

SCIENTIFIC AMERICAN

EStABLISHED 1845
MUNN \& CO.,
Editors and Proprietors
No. 361 Broadway, New York

terms to subsuribers

onef order. or by bank draft or check.
MUNN $\&$ CO., 361 Broadway. New. Yor:

NEW YORK, SATURDAY, AUGUST 12, 1905

The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are

THE ELECTRIC PQWER DEVELOPMENTS AT NIAGARA FALLS.

The Niagara River, in its course from Lake Erie to Lake Ontario, falls a distance of 327 feet. A survey by the United States engineers who measured the flow of the river below the falls shows that it discharges 230,000 cubic feet of water per second from the one lake to the other. By a simple calculation it appears that in its descent of 27 miles from lake to lake Niagara River develops the equivalent of about 9 mil lion theoretical horse-power. If the whole of this 230,000 cubic feet of water and all of its 327 -foot fall could be utilized in hydraulic-electric power plants, it must not be supposed that 9 million horse-power would be available for the various industries that might wish to use it. As a matter of fact only about $41 / 2$ million horse-power would be available, the other 50 per cent of the theoretical horse-power being consumed in over coming the roughness of the river channel, friction in canals, sluices, penstocks, draft-tubes, etc., friction in the water turbines, and losses in the process of electric generation and distribution.
The fall of the river from the commencement of the cataracts, about three-quarters of a mile above the Falls, to the river below the Falls is about 210 feet, of which 50 feet occurs in the Rapids and 160 feet in the great Falls themselves. This is equivalent to 5 million theoretical horse-power, or say $21 / 2$ million horse-power available for industrial purposes. Between the head of the Whirlpool Rapids and the lower end of the Whirl pool there is another fall of 90 feet, and it is estimated that the 230,000 cubic feet of water per second, in its fall through this distance (most of which is included in the stupendous Whirlpool Rapids), has a theoreti cal capacity which if transformed into available power would represent about $11 / 4$ million horse-power. The total energy developed by Niagara River in its course from just above the upper rapids to below the Whirlpool is equal to about $71 / 2$ million theoretical horsepower, or, if we allow for losses by friction, electrical generation, etc., it represents $3,750,000$ horse-power that would be available for use in the industrial and for general power purposes.
At the present time, on both sides of the Niagara River, there are in operation or under construction electrical power plants whose combined horse-power is about 500,000 . If we include the amount of power for which charter rights have been granted the total amount of power which will be developed at Niagara when the full limit of these charters has been reached will amount to over 900,000 horse-power. In the Scientific American Supplement of March 3, 1900, appeared a series of illustrated articles describing the development that had taken place at Niagara at that date. They included the 50,000 -horse-power plant of the Niagara Power Company, and the 20,000 -horse-power plant of the Niagara Falls Hydraulic Power and Manufacturing plant, which at that date were the only in stallations of any note. So successful was the first installation of the Niagara Falls Power Company, that a second power station of slightly larger size was commenced, raising the total power developed by that company to 105,000 horse-power. So quickly did these new ventures at Niagara establish their great commercial value that in the brief space of seven years the total development has increased on the New York side alone from 72,000 to 150,000 horse-power.
In the present issue we commence a series of articles on the present conditions at Niagara, in which the vast enterprises which are being carried through on the Canadian side of the river will be described and illustrated in full detail. The truly enormous scalle on which the works have been planned is little under stood, and it must come as a revelation to many of our readers.
It was inevitable the time should arrive when. the public would be roused to protect Niagara Falls from the encroachments which were so rapidly being made
upon it, and the fate of bills that were introduced at the last Legislature seeking further charter rights for the use of the Niagara water indicates that the public is well able to protect this splendid scenic feature from the absolute extinction which threatens to overtake it within the present generation.

THE CAUSE OF ACCIDENTS TO SUBMARINE BOATS.

In the course of an interesting lecture, recently delivered before the British Society of Naval Architects, relative to the subject of accidents to submarine boats, Capt. Bacon, the submarine expert to the British Admiralty, stated that, brcadly speaking, submarine boats are liable to two classis of accidents-the admission of water into the interior, and explosion. Both have their counterpart in surface warships, namely, collision and boiler explosions or ammunition accidents. The confined spaces and small reserve of buoyancy of the submarine boat, however, intensify the danger to the crew. Water may enter a submarine boat through two causes-either through a hatch or through a leak, and in the case of such admissions protection can be exercised by the provision of watertight bulkheads. The most probable cause of water entering the boat is through a hatch, and in the four cases of foundering of submarines during the past few years the accidents have been attributable to this cause. The fact of the hatch being the primary source of weakness is very suggestive, and most reassuring as regards the safety of the boats; since, with the practical elimination of this source of danger, the main cause of accidents up to the present would be obviated. Of all the other possible causes of boats foundering from taking in water, it may be fairly claimed that the only one that was fairly possible was when the boat was injured by collision in the hull above the center line.

Only three causes of accident from explosion inside the boat are possible. To cause an explosion with gasoline, first a leakage is necessary, and secondly, a spark to ignite the mixture. A leakage, should it occur, can invariably be detected by the odor, but in a properly-designed system, leaks should be practically non-existent. Even with vapor in the boat no direct danger existed, provided the boat was properly ventilated and no switch was moved or anything done to cause a spark. As a maiter of fact, in practise the smell of gasoline inside a boat was almost unknown.

In the accident to the British submarine boat "A5," where a gasoline explosion occurred, the cause of the leakage was a badly packed gland of the gasoline pump, the gland being screwed down metal to metal; but in spite of one man being overcome by the gasoline fumes the main motor was started, and the sparks determined the explosion. Had the very explicit and simple regulations provided been carried out, no accident would have occurred. The British boats have covered 30,000 miles under their engines and, with the exception of one small flash in an early boat, no explosion except that in "A5" has occurred. The second possible cause of an explosion is the hydrogen given off by the batteries in charging; but as this operation is only carried out when the boat is opened up for ventilation, no danger from this source should exist. The explosion which occurred recently in the British boat "A5," two hours after its foundering, was probably due to the formation of this gas. The third cause, namely, the failure of the air reservoirs, is but a mere possibility. It might, therefore, be assumed that danger to the boats from explosions is really small, and not greater in comparison than the dangers which attended the introduction of increased boiler and gun power in the navy as a whole.

AN EXCELLENT PRECEDENT.

If the attitude of the general public toward big corporations, and of these corporations to the general public, could be marked by the mutual consideration which has characterized the recent negotiations between the Merchants' Association and the New York Telephone Company, there is little doubt that the adjustment of rates and other debatable matters on a basis equitable to both parties concerned would, in many cases, be readily secured. How excellent are the results that have been obtained in the case in question may be judged from the fact that the New York Telephone Company has agreed to reduce its rates on direct lines from as much as twenty per cent for 600 messages to ten per cent for 4,500 messages. Under the new schedule, the old rate of $\$ 75$ for 600 messages becomes $\$ 60$, while for 2,400 messages the rate has been reduced from $\$ 165$ to $\$ 135$, and on 4,500 from $\$ 228$ to $\$ 204$. This gratifying reduction, which affects the boroughs of Manhattan and the Bronx, took effect some two months ago, and the credit for the reduction is due to the initiative of that most worthy body, the Merchants' Association, the list of whose successful agitations for the improvement of commercial and civic conditions of New York city is constantly growing.
It was in April, 1904, that the Merchants’ Association took up with the New York Telephone Company the matter of telephone service and charges in this city, with a view to bringing about a reduction of
rates in case it were found that the existing rates were excessive. The company offered to establish a new tariff if after a thorough investigation had been made it should be found that the company's profits exceeded ten per cent of the capital invested. Moreover they established a most notable and highly commendable precedent, by consenting to open their books and supply a committee of the Merchants’ Association with all the necessary details of investment, gross earnings, operating expenses, and net earnings, as a preliminary to a readjustment of rates upon the agreed equitable basis, if such adjustment should be warranted by the facts disclosed by the investigation. The committee thereupon made provisions for an examination of the telephone company's accounts, and further examined personally and through experts into the financial and operating details of telephone management in this and such other cities as were germane to their purpose, with the result that the New York Telephone Company prepared and put into effect a new schedule of rates, some of the items of which we have given above, adjusted to the basis accepted by the special committee of the Merchants' Association as equitable. The inquiry developed some interesting facts regarding the conditions of telephone service under varying conditions; and it was found that in all American cities having a population of over 50,000 there was a wide variation in the rates charged for telephone ser vice. A close examination of the subject shows that a comparison of telephone rates in different cities fails to give correct deductions as to the reasonableness of rates in any given city. It was found that the outlay for labor, rent, taxes, real estate charges, etc., varies widely in the different cities of the world, those in America being much higher than those in Europe, and in America being much higher in large than in small cities. There are wide differences in the quality, range, and quantity of service rendered, particularly in the methods of charging for the service. There were differences also in the number of subscribers who take different grades of service. In 80 American cities having a population of over 50,000 , the ratio of residence telephones to the total number of telephones varies from 15 per cent to 71 per cent; of party line telephones to total telephones from 4 to 84 per cent; of private branch exchange telephones to total telephones from 1 to 41 per cent, etc. There are also striking conditions peculiar to telephone business in large and small cities. In a small city a single central station suffices for prompt intercommunication between 2,000 or 3,000 users of individual stations. A single switch board and single operator complete each connection called for, and the area served being comparatively small, the wire-mileage is relatively small. In large cities such simple conditions cannot, in the very nature of things, exist.
Ten years ago there were but 12,000 telephones in Manhattan and the Bronx. To-day there are more than 150,000 . The system is by far the largest in ex istence, and is much larger than those of European cities of greater population. London, with a population of $6,580,000$ in 1904, had 93,598 telephones, or 14.2 per 1,000 inhabitants. Paris, with $2,660,000$ inhabitants, had 49,444 telephones, or 18.5 per 1,000 inhabitants. Berlin, with $1,931,000$ inhabitants, had 66,744 telephones, or 34.5 per 1,000 inhabitants. But Manhattan and the Bronx, with $2,216,700$ inhabitants, had the enormous number of 144,353 telephones, or 65.1 per 1,000 inhabitants.
A period of sixteen years was chosen by the Audit Company of New York for investigation, because it witnessed a complete conversion of the plant from an overhead single-wire system to an underground metalic circuit system, and again from the magneto-call local battery system to the automatic centralized battery system, as well as the great development of the system from some 12,000 to over 150,000 stations. Their investigation showed that the average percentage of net earnings to investment was as follows: For the fifteen years from January 1, 1889, to December 31, 1903, 10.89 per cent; for the sixteen years January 1, 1889, to December 31, 1904, 11.12 per cent, and for the year ended December 31, 1904, 14.54 per cent.
Of course no one supposes, nor does the New York Telephone Company claim, that this reduction is made on ground altruistic or Utopian, although the company is naturally solicitous for the good will of its vast number of patrons. As a matter of fact the reduction has been made in accordance with the well-understood economical law governing cases such as this, that a reduction in the price is, other things being equal, a sure means of securing a great extension of the service.

BLOOD CORPUSCLES ON MONT BLANC.

The red corpuscles of the blood have been counted by M. Raoul Bayeux during an ascension to Mt. Blanc, between Chamonix, Grands Mulets, and the summit. The samples were taken from the author and two other persons. After counting the globules at Chamonix, he made two determinations at Grands Mulets, the first shortly after arriving and the second the next day: At he Janssen Observatory, at the summit of Mt Blane
the globules were counted after passing the night. The author then mounted to Grands Mulets alone from Chamonix and made another determination. He thus studied the action of a long ascension, the action of a shori stay at a high altitude, then the passage to a still higher station, then a second ascension near the first. The red globules, diluted in Marcano serum, were numbered by a globule counter of the Malassey type, with a portable Zeiss microscope. He makes the determinations upon a quantity varying from 4 to 7 million globules, and forms a table from which he deducts the following conclusions: The blood undergoes a rapid and considerable increase in the number of red globules when we pass from one altitude to a higher level. If we remain in the latter place the first number of globules is found to diminish slightly, but not to a great extent in a few hours. Descending to the starting point makes the number diminish to a greater degree, but it is still above what it was before the ascension. He finds that a second ascension, made before the number has fallen to the original value, causes a new increase which is greater than is remarked in the first ascension. A subject who is acclimated to a greater degree is less subject to a change in the number of globules. | This is the first time that the corpuscles have been counted at the summit of Mt . Blanc, which, it will be remembered, is the highest point in Europe.

A PRIZE FOR A NON-POISONOUS DIAMOND CUTTER'S COMPOSITION.

