, the direct result of his unbecoming and unnecessary haste in eating Confronted by a generous display of oats in the feed box, he cannot resist the inclination to bolt one mouth ful, so that he may take another at the expense of his health. A style of feed-box has been recently worked out by Samuel Cunningham, chief of the Lockport N. Y., fire department, by which this unwarranted haste on the part of the animal is checked. In this new in vention the feed is delivered to the animal through cone-shaped device with a hole in the bottom. The horse secures a mouthful of food by pushing his nose into the cone, and the oats are forced up within reach of his mouth through the hole, but the secret of the operation of the invention is that the animal cannot push his nose into the cone until he has disposed of the previous mouthful. In this manner he is com pelled to eat his meal in a more deliberate and whole some manner.
Oil for the purpose of quieting the sea has been in use for many years, but an extremely novel means of applying the oil has been recently devised by Vice Admiral Guimares of the Brazilian navy, who has made a gun for the special function of doing this work. The gun is called a "bottle gun," and in use occupies a place on deck in the forward part of the boat. In
ase of a very turbulent sea, the gun is loaded with a bottle containing sawdust which has been soaked with oil. The discharge of the weapon breaks the bottle into innumerable pieces, and the contents are scattered over the surface of the sea for some considerable distance, and the effect on the troubled water is at once noticeable. If this operation is followed at intervals of five minutes, and the missile shot ahead of the boat, peaceful path is prepared for the craft, and if she is at anchor or lying-to, one round every twenty minates is said to be ample. The gun is of special construction to meet the demands of the peculiar missile, and it is said that an ordinary wine bottle may be utilized to contain the charge of sawdust.
Almost anyone who thoughtfully contemplates the onstruction of a baseball cannot but help admire the ingenuity of the man who designed the cover. This consists of two parts, each of which is a complete geometrical design, and when applied to the exterior of the sphere, covers the same in a very thorough manner. The man who originally worked this design out died a few weeks ago. He was Elias Drake, and he lived at Middleboro, Mass., and during his lifetime he nvented a number of other useful devices, and enjoyed the reputation of a rather prolific inventor. He hought out the idea of the baseball cover in 1855, and it was adopted two years later by George and Harry Wright and has been in use ever since. Mr. Drake neglected to take out a patent on this cover, for the reason that he thought it too trivial; but when the ame became more popular, and the business of making the balls developed into a big industry, he regretted that he had overlooked the formality of protecting himself.

RECENTLY PATENTED INVENTIONS.

 Electrical Devices.Electric Lock.-N. W. Webb, New York, N. Y. The invention relates to electric doorlocks connected with an electric alarm at a distant point. The object is to provide a new and improved electric lock arranged to give an ersons before such persons can open the door persons before such persons can open the door
sufficiently to effect an entrance into the house.
Electric bell-Ringer.-I. W. Hall, Brownwood, Texas. In this case the invention relates to electric bell-ringers, the more par liable, and efficient bell-ringer which may be operated either by electric wires from a distance or by merely pressing a push-button.
Protected rail.-L. Steinberger, York, N. Y. In the present patent Mr. Stein berger's invention has reference to railways, the more particular object in view in his im-
provement being the production of a protected provement being the production of a protected rail which may be employed in various rela
for supplying current to electric railways.

of Interest to Farmers.

SEED-PLANTER AND FERTILIZER-DIS-TRIBUTER.-J. A. Bouchillon, Pelzer, S. C. and distributer, each being provided with means or agitating its contents and feeding the same o discharge-orifices, the machine being supported upon a bearing-wheel from which the agitators are operated. By the means used
the labor of guiding and supporting the mathe labor of guiding and supporting the
husking-machine.-o. C. Moore, M ow, Ohio. Mr. Moore's invention relates to ed to the feed mechanism for the snapping rolls. To obviate the many difficulties that occur in operating husking-machines and to provide a mechanism which will allow the approvide a mechanism which will allow the ap-
plying of the proper pressure to the snapping rolls and at the same time secure automatic eed is the principal object of the inventor.
DEHORNER FOR CATTLE.-C. E. BINnings, Stamford, Texas. This inventor"s improvement relates to instruments for dehorning cattle. His improved dehorner admits of general use, but is of special value in removing he embryo of partially-developed horns of exis impossible for a horn to grow out.

Of General Interest.

