|  |  |  |
| :---: | :---: | :---: |
| $\int \text { 局 } \sqrt{2}$ |  |  |
|  | - ] NEW YORK, JULY 29, |  |



Skeleton of a Man and of a Horse Mounted for Comparison. Man Has Retained More of the Primitive Features Common to All Mammals, the Horse Being Far More Specialized in the Structure of Its Limbs and of Its Grinding Teeth.
the evolution of the horse.-[See page 81.]

# SCIENTIFIC AMERICAN 

 ESTABLISHED 1845MUNN \& CO., - - Editors and Proprietors No. 361 Broadway. New York

## TERMS TO SUBSCRIBERS

One copy, one year for the United states. canedas or Mexioo
One cops,
One the Scientific americav publications.


## NEW YORK, SATURDAY, JULY $29,1905$.

| The Editor is always glad to receive for examination illustrated |
| :--- |
| articles on subjects ot timely interest. If the photographs are |
| sharp, the articlecshort, and the facts authentic, the contributions |
| will receive special attention. Accepted articles will be paid for |
| at regular space rates. |

sanitation and subsistence at panama.
President Roosevelt has likened the stragglers that have drifted home from Panama, with their mouths full of censure and complaint, to the few faint-hearted and garrulous soldiers that fall back to the rear when the battle is on in good earnest. Nobody supposes that the Isthmus of Panama is just now either a health or a pleasure resort; but that affairs down there are as bad as they are represented to be by a few disappointed adventurers, no one whose judgment is entitled to respect believes for one moment. At the same time, it does begin to look as though we had entered upon active construction without making that special preparation for the reception, housing, subsistence of the working force, which the very trying conditions at the Isthmus render necessary.
In a recent article we dwelt upon the necessity of regarding the construction of the canal, at least as far as its engineering features are concerned, as a oneman job; but the success of the engineer will be dependent, other things being equal, upon effective organization for insuring the complete sanitation of the Isthmus and the comfortable subsistence of the large body of men employed. It is gratifying to note that the War Department has intrusted to the Medical Department of the army the care of the health of the employes in the canal zone. It is too early yet to judge of the efficiency with which this department is carrying on its work; but we have ane earnest of what will be done at Panama, in the great success that has attended our efforts to stamp out yellow fever in the West Indies. When a modern system of drâinage and water supply has been built at Panama and Colon; when the swamps have been drained, and the mos squito pest brought under control, white labor, if it is careful to observe the rules of hygiene laid down by the Medical Department, will be able to live and work at Panama, with a rate of disease and mortality that will compare favorably with any other place in the tropics.
Second only in importance to sanitation is that of subsistence, and in this connection we notice that of subsistence, and in this connection we notice that
our esteemed contemporary, the Army and Navy Journal, makes the very sensible suggestion that the next logical step to turning over to the Medical Department of the army the matter of sanitation, would be to hand over to the Subsistence Department the equally important work of feeding and housing the large body of workingmen engaged at Panama. Our experience in the Philippines, where this department has been in the Philippines, where this department has been
very successful in taking care of large bodies of men who hitherto have never lived in any but a temperate zone, will be invaluable in caring for the veritable army of employes that will be gathered at Panama by the time the work is in full swing. By all means, let the army have charge of this work. It would be courting disaster to farm out the privilege of housing and feeding the employes to professional boardinghouse keepers, most of whom in all probability will have had no experience of tropical life, and will be ignorant as to the proper kind of food for the severe conditions of the climate. The Subsistence Department has succeeded in the Philippines in providing a ration which combines sufficient variety and nutriment to meet all the demands of the men and minimize grounds for complaint, and, according to our contemporary, the army ration used there is equal, and probably superior, to that of any other army in the world. Another consideration that indicates the necessity for army control of food and quarters is, that under such control the health of the employes and not the mere profit of the caterer will be the first consideration. With sanitation and subsistence in the hands of the With sanitation and subsistence in the hands of the
army, and the work of construction under the absoarmy, and the work of construction under the abso-
lute control of a chief engineer, the people of the United States may rest perfectly satisfied that the Panáma Canal will be built expeditiously, economically, and at a very small cost of life.

## THE FIRST AND LAST OF ITS TYPE

Several years ago, when the 16 -inch army gun, the most powerful weapon in the world, was in the initial stage of its construction, the Scientific American predicted that as it was the first, so it would be the last, of its type to be built. The prediction was made at the time when the then new smokeless powders were beginning to demonstrate their remarkable ballistic powers. At that time our guns were using brown powder, and they were built in lengths of not over 30 or 35 calibers; muzzle velocities were low, not exceeding 2,000 or 2,100 feet per second; and a gun of large caliber using a projectile of great weight was necessary, in order to insure penetration of the heaviest armor at what was then considered to be the extreme ranges at which the guns of a fortification would open on the enemy. At the time that its dimensions were decided upon, the 16 -inch gun was by far the most powerful weapon in existence, a distinction, indeed, which it carries at the present day. With the development of smokeless powders, and the corresponding increase in the length of the guns to enable the powder to exercise its full effect, the velocities rose at a truly astonishing rate; and as the energy of the projectile increases as the square of the velocity and only directly as the weight, it can be seen that the advantages of weight in gun and projectile became relatively less pronounced. Guns with a muzzle velocity of 2400,2600 , and 2800 feet per second were built in rapid succession by foreign gunmakers. Ultimately, guns of moderate caliber but of great length were produced, whose penetrating power was equal to, and even greater than, that of the huge and unwieldy guns of 16 and 17 -inch caliber which had been constructed by the British and the Italian governments. When the 16 -inch gun was fired under test at Sandy Hook, some two or three years ago, it developed a muzzle velocity of 2300 feet per second, and a muzzle energy of about 88,000 foottons. This rendered it, at once, the most powerful gun in existence, the Armstrong $161 / 4$-inch gun having an energy of only about 54,000 foot-tons. The great object aimed at in armor-piercing guns is penetration. If a 12 -inch gun can be built which will give sufficient velocity to its 850 -pound projectile to carry it through the heaviest ship's armor at from 3,000 to 5,000 feet range and explode the shell within the ship, it is sufficient. The present 40 -caliber 12 -inch gun of the navy has a muzzle velocity of 2800 footseconds and a muzzle energy of over 46,000 foot-tons. Vickers-Maxim build a 12 -inch 45 -caliber gun, with a muzzle velocity of 3,000 foot-seconds and a muzzle energy of 53,000 foot-tons. Its projectile is capable of penetrating 52 inches of wrought-iron plate at the muzzle, or 40 inches of mild steel, while at 3,000 yards range it will pass through 19.6 inches of hard steel. With a 12 -inch gun weighing only 57 tons, capable of doing such work as this, a 130 -ton, 16 -inch gun becomes superfluously heavy and cumbersome, to say nothing of its weight, cost, and slowness of fire. The 16 -inch gun will be mounted at Sandy Hook, and form part of the defenses there. Historically, it will ever be of interest as marking a turning point in the development of modern high-power ordnance.

THE TURBINE STEAMERS ON THE CANADIAN ROUTE. Naval designers and the manufacturers of marine engines are following with close observation the performance of the two turbine-driven steamships of the Allan Line, both of which are now running regularly in the service of the company. This is the first application of the new motive power to large ocean liners, and it is realized that upon the results obtained with these ships will depend, very largely, the future of turbine propulsion, at least for this type of service. The first voyage of the "Victorian" gave only rather indifferent results, although it was understood that the low speed was due largely to unfavorable weather and fog. In her later trips, however, this ship has shown excellent results, better than any achieved by earlier ships of this line using reciprocating engines.

The second vessel, the "Virginian," has done even better than the "Victorian," and is steadily reducing the record across the ocean, over the route which she follows. On a recent trip to Montreal, she left Moville at 2:45 P. M. on June 9, and arrived at Rimouski at 4:15 P. M. (local time) June 15, the total time of the passage being only six days, six hours, and thirty minutes. Allowing for a detention by fog of three hours and thirty minutes off Cape Race, the net time of the passage figures out as six days and three hours, and the average speed as 17.05 knots an hour. The advantage of this faster service is shown by the fact that the Montreal mail, which left Ireland twenty-six hours ahead of the "Virginian," on board the "Baltic" for New York, was distributed in Montreal nine hours later, than the mail carried by the "Virginian." On both new steamers the passengers and the officers of the ship have testified to the remarkable smoothness of the turbine, the absence of vibration reminding the latter of the smooth motion of a sailing ship.

## THE FUTURE OF THE GAS-PRODUCER ENGINE.

In explanation of the fact that gas-producer power plants have received less attention in America than abroad, Mr. S. S. Wyatt, in a paper read before the American Institution of Mining Engineers, offered the following causes: Lack of general knowledge of the subject, and a certain measure of prejudice; the novelty of the work; the inadaptability of the gas engine to certain classes of work; the comparative cheapness of fuel, rendering economy a less urgent question; and lastly, the fact that the smoke nuisance has not made itself so felt as to call for serious attention. The outhor, however, believes that we are within measurable distance of the time when the gas-producer locomotive, portable engine, and marine engine will be in general use. In the issue of the Scientific American Supplement of February 4, 1905, we gave illustrations of the application of the gas producer to the locomotive and to the marine engine. The arguments adduced in that article are indorsed in the paper above referred to. The advantages of the gas-producer locomotive would be that both trains and stations might be kept cleaner; that the locomotives, being cinderless, the danger of fire due to sparks would be eliminated, and insurance rates would be proportionately reduced. Mr. Wyatt estimates that the amount of fuel used for a given amount of work would be less than 50 per cent of that now required on steam locomotives, and that the amount of water used would be less than oneeighth. This would have the incidental advantage of saving the time now required in loading up with fuel and water, besides effecting a reduction in the number of fuel and water stations that would be required. The danger of boiler explosions would also be eliminated. In the portable engine similar advantages would accrue, particularly as regards the reduction of fire losses and the decrease in insurance rates. In the marine engine the gas-producer plant would confer equal, if not greater, advantages, particularly as to cleanliness, for the absence of smoke and cinders would make it possible to keep the ships cleaner, and the comfort of passengers would be proportionately, increased. Greater economy in fuel and water would mean a saving of time in replenishing bunkers and water tanks, and, what is even more important, there would be a considerable reduction of the bunker space with a proportionate increase in the cargo space, or of the accommodation for passengers, as the case might be. Moreover, the author of the paper argues that as no condensing machinery would be required, there would be a reduction in the engine-room floor space. To the above considerations we may add that for naval service, a successful marine gas-engine plant would offer many advantages. In the first place, from the point of view of strategy and tactics, the elimination of smokestacks and the telltale smoke would be a most valuable feature. Moreover, the lessened air resistance of ships (and this applies with particular force to fast passenger steamers) due to the absence of smokestacks would add not a little to the speed. The fuel economy of a well-designed gas-producer plant would enable a warship to steam further on a given supply of coal than she could do with steam boilers. The most important element in the problem is that of getting rid of the by-products, and delivering a gas to the engines that is of the requisite purity and cleanliness. If the highest grade of fuels were at all times available, the problem of providing a gas-producer engine for transportation purposes, that is for locomotives, portables engines, and marine engines, might be considered as pretty well solved. Unfortunately, the bulk of the fuel that would have to be used is of an inferior quality, unsuitable for gas-producer engine work. When someone shall have designed a plant that can furnish satisfactory gas to its engines, no matter what quality of coal is offered for its consumption, the gas-producer engine will become the great prime mover of the world.

A contrast between the price of coal gas for lighting and power purposes as compared with this country and Great Britain, and incidentally the benefit bestowed upon the community at large by municipal control of this necessity, is afforded by the recently published 1903-4 annual report of the Corporation of Widnes. The price of gas in this district is 33 cents and 29 cents per 1,000 cubic feet respectively. The latter price is charged for gas acquired for motive purposes. Although low prices prevail, the quality of the illuminant is not reduced, as the standard is controlled by the government. Yet notwithstanding the above low prices, a profit for the year of $\$ 3,000$ resulted. The total cost of manufacturing the gas was 22.2 cents par 1,000 cubic feet, so that if necessary the price to the consumer can still be further reduced to an appreciable degree. In London the gas can be obtained over a great area for the price of 50 cents per 1,000 cubic feet, although the supply is carried out by a private company. The reason of this low tariff is that the dividends payable to the shareholders are limited by the government, and the operations of the company are rigorously controlled by the authorities.

## THE HEAVENS IN AUGUST.

The chief astronomical events of this month are two eclipses, one of the sun and one of the moon, both of which are visible in the United States.
The lunar eclipse comes first, on the night of the 14th. It is partial, only about one-third of the moon's diameter being immersed in the shadow. The moon enters the penumbra at 8.9 P. M. eastern standard time; that is, at this moment an observer stationed at the proper part of the moon would first see the sun begin to disappear behind the earth. But it will not be till some time later that the darkening of the moon's south ern limb will be apparent to the eye. At 9.39 P . M. the moon enters the earth's shadow proper, from which all direct sunlight is excluded, and she continues to press further into it for an hour, and then gradually moves out of it again, leaving it altogether at 11.43 , and getting clear of the penumbra at 1.12 A. M.

This eclipse is therefore very conveniently observable in one part of the world, but little information of scientific value can be anticipated from it, thanks to the fact that the earth's atmosphere prevents the edge of its shadow from being sharply defined, so that it is impossible to tell with any degree of accuracy when it reaches any given spot on the moon.
Far more important is the solar eclipse on the 30th, which is one of the most interesting ones for many years. It is a total eclipse, of pretty long duration, and the line of central eclipse passes through several regions which are conveniently accessible for observing parties.
The eclipse is total at sunrise in Manitoba, just north of the United States boundary. Thence the shadow sweeps eastward across Canada, north of the settled districts, and comes out on the Labrador coast. It turns somewhat to the southward as it crosses the Atlantic, and reaches land again on the Spanish coast near Cape Finisterre. Crossing Spain, the shadow traverses the Mediterranean, passes near Tunis, enters the African desert, passes over the Nile near Assouan, and finally bids farewell to the earth somewhere in Arabia, less than three hours after it began in Canada. The duration of the total phase is greatest in Spain, where it is about $33 / 4$ minutes, while it is about $21 / 2$ minutes in Labrador, and a little less than three minutes in Egypt.
Several parties of astronomers are going to Labrador, and many more to stations in Spain and Algeria, so that a goodly store of observations may be expected if only the we ther behaves as well as it did in 1900 , when the track of the shadow on the European side of the ocean was almost the same as at present.
Weather permitting, a great deal of spectroscopic and other information about the sun's surraundings will undoubtedly be obtained. Perhaps the most interesting observations from an amateur's standpoint are those that will be made in the search for a possible small planet nearer the sun than Mercury, by photographing the whole region of the sky near the ectipsed sun. This has been done at several recent eclipses, without result, only known stars being found on the plates; but the brilliant success of photographic methods in finding new satellites makes one feel that the search for an intra-Mercurial planet ought to be continued a little longer.
the heavens.
The finest constellations visible at this season lie near the Milky Way. We may begin with Lyra, whose brightest star, Vega, is almost overhead at 9 o'clock on an August evening. This splendid white star disputes with Arcturus and Capella the claim to be the brightest in the northern hemisphere of the sky. In fact, the order in which different observers would rank these three stars is different, not because the stars themselves vary in brightness, but because they are of very different colors, and some people have eyes more sensitive to one color than to another. When we come to consider the distances of the three stars, and their actual brightness, it appears that Vega and Capella, which are almost equally distant from us, are each about one hundred times as bright as the sun, while Arcturus, which is much more remote, is ten times as bright as either of the two.
Vega serves as a pointer to several interesting objects. Close to it on the northeast is a faint star, which can be seen to be double with the naked eye by a few people with keen eyesight, or by ordinary mortals with an opera-glass. Each of the two components is a fine telescopic double. Southeast of Vega, at a little greater distance, is a pair of third-magnitude stars, of which the western one is the remarkable variable Beta Lyræ, which changes more than a magnitude in brightness with great regularity in a period of about twelve days. The line of these two stars, carried eastward, points to Beta Cygni, a very fine double star in the Milky Way, well seen with a small telescope.
The rest of Cygnus lies to the northward, and contains several bright stars. The Milky Way in this neighborhood shows singular differences in brightness, with a number of dark patches, some of which look
almost like clouds obscuring it. They are probably really gaps between the "star clouds," which send us most of the diffused light of this region, though they consist of very faint stars.
South of Cygnus is Aquila, with the bright star Altair lying between two fainter ones. Below this again is Sagittarius, with the little Milk Dipper, and farther west is Scorpio, now seen at its best.
Arcturus is the most conspicuous object in the western sky. The constellations Corona and Hercules lie between it and Lyra, Ophiucus and Serpens are between it and Scorpio, and Libra and Virgo are below it, the latter setting. Mars, which is in Libra, is the most prominent object in the southwest, and Saturn balances it in a similar situation in the southeast.
The great square of Pegasus is about an hour high in the east. Perseus and Andromeda are on the horizon north of it, and Cassiopeia above them. Draco and Ursa Minor are above the pole, and Ursa Major is to the left of it.

## the planets

Mercury is evening star until the 29th, when he becomes a morning star. He is best visible during the first week of the month, when he sets about an hour later than the sun, and can be seen in the twilight, almost exactly due west.

Venus is morning star in Gemini, and is unusually prominent, rising about 2 A. M. and being still very bright, though past her maximum. Mars is in Libra, and sets about 11 P . M. in the middle of the month. On the 26 th he is in quadrature with the sun, and comes to the meridian at 6 P . M.
Jupiter is morning star in Taurus, almost exactly opposite to Mars, and rises at about the time that the latter sets. He is in quadrature on the 28 th, but being west of the sun, he crosses the meridian six hours before him, instead of six hours after, as Mars does.
Saturn is in opposition on the 23d, and is visible all night. He is in Aquarius still pretty far south, but better placed for observation than he has been for several years. His rings are seen more nearly edgewise than has been the case for some time, and the orbits of his satellites are also apparently more elongated.
Titan, the brightest of the satellites, which can be seen with a small telescope, is west of the planet on the 3 d , north on the 7 th, east on the 11 th, and so on, his period being 16 days. When he is north or south of the planet, his apparent distance is about equal to the diameter of the rings; but when east or west of it, it is about five times as great.
Uranus is in Sagittarius, and comes to the meridian at $8: 30 \mathrm{P} . \mathrm{M}$. in the middle of the month. Neptune is in Gemini, and crosses the meridian about 3 A . M.

## the moon.

First quarter occurs at 5 P . M. on the 7 th, full moon at $10 \mathrm{P} . \mathrm{M}$. on the 14 th (during the eclipse), last quarter at 1 A . M . 'on the 23 d , and new moon at 8 A . M. on the 30 th-again during an eclipse. The moon is nearest us on the 4th, farthest off on the 20th, and nearest once more on September 1. She is in conjunction with Mercury on the 2d, Mars on the 8th, Saturn on the 15 th, Jupiter on the 23 d , Venus on the 27 th, and Mercury again on the 30 th.
Cambridge, July 10, 1905.