Considering the fact that the setting and resetting diamonds for cutting purposes involves the use of an alloy, consisting of tin and lead, the handling of which has been ascertained to produce injurious effects, i. e., lead-poisoning, the government of the Netherlands has decided to open a competition under the following conditions.
The government desires a medium for the setting and resetting of diamonds to be cut-which need not necessarily be an alloy-the use of which cannot produce effects detrimental to the health of those handling the same, or an elaborate project of altering the method now in use, in such a manner that no such injurious effects can be produced.
The following requirements have further to be fulfilled:

1. The medium or the method must be practicable for all sizes and shapes of diamonds in the following branches of the diamond industry, viz., brilliants, roses, and so-called non-recoupés, now being cut in the Netherlands.
2. The application must be such as to be learned by the workmen, adapted to the present method of work, without any great difficulty, while the setting and resetting must not require more time, or considerably more time than is usual now.
3. The application and use must not entail considerable pecuniary outlay.
The Minister of the Interior has appointed a committee of experts to consider the answers submitted, and to award the prize. The answers must be written in the Dutch, French, English, or German language, and must be accompanied by samples or objects to enable the committee to form an opinion of the practical value of the invention, and also by a legibly written address of the competitor.
The answers, and the samples or objects pertaining thereto, must be sent carriage paid, and if sent from foreign countries duty paid, before January 1, 1906, to Prof. Dr. L. Aronstein, chairman of the committee, Chemical Laboratory of the Pclytechnic School, Delft, Holland.
The prize to be awarded for a complete solution of the problem is six thousand florins. The committee is empowered to divide the prize among different competitors, or to award the prize partially in case of a partial solution of the problem, for instance if it is applicable to one of the above named branches of the diamond industry. The committee is also empowered to prescribe certain conditions, to be fulfilled by the competitor, before awarding the prize.
For the use of those who desire to enter the competition, the manner in which the diamond workers come in contact with the poisonous metal while engaged in setting and polishing is here briefly explained.
The metal, or solder, used, is an alloy, consisting of two parts of lead and one part of tin; by heating the composition becomes kneadable before melting; by cooling it regains its former firmness. This plasticity is an important property of the solder, as will be seen hereafter.
Before the polishing of the split and cut stones is commenced, they are given to the setter, who places them in a "dope," consisting of a nearly semi-spherical brass pan, into which a tough, thick copper wire is screwed. Into this pan solder is put, so that not only the pan is filled, but that a conical eminence is formed also, which is kneaded into shape.
When the solder is rendered kneadable by means of a gas flame, the "dope" is placed on a wooden block, called "verstelblok" (setting block); the diamond is then pushed into the top of the conical eminence by
means of a pointed pair of iron pincers, so that only the facet or facets to be polished remain exposed; the setter then fastens the stone and smoothes the still plastic solder into shape with his unprotected fingers. The "dope" is then cooled and handed to the polisher.

Considering that one setter works for four or five polishers, and that about two hundred "dopes" have to be daily manipulated for each polisher (when the stones are very small this number is considerably larger), it is evident that the setter's fingers are constantly polluted with lead-laden particles, which easily attach themselves to the skin, while he is, moreover, exposed to the lead-laden fumes arising from the heating of the solder.

The polishing process is as follows:
The polisher is seated before a bench, in the center of which a metal disk is horizontally placed; this disk revolves rapidly on its own axis (about 2,400 revolutions a minute). The polishing medium consists of a mixture of pulverized diamond and olive oil. The "dopes," wherein the diamonds are fastened, are held by their copper wires in tongs, to which a fixed position in relation to the bench can be given; by bending the copper wire more or less the diamond is placed against the disk in the proper angle and is firmly pressed against the same by loading the tongs with heavy weights, for which purpose iron blocks are successfully used in Holland since 1904, instead of the leaden blocks that were used before them.
The friction occasioned by the polishing process creates a great heat, so that the "dopes" have to be repeatedly cooled. The "dope," however, never gets so warm locally that the solder .turns soft, because it conducts heat well.
If the diamond were set in the cement (a mixture of resin, shellac, and sand), used in the processes of cutting and splitting, the "dope" would conduct the heat badly, turn soft, and the diamond would be immersed. The constant manipulation, the ceaseless turning and bending of the "dopes" in the tongs (four tongs at least are being used on each bench), and also the fact that the stone and the solder-cone are wiped with the bare hand every time the polisher wants to see whether the facet has attained the required shape and size, are so many reasons why the polishers' hands are constantly polluted with particles of solder.

The way in which diamonds are cut and polished is therefore not without danger to the health of the workers. The setters and polishers are constantly in touch with metallic lead, which exposes them to the peril of chronic lead-intoxication, when no adequate prėcautions are observed.

Instances are given in the medical literature, a. o. by Dr. Coronel in the Netherlands' Medical Review (1864). Hirt, who verified Coronel's statement in 1870, relates that of ninety setters he examined in Mr. Coster's factory, about thirty showed traces of lead-poisoning. (Dr. L. Hirt, Die Krankheiten der Arbeiter, vide vol. i., die Staubinhalations-Krankheiten, p. 102.)
Dr. Pel, professor of medicine at the Municipal University of Amsterdam, has described a remarkable case of lead-poisoning in a diamond setter in the Centralblatt für innere Medizin, year 1897, No. 23. Dr. A. Norden, of Amsterdam, medical adviser to the Amalagamated Society of Diamond Workers (who examines the majority of the members of that society applying for sick pay), has had a large and varied experience on the subject. He drew attention to this important matter in the journal of the said organization, issues of June 28 and July 5, 1901 (Nos. 26 and 27).

PHOTOGRAPHING THE SOLAR CORONA.

"Can a photograph of the solar corona be obtained without having to wait for the occurrence of a total eclipse of the sun?" is a momentous question in the astronomical mind at this time, especially in view of the approaching total solar eclipse which is to occur August 30, and to which eclipse expeditions are being dispatched. A distinguished scientist says: "Such a feat would be an astronomical discovery of the first rank."

It is now announced that Dr. Hausky, of the Odessa Observatory, in Russia, has succeded in obtaining such pictures from the summit of Mont Blanc and no less an authority than the veteran French astronomer, M. Janssen, who has seen the negatives, seems to be convinced that the actual corona has been photographed. Dr. Hausky employed particular colored screens, through which he allowed the sunlight to pass before the image fell on the photographic plate. The negative thus obtained showed a nearly uniform halo around the solar disk. From this negative he produced a series of positives and negatives alternately, and treating them in a special manner he was able to produce the form and different degrees of intensity of the corona itself. The same form was constantly produced in spite of the changes in the position of the screens. On several occasions the problem has been considered solved, but further investigation showed that the image obtained was not that of the actual corona, especially in 1885-87-when a number of at tempts were made to solve this intricate astronomical
problein and a great deal was written on the subject at that time.
Now comes the suggestion which is the most plausible cause of renewed interest in the scientific world, of a probable solution of the problem; so great have been the improvements in photographic processes and in making colored screens, that it seemed quite possible that the object would soon be obtained.
Before, however, the problem can be considered solved it will be well to wait until the most crucial test can be applied, namely, that of photographing the sun by this means before or after a total eclipse, and then comparing the results with a picture taken during the eclipse with an ordinary camera. The test is a simple one, and the approaching eclipse of August 30 will present an early opportunity for carrying it out. Fortunately, the track of totality passes over some high mountains in the northern part of Spain, so that a high altitude is available.

SCIENCE NOTES.

Thus far it has been difficult to throw any light upon cell-absorption and selection in many complex natural relationships by cailing in the assistance of the dissociation theory and the ionic relationships of the salts in the soil. The external relationships of nutrient salts, or the relative abundance of these in substrata supporting vegetation, constitutes a problem with which the physiologist must be concerned. It is necessary only to glance at the results of work done by various experiment stations in this courtry to be convinced of the great physiological importance which may be attached to such studies.
If, as has been well demonstrated, the germ of typhoid fever is transmitted principally in water, there seems no reason to doubt the ability of health officers, collaborating with broad-minded municipal authority and high-class engineering skill, to perfect means whereby this deadly germ shall be practically eliminated from our water supply. Consumption may be checked by the establishment of camps of detention where the unfortunate victims of this terrible disease may receive not only the highest degree of proficiency in medical treatment, but also be so segregated from the non-infected portions of the community as to render the spread of the disease difficult.
In point of quantity and value corn is the leading cereal crop of the United States. Its annual farm value in later years has nearly equaled and sometimes exceeded $\$ 1,000,000,000$. While less subject to insect damage than wheat, the next most important cereal, the corn product would be considerably greater were it not for important insect pests. The work of several of these is obscure, and many farmers are entirely ignorant of the existence even of some of the worst enemies of this crop. In this last category falls the work of the corn root worm (Diabrotica longicornis), which ordinarily passes unnoticed, or at least is often misunder stood. The larva of this insect feeds on the roots of young corn, and in regions of bad attack may cause an almost entire loss of the stand. The corn root worm, together with one or two allied species working in substantially the same way, causes an annual loss of at least 2 per cent of the crop, or some $\$ 20,000,000$.
Acccording to the annual report of the Royal British Observatory at Greenwich during the year ending May $10,1905,15,842$ observations of transits were made of the sun, moon, planets, and fundamental stars. Great progress has also been made in the observation of the reference stars connected with the Greenwich section of the astrographic catalogue. This section extends from 65 deg. north declination to the North Pole, and in carrying out the measurement of the photographic plates, the accurate positions of 10 ,000 reference stars are desired. Of each of these stars five observations are desired, making 50,000 observations in all, and of this number 9,500 have been obtained during the past year. There now remain only five stars requiring three observations each, and 1,500 requiring one observation each, to complete the work; 603 double stars have been measured, 143 of these having their components less than one second of arc apart. A large number of photographs of Neptune and its satellite and 100 photographs of comets have been obtained during the year. The measurement of the catalogue plates for the Greenwich section of the International Astrographic Survey has been completed.

The losses occasioned by insects to farm products exhibit a wide range in different years, due, as a rule, to favorable or unfavorable climatic conditions, and also to the abundance, from time to time, of natural enemies. The result is more or less periodicity in the occurrence of bad insect years. In other words, periods of unusual abundance of particular insect pests are, as a rule, followed by a number of years of comparative scarcity. Furthermore, seasons which may be favorable to one insect may prove unfavorable to others, hence there may be not only periodicity in the occurrence of the same insect, but more or less of a rotation of the different insect pests of particular crops.

THE ASTROLABE OF REGIOMONTANUS.

 by charles a. brassler.The subject of our present article, which we shall endeavor to describe as well as illustrate, is one of those intensely interesting instruments used by our forefathers for taking the altitude of the sun and stars at sea. It is the astrolabe of Regiomontanus, and it may still be seen in the Germanic Museum at Nuremberg. Who was this Regiomontanus? Johannes Müller by name, he was born at Königsberg in 1436, and he became an astronomer and mathematician of repute, in fact one of the greatest astronomers of the time, and like the great men of the day he affected the name of his native city, conferring thereby fame upon his birthplace, and assumed, therefore, the appellation Regiomontanus, meaning a Königsberger.

In connection with Bernhard Walther he built, in 1472, the first German observatory, where he conducted a series of the most exact observations with the beautiful instruments of his own invention and make, to which this astrolabe also belonged. A number of instruments of the kind that were employed upon shipboard sprang from his fertile brain; and it is certain that Columbus made use of the astronomical tables, compiled by Regiomontanus, for the determination of his whereabouts during his voyages and they must have played an important part in the later discoveries of the bold Genoese. It was Regiomontanus, too, who first studied the distances and motion of the comets.

Before the telescope was discovered, and it only came into use in 1610 , all the practical astronomers busied themselves exclusively with measurements. To-day the telescope and the measuring instrument are combined and in this form the most exact observations of the stars are made possible; then the socalled diopters were employed and they had to be pointed at the stars. These were either tubes having small openings in either end through which one could see the star, or rulers of wood or metal, that carried at their lower end a perforated board and at the upper end a similar board used as a sight.

This method of observation, far from complete, required large and carefully-divided circles, that is, quarter circles or quadrants wherewith the height of the stars above the horizon or the distance between two stars could be measured; for the larger these quadrants the farther apart were the divisions representing degrees and as a consequence the more exactly was the operator enabled to read them off. Tycho Brahe, the great Danish astronomer of the sixteenth century, had worked with one of these large measuring instruments. According to Bürgel he had a huge quadrant let into a wall, called a wall quadrant, with a radius of more than three meters; the whole circuit of this immense instrument was nigh on to twenty meters. He was successful in obtaining very exact results with this. The astroblades were, however, much smaller, and also the results were greatly inferior to those obtained with the huge quadrants and octants.

AStROLABE OF REGIOMONTANUS,

but also many measurements, particularly the position of the sun, from which the local time and also the sidereal time could be obtained. When in use the astrolabe was suspended by the ring at the top or held freely in the hand so that the white line we see drawn across the face of the disk should fall exactly upon the horizon and in that way form the artificial horizon, while the vertical lines should be perpendicular to it. From this it is easy to see that an imperfect suspension of the instrument would lead to grave faults in the calculations.