PORTABLE GARMENT-HANGER.-A. M. Taylor, Port Ewen, N. Y. The aim of this and durable in construction, cheap to manu facture, readily set up for use and easily facture, readily set up for use and easily
folded for convenient storing in a traveling bag, valise, and the like, and arranged to conveniently support a number of articles, su
as a coat, vest, overcoat, trousers, and hat.
Pricking-punch.-C. E. Traxel, Rome N. Y. In the present patent the invention has reference to improvements in tools for pricking metal for the starting of drills or the
like. The object in view of the inventor being he provision of a tool of this character that will be practically automatic in its operation. VALVE.-E. F. Riddle, Wellsville, Ohio.
This automatic gas-cut-off valve acts by gravity This automatic gas-cut-off valve acts by gravity
to close when the gas supply and pressure is
valve stays closed until opened by hand. The object of the invention is to produce a valve
quick and certain in operation, and which will quick and certain in operation, and which wiln When open the valve does not reduce or obstruct the gas passage or pressure, and it is
simple in construction and neat in appearance CABLE-GRIP.-A. J. Neff, Houston, To The grip is to be used in connection with cableways. The object of the improvement is to produce a grip of simple construction which will operate to grasp the moving cable firmly and which will operate automatically to apply its grasping force when a load upon the grip is applied.
WATCH-PROTECTOR. - J. MIDDLEBROOK Barre, Vt. In this instance the invention per tains to improvements in devices designed to be placed in a person's pocket to prevent the accidental or fraudulent removal of a watch, the object being to provide a watch-protector detachably secured in a pocket and that will be inexpensive.
WRIST-SUPPOR'TED BLOTTER.-B. MONIS New York, N. Y. The inventor's more par-
ticular ticular purpose in this case is to adapt the
blotter for use upon the wrist of the operator so that it may be used when desired without materially interfering with the use of the pen. The invention relates to blotters, such as used y bookkeepers and writers of various kinds.
PIPE-BAND FASTENING.-A. W. HIGHT, Ballard, Wash. The aim of the invention is
to provide an absolutely secure connection with which the ends of the band may be engaged and tightened to any desired tension. To at tain this a shoe formed of an integral metal plate with an opening therein, is employed of the band, forming the shoe in essentially U shaped-cross-sectional form, and the other end of the band being fitted in the shoe and having a nut thereon engaged with one end of the shoe, so that by tightening up the nut any ten ion may be exerted on the band.
DRYING AND ROASTING FURNACE.-C. E. Ballow and E. Stein, Guanacevi, Durango, Mexico. The invention resides particularly in a peculiar combination of a drying and roast ing furnace, so that the two may be collectively tofore. Its peculiar devices apitate the as it passes through the furnaces, these device consisting of the combination of shelves and rollers which thoroughly work the ore and re-
tard its downward movement sufficiently to enable the necessary drying and roasting opera tions.
Col. ThLla.-J. V. Sybrandt, Springdale, Col. The invention pertains to umbrellas and to canopies, tents, and the like. The chief object of the inventor is to provide means be made of any desired form without interfer ing with its capacity of being folded.

Heating and Lighting.

C'arbureted-air machine.-F'. Picard, Montreal, Canada. The invention relates to the class of carbureters in which rotating fabric is
caused to be immersed in the hydrocarbon liquid such as gasoline. The patentee provides a duplicate arrangement of fabric-supporting devices of special form. A fan delivers the air against both the fabrics. The fan and the fabric supports are rotated by a small hydraulic
mechanism is provided for controlling the supply of air and the motive fluid through the
movements of the gasometer bell.

Household Utilities.

ATTACHMENT FOR BEDSTEADS.-H. E. Henwood, New York, N. Y. This improvement refers to attachments for bedsteads, and par icularly to those adapted for the raising of surface. Its principal object is to provide such an attachment which may be applied to an ordinary bedstead without rendering it necessary to alter the bed structure itself, this application being capable
out the use of tools.
Chair.-J. B. Lawrence, New York, N. Y n this patent the invention relates to improve ments in chairs of that class adapted to be either as a rocker or fixed chair, the object being to provide a chair of his character that various positions and rigidly held as adjusted CLOTHES-CLOSET - M L Hembiod Clothes-closer.- M. L. HENRIOUD, Pueblo, Col. The object of the invention is to up and attached conveniently to the an apartment or living-room. A specific object is to enable closet-space to be produced in rooms not having closets under such circumstances as may arise when rooms are occupied temporarily as sleeping-rooms. It affords means for increasing the ordinary clo
of the room when found insufficient.
AWNING.-W. H. Brown and H. M. Brad BURy, New York, N. Y. The improvement made by these inventors relates to a ventilated to provide means for permitting a circulation of air, and especially for allowing the air which ordinartily collects near the top of an wning and in the upper part of a room to be discharged through the awning itself.

Machines and Mechanical Devices.

 CLAMP FOR PRINTING-FILM FRAMES. B. Day, West Hoboken, N. J. Mr. Day's pres type described in his former Patent No 666,087. It covers a device analogous to a hinge, and suitable for use upon printing-film frames of the kind made by the inventor. Theframe is of wood, and the clamp grins the frame is of wood, and the clamp grips the
frame detachably. The clamp consists of two frame detachably. The clamp consists of two
parts, movable relatively to each other by means of a cam, so as to press firmly upon opposite edges of the frame. One of these he other having only one. Pressure upon the frame is therefore applied at three separate points, thus insuring exactness in fit. All of the contact faces are milled
with the grain of the wood.
CHANGE-MACHINE.-T. I. Potter, San Francisco, Cal. The purpose of this invention is to provide a machine adapted to any cashdrawer and from which change may be quickly by simply pressing one or more of a series of keys, each designating a certain amount, and to provide a series of storage-chambers for the coins from which the change is to be made. molding-MACHINE.-B. F. Potter, Ashabula, Ohio. Mr. Potter's invention relates o a molding-machine which is capable of molding articles of many characters and can be used with plastic materials of various kinds.
molding of hollow building-blocks of concrete and the like. One of the principal objects of the invention is to generally increase the effimachines of this character.
Ditching - Machine.-C. P. Gable, Ruston, La. In this case the improvement is
in the nature of a ditching-machine designed in the nature of a ditching-machine designed
to dig new ditches or clean out old ones; and to dig new ditches or clean out old ones; and
it consists in the novel construction and arrangement of parts of a portable machine designed to take up the dirt and deposit it on one side or the other of the ditch.
DOUGHNUT-MACHINE.-W. W. Gray. and P. C. Van Fleet, Riverside, Cal. This apparatus forms dough into rings to produce doughnuts. As these are ordinarily cut out from a
sheet in the presence of free flour to prevent sheet in the presence of free flour to prevent sticking, the dough between the cut rings is
rolled over and again cut, resulting in a product becoming more and more tough as this duct becoming more and more tough as this
peration continues. Moreover, the loose flour collects in the frying-fat and soon burns, thickning it so that it must be frequently strained, nd oftẹn completely spoiled. To obviate such difficulties are the principal objects of the invention.
MIXING-MACHINE.-J. B. Cross, Oneonta, N. Y. This invention refers to mechanical means for mixing together the ingredients used in the production of bread, cakes, or pastrydough, and has for its object to provide novel features of construction for the mixing-machine that are verate, readily taken apart for cleaning, and are strong and durable.