## a NEW KIND OF FIREPROOF THEATER.

Mr. Mausshardt, a German inventor, has recently made an attempt, successful it seems, to permit spectators to escape quickly from a theater in the case of fire. In fact, his project aims at emptying the theater within thirty seconds from pit to gallery, no matter whether it contains twenty or two thousand visitors.
When it is considered that the problem of moving bodily whole houses has been solved both in America and more recently in Europe, the task of conveying irito the open the whole pit, including all its occupants, should not seem to be impracticable. In fact, Mr. Mausshardt places the whole pit, including the boxes situated on the same floor, and the partition walls of the lateral corridors, on rollers running over rails extending for a suitable distance in front of the theater. In the case of fire, the whole pit, including any rooms on the same floor, is moved into the open quite independently of any individual $\cdot$ attempts to gain the open air through the corridors.
As regards the other part of the problem, namely, to convey the spectators in the balconies in the same short interval of time into the open, and to put them down on the street, this has been ingeniously connected with the first part of the rescuing problem. Each balcony has a number of window doors opening toward the street. Although closed during the performance, these doors are opened in case of emergency, either automatically all at a time or else singly by hand in case of a breakdown of the mechanism. Any one of these doors opens on a gallery, the galleries of each balcony being suspended by hinges from heavy outriggers, which act as powerful single-armed levers and which turn round pivots beneath the first balcony. When lowered, all the outriggers and the three sus-
pended galleries will be moved sidewise, coming down outwardly on the street. The outriggers are fixed by their upper ends to wire ropes running over a pulley on the roof through the lateral walls into the ground floor, where they are wound up on rollers, fixed rigidly to the side walls. As the outriggers descend, a trans verse shaft is actuated through a conical toothed gearing, and the racks fitted beneath the pit, and along with these the pit itself, which runs on rails, are set rolling. The exceedingly simple gearing is so calculated that at the very moment the outrigger galleries touch the street, the whole pit has been removed from the theater building. The entire apparatus has been so designed as to be operated from an inclosed cabin, after a signal has been received from the fire station of the theater.
There is, however, the possibility of some persons being left in the balconies after the rescuing has been performed. Now, these will be able to escape over stationary running galleries fitted outside to the building, the more easily as by far the majority of spectators have doubtless left the theater, so that there is no possibility of a crowd.
A model theater has been constructed by the inventor according to the plans of the Karlsruhe Court Theater, and a real theater on this ingenious system may soon be constructed.

## SCIENCE NOTES.

One century has elapsed since Theodore de Saussure published his remarkable investigations relating to the nutrition of plants and to the influences upon plants of certain well-known physical forces. Although preceded by the publications of Duhamel, Hales, Ingenhouss, and Senebier, as well as by those in a somewhat different line, by Konrad Sprengel and others, we may look upon the work of De Saussure as a wonderful production for his time and as strikingly indicative of the status of plant physiological problems a century ago. His paper may be regarded in a sense as the original charter of plant physiology.
Prof. Albert M. Reese, of the Syracuse University, has gone to Florida, under the auspices of the Smithsonian Institution, to collect eggs of the alligator with which to work out its embryology; subsequently he will spend some time at the biological laboratory of the Carnegie Institution of the Dry Tortugas, developing his find of this crocodilian species. The alligator cannot long escape practical extermination. Already they are becoming scarce and the price of hides has gone up enormously in the last few years. The alligator is characteristic of the austroriparian region, ranging from North Carolina to the Rio Grande of Texas. It has never been seen in the Mississippi River north of Rodney, Miss., which is about latitude 32. Twenty-five years ago this reptile existed in great abundance in its range, but as alligator leather became fashionable about that time the demand thus created has reduced the supply by at least 98 per cent. It is said that a person may travel now from Jacksonville to Miami, Fla., without seeing a single alligator It is estimated that $2,500,000$ alligators were killed in Florida from 1880 to 1894.
In no country in the world do insects impose a heavier tax on farm products than in the United States The losses resulting from the depredations of insects on all the plant products of the soil, both in their growing and in their stored state, together with those on live stock, exceed the entire expenditures of the national government, including the pension roll and the maintenance of the army and the navy. Enormous as is the total value of all farm products in this country, it would be very much greater were it not for the work of these injurious insects. The statistics of agricultural products for the year 1889, of the Twelfth Census, and for subsequent years, gathered by the Bureau of Statistics of this department, indicate an annual value of all the products of the farm of about $\$ 5,000,000,000$. To one familiar with the work of the important insect pests of the different agricultural products entering into this total it is comparatively easy to approximate the probable shrinkage due to insects.: The detailed consideration of such shrinkages which follow indicates that they will rarely fall below 10 per cent, and in years of excessive insect damage may amount to 50 per cent or even more of the important staple products of the farm. An annual shrinkage of 10 per cent is a low estimate, which is more often exceeded than fallen below, and indicates, at current farm prices, a money loss of $\$ 500,000,000$ the minimum yearly tax which insects lay on the products of the farm. This total comprises, however, only losses suffered by the growing and maturing crops and annually by live stock, and does not include two very considerable and legitimate items, namely, the loss occasioned by insect pests to farm products, chiefly cereals and forage crops, in storage, and to natural forests and forest products. As shown in the consideration of these two sources of loss presented below, at least $\$ 100,000,000$ must be assigned to each, making a total annual tax chargeable to insects of $\$ 700,000,000$.

## TELEPHONES ON EVERY STREET CORNER

by aeorae j. jones
The public pay station has proved one of the most profitable features of the telephone business, some of these installations in the more populous portions of the larger cities having done a business of $\$ 250$ per month, which explains their very rapid introduction into every available place. It is hardly possible in the busier portions of a large city to get out of range of one of these public station signs; and while the instruments are generously scattered through the resi dential portions of the cities, they are not so conveni ent as the telephone people would like to make them
It has been argued that were it possible to have these instruments more accessible in the residence portion of the cities, it would probably in a great measure break up the habit resorted to by some per sons of making use of the instruments installed in the houses of their neighbors, which is not only an annoyance to the subscribers, but a loss of revenue to the company. With the view of remedying these evils, many suggestions have been made and investigated. The most promising scheme is one which has been tried in the city of Bridge port, Conn., and is about to be extended to a number of larger cities. This provides for telephones on every street corner
Views of these novel instruments are given herewith, and it will be seen that they are quite inconspicuous. They resemble the police and fire alarm boxes which are to be seen on the streets of many cities. These stations are all keyless, and upon opening the door, there will be found a standard installation of the gravity type. A directory is found hanging on the door, and the desired connection is brought about in the same manner as is customary with other in struments; the conversation having been finished and the receiver hung up, the door, being also of the gravity type, closes itself.
The boxes containing these equipments are sometimes mounted on pillars, and again merely secured to telegraph and telephone poles or even trees. In some cases the box will jointly oc cupy the same pillar with a mail box or firealarm outfit.
Where street privileges for the new telephone boxes have been declined by the municipal authorities, on the ground that there were already too many of these devices on the street, the objection has been met with the proposition to make these stations still more of the nature of public utilities by placing them at the service of the public for all municipal and emergency uses. It is possible to make use of these instruments instead of police and fire calls. An extremely convenient means of calling an ambulance or summoning police help is offered to any one, the company agreeing to transmit all messages of this character without requiring the customary formality of depositing the coin. These instruments are being introduced by Gray Telephone Pay Station, Hartford.

A novel process of electric welding, developed by the Accumulatorenfabrik, Ltd., of Berlin, is based in ts working on the heat evolved by an electric arc formed between the working piece and a carbon electrode at the place the weld s to be made. The carbon is fixed to the holder, and is readily shifted to any place in the neighborhood of the weld. An inonven. ience with electric weldnr processes is the current hocks un. voidable in operation, but remediable perhaps successfully by using a relativey small current generator in connection with a storage battery con-
nected in parallel. Even in case a dynamo serving at the same time for other purposes is used, this storage battery will prove efficient in avoiding any heavy fluctuations in pressure. The great amount of heat supplied to the working piece by the electric arc causes this as well as the metal to be welded to melt at the point of contact, thus insuring a rather intimate junc-

one of the boxes open.


TELEPHONE POST FOR CITY STREET.
ture of the two. The process is continued under a continuous supply of welding material, until the joint or the aperture to be welded is filled in entirely. Owing to the heat being partly carried away by the metal, there is no risk of the weld becoming superheated. The size and intensity of the arc are readily controlled, both being reduced gradually after the weld is completed, so that the material is allowed to cool down slowly, avoiding any stress. It is claimed for this process of electric welding that it affords a cheap and simple means of causing any flaws and other defects of castings, as well as cracks, to disappear. In connection with large heavy castings it affords the possibility rapidly and cheaply to repair smaller damages which

derfully accurate calculations and observations f their inventor; but the dial, gnomons, quadrants, tc., still remain of great interest to astronomers, and the Observatory at Jeypore is one of the places which is always visited by tourists.

## England the Pioneer of the Iron Bridge

England is considered the pioneer country of the iron bridge, the first one, consisting of a nearly semicircular cast-iron arch, having been built in 1776-79. In 1786, Thomas Paine, the well-known author, designed and made a model of a segmental arch. This model was set up at Franklin's house in Philadelphia, whence it was taken to the State House, and, eventually, exhibited at the Academy of Sciences, Paris. Paine had an experiment al cast-iron bridge built in England $i$ n 1790, and Rowland Burdon, in 1793 to 1796, built the bridgeat Wearmouth of 240 feet lear span, after this model, which formed the basis of many castiron bridges built thereafter, and beame the prototype of the modern steel arch. Paine's device was also the basis of the design of the Market Street Bridge and the first Fairmount Bridge, in Philadelphia, both being wooden arches. The former was completed in 1800 , and the latter in 1812.

THE EVOLUTION OF THE HORSE
At the American Museum of Natural History, Prof. Henry Fairfield Osborn recently gave six lectures under the auspices of the Trustees of Columbia University, entitled "The Jesup Lectures on the Evolution of the Horse." The lectures were illustrated, and covered first the recent and past researches of Prof. Osborn and his assistants (especially Mr. J. W. Gidley) and of other investigators on the fossil horses of America and Europe; second, the mass of writings by American and European zoologists upon the origin and evolution, relationships, structure, and habits of the breeds of domesticated and wild horses and of their near relatives, the asses and zebras. The following is an abstract of the lectures covering the first series of topics mentioned: The various races of the horse family furnish a beautiful example of adaptation, or the adjustment of the organism to its surroundings. In every animal of to-day the remnants of adaptations belonging to the remote past are mingled with adaptations to the present, and many characters of the domestic horse may be regarded as inherited adaptations of remote antiquity. Thus the habit of carrying the head high is a reminder of the time when the wild stallion at the head of the herd had to be always on the watch for foes; the sudden shying is an instinctive memory of the days when a quick jump to one side might save a horse from the sudden spring of a beast of prey; while bucking is a device for shaking an enemy off the back. Again the usefulness of the horse for cavalry exercises depends upon his having inherited an instinct for acting in concert with his fellows
The several parts and habits of a horse are also adjusted to each other, and these natural adjustments were what first made the horse valuable to man. Thus the horse is a quadruped, seeking safety and food by its speed and traveling power; it is also a "soliped," with stilt-like legs, walking on the tips of its sing'le toes; and being a grazer and browser, its neck must be long enough to bring the lips to the ground. As a traveler it has acquired varied limb action and gaits, and also varied experiences, which have served to in crease its resourcefulness and intelligence. Not being defended by horns or tusks, it uses its hoofs colle tively as a weapon, which is particularly powerful and effective, the young being frequently defended from wolves by a ring of desperate hoofs. Since the chief enemies of the horse are the larger carnivores, it has developed quickness of sense and movement, and the young must be able to run with the herd at birth It is true that the horse is a complex "ma chine"; but it is more. No mere machine is self perpetuating, no mane become machine become perfected through long
One of our pho tographs repre sents a beautiful ly mounted group consisting of the skeleton of horse rearing and of a man, recent y placed on ex hibition in the American Mu seum. The pic sure shows that the bones of man and horse are strictly compara ble, but man ha retained more of the primitive or generalized features common to all mammals, the horse being far more specialized in the structure of its limbs and of its grinding teeth. The special structure and motions of the limbs are elucidated by the accompanying photographs of rearing and leaping horses. Figures were used by Prof. Osborn showing sections of the limbs, the various types of joints, the action of the muscles and tendons, of the ligaments and of the patella or knee cap. The several parts of the limb in their capacity of levers must also be considered. The rate of oscillation of the upper arm and thigh bones when acting like a pendulum has been increased by the shortening of these bones, and they have become drawn up among the muscles. For purposes of locomotion, the movements of the horse's


Skeletons of the Modern Horse (Above) and of the Small Four-Toed Horse (Below), Showing the Superiority in Length of Limb of Modern Horse.

## the evolution of the horse.

so as to get at the grass underneath), and especially many vestiges in the skeleton. Among these may be mentioned the vestigial bony elements in the pelvis and shoulder girdle, in the wrist and ankle joints, and the famous "splint" bones back of the cannon bone, which are the vestiges of inner and outer toes. Sometimes organs which have entirely disappeared from the normal individual occur sporadically as "reversions." Thus the splints mentioned above very rarely appear as well-developed side toes, the foot of such a "freak" horse closely resembling that of one of the ancestral three-toed horses of the Tertiary period.

Many of the fossil skeletons now regarded as representing ancient equines were not recognized as such by their discoverers, on account of their very obvious dif-
ished some time ago in these columns represent the
ferences from modern horses. For example, the great French naturalist Cuvier (1783-1844) who described the threetoed Anchitherium, recognized its horselike characters, but as he did not believe in the evolution or change of species, he naturally did not regard it as an ancestral equine. Other French naturalists de scribed a number of other species with similar results In England the great comparative anatomist Sir Richard Owen, had the good fortune in 1839, 1842, 1857, to discover in rocks of Eocene age the fossil remains of what is now regarded as one of the most ancient and primitive horses known (the term horse being used here in a very broad sense), namely, the little fourtoed Hyracotherium. Darwin's great work on the "Origin of Species" (1859) set naturalists searching for "missing links" and ancestral forms, and so the French naturalist Gaudry in 1865 fully recognized the equine affinity of the three-toed fossil genus Hipparion of Greece and the ancestral character of the horses of the Upper Eocene period. Finally, Huxley predicted in 1870 that the horse and all other hoofed mammals would be traced back ultimately to a form with five toes on each foot, and both Kowelevsky and our compatriot Cope prophesied that this generalized form would have bunodont, or low-crowned, grinding teeth. Finally, the discoveries of Leidy, Cope, and Marsh (of Yale) in this country first made clear in a general way the successive steps of equine evolution, and furnished Darwin and Huxley with a celebrated instance of evolution as indicated by fossil history.

Evolutional changes involve either, (1) the remodeling of old parts, as in the evolution of the grinding teeth; (2) the re duction of certain parts and enlargement of others, as in the loss of inner and outer toes and the great enlargement of the middle toe; (3) the coalescence or fusion of parts, as in the case of certain wrist bones
so as to bring the point of application of the force as near as possible to the midline of the body.
Most of the physical and mental traits of the horse are entirely useful. Usually each habit, each structure, must, as it were, pay its way, to give a definite return for the blood and food it receives from the organism as a whole. However, in human society there are individuals and institutions that have outgrown their usefulness, and although reduced in importance and destined to disappear ultimately, they still manage to "hang on." So too the horse retains traces of many former habits (e. g., a trace of the habit of brushing away the snow with its fore foot, and the fusion of the two forearm bones (ulna and radius) ; (4) the addition of new parts, as for example the great increase in the total number of cusps in the premolar grinding teeth. Thus "evolution" does not imply a uniform advance of all organs. If some develop, others degenerate. In the feet, the outer and inner toes (like Peter) were "robbed to pay Paul" (the main middle toe). Sometimes we seem to have evidence that evolution has taken place in a definite or determinate direction, as if, for example, the final complex pattern of the horse's grinding teeth were the goal toward which the trend of evolution had been aimed from the first. In fact, as shown by a series of photographs, all the elements of the complex later teeth are present as it were "in embryo," in .the crown of the mo lars of the ances tral Protorohippus, the grinding eeth being low crowned and their rowns with low ubercules nstead of the elaborately folded crests of later types. Hence, all the earliest hoofed animals retain this condition more or less fully and among early horses the famous Protorohippus, the virtual founder of the orse dynasty makes the near est approach to it. A number of illustrations pubskeleton the foot structure teeth and probable appearance in the flesh of this fascinating little creature which was actually smaller than the head of one of its modern representatives. The Protorohippus had already lost by reduction the inner or first, and the outer or fifth toe in the hind foot, and most of the inner or first toe in the fore foot. This process of reduction was demonstrated to have gone on until in the final stage of evolution but one great toe, the middle of each foot, remained. The reason for this change is quite apparent. The horse family has made speed the keynote of its evolution; it had elected, as it were, to run instead of to hide, to seek for food over a wide area. One factor of speed is length of limb;
wherefore the "horse" rose up on its toes, and the toes began to elongate. The first effect of this was to lift the shorter toes, Nos. I and V, clear of the ground, and being no longer useful in supporting weight, they speedily dwindled and vanished. Meanwhile the middle digit had to bear more and more weight, and hence it grew larger. The process of getting up on tip-toes being continued, Nos. II and IV followed Nos. I and V, until finally only No. III, the middle toe, remained, with vestiges of I and V .

## A Fireproof Theater of Armored Concrete.

A well-known German firm is building a miniature fireproof theater of armored concrete, which is specially intended for fire tests, and is to become a model theater where any safety devices which have so far been suggested against the danger of fire, as well as any preventions that might be proposed in future, will be demonstrated.

The theater is to be fitted with a stage of 7.5 meters breadth and 6 meters depth, separated by an iron curtain from an amphithester 5.5 meters in breadth and 7 meters in depth. The stage consists of the resting place, the rolling floor, a working gallery to the right and another to the left, and an adjusting bridge. The latter parts are of iron, and are suspended by ties of the same material from the ceiling, which consists of massive Monier concrete. The amphitheater consists of a simple gallery with lateral issuing staircases leading into the open. Special rain attachments are to be provided.

In connection with the experiments contemplated, the outlets through which smoke of a fire may escape will be studied with especial care. Any combustible decorations exposed will be fitted as in actual operation. It is thought possible by these experiments to find out devices for rendering a stage fire ineffective to the amphitheater. if the gases are led away promptly and safely from the stage into the open air, and if sprinkling proves an efficient fire-extinguishing agent, an amphitheater of fireproof construction might be safe against any danger of fire. According to a report in Der Gesundheits-Ingenieur, it is intended to make fire tests before filled amphitheaters.

Accident to the Montgomory Aeroplane.
On July 18, in the presence of 2,000 persons who had gathered at the Santa Clara College grounds to see the flight of Prof. John J. Montgomery's aeroplane, the "Santa Clara," the machine collapsed when at the height of nearly half a mile and Aeronaut Daniel Maloney was hurled to the ground. The flying machine was shivered into fragments, and Maloney, who was picked up with a fractured skull, lived only an hour.

A balloon raised the aeroplane to a considerable height. When the fabric was but a speck in the sky, balloon and aeroplane slowly parted company. To the left the aeroplane slowly circled, cutting pretty figures. Maloney seemed to have perfect control of the machine. Then, suddenly, the device refused to obey the guiding hand of the aeronaut, and with an abrupt circle it plunged quickly to the left and nearly overturned. Maloney could be seen struggling with the guide wires, but it was apparent that his efforts were futile. The machine fell swiftly earthward. One of the wings collapsed as the aeroplane gained added impetus and the mate snapped from its support and fluttered limp in the air. The front wings still remained outspread and checked to a slight degree the swiftness of the descent, but down with fatal impetus the aeroplane came through 2,000 feet of space.
The disaster was probably due to the guy rope catching one of the wings of the aeroplane as it was liberated. The machine has been fully described in these columns.