The large disk, upon which the divisions of degrees are engraved, was made of metal; so also were all the other parts most carefully worked out of metal. Mater is the name given to the large disk divided into degrees. Inside of this is set a second metal plate, the so-called planisphere, and we can recognize it by the engraved net work. This net work comprises the degree-divisions of the heavens carried out upon a plane surface, hence the name (sphaera, the Latin
word for a sphere, and planum, signifying a plane) Above the planisphere lies the neatly cut out and decorated "rete" carrying upon its circular interior the constellations of the ecliptic. The pole of the ecliptic and the positions of some of the stars are also given.
Turning upon the axis of the whole we finally find the diopter rule, called also the "Alhidad rule," the pointed ends of which serve as indicators for reading off the degrees on the outer circle. Slightly removed from the ends and approaching the center we see the little sighting boards with their holes for vision. If now we desire to find the local time we must proceed as follows: Hang up the astrolabe so that the plane of the mater coincides exactly with the plane of the sun's rays. Then, looking through the two holes in the diopter rule, turn it until the sun can be seen. Upon the extreme circle the height of the sun may now be read in degrees at the point of the diopter nearest the eye.
Now look up in the tables the position of the sun, the sun's longitude for this day in the ecliptic, and, by turning the "rete," bring the point on the ecliptic of the sun given for this day into coincidence with the height of the sun as measured by the diopter rule on the outer scale. A special pointer on the "rete" will now indicate a figure engraved upon the disk, which will correspond with the sun's time at the moment of the observation. The astrolabe in its positive form was invented by Hipparchus in the second century before Christ and until the beginning of the eighteenth century it was occasionally used, even though it did not give very exact results.

A SAFETY BUFFER FOR AUTOMOBILES.

Collisions by an automobile, either with stationary or moving objects, nearly always result in a certain amount of damage being inflicted upon the motor vehicle. As a rule it is the front lamps, mudguards, and, occasionally, the front wheels which suffer With the object of minimizing this danger, and also for protecting the obstacles with which the car happens to collide, a novel safety buffer has been introduced by the Simms Motor Manufacturing Company, of London. As will be seen from the accompanying illustration, the device consists of two short rim segments attached either to the front or side members of the chassis of the automobile. To this rim is fixed a short length of pneumatic cushion, fully inflated. Being placed well in advance of the front of the vehicle, the lamps, mudguards, and wheels are adequately protected, and the curved nature of the buffer tends to transform the impact into a glancing blow. Owing to the bracket carrying the buffer being of stout construction and fashioned in the form of a spring, there is little possibility of the buffer collapsing or buckling by the force of the impact with another object.
The device has been subjected to several tests when fitted to a 20 -horse-power car. The working of the buffer is well shown in the accompanying illustration.

Car Equipped with Buffer Striking a Delivery Tricycle.

If the obstacle is of a light nature, it is deflected and thrown out of the track of the car. On the other hand, should the collision be with a stationary object, the pneumatic buffer serves to take up the force of the shock and will also deflect the trajectory of the car to which it is fitted.
The application of this safety device is also being extended to power boats, for which it is well adapted. It is more efficient and safer than the type of fender ordinarily employed, and the effect of a collision with another boat would be considerably reduced in character. The danger of ramming is entirely obviated owing to the broad surface offered by the buffers.

THE ELECTROLYTIC PRODUCTION OF HYDROGEN AND OXYGEN FOR WELDING PURPOSES
by dr. alfred gradenwitz.
Though the oxygen-hydrogen process of welding has so far given rather satisfactory results and should seem to be destined to replace the expensive familiar riveting and welding methods, the price of the oxygen and hydrogen gases, as produced by chemical methods, has been a serious drawback to its general adoption. As gases were supplied in the compressed state in steel bottles, whici after being emptied had to be returned, the considerable transporting cost and renting fees were added to their own high price, due to the compression of the gases.
Of late years there have, however, been designed a number of outfits for the electrolytical production of the oxygen and hydrogen gases by the decomposition of water, two of which have proved fully satisfactory iri working, namely, first, the Schuckert apparatus, and second, the Oerlikon electrolyzer. The latter, which has been described in detail by the writer in the Scientific American, No. 27, vol. 91, is being constructed also by the Siemens \& Halske Company, and consists of a number of separate chambers, containing plate electrodes of cast iron, which are separated from one another by diaphragms. The gases set free at the electrodes are led through various pipe systems to separators, to be completely freed from any water, which flows back again into the electrolyzer.
In the following we wish to dwell at some length on the Schuckert type of apparatus, which is now being constructed by the Electrical Company, formerly Schuckert \& Co., of Nuremberg, Germany.
These electrolyzers, photographs of which are reproduced herewith, are exceedingly safe to operate, on account of their simplicity of design. All parts of the apparatus are readily accessible, there is no material superintendence required, while a cleaning made once or twice per year is quite sufficient to keep the apparatus in working order. The electrolyzer has been designed especially with a view to its use for welding purposes, supplying the gas immediately under the pressure required for welding, so as to necessitate no compression. As gas is derived from the gasometers for the welding, the latter are being filled up by the electrolyzers, the generation of the gases occurring with perfect continuity.
The apparatus, as can be seen above, consists of a cast iron tank, containing a number of cells, where the gases evolved on the electrodes are allowed to accumulate. Apart from the copper conductors, for supplying the current and from the insulation material, the apparatus is made up of iron throughout. A solution of 20 per cent caustic potash in water is used as electrolyte. A tension of from 2.3 to 3 volts is required for the operation of these apparatus, which are connected up either in series or in parallel, a proper amount of distilled water being filled in from time to time during operation. This is the whole of the superintendence required, in fact, no more than is necessary in the case of a storage battery of the same size.
The apparatus are pro tected against heat radiation by a sand layer about five centimeters in thickness, so as to maintain in the electrolyte a temperature of 70 . to 75 deg. C., which is the most favorable, requiring the small est potential difference for the decomposition of the electrolytic bath. The oxygen and hydrogen evolved by electrolysis are conducted each to a gasometer through separate pipes and thence to the neighborhood of the working place, there to be united in a burner, as they arrive in two separate

Apparatus for the Electrolytic Production of Oxygen and Hydrogen.

India rubber tubes, and to be burned in a pointed flame. This flame is carried over the sheets to be welded (which are applied to one another at an

How the Oxy-hydrogen Flame is Used in Welding.
obtuse angle) like an ordinary soldering flame, but without the agency of any special soldering matter, when the surfaces applied to one another become per-

Diagram of the Plant for the Electrolytic Production of Oxygen and Hydrogen.
fectly melted together. In order to give an idea of the cost of operation of the electrolytic process as compared with the chemical method, it should be mentioned that whereas "chemical" hydrogen as purchased in bottles will cost between 1.20 marks and 2 marks per cubic meter, and one cubic meter of oxygen works out at about 2.50 marks to 3.50 marks (apart from the cost of transport and the renting fees) the aggregate cost of producing one cubic meter of hydrogen and one-half cubic meter of oxygen by the electrolytic decomposition of water in Schuckert electrolyzers (supposing an average price of electric power) will range between 60 and 75 pfennigs, including interest and amortization of the whole plant. Under normal conditions, the cost of producing the gas mixture necessary for the welding of 1 meter of sheet iron 3 millimeters in thickness, will be about 15 to 20 pfennigs and will be effected readily in ten to fifteen minutes.
The gases supplied by the electrolyzer are of a high purity and perfectly safe against explosion; their efficiency is quite satisfactory. The operation can be discontinued and taken up again at any time without interfering with the satisfactory working of the apparatus.

Electricity in Egypt.

The German Consul at Alexandria gives some information as to the use of electricity for various purposes in Egypt. In Cairo we find that lighting current is generated by a station which the gas company controls, but the public lighting is not developed as yet and only private lighting is operated at present. A tramway system is working in the city. It is owned by a Brussels company. Alexandria is using current for private lighting, but, like Cairo, has no public system. The tramway lines are controlled by an Egyptian company. To connect Alexandria with its eastern suburbs, a concession has been granted to the Alexandria and Ramleh Railway, which has lately adopted electric traction on the lines. The same English company are now operating the city tramway lines. Port Said now has an electric lighting system, which is newly installed, but there are no electric tramways. At M'ansourah, the public and private lighting is conceded to an English company for twenty years, dating from 1899. At Suez the concession for the electric lighting in the town and also at Port Tewfik was given to H. Beyts \& Co. in 1902, but has now passed into the hands of the Ismailiah Electric Company. It seems that gas engines are to be used to a considerable. extent in. Egypt in the future. Motive power is employed almost exclusively for irrigation. The most common type of machine is the portable locomotive, of English construction, but it takes a great quantity of coal, and this is very expensive in a country like Egypt. It seems that these machines can be very advantageously replaced by gas engines, which are much more economical, especially the latest forms, which are well adapted for use here, and consume only 1.3 pound of anthracite coal per horse-powerhour. Transport of force would be a great advantage in Egypt for operating the small irrigating machines. It will no doubt come into use soon, and a start has been made by a French engineer. He employs the engines of a cotion factory which is not always running, to operate dynamos and send current for working electric pumps to carry out the irrigation. On one plantation a Siemens-Schuckert electric plant gives power for motors. Prince Djemil Tussum has also adopted a German electric station on his property for the same purpose. It will be remembered that the gates of the celebrated Asswan dam are operated by Siemens-Schuckert electric motors. There is some question of using the cataracts of the Nile as a source of hydraulic power to operat? electric plants and distribute current throughout a region which is now a desert, but which would be flourishing could the Nile water be taken through it. Thus the river would give the irrigation water and also the motive power. But this project is one which remains for the future to solve.

The Largest Flower.

Sumatra grows the larg. est flower in the world. It measures a yard and three inches across, and its cup will hold six quarts of water. Raflesia Arnoldii is its name.Philadelphia Bulletin.

THE NEW JERSEY TUNNELS AND SUBWAYS.

If the original company which undertook in the year 1874 the task of driving a tunnel from Jersey City to Manhattan beneath the Hudson River, and failed, could see the comprehensive system of sub ways and tunnels which is now being constructed by the Hudson companies, they would at least have the satisfaction of realizing that they had inaugurated one of the most important systems of underground railways in the world. When, in the year 1902, Mr. W. G. M'cAdoo resolved to take hold of the uncom pleted tunnel and push it through to the Manhattan side, public interest in the scheme was altogether dead; but realizing how great was the advantage that would be conferred by a direct rail connection, and foreseeing how vast would be the growth in popu larity of a means of transit that would be so much more comprehensive and expeditious than the ferry system, he not only succeeded in pushing through the original scheme, but he and his associates have ex tended it on the ambitious scale shown in the accompanying engraving. Briefly stated, the object of the subways and tunnels is to place the great terminal stations of the railroads, in Jersey City, in direct railroad communication with the various business centers on Manhattan Island, so that a passenger on arriving at any one of these terminals, can take a train which, in a few minutes' time, will land him without change of cars, either in the neigh borhood of lower Broad way and Fulton or Cortlandt Streets or at any point on Sixth Avenue from Ninth to Thirty-third Street, or on Ninth Street from Sixth Avenue to Fourth Avenue. These tunnels will also afford rapid transportation for trolley-car passengers and for the thousands who walk to the ferries on the Jersey side from their homes.
The Jersey City termin als will be connected by a double-track system, consisting of two 15 -foot tubes placed side by side with a single track in each, which will extend from the Delaware, Lack awanna \& Western Rail road, along the shore line to the terminal of the Central Railroad of New Jersey. At the D., L. \& W terminal the tracks wil be near the surface, with the rails at a level of about 15 feet below street grade From that point they will descend to 30 feet below street grade at the Erie terminal. At the Pennsyl vania terminal they wil be 70 feet below street grade; and from that point they will ascend to an elevation of 15 feet be low grade at the termina of the Central Railroad of New Jersey. At the point where this shore subway passes under the foot of Fifteenth Street, in Jersey City, it will be intersected by twin tunnels which wil extend from Thirteenth and Fourteenth Streets and Provost Street to the subway, whence they will pass below the Hudson River to a station at Morton Street in Manhattan. Thence they will be continued up Mor ton Street to Greenwich and Christopher Streets, where there will be a station, and thence up Christo pher Street to a station at the junction of Ninth Street and Sixth Avenue. Here the system will branch into two separate pairs of tunnels, one of which will be carried below Ninth Street to Fourth Avenue to a connection with the existing Fourth Avenue Rapid Transit Subway. The other branch will continue north below Sixth Avenue, with stations at Fourteenth Eighteenth, Twenty-third, Twenty-eighth, and Thirty third Streets. The surface of the rail in these tun nels below Manhattan Island will be at an average depth of 33 feet below street grade. At Thirty-third Street the system will be in touch with the Pennsyl vania Railroad tunnel across Manhattan Island, so that this portion of the road, or what is known as the Uptown Tunnel, will tap two important systems of underground travel, namely, the Rapid Transit Sub way on Manhattan Island, and the Pennsylvania Rail road tunnels connecting with the whole of the Long