SAFETY DEVICE FOR ELEVATORS.-C. W. Hoffman, New York, N. Y. The object of the invention is to provide a device for eleva-
ors arranged to insure quick application of the brake-shoes in case of accident, to prevent the cage from acquiring too much momentum by falling a great distance, and then power fully apply the brake-shoes to hold the cage in the initial position.
YARN-PRINTING MACHINE. - W. K. Hawk, Falls of Schuylkill, Pa. The object of the invention is to provide a new and improved yarn-printing machine arranged to per-
mit printing yarns of any desired length, and more especially such as are required in the weaving of large rugs known as "art-squares," the arrangement being such that the same printing-drum will answer in printing long or short yarn.
butter cutter and measurer.-G. Ericson, Brooklyn, N. Y. In the present in-
stance the invention of Mr. Ericson has referstance the invention of Mr. Ericson has reference to the provision of a novel means for
cutting out from a larger mass of butter a cutting out from a larger mass of butter a
print or regularly-formed block of butter and for the simultaneous weighing or measuring of for the simultaneo
the print or block.
Shingle-machine. - A. Z. Bodreaux Berwick, La. This invention relates particu-
larly to attachments to shingle-sawing machines in which the saw rotates in a horizontal plane the object being to provide a simple device for ejecting the spalts from the machine instead of manually removing the same, as in the usual practice, thus obviating the possibility
of cutting the attendant's hands or fingers by of cutting the attendant's hands or fingers by

rime Movers and Their Accessories.

 TURBINE-ENGINE.-M. D. Kalbach, Leban sists of a disk formed with two radial rowtween the two rows is a stationary annular
abutment which separates them. The steam is fed in at the top of the casing against opposite sides of the disk, but acts on only one
half of the circumference at a time. In oper half of the circumference at a time. In oper ation the steam first impinges on the vanes,
whence it is deflected into ducts in the casing only to be redirected against the vanes a little farther down, and deflected into lower ducts Thus the steam threads its way in and out un-
til the exhaust port at the bottom of the cas til the exhaust port at the bottom of the cas
ing is reached. The ducts are made successively larger to allow for expansion of the steam. To reverse the engine the steam is conducted against the opposite half circumference of the disk.
INJECTOR.-G. H. Boetcher, Cambridge, Ohio. This injector comprises a nozzle, a con-
duit into which the nozzle extends and which is provided with an opening beside the nozzle into the outer air, a casing adapted to contain a body of liquid and having a liquid-discharge opening and an air-discharge opening and into rounding the end of the conduit within the casing and flaring outwardly into close prox imity with the casing and being provided with an opening at the side of the conduit end.
CURRENT-MOTOR.-A. A. Morton, Walla Walla, Wash. The invention refers to improvements in motors operated by steam-currents; the object being to provide a motor
simple in construction, having no parts liable to get out of order, and that will be operate by currents of any force and regulated as t the thirow of its transmission-rod leading to machinery on shore
CARBURETER FOR HYDROCARBON-EN-GINES.-J. H. Johnston, 145 Rue de la lompe, Paris, France. This invention pertains
to improvements in carbureters for hydrocarbonengines or motors, and has for its object to engines or motors, and has for a carbureter in which the admission of the air for the formation of the explosive mixture shall be automatically regulated ac cording to the extent of aspiration of the en gine or motor, and consequently according to the speed of the latter, in such a manner that
the richness of the mixture will always remain the richness of the mixture will always remain
at the most suitable point for the proper workat the most suitab
ing of the motor.
steam-boiler.-J. P. Karr, Monticello, Ind. Mr. Karr's improvement pertains more particularly to an attachment to steam-boilers,
the object being to provide means whereby the the object being to provide means whereby the
boiler capacity may be increased over steamboilers as heretofore constructed and without corresponding increase of fuel consumption Broadly stated, it consists of a portable independent section adapted to be placed at the rear end of return-flue boiler
end of direct-draft boilers.

Railways and Their Accessories.