## The Current Supplement.

The current Supplement, No. 1543, opens with a most thorough article on motor omnibuses in London, by the English correspondent of the Scientific American. The article excellently shows how automobile omnibuses are competing with English tramways and gives valuable data. The Cerebotani facsimile telegraph is described by Emile Guarini. Mr. Brysson Cunningham presents a most instructive article on concrete, giving much practical information. "An Island Prison on the Forth," is the title of an article which describes the picturesque Bass. The English correspondent of the Scientific American writes on a torsionmeter for recording the horse-power of steam turbines. Dr. Alfred Gradenwitz contributes a brief but interesting article on the use of bronze castings for naval purposes. Many years ago Prof. Henry Draper prepared a monograph on the construction of a silver glass telescope $151 / 2$ inches in diameter in aperture and its use in celestial photography. That monograph to this day is by far the best treatise of its kind ever written on the construction of a reflecting telescope. The Editor of the Supplement has deemed it advisable to republish this valuable monograph and accordingly the first installment will be found in the current issue.

## A NEW INTERRUPTER.

Experimenting with different magnetic and electric interrupters, the idea occurred to me that it might be possible to construct an interrupter whose chief functions would be based upon the expansion and contraction of mercury, when heated, by passing a current through it.
After many fruitless experiments I succeeded in making such an interrupter, and the definite form that proved most satisfactory is explained in the following lines:
A barometric glass tube of about 15 centimeters length, with a central opening of 3 millimeters, is heated in an oxy-hydrogen flame and drawn into the shape, as shown in the accompanying drawing. This is by no means easy, as the tube, $C$, which represents the main part of the interrupter, must be so attenuated as to leave a capillary bore within, its minute diameter not surpassing $1 / 8$ of a millimeter.
Heat the middle part of the tube over the flame by constantly rolling the ends between three fingers of each hand, till it is red hot and soft. Take the tube quickly out of the flame, and draw it straight out, till it is thin enough; then bend it into the right shape, and let it cool slowly. Of course, these manipulations have to be done quickly, because the glass will not remain soft very long in the open air, and it is nearly impossible to draw the capillary tube when the flame touches it. The tube has to be filled then with chemitouches it. The tube has to be filled then with chemithe end of the open column, $A$, in a receptacle containing the quicksilver. By drawing the air out of $B$, the mercury will quickly mount in $A$, then pass through $C$, and rise up in $B$. It is well to only half fill both columns. The apparatus will generally work

satisfactorily, when the whole arrangement can be placed in any desired position without the mercury flowing out of it. This is a sign that the capillary tube, $C$, is sufficiently attenuated.
Two thin platinum wires are introduced into $A$ and $B$ till they dip in the mercury. The apparatus is put into a vessel containing water, which serves to constantly cool $C$, which part would soon break in the open air. Connect the two wires with two small storage batteries, and the interrupter will start instantly. In the middle of $C$ there will be a bright bluish-green spark, and a high-pitched tone will emanate from the interrupter, indicating that the interruptions are of high frequency.
I found that this interrupter works most satisfactorily with 4 to 6 volts; it will consume, when made according to directions, from $1 / 4$ to $1 / 2$ ampere, and run as long as desired. By making the part, $C$, of a larger cross-section, the voltage may be higher and more current will be absorbed, but the interruptions will be very unsteady and irregular, and will very often give out entirely.
The instrument, I believe, cannot be used with high tension currents, as it is too delicate, but it will work satisfactorily in connection with small induction coils, for instance, although a condenser will be required.
The explanation as to how this interrupter works is as follows:
The instant the current is closed, the mercury at the smallest cross-section in $C$ will become so heated that it commences to boil, and the force of the resulting bubbles, falling against each other, will be sufficient to make a momentary rupture in the thin mercury column. There will be a little shock, and the expanding quicksilver will rise in $A$ and $B$. Of course, a vacuum will be created at the place where the rupture occurred; and as the tube is immersed in water, the mercury will stop boiling; it cools instantly, then contracts, and the atmospheric pressure, combined with the weight of the quicksilver columns in $A$ and $B$, will help to bring the metal in contact again, after which the same play commences as described.

The Charcot Expedition.
An interesting lecture on Antarctic exploration was recently delivered before the British Royal Geographical Society by Dr. Jean Charcot. This explorer has only recently returned from an expedition which was organized and primarily financed by himself, and the lecturer related the results of his researches. Dr. Charcot limited his expedition to the survey of the northwest coast of the Palmer Archipelago (Hoseason, Liege, Brabant, and the Antwerp Islands); the exploration of the southwest entrance to the Gerlache Strait and of Graham Land, with a view to elucidating the Bismarck Strait, and to follow the coast as far as Alexander I. Land, so as to substantiate and further the labors of the Gerlache and Nordenskjold expeditions.

His vessel, the "Français,". was of only 245 tons. The staff consisted of six unpaid officers and a crew of fourteen, all French except one Italian, an Alpine guide. Dr. Charcot himself was captain, doctor, and in charge of the bacteriological studies. The expedition left Buenos Ayres on December 23, 1903, reached Smith Island (South Shetlands) on February 1, 1904, and thence went on to Low Island. Coasting the northwest side of the Palmer Archipelago, they entered Briscoe Bay, and afterward stayed eleven days in Flanders Bay. Then, after erecting a cairn on Winche Island (this cairn was missed by the Argentine relief expedition, which therefore believed and reported that the "Français" and her crew were lost), they sailed on and reached Pitt Island on February 26, but were compelled by ice to return to Wandel Island, where they wintered. The ship was protected from ice brought in by'the northeast gales, with cables across the mouth of the narrow haven. They erected a portable house, excavated storehouses, and set up shelters and instruments for magnetic observation, observation with quadrant and sextant, and so forth. The temperature varied much and suddenly; the lowest was -30.4 deg. F., but a rise from -22 deg . F. to 26.6 deg . $F$. in a few hours was not uncommon, and was always followed by violent gales from the northeast, which broke up the ice between Wandel and Hovgaard islands, and so prevented any move being made, in spite of many efforts. In December a channel was made by means of melinite and saws and picks, and the "Français" returned to Winche Island. Early in January they came in sight of the Briscoe Islands, and on January 11 saw Alexander I. Land rising very high on the southeast. The voyage was continued in great difficulty and danger in the hope of finding means to reach the land, on which several peaks hitherto unknown had already been descried. On January 14 the "Français" struck a submerged rock, and received damage which necessitated pumping incessantly all day and night, and this was maintained for wecks until the ship so far recovered as to be safe with only fifteen hours' pumping, in which condition she ultimately returned to Buenos Ayres. The new colast along which she was sailing was surveyed, drawn, and named after President Loubet, and the "Français" turned north again past the Briscoe Islands, the ex. pedition completing its survey as it went, and finally reached Puerto Madryn on March 4.

Another Device for Preventing Seasickness. An ingenious self-leveling sea bunk for vessels, the object of which is to overcome the discomfort to the passenger of mal-de-mer, has been devised by a London dentist. It has now been in successful operation upon one of the mail-boats plying across the English Channel: The device comprises a swinging cot with four cords passing from the corners to electric brakes, which automatically check any attempt of the cot to depart from its position. While the cot remains level, the cords are free to pass on and off the pulleys on the brakes. The slightest loss of horizontality of the cot causes mercury in four tubes to fall in some of them and rise in others, and so complete the electric current to the particular brake required to be put in operation to check the further loss of horizontality. The loss of level from the variation of the position taken by the passenger is automatically compensated; water being practically the same specific gravity as the human body, a heavy man will press more water to the foot of a specially-designed water bed than a light weight, as also from side to side.

## The Dangers of Cheap Leather.

The danger attending the use and wearing of adulterated leather is not perhaps fully realized. A large amount of the cheap leather is weighted with glucose and barium, especially the latter, so that when the weight test is applied, such adulterated leather may pass as first-quality material. Leather so treated, how ever, has the peculiar quality of absorbing moisture freely and retaining it to an extreme degree. The result is that a boot made of this chemically-treated material is in actuality never dry. Even in the driest weather the perspiration of the feet is sufficient to render the footwear dangerous, as such natural moisture acts upon the inner sole and collects there.

## (1) orxempondente.

## Electrically-Propelled Gyroscope itor of the Deientific American:

To the Editor of the Deientific American:
In your number of July 15 , page 50, you speak of electrically-propelled gyroscopes as being quite new. The late Mr. George M. Hopkins had an electrically propelled gyroscope fifteen to twenty years ago. His work upon the gyroscope is described in the Encyclopædia Britannica, ninth edition, under gyroscope. The first edition of "Experimental Science" has the cuts and description of the electrically-propelled gyroscope, which I have seen operated many times. When the writer was president of the Department of Physics, writer was president of the Department of Physics,
Brooklyn Institute, Mr. Hopkins dembnstrated his Brooklyn Institute, Mr. Hopkins dembnstrated his
numerous gyroscopes before the department. A short time afterward the Institute building was damaged by fire, and these valuable instruments were totally destroyed. It was a great loss.
It is due to the memory of this most skillful experimenter that his credit in this matter should be maintained. W. C. Peckham.
Stamford, N. Y., July 14, 1905.

## The Rolling Motion of a Wheel.

To the Editor of the Scientific American:
I was much interested in reading the article "The Motion of a Rolling Wheel," by G. F. Starbuck, in the June 24 number of the Sciextifio American.

A very simple way to understand the motion of a rolling wheel is as follows: Motion of a body is relative and can only be judged by comparison with another body. In the case of a rolling wheel there are two distinct motions, the rotary motion of the wheel about its axis, and the horizontal motion of the wheel as a whole.
To understand it clearly lose sight for a moment of the idea that the rail is stationary and the wheel mov ing, as we only consider the rail stationary by comparison with surrounding objects, and imagine the wheel as revolving in space and the rail (or ground) traveling in a straight line at the same speed as a traveling in a straight line at the same speed as a
point on the rim of the wheel. A point on the rail point on the rim of the wheel. A point on the rail
touches the point on the rim of the wheel and for that instant there is no motion as regards these two points for they are both traveling at the same speed. Halifax, N. S., July 1, $1905 . \quad$ E. G. Stayner.

To the Editor of the Scientific American :
Wireless telegraphy on trains would act as a preventive of accidents in a great many cases. It could be used as an extra precaution in addition to the block system. On single-track roads, in case a train had distregarded its meeting point, or orders, and had gotten by the last telegraph office, the dispatcher could catch it with the wireless. Railroad officials, by having a wireless set in their private cars, could keep in touch with affairs while traveling over the road. In foggy or stormy weather, trains could keep informed as to other trains ahead or behind, thus avoiding rear-end collisions. It would also prove invaluable on electric lines, especially single-track, whereby meeting points of cars could be arranged.
Every main-line switch should be protected by interlocking, and handled from a tower or connected with an electric signal located some distance away from it; and in case of its being open, or tampered with in any way, this signal would show "danger," thus avoiding any such disaster as recently occurred to the Twentieth Century Limited. In case of a signal showing danger, trains could approach with caution, and set things to rights. This same signal would also be used to give warning, in case of broken rails or misplaced fishplates. By having these signals located at certain distances apart, a whole railroad could at certain distances apart, a whole railroad could
be guarded against wrechs, except unavoidable accidents, which are liable to occur at any time, in spite of man or mechanism.
Boston, Mass., June 29, 1905

## A Life-Saving Coat.

A London tailor has invented a new life-saving coat and gaiters, with which it is possible for a person clothed therein to maintain an upright position when immersed in the water, even if not possessing any immersed in the water, even if not possessing any
knowledge of swimming. The coat resembles in apknowledge of swimming. The coat resembles in ap-
pearance an ordinary pilot coat; but it is fitted with an air belt; which is inflated with air through a tube. The gaiters each weigh two pounds, and are fitted with two brass wings or blades fastened to the back of the heel. As the wearer moves his feet in the water these wings open and shut, and not only propel the wearer along like oars, but enable him to mainthe wearer along like oars, but enable him to main-
tain an upright position from the waist upward in the water. A practical demonstration of the utility of the invention was recently undertaken in the River Thames by the inventor, and its efficiency and lifesaving qualities clearly shown, even when moving against the tide.

Electricity on Swedish Trunk Lines.
A single-phase electric locomotive has been designed for the Swedish government railroads, and experiments are to be carried out therewith, on the application of the electric power to the trunk railroads. Externally, there is no departure from the design of the conventhere is no departure from the design of the conven-
tional electric locomotive. Current is drawn from an tional electric locomotive. Current is drawn from an
overhead conductor, and is designed to work at a line pressure of 18,000 volts as a maximum, though arrangements are made to use several lower pressures, the lowest being 3,000 volts. The locomotive carries an oil-cooled auto-transformer to reduce the pressure for the motors, and an oil circuit breaker. The elec-tro-pneumatic control system is used, a compressor driven by a single-phase motor supplying air for all auxiliary power purposes, such as switching, braking, sanding, etc. The locomotive and equipment weigh 25 tons, and are carried on four 41 -inch wheels. Each pair of these is driven by a 150 -brake-horse-power single-phase motor at 25 periods with a gear reduction of 18 to 70. The locomotive will handle a train at 40 of 18 to 70 . The locomotive will hande a har has been built by the British Westmiles an hour, and has been
inghouse Company, Limited.

## five thousand degrees of heat.

It has been rightly said that civilization began when man first discovered the use of fire. This is symman first discovered the use of fire. This is sym-
bolized by the legend of Prometheus stealing the fire from heaven and thus conferring untold benefits upon mortals. Nearly all the arts are indebted to the use of fire, and in our modern times we obtain continually increasing sources of heat, such as are necessary for the progress of science and industry. The higher the heat we are able to obtain, the greater is the the heat we are able to obtain, the greater is the
field for new discoveries and processes by which our horizon is widened.
This is exemplified in a striking way by the modern invention of the electric furnace. Here we reach the top of the scale, and many are the advantages we obtain from such a powerful source of heat. The blast furnace uses a heat of $2,400 \mathrm{deg}$. F. to produce the iron from the ore and send it out in a melted stream, while the Eessemer converter, the next step in the process, brings us 400 or 500 deg . higher. Then comes the oxyhydrogen blowpipe. By the combustion of hydrogen and oxygen we obtain a small blue flame which gives us a heat of 3,600 deg., and is sufficient to melt platinum and other refractory metals. Here we approach the temperatures which were employed in the interior of the earth to form many of the minerals, among others the different gems. With the heat of the oxy hydrogen blowpipe we are now enabled to imitats some of these processes. One of the most remarkable of these results is the formation of the ruby, which is only alumina or the material of ordinary clay, crystallized at an intense heat. The ruby is formed by sifting powdered alumina into the gas stream which sifting powdered alumina into the gas stream which
goes to the flame, and there it is melted and it deposits beyond the flame in a transparent mass. In this way rubies of large size weighing 10 or 15 carats can now be formed, and in quality and color they equal and even surpass the rubies found in the earth.
Now that we have succeeded in obtaining the ruby by artificial means, it is only natural that we should expect to go farther $\ln$ the scale of heat and produce other gems that have been formed in early times by the intense heat of the earth's interior. We know that the diamond is after all only crystallized carbon, and in fact it has no essential difference in composition form ordinary charcoal. Both are nearly pure carbon, but the diamond has been brought to the crystalline form under the powerful forces and high heat which prevail in the interior of the globe, while charcoal is formed under the ordinary conditions of the earth's surface. There is thus an essential difference in the way these two forms of carbon have been produced. We find that when we attempt to produce the diamond we come face to face with great difficulties, seeing that we are obliged to imitate to some extent the immense forces which were in operation in the earth's interior and so reproduce nature's process if we wish to obtain the same result. How to imitate this process was the question, and for a long time scientists were even uncertain as to just how the diamond had been formed originally. We know that it was crystallized from carbon which was kept at a very high heat, but as it has never been proved that carbon has been melted at such a heat, the matter seemed problematic.

It was the eminent French chemist, Prof. Henri Moissan, who found the first clue to the mystery and on following the matter up he was finally able to imitate the process of nature and actually form the diamond in minute crystals, and we may hope in the future to produce larger diamonds which will be as clear and brilliant as those we find in the earth. The way Prof. Moissan studied the formation of the different kinds of carbon and the wonderful results he obtained with the electric furnace form an interesting chapter in the history of science. In fact, the electric furnace soon began to prove of great value in forming all kinds of new compounds which we had never been
able to obtain before. We will speak principally of the diamond, as it is the most interesting of the bodies which the electric furnace has produced. M. Moissan was led to his discovery by observing a specimen of meteorite from Diablo Cañon, Arizona. A large block cut from it had been sent to him at Paris. The mass was mainly composed of iron, and upon analyzing it he found that it contained many small black diamonds and some transparent diamonds of crystalline form. The way in which Nature formed the diamond seemed to be shown here in an unexpected manner. We are led to suppose that the carbon must have crystallized and separated from the mass of iron. The carbon was no doubt dissolved in the iron when in a melted state at a very high heat and on cooling the carbon took the crystalline form, just as any soluble salt may crystallize when the solution is cooled. Here the action is somewhat different, as it requires a high pressure to make the diamond crystaliize. This pressure was no doubt obtained in a very natural way when the no doubt obtained in a very natural way when the
mass became solid, as we can imagine that when the mass became solid, as we can imagine that when the
outside was suddenly cooled the inside had to expand and was now at a very high pressure. Thus cooled, the mass deposited the diamond crystals as we find them. If we could reproduce the same conditions it might be possible to obtain the diamond, but how to proceed was the question. We must make the carbon dissolve in melted iron at a very intense heat, such as dissolve in melted iron at a very intense heat, such as
no doubt prevaiis in the interior of the earth or in the highly heated bodies from which the meteorites come. The electric furnace was here called upon to give us the necessary heat. The electric arc is, in fact, cne of the most powerful sources of heat that exists, and when the arc is produced on a large scale and confined in a narrow space we have a heat that cannot be surpassed, and we obtain, in fact, a heat of 5,000 degrees. Thus originated the electric furnace, which is now one of the most marvelous resources of modern science. Here we have electric force transformed directly into heat, and we no longer use heat obtained from chemical combustion as before. The modern electric furnace uses very simple means to obtain its wonderful effects. Two carbon rods, of two or three wonderful effects. Two carbon rods, of two or incheter, project into a cavity formed in a chalk block. The electric arc is formed in the center just over a carbon crucible. A cover of chalk a few inches thick is placed on the to and the arc is entirely confined, so that nearly all the heat is kept inside. It is a striking fact that owing to the non-conducting property of the chalk the operator can place his hand upon the top cover, and a piece of ice will remain on it for a long time without melting.
It is a striking spectacle to watch the electric furnace when in action. Long flames shoot out from either side through the openings, giving a blinding light accompanied by a loud hissing noise which the arc produces. The operators are obliged to wear glasses which are nearly black, so as to protect their eyes from the intense light while they watch the progress of the heating. In such a furnace we reach the extraordinary heat of 5,000 degrees, and at this point nearly everything can be melted. Even the chalk block fuses on the inside. A striking experiment is to boil silica or ordinary sand or flint in a carbon crucible. Not only does the sand melt and boil, but it is given off in the form of vacor. By using a perforated cover and placing a bell-jar over the furnace for an instant we see the vapors condense on the inside of the jar in fine powder. Almost all known matter is melted and volatilized at such a high heat. Here we have no less than 150 horse-power constantly transformed into heat. Naturally, to produce such a great force requires considerable expensc; thus to run the electric furnace which is illustrated here costs about 80 cents a minute or $\$ 48$ an hour. To run it all day long one would therefore have to pay some $\$ 500$ or more.
Once in possession of the electric furnace, M. Mois san tried to reproduce the process which nature was supposed to have used to form the diamond. The essential part was to dissolve the carbon in iron which has been kept in fusion at $5,000 \mathrm{deg}$. At such a high heat iron dissolves a large amount of carbon. The next step is to cool the mass suddenly so as to form a solid crust, while the inside of the mass is still in the molten state. Then when the inside begins to cool it tries to expand, but is imprisoned in the outer layer. An immense pressure is the result, and in such case the carbon is expected to come out in the form of crystals. The process is a simple one, but of course requires great care in carrying it out. To the iron which is melted and kept at a white heat in the furnace we add the right amount of carbon in the form of small grains of charcoal. The cover is placed on the furnace and the carbon is soon dissolved. Then the furnace is opened and the operator seizies the crucible with a pair of tongs and plunges it quickly into a bucket of water. A brilliant display of fireworks is the result and sparks fly in all directions, accompanied by a loud hissing noise. There is no explosion, as was feared when first making the experiment, and there is really no danger in carrying it out. The best results are obtained when the mass is cooled very sud-
denly. It is found that a layer of gas forms around the crucible in the water, so that it forms a sort of cushion and keeps the heat from escaping quickly. A bath of melted lead was then used to cool the crucible. Cooling in melted metal may appear strange at first, but we must remember that the crucible is at 5,000
diamonds to float, while the transparent crystals fall to the bottom. These crystals are found to be real diamonds, in spite of their microscopic size, and some means may be found in the future for obtaining still larger diamonds which will rival those produced by Nature in brilliancy. In fact, the diamond crystals
quantities. Before, it was difficult and costly to obtain such metals, and as they are of great importance in metallurgy, this is a step in advance. Then, we must remember that the modern industry of carbide of calcium and the acetylene gas which comes from it is due to the electric furnace.