Island Railroad system. The portion of the new tunnel above described, including the Jersey subway, as far as the Erie Railroad station, is being built by the New York and Jersey Railroad Company. The rest of the system, including the subway from the Erie terminal southward to the terminal of the Central Railroad of New Jersey, and the twin tunnels extending from the Pennsylvania Railroad terminal to Manhattan Island, with a loop on Church Street, is being built by the Hudson and Manhattan Railroad Company; and the contract for the construction of the whole of the work has been undertaken by what is known as the Hudson Companies. The downtown tunnel will consist, like the rest of the system, of two separate tubes with a single track in each. It will extend from the Pennsylvania Railroad terminal to Cortlandt Street, which it will follow as far as Church Street, below which it will pass in a loop, to return below Fulton Street and under the Hudson River to the Pennsylvania Railroad terminal.
In the earliest stages of the development of this enterprise, it was proposed to utilize these tunnels for running the steam railroad cars of the railroads terminating in New Jersey directly into New York; but as the present companies realized the full magnitude and importance of the enterprise, they very wise-

By this system a passenger, landing at any of the Jersey City railroad terminals, will be able to take a train direct to central points between
Forty-second Street and the Battery. The five projected tunnels beneath the East River are shown in dotted lines.
MAP SHOWING THE NEW JERSEY TUNNELS AND SUBWAY; ALSO THE EAST RIVER TUNNELS RECENTLY AUTHORIZED BY THE RAPID TRANSIT COMMISSION.
ly determined to equip the system with the most up-todate rolling stock and plant, designed especially for its use, and to follow in general the high class of construction which has been used in the Manhattan Rapid Transit subways. The rolling stock, therefore, will be entirely new. The cars will be large and brilliantly lighted; they will be constructed of steel and rendered absolutely fireproof. The protected third rail will be installed, and there will be a complete system of signals of the automatic and semiautomatic type placed throughout the whole line. In the subway on the Jersey City side and under Manhattan, where the service will be local in character, the trains will be run probably at about the same speed as those on the Manhattan Subway. In the tunnels below the Hudson River, however, where there are no stops, the trains will be run at express speed. This means that a passenger alighting, say at the Erie or D., L. \& W. or, indeed, any of the terminals, can be in Manhattan in four or five minutes' time, and at Thirty-third Street, Fourth Avenue and Ninth Street, or at Fulton and Broadway, within from five to twelve minutes from the time he takes the tunnel train.
The present condition of the work is that, on the uptown tunnels, the north tunnel is completed from
the shaft on the Jersey side to the shaft on the New York side, and the south tunnel is completed from the Jersey side to within 50 feet of the New York shaft. Work is also progressing on the approaches in New York. Of the downtown tunnels, the working shaft on the New Jersey side has been sunk, and the work of driving the two tunnels will shortly be under way, both tunnels being driven simultaneously. It is in tended to use the shield method of construction with iron segmental tunnel lining for the whole of the system, not merely for that portion that lies beneath the Hudson River, but also for the subway beneath Jersey City and Manhattan. It is expected that the whole work will be opened to the public in from two to three years' time.
As showing the great activity in the work of con necting Manhattan Island with the mainland by tunnels, we have included on our map the tunnels of the Rapid Transit Subway and of the Pennsylvania Railroad that are now either under construction or have been authorized for construction by the Rapid Transit Commission. The most northerly of these are the Pennsylvania Railroad tunnels, which extend in the neighborhood of Thirty-third Street from New Jersey below the Hudson River,. Manhattan Island and the East River to a station in Long Island City. These tunnels will not only give the Pennsylvania Railroad system a large terminal station in the heart of Manhattan Island, but they will place the network of rail roads on Long Island in direct railway communication with Manhattan The two Pennsylvania Railroad tunnels leading into Long Island will be below Thirty-second and Thirty-third Streets, and those which will extend to Jersey City will lie below Thirty-second Street. The ther tunnel that is now under construction, is that of the Rapid Transit Road, which extends from the Battery below the East River to the foot of Joralemon Street.
The opening of the Rapid Transit tunnel and its remarkable success had the immediate effect of awakening a keen competition among capitalists ts secure franchises for he construction of further subways and tunnels, both n Manhattan and Brookyn. With commendable foresight, Mr. Rice, the present acting chief engi neer of the Rapid Transit Commission, had prepared extensive surveys for fu ture roads, and recently the Rapid Transit Commission and the Board of Estimate and Apportionment have authorized the construction of no less than nineteen different subways. Included in and forming part of these vari ous routes are five tun nels beneath the East River. The first of these extends parallel with the Pennsylvania tunnels across the East River and connects with the crosstown subway below Thirty-fourth Street. Another tunnel has been authorized from Brooklyn to Fourteenth Street This last has been laid out with a view to its probable use by the Brooklyn Rapid Transit. It will connect through the Subway below Fourteenth Street, with a ioop system running from Fourteenth Street through University Place and Wooster Street to Canal Street and thence returning over the Manhattan Bridge to Brooklyn. This loop will provide a route by which the Brooklyn surface cars can pass over to Manhattan Island and return. The same Fourteenth Street Subway will form part of a loop for the Brooklyn Rapid Transit elevated cars which will run down Fourteenth Street to Greenwich, down Greenwich to Liberty, and through Liberty Street and Maiden Lane to return to Brooklyn by a tunnel under the East River from Maiden Lane to Pineapple Street. For the accommoda tion of the Belmont interests, should they be disposed to bid upon it, a subway and tunnel have been laid out from the loop below City Hall Park, through Beekman Street and under the East River to Cranberry Street, Brooklyn. Another tunnel, which will probably form part of the system of subways which the

New York City Railroad Company is anxious to build, will extend from Montague Street, Brooklyn, under the East River, to Old Slip, New York, to connect with a subway under William Street. It is probable that all of these tunnels and the connecting subways beneath the avenues and streets of Manhattan will be in a condition for bids by the spring of 1906, and although only a part of them may be undertaken at once, it is probable that before another decade has passed, everyone of the lines indicated on our map will be in active operation.

Engineering Notes.

About 1890, some railroads commenced to build small spans and plate girders of steel, and, for eyebars, steel was almost exclusively used. At that time most of the rolling mills, which had formerly manufactured wrought iron, were equipped with steel furnaces, bu continued for some time to make both kinds of material, until they found it more profitable to confine themselves to the manufacture of structural steel only, and discontinued the manufacture of wrought iron. In 1894, it was practically impossible to obtain wrought iron shapes, and from that time forward steel entirely superseded wrought iron as the modern structural ma terial. The year 1894, therefore, may be considered as the commencement of the present epoch-the steel age
There arc different methods of executing laboratory instruction in engineering schools, and these range from the complete written-instructions method, which might be carried out by any intelligent man, to the pure research method, in which a problem is assigned and no assistance given for solution except facilities of laboratory and library. Equipment for such laboratory instruction is also quite various in kind and excellence but on the average represents large outlays of money for installation and maintenance. It is difficult to see how all the schools with variety of apparatus and method of using the same can accomplish the same ends, and it may be that much of our apparatus is useless, as charged by some Tnglish critics. From the discussion, however, it does seem that the aim of the instruction, or the object to be attained by the student, may justify both method and apparatus, and that old, worn or small pieces will suffice when the aim is to teach the commer cial tests, in which case also the complete printed report form is satisfactory. When, however, it is the aim of the instruction to make useful engineers, in the highest sense, by sending out bold and clear-thinking men, well equipped with the fundamental principles and their application, then the modified research method in some form is absolutely necessary. In this case the great range of problems and variety of the scientific foundation material make the most complete laboratory none too good nor need any part of it lie idle for want of usefulness.
At a recent meeting of the Belgian Electrical Society J. Carlier reviews the different apparatus which have been designed for taking the speed of locomotives. The "kinemometers" of Richard and Jacquemier are not easily applied to locomotives, on account of the fragility of the different parts of their mechanism. But for experimental cars they have a better chance of suc ceeding, as the latter are less subject to heavy shocks M. Hayne has devised a registering speed indicato for locomotives which is of strong build. It has a revolving disk, which turns proportionally with the time by a clockwork movement. It works by friction against a roller, which is mounted on a shaft carrying a screw-thread. The screw works in a nut, which is drawn in the opposite direction by the movement of the car wheels. Thus the roller moves over the disk at a distance from the center which is proportional to the speed. The Hausschelter register is used to indicate upon a dial, in front of the engineer, the speed of the locomotive in miles per hour. Besides it registers on a band of paper, which rolls out proportionally with the time, the speed, the duration of the run, and of the stops. When the speed exceeds the proper limit, a bell is rung. Dr. Hasler, of Berne has devised an instrument which may be an improve ment on the above. It is a totalizing speed counter, indicating the speed at intervals of time which are three times nearer together than the above instrument It registers the speed of the train, the total time of the locomotive, the length of the distance passed over, and is also to be adapted for recording the air-brake pres sure. The speed of the train is represented by an ir regular curve, which utilizes nearly the whole width of the paper band, and the point works every three seconds. In the Pennati tachymeter, the pencil-holder is raised along a vertical rod by means of a half-nut running upon a screw. At intervals of twenty seconds an electro-magnet works the pencil lever, so as to separate the nut from the screw. The speed is taken by a wheel running upon the rail, and its shaft operates the gearing of the apparatus. Electric tachymeters have been made, ibut these have not been applied with much success upon locomotives, excepting the Scholkmann system, which has been used on the Prussian state locomotives.

a NOVEL OIL can.

Pictured in the accompanying engraving is an oil can of novel construction recently invented by Messrs. Frank W. Clow and Joseph Brooks, of Livingston, Mont. The oil can is of the type used in oiling locomotives and large machinery, in which a long spout is provided to permit of reaching parts which would be inaccessible if the ordinary oil can were used. One of the principal objections to oil cans with long spouts is that in reaching distant bearings or oil cups, a large amount of oil is usually spilled out before the nozzle can be inserted to the desired spot, because, owing to the length of the spout, the can must be tipped up to pass between the various parts of the machine. The present invention seeks to overcome this objection by providing a valve which normally closes the spout, so that the can may be entered into the machinery without spilling a drop of oil, and then when the proper bearing is reached, a thumb piece is depressed, opening this valve and permitting the oil to flow out. In our illustration the spout of the can is broken away, and also a portion of the body of the can, in order to bring out the details. A portion of the upper end of the spout, with the nozzle screwed on, is represented in Fig. 2, and shows the valve that closes the end of the spout. The valve stem passes down through the spout to the bottom of the can, where it is bent upward again to pass through an airinlet tube to the outside of the can. Here the valve stem terminates in a thumb piece. The bottom of the air-inlet tube is closed by a second valve formed on the same valve stem. A coil spring on the tube is connected to this valve and serves normally to hold it and the flow valve closed. When the thumb piece is depressed, both valves are open
and air enters the can through the tube to replace the oil which passes out of the spout. An $\begin{array}{ll}\text { inverted } & \text { conical } \\ \text { strainer } & \text { is set }\end{array}$ into the mouth of the can to exclude all foreign matter from the spout. This strainer is attached to the cap which carries the spout and also the inlet tube, so that the entire mechanism may be removed by unscrewing this cap, and this
leaves a large opening through which oil may be poured in with out danger of spilling. The construction is such that the oil will not collect in and clog up the spout; but if the valve becomes clogged in any way it may be readily cleaned on unscrewing the nozzle from the spout

Official Meteorological Summary, New York, N. Y., July, 1905.
Atmospheric pressure: Highest, 30.17; lowest, 29.58; mean, 29.97. Temperature: Highest, 96 ; date, 18th; lowest, 61, date, 27 th; mean of warmest day, 86 , date, 18th; coolest day, 66, date, 23d; mean of maximum for the month, 82.6 ; mean of minimum, 68.3 ; absolute mean, 75.4 ; normal, 73.9 ; excess compared with mean of 35 years, +1.5 . Warmest mean temperature for July, 78, in 1901. Coldest mean, 70, in 1884. Absolute maximum and minimum for this month for 35 years, 99 and 50 . Average daily deficiency since January 1, -0.4. Precipitation, 6.01; greatest in 24 hours, 2.74 , date, 10 th and 11th; average of this month for 35 years, 4.51. Excess, +1.50 ; de ficiency since January 1, -1.71. Greatest precipitation, 9.63 , in 1889; least, 1.26, in 1893. Wind: Prevailing direction, south; total movement, 7,358 miles; average hourly velocity, 9.9 miles; maximum velocity, 46 miles per hour. Thunderstorms 8th, 9th, 10th, 11 th, 13 th, 19 th, 20 th, 30 th, 31 st. Clear days, 5 ; partly cloudy, 17; cloudy, 9 .