 RAILWAY-TIE AND HEATING DEVICE Therefor.-C. S. Chapman, Ridgewood, N possessing in itself certain valuable characteristics, but has reference more especially to means for heating simultaneously any desired number or all the ties of a line or section of railway and incidentally or indirectly the railssupported thereon by which to effect the melting of snow and ice accumulating on the rails ing of snow and ice acc
during the cold seasons.
CAR.-T'. H. Proske, Denver, Col. This invention relates to the removal of material
loosened by blasting operations carried on in mines, tunnels, and like work. Its object is to mines, tunnels, and hike work. fts object is to rectly receiving the material resulting from the blasting operations and for allowing quick and convenient removal of the material from
the breast of the mine or tunnel and to permit the breast of the mine or tunnel and to permit
dumping of the material outside of the tunnel dumping of the material outside of the tunnel
or mine from either end or side of the car.

Pertaining to Vehicles.

SANDING DEVICE.-A. L. Moss, Sandusky, Ohio. The object of the inventor is to provide a device, more especially designed for use on
automobiles and like vehicles and arranged to permit the chauffeur to throw the device quickly into action to sprinkle the road-bed with sand whenever required with a view to prevent the vehicle-wheels from slipping, es pecially when the
rendered slippery.

SPRING-BOLSTER.-W. J. F"oister, Myrtlepoint, Ore. Provision is made in this case for novel details of construction for the bolsters
employed whereby springs are associated with the bolsters and adapted for absorbing shock sustained by the loaded wagon in moving over
a rough road-bed. The invention relates to springs employed for cushioning the impact of a load on a vehicle, such as a freight-hauling wagon.

Designs.

DESIGN FOR A COLOR-EXHIBITING STAND.-W. H. Reese, Milwaukee, Wis. The designer's claim is for an ornamental design
consisting of a color-exhibiting stand. The in vention comprises an upright frame on two posts connected by cross pieces in which
pivotally turns revolving portion containing two rows of places for the exposition of maals of diferent colors
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee,
the invention, and date of this paper.

Business and Persomal Zuants.
READ, THIS COLUMN CAREFULLY-YOM

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. Y459.-Wanted, importers of
amber and copalie.
Ho
Inguiry No. 7460.-Wanted, a metallic or mineral
powder of the color of silver oraluminium.
"E.S." Metal Polish. Indianapolis. Samples free.

Inquiry No. 7462
spray pump nozzles.
Sawmill machinery and outtts man
Lane Mfg. Co.. Box 13, Montpelier, Vt .
Inquiry
or selling cigars.
N463.-For makers of slot machines I sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y .
 W ANTED.-Patented specialties of merit, to manuInquiry No. \%465. - Wanted, German-made paper,
itho or oliograph front picture frames tor cabinets. The celebrated "Hornsby-Akrogd" Patent Safety Oil Engine is built by the De La Vergne Machine Company
Foot of East 138th Street, New York.

lnquiry No. milking machine.

Wanted. - Ideas regarding patentable device for ive, P. O. Box 733 , New York.
Inquiry No. 746\%.-Wanted, for shipment to
Bombiy, kerosene, paraffine and other heavy oils for
motors.
Latest advertising novelties.-High-grade Il
lustrating, Designing and Printing. Catalogues a Spe Holland Bldg., St. Louis, Mo Inquiry No. 7468.-For makers of street railway
supplies.
For Sale.--Six horse-power kerosene engine, Mietz Weiss make. No dealers. For price and particulars F. Lufbery, Jr.,

Inquiry No. 7469.-For dealers in sand, such as
sed in hourglasses.
Manufacturers of patent articles, dies, metal amping, screw machine work, hardware specialties, Manufacturing Company, 18 South Canal St., Chicago. Inquiry No. y840.-For makers of embossing ma-
chines for name plates. For SALE.-A small manufacturing plant in opera-
ration, well equipped for manufacturing wrought specialties. ' Reason for selling, other interests. Address Box 1163, Hartford, Conn.
Inquiry No. 7471.-For dealers in ornamental
and ilain iron. brass ad copper and supplies used in
making bent iron articles. Absolute privacy for inventors and experimenting. well-equipped private laboratory can be rented on
moderate terms from the Electrical Testing LaborInduiry No. \boldsymbol{y} 4y., New York. Write to-day.
Hanted, addresses of maker
inventions Wanted.-Undersigned will consi
ne or two good patented or patentable inventions anufacture onroyalty. Something in popular demand ville Company, Grand Rapids, Mich.

Inquiry n propellers

Inguiry No. V474.-Wanted, a machine which will
Wire and seal orden boxes mechanically and automaInguiry No. 9475.

nquiry No. 7497.-Wanted, powdered metal cal
d"thermit."
Inquiry No. 9 498. - For manufacturers of up-to
Inte machinery and apparatus 1 tor a canning factory.
Inguiry No. 7479 For manufacturers of safety
aatches, i. e.. thoze which have a specially prepared
Inquiry No. M80.- Wanted, case-hardened stee
or other metal cslinders, 20,30 and

Inquiry No. V481. For manufacturers of ma
chines and appil nece for a quarry.
Inquiry No. \mathbf{y} s.s.-For
cal process for smeling iron.
Inquiry No. 7483.-For manufacturers of small
combination locks.
Inguiry No. 748 4.-For parties making or selling
Inquiry No. 7485.-For manufacturers of marine
geonine engie
willing to sell the necessary castings and working draw.
Inquiry No. Y486.-For manufacturers of picker
ing-draving machines.