In This Experiment a Tube is Used Instead of a Crucible.

'She Moissan Furnace in Operation. The Eyes Must be Shielded from the Arc.


The Hand Can be Held Without Danger Uver the Furnace, nespite the 5,000 Degrees of Heat Within.


In a Carbon Crucible the Mixture of Carbon and Iron is Poured, Which, After Fusing at' 5,000 Degrees, is Suddenly Cooled so as to Form Diamonds by Contraction.


The Chalk Block is So Poor a Conductor of Heat That a Lump of Ice Placed upon It Melts but Slowly.


Nand Begins to Boil and to Volatilize. Finally It is Deposited in an Impalpable Powder on a Watch Crystal.


When the Furnace Has Done Its Work the Crucible, White Hot, is Plunged into Melted Lead or Cold Water. The Sudden Contraction and Consequent Pressure Produce the Diamond.
deg. while the lead is only at 606 deg. This forms a cood contact and the heat is quickly carried off. After cooling, the metallic mass is treated with acids, which dissolve away all the iron and leave only the fine grains of carbon. These grains consist of black and transparent diamonds. As the clear diamonds are very dense, they can be separated from the others by placing in a certain liquid which allows the black
are remarkably clear and bright, and on a small scale are as fine specimens as the large ones.
This remarkable result is only one of the benefits which we obtain from the high heat of the electric furnace. Chemistry is enriched with a whole series of new compounds, some of which are of great value in the arts, Different metals, such as manganese, chromium, and titanium, are now easily produced in large

It will be a long time before we have exhausted the continually increasing list of discoveries which are being daily obtained from the electric furnace. After that, we may begin to look for a source of higher heat, but for the present there is plenty to occupy us in this vast field of research. For our information and the accompanying illustrations we are indebted to Lectures pour Tous.

## a modern filtration plant.

by James g. fernald, l.h.d.
Modern methods of filtration, like all that is best in scientific attainment, reach their result by closely copying nature. They build on a vast scale subter ranean sand-beds, where the gathered water percolates through into the city mains, as it does by natural process into the deep well or the mountain spring.
Of the way in which this is done, the filtration plant now in course of construction at Washington, D. C. the second largest in the world, is a good illustration.
flows $91 / 2$ miles to the Dalecarlia reservoir, which has a capacity of 150 million gallons, and was originally constructed by the damming up of the Little Falls branch of the Potomac, and which is entirely without lining of stone of any sort. Thence the water passes through a similar conduit for a distance of 1.1 miles into the old distributing reservoir, which has a total capacity of about 151 million gallons, and has paved slopes-it also being divided into two basins containing 98 million gallons and 53 million gallons respectively. Thence the water passes into the Washington
these cannot be used for cooking on any great scale. So the people are fain to use the muddy hydrant water and hope for the best. Worse than the mud, however, are the unseen germs which the scientist's microscope discovers. In fact, the muddy water is the purest. It is after rains or freshets, when a fiood of fresh water has been poured into the river, that it comes down charged with earthy matter and looks so forbidding. But in quiet times, when animal and vegetable matter decays on the banks and is washed into the stream by occasional showers, or blown upon its sur-


Fitting the Wooden Frames for Concrete Roof of Filters.


General View of Filtration Plant.


Construction Work of Filtration Plant


Part of Filtered Water Reservoir, Showing Pillars Twenty-Seven Feet High


Interior of Filter.


Partly Completed Filter.

A MODERN FILTRATION PLANT.

The water is drawn from the Potomac River above Great Falls, at a point 14 miles from Washington, whence it is brought to the city through a circular conduit of brick, which is 9 feet in diameter, and has a fall of $91 / 2$ inches to the mile. President Washing ton estimated that the city which he planned would require 8 million gallons of water daily. The present aqueduct has a daily capacity of 75 million gallons, and engineers are urging the immediate increase of this supply by paralleling the existing conduit with another of the same dimensions.
After entering the conduit at Great Falls, the water
city tunnel, commonly known as the Lydecker tunnel which is $3-9$ miles in length, to the Washington city reservoir, which has a total capacity of 300 million gablons. This, in addition to the Reno reservoir, and the Brightwood reservoir gives a total storage of 635 million gallons, or about 9 days' supply, assuming 75 million gallons daily consumption.
The water as it now comes from this reservoir into the homes of Washington is often so muddy that one hesitates even to wash in it. Yet this is the water that Washington is compelled to drink. Many persons of course buy spring or other bottled waters. But
face by the wind, the clear water may be and often is much more fully charged with dangerous microscopic life.
The filtration plant that Washington is building to meet the city's need covers 29 acres, each acre a separate unit or section of the system.
As you stand at the southern gate of the Soldiers' Home and look southward toward the city, you see great fields covered with rows of small circular ridges looking like corn fields, with the hills rather large and rather far apart, and without the growing corn. Those circular ridges are the rims of the manholes that let
light and air as needed into the filter below. These manholes are 3 feet in diameter and 28 feet apart, and are guarded with double covers, so that they may be opened or closed as occasion demands. The filters are built in double lines, intersected' by depressed roads, on which great double gates open, through which the filter may be entered for cleansing purposes at suitable times. Long aisles stretch away between rows of pillars.
As you look down at the floor of the partly completed work, you see that the groined arches overhead are repeated there inverted.

At the apex of many of these inverted arches may be seen openings leading downward, which are to carry the collected water after passing the filter into 2 -foot the collected water after passing the filter into 2-foot
mains that run under the floor. Lines of split tile mains that run under the floor. Lines of split tile upward across the unpierced arches to reach these openings, along which the water will find its way as it does through a tile underdrain in a wet meadow.

Over the floor thus prepared is spread one foot of fine washed broken stone, and above this fine, clean sand is laid 4 feet deep. When this has become thoroughly settled, water will be let in from the pumping house with even flow till it reaches the depth of 4 feet above the sand, at which depth it will be maintained with unvarying accuracy by an automatic apparatus in the pumping house.

The filling of the filter is a very nice undertaking. It must be filled backward. When the broken stone It must be filled backward. When the broken stone
and sand are well packed, water is let in through the mains underneath, and allowed to soak up gradually through the mass till the whole is thoroughly wet. By this slow absorption the sand is evenly moistened and firmly packed together.
Then the water may be let in over the top. But even then it is not allowed to flow directly upon the sand lest it disturb the surface and start a washout, which the water will wear more and more, going down
deep, stopping just 4 inches short of the upper rim of the manholes, so that no surface water can enter by way of the manholes. But how is the surface water falling in every rain to be kept from converting this earth covering into a swamp, and gradually working rifts, as water will, through the masonry of the roof? rifts, as water will, through the masonry of the roof?
This is prevented by an ingeniously simple device. In the center of each pillar is set a 2 -inch terra-cotta pipe, bent with an elbow so as to come to the surface of the north face of the pillar one foot above the level of the sand in the filter. Over the top of the pier, where the radiating arches spring, there is naturally a sump or depression. The terra-cotta pipe set in the stone of the pier opens upward in the center of this depression. Over the top of each of these pipes is placed a brasswire screen, and over this 1 cubic foot of fine gravel and 11 cubic feet of sand. Thus water can never gather in pools upon the roof and become stagnant, but must work its way down through these prepared channels, and in going down must pass through sand and gravel, by which any impurities it may have gathered, as of decaying vegetation, will be mostly removed before it joins the mass of water in the filter below, again to pass through 5 feet of sand and gravel before reaching the underlying mains.
The filters are to be cleaned once a month, one filter a day, so that it will take practically a month to clean the whole plant. In cleaning, about one inch of the top surface of the sand will be carefully scraped away and removed. So carefully must this be done, that the workmen who do it will be required to wear flatsoled wooden sandals about 18 inches long by 6 inches wide, on which they go skating or sliding over the surface, where any dent of a boot heel might start a washout, through which the water would ultimately rush unfiltered. The water pressure will be very great, because each filter will contain water covering a surface of approximately 45,000 square feet and 4 feet in depth, giving 180,000 cubic feet of water, which
ment as well as a source of incalculable benefit to the beautiful and rapidly-growing capital city.

## A UNIQUE LOCOMOTIVE FOR SOUTH AFRICA.

## For working heaviy freight trains over the severe

 grades and sharp curves encountered on the Rhodesia railway, which has now been recently extended to Kalomo, 90 miles to the north of the Victoria Falls, and which is destined to form a very important link in the projected Cape to Cairo railway, a unique type of locomotive, illustrated herewith, has been introduced into service. This engine is divided into three main por-tions--the superstructure and two steam-driven trucks. The superstructure consists of boiler, coal bunker, water tanks, and cab, which rest on two long girders, that are themselves carried at two pivot points on the six-coupled trucks. By this means the whole weight of the engine is upon the coupled wheels, and is, on that account, available for adhesion. It can be accurately adjusted by means of a special spring connection, introduced at a selected position away from the center of the bogie; and as the wheel-base of each engine is not more than 8 feet 6 inches, the engine here illustrated, which weighs 81 American tons, can pass round curves of three chains radius without causing the slightest injury to the road-bed. In addition to the advantage of traversing these severe curves, the line of pull from the engine itself is kept in a position which reduces the side resistance at the pulling end. Each bogie is in itself an engine, with a pair of cylinders, valve motion, brake gear, and sanding gear complete, and bears the weight of half of the superstructure on a recessed steel casting. There are bolts passing through slot holes in these castings, which form a connection between the bogie and the superstructure, and a further security against an excess of movement is provided by the addition of check chains. The mechanical details by which the powar

Each Truck is Driven by Its Own Complete Engine. The Smokestack at Back of Cab is for the Exhaust of Rear Engines. Weight of Engine is 81 Tons. articulated locomotive for the rhodesian railway.
through it in a stream unfiltered, instead of working its way through drop by drop. So the new water is let in wehind a detaining wall, the top of which rises just 3 inches above the surface of the sand, so that the incoming water flows slowly and evenly over upon the sand.
Here then we have the subterranean waters in cool dark chambers under the earth, slowly trickling down through nine, clean sand, the nearest artificial reproduction yet attained of nature's great filter that supplies the wells and springs.
The whole vast structure is built of concrete, which is really artificial stone, prepared by mixing 1 barrel of cement with 11 cubic feet of sand and 19 cubic feet of broken stone or gravel. It has been found that an arch of concrete so prepared will bear practically any weight that can be piled vertically above it. These arches are of 14 -foot span, the concrete being 6 inches thick at the crown of the arch.
A visitor to the filtration plant sees vast piles of wooden forms of various shapes lying ready to be carried where they may be put in place to have the concrete masonry formed upon them. The work is necessarily slow, because the concrete is so thinly spread over so vast an area. The forms must be carried by hand from point to point, a dozen or fourteen men carrying one form, and carrying it no faster, of course, than a man can walk, to the place where it is to be set up. After the concrete has hardened, the forms must be removed and carried to a new place by the same slow process. So the inverted arches are formed for the foundation. Then the pillars or piers, monoliths of concrete 10 feet high and 22 inches square, are built where they are to stand. Looking across the partly-completed filters, one sees long rows of these roofless columns like the ruins of some newlyexcavated Pompeii. When these are ready, the arched wooden forms are placed upon them, and the concrete spread above, which is to set into solid stone for the arches of the wide roof.
Over the roof is laid a level covering of earth 2 feet
at an estimate of 63 pounds per cubic foot, would weigh $11,340,000$ pounds.
When the water has passed down through the sand and broken stone into the underlying mains, it flows through these to the "regulator houses," of which there are six, neat brick buildings, each controlling five filters. The water from the five filters is conducted into a central chamber in the "regulator house," and from this through 48 -inch mains to the "filtered water reservoir."
This is a vast underground structure, 612 feet long by 162 feet wide, the roof of which is formed of arches 18 feet in span resting upon columns of monolithic concrete masonry, $21 / 2$ feet square and each 27 feet high. As one walks through the empty structure now the likeness to a vast cathedral is still more impressive than under the arches of the filters. This reservoir will hold one-third of a day's supply for the city ( 25 million gallons). This supply must of course be drawn off three times every day, which is to be done by five great engines in the Trumbull Street pumping station, to which the water is conveyed by four 48 -inch mains from the filtered water reservoir.
The filters have been described as subterranean. They are, indeed, largely built upon excavated ground, but even so they are higher than the water in the Washington city reservoir, from which their supply is drawn. This makes necessary a special pumping station in connection with the filter plant, having for its sole work to raise the water from the reservoir and distribute it to the filters. The completion of the work is promised by September, 1905. The total cost is estimated at $\$ 3,000,000$.

The earth covering the roofs of the filters will be sown to grass, and the intersecting streets paved and parked, so that, with the vast lake of the Washington city reservoir on the west, the wide lands of the Soldiers' Home stretching far to the north, and the Capitol, the city, and the Washington Monument full in view as one looks southward from this elevated ground, the Washington filtration plant will be an added orna-
is supplied and controlled for each of the bogies have been carcfully designed. The steam is carried from the front end of the boiler by means of ball-andsocket joints to each pair of cylinders. The exhaust of the front bogie is carried through the smokebox, and is sufficient to keep up a draft through the firebox, and so maintain steam. The exhaust steam of the hind bogie is passed into the atmosphere, but could be utilized either for the purpose of increasing the draft or for an exhaust steam injector, if required. The driver supplies steam to both sets of cylinders by one movement of the regulator handle, and in the by one movement of the regulator handle, and in the
same manner he is enabled to reverse both engines, put the brake on, and actuate the sanding gear by one movement of each of the handles concerned. There is no difference in the method of lookout, or of handling the engine, from the practice of ordinary locomotives. The boiler is of the "Belpaire" type, so commonly used on British railroads, and provides a specially la. steam capacity and the usual facilities for washing out, etc. The locomotive was built by Messrs. Kitson \& Co., of Leeds, England, and as illustrative of its great hauling capacity, it may be stated that, the engine illustrated herewith is now regularly drawing twice the train loads formerly hauled by the most powerful locomotives on the Rhodesia railroad.
Fach bogie has six wheels coupled, each of 4 feet diameter, and two outside cylinders of 16 inches diameter by 24 inches stroke. Other dimensions are: Heating surface, firebox, 136 square feet; tubes, 1,590 square feet; total heating surface, 1,726 square feet. Grate area, 34 square feet. Internal diameter of boiler, 5 feet. Length of boiler, 13 feet 4 inches. Thickness of boiler, 9-16 inch. Boiler pressure, 180 pounds per square inch. Length of firebox, 8 feet, 3 inches. Height from rail level to top of funnel, 12 feet 10 inches. Height from rail level to center of boiler, 7 feet 2 inches. Rigid wheel-base, 8 feet 6 inches. Total wheel-base, 34 feet. The engine tank has a fuel capacity of 3 tons of coal. The tender has a capacity of 7 tons of coal and 2,855 gallons of
water and, when fully loaded, weighs 47 American tons. When in working order, the total weight of the engine and tender is 125 American tons. On a gradient of 1 in 66 combined with a curve of 10 chains radius, the engine will haul a load of 624 tons (exclusive of weight of engine and tender) at a speed of 8 miles per hour with 75 per cent cut-off.

## RESULTS OF THE HILL-CLIMBING CONTEST AT MOUNT

 WASTIINGTON.During the stay of the Glidden tourists at Bretton Woods, N. H., the second hill-climbing contest up the 8 -mile road on Mount Washington was held. The rough character of this road, and the sharp turns encourtered upon it, are noticeable in the accompanying photographs, which show the winning 60 -horse-power Napier car (time, 20 minutes, $582-5$ seconds), the 3 -horse-power Indian motor bicycle (which required only $4-5$ second more in which to make the ascent), and the 8 -horse-power double-opposed cylinder Maxwell runabout with bevel gear drive, which took second place in the class for cars weighing 851 to 1,462 pounds. The time of this machine was 51 minutes, $413-5$ seconds, the only car in its class to beat it being a 15 -horse-power it being a 15 -horse-power
Stanley steamer, which Stanley steamer, which
reached the top in $27 \mathrm{~min}-$ reached the top in $27 \mathrm{~min}-$
utes, $172-5$ seconds. A $16-$ horse-power, four-cylinder, air-cooled Marion car reached the summit in 1:10: $574-5$, and gained third place in this class.
In the free-for-all contest a four-cylinder, 60 -horsepower Napier car, driven by W. H. Hilliard, won in 20 minutes, $582-5$ seconds. This was 3 minutes, 411-5 seconds better time than that made last year by that made last year by
Harry Harkness on his 60 Harry Harkness on his $60-$
horse-power Mercedes; and the new record was made despite the fact that the car stopped at least half a minute on the way up, because of a broken battery wire. The most sensational. per formance of all, however,


An 8-Horse-Power Maxwell Runabout Makins, a 'Iurn on the Way up the Mountain.
This little two-cylinder car made the best time of any gasoline machine in the 851-1.442 pound class. It obtained second place in 51

Fast Long-Distance Trains in Great Britain.
Owing to the great success that attended the development of fast long-distance express trains by the various railroads of Great Britain last year, these services are considerably extended for this season. The feature of these trains is not only great acceleration in speed, but the absence of intermediate stops upon long distances. The most important of these new services is the introduction of non-stop expresses upon the London and North-Western Railroad between London and Liverpool, which are to cover the distance of 192 miles in 208 minutes, equivalent to a speed of 55.307 miles per hour. The distance of 196 miles be tween London and Leeds is to be accomplished by certain of the Midland Company's trains without any intermediate stoppage in 225 minutes- 52.22 miles per hour; and 210 minutes required by the expresses of the Great Northern Railroad between the same two cities, a speed of 56 miles per hour. The Great Western Railroad is maintaining the non-stop expresses between London and Plymouth, which it successfully introduced last year. In this case the distance is $2453 / 4$ miles, and is covered in 265 minutes, which is equal to 55.64 miles an hour. This is the longest non-stop run in the world, and in view of the many difficult gradients on the road, the average speed is a creditable one. The fastest speeds, however, are being recorded upon the Great Central Railroad between London and Sheffield, $1643 / 4$ miles in 170 minutes, 58.14 miles per hour. As, however, for a distance of 38 miles this Great Central runs over the track of the Metropolitan Railroad, speed has to be limited; but between Aylesbury, where the Great Central road commences, and Sheffield, a distance of $1263 / 4$ miles, the journey is covered in 120 minutes, which represents a speed of 63.37 miles per hour. In point of distance this is the fastest express


Kelloger on His Indian Motor Cycle Making the Climb in 20 Minutes, 59 1-5 Seconds. This remarkable performance, which was accomplished in only $\frac{4}{5}$ of a eecond more time than that required by the 60 -borse power Napier car, was made by a 3-horse-power two-cylinder motor bicycle having the cylinders placed like a letter V .