The celebrated grape vine in the conservatory at Hampton Court, England, planted in 1769, had in 1830 a stem 13 inches in girth and a principal branch 114 feet in length, the whole vine occupying more than 160 square yards; and in one year it produced 2,200 bunches of fruit weighing on an average a pound-in all, about a ton of fruit.

(Taxxedxpontente.

New Nomenclature.

To the Editor of the Scientific American
Permit me to suggest two names for new "articles" in daily use.

1. Kinetograph: A photograph or series of photographs for use in kinetoscopes or like machines.
2. Aerogram: A message sent by wireless teleg raphy.

Washington, D. C., August 3, 1905

The Danger of Lightning in Armored Concrete

Constructions.

It is a well-known fact that any constructions made entirely of iron are practically immune against the effects of lightning, as the amount of electricity accu mulated in the case of a lightning stroke is allowed to distribute itself over the large surface of the roof and to flow off to the earth at many places with greatly reduced intensity. As pointed out in a recent article in Beton und Eisen, conditions are quite similar in connection with buildings made entirely of armored con crete, as the discharging current will find the roofing iron and distribution rods of an armored concrete roof struck by lightning, a good conductor of electricity, so as to flow off to the more substantial girder iron with which the roofing iron is connected by wirc meshes Now, as experience has shown lightning not to be dis charged to the earth in a concentrated jet from the place of striking, but to have a tendency to distribute itself to all sides if possible, the electricity will be diffused throughout the roof traversed by a network of iron rods. The electricity being greatly reduced in intensity, will have an excellent opportunity of flowing off to the ground through the round irons inserted in armored concrete columns, thus being communicated to the foundation of the current column, which in turn transmits it to the ground. This shows that neither artificial lightning arresters nor their parts will be required in connection with any construction consist ing entirely of armored concrete.

Tests with Haulage System to Economize Air.
At the Fürstlich von Plesschen Colliery, in lower Silesia, electricity has been used extensively underground, but with the idea of avoiding firedamp explo sions it has been found necessary to use air motors in all such places that were in the return air-way, or such places that were not directly reached by fresh air The installation at the Fürstensteiner mines is very ex tensive, and owing to the use of coal cutters these latter mines have been provided throughout with air mains, and to connect with this system was convenient whereas it would be necessary to use lengthy cables should the introduction of electricity be contemplated. The material that is derived from the seam or measures having a thickness of 23 feet must be hoisted on the incline and for this purpose it is necessary to use a motor of some kind. The system which has here been introduced is the endless-rope system so that what ever motor is used it can run continuously. A duplex air hoist of the ordinary type with slide valves, is installed but it is impossible to use a cut-off so as to ex pand the air to any great extent on account of the for mation of ice in the exhaust. The motors, therefore do not work economically and use a great deal of air. To overcome this, as has been tried in other districts, the use of reheating was not deemed advisable on account of the danger from explosions.-Translation of article in Gluckauf, Mines and Minerals.

The Current Supplement.

The current Supplement, No. 1545, is commenced with an interesting article on "The Kazarguene Bridge." This Russian bricge is the longest reinforced concrete bridge in the world. "The Steam Turbine As Applied to Electrical Engineering" is by the Hon Charles A. Parsons, and Messrs. Stoney and Martin. "The Winning Automobiles in the Sixth International Cup Race for the Bennett Trophy" describes the Italian cars. The usual scientific, electrical, and engineering notes will be found in their accustomed places.

John Carbutt.

John Carbutt died July 28 at his home in Philadelphia, aged seventy-three years. Mr. Carbutt went to that city from Sheffield, England, in 1853. He was a chemist, and made scientific photography his life study The Photographers' Association of America chose him as its first president. He made several inventions, chief of which was the orthochromatic plate. In 1879 he perfected the Carbutt dry plate.

Probably the first iron railroad bridge was built on the Philadelphia and Reading Railroad at Manayunk by Richard B. Osborne, Chief Engineer, in 1845 . It was a double-track through bridge, of 34 feet clear span, of the Howe truss type, with cast-iron chord and web braces, the bottom chord and vertical web members being of wrought iron. This bridge was followed by several others of the same type.

THE "BENNINGTON" DISASTER

The history of the United States navy does not furnish an instance of sudden disaster that appeals so directly to our sympathies as the recent tragedy on the United States gunboat "Bennington;" for although the explosion on the "Maine" in Havana harbor resulted in a greater loss of life, it was known that the ship was engaged on a mission that might end in actual war conditions, and there was, therefore, a proportionate sense of risk attached to it. In the present case, however, the trim little gunboat was about to start on a peaceful mission, and the thought of disaster, and disaster of such an appalling magnitude, was far from the thoughts of any one of the ship's company.

The "Bennington" is a two-masted schooner built by N. F. Palmer \& Co., Chester, Pa., in 1890. She is of 1,664 tons displacement and on trial made $171 / 2$ knots, with 3,436 horse-power. She carries six 6 -inch breech-loading guns, four 6 -pounders, four 1 -pounders, and two Colts. She is known as an unarmored steel gunboat, her protective deck being only $3 / 8$ of an inch in thickness. She cost originally $\$ 490,000$, and she
navy, has appointed a special board to make a very thorough investigation, it will be idle and premature to enter into speculations as to where the blame for this shocking disaster is to be laid. It is stated that within the last ten months the Scotch boilers of the "Bennington" have been inspected at least three times, and repairs have been executed which were considered sufficient to keep them in service for a few months longer until new boilers could be given her. If the repairs were adequate there is nothing unusual in this course. At the same time there seems to be little doubt that this ship, like many others in our navy, was suffering from a scarcity of officers, particularly in the engineering department.
The following discussion of the type of furnace and boiler used on the "Bennington" and its possible bearing on the disaster is from the pen of Mr. Egbert P. Watson, one of the former editors of the Scientific American :
In order to understand the accident clearly a few words of explanation are necessary. The furnaces of marine boilers of the Scotch type are tubes usually four feet in diameter in large boilers and three-quar-
the free oil which contaminated the feed floated around on the surface and caught the scum, of which there is more or less in all boilers; this soon rendered it heavier than water, so that it sank to the bottom or was carried in various directions by the circulation, becoming attached to metallic surfaces, which it happened to strike, with the tenacity of a plaster. This oily mud was a perfect non-conductor of heat and effectually prevented access of water to the plates, so that it was only a question of a short time before they became red-hot and gave way under pressure, forming pockets or bags in the shells of stationary boilers, and deforming marine boiler furnaces. Mr. Lewis proved his contention by making a paste of the deposit in the bottoms of boilers and lining sheet metal pans with it, through which he speedily burned holes even when they were full of water.
The cause of the trouble having been found it was easy to prescribe the cure, which was not to admit oily feed water to steam boilers. This seems very simple as it reads, but it was not so easy to carry out in daily service. Engineers had become so accustomed to using quantities of oil in the cylinders to prevent

Displacement, 1,664 tons. Speed, 17.5 knots. Complement, 187 officers and men. Gunboat "Bennington" After the Explosion.

View on Starboard Deck Which Was Awash Afte: the "Bennington" Rested on the Bottom.

Starboard Side Amidships; the Vessel Sunk to the Bottom, After Explosion. Note 6-inch Midship Gun.

Burial of the Victims in the Military Cemetery at Fort Rosencrans.
carries a complement of eleven officers and 176 men. At the time of the accident, the "Bennington" was lying in San Diego harbor, and in obedience to orders just received from the Navy Department at Washington, to sail that morning for Port Harford to meet the monitor "Wyoming" and convoy her to San Francisco, she had steam up and was in readiness for departure. Suddenly, without, as far as is known, any preliminary warning whatever, the starboard forwarl boiler exploded, the top of the lower furnace giving way, and the rush of steam drove the boiler against the boiler astern, which was also forced astern and exploded. As practically the whole complement of the ship was aboard and the majority of the crew were located amidships and forward, the casualty list was a shockingly large one, nearly half a hundred men being killed outright, and a large number of others so seriously wounded that the ultimate number of deaths will probably be not far short of seventy-five. The wrecking of the interior, breaking of valves, etc., caused the vessel to sink, although she was located in such shallow water that she can probably easily be salved.

In view of the fact that Secretary Bonaparte, of the
ters of one inch thick. They are corrugated diametrically with about three-inch corrugations for the entire length, and riveted at both ends to the shell of the boiler proper. They are not braced or stayed in any portion, the form, a perfect circle, not requiring it. They have, however, an enormous load to withstand which they are amply equal to under normal conditions. These are that perfectly clean water be fed to them wholly free from any trace of cil or grease. Where these find their way into the boiler, collapse is imminent sooner or later. Twenty years ago, more or less, an epidemic of collapsing furnaces prevailed in the merchant marine all over the seas, and for a long time the cause of it was not discovered. It was at first attributed to scale on the furnace crowns, but examination of injured furnaces did not reveal any scale; they were as clean as when first put in; but an English engineer, Mr. Vivian Lewis, who was consulted on the subject, found that it was oil coming over in the feed water that did the mischief.
This conclusion was at first combatted by the engineers in charge until it was proven absolutely by Mr. Lewis's analysis and experiments; he asserted that
scoring them that it had become second nature; but imperative orders and one or two collapses, which might easily have resulted seriously, convinced the rank and file that radical changes were necessary. Filters were introduced and more carefully attended to; they were not unknown before, but were so seldom cleaned that they were practically useless, and not until they were looked after by every watch did the disasters here discussed measurably cease. It is very rare now to hear of marine boiler furnaces coming down; when they do it is very certain that remissness occurs in the management. The course generally, or scmetimes followed is to jack them back into place. A hot fire is made under the injury and the sheets forced back into place, suitable cast-iron blocks fitted to the corrugations being employed to avoid distorting them. This does not always answer, because it is difficult to bring the furnace to a true circle, in which case it is apt to be deflected again even when no oil is present.
Comment has been made by the daily press upon the alleged neglect to inspect the boilers of the "Benning ton" by the Bureau of Steamboat Inspection, but naval vessels are exempt from examination by it, all govern-

The station will be 1,000 feet long, and will contain 18 of these anits, developing a total of 180,000 horse-power
One of the $\mathbf{1 0 , 0 0 0}$-Horse-Power Units in the Generating Station

Sand-Blasting One of the $\mathbf{1 8}$-foot Steel Conduits.

Interior of Wooden Form for Concrete Wing-Dam.

Excavating the Site for the Generating Station at the Foot of the Cliffs.
ment vessels being inspected by the Navy Department only.
Corrugated furnaces were first introduced to the attention of engineers in 1853-4 by Richard Montgomery, a boiler-maker of the period, at the Morgan Iron Works, in New York city; his examples were, however, defective in that they were corrugated in the flat sheet, afterward bent to a circle and riveted; this left a joint and a flat spot, which was looked upon as dangerous under high pressures. Montgomery's conception of the furnace was all right, but, unfortunately, there was not at that time any way of welding seams, and it was not until the Continental Iron Works, at Green Point, devised a method of doing such work that corrugated furnaces came into general use many years afterward.