Inquiry No. 7489.-For manufacturers of cellu-
loid in sheets. Inquiry No. 9490 - For manu facturers of ma-
chines for digging ditches for tile drains. Inquirv, No. 7491.- For manufacturers, of "Ran-
som Mixer for foncrete work; also ". White's Improv-
ed Road oiler", for hot or cold oil. Inquiry No. 7492.-For manufacturers of hand Inguiry No. 9493.-For. manufacturers of thin
Woods and veneers for seroil work; also imported hard
woods. Inquirv No. 7194.-For manufacturers of ma-
chines for making pins, needles, pencils, nails, hinges,
screws, etc. Inquir. No.
usable bottles. 7495.-For manufacturers of non-re-

Hints to Correspondents.

(9835) C. J. H. asks: Please answer through your Notes and Queries the following How many watts will ten sixteen-candle-power electric lamps consume in one hour? A. Ten
16 -candle lamps consume about 550 watts. Now watts have no dependence upon time. In one hour these lamps will consume 550 wattone hour, and is the basis watt exerted for current in making bill for its service
(9836) P. asks: When did the words "In God We Trust," appear on our coins? A The phrase "In God We Trust" was first used 1866. In 1878 it appeared on the silver trade dollar piece. In 1876 it appeared on the silver half-dollar, and on the silver quarter-dolla and the nickel five-cent pieces of 1876 . Th
two-cent bronze piece of 1864 had it. It ap peared on the coinage by authority of Con
(9837) C. H. W. asks: 1. If an electro magnet will lift ten times its weight, what the center of a four-wheeled vehicle that doe not weigh any more than the magnet, and just behind the magnet is mounted a flat piec of the same kind of iron, which weighs just as much as that used in the magnet, and is so magnet? Now we have ten times the weight of the magnet less the weight of the vehicle the iron plate, and the loss of magnetism in the air space. Will the magnet pull the vehi cle or will it not? A. From your description a piece of iron we are not able to see why there should be any motion produced. A mag. net rests on a vehicle and near it in the same vehicle is a piece of iron. Why should the
vehicle move? There seems something lacking vehicle move? There seems something lacking
in the description, and we can only suggest that you try your own arrangement and se
what results. 2. In nickel-plating cles of brass by electroplating, about how long is it necessary for them to hang in the solu tion? A. A coating of nickel can gain a thick
ness sufficient to cover in three or four minness sufficient to cover in three or four min-
utes. To deposit a thick coat will require much longer.
(9838) X. asks: Could you let me know through your paper if electricity can be taken out of the human body, and if so by what
means; also if it can be put in the body, and means; also if it can be put in the body, and how? A. If the meaning of your inquiry is,
"Can all the electricity be taken out of the human body?" we answer: No. Electricity in which you seem to use the expression by placing the person upon an insulated platform and connecting him to a source of electricity. He will be electrified to the potential of the
(9839) E. B. C. asks: 1. Will you kindly tell me how much and what kind of winding a magnet on a soft iron core $81 / 2$ inches ong, for use with Edison 110 or 115-volt contact current? A. We do not know what you
wish to do with an electro-magnet, and it is not possible to give very good advice upon winding an unknown quantity. Still we may say that you should not wind the magnet with ircuit The put great. Five pounds of No. 24 single cotton covered copper magnet wire will allow one 22. These quantities seem to us quite out of the question. The heating in the interior of such a winding must soon char the insulation and injure the magnet. It is far better to on your core, and then use the magnet with an external resistance, a rheostat, which need in cost much, and can be bought from dealers ent to magnetize the core, and the rheosta will dissipate the larger part of the heat from he larger current used. 2. Is there any de piano player? A. An attachment has been ased for recording the notes struck on a musi cal instrument, such as an organ or piano. We
do not know whether it is in existence now or not. It did not seem to attract musicians
any great axtent.