Hilliard's 60-Horse-Power Napier Ascending the Mountain in 20 Minutes, 58 2-5 Seconds.
This record, which is 3 minutes $41 \frac{1}{6}$ seconds better than that of last year, was made despite a top to repair a broken battery wire.

## RESULTS OF THE SECOND "CLIMB TO THE CLOUDS" UP MOUNT WASHINGTON.

and the one which caused the greatest surprise, was the dash up the mountain of the 3 -horse-power Indian motor bicycle mounted by Stanley F. Kellogg. The rider did not dismount from start to finish. Nearly 3 miles from the summit he ran into a dense fog, which made the ride all the more dangerous. But in spite of all difficulties, he reached the top of the mountain in the remarkable time of 20 minutes, $591-5$ seconds. A second Indian machine of the same power also made the climb in 22 minutes, 42 seconds. A Stanley steamer driven by F. E. Stanley made the second best time in 22 minutes and 17 seconds.
In the light-weight class, for cars weighing from 557 to 851 pounds, the Stanley steamer was again first in 30 minutes, $343-5$ seconds; while a 16 -horse-power, four-cylinder air-cooled Cameron machine was second in 1:03:24 2-5, and a 10-horse-power Crawford car third in 1:11:35 2-5.
In the contest for runabouts selling for $\$ 650$ or less, two Oldsmobiles made the climb in 56 minutes,
some excitement was caused by the arrest of eight of the tourists for exceeding a local speed limit of 12 miles an hour on the outskirts of the town of Leicester when on their way to the White Mountains the week before. Two constables claimed that they timed the cars for a distance of 300 feet at the foot of a hill just before they made the ascent of another one. No warning was given that speed should be reduced, and the constables took advantage of the contestants' lack of knowledge of the local ordinance to mulct them $\$ 17$ apiece. Such treatment of tourists in the State of Massachusetts, especially when they were making a reliability run under the auspices of the American Automobile Association, only goes to prove the mistake of legislators when they frame laws making possible a different speed limit for every hsmlet, village, or town. The abolishment of the speed limit altogether, and the making of arrest possible only for furious or dangerous driving, is the only proper way of curbing the men with scorching propensities.
in Great Eritain. Notwithstanding the speed of these expresses, extraordinary precaution is taken to insure the safety of passengers. Some idea of the extent of these precautions may be gathered from the fact that on the round trip between London and Liverpool, a train is controlled by over three hundred semaphores.

The earlier wooden and iron bridges were built very much in the same manner as the ancient Roman bridges, in accordance with empirical rules, by practical men who had no accurate knowledge of the strains produced on the various members of a struciure by the exterior forces, but who were men of unusual constructive ability and sound judgment, who had to depend upon their own resources and natural instinct, experimenting with models and profiting by previous failures. Practice always preceded the science, thus the structural systems were invented before their theory was developed.

A NEW GAME OF TABLE BILLIARDS.
In addition to the great inventions that are of utility to man, there are certain minor ones that are designed to minister to his amusement. To this latter class belongs the game of table billiards recently devised by Herr Kögel, and illustrated in the accompanying picture. The apparatus consists of a circular flat-bottomed box supported by a stationary foot, two leveling screws, a spirit level, a set of balls, and a top.


## TABLE BILLIARDS.

The leveling screws and spirit level permit of quickly giving the box a horizontal position upon any sort of table. Along the periphery of the box, internally, there are apertures forming entrances to channels arranged beneath. The two series of these apertures situated on each side of the wall of the box communicate with corresponding channels, and the two situated in the median axis communicate with the median channel. The channels open into a partitioned case rlaced in front.
In order to play the game, eight or twelve balls are placed upon the bottom of the box, and the top is then spun by means of the thumb and forefinger. The top is of a square section beneath, and, during its revolution, throws the balls, which at the outset are as sembled at the center of the box, to the sides of the latter, whence, rebounding, they traverse the bottom, and finally assemble anew at the center, whence they are again thrown by the top against the sides. During their motion, a certain number of the balls enter the aper tures in the side of the box, and, following the corresponding channels, reach the compartments of the case beneath. After this the number of balls in each compartment are counted, and the player making the best score wins the game.

A NEW METHOD OF HANGING WINDOW SASHES.
Something decidedly original in the hanging of window sashes is illustrated in the accompanying engravings. It consists in linking together the two sashes of the window in such manner that the weight of on serves as a counterbalance for the other. No sash-cords, weights, or pulleys are necessary, and the disadvantages attending their use are thus entirely avoided. The space taken up by the sash weights is considerable, and in some cases architects find it almost impossible to make room for them. The cords, too, are in time weakened, either by wear on the pulleys or decay, and are liable to break. But aside from this the sash must fit loosely in its frame so that it will slide freely, with the result that the window is drafty and rattles in windy weather. That the new construction possesses none of these disadvantages will be apparent on studying the accompanying engravings. The sashes are connected at their sides by levers $A$, fulcrumed at their centers to the window frame. The upper sash is provided near the top with a pin at each side adapted to travel in a groove in the window frame, and the lower sash is provided with bolts, $D$, which serve as pins but which may also be pushed home to lock the sash in various positions. When the lower sash is raised its upper end swings outward and the upper sash is lowered, owing to the lever connections, A. Fig. 4 shows the window open to its fullest extent; but if the levers, $A$, are made longer it will be


Top Sash Swung in for Cleaning.


Cleaning the Lower Sash.


## AN IMPROVED PIPE WRENCH.

An improved pipe wrench has recently been invented, which may be quickly adjusted to take various sizes of pipes or nuts, and which will act with a maximum of power without unduly mutilating or marring the article gripped. Furthermore, the gripping jaws will be readily disengaged from the article when pressure is released from the handle. In the illustration a portion of the handle, $A$, is shown. This, it will be observed, terminates in a Y-shaped jaw, in which a
evident that the window can be opened as wide as any sliding sash window. If desired, the lower sash may be swung out at the top without raising the bottom, which is bolted to the frame, as in Fig. 2. A window may be thus locked open at night, providing an ample circulation of air without fear of sneak thieves. This arrangement, it will be seen, opens the window at the center to admit fresh air which, owing to the inclined position of the sash, is directed upward to prevent a draft. The impure air at the same time flows out at the top. Fig. 3 shows the window open at top, center, and bottom. A false sill is hinged to the lower sash, and this may be swung down to close the opening at the bottom of the window, if desired. When the window is closed, as in Fig. 1, the levers, $A$, act to jam the sashes tightly against the parting bead, rendering the window watertight. If, in case of a driving rain, any water should leak past the parting bead, it would be caught in the grooves, $C$, and flow back to the sill. By avoiding the use of weights, the windows may be made 6 inches wider on each side, providing a material increase in the light area of such buildings as factories and the like. This window construction also offers the further advantage that the glass may be cleaned from the inside of the room. The bottom sash may be unbolted and drawn in to bring both sides within easy reach for cleaning. To clean the outside of the upper sash, a portion of the parting beading is removed by turning the thumb-screws, $B$, which permits the sash pins to slide out of the grooves, C. The sash may then be swung inward on the levers as a fulcrum to the position shown in one of our illustrations. The inventor of this improved window is an Australian, Mr. Alexander Knox, now at 703 Times Building, New York city, N. Y.

When the long-distance wire now being laid between Denver, Omaha, and Kansas City has been completed, there will be a direct telephone communication between New York and San Francisco, which are nearly 4,000 miles apart.

AN IMPROVED PIPE WRENCH.
serrated steel piece is set. A yoke strap on the handle carries a pawl, $B$, which engages teeth formed in the upper edge of the handle. The strap also carries a pair of arms, which at their outer ends are pivoted to the rear yoke head, $C$. The latter is connected by two links with the forward yoke head, $D$, which at its lower end carries a jaw pivoted thereto. In use, to adjust the wrench to any desired article, the pawl, $B$, is lifted by depressing the end, $G$, then the jaws are moved against the article. On releasing the pawl the spring, $E$, presses it into engagement with the teeth on lever, $A$. Then, when the lever, $A$, is moved, the jaws are brought together with a powerful gripping action, due to the leverage of the yoke heads and links. The wrench has a wide range of adjustment, which is limited only by the stops, $F$, coming in contact with the yoke strap. The inventor of this improved wrench is Mr. Patrick F. Duross, of 57 North Pierce Street, Flushing, New York.

## Mine Explosions.

There is a peculiarity often manifested in regard to the evidences of violence at different points. Too often it is assumed that a fresh body of firedamp or a keg of powder has been exploded at such points. The greatest violence is generally manifested at the point developing the greatest resistance, when that resistance gives way under the pressure. The expanding air of an explosive blast may cushion from one point in the mine to another. A temporary cushioning of the blast by a contracted passageway, or other heavy obstruction, may have the effect of transferring the pressure from the starting point, where destructive violence is usually manifest, to a point where the obstruction was met. This cushioning effect may be so complete that between these two points there is perhaps little sign of the passage of the blast in that direction. There is seldom any evidence of violence manifested inby or toward the face from the initial point of an explosion, owing to the cushioning of the air in this direction.Mines and Minerals.

Until 1847, when Squire Whipple, the modest mathematical instrument maker, who, without precedent or example, evolved the scientific basis of bridge building in America, correct methods of computing the trains in framed structures were not known. A few years later, in 1851, Herman Haupt published a book on the theory of bridge construction. About 1850, after the building of railroads had advanced, the educated engineer commenced to exert his influence in the art of bridge building, and, from that time forward, steady progress was made. The period from 1850 to 1860, therefore, may be regarded as an epoch in the history of American bridge building; the time when the bridges designed by Fink and Bollman first came into use.
recently patented inventions. Electrical Devices. telephone attachment. - F. F Howr, Marietta, Ohio. This invention is an
improvement in telephone-receiver supports and it consists of a universal jointed arm which holds the receiver and permits the latter to be moved into position against the ear. This movement works a lever which is con-
nected with the switch of the telephone in such manner as to cut the receiver into circuit. AUTOMATIC TAKE-UP DEVICE FOR
TELEPHONE CONNECTIONS.-F. B. LONG, Los Angeles, Cal. One of the principal ob Lects of the inventor is the provision of means
for for storing the electrical connections for the receiving and transmitting instruments of an
ordinary telephone in such manner that during the time the instruments are hung up ing the time the instruments are hung up or
out of use there will be no slack or loose porout of use
tions of
telephone.
telephone attachment. - v. Reb HUN, Schaghticoke, N. Y. The more particular object of this inventor is to provide means
for improving the acoustic effects of the re for improving the acoustic effects of the re-
ceiver, to enable the operator to avoid holding the receiver by hand, to enable the receiver to be adjusted to various positions of the head,
and to accommodate the receiver to the use of and to accommodate the receiver to the use of
persons whose hearing in one ear is better an in the other.
ELECTRIC TEMPERATURE-ALARM. - C. Pers to a device for application to a receptacle and designed to give a signal when any certain predetermined temperature is reached in
the recentacle. The principal objects are to the receptacle. The principal objects are to
provide an alarm which can be easily set for any desired temperature, which will be en-
airely automatic in operation, useful in a large tirely automatic in operation, useful in a large
number of dififerent kinds of business-as, for example, distilleries, breweries, bakeries, con-
fectioneries, etc.-and which will be simple in fectioneries, etc.-and which will b
construction and easy to maintain.

## Of Interest to Farmers.

 LEVELING ATTACHMENT FOR SEPA-Rators.-O. G. Vold, Dawson, Minn. Theobject of the invention is to provide a new and improved leveling attachment for portable grain-separators and similar machines on
wheels and arranged to permit convenient ap plication to the machine without altering the construction thereof and to form level furrows for the wheels of the machine to stand in. Thank-heater.-W. Dixon, Kimball, Minn The object of this invention is to provide
heater arranged to prevent the seam of the heater-body from coming in contact with the burning fuel, to prevent the seam from be-
coming leaky, and at the same time providing coming leaky, and at the same time providing
a space within the heater-body unobstructed a space within the heater-body unobstructed
by the draft-flue to provide ample space for the burning fuel. It relates to the care of in stock-tanks to prevent the contents from freezing.
furrow-opening disk. - h. c. Ham, plements which comprise rotary disks in their make-up, which disks roll upon the ground a the implement advances. While intended to
be used especially in connection with furrowbe used especially in connection with furrow-
openers when used in planters or seedingopeners when used in planters or seeding-
machines, it should be equally useful in the machines, it should be equally useful in the
construction of disk harrows and other agricultural implements employing disks for any purpose. the disks.
taching
machine for topping beets.-a. h. Kramer, Montevista, Col. The purpose of the
improvement is the provision of durable and effective devices for topping the beets and means for controlling the topping devices, so
that whether or not the beets extend more or that whether or not the beets extend more or
less out of the ground all of the beets will be topped in a uniform manner. It may quickly brought into action and as rapidly and readily carried
leaving a field.
brooder.-G. h. Lee, Omaha, Neb. The object of the inventor is to produce a brooder means for diffusing the heat supplied thereto and provided also with an improved arrangewithin the brooder, one of his purposes being to prevent the tendency to crowding of the chicks in the heated spac
incubator. - G. H. Lee, Omaha, Neb. The inventor's object in this instance is the provision of a construction which conduces
toward a thorough circulation and toward a thorough circulation and uniform heating of the air within the incubator, at the
same time shielding the eggs from direct airsame time shielding the eggs from direct air currents. The construction faciiltates separa-
tion of newly hatched chicks from the eggs tion of newly hatched chicks from the eggs
and also from chicks previously hatched and provides also an arrangement whereby it will be unnecessary to open the main door of the incubator in order to remove chicks from the interior.

## Of General Interest.

 MAIL-POUCH HANGER AND SHIELD.G. A. Clark, Nashville, Tenn. The aim of this improvement is to provide a devicewhereby one or more pouches may be supported between the arms of the mail-crane and to the manner in which such mail-pouches
may be protected from contact with the remay be protected from contact will
ceivers of the mail-pouch catchers.

TENT.-T. D. McCall, St. Louis, Mo. This nvention is in the nature of an improved eretofore patented by Mr. Mccall, the same being light portable tents with the canva Aloors forming a part of the tent. It is de-
signed to provide a tent of this general char acter which may be used singly or in pairs to form a larger shelter-tent.
combination hat, coat, and um BRELLA RACK.-A. Abelson, New York, N
Y. In the present patent the invention has eference to combination-racks for the storage f articles, and more particularly to the type of rack suitable for storing hats, coats, and umbrellas so as to render the same com-
paratively secure. Piracy of articles is preparatively secure. Piracy of articles is pre-
vented by the fact that only a key of a certain vented by the fact that only a key of a certain
ype can be used to move the sliding plate or ype can be used to
bolt from its position.
educational device.-J. b. Ohivera, Matanzas, Cuba. One purpose of the inven-
tion is to provide a means whereby children or students may not only familiarize themselves with letters of the alphabet, but may whereby the device may be placed on the desk of each student and a similar device be employed by the instructor to give the initial
idea of the grouping of letters to form words, eaving pull to themse spell out the different words.
barber's antiseptic utensil. - h. Rosenthal, New York, N. Y. In the present
patent the invention has reference to barber's patent the invention has reference to barber's
supplies; and the inventor's object is the provision of a new and improved barber's antiseptic utensil, insuring to the person to be shaved at a barber-shop the use of an antisoap.
LegGing.-J. w. Pynch, Ripon, wis. One purpose of the improvement is to so construct a legging that it will lace at the front and so that the front will be open for the introduc of the legging, the lower part of the front being permanently closed by a folding tongue. Further, to so locate and hold the lace at the
bottom of the legging that it will not drop under the foot while the legging is being placed pon the person.
hose-coupling nut.-w. c. c. Miller, Vacaville, Cal. The aim of this inventor is which adapt it for a speedy and reliable connection of an end of a hose having the nut
thereon with the threaded nozzle of a fire-plug thereon with the threaded nozzle of a fire-plug nd also for an instant connection or detach-
nent of two sections of hose, one section having the improved nut on its end and the other section a male-threaded nipple, forming
a
reliable water-tight joint-coupling between the hose ends that are detachably connected by means of the improvement.
COUPLING.-R. G. McDowell, Anaconda, Mont. This coupling is intended for joining
sections of pipe and hose and also for use in connecting nozzles and fire-plugs and various other analogous uses. It comprises mating coupling having a peculiar packing, making a hermetic joint and the outer section carrying
a peculiar spring-dog capable of projecting a a peculiar spring-dog capable of projecting a
part through an opening in the outer section part through an opening in the outer section
into engagement with a shoulder on the inner section, thus removably yet securely holding the sections engaged.
hoisting device.-J. Kambish, Jr. Piney, w. Va. The intention in this case is oo prome especially designed for raising and lowering deep-well tubing, pump-rods, and the like, and arranged to allow convenient and quick raising and lowering
much expenditure of power
Shoe-last.-A. R. Garrod, New York, $n$ Y. The principal object of the invention is to
provide a shoe-last of a construction by which provide a shoe-last of a construction by which
o impart to the tread or under surface of to impart to the tread or under surface of
the sole of a shoe made thereon a curvature the sole of a shoe made thereon a curvature
or form tending to turn the foot of the wearer or the shoe in an outward direction in the at of walking.
STANDARD FOR SUPPORTING wires.This invention is peculiarly valuable for purposes of fencing. It relates more particularly to a certain form of standard made, preferably, of sheet metal and formed from a blank
of such metal bent into suitable conformity of such metal bent into suitable conformity
to be driven into the earth and to support
the wires car the earth and to sinppar ticularly adapted to be nested in order to save transportation expenses a
constructional advantages.
skirt-gage.-Frances m. De Leon, New York, Y. This invention itsel gage, which is to facilitate the fitting of the skirt with respect to its length. The object is to produce a gage which will not only enable the skirt to be marked at the desired point at
which the lower edge should be turned up, but which the lower edge should be turned up, but
also to provide an arrangement whereby the accuracy of the measurement is much en-

## hanced.

PROTECTING BOX OR CASING. - H. W. CLARK, Mattoon, Ill. This improvement is in in
boxes, or casings for housing water-meters,
stop-cocks, valves, and other water aplit. stop-cocks, valves, and other water appliances
and oil and gas appliances and distributers and oil and gas appliances and distributers,
also telephone and other electric conductors
and appliances and protecting them from im.
proper access or injury by contact and frost
either below surface of ground places. The invention relates particularly to an improvement in the lid applied to the neck of the box-cover and means for fastening it,
whereby it is held when in use yet whereby it is held when in use yet adapted
for detachment to allow access to enclosed for detachment to atow access
meter for reading, detecting leaks, etc.
BOTTLE.-R. G. Davis, Hot Springs, Ark BOTTLE.-R. G. Davis, Hot Springs, Ark,
In the present patent the invention has refer ence to improvements in bottles of the nonrefillable class, the object being to provide a亚tle of this character that will be of simple the valve mechanism so arranged as to pre-
vent refilling, but permitting the ready outlow vent refilling, but permitting the ready outfow surgical appliance.-a. Breslin and J. Lers, Summithill, Pa. The object of the invention is the provision of an appliance
adapted for attachment to the body of a patient or sleeper to frustrate his attempts torn to an inclined or other position and to turbing or awakening him. It is an improw ent upon one for which the inventors have filed an application for patent, which has bee Sleeve-protector. - Helen gardner, New York, N. Y. In the present patent the ivention has reference to protectors for the sleeves of garments, having for its principal his class which while maintaining its position will neither interfere with the garment no FOUNTAIN-BRUSH - W .
fountain-brush. - w. L. Payn, Che otah, Ind. Ter. In the present patent the intention of the inventor is the provision of
a brush of this character which shall be adapted to contain and supply shampooing powder or fluid made into lather by the water supply through the brush and at the same time be
purpose
Hos
hose-coupling. - J. D. O’Brien, Mul lan, Idaho. The principal objects of the in which may be preadis connected and device which may be reans provided and dscon tight joint, effectually preventing leaking tui coupling the members is readily done Uncoupling cannot accidentally occur unde pressure or twisting of the hose. The packin ring will stay in place whether members are
coupled or uncoupled but yet may be readily coupled or uncoupled, but yet may be readily
removed and renewed. There are no threaded removed and renewed. There are no threaded
or similarly-movable elements to effect the or simila
closure.