ELECTRIC POWER DEVELOPMENTS AT NIAGARA

 FALLS.-I.Outside of the technical world it is but little understood how vast are the electrical power plants which are now under construction on the Canadian shore at Niagara Falls. When the Niagara Power Company announced, some dozen years ago or more, its intention of building on the American side of the river a power plant that would develop 50,000 horse-power, the world was incredulous; and not until the first turbine and generator were successfully at work was it willing to believe that the thing could be done. Yet to day, not only has the original plant been doubled, but there are in course of construction, and partly completed, turbines and generators installed in three separate plants, that will have a combined capacity over eight times as great as that of the parent plant, while charter rights have been given for the development of power which will amount in the aggregate to over 900,000 horse-power. Named in the order of their size, these three installations are that of the Ontario Power Company, which will develop 180,000 horse-power; the Electrical Development Company, of 125,000 horse power, and the Canadian Niagara Power Company, which will develop 110,000 horse-power, the latte duplicating the capacity of its original power plant.
The bird's-eye view of Niagara Falls and vicinity on our front page has been drawn with a view to show the location of the new power plants with reference to the Falls. The point of view is from a position over the Canadian shore, and slightly below the steel arch bridge which, a few years ago, took the place of the old highway suspension bridge. We are looking up the river, directly across the Horseshoe Falls, toward the broadly curving Canadian shore, and the rapids which extend for about 3,500 feet back from the crest of the falls. The rapids commence at a point opposite the upper end of Goat Island, and there is a fall of 50 feet in the next 3,500 feet to the edge of the Falls. It is at the head of Goat Island that the Niagara River begins its broad sweep through an angle of over 90 degrees, before discharging its waters over the Falls, and this broad curvature on the Canadian shore, coupled with the rapid rush of the waters, has been taken advantage of by the engineers in selecting the sites for power development. Two of the companies have boldly built out massive wing-dams into the torrent, starting them first at right angles to the shore line, and then curving them upstream at an acute angle with the shore. These wing-dams serve to draw the water in toward the intakes, through which it is led to the supply pipes or the penstocks, as the case may be, for ultimate use in the turbines. The other company has placed its power house at a point where the river was so full and deep that a wing-dam was not necessary, and the water flows directly through the sluice gates into the penstocks. The present article is devoted more particularly to a description of the works of the Ontario Power Company, and the other two in stallations will be treated at length in later issues.
Just here, however, with this bird's-eye view befor us, we will briefly recapitulate the work that has been done at the present time in power development at Niagara. On the New York shore, about a mile above the American Falls, are the two power houses of the Niagara Falls Power Company-one on each side of its. intake canal. The original plant is of 50,000 horse-power, and the second power house is of 55,000 horse-power. Each power house is located over its own wheel pit, and the water is conducted through penstocks to turbines in the bottom of the pits, and is led away through a tail-race tunnel over a mile in length, the discharge of which will be noticed in our bird's-eye view, just below the abutment of the steel arch bridge on the New York side. Fifteen hundred feet below the Niagara Power Company's intake caral is a canal which leads through the city of Niagara to a forebay on the edge of the cliff below the steel arch bridge. Here the water is led by penstocks down to the power house of the Niagara Falls Power and Man wfacturing Company, which has an ultimate capacity of about 40,000 horse-power. Beginning at the head of the rapids on the Canadian side, we have first the intake of the Ontario Power Company, from which the water is led in underground pipes to the cliff above
the generating station, where it is led down to the latter in penstocks and the power is developed on the edge of the river in a generating station that is a thousand feet in length. About 2,000 feet further down the rapids on the Canadian shore is the power station of the Electrical Development Company, where the water is deflected by a wing-dam through a series of screens and gates into penstocks which lead to turbines at the bottom of a huge wheel pit. The tail-race water is discharged by means of a tunnel which has been cut from the bottom of the wheel pit right through below the river to the edge of the falls, discharging at the river level below and back of the falls. About half a mile further down the rapids we see the power station of the Canadian Niagara Power Company, where the water is similarly led through penstocks to the bottom of a wheel pit, and discharged through a tail-race tunnel, whose outlet is just above the surface of the river below the falls and about half way between the falls and the generating station of the Ontario Power Company.

It will thus be seen that on both sides of the river the power plants have been built on two broadly different systems, one consisting in sinking a huge wheel pit to a level sufficiently higher than that of the river below the falls to allow of an easy delivery for the tail-race waters, and placing the turbines at the bottom of this pit, and the generators at the top of it at the level of the power house; the other method consists in carrying the waters from the upper level of the river by means of a canal or pipes and penstocks to a power station located on the shore of the lower river and at a sufficient height above the latter to give the proper clearance for the draft tubes.
ontario power company development.
In the year 1887 the government of the Dominion of Canada made a grant to the Ontario Power Company for the development of hydraulic power at Niagara Falls, these concessions being made contemporaneously with the first concessions granted in the United States. Briefly stated, the works consist of a large system of intakes located abreast of the commencement of the upper rapids, and near what are known as the Dufferin Islands. These consist of an intake proper, an outer forebay, a system of screens, an inner forebay, and control gates. The intake, which is 618 feet long, extends diagonally from the shore out into the river, and consists of a series of concrete piers which carry a concrete curtain wall. This wall extends vertically downward 7 feet below the surface of the river, to within 6 feet of the river bed, and it projects 5 feet above the river level. The water passes through the intake in the 6 feet of space between the river bed and the under side of the curtain wall. As the river rushes along the curtain wall, its current is increased and the masses of ice that come down in the winter time are swept along the face of this wall, only a part of the water passing through and beneath it into the outer forebay, which contains an area of 8 acres. This forebay is bounded on the shore side by an artificial island; on the river side toward the falls, it is bounded by a massive wing-dam, of which we present an illustration. This dam extends out into the river at the lower end of the forebay with a broad curve and swings around upstream to meet the lower end of the intake curtain wall. Except during extremely low stages of water, the wing-dam will be constantly submerged, the water spilling over it into the river, as over a weir, and carrying. with it such floating ice and debris as may pass through the outermost intake. The section of the wall 100 feet in length which is adjacent to the screen house, has its crest lower than the rest of the dam, thus forming a spillway of increased capacity at that point. Its effect is to create a strong surface current across the front of the screens, and sweep out into the river all ice that may have passed the ice curtain and escaped the general spill over the wing-dam.
From the inshore end of the wing-dam a series of massive screens have been built across the entrance to the inner forebay, which has an area of two acres. They are set on inclined guides in concrete masonry, and are removable by means of a crane. The gear for handling the screens, etc., is inclosed in an artistic stone building, on the roof of which is a broad promenade from which a magnificent view of the rapids may be obtained. After passing through the inner forebay, the water is conducted through three massive gates into three gigantic steel conduits, or water pipes. The gates are of the Stoney pattern. They are square in form, are counterbalanced, and run between rollerguides. As will have been judged from the foregoing description, the capacity of the head works is very large. Indeed, when the entire capacity of the plant is being generated, the flow of water will be 12,000 cubic feet per second. The depth of water increases gradually from 13 feet at the intake to 30 feet at the gate house. It should be explained that the designs of all the buildings throughout the works have been approved by the park commissioner, and they have been drawn to harmonize with the landscape gardening effects in the park.

Starting from the main gate house, the water will be conducted in three 18 -foot steel conduits for a distance of about 6,200 feet to the top of the bluffs below the Canadian Falls. Of these three, the first has been completed. It is built of half-inch steel plates, and to secure additional stiffness 7 -inch bulb-deck beams are riveted to the upper half of the pipe at every four feet, and the whole is incased in a thick layer of concrete. To insure that the conduits shall not interfere with the appearance of the park, they are being laid in trenches and will be entirely covered from view. The first of these conduits is completed. From the under side of it six 9 -foot penstocks are carried down in pairs through vertical shafts and out through hori zontal tunnels in the solid rock of the cliff to the gen erating station. Each penstock supplies water for a 10,000-horse-power unit. The vertical depth from the center of the conduit to the center of the turbine is 133 feet. Two small penstocks of 30 inches diameter lead from the main conduit through an inclined tunnel to the power house, and supply water for the two ex citer turbines.
It will be seen from the above description that this installation is entirely different from that of the Niagara Power Company on the New York side, in that it does not employ a wheel pit. The generating station is located on a bench at about the normal level of the river, which has been cleared of rock at a point about 700 feet down stream from the Canadian Falls. This building is 76 feet wide, 65 feet high, and when it is completed will be 1,000 feet in length. The main generators and their turbines are placed on the floor of the station 20 feet above mean water level. Each turbine unit consists of a pair of Francis turbines, mounted, side by side, on the same horizontal shaft that carries the generator, and operating at 187.5 revo lutions per minute, at a rated horse-power of 11,400 After passing through the wheels, the water flows through concrete draft tubes, which terminate in tail races built in the foundations of the station. These, in turn, discharge over a weir wall into the river. The crest of this weir wall is at elevation 349. Under full load conditions the water rises on it to elevation 353 , giving a gross head between forebay where the water level is at elevation 553 and tail-water level of 200 feet. Of this head 175 feet is effective on the turbines. The first installation, which is now nearing completion, consists of six of the twenty main generators provided for by the general plan. Each generator is rated at 7,500 kilowatts, and delivers three phase current of twenty-five cycles at 12,000 volts The generators are of the rotating field type, the ex ternal diameter of the armature being about 21 feet. On a raised gallery which extends down the power house on the side opposite the river, are located the exciter turbines, the direct-connected exciting dynamos and the turbine governors.
An entirely new feature in this power house is that the actual operation of the generating station is con ducted from a separate distributing and control station, located at a distance from the generating station. This building is 550 feet inshore from the generating station, and stands on the bluff at an elevation of 250 feet above it. The control circuits pass from the generating station in insulated cables, carried through inclined tunnels in the cliff, which extend to a point on the hillside a little above the main conduits. Thence they are carried up the bluff, under ground to the distributing station. Here, in a separate switch room, the 12,000 -volt automatic oil switches are mounted in brick cells. They are of the vertical plunger type and are magnetically actuated
The transformers are arranged centrally throughout the length of the distributing station building, except at the center of the building, where space is given to the control room. Each transformer is rated at 2,500 kilowatts, or 3,350 horse-power, and they weigh 40 tons apiece. They are designed for a potential of 60,000 apiece.

It is anticipated that as construction proceeds the foregoing plans will be modified to provide for 200,000 horse-power ultimate capacity, with 22 units of 10,000 horse-power each in the installation.
We are indebted for our information to P. N. Nunn and L. L. Nunn, the engineers of the company, who are responsible for the design and execution of this great work.
E. H. R. Green, of Dallas, Texas, one of the leading citizens of the State and president of one of the rail roads of that section, and who enjoys the additional distinction of being the son of the famous Hetty Green, of New York, has gone in for automobiling as a pastime, with the result that he has designed an electric system for the timing of automobiles on the racetrack. It is said to be extremely simple in its construction and application, and can be laid down upon any course without any elaborate preparation. As the vehicle passes certain points along the course, a record is made of the time at the judges' stand at the starting point. The system involves the use of the wireless point.

AWARD OF THE GLIDDEN TROPHY FOR TOURING CARS

Of the thirty-two machines that started from New York in the Glidden touring contest to the White Mountains and back on July 11, twenty-eight returned to the starting point on July 22. But two of the four machines that were missing at the finish dropped out because of breakdowns. One of these breakdowns resulted from an accident occurring the first day of the tour. The driver of a White steamer, Mrs. J. H. Cuneo, was obliged to run her machine off a 6 -foot-high bridge in order to avoid a collision with another car, the re sult being that although the steamer (which fell on its side) was damaged somewhat, its plucky driver was able to run it and make a fairly good score until the last day of the tour, when the machine gave out completely with a broken water pump and driving shaft. The only other car which failed to finish on account of mechanical troubles was Mr. S. E. Hutchinson's 50 -horse-power Panhard, which broke its crank shaft. One of the most remarkable accidents during
hose. None of these repairs, with the exception of the broken connecting rods, necessitated very lengthy delays, and in almost every instance the car was soon going again.

The steepest hills were experienced at the Crawford Notch, N. H., and in the run from Springfield to Lenox, Mass., in the course of which the famous Morey Hill, which has an elevation of 146 feet and grades of nearly twenty-five per cent; was ascended. Despite the steepness of this hill and the poor character of the road, all the cars ascended it with practically no difficulty. Most of the larger cars were obliged to climb it on their low gear, while the lighter touring cars, fitted with two-speed planetary transmissions, were able to rush the hill the first part of the way and go considerably further than the others before dropping to their low gear. Had the test been carried out along scientific lines, this hill would have been a fine one on which to demonstrate the horse-power actually developed by the various machines. The fact that all climbed it with little or no difficulty, however, shows that the
a tread of 56 inches, and $32 \times 31 / 2$-inch solid tires. Its maximum speed is 18 miles an hour, and its carrying capacity is 2,500 pounds. Besides the driver and his assistant, this wagon hauled daily from 1,200 to 1,500 pounds. The total distance it covered in the course of the tour (which distance included several side trips in the vicinity of Mt. Washington) was $1,0011 / 4$ miles, which was covered in 63 hours and 25 minutes, at an average speed of $145 / 8$ miles per hour; $1071 / 4$ gallons of gasoline and $41 / 2$ gallons of cylinder oil were used, and the only replacements were two chain links and one exhaust valve. With gasoline at 20 cents a gallon and oil at 50 cents this figures out the total expense at $\$ 27.58$, or an average cost of $23 / 4$ cents per mile. This is certainly a very favorable showing for a light-weight gasoline truck.
The Packard truck was fitted with a 15-horse-power twin-cylinder vertical engine having 41-16 x 5-inch cylinders. A three-speed sliding gear transmission and a double chain drive from countershaft to rear wheels are employed. During the course of the run

The Trophy Winner.-A Pierce "Arrow" Touring Car.
This car has a 104-inch whect base. It is provided with a bevelgear drive and $28-32$-horse-