NEW BOOKS, ETC

Cements, Limes, and Plasters. By EdWiley \& Sons, $1905 . \quad 8 \mathrm{vo}$.; pp. 710. Price, \$6. This work is a very complete summary of the composition and character of raw mate
rials, method of manufacture, and properties of the various cementing materials used for building and engineering to-day. It is divided into seven parts as follows: Plasters; Limes ; Magnesia and Oxychloride Cements; Hydrau
lic Limes, .Selenitic Limes, and Grappier Ce lic Limes, . Selenitic Limes, and Grappier Ce
ments; Natural Cements ; Portland Cement ments; Natural Cements ; Portland Cement;
and Puzzolan Cements. The book is illustrated with no less with 165 figures, diagrams, and half-tones. There are several maps of the
United States, showing the locations of natural and Portland cement plants, The book contains 254 tables, giving all possible information regarding the various cements both natural and artificial, and also regarding cement machinery, and the cost of operating the same. The book is exceedingly comprehen-
sive in character, and will be found valuable by all engineers.
Handbook of Lithography. By David
Cumming. New York. The Cumming. New York: The Macmil-
lan Company, $1905 . \quad 12$ mo.; pp. 243. lan Compa
This book is a practical treatise for all who are interested in the process of lithography. Lithographic stones-their properties, defects, and preparation; transfer inks and papers, and ranging and patching up work for transferring drawing on stone for black and color work, and transferring work to the stone; the preparation of stones for printing; hand-press and machine printing; the principles of chromo-lithographic drawing and printing; and paper of various kinds, qualities, and printing conditions, are ome of the subjects discussed. The book has a number of colored plates, showing the dif-
ferent tints used in ordinary lithography. It is a very complete and interesting handbook, and a book which will be found useful to all lithographers.
Trazione a Vapore Sulle Ferrovie Ordinarie. By G. Ottone. Milan:
Ulrico Hoepli, $1905 . \quad 32 \mathrm{mo}$. ; pp. 469.
Manuale dell ingegnere Elettricista. By Attilio Marro. Milan: Ulrico
Hoepli, $1905 . \quad 32 \mathrm{mo}$. pp. 689 Hoepli, 1905. $32 \mathrm{mo}$. ; pp. 689
Le Abitazioni Popolari. By Effren Mag-
rini. Milan: Ulrico Hoepli, rini. Milan: Ulrico Hoepli, 1905.
32 mo .; pp. 309. $32 \mathrm{mo} . ; \mathrm{pp} .309$.
Resistenza dei Materiali e Stabilita Delle Cons'truzioni. Dr. Guido
Sandrinelli. Milan: Ulrico Hoepli, 1905. 32 mo .; pp. 471.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued
for the Week Ending
October 31, 1905
AND EACH BEARING THATDATE

with trolley car, track AND BATTERY

Write for Catalogue "B"
A full line of locomotives and trains, tracks, bridges and switches. Small dynamos and motors.
The Carlisle \& Finch Co 233 East Clifton Avenu

ANDREW C TRNEGIF rematy said :

"Every young man should get his life insured. The young man who neglects to insure his life, even though it entails some hardship to meet the premiums, does himself and those dependent upon him an injustice."

The Prudential

furnishes an easy method
through its Profitable Endowiment Policies

Fill in the attached Coupon and send for full information. It will cost you only a post age stamp and may be the means of starting an ample provision for your later years.

................
steam heate

Piano case brace. Ni. Ti. Richardion.:
Piano olayers, adjustabie conecting a

Rotary engine, J. A. Eaton
Rotary engine, P. Bartoletti
Rot

Shear gage, Comsesiaii \& Hoilow
Shipping box,

Stalk
Steam
Steam
Steam
Steam

Switch means for su porting, C. Hansel........
Switch operating mechanism, C. C. Gi. Coiweiil:
Switch points, adjusting mechanism for, A.

A Catalogue

 rop users or Machinists' Supplies Our new edition, just issued, contains 650 pages, fully illustrated and describing everything in the line of tools, machinery, supplies, etc. For the man interested in the operation of a manufacturing plant, the mechanical departments of a railroad, or any kind of machine shop, this catalogue is a book of positively valuable information. If you are directly interested in machinists' supplies, write for it to-day. Sent free, postpaid. AddressMACHINISTS'SUPPLYCO.
oUr Name if is a guarantee
22 SOUTH CANAL ST., CHICAGO, ILL.

BABBITT METALS.-SIX IMPORTANT

This Book Is Free

It Tells You About a System of Handling Figures With Lightning Rapidity.

One Thousand Copies Will Be Given Away to Those Who Apply First.

HIS BOOK tells about marvelous methods of
shortening calculations $:$ methods that simplify

the most difccult tusiness problems and sme.
times make it possible to do the work of an hour in times make it possible to do the work. of an hour in
the space of a minute. It is from the pen of a man
who has devoted his life to the subject of mater who has devoted his life to the subject of rapid
and accurate calculations. He is known throughout
the United States as the foremost calculator of the the United States as the foremost calculator of the
day. Every man should calculate quickly and with
ease. Every business man must calculate. Often a ease. Every business man must calculate. Often a
certain calculation must be made mentally and in-
stantly certain ca culation muse be made me own interests.
stantly if you would take care of your own int
By our improved methods you see restout By our improved methods you see results without
effort. You multiply, add, , subtract and divide frac-
tions or whole numbers with narvelous ease. The methods introduced by this book will revolutionize
figuring and arithmetic for you. You can learn at figuring and arithmetic for you, You can learn at
your own home with little efforthand without loss of
time If you are an office man the result will he time If you are an office man the result will he
seen in your pay envelope The man who figures
accurately and rapidly can do three times as much work as the one who uses ordinary methods. Un-
less you know all about figures that you want to esss you know all about figures that you want to
know, unless you are accurate in every calculation,
you cannot afford to be without this information. you cannot afford to be without this information,
It costs you nothing to write for the book, it is free.;
it may cost you a good position or a valuable proit may cost you a good position or a valuable pro--
motion to neglect this opportunity. Address Com-
mercial Correspondence Som Schools, 390 B, Schools
Buildings, Rochester, N. Y.

Will Earn For You \$100 A DAY It will spin sugarinto cotton
candy, any color or flavor ${ }^{\text {canchila can operate it. }}$ it Cotton Candy Machine

53 West 8 th Street,	58 West 8 th Street,
New York, $\mathbf{E} . \mathrm{S}$.	

 corporated New London Wash Silk Co.
Extracts, tlavoring, Crescent Manufacturing
Co. Fasteners for the waistbands of trouser
Catch On Clasp Manufacturing Co.....
Files and rasps, Nicholson File CO.