## Hardware.

WRENCH FOR THRESHING-CYLINDERS. -M. MAHLEN, Osakis, Minn. This invention which retain the teeth of threshing-cylinder upon the bars thereof. The object is to produce a wrench which is so formed as to enable
the same to be applied readily in practice the same to be applied readily in practice,
certain parts of the said wrench having useful certain parts of the said wrench having useful
functions in connection with the straightening of the teeth of a threshing-cylinder where they have become bent or twisted.

## Heating and Lighting.

furnace. - G. S. Kent, Buffalo, n. y One purpose of the invention is to provide an mprovement upon a furnace for which a
former patent was granted to Mr. Kent, the main object of the invention being to so con-
stru ct a furnace that it will be an overdraftstrust a furnace that it will be an overdraftfurnace and will have a vast capacity for pro-
ducing heat and which will thoroughly burn ducing heat and which will thoroughly burn
fine coal before the fuel can escape to the fine coal
ash-pits.
STRAINER AND SEPARATOR. - J. g Nson, San Francisco, Cal. The aim nvention is to provide a strainer and sepa-
rator more especially designed for use steam-generating plants using crude oil as fuel in furnaces and the like and arranged to
separate the water from the oil, to insure a separaue the water from the oil, to insure a
thorough straining of the oil previous to the latter reaching the burners, and to allow quic and convenient cleaning of the device

## Household Utilities.

door-hanger.-H. Lobel, New York, N. Y. The invention refers to improvements in
hangers for sliding doors, the object being to provide a hanger of simple construction and having means for so suspending a door that it will hang in direct downward alinement with the slide-bearings, thus preventing any vertical
strain on the sliding member and therefore strain on the sliding member, and therefore
permitting an easy sliding movement of the permi
door.
SUPPORT FOR BED-bOTTOMS. - C. Harrell, New York, N. Y. Mr. Harrell's in-
vention pertains to supports for springs or dention pertains to supports for springs ore
other bed-bottoms. His principal objects are to provide such a device which may be readily attached and which will furnish a general structure spring effect to the entire bottom KITCHEN-CABINET. - H. CLARK, White fish, Mont. In this case the invention has
reference to improvements in kitchen-cabinets particularly adapted for the use of pastrycooks, an object being to provide a kitchen ents required for use will be conveniently

## Hydraulics.

Water-wheel.-T. Lambeth, Rachel, N C. In this instance the invention pertains to mprovements in water-wheels of the underple and novel means for positively moving the outward to the water-pressur and moving them inward or into the wheel-
body upon leaving the water, thus preventing body upon lea
water-elevator.-J. J. Powers, Cen tralpark, N. Y. In Mr. Powers' patent the
invention has reference to improvements invention has reference to improvements on
apparatus
for elevating water from wells object being to provide a water-elevator of simple and novel construction and in which
the the water is forced to the point of discharge by air-pressure.

## Machines and Mechanical Devices.

SAW-SET.-C. Diener, New York, N. Y on an effective saw-set adapted for use in connection with any character of saw, one which can be conveniently operated and which will have a hammer action, enabling the teeth of
the saw to be set as accurately and readily outside of the shop as at a bench within the shop.
THREAD TWISTING AND WAXING MA-CHINE.-A. H. Forsythe, Sarcoxie, Mo. The nvention pertains particularly to improve
ments in machines for twisting together a plurality of threads and waxing the same for use in a leather-sewing machine, an object being to provide a machine for this purpose that will be simple in construction, positive
in action, and that may be readily attached to a sewing-machine.
DRying apparatus. - G. Stiff, Norimprovements in vacuum-driers, the object being to provide a drier in which material to be treated may be readily placed and removed therial to be treated are in containing ma door is closed, thereby forcing the trap into position and making steam-tight connections, and steam is admitted and passes through
tubes into the chambers of the trays, then passes around the ends of partitions and out through exhaust tubes. This exhaust-steam passes into spaces around the vacuum-cham-
ber, the water of condensation flowing away ber, the water of
by its own gravity.
CAM-FINISHING MACHINE. - G. Meyer, Griinhof, near Stettin, Germany. Mr. Meyer's
invention relates to a machine for finishing, nvention relates to a machine for finishing, coarsely worked by a milling-machine or other machine-tool and possess such a shape as to be capable of engaging and sliding in slots with parallel faces. Such cams have an equal diameter in certain directions and are used in many machines-for instance, in sewing ma chines. Cams finished on this machine will be
superior to those by hand, since the file is superior to those by hand, since
mechanically and positively guided
COIN-DISTRIbUTER.-C. H. Hall, Fresno, Cal. The claim of the inventor as an object distributer which is simple in construction, not iable to easily get out of order, and arranged to distribute the assorted coins according to
hable their size and value and in the proper sequence. mechanical motor.-E. Putnam, Rossville, Ill. This improvement relates to a mechanical motor for elevating materials or for
driving machinery of various sorts. It is particularly useful in connection with animal power as contradistinguished from use in
transmitting engine-power. It is particularly adapted for use in driving grain dumps and elevators, especially in case steam or other MACHINE FOR SHARPENING AND RE-DrILLS.- Jaratus is for operation on rock-drills, particularly the usual cruciform drills, by which to sharpen, re-shape, and otherwise repair the drills. It comprises
means for mounting and moving the drill means for mounting and moving the drill
toward and from the tools of the apparatus, these tools furnishing means for reshaping the drill and acting on the edges thereof to sharpen the same. Preferably the shaping-tools are in which the point of the drill is introduced means being provided so as to give the drills the usual V-shaped edge.
TICKET-COLLECTING APPARATUS. - H. Lion refers to an apparatus particularly intended for use in connection with steamboat and railway systems to collect admissiontickets from the passengers as they pass aboard the train or boat. It is not, however, limited to this particular use and may be em-
ployed under various other analogous conditions. The principal object is to so construct and arrange the apparatus that fraud on the art persons in charge will be impossible. ChUCK.-C. O. Bergman and M. Elmer, vention has for an ong other things for veniently holding the work on machines. In operation, when centering a piece of metal too shaker-chuck held in the milling-machine or one side of the piece and one upon the other, the prick-punches manipulated so as to enter in prick-punches and sere provided for the work


#### Abstract

Prime Movers and Their Accessories EXPLOSION-ENGINE. - R. O. Le Baron Pontiac, Mich. The object in this case is to provide a gas, gasolene, or the like explosion engine arranged to utilize the expansive powe of the gas to the fullest advantage and to of the gas to the fullest advantage and to allow running the engine with the greates allow running the engine with the greatest economy. Mr. Le Baron does not limit himself to the number of pairs of cylinders as three pairs may be used and connected with each other for producing the desired result. DRAFT-DRIVEN GENERATOR. - W. H. engines, the inventor's more particular object being to economize the draft thereof in suct manner that when the draft is excessive it may be used to operate machinery, thus utillz ing a certain amount of ing a certain amount of power otherwis wasted. It is of peculiar value upon locomo tives, where under certain condition draft requires to be frequently shut off rotary engine.-J. P. Bruyère, Pas saic, N. J. A purpose of the inventor is to provide an effective construction of rotary en gine, and one which will be economic in the use of steam. A further purpose is to so con struct the engine that a piston is located in a casing, both of which parts may be employe as drivers, and wherein each is mounted to provide the engine with a simply-applied and readily-effective reversing mechanism and cut-off.


Railways and Their Accessories.
concrete railway-tie.-G. S. Miller, Burlington, Vt . The purpose of the improvement is to provide an economic form of tie in
which the devices for seating and securing the which the devices for seating and securing the
rails consist in box structures having chambers to receive spikes and means for removably holding the spikes in said chambers in firm clamping engagement at their heads with the flanges of the rails, it being possible to ex-
peditiously and conveniently replace any damleditiously and conveniently replace any dam
aged spike without disturbing the rails or an adjacent spike
FOLDING EXTENSION-STEP. - J. S. Coxey, Aberdeen, Wash. The intention in this
case is to do a way with the small tool or box employed to facilitate the landing of passengers from railway-coaches at stations wher
there is no convenient platform and to accom plish such result by providing an auxiliary bottom step having folding or swing connection with the lower step of the usual series
fixed to the platform of a coach, and to control the movements of the auxiliary steps by means of a series of levers conveniently op-
erated throagh a hardle member located at the erated throagh a hardle
platform of the
platform of the coach
VENTILATING MEDIUM FOR CARS.-C. P. Bonnett, New York, N. Y. The aim o
the inventor is to provide means for ventilat the inventor is to provide means for ventilat-
ing cars in a thorough manner and without ing cars in a thorough manner and without
subjecting the occupants to drafts, and in the construction of the $\varepsilon$ ppliance to provide mean for regulating the amount of air to be ad mitted, the said means being conveniently operated from the interior of the car, and further that the foul air will be sucked out from the interior and fresh admitted.

## Pertaining to Recreation.

APPARATUS FOR INDICATING THE SCORLS OF PLAYERS IN SUCH GAMES AS lillliards OR The Like.-C. S. OAkls
and J. A. Manton, Parramatta, New South Wales, Australia. The invention refers mor particularly to a mechanical device for indi-
cating the score of players in the game of bil liards, and has for its object to provide a simple scoring-board which may be easily rea and understood from a distance, so that the players, as well as the onlookers, may be kep
advised as to the state of the game as it progresses, while at the same time it is
capable of easy and accurate manipulation by capable of
the marker.

## Pertaining to Vehicles.

reeling device.-C. A. Hadland, Ben nington Township, Minn. This device is fo use in reeling wire and the like and is designed to be mounted upon a wagon-body, so that
the wire may be reeled or unreeled as the wagon moves. The principal objects are t provide means for removably attaching the
device to the body of a wagon, to provide for securing the reel in operative or in inoperative position, and tor manipulating a guide for the reel, and for operating these devices con

Torнй reference to improvements in in invention has porting a horse-hitching-weight on a delivery wagon or other vehicle, an object being to provide a supporting device of simple con-
struction by means of which the weight when not in use may be sussended from the footmanner as to be readily lowered to the ground or raised by a person sitting in the vehicle.

## Designs.

DESIGN FOR A BTTTONRIM. - G. E Schwerg, New York, N. Y. In the present
design, from the open center of the button outer edge of the rim, which edge is dotted

| a row of smal cricese, the |  |
| :---: | :---: |
| Note.-Copies of ony of the |  |
|  | Notes |
|  | - and Queries. |

Business and Personal KJants.

## READ THIS COLUNN CAREFULYY-You



Marine Iron Works. Chicago. Catalogue free.
Inquiry No. Y0\%5.-For makers and dealers
novelties and newly patented articles.
Indianapoils. Samples free
 1nand machinery. Walsh's sons \& Co., Newark, N.J lnquiry No. 707\%. For dealers in colored cellu
oid goods, also celluloid in the crude state. Co., Chicago.
Inquiry No. 7098.-For makers of rubber goods. Handle \& spoke Mchy. Ober Mfg. Co., 10 Bell st Inquiry No. Vog9.- For manufacturers of springs
wound dy a key and run for five or ten minutes. Adding, multiplying and dividin
Velt \& Tarrant Mfg. Co., Chicago.
Inguiry No. YO80.-For manufacturers of and
deairers in hydraulic rams for use in shallow wells or
ponos.
Wanted.-Bids for making an article similar to Inquiry No. 7081.-For makers of machinery
used in manufacturing dynamite, stumping powder,
etc.
Sawmill machinery and outfits manufactured by the Inquiry No. 7082.-For makers of ice-making ma
dinery. Marketers of meritorious inventions and specialties Inquiry No. gnis3.-For manufacturers of
spring motors, such af used in toys and novelties. I sell patents. To buy them on anything, or having ing, Butfialo, N. Y
Iuquiry vo. 7084.-For makers of camera fittings,
as screws, etc. The celebrated "Hornsby-Akrogd" Patent Safety Oil
Engine is built by the De Fie De La Vergne Machine Company Inquiry No. Yo85.-Wanted, second-hand, smal
rail for miniature rairoads. Gut. strings for Lawn Tennis, Musical Instruments, and other purposes made by P.
Inquirc No. FuS6.-For makers of "Buffalo Manufacturers of patent articles, dies, metal stampiber machinery and toois. Quadriga Manufacturing Company. 18 South Canal Street, Chicago
Inquiry No. $\mathbf{7 0 8 7}$.-For makers of face masks.
Absolute privacy for inventors and experimenting moderate terms from the Electrical Testing Labor
atories, 548 East 80 th St., New York. Write to-day
Inquiry No. 7088.-For manufacturer
known as parlor croquet.
Manufacturers of all kinds sheet metal goods. Vend ing, gum and chocolate, matches, cigars and cigaret tes,
amusement machines, made of pressed steel. Send amples. N. Y. Die and Model Works, 568 Pearl St., N. Y Inquiry No. 7089.-For manufacturers of road
mating machinery, rock crushers, etc. W ANTED.-To buy ideas or patents for new articles
to manufacture as a side line. Will consider all propositions, but prefer articles commonly used by the Dopuace. Briefly give
Irgniry No. 7090.-For makers of machinery for
manufacturing wood screws. If you are going away this summer be sure to send for "Mountain and Lake Resorts," a beautifully illus-
trated publication of one hundred and twenty-eight pages, just issued by the lackawanna RaIL
ROAD. The Jersey Hills, the Pocono Mountains, Dela are Water Gap, Richfield Pocono Mountains, Dela and other delightful summer resorts are described in a Way that will tell you how you can go, where you can
stay, what you can see and how much it will cost. It is a book that will help you in making your plans.
It will be sent for ten cents in stamps addressed to It will be sent for ten cents in stamps addressed to
T. W. LEE, General Passenger Agent New York City. Inguiry No. Yo91.-For makers of raw rubber Inquiry No. 7092.-For dealers in gold leaf for
for gilt woodwork.
Inquiry No. 7093.-For makers of painted satin,
canvas or perfume boxes or bags.
Inquiry No. $\mathbf{y} 094$.-For makers of town clocks.
Inquiry No. 7095.-For makers of motor canoes.
motors, fire engines, or fire pumps, without horse
power.
Inquiry No. $9096 .-F o r ~ m a c h i n e r y ~ t o ~ c u t ~ m e t a l ~$
Inquiry No. Ye9\%.-Wanted, wholesale powdered
aluminium and barium peroxide.
Inquiry No. © 098.-For th
Fairy Floss candy machine.
Indin ir No. \%o99-Wanted manhinery to manu.

 Inquiry No. 7102. -For makers of ga
cars for use on interurban lines (on rails).


HINTS To CORRHiSPONDENTS.
$\begin{gathered}\text { Names and Address must accompany all letters or } \\ \text { no attention will be paid thereto. This is for }\end{gathered}$

 | price. |
| :--- |
| $\begin{array}{c}\text { Minerals sent for examination should be distinctls } \\ \text { marked or labeled. }\end{array}$ |