Knox 16-Horse-Power Truck Climbing a Grade of 23 Per Cent on Morey Hill. This truck has a carrying capacity of 114 tons. It is propelled by an air-cooled motor, and has a two-speed
the tour happened at North Conway, N. H. Mr. C. J. Edwards was driving his large four-cylinder Cadillac machine at a rapid rate of speed when, after rounding a curve, he came suddenly upon a covered bridge. The car slewed so that the hub of the front wheel struck an inclined beam at the ntrance to the bridge and, as it traveled up the beam, raised the car and turned it up side down. Although found under the machine, none of the occupants was seriously injured. The steering gear was damaged somewhat, but this was repaired and the day's journey completed.
As the tour was originated by Mr. Glidden for the pur-
oose of bringing pur mod ofinging out the reliability and comfort of the ern touring car it was unfortunate that many of the entrants could not refrain from bursts of speed in an endeavor to reach the end of their daily destination first. The accident just cited was the result of speeding over a highway which was unfamiliar to the motorist, and that it did not have serious consequences can be laid only to luck.
Had the motorists all run with the precaution that was shown by Mr. Percy E. Pierce in driving his $28-32$ -horse-power touring car, there would not have been as many breakdowns on the road as there were and the competition for the trophy would doubtless have been much keener. As it was, however, the breakdowns were few in number and of slight consequence, and even the tire troubles were found to be much reduced over what have been usually experienced on runs of this character. Some of the troubles experienced by the various cars consisted of broken connecting rods, fouled spark plugs, broken-down spark coils, a broken rear spring (on the Packard truck), a chain jumping off the sprocket, and the giving $0^{\circ}, i$ of a high-pressure

The 15-Horse-Power Packard Truck, Which Climbed Mount Washington in About 2 Hours Running Time. This is a $11 / 2$-ton truck. Weight, 2,800 pounds. Motive power, two-cylinder vertical engine and three-speed sliding-gear transmission. the winning touring car and the motor truchs in the glidden trophy tour.
this machine covered 865 miles on a total consumption of about 79 gallons of gasoline, which is equivalent to 10.95 miles per gallon; 5.5 quarts of cylinder oil were used, which equals 145 miles per quart. The load the first day was only about $\quad 2,000$ pounds, but afterward the truck carried around 3,200 . No great trouble was experienced in driving this heavy vehicle through the country, although it skidded some on mountain roads after a heavy rain. In climbing Mt. Washington chains were used on the rear wheels. These broke two separate times and the ends flew up and caught in the driving chain, thus breaking it. With-

American machine of to-day has ample power for touring the most mountainous districts.
A very interesting feature of the Glidden tour, and one which should serve as a thorough demonstration of both the air-cooled and water-cooled type of commercial vehicle, was the performance of two trucks entered by the Knox Automobile Company and the Packard Motor Car Company. These vehicles were started every morning at an early hour, and they generally reached their destination late in the afternoon. They carried a considerable amount of baggage belonging to the tourists, and so reliable were they that after the first two days the contestants preferred to use them to the express companies. A picture of the Knox truck ascending Morey Hill is shown herewith, as well as a photograph of the Packard truck on top of Mt. Wash-ington-a climb which is as noteworthy to-day for a commercial vehicle as was the ascent of Pike's Peak by a steam runabout some years ago.

The Knox truck is fitted with a standard double opposed cylinder 5×7 Knox horizontal air-cooled motor of 16 horse-power. It has a wheel base of 95 inches,
in three miles of the summit the truck ran into a heavy sleet storm which put out the oil lamps and left the motorists only one acetylene headlight to see by. Despite climbing the mountain under such bad conditions the truck reached the summit in $4 \frac{1}{4}$ hours. The start was made at 6 P. M. and the halfway house was reached about 7. After leaving that point it was overtaken by rain, which made traction very uncertain. A bad stretch of sandy road was then encountered and here the chains were put on. These served their purpose well until they broke with the result mentioned.
The Glidden trophy (which consists of a large globe supported on a suitable pedestal and surmounted by an automobile) was awarded to the Pierce touring car shown herewith. This car is a typical American touring car, having a bevel gear drive and a $41 / 4 \times 43 / 4$ fourcylinder motor. Including a 1,580 -pound load, it weighed 4,280 pounds. It climbed Mt. Washington twice and completed the tour besides, without at any time experiencing any mechanical or tire trouble what ever.

Business and Personal WUants.

Will find inquiries for certain classes of articles

 numbered in consecutive order. If you manufacture these goods write us. at once and we will send you the name and address of the party desir-
ing the information. lumevery case it is neces-
sary to give the number of the inquiry.

Marne Iron Works. Chicago. Catalogue free.
Inguiry No. '7133. - For the adress of the im-
porters of wire called Inquiry No. 'y133. - For the address of the im- im-
porters of wire calleder meteor wire used
ignition points on igniters for explosive engines. Inquiry No. 'r 134 . - Wanted, a machine for mak-
ing and pressing yeast. Inquiry No. G135.-For makers and dealers in
novelties and newly patented articles. Perforated Metals, Harrington \& King Perforating Inquiny No. 9 136.-Wanted, a 75 -foot steel flag
pole or staff. Adding, multiplying and dividing
Felt \& Tarrant Mfg. Co., Chicago.
Inquiry No. $\mathbf{\text { I137. }}$ - For the manufacturers of the Tripoli Stone Filte

Sawmill machinery and outfits m LaneMfg. Co.. Box 13, Montpelier,

Inquiry No. '1.38.-Wanted, machinery, erc., for
converting waste wood into tar, turpentine and ctrar-
coal.
Marketers of meritorious inventions and specialties Inquiry No. Y139.-For the address of the Lawry
Press Co., manutacturers of hay balers. I sell patents. To buy them on anything, or having
one to sell, write Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.
ing, Buffalo, N. Y.
Inquiry No. $140 .-$ For parties to manufacture
toy balloons capable of lifting two pounds.
The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Machine Company,

Inquiry No. 7141 - For makers of felling trees, with the use of hot wires.

Gut strings for Lawn Tennis, Musical Instruments,
and other purposes made by P. F. Turner, 46th Street
Inquiry No. G14s.-For the makers of stepdown
transormers of 25 cy.les, from 15.000 volts to 10 or
123 volts. with an output capacity of 100 amp. oil-cooled Manufacturers of patent articles, dies, metal stamping, screw machine work, hardware specialties, wood
fiber machinery and toois. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
lnquiry No. \%143.-For makers of engines for
changing farm wagons and top buggies into traction
vehicles. Absolute privacy for inventors and experimenting.
A well-equipped private laboratory can be rented on moderate terms from the Electrical Testing Lab
atories, 548 East 80th St., New York. Write to-day. Inquiry No. 'V144.-For firms in the United States
manufacturing apparatus for the diy distilation of
wood, for producing alcohol, charcoal and other prowood, for producing alcohol, charcoal and other pro-
ducts. Manufacturers of all kinds sheet metal goods. Vendamusement machines, made of pressed steel. Send
samples. N. Y. Dieand Model Works, 508 Pearl St., N.Y.

WANTED.-To buy ideas or patents for new articles to manufacture as a side line. Will consider all propo-
sitions, but prefer articles. commonly used by the Co., Grand Rapids, Mich
Inquiry No.
ing gasoline gas.
We Want Machine Shop Work.-Also nickel and oxidized bronze plating. Have big shop and best facil
ities for pattern work, die-making and all kinds ma cline work. Large contracts wanted. Michigan AutoInguiry No. 914%-For manufacturers of a weight
motor or blower to be used in connection with gasoline motno or bysem.
large ornamental iron and bronze manufacturing comdevelop from drafting office to quantity and estimating clerk. Address Clerk, P. O. Box 773 , New York.
Inquiry No. $\mathbf{g 1 4 8}^{2}$.-For makers of small, wooden boxes.
Young man, practical engineer, large acquaintance, commission basis; can furnish best of references as to
industry, character and ability. Address w. Brown industry, character and ability. Address W . Brow
Smith, $620-622$ Laughlin Building, Los Angeles, Cal. Inquiry No. $\% 149$.-For information in regard
the manufacture of paper bottles. Patents on dredges and dredging machinery FOR SALE.- By reason of the death of Ralph R. Os-
good, valuable patents, having a lung term to run, are offered for sale. For terms communicate with Inquiry No. V150.-For makers of small, wooden
articles turned out of wood. A PAPER PROPOSAL.
Is the title of a clever little love story published'by
the LACKAW ANNA RAILROAD solely on its merit as a bright piece of tiction. It is contained in a beauti-
fully illustrated book of one hundred and twenty-eight pages which describes some of the attractive vacation The book may be had by sending ten cents in stamps

INDEX OF INVENTIONS For which Letters Patent of the

United States were Issued
for the Week Ending
August I, 1905

ANDEACH BEARINGTHATXATE [See note at end of list about copies of these patents.]

Boil
Bol
Bon

$\underset{\substack{\text { Braa } \\ \text { Brad } \\ \text { Brad } \\ \text { Brid } \\ \text { Bid } \\ \text { Buc } \\ \text { Bic }}}{ }$

Wood-working

Foot and lowe and Furret hatheses rlan

THE OBER LATHES

For Turning Axe, Adze, Pick,
Sledge, Hatchet, Hammer, Auger,
Hile, Knife and Chisel Handles Whiffletrees, Yokes, Solekes, Porch
Spindles, Stair Baiusters Table
and Chair Legs and other irregular Send for Circular A. The Ober Mif. Co., 10 Bell St.. Chagrin Falls, O., U.S.A

 THE CURTIS DOUBLE
CYLINDER MOTOR

THEY NEVER GET HOT

Sawyer Tool Mig. Co., Fitchburg, Mass.

The Eureka Clip

ARTESIAN

Lightning Adjust ble

If

\qquad

POu UCE GRINDSTONES ? monnted and u nnmounted. always
kept 1 stock. Rememper, we make
specialtyot specialtyot sel ecting stones for allse
cial purposes. Send for catalogut
The CLEVELAND STONE CO

Che Revelations of Dature

A Most Extraordinary Book Just Issued

Order to-day or keep this ad. for reference; you will need it

Part I Discoveries unparalleled since the time of Newton.
Perpetual Motion is solvable and solved. This is meant
that Perpetual Motion is solvable and solved. (This is meant
that inexhaustible enery can be secured free of octst, and not
that work can be done without expenditure of energy.) Part II-Forces of Matter. Celestial Mechanism.
Part III Part 1 - 1 ie and The following synopsis extracted from the end
itself will give a partial insight of its purports: "A recapitulation of the principal great principles enun-
ciated hereitin and considered as proven or very near, may
then be summarized as follows: 1.- Forces have positive and negative poles; heat and
cold are the opposite poles of one single force; so are electricity and magnetism.
2.- Both forces are derived from the chemism of matter;
so is everything else than matter itself and embraces all life and motion in the universe.
3.-The motion of the universe is permanently maintained
by the combined play of the positive and negative poles of by the combined play of the positive and negative poles of the
natural forces through mutual polar transformations and the
energy derived therefrom, which is thus inexhaustible. 4.- Excepting the Infinite and matter, everything else in
Nature is represented by motion of matter and is conse-
quently immaterial or spiritual in essence 5. Accomplished motion remains
in itself, and is the base on the spairit of man or the man him-
self, who is therefore immortal." The book is not made up mere from a fertile is inatination up merely of a a collection of fancies
doctrines, ancient and modern. Altientific theories and doctrines, ancient and modern. Although the author is un-
known to the world, he has been working in inilence for many years, and his deductions have been arrived at step by step an a
yeesult of observation, deep thinking and analytical reasoning;
resta tion was the original spark that gave birth successively to all the others. Some of his discoveries are supported by over-
whelming evidence adduced in the work, the weight of which will be readily perceived by unbiased minds. He conclusively
shows that many doctrines now held as some of the foundations of modern science are untenable, including the doctrine
of the conservation of energy and Newton's great law of gravitation, which, thou,
plete for two centuries.
Wive itsout own saying further now, the author will let the worl and there is no mathematics about it, so that any person o
modest education can understand all. No thinker, student or any intelligent person who want to be abreast of the progress
of human thought and discovery in the higher spheres of research can afford to be without this book. Address al orders
the author and publisher, L. Guillemet, 22 Clay Street, Sain Francisco, Cal. Price, postpaid, $\$ 2$; cloth binding, 258 pase
Booksellers and agents supplied. Terms on application

 Mechanice $1 \begin{aligned} & \text { movement, } \\ & \text { Metal drill, } \\ & \text { Metal me, Grantery } \\ & \text { machine, expande }\end{aligned}$

 Musical or other instruments employing
perforated sheets, O. H. Arno......... perforated sheets, ${ }^{\text {O. H. }}$
Nail puller, M. H. W. Wiihid.
Nest, hen's, J. H. Blank.

 \pm

 Sewer and drain cleaning apparatus, \mathbf{W}. 1.

Curtis \ldots. Shoe fastening, R. S. S., Jott. K. Green.......
Shuttle brake. J. Laforet....... $\mathbf{7 9 6}, \mathbf{1 2 7}$, Signal. See Railway signal.
Signaling, method and means of, F. W.
Prentice Signaling system and brake applying mech-
anism, combined,
H. C. Reichardt.... Silver, electrolitically, refining, A. G. Betts.
Skirt suporter, C. Feeler...........
Sled draft mechanism, traction, N. E. Brown Smoking implement, F. W.
Snap hook, E. R. Beach..
Snatch block, W. Smith...

ま" 795,857
 . 796,3 . 795,98

Did

 you read the article on Hollow Concrete Building Blocks in the August 5th issue of the Scientific MERICAN? If you did, you will notice that they block machine on the market to be illustrated. This particular machine was the Hayden Automatic Block Machine, a cut of which you will note in this advertisement. The Scientific American has many reasons for considering the Hayden Automatic the very best and we can give you these reasons in an interesting booklet upon application.The Hayden Automatic Block Machine is protected by very broad patents, and any one purchasing a Hayden Machine will be absolutely protected by us.

Blocks made on the Hayden Automatic are made face down in a horizontal position, thereby enabling the operator to reproduce a perfectly faced block, also a block absolutely moisture proof by using a richer mixture of finer sand and cement for, the face with no additional waste of time.

The above cut shows the final position of the HA YDEN AUTOMATIC MACHINE after mould 838 has been turned over by one movement of lever. Moulds simultaneously and automatically relessed
from block and block delivered away irom moulds in a position to be easily carried away for curing

All inquiries and information regarding the Hayden Automatic will be gladly given upon request, and we are always pleased to demonstrate and invite the inspection of any one interested in a thoroughly up-to-date and Automatic Concrete Block Ilachine.
HAYDEN AUTOMATIC \& EQUIPMENT COMPANY 26 Cortlandt Street. New York, U. S. A.

JAGER Marine
4-Cycle Engines

 Sider wost try ini conditions CHAS. J. JAGER CO.

 Auto-Marine Motors from 1 to $\mathbf{2 0} \mathbf{~ h . ~ p . ~}$
Detroit Autorlarine Co., 7 E. Congress St., Detroit, Mich.
Formely Detroit Lackawanna Co.
BABBITT METALS.-SIX IMPORTANT formulas. SCIENTIFIC AMERICAN SUPPLEMENT 11123.
Price 10 cents. For sale by Munn \& Co. and all news-
dealers. Send tor catalogue.

LANSING, MICH.

Hydrozone

Cures Sore Throat

A Harmless Antiseptic.

Endorsed by the medical profession. Send ten cents to pay postage on iree trial bottie. Sold by Lea label bears my signature
9 uffletander Write for free booklet on Rational Trea

All you have guessed about life insurance may be wrong. If you wish to know the truth, send for "The How and the Why." It is issued free by the

PENN MUTUAL LIFE PHILADELPHIA

An Automatic Pump

Niagara Hydraulic Engine Con
140 Nassau Sr., New York
An Ideal Electric Light Engine

daress.

UNIVERSAL KEROSENE ENGINE CO

Spition, Spring m Sprink inin teria Square Stacker, Stamp, Stap

Thill coupling, w. A. A. Buchanan.

\section*{}
 부웅웅

6\% RealEstate GoldBonds

 -000080000॰Conservative investors are offered an opportunity to purchase First Mortgage Bonds secured on income paying real estate in Chicago in amounts of $\$ 100, \$ 500$ and multiples that net Six per cent. to the purchaser. The illustrations show two of the buildings on which we have loans. We have had many years' experience making, and selling locally, these First Mortgage Bonds and take this method of offering them generally to the public. We have never yet had to foreclose any of the mortgages secured by these bonds, and none of our clients have ever lost a dollar, either in interest or principal, on account of these investments.

We cheerfully recommend them as being safe as to principal and sure and prompt as to interest. We collect the interest and otherwise look after the investment entirely free of charge to the purchaser, deriving our profit from the borrower. The Chicago Title and Trust Company, with a capital of $\$ 5,000,000.00$, guarantees the title to these properties and certifies to the fact
 that the Bonds are each and every one a first lien on the property described in the bond.

We invite correspondence of persons who want Safety and Six per cent.

JENNINGS REAL ESTATE LOAN COMPANY
Suite 509, First National Bank Building, CHICAGO

A Loose Leaf Book

PLARFECTLI
flanenga $\underset{\text { Self-INDEXing }}{\text { And }}$ Mont onreneat for

ELECTRICAL APPARATUS REPREsented by Conventional Diagrams in Drawings.-Fifty
diagrams showing the usual metho of illustrating elec.
trical apparatus in drawinge. A labor saving paper.
Tin

Stabrett
NO $\underbrace{\infty} \begin{gathered}\text { are the standartl } \\ \text { for Accuracy, }\end{gathered}$
 DESIGNS Anyone sending a sketch and description may
Auckly ascertanin our optnond fres whether an tonstrictly conndiential. HANDBOOK on Patents
Scien ifific American.

Zailuan 3llaster 3llechanic
liberal commission to agent
Railway Master Mechanic

BALLOONS Aeronaut L.E. stevengs
 CALIFORNIA
RUBBER

Experimental \& Model Work

COLTGS POWDER \& BA LL REVOLVERS

 W. E. S. JAARRETT, Specialist

AUIO STORAGE BATHERES

AUTHORS
tions. Pleased to quate
MAYHEV PUP C
M h , INVENTORS, OL St., Boston, Mas

The Monthly CONCRETE is the stann arard put

(3) Magical Apparatus.

Telegraphy 를. GINSENG

 TYPEWRITIERSEATHA

DIRECT FROM THE FACTORY

Learn Telegraphy and R. R. Accounting
 MORSE SCHOOL OF TELEGRAPHY Cincinnati, O., Buffalo, N. Y.,'Atlanta, Ga,., La Crosse
Wis., Texarkana, Tex., San Francisco, Cal. AUTOMOBILE OWNERS, DRIVERS, Repairmen, Chauffeurs, and others wanted all over
the country. 50,000 machines built this year in Unitei States, atfording great opportunities for trained men
Six cents a day will qualify you for good wages in
this growing feld this growing field. For full particulars, address IDept
A157, The Correspondence School of Automobile En-
Gineering

Send for this

きæりgwrdsiz

BEETHOVEN PICTURE, by Balestrieri of Paris, in sepia or
black, postfree for two dimes or 20 cents in stamp Languages Building, is West i8th St., New York BRAZE CAST IRON WITH BRAZIRON testimonials and samples of Braziron and flux sufficient
for several jobs.
THE A. SUNUACTURING COMMPANY
9. S. Canal St., Chicago, Ill.

Let us send you Free Our Book on LIGHT

A Scientific Method of Growing Hair The Evans Vacuum Cap provides the scientific means of applying to the scalp the comBaldness and falling hair are caused by the lack of proper nourishment of the hair roots. This lack of nourishment is due to the absence of blood in the scalp-an abnormal condition. It is the blood which part of the body. If you want the other grow on the scalp the blood must be made to circulate there. It is exercise which makes the blood circulate. Lack of exercise makes it stagnant. The Vacuum method provides the exercise which makes the blood circulate in the scalp. It gently draws the rich blood to the scalp and feeds the shrunken hair

Test it Without Expense You can tell whether it is possible to cultivate a growth
of hair on your head by ten minutes' use of the Evans
Vacuum Cap. We will send you the Cap with which to make the experiment without any expense to you.
If the Evans Vacuum Cap givesthe scalp a healthy glow
this denotes that the normal condition of the scalp can be restored. A three or four minutes' use of the Cap each
morning and evening thereafter will produce a natural

The Bank Guarantee

[^0]

The Orient Buckboard
 better than when we frst began. It it beats half the
$\$ 475$, $\$ 2525$ and costs no fortune. Four styles, $\$ 375$, $\$ 500$, Occupied territory. Write for Agency proposition.
WALTHAM Factory, Waltham, Mass.
Aduress General Offices, 44 Broad Street, To INVESTIGATE

 New Ice Machine Patent Aug. Osenbrick, Bremen Manufacturers taking any interest in a new patent for ammonia ab
sorotion, refrigerating or like ma-
chines, will piease 66-68 T. A., 50
 hauroad

\section*{CRUDE ASBESTOS}	PREPARED
ASBESTOS FIBRE	
R. H, MARTIN,	
OFFICE, ST.PAUL BUILDING	
:---	---:

LEARN TO BE A WATCHMAKER
 LARGEST and BES WATCH SCHOOL in AMERICA

Motors for Lighting Plants

 COMPAN NEW YORK C

MCROSCOPPES

0ur Microscopes, Microtomes, Laboratory Glassware, Chemical Apparat us, Chemicals, Photo Lenses and Shutters, Field Glasses, Cameras are used by the leading Cameras are used by the leading partments Round the World. Catalogs
Bausch \& Lomb Opt.Co.

JUSTSENDMEONEDOLLAR
and 1 will ship C. O. D. to any railroad station in the U. S the best range in the world, but 1 will furnish the evidence
and leave the verdict to you. After you examine this rance if you are satisisfied in every way, pay Agent $\$ 14.00$ and freight,
and you become the possessor of the best range in the world and you beccime the possessor of the best range in the world
for the money, The range has six 8 -inch lids; 18 -inch oven;
15 -gallon reservoir; large warming closet; top cooking serfor the money. The range has six -inch ins; 18 -inch oven;
15-gallon reservoiry large warming closet; top cooking ser-
vice $30 x 34$ ins. Guaranteed to reach you in perfect order. vice 30x34 ins. Guaranteed to reach you in perfect order.
Shipping weight, 400 lbs. Thousands in use and every one of
them giving satisfaction. Write for full description and them giving
testimonials.

WM. G. WILLARD

Che ZUatres Gas Engine ZXhistle
 is an innovation for marine motoring. It is operated simply by spent gas and does not affect the running of the engine. Whistle blown by the touch of a cord at engineer's elbow. Blows simultaneously three the touch of a cord at engineer's elbow. Blows simultaneously three Does away with all hand pumping. The device is simple, easily attached and has nothing to get out of order. It is absolutely safe and satisfactory. Thirty days' trial allowed, then, if not satisfactory,
 Booklet on request
 GAS ENGINE WHISTLE COMPANY, 1137 Broadway, New York

Two=Speed Automatic Coaster Brake Hub

WE GUARANTEE

 Rochester Electric Motor Co., $\begin{gathered}10.12 \text { Frank } \\ \text { ROCHESTER, } \\ \text { Stroot } \\ \mathrm{N}\end{gathered}$

Opaque Projector

A Maptic Lantern for showing Engrav
ings,
linits,
cuts
,
 Willians, Brown \& Earle
Dept. 6 , 918 Chestrut St, Philadelphia, Pa.

THE: NEW PIERCE

$31 / 2 \mathrm{~h} . \mathrm{p}$. Gas or Gasoline Motor

IS: A MOMDER

Safety of Operation
A Cadillac may safely be stopped, and can easily be started, while climbing the steepest grade-one show than perfor operation and demonstrate the unusual power of the Cadillac notable features
,
remark. of maintenance. This economy is manifest
only in the cost of fuel only in the cost of fuel and lubrication, but in repairs; for the Cadillac comes near to being actually trouble-proof. makes it the most satisfactory car makes it the most satisfactory car workmanship and time-tried principles of construction make it the most economical.

Model F-Side Entrance Touring Car, showr
Model B-Touring Car
With detacha ble
Tonneau, $\$ 900$.
Model E-Light, stylish, powerful Runabout,
divided seat,
$\$ 750$.
Model D-Four-Cylinder, $\mathbf{3 0} \mathrm{h} . \mathrm{p}$. Touring Car,
$\$ 2,800$
All prices f.o.b. Detroit.
Write for Catalog, $\begin{gathered}N \text {, and address } \\ \text { of nearest dealer, where you may }\end{gathered}$
see and try a Cadillac.
CADILLAC AUTOMOBY Member A. L. A. M

New York
Belting \& Packing Co. Ltd.
Manufacturers of high grade Rubber Belting. Diaphragms, Dredging Sleeves, Emery Wheels; Air Brake, Steam, Suction and Garden Hose, etc., Mats, Matting, Interlocking Rubber Tiling. Also manufacturers of moulded and special rubber goods of every description.

91-93 Chambers St., New York Instantly Puts Out All Kinds of Fires

THE SUPPLEMENTARY

[^0]: We will send you, by prepaid express, an Evans
 Vaccum Cap and will allow you ample time to prove
 its virtue. All we ask of you is to deposit the price its virtue. All we ask of you is to deposit the price
 of the Cap in the Jefferson Bank of St. Louis, where
 it will remain during the trial period, subjiect to your own order. If you do not cultivate a sufficient growth of hair to convince you that the method is
 effective, simply notify the bank and they will
 return your deposit in full. A sixteen-page illustrated book
 will be sent you free, on request
 Evans Vacuum Cap Co. 820 Fullerton Bldg. St. Louis