 Flour, wheat, Thornton \& Chester Milling

 Fruits and vegetables and fruit and vege
table preseres and jellies in tins
glass, Wm. Numsen Wm . Sons, Inc...... Gin, Bluthenthal \& Heilbronn
Gloves, Wertheimer
Grape juice, Siegel, Cooper
Hats, straw, C. Schmitz $\&$ C

Hose, fabric, American Multiple Fabrice Co.
Ink

Laces, shoe, L. I. Goodstein..................
Laces, shoe, Fietcher Manufacturing Co...
Lard, tallow, lard compounds, and substitut farat lard, Cudahy Brothers
Laxatives, Ceather Kant \& Conav \& Silize............
Lime, Glencer, Lime and Cement Co........ Lime, Glencoe Lime and Cement Co..........
Liniment, S. Dempter
Linings of insulating material, Keystone Hai Machine knives or cutters employed in fu
cutting machinery, Loring Coes $\&$ Co.

 Medicinal compoand for restoring hair an Medicine, certain named, Geer Drug Co
Medicine for the cure of headaches, liquid Medicine in liquid form for internal and ex
ternal use, L. A. Cadwick Metal polish, American Metal Poiishi Co......
Newspapers and periodicals, printed, Tobacc Oil for affections of the skin, sceielth, Erics
son \& Dorling Oil, olive, Jordan Stabler Co....
oil, olive, Alta Vista Wines Co..
Oils, lubricating, Valvoline Oil Co

Packing, rubber, Gibbens \& Stream
Pencils, styptic, C. C. Maschal....

 Pianos. Mason \& Hamin Com
Pie fillings. H. A. Johnson
 Poultice, clay, Columbia Chemica,
Powder, worm, M. W. Savage.
Powders, condition, J. C. Zurflieh
Preparation used as a diuretic
 Preparations for the cure of coughs, colds
sore throat, headache, stomach and liver
complains, complaints, A. S. Parnes, J
Printing films, B. Day
Razors, Adolph Kastor \& Bros...

 Rings, Sealing or fruit jar, Alden Rubber Co
Roofing, ready tar and felt, Barrett Manu Saws, E. C. Atkins \& Co ${ }_{47}, 180,47,219$ to $47,222,47,386$,
 Sheetings and drillings, bleached, brown,
and colored cotton, J. SSater. Sow,
Shirts and dress shirts, outer, Cluett, Pea

Fire Protection
This illustrates a section of a factory building at Gloversville, N Y., equipped with the

Covert Fire Escape

No other Fire Escape will give the same facilities for quickly vacating a burning building.
It is the simplest and most economical permanent Fire Escape now on the market.
Send for circulars and full particulars.
COVERT FIRE ESCAPE CO.,
Troy, N. Y.

$15 \xlongequal[\substack{\text { Days } \\ \text { on This } \\ \text { This }}]{\substack{\text {. } \\ \text {. }}}$ MARINE ENGINE

 ${ }_{34}^{\text {M' WONALD Randolibh St., }}$ \&RICKSON Clean Holuse Wilh hir

Over 55 Companies operating
Thurman Patents in America, and as many more in
Canada, England, and Europe.

General Compressed Air House Cleaning Co. Tanue ST. LOUIS, U. S. A connecters Gasolene Dreirated Thurman direct-

JUST PUBLISHED
 The Scientific American Boy

By A. RUSSELL BOND

12mo. 320 Pages. 340 Illustrations. Price, $\$ 2.00$ Postpaid

HIS is a story of outdoor boy life, suggesting a large number of diversions which, aside from affording entertainment, will stimulate in boys the creative spirit. In each instance complete practical instructions are given for building the various articles.
(I) The needs of the boy camper are supplied by the directions for making tramping outfits, sleeping bags and tents; also such other shelters as tree houses, straw huts, log cabins and caves.
(II The winter diversions include instructions for making six kinds of skate sails and eight kinds of snow shoes and skis, besides ice boats, scooters, sledges, toboggans and a peculiar Swedish contrivance called a "rennwolf."
II Among the more instructive subjects covered are surveying, wigwagging, heliographing and bridge building, in which six different kinds of bridges, including a simple cantilever bridge, are described.
II In addition to these, the book contains a large number of miscellaneous devices, such as scows, canoes, land yachts, windmills, water wheels and the like. A complete table of contents sent on request.

MUNN E乛 COMPANY
361 Broadway "scientific american" New York City

This Clerk
Makes No Mistakes

STANDARD Adding Machine

Ptivilis
Trade Mark
Designs
Anyone sending a skretch and description may

Scientific American.

 Carbon
Surgorks
Col
dran
dressings,
Douglas
 Tabasco catchup and tomato catchup, Joseepi Table and stand covers and towels, napkins,
and dond doilies, Richardson, Roberts Dry
Goods Co

Watches and watch parts, Hampden watch Co. ... turing co.