(9699) L. F. P. says: In your highly esteemed journal I notice with interest the development of motive power from the answe
mill. Would you be kind enough to the following through your columns: Is it
necessary that rudder area should be greater necessary that rudder area should be greater
than blade area? If not, why would not the mill turn around on the transmission shat Am I not right in stating that the rudder has against its own force, and consequently the rudder area plus its leverage must be greater than blade and power area? We will assume there is a five-horse wheel and five horse-powe shaft. What holds the mill against the trans mission shaft? If it is the rudder, does not
this rudder exert the five horse-power thrust? A. Windmills are constructed in a great many ways, some transmitting the power from the others by means of gears in such a way that there is no reaction from the driven shaft tending to move the windmill out of a plane at right angles to the wind. Such windmills require very small rudders, as the force of the wind is balanced on the vanes of the mill, and the rudder is only necessary to turn the mill,
so that it will always face at right angles to the direction of the wind. Where, however the power is transmitted to a vertical shaft by is a reaction tending to turn the mill from the plane at right angles from the wind equal to the force tending to rotate the mill multiplied by the leverage. In such a case, the force of the wind on the rudder multiplied by
its leverage must be sufficient to balance it.
(9700) K. H. L. says: Will you please give me the numbers of your recent three-wire system of electric lighting? Also the numbers that have its history and recent application? Will you please also give me the numbers of papers that deal with the subject of electrical heating? A. We can furnish you
with two papers, Supplement Nos. 309 and 737, containing valuable articles about the any recent application of this system. It is being very rapidly superseded by the alternat-ing-current systems of lighting, since it cannot
be used very far from the central station. be used very far from the central station.
The number of articles relating to electric heating is very large. We name Supplements 825, 1037, 1059, 1077, 1112, 1182, 1374, 1375, furnished at ten cents each New Supplevent Catalogue sent on request.
(9701) H. B. M. asks: Is there any way that one can change an alternating cur to run small motor? A. Alternating current can be transformed to direct by means of a rotary transformer, wound to give any voltage desired; or a Cooper-Hewitt mercury arc
converter can be used. 2. What changes would have to be necessary in a magneto duction coil furnish current to operate an in duction coil giving a 1 -inch spark? A. The induction depend upon what the run a 1 -inch induction depend upon what the magneto is. magneto can easily be made to do this. 3. How many times does an ordinary door bell make can only guess how many times a bell strike a second when three dry cells are attached to the circuit. We guess three times. If you
will count a bell for a quarter of a minute, you can find out if we have guessed right 4. What is the best interrupter for induction
coils? A. F'or small coils a vibrating inter rupter is always used. For large coils a rotary interrupter is sometimes used, and sometime an oscillating arm dipping into mercury is
used.
(9702) C. C. B. asks: Will you please the me through your paper whether the zin described in the Supplement No. 1387, Augus 2,1902 , on page 22225 , can be used more than once, that is, can it be refilled? A. In the action of a dry cell, the electricity is produced by the solution of the zinc in the sal-ammoniac If there are no holes eaten through the zin zinc cup of a dry cell may be refilled and use
(9703) J. L. W. asks: Will you kind y inform me as to the relative speed of light
and electricity? A. Electricity travels in space with the speed of light. Indeed, light is simply an electromagnetic and through matte electricity travels with other lower velocities See Watson's "Physics," price $\$ 3.50$; Thompon's "Electricity and Matter," \$1.25, or 1.50.
(9704) H. A. K. says: I have a hol$11 / 4$ inches diameter by 3 inches high. How many cubic inches of air will be inch? At 200, at 300 , at 400 , at 500 ? If the height of the cylinder is cut in half, how pressures? What is the rule for finding the volume of air compressed into a given space at a given pressure? What books treat on the
subject. A. Your cylinder contains 3.68 cubic subject. A. Your cylinder contains 3.68 cubic
feet of air at atmospheric pressure. At 100 ounds pressure it will contain 3.68 time $\frac{114.7}{}=28.8$ cubic inches. At 200 pounds per 14.7
quare inch it will contain 53.8 cubic inches. At cubic inches squar inch will contalis will contain 103.8 cubic inches. At 500 pounds per square inch it will contain 128.8 cubic nches of air at atmospheric pressure. If you halve the height of the cylinder, you will
halve the amount of air that it will contain. The pressure of the atmosphere on an average is about 14.7 pounds per square inch. When cubic inch of air is decreased in the same ratio that of presure is increased above same In working these problems it is necessary to remember that pressures as ordinarily meas ured by gages are pressures above the atmos pheric pressure. To obtain the absolute pressure or true pressure, it is necessary to add 14.7 to the pressure given by the gages,
as has been done in working the examples above. We recommend and can supply you with the following book relating especially to the subject you refer to: "Compressed, Air;
Its Production, Uses, and Application," by Hiscox, price $\$ 5$ postpaid.
(9705) L. H. N. asks: Where is the north magnetic pole now located? A. The north magnetic pole was found by Ross in 1831 to be on Boothia Felix near Hudson's determination. It is not probable that the same point is the pole now. 2. Is it moving, , in what direction and how fast ittle pole is probably not at rest, though nothing is known as to the rate of its motion An expedition is now engaged in making a new survey to determine the north magnetic line running north and south does the compass 1902 the for central lower Michigan? A. true north in Michigan. In 1896 it pointed 26 minutes west of true north at your place almost in the center of the southern boundary of the State in 1902 . 4. Is there any easy
method by which a person can tell the time method by which a person can tell the time to within a few seconds where telegraphic ser be best determined by a sundial in the absence the telegraph and the railroad.
(9706) O. D. asks: In the type o open-circuit battery listed in catalogues as
"National No. 2," how much black oxide of manganese should be put in the porous cup with the pulverized carbon to make the cel give the best results? In mixing the sal
ammoniac solution in quantitles, how mucn sal-ammoniac should be used for each gallon of water? A. For all sal-ammoniac cells with porous cup use granular and not pulverized peroxide of manganese and coke broken into small lumps. A mixture of equal parts may be used. For the electrolyte take from 1 to pounds of sal-ammoniac to a gallon of water saturated solution is not desired, since any cause a deposit of crystals on the zinc, and will weaken the action of the battery.
(9707) M. A. asks: 1. Will a primary uninterrupted galvanic current pass over
or through any part of the human body? The riter has failed to detect such passage with fifteen Samson cells. A. If your galvanomete is sensitive enough, there is no difficulty in detecting a current which passes through the human body. Connect the wires to a piece of zinc and one of carbon or copper. Dip the hands in water, and take the zinc in one hand and the copper in the other hand. The gal vanometer will show a deflection, due to a cur
rent produced by the hands. So will it if two pieces of zinc were used as above. Let severa persons wet their hands in clear water and and carbon, as above, and the galvanomete will show a sensible deflection. You do not need a number of cells. You need a more senand galvanometer. 2. If a mixture of gas by electric spark or tight cylinder was fired explosion would be the result. Why does not the same occur when firing the mixture in a gas engine cylinder? A. If a quantity of gas
and air mixed are exploded in a cylinder
strong enough to withstand the explosion, the
cylinder will not break. This is what is done cylinder will not break. This is what is done
in a gas engine. If the cylinder is not strong in a gas engine. If the cylinder is not strong
enough, it breaks. The gas-engine cylinder is strong enough.
(9708) W. G. asks: Could you tell me how I can determine the positive and
negative side of a live wire, not tracing it to negative side of a live wire, not tracing it to
the station or to the lamp or motor, etc.? Is it the station or to the lamp or motor, etc.? Is it
possible? A. The direction of flow of an elec possible : A. The direction of flow of an elec
tric current in a wire may be told by compass needle placed so that the current
flows along the needle, that is, lengthwise of the needle as the needle stands north and
south. In this case the needle will be turned more or less across the wire by the magnetic action of the current. To determine the di-
rection of the current, hold the open right rection of the current, hold the open right
hand over or under 'the conducting wire, but so that the wire is between the hand and the needie, so that the palm of the hand is istende in the direction in which the north or marked end of the needle is deflected ; the fingers will point in the direction of the current.
(9709) E. B. E. writes: In your paper for April 15 is jiven a rule for the
approximate extraction of square root. The first part of the rule is a well-known method, and applies quite generally and not merely to numbers within the limits given. The second part seems rather obscure, and is not easyy to
remember. The best rule is perhaps that given by Charles Hutton, a prominent mathematician of the eighteenth century

$$
\begin{aligned}
& =\frac{3 N+r^{2}}{} \times r \text { approximately. } \\
& \text { (Where } r \text { is an approx. root.) } \\
& \text { Example: Let } N=271, r=16 \\
& \text { True value } 16.4621 \\
& \text { The corresponding formula for cube root is } \\
& \text { Fxample: Let } N=271, r=6 \\
& { }^{3} \vee 271=\frac{542+216}{271+432} \times 6=6.469 \\
& \text { True value } 6.471
\end{aligned}
$$

A. The rule given above is far more simple than the one formerly printed in this column root, we should advise that this rule be copied and employed.
(9710) E. R. MacP. says: 1. Re inquiry 9615, under date April 15: I quite
follow your reply, but I think that your correfollow your reply, but I think that your corree
spondent must have been thinking of the in fluence of wind, on a bullet; for it is a wellthe same direction as a bullet (or any pro-
jectile) it has a tendency to elevate the bullet jectile it has a tendency to elevate the bulle
above its usual trajectory. And just the re verse happens when the wind is against the
bullet. 2. What is the formula for measuring bullet. What is the formula for measuring
rain? It runs something like this, I think "Sin? It runs something like this, I think
So many square inches of catchment area require so many cubic inches in order to measure of rain in cubic inches, it is necessary to have square inches in the "catchment area." A bet-
ter way of determining the depth of rainfall is to use a rain gage. The United States Weather Bureau rain gage is a metal dish about 8 inches in diameter at the top. The rim is of
heavy copper turned to a sharp edge. This heavy copper turned to a sharp edge. This
opens below into a narrow dish, whose sec
tional area is exactly one-tenth of the area of the upper dish, and whose depth is 20 inches. It is obvious that the water will be ten times as deep in' the lower dish as it would be if
retained in the upper dish. The rain caught is measured in the lower dish, and the depth divided by ten gives the rainfall. Two inches of rain would fill the lower dish. 3. Is
possible to calculate an "angle of safety" for a circular cycle track? For instance, I wan
to lyuild a circular track 50 feet in diameter What would be the angle of safety for that? the greatest possible angle that the track can be inclined without the rider being thrown off,
eranting of course that he is riding at a high granting of course that he is riding at a high rate of speed-say 15 or 20 miles an hour.
A. The "angle of safety," as you term the angle of inclination of a track on which there
would be no tendency for a bicycle to slow in going around a corner, will vary with the speed track. If the track is $W$ feet wide, the proper track. If the track is feet wide, the proper
elevation (measured in feet) at the outside can
be found from the following formula :

## Elevation $=W \times \overline{32 R}$

Where $z^{2}=$ the velocity of feet per s.
nd $R=$ the radius of the track in feet. (9711) T. A. B. asks: There are two grounded telephone lines-entirely separate150 feet apart at a distance of about 100 to may be distinctly heard on the other. One
mine is private, and the other runs to a switch-
lit board. A. Wherever two telephone lines interfere with each other, the cause is always
the induction of the current in one line upon the induction of the current in one line upon
the other line. It can be remedied by the use
of a
wires.
(9712) E. M. B. says: If an Archimedean screw is placed so that the opening in
the lower end is under water during its entire the lower end is under water during its entire
revolution, will the screw raise a continuous stream, or will the flow from the upper end
be intermittent, and why! A. If an Archime intermittent, and why A. If an Archithe lower end is under water during ts entire be continuous, provided the conditions are such that there is any flow at all, if the pitch of the screw is uniform, and the speed of rota-
tion is uniform; otherwise, it will vary he angle of the stherwise, it will vary. If pitch of the screw is too great, or if the speed of rotation is insufficient, there will be no flow of water at all.
(9713) F. De M. asks: About what is the resistance of the dry cell in common use,
standard size $21 / 2 \times 6 \% / 4$ round, such as the standard size $21 / 2 \mathrm{x} 63$ round, such as the
Mesco, Columbia, New Standard, etc. A. The internal resistance of dry cells is not constant and must vary during the life of the cell.
Since the E.M.F. of these cells is not high, the ince the E.M.Y. of these cells is not high, the
internal resistance should be low. Some makers give the resistance of their cells as low as 0.25 ohm. This quantity is difficult o rapidly, and the current changes for that eason.
(9714) W. F. W. asks: 1. There is widely prevalent belief that a razor by being kept in constant use loses its good shaving
qualities, and that by allowing it to "rest",
for a while unused it will recover its original shaving qualities. Has that belief any real foundation? If so, please explain the cause
for such remarkable metallic peculiarities. for such remarkable metalicic peculiaritites.
A. The only suggestion we can give you as a foundation for the belief that allowing a razor to rest would improve its shaving qualities is
as follows: The literal edge of a razor is only of microscopic thickness. This edge, when exposed to the atmosphere, oxidizes rapidly. The tendency of "rest" therefore would be to produce a jagged edge, which when very much
magnified would look somewhat like the edge of a saw, and it is well known that a rough dge, when keen, will cut better than an edge which is too smooth and uniform. We believe,
however, in spite of the facts that we have just described, which may have improved the utting qualities of razors in a few exceptional instances, that imagination, which plays all seen, is the real foundation for the belief to which you refer. 2. Why do blacksmiths pour water upon the burning coals in the forge? hactory explanation from the blacksmiths hemselves. A. Blacksmiths pour water on heir forges in order to control the size of ron only for a limited distance along the bar, and therefore must control the diamêer of useful purposes. It tends to make the coa cake in such a way as to be nearly impervious to the blast. Thus a nearly air-tight ring or
chimney may be formed around a fire, which chimney may be formed around a fire, which will help to concentrate the air from the blast
at the point where it is most needed. This caking of the coal helps in the process of ransforming blacksmith's coal into coke, in produces a better fire than could be obtained from green coal. From this last reason, blacksmiths will often be found wetting their coal to aid in the process of manufacturing coke,
when wetting the fire would not be necessary When wetting the fire would not be necessary
for the particular job they have at hand. for the particular job they have at hand.
3. What are wash drawings, and how are they made? A. "Wash drawings" are ordinary India-ink drawings on paper which have been inted with water-color paint, to make them object for which they are made. Architects' drawings are often prepared in this way, and
the practice was common with engineers a the practice was common with engineers a
generation ago. 4. Please explain how the "parallax stereogram" pictures were made wich were exhibited at the St. Louis Expo ward, Portions of the objects projected for and other portions appeared to be considerably farther back A Parallax stereograms ar constructed of sets of lines, so that each set forms its part of the scene represented. Some of the dailies have been issuing these pictures
as supplements, so that now they are very common.
(9715) H. H. S. asks: Please let me know through the Scientific American how
to find the gage of wire. In other words, of a ertain piece of wire of known diameter in fractions of an inch, what is its number?
A. There is no way of finding the gage of a wire except by the use of a wire table, which
gives the number of a wire and its diameter in thousandths of an inch. Nor is a wire known unless the name of the gage by which
it is measured is expressed as B. \& S., Stubs, or some other. The whole matter of gages is in
a bad condition, and some unification should e made. The best would be to denote a wir $y$ its diameter
(9716) J. M'cL. asks: In Supplement No. 1215, page 19474, you have an article
dvising the use of dilute phosphoric acid in water to ward off old age, etc. I have seen a
warning in some book to not use more than 15 warning in some book to not use more than 15
drops of dilute acid in water three times a
not be a good idea to print same in Scif would mercan with the warning to not use ore than 15 drops of the acid in water thre the teeth of using same or if any hellow teet were present would it affect the jawbone? A. Phosphoric acid is a very excellent tonic, certainly advise you to take it. We should not advise anyone to prescribe for himsel even a most excellent remedy. Let medicines alone till some one outside of yourself orders them. That is good advice for anything betea and the like, which do no harm when they do no good. When phosphoric acid is the taken, it is usually given in the form of a phosphate or phosphite. The soda fountain drink orange phosphate, so popular of late, is simply an acid phosphate with orange syrup added. As to the action upon the teeth w cannot pronounce, since the doctors have not
decided just what causes the necrosis of the bone in the case of workers in match factorics. We cannot advise one whether to study meshould study the one he likes best and can do the work best in, or the one which is neares his hand. All sorts of wages are pard in both trades, and a good man can get a living at
either, though he will not get rich at either working on a salary

## NEW BOOKS, ETC.

Cams and the Principles of Their Con struction. By George Jepson. Cam
bridge, Mass.: The University Press 1905. 8vo.; pp. 59

Cams are one of the most important parts cise work on their design and construction will be found valuable to all mechanical engi neers. This little volume is such a work, and we heartily recommend it to the engineering ingly clear drawings of differ with exceed used for various purposes, and there are sev-
eral half-tone plates of cams on different eral half
machines.
Cellulose, Cellulose Products, and Ar tificial Rubber. By Dr. Joseph Bersch. Translated from the German
by William T. Brannt, Editor of "The Rechno-Chemical Receipt Book. Co., 1904. 8vo.; pp. 345. Price, $\$ 3$. This work is a very complete treatise on that most useful industrial material, cellulose ways, its use extending from the preparation of nitro-compounds to the manufacture of
artificial silk and distillation of alcohol. All these uses are gone into and fully described in the present volume. The author first tells how cellulose is prepared from wood or straw,
and how parchment is manufactured from it. He afterward describes the methods of obtaining sugar, alcohol, and oxalic acid from this
substance. Later on in the work he discusse the production of viscose, the nitro-celluloses,
and cellulose esters, artificial sill, celluloid, ubber substitutes, oil rubber, and factis. The work is very complete, and will be found of
great value to all who wish to gain a knowledge great value to all who wish to gain a knowledge
of the uses and nature of this substance. Flora and Fauna of the Blood. By
Henry G. Graham, M.D. Chicago. This is a very interesting little pamphlet the result of six years of hard labor, descriptive is the infustrated with two colored plates, showing these microscopic animals as they appear under varying conditions. The book is well worth the perusal of all interested in the wonder manner, and may be understandingly read by any person of ordinary intelligence.
Stair Building Made Easy. By Fred T Publication Company, 1904. 12mo.; pp. 160. Price, $\$ 1$.
The third edition of this small volume will be found very helpful by all young carpenters, and even by those of greater experience in
the building of stairs and stairways. It gives full and complete description of all kinds of staircases, and instructions for designing and over 100 the same. It is fully illustrated with glossary and index, which make the infor mation it contains easily obtainable.
Macirine Tools and Workshop Practice
or Engineering Students and Ap-
PRENTICES. By Alfred Parr. NeW
York: Longmans, Green \& Co., 1905
8 vo.
vo., pp. 444 ; ill., 550. Priee, $\$ 4$. onstruction and use of machine tools in onnected form. The book covers a large range of subjects, and will be found especially helpul to the practical worker, as it will enable him to study the action of the machine tools do the various kinds of work which these tools are calculated to perform. The book Measurement; Turret Lathes; Grinding; and Milling, which have been prepared and illustrated in great detail, on account of their importance to the student and practical worker.
The illustrations are both in half-tone and ine cuts. They are numerous, and will aid greatly in instructing the student.

Lloyd's Register of American Yachts, 1905. Published from New York of
fice of Lloyd's Register of Shipping 15 Whitehall Street, New York. Pp
15 Whitehall Street, New York. Pp.
542 , colored plates 42. Price, $\$ 7.50$.
With the opening of the yachting season comes the new volume of the American Yacht Register for 1905, published by Lloyd's Register of Shipping. Though only in its third parts of the United States and Canada as the standard work of reference for yachtsmen. The Register is a book of 542 pages, with 59 colored plates of club burgees, national en signs, and owners' private signals, the latter oo the number of 1,440 . The total number of yachts listed is 3,389 , of which 2,130 are sailing craft and 1,259 are propelled by steam or some other power. The tendency of the times ago the sailing yachts made 67 per cent of the total, this year they make but 62 per cent Among the power yachts the new gasoline cruisers in all sizes from 30 to 80 feet figure conspicuously, this type of craft being de-
servedly popular from its great uitility, its adaptability to all waters, and the comparaively low cost
In addition to the main list of yachts, giving engines, there are parts of culars of hulls and ngines, there are lists of signal letters, of signers of the United States and Canada, and a very complete list of over 3,100 yacht
owners, with addresses and clubs, as well as owners, with addresses and
the yachts owned by each.
Outline of Industrial Chemistry. A textbook for students. By Frank Hall Thorp, Ph.D., Assistant Professor of Industrial Chemistry in the
Massachusetts Institute of Technology. Second edition, revised and en-
Metallurgy by Charles a chapter on
Metallurgy by Charles D. Demon pany, 1905; 8vo., pp. 618. Price, $\$ 3.50$. has been urp's outline of industrial chemistry Editor of this journal ever since its publication in 1898. The practical use to which the volume has been put during those seven years has enabled him to form a more just estimate of its technical value than can possibly be atained through the cursory reading which is usually alloted by the reviewer to a newlyan excellent handbook of has proved itself industrial chemistry and its excellent refernces to bibliographies at the ends of divisions have more than once proven of value. In this new edition, Prof. Thorp has included an account of the more important advances made in ears, and has therefore considerably improved he technical value of his volume. Mr. Charles Demond's elementary chapters on metallurgy onstitute a feature which, as far as we know, new in textbooks of industrial chemistry, found in them ere long. This metallurgical eview, although necessarily brief, nevertheless gives one a very good idea of the elementary hemical principles that underlie most modern metallurgical proc
dality of Thought and Language. An
Outline of Original Research Outline of Original Research. By
Emil Sutro. New York: The Physio-
Emil Sutro. New York: The Physio-
Psychic Society, 1904. 12mo.; pp. 300. Prychic $\$ 1.50$
Starting with Gladstone's utterance, "The cientific investigation of the spiritual is the most important subject before the public toupremacy of spirituality over matter, in man His theories, from our present-day standpoint, re nothing if not peculiar, but he is nearly
lways interesting, and at times helpful and inspiring.
Lecture Notes on Some of the Business Features of Engineering Practice.
By alex C. Humphreys. Published by
the Department of Business Engineer-
ing of Stevens Institute of Technology, $1905 . \quad 8 \mathrm{vo}$.; pp. 187.
This book has been written by Prof. Humphreys with a view to aiding students under his tuition by giving them a résumé of the
lectures delivered in the course on business lectures delivered in the course on business
engineering. All the matter included in the course is not found in this volume, but that which is most difficult to comprehend is given, and will be found of great aid to the student. The book also contains notes on the law of contracts by Howard E. White, Esq., and the Commencement address del
Steam Pipes: Their Design and ConStruction. By William H. Booth.
New York: The Norman W. Henley New York: The Norman W. Henley
Publishing Company, 1905. 8vo.; pp. Publishing Company, 1905. 8vo.; pp.
187. Price, $\$ 2$. 187. Price, $\$ 2$.

This book forms a practical treatise on the principles of steam conveyance, and the means
and materials employed in practice to secure economy, efficiency, and safety. The book is well illustrated, and gives many useful ideas with regard to the making of pipe joints, extained sliding joints for taking up the expansion of long pipes. The chapters on the flow of
steam and expansion of pipes will be found steam and expansion of pipes will be found
extremely useful to all steam fitters. The extremely useful to all steam fitters. The
pressure strength of pipes and the method of hanging them as well as valves and bypasse


Foot and Power and Tarret lathes, PlanBESTFOR YOUR BOILER


YOUNGSTOWN, OHIO $15_{\substack{\text { Das. } \\ \text { oan Trise }}}^{\substack{\text { Trial }}}$ MARINE ENGINE No Cash Payment re-
$\begin{gathered}\text { quired } \\ \text { tance icon wiles. } \\ \text { Sreight diss } \\ \text { Sparst plugs }\end{gathered}$ \$1.1.j, guaranteed. 3650arsy pluas
Secund-hand Engines. M'DONALD \& ERICKSON


## HzICHS

gle Kick or Double Kick. Kick With
One Foot or Kick With BothBUT KICK The KICKDRIVE is for driving al
kinds of light machinerry by foot power
Let ust tell you all about it. Get the booklet Let us tell you all about it. Get the booklet
sLOTKIN $\boldsymbol{\&}$ PRAGLIN
$\mathbf{2 1 0 . 2 1 2}$ A Canal street, New York

PERFECT - PUMP - POWER.


THE EUREKA CLIP





DRILLING Machines



American Homes and Gardens


 their interior decora-
tions and surroundings.
Illustrations of the way Illustrations of the way
gardens may be beauti-
fied and laid out ; the most suitable flowers to
be planted in different parts of the garden, etc.
Articles are published
on room decores. Articleo are pubished
on room decoration and
furnishings, showing how the furniture unay
be arranged to produce the best effects. Plans are publshed of most of the
restdences shown. A valuable and instructive magazine
for future home builders to possess. for future home bullders to possess, as well as for up-
tod-date architects. Issued monthy. 72 pages each
number. Price 25 cents per copy; $\$ 3.00$ the year.

MUNN \& CO., Publishers 361 Broadway. New York
proportions, exhaust heads and separators, etc.
are well illustrated and described. A valuable chapter to the large steam user is the one on
superheated steam and the saving of steam by insulation. The loss of heat in thermal units from covered and uncovered steam pipes is
given in suitable comparison tables. The book will be found extremely useful to all interested
a Treatise on Rocks, Rock Weathering, and SoILs. By George P. Merrill. 1904. 8vo.; pp. 411. Price, \$4. Although the origin, structure, and mineral composition of rocks, particularly those of erupted varieties, have received particular at-
tent'on from petrologists since the introduction of the microscope into petrographic work, here has, however, been very little time decondition. In many cases where chemical analyses have been made, the chemists have disregarded the physical and mineralogical
nature of the material analyzed. Other worknature of the material analyzed. Other work-
ers have studied the physical properties of decayed rocks, 1. disregarded their mineral and chemical nature.
The author has endeavored to bring together The author has endeavored to bring together
results obtained by these various workersesults which, it is believed, will be to the
mutual benefit of all concerned. The state of comminution
mount of long-continued decay, and the of as much practical interest to the agriculturist as they are of theoretical interest the geologist. A very general scheme
classification is adopted in the present pr liminary volume, as the in the present pre troduce into it as few new terms as possible himself from materials which he collected, and which, he believes, are truly representative
samples of rock, concerning the lithological identity of which there can be no doubt. The reason that so little use has been made of
other analyses is that information is generally lacking relative to the mutual association of resh and decomposed materials and the min
eralogical and physical nature of the residual product. The book is divided into five parts, product. The The Constituents, Physical and of Rock; the Kinds of Rocks; the Weathering of Rocks; the Transportation and Redisposition of Rock Débris; and the Regolith. Some
twenty-five full page plates, in addition to nearly half a hundred other figures, completely The Berlin-Zossen Electric Railway Tests of 1903. Translated from the
German by Franz Welz, E.E. With an Introduction Discussing the General Subject of Train Resistance by
Louis Bell, PhD. New York: McGraw Publishing Company, 1905. 4to.; pp. 100. Price, $\$ 3$.
This is a full and complete report of the mental railroad from September to November inclusive, 1903. These tests occupy a unique
place in the history of modern engineering, for they represent a very thorough and highly
successful effort at solving the greatest probsuccessful effort at solving the greatest prob-
lem of twentieth century transportation, viz., the application of electric traction to greatly Mr. Bell sums up the results that were attained, while the rest of the volume deals with
the preparatory work that was gone through With before the tests were made, and the re-
sults of these tests as to the time required for starting and stopping, the air and train re-
sistance, the power consumption, the behavior sistance, the power consumption, the behavior
of the car during service, and the behavior of the new roadbed during the tests. The book has an appendix concerning a high-speed rail-
way from Berlin to Hamburg. It contains numerous diagrams and test charts. It is a

INDEX OF INVENTIONS
For which Letters Patent of the



Cheap Power from Kerosene


UNIVERSAL KEROSENE ENGINE CO


Our Hand Book on Patents, Trade-Marks,
te., sent free. Patents procured through etc., sent free. Patents procured through MUNN \& CO., 361 Broadway, N. Y.


An Automatic Pump

 140 Nassau ST., New York
Factory Chester, Pa.

## HOW TO MAKE AN ELECTRICAL



JAGER Marine 4-Cycle Engines
 CHAS. .J. JAGER CO.
r. High and Batterymarch Sts., THE CURTIS DOUBLE CYLINDER MOTOR

## 



## 


 As rapid in delivery as she is speedy in the water-no delay-immediate shipments-strong, light and graceful. Built of
seasoned cedar -overed with best tuality of canvas. Price. packed, $\$ 32$ to $\$ 44$. Send for catalogue of Dinghies, pleasure
boats, all-cedar and canvas-covered canoes, oars, paddles, sails and fittings. Write to-day seasoned cedar-covered
boats, all-cedar and canvas-covered canoes, oars, paddles, sails and fittings. Write to-day.
J. H. RUSHTON, 81\% Water Street, Canton, N.Y.


ELECTRO MOTOR, SIMPLE, HOW TO trice.- mortordevised and constructed with a view to assist
ing




## Experimental Electrical Outfits

from which the following practical machines can be made: Dynamo or Motor (high or low volts); Gas Engine Dynamo; Motor Dynamo; Dynamotor; Booster;
Single Phase A. C. Rectifier; Single Phase A. C. Motor; Motor-Driven Self-Exciting A. C. Generator, etc. Parts are interchangeable throughout. Can be purchased
altogether or one piece at a time. Bulletin B mailed free for the asking.

## WE GVARANTEE

OUR OUTFITS TO HANDLE MORE ARR FOR THE POWER
CONSUMED THAN ANY OTHER SET

Rochester Electric Motor Co., $\begin{aligned} & 10.12 \text { Frank } \\ & \text { ROCHESTER, } \\ & \text { Stroe } \\ & \text { N. } \\ & \mathbf{y}\end{aligned}$



20-in Foot or Belt Power 26-in. Belt Power
32-in. Belt Power 32-in. Belt Power
$36=i n$. Belt Power

Hub Boxing and Spoke Tenon
Machines, Forges, Drills and "Ohio" Feed and En-
silage Cutters silage Cutte
THE SILVER MEG. CO. SALEM, OHIO


SELT-FILINGPEN
 The Conklin Pen Coo. 12 za yation ion



Manufactory Established 1r61.
Lead-Colored Slate Pencils, Rubber Bands,
Erasers, Inks, Penholdors, Rulers, Water Erasers, Inks, Penholdors, Rulers, Water
Colors,
Send for fedescriptive Circular S.
Rules. 44-60 East 23d Street, New York, N. Y.
Grand Prize, Highest Award, St. Louis, 1904. ELECTRIC SEWING MACHINE MO-




ARTESIAN



How To Increase



SENSITIVE LABORATORY BALANCE. By N. Monroe Hopkins. This "built-ap") laboratory




If you have an Aple Automatic
Spart iker your bateries will a aiways
Sive

The Dayton Electrieal Mrg. Co.
98 Beaver Bldg.
Dayton, ohio.

## NOW READY

## Bound Volume

SCIENTIFIC AMERICAN BUILDING MONTHLY
volume xxxix
January to June, 1905
277 Illustrations 132 Pages 6 Covers in Tint
PRICE OF SEMI=ANNUAL VOLUME $\$ 2.00$, POSTAGE PAID

## SPECIAL FEATURES

## Notable American Houses.

 By Barr Ferree.Mrs. A. Cass Canfield's House, Roslyn, L. I., N. Y. The House of Ogden Mills, Esq., Staatsburg, N. Y. "Bellefontaine," the Estate of Giraud Foster, Esq., Lenox, Mass.
The II ouse of Lloyd Bryce, Esq., Roslyn, L. I., N.Y. Martin Hall," the House of James E. Martin,
Esq., Great Neck, L. I., N. Y. Esq., Great Neck, L. I., N. Y
Esq., Cedarhurst, L. I., N. Y.
Helps to Home Building
Helps to Home Building. What the House The Plan. The Structure. Designing the House. The Rooms and Their Uses.
Departments. Roads. Landscape Architectishers' Department. The Automobile. The Plumber. Exhibitions. Correspondence. Fire Protection. Civic Betterment. Unknown Buildings. The House. Monthly Comment. The Household. The Garden. Fifty Suggestions for the House.
House Interior. New Books. Sanitation.
The Building Monthly aims to help its readers to better building. The illustrations regrade and of varying costs. It seeks to interest the architect, the house owner, the real estate promoter, the home maker, and the builder. It stands for the good and the true and the beautiful in the art. Its series on "Notable American Houses" describes and illustrates with gre tt wealth of illustrations the more important of the best large houses recently built in the United States and brings its readers in immediate touch
with the most important work of the leading ith the most important work of the leading are brief but compact with information. Its departments constitute a "review of reviews," summary of current comment, suggestion and help in all matters relating to the construction of the home, its decoration, equipment, and use.
Volume XXXIX, January to June, 1905, price $\$ 2.00$. Six covers in tint and three hundred and eight illustrations. A rich conspectus of interesting notable houses. Many fine estates are treated
with ample fullness. The discussions of current with ample fullness. The discussions of current
architectural themes are of permanent value and architectural themes

FOR SALE BY
MUNN \& COMPANY
No. 361 Broadway, New York City and all newsdealers


| \& 794,894 |
| :--- |



$\qquad$
Railway rail joint, W. $A$.
Railway switch mechanism,
H.
H. Railway tie, A. W. Yocum
Railway
ties,

## 


$\stackrel{i}{\mathrm{r}}$
 Signaling system, block, H. M. Mo. Couiter.
Signaling system, block, J.
Sivering table, G. Glaudel
Sla

 Snap hook, J. A. Pieek,
Soldering protective ap



Wivel hook, B. J. J. Haveriy
Tank See Glass tank.
Tanning subst.
$\underset{\text { Tanning }}{\substack{\text { Bogel }}}$ substances, extracting, G. F.



## The REMINGTON Billing Typewriter

is the complete billing machine

It supplies the needs of every business.
It embraces every billing system.
It improves and develops system according to the needs of business.
It eliminates waste labor in the billing department.
It eliminates waste labor which pen billing makes necessary in other departments.
It equals the other Remington models in its capacity for ordinary work.
It is now used by thousands of representative houses in every part of the country.
And everywhere its record as a time, labor and expense saver is beyond competition.


New illustrated booklet
sent on request.
Remington Typewriter ( 0.
325-327 Broadway
New York

Branches Everywhere

## LATEST EDITION Supplement Catalogue

Just Out!

Write for it. It costs nothing.
The new Catalogue contains 65 pages and gives a list of over 17,000 articles.

If there is any scientific, mechanical or engineering subject on which you wish special information, you will find in this Catalogue some papers in which it is thoroughly discussed by a competent authority.

Scientific American Supplement papers for the most part have been written by the world's most eminent engineers and scientists. They contain information that is not always accessible in books.

MUNN \& COMPANY, Publishers 361 Broadway, New York







 ROTARY PUMPS AND ENGINES,




LUFKIN
TAPES AND RULES ARE THE BEST.
For sale everubure. Sond for
Catao No. it. UFKIN, RULEE CO.


## A MONEY MAKER




You USE GRINDSTONES?
 cat erposes. senan for catalogut "I
The CLEVELAND STONE CO

I Turned Out \$301²




[^0]




## DESTGNS.




## FRANRILIN

Type F light 5 -passenger Touring-car, with solid-back
detachable tonneau and side entrance by tilting front seat.


## A Remarkable Car

## Consider carefully the facts stated above

 They tell a remarkable and true story The speed rating is under rather than over the car's actual demonstrated performance under everyday practical conditions.This car will go into the high gear from a standing start half way up a steep hill and carry its load to the top like a bird. It will run mile after mile under full load without loss of "power-the last mile fastest of all. It will throttle down almost to "a walk", for any distance with perfect ease. Its wonderful lightness is coupled with a mechanical perfection and enduring strength not exceeded in the heaviest highpriced cars. These things are so because of
Franklin engineering; Franklin design and workmanship four cylinders; and successful Franklin air-cooling.

Magic Lantern for showing Engrav-




Two=Speed Automatic Coaster Brake Hub Makes wheeling a delight, eliminates the drudgery. Do not waste money
on experiments when Vou can buy a perfect attachment all in one hut.
Our little booklet tells all about it and is mailed free. Write to-day. Standard spoke and nipple Co

## 



WANTED to buy perfected or undevelopea steam turbine patents, or the right to ase the same, Call o
W. D. ALLEN, Room 1032, No. 20 Broad St., New Yort


CHy
Corliss Enginen, Brewers'
Mandiner
Cinton Sit. Milwaukee, Wis.
Cis.


BALLOONS $\begin{gathered}\text { Aeronant LL. Stevens, } \\ \text { Box } 181 \text { Madison } S q, N \text { N. } \\ \bar{y}\end{gathered}$ Experimentai Work. Designs for Automatic. Machinery.
G. M. M1A YER, M.E.,
RUBBER $\underset{\substack{\text { Expert } \\ \text { Fine Jobbing Wortarers }}}{\substack{\text { Mand }}}$
PARKER, STEARNS\& SUTTON, 228 . 229 South St.. New York
 INEETORS. -our specialty is practically devel



Experimental \& Model Work

 (axaje dust Out! Shaws hov to cut all kint
Telegraphy



BRAZE CAST IRON WITH BRAZIRON


## Agents Wanted

in every railway shop to
solicit subscriptions for the Railway 解lasteratlechamic
liberal commission to agents
Railway Master Mechanic Vanderbilt Building

## AणOSTORACE BATTERIES

Learn Telegraphy and R. R. Accounting
per month salary assured ourgraduates under
 MORS SCHOOL OF TELEGRAFHY Cincinnati, O., Buffalo., N. Y., Attanta, Ga., La Crosse.
Wis., Texarkana, Tex.,'san Francisco, cal.

## 

Perhaps the Largest and Best-Equipped LINOTYPE JOBOfFIGE in the World for Books, Magazines, News-
papers in All Languages. Cylinder and WER PRESSWORK. papers in All Languages. Cylinder and WEB RASSWOKK.
LANGUAGES PRINTING COMPANY Languages Building, 15 West r8th St., New York




Magical Apparatus.


## MASON'S NEW PAT. WHIP HOISTS



DVD WDTEBSMALES



You Had an Orien Buckbard
 Buck board in half an hour, and the car is so light and
fast You could run away from more than halt the big
touring cars on the road touring cars on the road.
 less driving pinions, and a new starting device that is a
wonder for ease of operation
Four styles, at $\$ 375$, $\$ 4450, \$ 475$ and $\$ 525$. Catalogue free WALTHAM MFG. CO., Dept. H, Waltham, Hass
To INVESTIGATE


Fin

 DURYEA POWER CO., 44-84 Aeyrud St., Reading Pa.
Hackett Automobile Jack A necessity for automobile owners.
It is fasser, stronger and easier to op-
erate than any other make. Twenty erate than any other mate. Twenty
different lifts. Can be unlocked so as to different lifts. Can be unlocked so
prevent weight going down while a
ranging any part of automobile. Fo ranging any part of automobile.
to very small size. Price $\$ 3.50$. HACKETT MAN UFACTURING CO.
412 Franklin Ave., St. Louls, Mo.


CHARTER
asoline, Gas Kern Send for Catalogue.
Charter gas engine co., Box 148, sterling, ill.
What Is Daus' Tip-Top?



The Relir A, B, Daus Duplicator Co., Daus Bldg, 111 John St., Ier York

 LEARN TO BE A WATCHMAKER ENA PEORIA, ILLIN
ARGEST and BEST WATCH SCHOOL in AMERICA
 school at moderate rates.
Send for Catalog of information.


Instantly Puts Out All Kinds of Fires
 CRUDE ASBESTOS ably low costrouble-proof. The money-saviag in consequence of this, combined with remarkPRERARED R. H: MARTIN,
 Convert Bicycle ${ }_{\substack{\text { Into } \\ \mathrm{a}}}$ Motorcycle

 sold searely. Write for catalogue. Agents. wanted. Motor Bicycle Equipment \& Supply Co., Buffalo, N. Y.
Volt Ammeters Pocket size, but large enough for accuracy
and practical use Various ranges for test
ing bat teries, elect ric light, telephone and other circuits, etc Also, Noltmeters
Ammeters for eeneral measurements.
Send for Circular. $\mathbf{8 0}$ Cortlandt ${ }^{\text {L. M. M. PIGNOLET, }}$ New York, N.


## The GRIFFIN?Yill



## The Greatest Pulverizing Machine in the World

OVER 50 PER CENT. OF THE PORTLAND CEMENT MANUFACTURED IN THE UNITED STATES TO-DAY IS GROUND IN THE GRIFFIN MILL.

The Griffin Mill pulverizes more cement than the combined output of all other machines used for this purpose.
Thoroughly tested by continually successful and constantly increasing use during the past sixteen years.
Portland Cement Clinker reduced from $1 / 2$ inch to required fineness in one operation, with no auxiliary apparatus. No other machine made will do this.
Buy the GRIFFIN MILL and get the BEST. It holds the world record from every standpoint.

Send for Catalogue and full information
Bradley Pulverizer Company, 92 State St., Boston


The First Effective Power Brake for Automobiles

the engine. Heretofore the brake has
been operated by foot but now the
Watres Spent Gas Brake does all the work of motoring without
taking any power from the running af the engine Acts som or quicu on big
or little machines. Adds to safety, The same device blows a whistle louder than any horn and also inflates tires. No NE WHISTLLE
for gasoline launches is on the same principle. Can be plainly heard two miles away. Write GAS ENGINE WHISTLE COMPANY,


The Most Modera Marine Motor


COMBINATION SCREW DRIVER:
 $\forall$ THE L. S. STARRETT CO., Athol, Mass., U.S.A. ${ }^{\circ}$


[^0]:    scientific Fmerican.
    