Whisky, National Distilling Co. Whisky, Schuster Co. Whisky, C. P. Moorman $\dddot{\&}$ C Co.................... ${ }^{47}$ 47,

Whisky, F. Jones
Whisky, Union Distiling Co.
Whisky, Weideman Co.
Whisky, Thompson Distiiling
W
W
Whisky,
Whisky,
Whisky,
Wine,
Wine, \qquad Glen Disitiling
................98

LABELS.

 Diseases of the Hair and Scalp,"
tonic, Dennett Chemical Co. . Eyrine, for eye med. Jicine, D. S. S. Häg
'Flor Fina cigars," for cigars, C

 quinin, tablets, Japamer Pharmacal Co..
"Kipana," for ciars, Cole Lithograph Co.
"Legrand,", for cigars, Michigan Lithograph
Co

 "One Pinch," for medicines for catarrh and
like aftections, Guarantee, CCure Co.....
"Paride's Treasury Compound," for medicine,

$$
\begin{aligned}
& \text { is } \\
& \mathrm{g} \\
& \stackrel{12,431}{\mathrm{r}} \\
& .12,433
\end{aligned}
$$

Inspector General of Forests

 WESTERN AUSTRALIAApplications for above position addressed o Public Service Commissioner, Perth, W. A., will be received up to ist March, 1906. Applicants must have a thorough
knowledge of scientific and practical forest-
ry in connection with both hard and soft ry in connection with both hard and sof
woods, as well as the administrative ability and experience necessary to undertake the charge of the Forestry Branch of the Lands and Surveys Department.
Salary $£ 750$. Appointment to be for one year with an undertaking if services prove satisfactory to place the successful appli cant permanently under the Public Servic

$$
x^{x}
$$

An allowance will be made toward cost of transit to Perth. M. E. JULL,

Public Service Commissioner.

or hamathatem whe

You Have a Telephone In Your Office, Of Course
Have you one in your home? It
will save many steps and much
$\begin{aligned} & \text { time and annoyance. It wid } \\ & \text { pay for itself in car fare saved. }\end{aligned}$
$\begin{aligned} & \text { Call No. } 0 \text { olio Corltandt, Con- } \\ & \text { tract Dept., for full information }\end{aligned}$

New York
Belting \& Packing Co. Ltd. Manufacturers of high grade Rubber Belting, Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description. W rite for catalogue.
91-93 Chambers St., New York To INVESTIGATE

CHARIER
Gasoline, Gas, Kerosene.
Send for Catal Send for Catalogue.
State Power
Charter gas engine co., Box 148, sterting, ill

What Is Daus' Tip-Top?

Nom

West Cold Tire Setter

[^0] derbum sar sapiki | 10s. 6 d |
| :---: |
| Registered | poison by condensation

Imported Briar Sterling Silve Vulcanite 7 out of 10
Orders from old Costomers Inventor and
Patemstee Direct

 No ad vance in price Saliva Cannot Possibly Enter Stem NOT A COMPETITOR WITH CHEAP PIPES Please Send for Booklet
THE "A-C" PIPE CO.. 807 Times Bldg., Broadway \& 42d St., New York
Civil Engineering and Surveyors' Instruments DRAWING INSTRUMENTS, MATERIALS AND SUPPLIES We are the largest house in the world. Try us on BLUE PRINT PAPER. TRACING CLOTH, DRAWING
INKS, or SURV EYING and ENGINEERING INSTRUMENS

 no Machine
 22 St. James St., Rochester, N. Y.

UNIVERSAL NOVELTY COMPANY 27 East 21st St., New York

A BOON TO THE BUSY

Mullins

Makes Everything In

Art Architectural Sheet Metal Work

Statuary-Ornamental Sheet Metal Work-Skylights-Fireproof Windows-Art Metal Tile Roofing-Steel Ceilings - FinialsWrought Iron Grilles-Cornices, etc., etc. Estimates, mo
designs submitted for architects, builders and contractors. designs submitted for architects, builders and contractors.
Our 120-Page Catalogue of stock designs will be sent on requ
Our 120=Page Catalogue of stock designs will be sent on request.
The W. H. Mullins Co.,203 Franklin Street, Salem, Ohio.

SAVE FIRE LOSS
Seconds count. Be ready at the start with
and you can put out any kind of a a fre.
A request wil bring you the information
you wish FREE
you wishe, FRER.
BADGER FIRE EXTINGUISHER 0 O.
$\mathbf{s e}$ Portland St., Boston, Mass.

Sure and True Honest with its work Planes
bevels of any angle with absobevels of any
lute accuracy. Shepardson's Iron Plane Gauge Readily attached to any iron plane. Made of iron and
 THE OBER LATHES
 For Turning Axe, Adze, Pick
Sledge, Hatchet, Hammer, Auger
File, Kife and Chisel Handles
Whine File, Knife and Chisel Handles.
Whiffetrees, Yokes, spokes, Forch
Spindles, Stair Baiusters Tate Spindles, Stair Baiusters, Table
and Chair Legs and other irregular
work. Send for Circular A.
t. Chagrin Falls, O., U.S.A. The 0 ber Mfg. Co., 10 Bell St .. Chagrin Falls, 0., U.S.A. Electrical Engineering and Experimental Work of Every Description
We have every facility for producing frst-class work
promptly Our factory is equipped with modern machinery throughout. $\underset{\text { C. FPLITDORF }}{\text { SPL }}$

PINEAPPLES

[^0]:

