

SCIENTIFIC AMERICAN

 ESTABLISHED 1845MUNN \& CO., - Editors and Proprietors

No. 361 Broadway. New York

terms to subscribers

 THE SCIENTIFIC AMERIUAN PUBLICATIONS.

e furnismed uped una apscriptiotion
Remit by postal or express m
oney order. or by bank draft or check.
MUNN $\& x$. Co., 861 Broadway. New York.
NEW YORK, SATURDAY, JULY 15, 1905.
The Editor is al ways glad to receive for examination illustrated
articles on subjecto t timely interest. It the photographt are
shict
 Bharp, the articles sind
will reeeve special atte
at regular space rates.

A POOR START

The most ardent advocates of the Panama Canal must admit that, admirably as the government has handled the matter of the purchase of the Panama Canal property, it has made something approaching to a very pitiful fiasco in its attempt to commence actual construction of the canal.
The Scientific American for many years past has favored the prosecution of this great work. It was our conviction that if the United States, with its vast experience in great engineering works, once took hold of the Panama enterprise, it would push it through to completion with economy and dispatch. We still beIieve that the United States can accomplish this great work with economy and dispatch; but we are just as fully satisfied that it will never so accomplish it, unless the halting policy that has thus far marked our efforts at construction be abandoned.
We have spoken above of this country's "vast experience in great engineering works." If this experience is to be applied with practical results at Panama, it must be applied along the same lines on which it has produced such splendid results in the upbuilding, let us say, of the great railroad system of the United us say, of the great railroad system of the United
States, a system which in its rapidity and economy of States, a system which in its rapidity and economy of
construction, is without a parallel in the world. In building that system, and particularly in the later years in which the greater part of the work has been done, the organization of the working forces has been noticeable for its simplicity and directness. The combination of a president, a treasurer, an auditor, and a chief engineer, the last-named absolutely untrammeled when once the main outlines of his work have been passed upon, has enabled this country to construct the various lines of a great railway system over 200,000 miles in length with a smoothness, rapidity, and a dispatch that have won the admiration of the world.
There is absolutely nothing in the Panama situation to prevent the application of the railroad methods of organization in carrying the work through. As far as the constructive features are concerned, it must be a one-man job; and we do not hesitate to say that there are not merely half a dozen but fully a score of civil engineers in America to-day, any one of whom is capable, if left absolutely untrammeled by unnecessary red tape, of taking hold of the Panama Canal, enormous undertaking though it be, and pushing it through to completion within a specified time and for a specified cost, and with just as much absence of friction, delay, graft, bickerings, political interferences, and all other petty and pure childishness of that kind, as similar works have been and are being carried through by these same men for the various railroads of this country to-day.
A cubic yard of earth, hard-pan, or rock is about the same thing at Panama as it is in the Rocky Mountains or on the plains of Dakota. In Panama so many million tons of it can be dug up, blasted out, and carted away, with as much certainty as to cost as it can in the mountains or on the plains of the West. A single chief engineer of the Panama Canal, if given an absolutely free hand, can gather around him a staff of engineers just as efficient for their work as any he may have handled when building railroads in a more northern clime. The contractors are ready with their plant and appliances to do just as expeditious work at Panama as in Maine, Missouri, or California, and the work they do will be measured up, appraised, and vouched for by the chief engineer and his subordinates with just as little "lost motion" and with as great diswith just as little "Iost motion" and with as great dis-
patch as in the construction or rebuilding of railroads. If the unfortunate experience of the government in its initial work on the construction of the canal has no other effect than to teach the above lesson, it will not have been for naught. The course of events suggests that the scheme of administration, as at present adopted, is greatly over-elaborated and is so cumadopted, is greatly over-elaborated and is so cum-
bersome that it will ever be in danger of breaking bersome that it will ever
down of its own weight.

We are free to admit that the circumstances of the precipitate withdrawal of the late chief engineer from the work would seem to augur ill for the one-man control of the work above suggested-that is, if we are to believe that, in the motives that prompted Mr. Wallace in his resignation, he represents the ethics of the body of professional men to which he belongs. We candidly believe that he does not. Caustic as were the words of Secretary Taft in commenting upon his withdrawal "for lucre" from a post of such high honor, they were none too severe. On the other hand, it may well be that there were many exasperating hindrances to the work of Mr. Wallace, due to the complicated nature of the administration of the canal, which have influenced his withdrawal. Be that as it may, we are satisfied that if the prerogatives of the present chief engineer of the canal were enlarged to the full scope with which he has been familiar in railroad work; and if the work could be organized on the well-tried lines of directness and simplicity that characterize railroad construction, there would be an end of the present confusion, and the digging of the canal would be pushed through steadily to completion.

PEARY AND THE NORTH PCLE.

The start of the ninth journey of Commander Peary to the Far North is marked by the quiet determination that is characteristic of explorers who attempt the perilous quest of the North Pole. And yet it is well understood among those who are familiar with the problem of Arctic exploration; that no expedition for the discovery of the North Pole has started under conditions that were, with a single exception, so favorable to success. That exception, however, is a serious one, and were it imposed upon a less experienced and indomitable leader, it might well mean the wrecking of the whole expedition. We refer to the fact that Peary is short some $\$ 30,000$ of the sum necessary to thoroughly equip his expedition and provide that margin for contingencies which, in a venture of this kind, should always be a broad one. The explorer starts within a few days. That is certain. The alternative of his setting out amply supplied with every material resource, or of his starting handicapped and burdened with the thought that he is running at all times perilously near to the limit of his resources, depends upon the immediate liberality of those who may feel themselves able to furnish the sum needed for a full equipment. We mention, in passing, that contributions may be forwarded to Herbert L. Bridgman, the treasurer of the Peary Arctic Club, at 52 Wall Street, this city.
If, as we sincerely hope, the necessary funds are immediately forthcoming, Peary will set out for the North Pole under conditions that should command success, that is, as far as success is dependent upon human and not natural conditions. Success is largely a question of the man, of the ship, and the company. Of the man it is scarcely necessary to speak; for in his previous journeys he has exhibited in a high degree the requisite judgment, resolution, and endurance that go to make up a successful Arctic explorer. He is perfectly familiar with the conditions, and in his previous dash for the Pole he went far enough north on the final sledge journey to be able to form a reasonable presumption as to the character of travel that lies between his farthest north and the Pole itself. Elsewhere in this issue we give a description of the ship "Roosevelt." She represents the combined experience of her commander and of many explorers who have preceded him; and the $\$ 100,000$ that was spent upon her has been de. voted entirely to giving her great structural strength both in the hull and the engines, and not a penny of it has been wasted on merely decorative or luxurious features. In fact, the "Roosevelt" is decidedly Spartanlike in the extreme severity of her appointments. The ship's company that goes to the Far North will join at Cape Breton, and it will be composed of men who are familiar with Arctic navigation. It is not upon them, however, that the ultimate success of the expedition will depend, so much as upon the twenty-five selected Eskimos who will make.the final dash with Peary for the North Pole. Many of these have been living, for some time past, in the neighborhood of the point on Grant Land from which the sledge journey will be commenced. To these natives the trip, except for its ruggedness and the cutting loose from the outside world, will not involve the novel and untried experiences which the public might naturally suppose. In other words, these hardy, faithful, and courageous people will form an ideal company for the last supreme effort.
In the course of an interview of the writer with Commander Peary on board the "Roosevelt," the explorer outlined the plan of campaign by which he hopes to reach the North Pole in the spring of 1906. He will start early this month from New York and sail to Cape Breton, where the present ship's complement will leave her and the crew which will take her into the Arctic regions will be shipped. Here he will take on the remainder of his stores and five hundred tons of coal. From Cape Breton he will steam at a reduced speed, in order to economize coal, direct for the northern coast
of Greenland, the scene of his former explorations. The large amount of ice which has been coming down from the North this year encourages the belief that more than usually open water will be found. When the "Roosevelt" encounters the ice the real battle with the difficulties of the frozen North will commence. It is now that the powerful compound engine and the broadbladed propellers of the ship will be called on for their supreme effort. Normally the engine horse-power is from 1,000 to 1,100 , but as soon as the ice pack is encountered, live steam will be turned into the low-pressure cylinder, and the available thrust on the propeller will represent about 1,500 horse-power. The peculiar form of the bow, and of the underwater sections for ward, will now begin to tell, and the good ship will be able to smash her way through. ice which would have been impassable to any of Commander Peary's earlier ships.

He expects to reach latitude 83 north, off the most northerly point of Grant Land, before he is frozen in, or by September 15. The winter will be spent in preparing the outfit, and Commander Peary states thai this work alone will furnish abundant occupation and interest during the long winter's night. The articles to be made include fur clothing, sledges for the final dash to the Pole, harness for the dogs, whips, tents stoves, and the preparing and packing of rations. The sun begins to show its rim above the horizon on Feb ruary 28; but, of course, there is twilight for many days preceding that. Hence, the start on the great sleảge journey will be made early in February. The ship will be the base from which the expedition will work, and the complement of fifteen men who constitute its crew will remain on her. The North Pole party will be made up of twenty-five sleds with one Eskimo and six to eight dogs to each sied. They will be heavily loaded down at the start with provisions, outside of which very little will be carried beyond the necessa"y instruments in the way of sextant, theodolite, aneroid barometer, etc.
Regarding the character of the travel which he would be likely to meet with on the 420 -mile journey from the ship to the Pole, Commander Peary frankly admitted that he expected it to be of the very roughest, consisting probably, unless land should be fouid, of a mass of broken and up-ended ice, presenting a scene of confusion that it would be difficult to describe. He estimates that he will make about ten miles a day on the outward trip, and fifteen miles a day, because of his lighter load, on the return journey. Should the difficulties prove even greater than this rate of speed would indicate, and provisions runs short, it would become necessary to kill off the dogs for food-a contingency which happened on one of his excursions, when the party returned with but one dog left out of the many with which the expedition started. It should be mentioned in closing, that if the hecessary funds are forthcoming the explorer will establish wireless communication between the various stations of the expedition-an installation which would contribute not a little to the ultimate success of the venture.

TIME FOR ANOTHER PRINCIPIA.

A general restatement of physical science is now due. The extensive researches in the higher phases and states of matter, beginning with Crookes, and extending to the present, have so enormously expanded all conceptions of nature, that a vast work like Newton's Principia is urgently needed. The new book would be basic, fundamental, and epoch-making. For when gravitation was discovered and its phenomena reduced to rigid law, all men at once saw that it was part of the base of the existing order of things. But Crookes's first vacuum tube made us aware of the exist ence of phenomena equally important. Radiation is as basic as attraction. And it may easily be imagined to be actually of greater use in the sidereal structure, if one mode of activity can be more potent than another.
There exist without doubt many other phases of radiance besides the Alpha, Beta, and Gamma; as many possibly as there are letters in the alphabet. Every nook and corner of the universe must be, and in the very nature of things is, saturated with radiations, and of many kinds or phases. The researches of J. J. Thomson on corpuscular states of radiance ought to be incorporated into the new Principia without changeword for word, as well as the marvelous papers read by Arrhenius at the International Congress of Science in St. Louis also. And his great paper written in the Lick Observatory in July, 1904, and now published as Bulletin No. 58, should be transferred without change, bodily. This is one of the most remarkable scientific productions of any age. The work of the Curies would make several chapters of the new book. The writer has been in Mount Lowe Observatory for five years, and it does seem that science has received more remarkable and splendid additions than at any time since Newton. For is it not as great to find that there is a flux everywhere within the universe as to detect the laws of gravitation? It may prove to be greater. The sun may not be required to shrink in diameter nine inches
daily to maintain its present rate of radiation. The process of receiving and sending out corpuscles is com petent to supply all its radio-activity. And it can issue many kinds of radiance, so long as the interchange with other suns is maintained. The problem here now is so much larger than any ever presented to man before, that all others appear to be childlike in comparison. It is to discover, rescue from space, and use these obscure radiations from our own and other suns. All other employments that can be en gaged in by human hands are as straws beside this chief of all work and research. Arrhenius shows that many particles, balanced by radiance and attraction "swim in space" in regions adjacent to suns; but vast quantities not in the clutch of critical forces escape and dart into space. These are surely the corpuscles of electricity exploited by Thomson. For three years the floods of mail received here, letters, essays, pamphlets, books, everything, have one inevitable trend and tendency, and that is: The universe rests on an electrical base. In other words, nothing exists but electricity. This doctrine comes here from all directions. This universe is now maintained by "action at a distance", that is, radio-activity is its sole support. There is not a trace of a new idea in this. It is exceeding familiar. All have heard of it thus: "Action and reaction are equal." This is flux and flow of radiance in a nutshell.
Then the universe is alive, is a living organism. This is familiar also; it was said in India many thousands of years ago, and has teemed on the pages of all Aryan literature since. None gave it attention, thinking it to be a vagary of some poet. The reception and emission of electrical corpuscles by every sun in existence are the causes of every conceivable phase of radi ance. These two combined constitute the life of Na ture. All work like that of Roentgen, Lenard and a hundred like them must be put into the great Prin cipia.
It is a wonderful thing to be upon a mountain and watch the scientific literature change. And the most astonishing of all is to behold two things: the rapidity and worldwide unanimity of wheeling into the grand procession or march on the "electrical way." There are electrical "pushes and pulls" everywhere, universal and cosmical. They are so delicate that early physicists in many cases could not detect them. But now they are being explored with comparative ease. Thus every form, phase, condition, state, or type of radiation is corpuscular. Circulation throughout the universe is a rigid proof of conservation. Radiance is manufactured on the surfaces of suns. Radium is all right, and does not conflict with conservation. It receives and pays out like suns. So does everything else. The radiations of most phases of matter are too feeble to be detected by present means. For the words action and reaction are equal. They ought to go into the new Principia thus: Activity and return are equal. Great is the demand from all sides for the Principia.

BURKE'S OWN ACCOUNT OF THE SPONTANEOUS ACTION

OF RADIUM ON GELATIN MEDIA.

The following is an abstract of the communication which was made to Nature by Mr. J. Butler Burke, of the Cavendish Laboratory, Cambridge, and which has given rise to so much sensational newspaper discussion:
"In the course of some experiments on the formation of unstable molecular aggregates, notably in phosphorescent bodies, I was led to try whether such dynamically unstable groupings could be produced by the action of radium upon certain organic substances. It will scarcely be necessary to enter here into an account of the many speculative experiments which I have at one time or another tried, but it will suffice if I describe, as briefly as possible, the experiment which, among others, has led to a very curious result, and that is the effect of radium chloride and radium bromide upon gelatin media, such as those generally used for bacterial cultures.
"An extract of meat of 1 pound of beef to 1 liter of water, together with 1 per cent of Witter peptone, 1 per cent of sodium chloride, and 10 per cent of goldlabeled gelatin, was slowly heated in the usual way, sterilized, and then cooled. The gelatin culture medium thus prepared, and commonly known as bouillon, is acted upon by radium salts and some other slightly radio-active bodies in a most remarkable manner. In one experiment the salt was placed in a small her-metically-sealed tube, one end of which was drawn out to a fine point, so that it could be easily broken. This was inserted in a test-tube containing the gelatin medium. The latter was stopped up with cotton wool in the usual way with such experiments, and then sterilized at a temperature of about 130 deg . C. under pressure for about 30 minutes. Cultures without radium were also at various times thus similarly sterilized. When the gelatin had stood for some time and become settled, the fine end of the tube containing the radium salt was broken, from outside, without opening the test-tube, by means of a wire hook in a side tube. The salt, which in this particular experiment consisted of $21 / 2$ milligrammes of radium bromide,
was thus allowed to drop upon the surface of the gelatin.

After 24 hours or so in the case of the bromide, and about three or four days in that of the chloride, a peculiar culture-like growth appeared on the surface, and gradually made its way downward, until after a fortnight, in some cases, it had grown fully a centimeter beneath the surface. If the medium was sterilized several times before the radium was dropped on it, so that its color was altered, probably by the inversion of the sugar, the growth was greatly retarded, and was confined chiefly to the surface. It was found that plane polarized light, when transmitted through the tube at right angles to its axis, was rotated left-handedly in that part of the gelatin containing the growth, and in that part alone.
"The controls showed no contamination whatever and no rotation. The test tubes were opened and microscopic slides examined under a twelfth power. Objects were observed which at first sight seemed to be microbes, but as they did not give sub-cultures when inoculated in fresh media they could scarcely be bacteria. The progress of any of the sub-cultures after a month was extremely small, and certainly too small for a bacterial growth. It was not at all obvious how bacteria could have remained in one set of tubes and not in the other, unless the radium salt itself acted as a shield, so to speak, for any spores which may originally have become mixed with the salt, perhaps during its manufacture, and when imbedded in it could resist even the severe process of sterilization to which it was submitted. On heating the culture and re-sterilizing the medium, the bacterial-like forms completely disappeared; but only temporarily, for after some days they were again visible when examined in a microscor'ic slide. Nay, more, they disappeared in the slides when these were exposed to diffused daylight for some hours, but re-appeared again after a few days when kept in the dark. Thus it seems quite conclusive that whatever they may be, their presence is at any rate due to the spontaneous action of the radium salt upon the culture medium, and not alone to the influence of anything which previously existed therein. When washed they are found to be soluble in warm water, and however much they may resemble microbes, they cannot for this reason be identified with them, as also for the fact that they do not give sub-cultures as bacteria should.
"Prof. Sims Woodhead has very kindly opened some of the test-tubes and examined them from the bacteriological point of view. His observations fully confirm my own. He assures me that they are not bacteria, and suggests that they might possibly be crystals. They are, at any rate, not contaminations. I have tried to identify them with many crystalline bodies, and the nearest approximation to this form appears to be that of the crystals of calcium carbonate, but these are many times larger, and, in fact, of a different order of magnitude altogether, being visible under comparatively low powers; and are, moreover, insoluble in water. A careful and prolonged examination of their structure, behavior, and development leaves little doubt in my mind that they are highly organized bodies, although not bacteria. Unfortunately, the quantity is so very minute that a chemical analysis of their composition is extremely difficult. The amount of salt in the first instance is so small, and the number of aggregates, or whatever they may be, thus produced perhaps still smaller.
"Photographs, together with the numerous results of eye observations, indicate that a continuous growth and development take place, followed by segregation. The stoppage of growth at a particular stage of development is a clear indication of a continuous adjustment of internal to external relations, and thus sug. gests vitality. They are clearly something more than mere aggregates in so far as they are not merely capable of growth, but also of sub-division, possibly of reproduction, and certainly of decay.
"I have ventured, for convenience, in orãer to distinguish them from either crystals or microbes, to give them a new name, radiobes, which might, on the whole, be more appropriate as indicating their resemblance to microbes, as well as their distinct nature and origin. Some slightly radio-active bodies appear also to produce these effects after many weeks. A more detailed account of these experiments will be published shortly. This note merely contains some of the principal points so far observed."

THE CURRENT SUPPLEMENT.

The current Supplement, No. 1541, ojens with a wellillustrated and well-written article by Herbert I. Bennett on the building of the Santa Fé Railroad into San Francisco. Carl Lautenschlaeger, who has become well known to Americans by his connection with the New York Metropolitan Opera House, writes on "Theatrical Engineering, Past and Present." It is a well known fact that steamers will perform vibrations of a magnitude that depends upon the design and location of the engine. The well-known Gerrian marine engineer, Otto Schlick, has formulated some valuable rules for the construction and arrangement of the
marine engine, calculated to minimize these vibrations. It is mainly due to his investigations that modern transatlantic liners may sail at speeds of twenty-four knots. Schlick's investigations have been carried out by means of an instrument of his invention called the Pallograph, described in the current Supplement by Dr. Alfred Gradenwitz. The "Dey" Time Register is described by Emile Guarini. Sir William White con tinues his discussion of submarines. In an entertain ing article by T. C. Hepworth, the incongruities and anachronisms of artists are treated. Charpentier finds that odorous substances are definitely acted upon by the N-rays. The results of his researches are summarized in a brief note. Prof. August Smithells writes on the Temperature of Flames. Recent progress in photography is reviewed by Dr. Ludwig Guenther. A his tory of the telephone is presented by W. H. Sharp, in which the claims of Reis are revived.

OPENING OF EXTENSIONS OF THE NEW YORK CITY

 SUBWAY.On Monday, July 10, the Broadway section of the Rapid Transit Subway, comprising tiwo tracks, extending from Wall Street to Battery Place, through which it passes in the form of a loop, as at City Hall Park, and the Lenox Avenue East Side extension from 135th Street under the Harlem River to the elevated section at 149th Street, and thence via Westchester Avenue and Boston Road to West Farms, was opened to the public for the first time, trains being run on five minutes headway. This marks approximately the completion of the Manhattan system, except the Washington Heights extension, which is to be in operation before the expiration of the summer.
The tunnel under the Harlem River is composed of two separate tubes, having a space below the roadbed of five feet, to collect seepage that may accidentally leak through. Pumps are provided in the center and at each end to draw this water out in emergencies.
The tunnel is dry at all times, and resembles in ap pearance the stretch between 33d Street and 42d Street on Fourth Avenue. The bottom of the tunnel is thirty feet below the river surface. The successful termination of this great work is a triumph of American engineering skill, and the facilities afforded will be of last ing benefit to the city and its population.

OFFICIAL METEOROLOGICAL SUMMARY, NEW YOKK,

 N. Y., JUNE, 1905.Atmospheric pressure: Highest, 30.15; lowest, 29.61; mean, 29.96. Temperature: Highest, 90, date, 18th; lowest, 51 , date 8 th; mean of max., 77.6 ; mean of min. 60.1; absolute mean, 68.8; normal, 68.9; deficiency under the mean of 35 years, -0.1 . Warmest mean temperature for June, 72, in 1888, 1892, 1899. Coldest mean, 64, 1903. Absolute maximum and minimum for this month for 35 years, 97 and 47. Average daily deficiency since January 1, -0.7. Wind: Prevailing direction, west; total movement, 7.275 miles; average hourly velocity, 10.1 miles; max. velocity, 46 miles per hour. Precipitation, 4.18; greatest, 1.19, date 12 th; average for 35 years, 3.29. Excess, +0.89 ; deficiency since January 1, -3.21 . Greatest preciritation, 7.70, 1887; least, 0.86, 1894. Thunderstorms, 2d, 6th, 7th, 19th, 22d, 23d, 26th. Clear days, 7; partly cloudy, 12; cloudy, 11.

Near the end of the 60 's, when most of the early bridge companies had been formed, there were, besides the engineers interested in bridge-building firms, only few experienced bridge engineers in this country. The engineers who were at that time connected with bridge companies were mostly men who had gained their experience in the employ of some railroad company, had worked out their own type of construction, and had experience, not only in designing, but also in superintending the construction and erection of bridge work. Their theoretical knowledge, measured with the present standard, was limited to elementary methods, but their thorough practical training enabled them to combine theory and practice to the best advantage. They understood how to make their designs conform to the methods of the workshop, as well as to facilitate erection. This was really the beginning of the development of American bridge building and of the distinctly American types of construction which at that time differed so materially from those of other countries. The most distinguishing feature of the methods then prevailing in this country, as compared with those of other countries, the influence of which is felt to the present day, is that at that time in America the bridges were designed by experienced specialists, and the work was constructed in shops built and equipped for that special purpose by experienced mechanics trained in that class of work. At first these companies controlled the work in certain territories, or the contracts were awarded to them on account of the reputation of their engineer. However, as competition became keener, railroads desired to purchase their bridges for the lowest price, and invited several firms or companies to submit tenders on the bidders' own designs, which started the competitive system of designing and bidding on bridge work.

THENAVY WIRELESS SCHOOL.
by walter l. beasley.
The latest department of instruction in the United States navy is the wireless school in the Brooklyn navy yard. The prac tical training of young sailor electricians for this new and important branch of the service is the outcome of the rapid develop ment and the extensive application to be made by the navy of this navy of this subtle system of communica-
tion, both on tion, both on battleships and coast stations.
The wireless school is quartered in the second story of the Bureau of

Equipment building in the Brooklyn navy yard, and is housed on board the receiving ship "Hancock." Lieut. W. A. Edgar, U. S. N., is executive officer of the electrical and wireless school. Chief Electrician Bean, in charge of the navy yard wire less station, is the main instructor, and Chief Electrician Delany is assistant. The class now being drilled have come up from the electrical class located below, where for three months they have been put through a course of electricity in general, which is especially applicable to ship and station requirements, where they are destined to be sent for future duty. In the general electrical class, actual work is given in the handling of electrical machinery, dynamos, and the manipulating of the electrical switchboard, which regulates the interior com munication of a modern battleship. A facsimile of those used on a man-of-war is installed in the room, and sections are daily drilled in the operating of the numerous switches, etc. After twelve weeks' preliminary work in general elec trical school, they receive their finishing touches by going through a month's practical instruction in the wireless class. After completing four months of thorough and systematic instruction, having obtained in this interval a fair knowledge of adjusting and manipulating the apparatus, they are prepared to graduate. An interesting and picturesque sight is afforded by a peep into Uncle Sam's wireless schoolroom. Passing down the long corridor of the Equipment Building, one hears a series of loud buzzing sounds. On entering the spacious classroom, the visitor is plunged into a veritable beehive community of bustle and sound. Seated around three tables are some twenty-five bright-appearing young sailors, each deeply absorbed in mastering the wireless process. For a limited time each boy is drilled at the sending key; the remainder at the table with pen and paper are engaged in receiving and translating the sounds of the buzzer, the key of the latter being connected to a small battery. The wireless navy code alphabet is made up of a series of dots and dashes of relative length These are indicated by buzzes received in the ear 'phone, which must be accurately learned by the beginner. They are also printed by the automatic Morse recorder on a tape line. Receiving by ear is, however, the most speedy, and the method generally employed in active service by operators on ship and shore stations.

Navy Wireless Class at Work.

Receiving Wireless Messages at Brooklyn Navy Yard.
words per minute is the average sending capacity. Experienced operators send from twelve to fifteen words, and receive as many as thirty. Transmitting is a matter of power. Receiving depends entirely on delicate ad justment of apparatus, as well as a keeneared operator. Chief Electri cian Bean imparts the benefit of his expert experience in the taking apart and putting together of all the main electrical instruments. This is the most vital part of the training of wireless operators, who are destined to

Fridays are examination days, when the instructors test the ability of each individual of the class, and they are marked and rated accordingly. Ten to twelve

Foundation Completed. First Shell in Place.

On February 21, 1905, the Height was 39 Feet

tallest concrete chimney ever constructed.

On March 28, 1905, the himney Had Been Built

28,1905 ney on M 1905.
6307
Inches.

The Chimney on May
be sent, most
of them, to remote localities, where they must depend cntirely upon their own technical skill in the case, and making repairs of any breakdown of their appar atus, which is most likely to occur. A novel sight to see is a section of the class high aloft on one of the fighting masts of some of the battleships now at the navy yard, being taken up by the wireless officer for an object lesson in examining the method of arranging the aerial wires.

During the thirty-day term, through constant application and daily practice of six hours, and through the scientific and systematic drilling of Chiefs Bean and Delany, the class of wireless aspirants have been so perfected in the art, that they are qualified to graduate, and are competent to enter any ship or shore station of the navy, and to flash a message from one to two hundred miles distance, and receive and translate the same. In order to get a fine body of operators, the government offers liberal pay inducements, including rations, far in excess of the remuneration given to ordinary seamen recruits. The latter receive only $\$ 16$ per month, while the electrical boy, who enlists and passes the preliminary examination in electricity, is rated as third-class electrician, at $\$ 30$ per month. Advancement is certain, if accompanied by conscientious and ambitious labor, up to second classs, bringing $\$ 40$, and thence to first class, at $\$ 50$ per month. The highest rating of chief electrician amounts to $\$ 70$. The high efficiency of government wireless telegraphs is strikingly illustrated by the Cape Nome and Fort St. Michael stations, which Gen. A. W. Greely, Chief Signal Officer, states transmit 5,000 words easily in an afternoon across the 107 miles of waterway.

TALLEST CONCRETE CHIMNEY EVER CONSTRUCTED
 Tacoma, Wash., claims to in

 clude among its objects of interest the loftiest concrete chimney in the world. It belongs to the Tacoma Smelter Company, and has just been completed.From the base of the foundation to the top of the chimney is 307 feet $63 / 4$ inches, and the cost was $\$ 28,000$. The stack was built to carry away the poisonous fumes from the smelting works at Tacoma. In its construction 1,225 barrels of cement were used, in addition to which the structure contains 105,000 pounds of T iron, 705 cubic yards of sand, and 231 cubic yards of gravel. Towering more than one hundred yards
from the earth, and without a single supporting guy, this chimney, because of its relatively narrow base, presents a very striking appearance.
The concrete foundation of the chimney is $361 / 2$ feet square and 6 feet thick. For the chimney proper, the mixture was one part cement and three parts sand.
The chimney is constructed in two parts. From the foundation up to a height of 90 feet there are two distinct shellsone built within the other; while for the rest of its height it is built with a single shell.
The purpose of the double shell is to protect the structure from cracks and strains due to extreme variations of temperature. The inner shell, which is separated from the outer one by an air space of five inches, is designed to shield the outer shell from the direct effect of the intense heat at the base of the chimney; while the outer serves as a like protection to the inner shell, by shielding it from cold weath-
er, which might cause it to crack by cooling too suddenly.
The outer shell also takes up the heavy bending stresses caused by wind pressure. Not only are ordinary conditions guarded against, but the chimney is expected to withstand a tornado. Circulation of air between the shells is secured by the provision of small penings at the bottom.
The entire chimney was built in three-foot sections, and an average of three feet a day was made in the construction of the double sec tion, and six feet per day on the single or upper section. Sectional molds were used and the entire work was handled from the inside, a scaffolding being built up with the chimney. All materials were rais ed by means of a cable attached to the drum of the engine that operated the concrete mixer.
The inside diameter of the chimneyis 18 feet, and the out side 21 feet. From base to apex the chimney is rein forced with T orced with T ron according to the Weber system

The bridge built by J. W. Murphy in 1863, over the Lehigh River at Mauch Chunk for Mauch Chunk, fo he Lehigh Valley Railroad, was the first pin-connect ed bridge constructed entirely of wrought iron in its main mem-
bers; cast iron being used only for joint boxes con necting the compression members. Many bridges of similar construction were built after this, but it was not until after the failure of the Ashtabula Bridge, in 1876, that cast iron was entirely discarded as too unreliable a material to be used in any parts of a railroad bridge.

Stern View of the Ludlow Aeroplane, Showing Double Set of Propellers. A NEW AEROPLANE.
tions by aeroplane a maximum of 200 pounds per horse-power expended. This result was reached by placing the aeroplanes at the end of a long arm revolving about a fixed center. Hiram Maxim, Mr. Hargrave, and others have constructed motors weighing less than 10 pounds for each horse-power developed. Propulsion and lifting power are solved problems, and
porting surface, the form of the flying machine, the material of which it is to be built, the power of the motor to be employed, whether propellers or moving wings are to be used, the form of rudders or other expedients for effecting the steering and starting, the maintenance of the equilibrium, and the plan of safely alighting.
The supporting power of the air has been determined. Prof. S. P. Langley, of the Smithsonian Institution, Washington, D. C., sustained under favorable condi-

A NEW AEROPLANE.

by israel ludlow.
The following points in flying by means of the aeroplane must be cleared, either by study of the past efforts of others, or by personal experiments: The supporting power of the air, the resistance to a forward movement in it, the extent in square feet of the sup-

Side View of the Ludlow Aeroplane, Showing Arrangement of Supporting Planes, Rudder, and Propellers. librium and safe support.
it is obvious that there is the margin between 10 pounds and 200 pounds to carry the weight of the aviator and the flying machine. Care and attention must therefore be devoted to the general form of the machine, with the object of obtaining automatic equi-

After numerous experiments with models, many of them on different lines from any previously constructed, and many of them very successful and encouraging, I have begun and nearly completed the construction of a full-size flying machine. It is built on the aeroplane principle, that is, it has no gasbag or balloon to support it, but is supported in air only when in motion, and by the upward re action of the air upon the under side of thin fixed surfaces or aeroplanes, which are slightly inclined to the line of motion.

The framework is of light bamboo, of one and one-quarter inches, and is covered with light canvas treated with a preparation of boiled linseed oil and a drier. The joints are bolted with $3 / 16$-inch bolts, and bound with light yacht marlin. There are two groups of three superimposed aeroplanes placed by pairs in tandem fashion. A large supporting surface with a manageable area and less weight of frame is gained by using superimposed aeroplanes in this manner. The two halves of each of the two middle aeroplanes are set at a diedral angle with each other.
The upper forward aeroplane is a trapezoid in shape. Its forward edge is 13 feet in length, its rear edge is 18 feet. Its sides are 7 feet 3 inches in length, and it has a depth of $61 / 2$ feet. The middle front aeroplane forms a diedral angle with the top of its sides reaching the upper aeroplane, and its two halves are $71 / 2$ feet long, with a depth of $61 / 2$ feet. The lower front aeroplane is rectangular in shape, and has a width of 10 feet and a depth of $61 / 2$ feet. The open space dividing the two sets of aeroplanes is 6 feet wide.
The upper rear aeroplane is rectangular in shape, and 21 feet by $61 / 2$ feet in width and depth. The two halves of the middle or diedral angle rear aeroplane are each 11 feet wide by $61 / 2$ feet in depth. The lower rear aeroplane is rectangular in shape, and 9 feet by $61 / 2$ feet in width and depth. There is a total of $5561 / 4$ square feet of surface; but as the supporting surface of the diedral angle aeroplane is not greater than the horizontal projection of such diedral angle aeroplane, the supporting surface is calculated at $4911 / 4$ square feet. These diedral angle aeroplanes give direction to the line of flight, prevent
oscillation, and overcome a tendency of the machine to turn around on its center of gravity. They also give lateral stability; for when the machine tilts, the halves of the diedral angle of the aeroplanes which are down are more horizontal than those on the other side, and receive consequently greater air pressure, and the equilibrium of the flying machine is recovered.

Longitudinal equilibrium is gained by dividing the air current that passes the under surface of the aeroplanes. It is apparent that any upward or downward tendency of either the fore or aft aeroplanes is counterbalanced by the opposite effects on the other planes. The light connecting rod crossing the open space between the fore and aft aeroplanes forms the fulcrum upon which this force of the wind acts.

The inclosed triangular chamber formed by the diedral angles of the middle aeroplane with the upper aeroplanes gives direction to the air current passing through them, and imparts additional steadiness to the flying machine. The edges of the diedral angle aeroplanes not extending to the edges of the two upper aeroplanes, a further improvement in the stability is gained by leaving the same yielding and elastic under gained by
The position of the aviator, as that of the motor, is below the aeroplanes. This brings the center of gravity below the center of pressure. By a simple arrangement of levers in connection with the lower front aeroplane, which also is a rudder acting horizontally, automatic equilibrium is imparted to the flying machine by the shifting of the position of the aviator caused by the tilting of the flying machine upward or downward. This pendulum motion of shifting the center of gravity with reference to the center of pressure can be enlarged at will, and made to correspond to the change in the center of pressure produced by the alteration in the angle of incidence or by greater speed, and assists the efforts of the horizontal rudder to correct the undue tendency to ascend or descend.
The machine is mounted on four wheels, the two front ones being capable of guidance. This arrangement permits alighting at an acute angle and rolling upon the ground until momentum is exhausted; or to gain headway by running along the ground before starting in flight.
My weight is 167 pounds. The weight of the flying machine without the motor is 165 pounds. The motor will weigh about 75 pounds. Giving a total weight of 307 pounds, or 1.6 square feet of surface for each pound of weight to be lifted. That this proportion of square feet of surface to pounds in weight is most desirable, was verified by many experiments with models and man-lifting kites.
Examples of this sort in nature are not very conclusive. The dragon-fly and the gnat, if their proportions were magnified until each weighed a pound, would have 25 and 50 square feet of surface respectively. The condor, the largest soaring bird, weighs 17 pounds and has less than 10 square feet of supporting area. The ratio of the wing surface of the swallow to its weight is about $31 / 2$ to 1 . The giant petrel (Procellaria gigantea) a wonderful example of longsustained flight, with at times absolutely motionless wings, has a ratio of 1.56 square feet of surface to each pound of weight, and is supposed to expend less than $5 / 100$ of a horse-power of effort to keep itself afloat in the air.

At an angle of flight of ten degrees, the air reaction, according to the table compiled by Prof. S. P. Lang. ley, from the result of exhaustive experiments, in which experiments he was aided by an appropriation from the United States government, is 30 per cent of the normal pressure of the air striking the plane at an angle of 90 degrees.
At a velocity of 30 miles an hour, or 2,640 feet per minute, the wind, according to Smeaton's formula, exerts a pressure on a plane at right angles to the current of 4.5 pounds to each square foot of surface. The supporting power of the flying machine running at 30 miles an hour will therefore be $4911 / 4$ times 4.5 times 0.30 , or 662.85 pounds. sustained. Inasmuch as the total weight to be lifted is less than half that figure, and as neither the drift nor the body, the edge of the wings, braces or other resistance will require that large margin of resistance, it is likely that a less speed or a smaller angle of incidence to horizontal progression will be sufficient.
There are two propellers of four blades each, 8 feet in diameter, and varying in width from 5 inches to 18 inches at the extreme edge. The skeleton structure of the propellers is of bamboo, and is covered with light oil canvas. The blades are in pairs, one behind the other, and connected together with diagonal struts and ties, so that in motion the members of one blade will be in compression and the other in tension.
While I have made application for letters patent for various parts of my flying machine, I have no desire to preclude anyone else experimenting along the same lines, and it is because I believe for the general advancement of the science that one should communicate results with others who may be interested in the same field, that I make public these experiments. It will be pleasant to record success at the trial, but progress
in this science has so far been built upon failures. If, however, the flying machine should not fly, it will be no reason why this research should be abandoned, for success is often built on failures.

THE TEMPLE OF ABU SIMBEL.

The forgotten and half-obliterated civilization of ancient Egypt has given us few more splendid evidences of its departed magnificence than the ruins of the sanctuaries at Abu Simbel. These are counted among the most stupendous monuments of early Egyptian architecture, and even the gigantic edifices found in Egypt proper are hardly more interesting. Abu Simbel is located on the west bank of the Nile, between Korosko and Wady Halfa, in Nubia. The illustration herewith is of the entrance to the so-called Great herewith is of the entrance to the so-called Great
Temple, which was dedicated primarily to the gods Ammon-Rē of Thebes and RēeHarmachis of Heliopolis, though Ptah of Memphis and the deified Rameses II., who founded it nearly thirteen centuries before Christ, were also worshiped by its votaries. Burckhardt, in 1812, first called the attention of Egyptologists to this sanctuary. In subsequent years Belzoni, Lepsius, and Mariette repeatedly freed the temple from the sands Mariette repeatedly freed the temple from the sands
of the shifting west desert and laid bare the wonders of the inner chambers. In 1892 Capt. Johnstone, R.E., restored the façade and built two walls to protect the temple from the encroaching sands.
The longer axis of the Great Temple runs almost due east and west, with the entrance at the eastern extremity, so that the rays of the rising sun penetrate even to the innermost sanctuary. The length of the rock-temple, hewn out of the living granite of the hillside, is 180 feet from the threshold of the entrance to the back of the innermost chamber. A flight of steps leads from the river to the fore-court carved out of the steeply sloping cliff. At the rear of this forecourt rises the imposing façade with its rows of graven captives, its hollow cornice and embellished balustrade. The entrance is at the center, flanked on the north and the south by pairs of colossal statues of Rameses II., the northern pair shown in the accompanying engraving. The temple proper consists of an eight-pillared, Great Hypostyle Hall, 58 feet by 54 feet, corresponding to the covered colonnades of the temples built in the open, a four-pillared Small Hypostyle Hall, 36 by 24 feet, a transverse chamber connected with the latter by three doors, and the inner sanctuary. Besides this, there are eight smaller chambers adjoining either the large or small hall, which were evidently used as storerooms for the temple utensils and furniture. The walls, the ceilings, and the square pillars are covered with reliefs, still vividly colored and of great historical value. They usually depict events of importance that occurred during the reign of Rameses II., but in some cases the intention of the artists appears to have been to secure decorative effects only.
Remarkable as the temple proper is, the real interest in the structure centers in the colossi of Rameses II. grouped about the entrance and hewn out of the cliff against which their backs are placed. Each of these gigantic figures, 65 feet in height, is larger than the world-famous colossi of Memnon, and despite the enormous scale on which they are executed, the workmanship is admirable. The pleasing, intelligent countenance and characteristic nose of the great Pharaoh are best preserved in the southernmost statue, though the northern pair shown in the photograph are little inferior. The second colossus has unfortunately been partially destroyed, and the head and shoulders, which have fallen from the rest of the body, lie upon the ground at its base. The supporting stonework under the cracked right arm of the first of the colossi in the photograph was placed in that position by one of the later kings of the 19th Dynasty, probably some ten or eleven centuries B. C.
Rameses II. is shown in the statues with the double crown of Upper and Lower Egypt. His hands rest upon his knees and from his neck depends a ring bearing his name. This is also carved upon the upper arm and between the legs. To the right and left of each colossus and in various other places are smaller figures of other members of the royal family. Upon the southern pair of statues are several Greek, Carian, and Phœnician inscriptions of considerable philological and historical interest, which were carved by soldiers of military expeditions which had penetrated as far as
Abu Simbel during the centuries following the construction of the Great Temple.

It is almost impossible to describe the majesty and splendid dignity of these tremendous figures. To be truly appreciated they must be viewed under the dazzling glare of the Egyptian sun or the brilliant whiteness of the Egyptian moon. Even the human figure standing upon the hand of the statue as shown in the photograph helps us but dimly to comprehend with what infinite toil and patience the thousands of slaves and bondsmen, laboring with their primitive tools under the sting of the taskmasters' lashes, hewed these monster human likenesses from the living granite. And even though our understanding of the methods with which they wrought and the purposes for which they raised their edifices is but too often fragmentary,
our admiration for these old Egyptian builders is boundless, and we can only regret that Time, the destroyer, made it impossible for us to complete the record.

Cownewfundente.

Where Did the Photographer Stand?

To the Editor of the Scientific American:
The article in your issue of June 10, 1905, entitled "Where Was the Camera Set Up?" by Prof. William F. Rigge, has been of special interest to me.
I wish to thank the professor for his novel solution of a somewhat difficult problem; and at the same time I take the liberty of calling his attention to the fact that his last statement appears to be somewhat erroneous.

Were the picture plane parallel with the front of the observatory, the mortar lines in the front of the transit room would have retained their normal position in the photograph, but as near as I can tell from the reduced cut, accompanying the article, they vanish at a point on the horizon 347 feet to the right of 0 . This is the vanishing point of east-and-west lines, or $V R$. If a transit is set up at this point and trained on the optical center of the camera, the line will be found to be due east and west, or at right angles with the line from the camera to point O. Then train the transit on O, and the angle will be found to be very nearly 10 deg. 45 min . and the course will be N. 89 deg .15 min . W., showing that the plate in the camera formed an angle of about 10 deg. 45 min . with the front of the observatory, instead of about 8 deg., as stated, and the entire front of the building would measure 4 and $9 / 16$ inches instead of $41 / 8$ inches, as it does in the cut, showing that the lines are reduced a little more than 10 per cent. The angle of the picture plane with the front of the building also accounts for the apparent shortening of the wall space at the left of the door to the equatorial room, which, were they parallel, would show a trifle larger than that between the door and angle at the right.
Pittston, Pa., June 13, 1905.

The Intelligence of a Cat.

To the Editor of the Scientific American:
I have read with much interest the letters in the Scientific American describing how cats opened doors by climbing to the old-fashioned thumb catch and pulling it down with their paws. In confirmation of the evident reasoning powers of cats, I want to relate to you what a cat did that I owned a few years ago.
One night my wife and I were awakened by the door bell ringing. My wife got out of bed and answered the call by asking, "Who's there?" Not receiving a response, she opened the door and in bounded the cat with a "Meouw," as much as to say, "Thank you for letting me in." We could hardly credit the belief that the cat had rung the door bell, but we were convinced of this fact later on. A neighbor called our attention to it soon after by saying that she had seen our cat ring the door bell that afternoon by standing on his hind legs and with his front paws busily engaged in pulling the handle up and down until it rang.
Whenever he wanted to get in the house in the night time he would ring the bell, much to our disgust,. so I thought I would lock him up in an old hen coop after supper. This worked well for a few nights, until he got wise to the fact, and then he made himself conspicuous by his absence, and all the calling I could do would not bring him in sight, although he was very much attached to me. Later on, however, after we had gotten sound asleep, the door bell would ring again and I would let him in.
I have owned a number of very smart cats, but this one exhibited greater reasoning powers than any cat I ever saw, but like the good boys and girls in story books, he died young, giving up the ghost soon after he was a year old.
Coopersville, Mich., July 5, 1905.

American Homes and Gardens.

To the Editor of the Solentific American:
Please accept our most sincere congratulations upon your new departure in the field of literature and magazine publication.
A better title than "American Homes and Gardens" could never have been chosen, and the table of contents, per se, gives assurance of unfailing interest from beginning to end.
The success of such an enterprise under the auspices of the Scievtific American is a foregone conclusion. The word "American" appeals to everyone who is inspired with love of country and patriotic pride and the word "Homes" is as broad and dear in its signification as the very globe upon which we live. "Gardens," too, conveys the true idea of what the surroundings should be, of beautiful grounds, large or small, as the case may be, which should constitute the real foundation that nature itself has provided for homes everywhere.
Not the "cooped-up" flat for the average, nor the
costly apartment house for the rich, nor the squalid tenement for the poor, but "American Homes and Gardens" for all; let the cost be what it may, regulated by the income or financial ability, yet with every possible comfort, every convenience, and the best decoration.

Scientific knowledge of new methods and plans for construction, hints for the exterior and interior illustrations, charming in reality and helpful in suggestion, besides articles upon current topics of the most comprehensive character, as perfectly described in your editorial, present an almost unlimited province for thought, investigation, and practical enterprise.

Years ago, we wondered why the Building Monthly did not develop into such a magazine, which now gives every promise of realization in fact of all that the projectors have formulated theoretically.

Mrs. Ejward P. Foster.

Cincinnati, Ohio, July 3, 1905.

THE SIXTH INTERNATIONAL AUTOMOBILE RACE FOR THE BENNETT TROPHY.

On July 5, for the fourth time, the Bennett trophy was won by a French machine. Not only this, but, what is more notable still, by a machine almost identical in construction to that which won it last year, and driven by the same successful chauffeur, Leon Théry. The race this year was over the same course that the French eliminating trials were held upon three weeks before-a circular course 85.35 miles in length, known as the Auvergne circuit. The course had more sharp turns, steep pitches, and narrow stretches than any on which the race has been run heretofore, and that an average speed of over $471 / 2$ miles an hour was maintained by the winner in traversing it four times speaks well for his driving and for the car. That familiarity with the course has considerable to do with winning a race is shown by the fact that in this, the second race he has won upon it, Théry increased his average from $45^{1 / 2}$ to 47.63 miles an hour.
Eighteen machines were entered in the race this year, the following six countries being represented: England by two horizontal-cylinder Wolseley machines and a Napier; France by two Richard-Brazier cars and a De Dietrich; Germany by three Mercedes; Austria, ditto; Italy, three Fiats; and America, two Pope-Toledos and a Locomobile. With the exception of the Wolseley machines, all had four-cylinder vertical gasoline engines capable of developing something like 100 horse-power. The two Pope-Toledo machines were the lowest-powered of the lot, they being only 50 horsepower each.
The start was made at Laschamps at 6 A. M., Théry on his Richard-Brazier being the first to get away. The other cars followed at five-minute intervals, the 140-horse-power Locomobile driven by Tracy being the last machine to be dispatched (at 7.25 A . M.). Only 15 minutes later Théry reappeared, he having mace the first round in 1 h .41 m . Car No. 6-Lancia's Fiat-made the fastest time on its first round, viz., 1 h . 35 m ., which is equivalent to a speed of 53.9 miles an hour. The machine dropped out in the second round, however, owing to a stone hitting the radiator and breaking it, so that the water leaked out. After this accident to the Italian car, Théry had no formidable rival. His machine ran like clockwork, and owing to its being equipped with improved Michelin tires, the tire trouble which he experienced was comparatively slight and new tires were quickly obtained. That any tires can be built to stand the strain of taking such sharp corners as that shown in one of our illustrations at speed, seems marvelous; but when such corners have to be rounded every few minutes in the course of a seven hours' run, much depends on the judgment and skill of the driver as to whether the tires will last. Let him not slacken his pace properly in making the turn and the result is almost certain to be a burst tire. Even Théry is said to have had the shoes of his car replaced twice, besides having to repair several punctures on the road. Upon pulling up at a tire station, four men quickly jacked up the machine, while others removed the old tires and put on new ones, which were almost instantly inflated by compressed air stored in reservoirs for the purpose. Only $51 / 2$ minutes were required in which to change all four tires. The race may be said to have been a race of tires; and it is at any rate partly owing to the extensive preparations for their renewal that the victory went to a French car.
On a course of this nature, one would naturally expect the machines having the greatest horse-power to
make the fastest time, on account of their more rapid acceleration. Such is not always the case, however; and a long-distance automobile road race bears a resemblance to the fabled race of the hare and the tortoise, in that the ability to go and keep going, even if the speed is not of the highest, often gains a machine a prominent place. A case in point is that of the 50 -horse-power Pope-Toledo driven by Lytle. A stone flew up and struck the main oil pipe of this machine in the early part of the race, but the mechanic
managed to hold the pipe together, and the race was finished in this manner, the car obtaining twelfth place, although the engine received scarcely any oil. The Locomobile racer broke a chain in the first round, and later developed trouble with the clutch-shifting collar, such that it was obliged to drop out of the race on the second round. It may be recalled that Lytle on the second round. It may be recalled that Lytle
is the driver who finished in the Vanderbilt race last is the driver who finished in the Vanderbilt race last
year after many mishaps. In both events he has year after many mishaps. In both events he has
shown great perseverance and, although driving a lowpowered car, has managed to finish in spite of all difficulties. He is to be rewarded, we understand, by being placed at the wheel of a powerful six-cylinder Pope-Toledo racer now building for the Vanderbilt race on Long Island on October 14.
As the race progressed, it was seen that Théry was in the lead, and he was anxiously awaited at the start ing point at each successive lap. He finally came around for the fourth time at 1.10 P . M., having won the race in 7 hours and 10 minutes. Cagno, on a 120 -horse-power Fiat, got second place in $7: 26$, and Nazzaro, on another Fiat, third in $7: 27$. Fourth place went to Callois on the second Richard-Brazier, his time being 7 hours and 29 minutes. Earp, on an 80 -horse-power Napier machine, was fifth in 8 h .30 min., while an Austrian Mercedes driven by Braun came in sixth. None of the other Mercedes machines made a favorable showing. Next .to the French the Italians did the best. That their running was very uniform is shown by their finishing only one minute apart. It is significant that the first four cars to finish within 19 minutes were equipped with Truffault-Hartford shock absorbers.

SOME NEW AUTOMOBILE TRACK RECORDS.

In America track racing is more in vogue this year than ever before, and meets in the vicinity of New York are being held almost weekly throughout the season. At one of these, held on July 3 and 4, a new mile record of $484-5$ seconds was made by a White steam racer, and a new Christie machine with a motor incorporated in both front and rear axles made its appearance. One of the photos (page 49) shows the rear motor of this peculiar car. The front driving equipment was described in our last Automobile Number. Mr. Christie has built a motor in at the rear of his car in a similar manner, and with the two he gets about 120 horse-power on a straight course, although on a track the car has nearer 100 horse-power available. The rear engine has four $5 \times 5 \% / 4$ cylinders, while the front one has four $61 / 4 \times 63 / 4$. The car has 28 -inch wheels in the rear, and 30 -inch wheels in the 28 -inch wheels in the rear, and 30 -inch wheels in the
front. The contact boxes of the two motors are confront. The contact boxes of the two motors are con-
nected, so as to advance the spark uniformly for each, but this is the only connection between the two. The front motor is started with a crank as heretofore, but the rear one is set going after the car is in motion, by letting in the clutches. When making the turns on the track, the rear motor is shut off by pressing a button in the steering wheel, which cuts off the ignition current. The cone clutches on the outer face of he motor flywheel are fitted with band brakes on their outside. It was due to the expansion of these clutches from heat developed by a sudden application of the brakes, and the consequent failure of the clutches to hold, that Mr. Christie lost the final heat of the match race between the Chicago Automobile Club and the Automobile Club of America for the Thomas trophy, on July 4. One of the photos shows Webb Jay on the White "Rocket" passing Christie on the last turn, and winning the 5.56 -mile race in 5:281-5. Christie's time in the previous heat (which he won by 150 yards, although making the last mile on a flat tire) was $5: 144-5$, and his fastest mile $501-5$ seconds. Another photograph which we reproduce shows Jay making the new track record and going at the rate of 73.77 miles an hour. This is the first time a steam machine of the heavy-weight type has made a world's record on the track, and it is interesting to note that the White racer is built on the same lines as the regular touring car, and is fitted with the same size compound engine, although a larger generator is used, and a pressure of 600 pounds per square inch is carried, or double that used in the ordinary White machine. The racer has a shaft drive with a disconnecting clutch, so that the engine can be run and warmed while the machine is at rest. The frame is hung below the axles, and clears the ground by but 4 inches, which accounts for the great cloud of dust raised by the suction. The weight of the machine is 1,700 pounds.
A new record for middle-weight cars was made by a structed for track racing. This was a mile in 55 4-5 seconds.

These records were made on the Morris Park race track, which is a long track with a wide unbanked turn at one end and a short, insufficiently-banked curve at the other. A complete circuit of the course equals 1.39 miles. There were several accidents, owing to cars running through the fence at the sharp turn, but fortunately the drivers escaped serious injury.

PEARY'S ARCTIC SHIP, THE "ROOSEVELT."
The new Arctic ship "Roosevelt," which has been built by the Peary Arctic Club to enable Commander Peary to make another attempt to reach the North Pole, is now at New York, taking on stores and equipment for the trip. She is 160 feet long on the load waterline; 184 feet in length over all; with a beam at the waterline of 32 feet, and over the guard-strake of 35 feet 6 inches. She has a depth of 16 feet 6 inches, and at full load has a displacement of about 1,500 tons. The form of the ship and its construction have been designed to meet the severe conditions of the serivice for which she is built. Her cross section and her diagonals show a model that is very round below the waterline, and indeed, from the guard-strake her sections narrow down to a broad easy bilge, to which there is a very sharp dead rise from the keel. This form is chosen to enable the ship to rise when she is being nipped by the ice, pressure upon her wedge-shaped hull tending to lift her bodily upward. In construction she is certainly the strongest wooden ship, or ship of any kind, ever built; for in addition to her heavy frames, and triple planking and sheathing, she is strutted and trussed from end to end with massive horizontal and diagonal timbers. The stem, sternpost, keel, keelsons, frames, planksheer, and garboard strake are all of selected white oak, all bolted and drift-bolted with more than usual thoroughness. The frames are molded to 16 inches at the heel and 10 inches at the head, and they are placed only 2 feet apart from center to center. To give longitudinal strength, a lattice-work of diagonal straps of steel is laid for the full length of the ship, the distance from strap to strap being about 6 feet. The straps are rabbeted down flush into the outside face of the frames. The skin of the ship consists of two courses of 5 -inc ${ }^{1}$ planking, the inner course of yellow pine and the outct of white oak. Between the two courses is laid a sheathing of tarred canvas. On the inside the frames are covered with 3 -inch white oak ceiling, and it can be seen at once that these four layers of planking and waterproof material will render the ship not only water-tight and stiff, but warm in cold weather. The beams of the main deck are spaced 4 feet apart center to center, and the lower beams are immediately below the deck beams. A system of diagonal struts is worked in between the beams, the whole being thoroughly tied with through-bolts. The system of trussing is completed by a central line of tie-rod stanchions, the tie-rods running down inside the wroughtiron piping. These stanchions are constructed so that they can be tightened up at any time in the same way as the truss rods of the old wooden Howe truss bridges were, that did such good service on our early railroads.
The "Roosevelt" is protected against the grinding of passing ice by special protection at the bow, stern, and waterline. At the bow, an extra thickness of $21 / 2$-inch greenheart ice sheathing is worked on from the stem well back onto the body of the ship, and extending to the keel. A belt of the same sheathing. 5 feet wide, reaches at the waterline from stem to stern. The stem and forefoot are protected by a heavy steel strap extending down the cutwater and for a considerable distance aft below the keel. The stern which is built of white oak, is of great massiveness, and has a similar protection of $3 / 4$-inch steel plating and 1 -inch strap worked on. It extends from the keel over to the sternpost, and gives great strength to this part of the structure.
The vessel is provided with two deckhouses; the forward one is portable, and it has been made of sufficient size to accommodate Commander Peary and the officers of the ship. When the "Roosevelt" has been pushed as far north as it is possible to drive her, the plan is to carry the house ashore to serve as winter quarters. The crew are housed in the forward deckhouse, and Commander Peary and his staff have their quarters in the after deckhouse. The ship is heated by steam and lighted both by electricity and oil lamps. The motive power consists of a single inverted, compound engine, driving a 10 -foot fourbladed propeller. Steam is supplied by two watertube boilers, and, under trial, the "Roosevelt" made about 12 knots. She is expected to have a sustained sea speed of about 11 knots an hour. She will be driven north at about 7 or 8 knots to save fuel. The coal capacity is 500 tons. The ship has a peculiar looking rig, but one that is designed for the special work she has to do. She is rigged as a three-masted fore-and-aft schooner, and spreads sufficient canvas to enable her to make a fair speed under sail alone.
Two of our photographs show the construction by which it is possible to unship the rudder and the propeller blades while the vessel is at sea. For the rud der a large open well reaching through to the main deck is provided, of sufficient size to enable the massive rudder to be drawn up and hoisted on deck. To do away with the necessity of sending a diver down to release the gudgeons, the latter work in a vertical groove worked into the after end of the sternpost. The pintles are attached to the rudder post by heavy
straps, and, in unshipping the rudder, the gudgeons, sliding in the rudder-post groove, come up with the rudder itself. The four propeller blades which, by the way, are of large sectional area and made particularly massive and strong, can also be unshipped by sending a diver down to withdraw the bolts which hold them to the boss. They are drawn up through a well which opens into the body of the ship. By this arrangement the propeller and the rudder can be removed entirely out of harm's way when the ship is in the embrace of the ice pack.
The curious boats shown in one of our illustrations are sealing canoes, which are taken along for the use of the Eskimos in hunting game. Their peculiar sheer and long overhanging bow render them particularly suitable for this work. They are dragged over the ice where it is necessary, and launched whenever open water is reached. The Eskimos propel them with their native paddles, and they are found to be admirably adapted for this work. The total cost of the ship was about $\$ 100,000$.

From a very early period steam has been used expansively in marine engines, and indeed sometimes to a ridiculous extent. Some engineers as late as the civil war hardly seemed to realize that there was any limit to expansion, although Isherwood's famous experiments on the "Michigan" in 1861 had demonstrated conclusively that, with low pressures, only a very moderate expansion is permissible, beyond which any further expansion is attended by an economic loss. As pressures increased it was natural and cor-

Sealing Canoes for the Eskimo Hunters.
steam from the boiler being limited to a small cylinder from which, in turn, the steam of lower pressure is exhausted to a larger cylinder. The compound engine was invented almost as early as Watt's separate condenser, Hornblower's patent dating back to 1771, and Wolff's patent for a two-cylinder engine dating back to 1804. With the low pressures prevalent at that time the compound engine was actually at a disadvantage compared with the simple one. When pressures had gotten up to about 60 pounds, however, the compound engine began to assert itself, the pioneer in that respect being John Elder, of the firm of Randolph \& Elder, which is now known as the Fairfield Engine Works. It is interesting to note that the Allan Line of steamers, which is now the pioneer in introducing the steam turbine for an ocean-going steamer, made the last scientific stand against the compound engine, going so far as to take duplicate vessels, and engine one with compound and the other with simple engines of the same power. The actual experience with these two vessels where the simple engine with the high ratio of expansion was constantly in trouble from breaking down, was a convincing proof that high ratios of expansion in a single cylinder were impracticable.

Up to 1840, there were no iron bridges in this country, except suspension bridges, in which iron links were used in the cables and suspenders, the floor-system being of wood. The first bridge in America consisting of iron throughout was built in 1840 by Earl Trumbull over the Erie Canal, in the village of Frankfort, N. Y.

View Showing the Lofty Bow.

Stern View, Showing the Waterline Protection and the Massive Construction of the Rudder and Propeller.

The "Roosevelt" Afloat in the Hudson River.

The Massive Rudder Head and Sternpost, and the Open Well Through Which the Rudder can be Drawn up on Deck Clear of the Ice.

The Cbristie 120-horse-power four-wheel drive racer, showing the four-cylinder motor forming the rear axle and driving the wheels direct. A similar motor drives the front wheels,
The White steam machine passing the Christ ie racer and winning the Thomas trophy in the final heat of race. Time for the 5.56 miles, $5: 28 \frac{1}{5}$. Christie's time in previous heat was $5: 14 \frac{4}{5}$

AN ELECTRICALLY-OPERATED GYYOSCOPE

NEWLY-DISCOVERED MOTION.
 by edward durant.

This specially-constructed gyroscope for use in the College of the City of New York, made by Charles Dressler, from suggestions by Prof. Alfred Compton, is quite new, in that it produces its own motion through the medium of electricity. Within the stationary ring mounted on the stand are carried the con ducting wires, which convey the current from the bind ing posts to mercury cups located at the gimbal pivots of the two movable rings, and thence to the magnetic field ring and the armature brushes. One mov able ring is pivoted to rotate in a vertical plane. The magnetic wire-wound field ring is gimbaled to rotate in a horizontal plane, while the armature, composed of a large disk encasing within the armature wires, is pivoted vertically in the field ring, and is in line with the vertical axis of the outer movable ring. In the illustration the brushes will be seen above the armature disk. Below is a special swinging weight, made to move to and from the armature disk by a crank-pin wheel operated by a worm screw on the armature shaft meshing with teeth on the crank wheel. The shaft of the motor is in the nature of a pendulum having the movable weight at the bottom. When set in motion electrically it has the function of a gyroscope, and if it is placed by hand in a position at right angles to the normal, or, in other words, in a horizontal position, while spinning, it will describe an orbital circuit like a planet or satellite, and revolve in a plane parallel with, or tangential to, the earth's surface.
The armature shaft supporting the pendulum weight then becomes a rotating radius vector, and the pendulum weight or armature disk becomes a miniature spinning, planetary mass, revolving in orbit with mu tual affection between itself, the earth, and other planets.
The gyroscope has a constant angular velocity, and a constant orbital time. The separate nutation device attached, consisting of a relatively light weight, oscillated radially by means of the worm gear on the radial shaft, through a small space above the theoretic supporting pivot, brings about the most marvelous mechanical movement yet discovered. The pendulum begins to rise to a horizontal position, as before, but by Nature's influence only; 'and after it reaches the horizontal position or planetary plane it performs the astronomical nutation phenomenon by gradually stopping and slowly starting again.
What we conceive of as weight or gravitational influ ence, passes out of the spinning mass to the imaginary supporting point or center of orbit.
When both the supporting rings or gimbals are in the same vertical plane, and the gyroscope wheel is rotating on axis at maximum speed, it will be observed that the gimbals cannot be moved freely by hand, except in the direction of rotation, and a very appreciable resistance is offered when an attempt is made to move the gimbals by hand in the re verse direction.
If the outer gimbal is forced by hand to move in the direction of this phenomena resistance, the inner gimbal immediately inverts before permitting the outer gimbal to move freely in this same direc ion it was at first forced.
When the mod el is at rest the heavy pendulum weight is by no means balanced by the very light oscillating weight.

Up to about 1860 the jet con denser was the one usually em ployed on board shif, which meant of course, that the boilers were con stantly fed with salt water; and this, in turn meant the deposition of great quantities of sulphate of lime scale on the heating sur face. With the low pressure then

THE "WHIRLPOOL" ILLUSION. A HELICAL AMUSEMENT WAY.
in boats by an endless chain from a lobby to the upper interior. As the boats come up, the passengers are confronted by a tremendous waterfall, the water falling from a great height, while the whirlpool proper is at their feet, ninety feet in diameter, the depth being fifty feet. By optical illusions the depth is made apparently much deeper, the waters dashing, jumping, and gyrating to the vortex below, from which the spray ascends. The roar of the mad waters is heard, and the boat starts down an inclined plane or spiral road, going by gravity on tracks at ever-increasing speed until through an opening it disappears at the bottom, apparently sucked into the insatiable depths below. Passing through dark tunnels over many bumps, the boat dashes into the foyer to sunlight and safety.
The building is inclosed, and with the liberal use of electric effects an artistic, realistic, and ingenious exhibition is given.
Our sketch from model shows the interior as the passenger views it when he reaches the top in the boat car; the lower cut gives an idea of the mechanical construction. As shown in the illustration, the interior of the whirlpool, being built as an inverted cone, shelves down with considerable pitch from the top toward the lower center. The shelves contain tracks upon which the boat cars run. From the base of the waterfall there runs all around the building a trough, which carries the water from the falls, and overflowing, it runs down the whirlpool and around the roadway.
The interior is covered with canvas to represent water, and with the electrical effects the whirlpool seems indeed to be a live, mad body of water, restless, hungry, and pitiless. The water descends to a tank at the bottom of the whirlpool, over which is built a bridge upon which the boats pass to make their exit, and from this tank the water is pumped to the top of the building to feed the jumping, spurting, wild, and troubled waterfall. The boats having sails set on the rear side, the passengers are protected from the spray.
Each car is in charge of a man, and as the cars are equipped with safety brakes and are run on signal, all danger of accident is eliminated.

IMPROVED METHODS IN HIGH-SPEED CHRONO PHOTOGRAPHY.

y ur ampo

densationt the amount of scale formed, it was practicable and safe to increase steam pressures, which accordingly resulted with a consequent reduction in the weight of machinery per unit of power.

THE " WHIRLPOOL" ILLUSION.

We illustrate herewith "The Great Whirlpool," the invention of Mr. Joseph A. Bruce, of Brooklyn, N. Y. This appears to be the latest thriller in the amusement line, and its novelty should appeal to the amusement-loving public.
A building over fifty feet high and one hundred feet square is built inside to simulate a monster whirlpool. The passengers who are seeking the sensation ascend

Instantaneous photography, and especially the chronophotography of a moving object, have enabled us to recognize the true nature of some animal motions of which we have had but very hazy conceptions. The operation of the cinematographic camera consists essentially in moving a sensitized film behind a photographic objective, and stopping it for a noment at regular intervals while an exposure is made. For ordinary purposes a rate of ten to twenty views per second is quite sufficient to photograph the different phases of motion. On viewing in a similar intermittently working outfit the series of photographs taken, the impression of a continuous motion is produced. For more rapid movements, however, the rate mentioned proves insufficient, and the late Prof. Marey, of Paris, who paid especial attention to the phenomena of motion, designed some ingenious means of abridgng the time of vxposure, and thus increasing the number of photographs taken in a second. By intercepting the beam of light with an interlocking disk fitted with narrow slits and rotating at a high speed, he was able to obtain photographs of flying insects in 1-25,000 second. The same proces: was subsequently made use of by Lendenfeld, who succeeded in reducing the time of exposure to $1-42$,000 sec. He was the first who succeeded in employing a continuously moving instead of an intermittently moving film for the disso-
ciation of the images by means of his high frequencies. By employing a rapidly oscillating mirror he produced on a fixed plate images which were separated by in tervals of 1-2,150 of a second.
The series of images obtained by this method are

Fig. 1.-Bull Chronophotographic Camera with Cover Removed
rather short and hardly adapted for a synthetic repro duction of motion. Moreover, they are somewhat blurred owing to the time of illumination, which de spite the rapidity of exposure, is still too great as compared with the speed of displacement of the image. Now, Mr. Lucien Bull, of Paris, the collaborator of Prof. Marey, further developed Marey's ideas. By using the electric spark as a source of light he was

Fig. 2.-The Bull Chronophotographic Apparatus.
able to effect dissociation of extraordinary rapidity without losing definition.
In order to obtain a series of images at corstant distances, which is a necessary condition for effecting the synthesis of the analyzed motion, Mr. Bull produces the electric sparks at intervals corresponding to equal displacements of a film.
The outfit used by him is represented diagrammatically in Fig. 4. In a camera box, A, a cylinder, B, is mounted on a horizontal shaft. To the same shaft is fitted outside of the camera a rotary current interrupter, which is connected with the primary winding of an induction coil, D. The induced current is allowed to flow to a Leyden jar condenser, F, the spark passing at E between two magne sium electrodes in front of the lens, G, which concentrates the rays on to the objective, O, in the focus of which the cylinder rotates. This cylinder carries a sensitized film and is rapidly turned. At each revolution a number of sparks corresponding with the number of contacts on the interrupter passes at E. The shutter is thereupon opened during one rotation to obtain a series of images at constant distances apart of an object placed beween the lens, G, and the objective. The shutter is a double shutter and is opened at the given moment by a cam on the edge of the cylinder. The closing of the shutter is effected automatically at the next revolution by the same cam
F'ig. 1 is a photograph of the apparatus with the cover removed. There are two objectives and two films, so that the ap paratus is adapted for taking stereoscopic views.

The cylinder is 35 centimeters in diameter and $10^{1 /}$ centimeters in breadth There are 54 contacts on the interrupter, thus breaking the current fifty-four times for each revolution of the cylinders. Con sequently fifty-four photographs are taken

Fig. 6.

Fig. 7.

Fig. 8.

IMPROVED METHODS IN HIGH-SPEED CHRONOPHOTOGRAPHY.

Fig. 9.

Leyden jar, and the electrical resistances. In Fig. 5 is a diagram showing the apparatus as used for stereoscopic views. Two sparks are produced in the same circuit, giving two distinct beams of light directed toward the corresponding objective. $E E^{\prime}$ are the spark-

Fig. 3.-Optical Condenser Used with the Bull Chronophotographic Camera.
aps, G the optical condenser, and $O O^{\prime}$ the objective of the apparatus.
Fig. 6 shows a series of images of a soap bubble which is traversed by a paper projectile thrown by a spring. In Fig. 7 is seen an ordinary fly in stereoscopic

Fig. 10.-An Enlarged Picture Taken by the Bull Apparatus.
views (a and a^{\prime}). To the right is shown a millimetric scale, by means of which the displacement of the obect is measured, and the tuning fork prongs giving the speed at which the images are obtained. These views were taken at the rate of 1,100 per second, whereas the bee represented in Fig. 8 in horizontal flight was photographed at the rate of 1,200 images per second. In Fig. 9 is seen a libellule (Agrion puella) on startng. These images were obtained at the relatively moderate speed of 600 images per second. One of the images composing this series is magnified in Fig. 10. The highest speeds so far obtained are more than 2,000 views per second, but Mr. Bull is of opinion that with specially constructed induction coils far greater frequencies can be obtained.
It should be remembered that the aggregate time of exposure is quite inappreciable as compared with the intermediate intervals of darkness. In fact, the duration of each spark has been calculated to be only about the $2,000,000$ th part of a° second. As the distance traversed by the film during this minimum interval is quite inappreciable, the image is as sharp as may be desired.

A London dentist named Whitehouse is the inventor of a scheme for overcoming the motion of a vessel on the sea, which was recently given a trial on one of the boats making regular trips across the English Channel. Many of the world's most distinguished scientists and inventors have taken a trial at this problem without success, but the present inventor says that it was never possible until electricity became available for the purpose. The berth designed by him is swinging, and supported by four cords. By means of electric motors these cords are automatically operated to counteract the motion of the boat, in which it is said to be very successful.

GAGE AND MARKER FOR GARMENTS
Adjusting the hem at the bottom of the skirt so that the garment will hang evenly, that is, at a uniform

GAGE AND MARKER FOR GARMENTS

distance from the floor all around, is a task that tailors and dressmakers find very tedious. Ordinarily, the work is done by pinning up a narrower or deeper hem according to the amount that appears necessary to the eye, and the result is often far from accurate. A re cent invention provides a device which marks the skirt at an absolutely uniform height above the floor. As shown in the accompanying drawing, this device consists of two standards firmly secured to a flat base. Each standard is provided with a slide movable there on, but adapted to be set at any desired position by tightening a thumbscrew. Hinged to one of the slides is a hollow arm, within which the marking rod is fitted. Two rods are provided, one adapted to carry a piece of marking soap, and the other a grooved wheel by which the skirt may be marked with a crease. The groove is adapted to bear against a creasing rib formed on the opposite slide. The wheel is pressed against this rib by a spring in the hollow arm. A spring catch fastened to the marking rod and hooking over a lug on the arm keeps the rod in its socket. In use the bottom of the skirt is placed on the model, who stands stationary while the operator moves the device around the bottom of the skirt. The slides are first adjusted to the proper height, as indicated by a scale on one of the standards. The bottom of the skirt is then caught between the marking rod and the opposite slide, and the marking is done by swinging the marking arm later ally against this slide. For light fabric, such as lawns, etc., the creasing wheel may be preferably used. The device may also be found useful for marking tucks, ruf fles, and the like. A patent on this device has been procured by George W. Sensbach and Mirgaret J. Sensbach, of Ronceverte, W. Va.

A GAS-SAVING DEVICE.

The amount of light given by a gas burner depends,

A GAS-SAVING DEVICE.
ot on the quantity of gas consumed, but on the character of the flame produced. A gas flame comprises a central dark area and an outer bright yellow spread, the latter, of course, giving the light. As the pressure is increased, the area of the dark part increases more rapidly than the yellow part, until a degree is reached beyond which the dark area increases at the expense of the light-giving part. Under such pressure, one can increase the brilliance of the jet by partly turning off the gas. While the ordinary gas cock thus provides means for regulating the pressure to the proper degree, the average man does not care to be bothered with it, and prefers rather to turn on the full flow of gas, even though it results in less light. For the benefit of the careless man, a device has recently been invented which may be applied to the gas pipe near the meter to regulate the pressure at all the burners in the house. As shown in the accompanying engraving, the device comprises a casing interposed between the meter and the burners. A hollow plug of the form shown in Fig. 3 fits snugly into the casing. This plug is formed with groups of small perforations, which vary in number corresponding with the numerals printed on the end of the casing as indicated in Fig. 1. A number of large openings are also provided to admit gas into the plug. A handle is hinged to one end of the plug, by which the latter may be moved to bring any of the groups of perforations into line with the outlet pipe above, and thus govern the pressure of the gas as it passes out of the plug to the burners. A socket is provided in the end wall of the plug, in which the handle may be folded, so that it will lie flush therewith, permitting the cover piece to be swung down. The latter is held closed by snapping it over a lug. In Fig. 4 we show a modification of the plug, in which a central groove is formed to provide a certain amount of gas to flow constantly, no matter in what position the plug is turned. We are informed that in a recent test of this gas check a saving of forty per cent was effected without diminishing the amount of light given. The flame produced was steady, and the flickering and noise which are commonly indicative of an uneconomical use of gas were entirely avoided. A patent on this gas-saving device has been secured by the Standard Development Company, 714 Union Street, New Orleans, La.

ODDITIES IN INVENTIONS.

Pipe-Gripping Attachment for Monkey Wrenches. -A recent patent provides a very simple means for converting an ordinary monkey wrench into a pipe wrench. It consists of a pair of toothed members, adapted to be fitted under the upper o fixed jaw or the wrench. One of the toothed members is formed with a U-shap ed body, ed bod y ,
adapted
t o embrace the stock of the wrench and overlap t h e other toothed member member. Th device is clamp ed to the wrench by means of a clamping screw in the overlapping end, which may be turned
 to press the adjustable member against the stock. The adjustable member carries a guide pin, which extends through the overlapping portion. At the top of the pin a head is formed which holds the two parts together, thus preventing one or the other being mislaid or lost. The advantages of this invention should be apparent to any mechanic.
Electric Heater.-As a substitute for a hot-water bag, a resident of Napoleon, Ohio, has devised the elec-trically-heated bag, which is illustrated herewith. It consists of an incandescent electric lamp inclosed by a perforated metal casing. The device may be connected to any electric lamp socket, and when the current is turned on the lamp will heat the casing. Over the latter a bag of soft fabric is placed, to prevent direct contact of the metal with the body. One side of the casing is made slightly concave, in order that it shall conform to the body when hot applications are made. The casing is made detachable, so that it may be removed when the lamp burns out, to permit of renewal. The advantage offered by this heater over the ordinary hot-water bag is that it will remain
hot continuously and at a constant temperature, where as a hot-water bag will rapidly become cooler as the water loses its heat.

ELECTRIC HEATER.
Combination Tool.-The combination tool illustrated herewith will be found of value in building and re pairing wire fences. t comprises in one instrument a hammer, hatchet, pliers, wire cutters, wire benders, and staple pullers. The ham pull The ham mer head is attached to one, and the hatchet blade to the other of a pair of hinged plier jaws. Just below the pliers ust bire consisting of tapering blades, formed on the opposite jaws. When it is desired to bend a wire, preparatory to making a loop, it is seized between the plier jaws, in the manner indicated COMBINATION TOOL FOR FENCE by our side view of
 he tool, when the BUILDING. the tool, when the ower end will be bent at right angles by the lug projecting above one of the cutter blades. Each jaw carvies at its upper end a pair of claws, which will be found useful for removing staples, etc.
Street Sweeper.-A manually-propelled street sweeper has just been invented, which operates somewhat on the carpet sweeper principle. The machine comprises a dirt receptacle, and a cylindrical brush or broom which is adapted to be rotated by chain-andsprocket connection, with the main wheels on which the sweeper is supported, so that as the apparatus is pushed along the street, the wheels in rotating will

A MANUALLY-OPERATED STREET SWEEPER.
operate the broom, sweeping up the dirt into the receptacle. Ratchet clutches are provided between the main wheels and their axle, so that the broom will revolve only when the machine is moved forward. The frame which carries the broom is supported at the rear by a small wheel or castor, and provision is made for regulating the height of the frame thereon to adjust the pressure of the broom on the street paving. The dirt receptacle is carried on an auxiliary frame, which is hinged to the main frame. This facilitates dumping the contents of the receptacle when desired.

Among the recent deaths reported is that of R. G. Armstrong, formerly a resident of Wichita, Kans., where he was a member of the fire department. While residing in that city he invented the harness snap which is now in use in the fire department of every large city in this country. The business of manufacturing these snaps grew to such proportions tbat Mr. Armstrong was compelled to move to Chicago, where he engaged in their manufacture on a large scale.

RECENTLY PATENTED INVENTIONS

Of General Interest.
FILTER.-L. QuImby, Youngstown, Ohio. This device cleans oil, such as that collected from machine-bearings, thus enabling its reuse. A primarily-acting strainer removes coarse
foreign matter and delivers the oil through a foreign matter and delivers the oil through a
valve controlled passage to a washer-chamber valve controlled passage to a washer-chamber
containing cleaning liquid. The dirty oil is containing cleaning liquid. The dirty oil is
passed through water in the washer-chamber, passed through water in the washer-chamber,
is partly cleansed and then discharged into a is partly cleansed and then discharged into cipitated. A third chamber receives the oil cipitated. A third chamber receives the on
from the heating-chamber from which upper sediment at the bottom. All chambers hav means for tapping off sediment from their
bottoms. Washer-chamber siphons off mixtures bottoms. Washer-chambe
of impure oil and water.
GAME apparatus. - R. D. Martin, Tampa, Fla. In playing the game the person takes hold of the ball, which is connected by a cord to a wire head, and throws it laterally
with the necessary force to cause it to swing with the necessary force to cause it to swing
around the post, the head turning on the around the post, the head turning on the base, swings nearer the peripheral face of the stalls. Instead of throwing, the ball may b struck by a bat, racket, or the like to cause it
to spin around the post and drop into a stall which is numbered. Other games may b played
FRAUD-DETECTING BotTlLe.-H. Metzinger, New York, N. Y. As is well known, in selling liquids of various kinds from bottles which have been partially emptied ample op portunity is afforded for fraud upon a pur chaser, because the bottle bearing the name of
a superior brand may be continually replenished with an inferior substitute to all appearance the genaine article. By the practice of the present invention it is hoped to prevent such perpetrations of fraud.
GUN.-C. D. Loutsenhizer, Cameron, Mo and its object is has reference to ordnance, proved breech mechanism, with a view to effecting a rapid loading, firing, and sighting. While the parts are simple in construction and arrangement, the operating of the gun is
largely automatic, which is a very desirable largely automatic, which is a very desirable
feature. Intended especially for use in the navy, it still is readily adapted for use as a field-gun.
mining-tool-W. J. Furbee, Watson, W. Va. This invention is an improved tool
for miners' use, and has for its object to provide in one implement a pick, scraper, a tamping-iron all arranged for convenient and
effective use separately. Heretofore these im plements have been separate and, with a cartridge-inserting stick, as well as an ax and
a shovel, form a miners' kit, which is a bulky a shovel, form a miners' kit, which is a bulky ready.
comb.-M. Erstling, New York, N. Y. In the present patent the improvement relates to toilet-combs; and the inventors' object is to produce a simple comb of a construction es
pecially adapted to facilitate the cleaning of pecially adapted to facilitate the cleaning of teeth in the case of breakage. The comb nor mally presents substantially the same appear ance as an ordinary comb ; but its parts may
EYE-MASSAGE MACHINE.-F. H. MAY, Birmingham, Ala. Mr. May's invention is in the nature of a machine in which mechanica vibrations are imparted to the eye through an constructed also as to permit the direct appli cation of either primary or Faradaic current to the eye. It is intended to relieve catarrual
troubles of the eye and eyelid and for muscular troubles of the eye a
ROOF-F'RAMING CHART.-E. E. White, this inventor has in view as an object the provision of a chart
the surface of which is so graduated or marked that the lengths, cuts, or bevels will be readily indicated to the ordinary mechanic or builder. Further, to provide a chart which when used in conjunction with the common steel square will assist the be-
ginner in cutting rafters, roof-boards, corniceginner in cutting raf
boards, and molding.
building-block mold.-J. Mcl. PettyJoHn, Terre Haute, Ind. The inventor's obof artificial-stone blocks involving certain of artificial-stone blocks involving certain
features of novelty whereby it is rendered better adapted for molding purposes generally, and particularly for molding hollow and also rough building-blocks. In practice he employs
a mold having sides and ends made laterally a mold having sides and ends made laterally
adjustable through peculiar framing and novel adjustable through peculiar framing and novel
connecting means. Minor features are also employed.
PROCESS OF EXTRACTING OILS GREASE, ETC., FROM SEEDS, WOOL, ETC.J. McMahon, New York, N. Y. The object of
the invention is the provision of certain improvements in the extraction of oils from seeds, grease from wool, etc., by the use of a
volatile solvent in a very economical manner and whereby the solvent is recovered for reuse and protected against an admixture of air to void the danger of an explosion.
REFLEX CAMERA.-C. A. Muller, New York, N. Y. One purpose is to provide in this case a camera-box containing a reflex focusing
attachment which when folded will occupy a
minimum amount of room, and, further, to so construct the box that any form of shutter or
type of lens can be employed and so that when the of lens can be employed and so that when
the camera is not in use the lens may be swung into a compartment adapted especially or it and the compartment closed by the lens board, thus protecting the lens a be without projections.
PACKING-RING.-J. J. McDonald, New York, N. Y. The invention has reference to adapted for connection beneath the tight and waterproo and a flooring; although it may be used for packing cylinder-heads or the like, the object and that will retain a suitable plasticity.
igniter.-J. Kellermann, 13 Neue-Ja
IGNITER.-J. Kellermann, 13 Neue-Jacob-
strasse, Berlin, Germany. As the cover is opened air flows into the receptacle, a mixture opened air flows into the receptacle, a mixture
of the combustible vapors and air is formed, and after a very short time a flame issues rom the receptacle top. This flame may be gain for igniting purposes. As the cover cluded the ignition process is interrupted and he flame extinguished, so that the igniting body or pill is not worn to any great extent.
and long duration of life for the same is inand long
aPPARATUS FOR FILLING BOTTLES OR other receptacles.-H. L. Hornung, New York, N. Y. While the apparatus may vell adapted to those which are carbonated and therefore foam upon being drawn into a filling of bottles with beer. The object is to provide for drawing beer and other carbonated iquids directly from the faucet and while in live or car

Household Utilities.

SCRUBBING DEVICE.-F. E. Whitney, crubbing-brushes, The improvement refers used as follows: The lever-handle is pushed ownwardly and away from the mop-handle hels at their ends are inserted within the V els at their ends are inserted within the
shaped recess or another somewhat similar as the case may be, and the spring portion is placed in notches before restoring the handle placed in notches before restoring the handle
to position. Then this handle is pressed back against the mop-handle, bringing strain upon ecurely in the notches, and by its elasticity holds the arms firmly in either V-shaped

Machines and Mechanical Devices.

BRICK-CUTTING APPARATUS. - C'. M. Steele and A. P. Steele, Statesville, N. C.
The invention is an improvement in that class of apparatus which are adapted to divide a ontinuous clay bar into brick lengths; and is an improvement upon the former patent were employed to transmit motion to the reel or clay-bar cutter, the construction and coaction of gears being such that the radius the driving-gear decreases while the radius
the driven increases in relative proportion, that the bar was cut or divided upon vertica

SPLIT GUIDE-BOX FOR STAMP-MILLS.W. N. Nolan, El Oro, Estado de Mexico,
Mexico. Mr. Nolan's invention has reference to guide-boxes and admits of general use, but particularly applicable to guide-boxes emstems of the p-mpars The invention refars more particularly to a type of guide-boxes made in two parts. The mechanism combines practically all the advantages of an integral structure, and a composite structure.
SWAGE FOR INSERTED SAW-TEETH.W. L. Newell and U. Staley, Buckeye, Wash. The principal object of the invention is the construction of a machine which while sim-
ple and comparatively inexpensive in construction will be thoroughly efficient in operation, which may be readily adapted for oneration upon saw-teeth of different patterns, wear both upon the teeth of the machine and wear both upon the teeth of the
upon the saw-teeth operated upon.

MORTISING-MACHINE.-O.
reensboro, N Mr. Wysong. Wysong Greensboro, N. C. Mr. Wysong employs a series of augers and hollow chisels arranged
horizontally and mounted in frames adjusted toward and from each other on the horizontal top of main frame. Stuff to be mortised is fed regularly and automatically to augers and chisels, it being supported upon a bed recip rocated automatically and regularly and provided with a "fence," adapted for adjustment
to accommodate work of different thicknesses to accommodate work of different thicknesse or mortises of different depths. The bed is
supported upon brackets adapted to be raised supported upon lowered by screens, according to thickness of stuff or location of mortises therein. Power is applied by treadle.
STUF'FING-BOX.-R. L. Mossman, Newng blows out it is necessary to draw the fir and blow off steam before the stem can be
repacked. Former devices were open to the repacked. Former devices were open to the
objection that the throttle had to be open while packing, consequently the valve-rod had to be disconnected and the ports covered.
Even with the ports covered the opening of
the throttle is risky when steam is on, and it requires manipulation and time. The inventem can be packed while the throttle is shut BRUSHING OR POLISHING MACHINE.. C. Johnson, Baker City, Ore. The device capable of general use and is especially well as for cleaning and polishing shoes, as like. It may by means of a flexible shaft be appicd in any desired position or angle, and operated with a small amount of power
ELECTRICALLY-OPERATED HYDRAULIC alve.-C. Engberg, St. Joseph, Mich. In ence to valves, the inventor's more particula object being to enable large and unwieldly
valve-gates to be readily controlled, especially valve-gates to be readily controlled, especially
from a distance, and to apprise the operato from a distance, and to appr
of the condition of the valve.
carbureter.-H. Brasier, 36 Rue Moli tor, Paris, France. This invention is a car bureter in which the volatile liquid fuel is
introduced into the air current in two diverging jets which meet to increase the atomizing vision is made forburiliary air supply activ upon an increased suction through the car bureter, this supply being controlled by spring-seated valve lifted more or less accord-
ing to the force of the suction exerted. Tening to the force of the suction exerted. Ten-
sion of the spring on the auxiliary valve may be regulated at will so as to place the portion of the air and fuel forming the
mixture under control of the operator.
SPRING-MOTOR ATTACHMENT FOR GINE-SHAFTS.-W. J. Bell, Los Angeles GINE-SHAFTS.-W. J. BELL, Los Angeles,
Cal. Mr. Bell's invention is an improved means for starting an engine or other rotatabl period of its rotation. An improved attach ment is available for starting an engine or starting the rotation of any shaft to which it
may be applied or for energizing-that is may be applied or for energizing-that is,
maintaining or increasing the rotation of maintaining or increasing
the shaft at any juncture.

Railways and Their Accessories.
RAILWAY SAFETY DEVICE. - W. H. lates particularly to improvements in device lates particularly to improvements in devices
for preventing head-on or rear-end collisions of two trains moving on the same track the object being to provide a simple means for providing the setting of emergency-brakes of a train or trains should two trains be moving in the same block, thus bringing a train or
trains to a full stop in time to prevent trains to
CAR-AXLE.-F. M. Thompson, East Liverpool, Ohio. Mr. Thompson's invention is an improvement in car-alles. In the use of this
improvement the inventor avoids any dragging or grinding of the wheels and the consequent curves by permitting the opposite wheels to turn independently and secures this result by a simple construction which permits the ready connection an
axle-sections.

Pertaining to Recreation.

CARD-RECEPTACLE FOR DUPULICATE Y. The object of this invention is to provide a cribbage board with a series of receptacles so arranged as to receive the several hands
nd the trumps in order to provide for play ing of duplicate cribbage. The board proper is mounted at the top of the receptacle and below it are arranged in the front and end
walls two series of horizontal recesses for the walls two series of horizontal recesses for the
hands and trumps. The former are alternately numbered from front and ends so that their numerals serve to designate the trump re
cesses. Receptacles are provided for packs
Rel left after dealing. Designed for two players but four can be accommodated.
AMUSEMENT DEVICE.-H
and J. J. Kirkpatrick, Jr., New York, N. Y This invention pertains to improvements in arrying cars are movable along a track, the object being to provide a means for starting the cars and also to provide movable scenic devices along portions of the track that will tance at high speed, while, in fact, the car is moving a comparatively short distance at slow mped.

Pertaining to Vehicles

HARNESS.-R. Weeks, Carmel, New York. The object in this case is to minimize the efficiency for the purpose specified, thereby not only simplifying the rig, but lightening the load on the horse and permitting the invention relates particularly to "track-har ness"-that is harness intended for light or racing vehicles. Mr. Weeks has invented another harness especially for use with light vehicles in track or speedway driving, but applicable to various other conditions. It provides for the use of a breast-collar, enabling
the horse to draw heavier loads than with the the horse to draw heavier loads than with the
draft from the saddle or belly-band alone, as filed, and he also provides means for support ing hopples for pacers and other attachments

WHEEL-RIM CLAMP.-W. L. Bliss, South Egremont, Mass. The present invention rehas particular application rims of wheels, and fecting the joints of the rims of vehicle wheels. The principal object is to provide an article which may be readily, easily, and con
veniently adjusted to the rim of a vehicle wheel for the purpose of perfecting the joint of said rim when the latter is being placed upon the pokes, such device assisting in the final cutting of the rim.
Vehicle-tire. - J. C. Raymond, New York, N. Y. In this tire a rim plate is pro vided along the side edges of which are cir cumferential channels. At the outer edge of each channel there are inwardly projecting lugs formed at Ineir inner sides with enlargements or ribs. In coctioction with employed on the rim and are formed in their outer edges with ockets to receive the tire edges. The sections hook portions having enlarged heads for en gagement with lugs of the rim plate, and springs are arranged within the channels to secure the engaging parts of lugs and hook portions of rim plate and sections.
Noтe.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention,

Business and Personal <uants. READ THIS COLUMN CAREFULLY.-You numbered in consecutive order. If you manul.
facture these goods write us at once and we will
send you the name and address of the party desir.
ing theinformation. lu every case it is neces-
sary to give the nure or the inquiry.
MUNN \& CO.

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. YO26.-For manufacturers of cellu-
lose from cornstalks.
U. S." Metal Polish. Indianapolis. Samples free.

Inquiry No. B02\%.-For manufacturers of beads
out of soft stone. Walsh's Sons \& Co., Newark, N.J Inquiry No. Y028.- For manufacturers

Perforated Metals, Harrington \& King Perforating

 Inquiry No. \%029.- For manufacturers of glasstubing having 1-16 inch inside diameter, for making
wireless telegraph coherers. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st., Inquiry No. 7030.-For parties who can furnish Adding, multiplying and cividing
Felt \& Tarrant Mfg. Co., Chicago.
Inquiry No. 7031 . For manufacturers of wire
masical instrumet strings. Sawmill machinery and outfits manufactured by the
Lane Mfg. Co.. Box 13, Montpelier, Vt. Inquiry No r032.-For
I sell patents. To buy ther. on anything, or having Ine to sell, write Chas. A. Scott, 719 Mutual Life BuildInquiry, No. Fo33.- For manufacturers of cap.
sules of carbon dioxide gas; also siphon for charging
water.
The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Machine Company,
Foot of East 138 th Street. New York.
Inquiry No. Yo34.- For parties selling sheet alu-
minium and a soldering flux for soldering aluminium. Gut strings for Lawn Tennis, Musical Instruments,
nd other purposes made by P. F. Turner, 46th Street and Packers Avenue, Chicago, Ill.
Inquiry No. Yo35.-For manufactur
chinery for making ban ma into fine flour.
Manufacturers of patent articles, dies, metal stampber machinery and toois. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
Inquiry No. 7036.-For manufacturers of brass
band instruments.
Space with power. heat, light and machinery, if de-
ired, in a large New England manufacturing concern, aring more room than is necessary for their business. Address Box No. 407, Providence, R. I.
Inquiry No. 7037.-For manufacturs of springs
wound by key and run for five or ten minutes. Absolute privacy for inventors and experimenting.
A well-equipped private laboratory can be rented on atories, 548 East 80th St., New York. Write to-day. Inquiry No. \%o38.-For parties who print colored
pictures on paper in one continuous piece of about 6
inches wide and 12 feet long. Manufacturers of all kinds sheet metal goods. Vendamusement machines, made of pressed steel. Send
samples. N. Y. Die and Model Works, 508 Pearl St., N.Y. Inquiry No. VO39.-For manufacturers of tele-
scoping steel fiag poles. paper proposal.
Is the title of a clever little love story published by
the LACKAWANNA RAILROAD solely on its merits as a bright piece of fiction. It is contained in a beauti. pages which describes some of the attractive vacation The book may be had that road.
The book may be had by senciay ten cents in stamps
Inquiry No. $\mathbf{N 0 4 0}$.-For manufacturers of cast
 chnquirt Noo. 7042.-For manuacturers of me.

hints to correispondents.
Names and Address must accompany all letters or
no attention will be paid thereto. This is for
our information and not for publication.

(9680) C. H. C. says: Can you inform me of the philosophy of the curving of a tennts
ball when struck with a "citt," and why some balls, with a forward twist, drop, and others, with a reverse twist, carry a long way without
dropping? Is the cause gyroscopic action, or the result of the climbing motion of the ball
against the air, or what? A. The curving of a against the air, or what? A. The curving of a
tennis ball is probably due to the same cause ball is such that the air pressure is greater on the side toward which the ball rotates, pushing
the ball in the opposite direction. See the ball in the opposite direction. See
Scientific American, July 16, 1904, for a discussion of this question. This explains upward
and downward motions of balls, as well as sideways motions. There i
tion, so far as we can see.
(9681) L. S. says: Several times I observed in your valued paper that one thou-
sand millions is called one billion. So sand millions is called one billion. So
(issue of February 18, 1905, page 146) Mr. Edgar L. Larkin says that $500,000,000 \times 64=$
thirty-two billion. As far as I know, it is only thirty-two billion. As far as I know, it is only
thirty-two thousand millions; or thirty-two millions $=32,000,000$, while thirty-two bil-
lions $=32,000,000,000,000$. Please tell me in your notes and queries who is right. A. What
is a billion? In Great Britain it is a million million- $1,000,000,000,000$; but in America billion is a thousand million $-1,000,000,000$.
We of course print numbers as they are exWe of course print numbers as they are ex-
pressed in America. Both ways are right; but one should know the custom of the country in
which he is, to know what is meant. The which he is, to know what is meant. The tion of numbers, three figures in one period. (9682) M. E. G. Says: I would like
to know how long the longest railroad and street car rails are made nowadays. A. The
usual length of railroad and street car rails usual length of railroad and street car ralls is
$30-$ feet, and they are furnished this length unless otherwise specified. They may be, how-
ever, rolled longer than this when especially ever, roll
ordered.
(9683) D. B. says: Will steam at a pressure of fire to woodwork? The dry house
heated) set fin our factory gets so hot that our ther-
in in our factory gets so hot that our ther-
mometers fail to register, as they are only
marked to 125 degrees. A. The temperature marked to 125 degrees. A. The temperature
of steam at a pressure of 120 pounds per square inch is 350 degrees Fahr. This is not bot enough to set fire to wood, but is hot
enough to char it, and wood should not be allowed to come closer than two inches to such
steam pipes without being protected with assteam pipes without being protected with as
bestos or other suitable covering. Thermometers may be purchased which will register up
to this temperature, or if desired considerably to this
(9684) C. E. D. asks: In your reply to query 9606 , you state that daylight is gone
after the sun is 18 deg. vertically below the horizon. It seems to the writer that this is
an error. On almost any clear night in the latter part of June, the sun's light can be
traced, decreasing as the hours pass by, farther and farther north until the North Pole is passed, when it begins increasing until dawn.
If this is not daylight, what is it? It is a well-known fact that the nights in summer are
not so dark as in winter, and this must be be not so dark as in winter, and this must is not so fully excluded A. You are quite right in supposing that the light seen in the sky after the sun sets is sun
light. It is reflected from the dust particles in the upper air. This is twilight, not day light, since daylight implies the seeing of ob-
jects distinctly, while twilight implies a dim, indistinct vision. Twi here means between that is, neither light nor darkness. The twl-
light zone is about 1,500 miles broad, to the east and west of the sunset line. At different
times in the year a different time is require times in the year a different time is require
for the sun to reach an altitude of 18 deg. below the horizon. In our latitude this is
more than two hours in midsummer, and the shortest possible duration of twilight in the
torrid zone is one hour twelve minutes, all the torrid zone is one hour twelve minutes, all the
year round. The writer has lived there, and seen the night fall almost as soon as the sun
sets. Twillght is not reckoned upon for working in the torrid zone, as it is here in the summer. The twilight illumination of the sky
swings around toward the north as the sun itself does, and in the most northern portions
of the United States the twilight zone does not
dip below the horizon, even at midnight. Above latitude 48 deg. twilight of morning
meets evening twilight at the north. Even in meets evening twilight at the north. Even in
Montreal or Edinburgh the evenings of summer Montreal or Edinburgh the evenings of summer
are very long, and the streets are filled with are very long, and the streets are filled with
people much later in summer than with us put wherever on the earth the sun is 18 deg
, below the horizon, it is night, and no light the sun is to be seen above the horizon. An-
other fact in this connection, is that the sky is never dark. This, however, is not due to
the sun, but to the stars. The Milky Way i bove therizon in summer in our latitude and it gives a great deal of light by night,
enough to make the night sky of that time brighter than when it is not a part of our night sky, as is the case in winter. Then, too, the stars which cannot be seen by the unaided
eye give us much light. The stars which are ot visible to the eye give more light than New Astronomy," p. 424, on this point: " cepting a sixth-magnitude star as the standard, and expressing in terms of it the light of all the lucid stars registered by Argelander (a catalogue of 324,000 stars to the $91 / 2$ magnitude), they give an amount of light equiva-
lent to 7,300 sixth-magnitude stars. But alculation proves that the telescopic stars of this extensive catalogue yield more than three
times as much light as the lucid ones do. The stars, then, we cannot see with the naked eye, give more light than those their vastly greater numbers." In the whole
heavens the stars give about $1-80$ as much
light as the full moon. There is good reason for the fact that the sky is iight all the night.
(9685) A. C. asks: In constructing ome storage batteries I run across the term sponge lead," which is used in the active this sponge lead is, and how it is made.
the charging and forming of the plates of a storage cell, the lead oxide or the lead plates ondition in which the acid solution penetrates o the interior to an extent. This lead is not put into the plates, but results from the action
of the charging current upon the lead oxide, which is used as a paste in the making of the
(968
9686) F. R. Co. asks: We wish to now if it is generally considered practical to onnect a motor and incandescent lighting ser vice to one meter, and ir said meter whe cons If a meter is calibrated for motor service, wich is usually rather irregular and which will this meter register one or two incandescent lights just as accurately as if it were originally calibrated and intended for a lighting circuit? We note that in most cases com-
panies run two distinct services for lighting panies run two distinct services for lighting
and power, and same metered on different meters. A. In gen in, electrical meters reg current is to be put after it gets past the meter. It may be that a meter which was sensitive to a single incandescent lamp would
not be as sensitive to a 100 -horse-power motor or 1,000 lamps. But other than this we do not
see that motor service differs at all from lighting service. We do not expect that hay scales will also weigh diamonds or medicine. And a meter for large currents cannot be
equally sensitive to small currents. Probably the reason for using different meters for light ifferent rates of tariff for the two different
(9687) M. D. S. asks: I desire to seure the formula of the solution for making cure the formula of the solution for making
blue prints; how to apply it to the paper, and ow to develop and finish it, after printed the matter and where to procure it? A. To make solution for blue-print paper, make a solution of potassium ferricyanide, 1 ounce
ounces of water; also a second solution ounce of citrate of iron and ammonia to ounces of water. These two solutions will
keep indefinitely in separate bottles. To preeep indefinitely in separate bottles. To pre
pare the paper, take equal parts of each solution and mix them. The mixture is sensitive to light, and the rest of the work must be
done in a feeble light. With a swab dipped n the solution cover the paper by paspin across in parallel lines, and afterward crosswise of these, so as to have an even layer of
iquid all over the paper and yet not enough liquid all over the paper and yet not enough
to flow or drip. The paper is hung by a pin to flow or drip. The paper is hung by a pin
in the dark to dry. It is then ready for printing. After printing in bright sunlight, the picture is developed by putting it under
water. Wash thoroughly till the white parts the picture are clear.
(9688) E. C. B. asks: To extract the square root of any number between 100 and number by a multiple of 10 : Divide the number by a multiple of 10 whose square
would be the nearest number exceeding the num ber the square root of which is desired; carry the division to at least one decimal place. Take one-half of the sum of the quotient vent of number divide it by its nearest square root; add this divisor to quotient found, and take one-half.
Above may not be new, but having 2 ever run Above may not be new, but having 2 ever run
across it, thought it might be useful. A. This method of finding an approximation to the
to those who need only an approximate squar
root. But it would seem better to be able t find the exact root to the desired number of decimal places by the usual process. Several
numbers which we have tried yielded their numbers which we have tried yielded their
roots with scarcely more work than is required roots with scarcely more work than is required
in finding an approximation by the method in finding an approximation by the method
given above. We printed the process of taking the square root of a number fully worked out in answer to Query 8196 , Vol. 84, No. 22, Scientific American, which we send for ten cents. The process is easily learned and qeed of approximate processes.
(9689) G. C. K. asks: 1. Where can I buy porous cups $11 / 4$ inches outside diameter
. For small porous cups address the dealers . For small porous cups address the dealer
electrical supplies who advertise in our columns. They can supply the size you name if they can be had. 2. Can the field of the motor
described in Scientific American Supplement No. 1195 be divided so as to make four fields in place of two, and how many turns will I have to put on so as to have the same horse-powe described? I want to make it so I can ru some small machinery. A. There is no reason
why you should not divide the field winding of the motor into four parts as you propose The result will be the same as if the fiel pleted one revolution. Nor do we see that you will gain anything by making the change. The ign. It will drive small machinery just a well as it is. 3. Could I get Chapter XIX. "Experimental Science," on a one-quarter
horse-power electric motor, without buying the horse-power electric motor, without buying the
entire volume? If so, what will be the
? charge? I mean the one-quarter horse-powe electric motor which may be enlarged or re
duced. A. No, we have not published the one Scientific American or Supplement.
(9690) B. T. asks: Will you please form me why a gravity battery will not run single cell of dry battery? A. One gravity sing will not take the place of one dry cell
cell
The voltage of a dry cell is 1.4 , while a The voltage of a dry cell is 1.4 , while
gravity cell is usually not above 1.07 volts. Two gravity cells must be used in place of one dry cell. They will run the motor much longer
and stronger than a dry cell. A dry cell is not adapted to a motor. It being an open circuit cell, it should have a rest after work
ing, as it does in ringing bells. A gravity cel is a closed-circuit cell, and should be kept a a dry cell does on a closed circuit. You cannot use the same cell on both closed and open
(9691) L. B. G. asks: Will you kindly ve a rule for finding the velocity that steam capable of attaining at all pressures, when the back pressure is known, and when expand commonly used for determining the velocity $G A \times \frac{P 1}{70}$
Where $P 1$ is the pressure per square inch in the reservoir, A is the area of the orifice, G is pounds. This rule only holds good where the pressure inside the orifice is at least 1.66 times steam is escaping. After finding the number of pounds of steam that flows through the orifice from the above formula, you can readily find the velocity corresponding by looking up the volume of one pound of steam correspond
ing to the pressure in any given case in steam tables, and from this calculate the velocity of
(9692) E. H. W. asks: 1. What month and day of the month was Easter Sunday April 5. 2. Easter funday for any given
year? A. Easter Suncay is calculated by the year? A. Easter Suncay is calculated by the
assistance of tables which may be found in the Episcopal Book of Common Prayer. It is kept on the Sunday which falls next after the first full moon following the 21 st of March,
or the vernal equinox. If a full moon falls or the day, the next full moon is the Paschal day, the next Sunday is Easter day. The moon referred to is not the real moon, but a celestial equator in exactly the same time a the real moon moves in its orbit. Any at-
tempt to locate Easter by the motions of the real moon as given in an almanac will fre quently fail. The best way is to go to the Prayer Book and get the dates, which in som
books are given for a couple of centuries (9693) F. L. asks: Will you kindly in form me through your columns if a bullet
dropped from the muzzle of a rifle would dropped from the muzzle of a rifle would
reach the ground quicker than one fired from the rifle at the same elevation with the rifle held perfectly horizontal. I think that it from the muzzle of a gun and one shot horizontally from the gun at the same instant are both acted on by gravity in exactly the same manner. Both fall toward the earth with the same velocity and both will keep all the time
in the same horizontal plane. So both will in the same horizontal plane. So both will
strike the earth at the same distance below at the same instant. It is on this principle that
the sights of a rifle are adjusted and all can-
non aimed. Were not this true it would not
be possible to hit a target at all. The science of gunnery teaches how to elevate the gun so hat the ball will fall as , flies just enough o hit the target after one second or any other ime of flight.
(9694) C. L. W. asks: In the Scien: ific American for February 18, 1905, I read ocity Potential of the Universe." In this the writer states that "if a hole be through the earth, passing through its center, and a stone opposite side and return to the starting point; opposite side and return to the starting point;
and if the air could be removed, it would ascillate to and fro so long as the earth endures. It would be a pendulum." I claim
that the ball would stop at the center of the arth. The basis of my claim is Newton's aws of motion and weight given in all school physics. Would not the weight of the stone at the center be zero, and if its weight were
zero, would it not stop? Please tell me who is right, and if I am wrong, how about the all dropped into a hole thour opinion that a the earth will stop at the earth's center is the pposite of the belief held by mathematicians pon this point. We are not able to accent your view of the case. A falling body will have its motion accelerated as long as the minutest force acts upon it to draw it down-
ward. This will be the case until it reaches the center of the earth. It will at that moment be moving with its highest velocity, tion becomes negative, and tends - to reduce the velocity. The center of the earth is but point, and the momentum of the ball acuired during its fall will carry it past the that momentum, that is, to the surface on the pposite side.
(9695) H. M. says: 1. About what ize and length is the wire wound on an inducion coil in a long-distance telephone? A. There re many kinds of induction coils in use in aps have $1 / 2$ ohm of No. 24 wire in the primary and 250 ohms of No. 35 wire in the secondary. 2. What size and length is the
wire that is used in a telephone receiver? A. A receiver may be wound with 100 ohms of No. 36 wire. 3. Would not the sending dis(described in the papers herewith sent) be increased by increasing the height of the aerial wire say by kite or balloon?
A. The sending distance of a wireless elegraph depends upon the height of its aerials and the spark length of its induction coil. A kite and a balloon have both been used for raising the aerial wire, but the ittle is gained by using a kite. So also does captive balloon. 4. Why is it that a teleis not suited for a line of much length, and a sounder of 20 ohms can be worked on a line f a sounder is only a mode of stating the umber of turns of wire it has in it, and herefore the magnetic force it can exert. The more turns, the farther it can work. A 20 -ohm
sounder can work farther than one of lower resistance, since its greater number of turns of wire can produce more magnetism by a an pro mutual telephone line in our neighborhood. It runs very close to W. U. T. Co.'s line for bout three-quarters of a mile. It crosses over the telegraph line in two places. At
certain times, usually late in the evening, the tne is bothered with so much noise that perons can hardly be heard talkirg over the line.
The line is a party line with one wire, and cannot be transposed. Do you think the noise caused by the two lines so close together? using metallic circuits? A. The difficulty ther yine telephone line is its nearness to the moving it from the neigy
turbing line or by mak
(9696) G. W. C. asks: 1. What is a cycle, in connection with gas or gasoline engines? A. A "cycle" in connection with any
engine refers to the series of events which akes place from any point until the engine does precisely the same thing again it was
doing at the start. Thus the "cycle" of an oing at the start. Thus the cycle" of an of air and gas is admitted during a forward stroke; the admission valve closes, and it is nited during the return stroke: it expands uring a forward stroke; the burnt gases are expelled through the exhaust during a return
stroke; the engine is then at the point where we started, ready to take a fresh charge of gas nd air, and the "cycle" is now complete. cylinder makes one or two strokes in one revohition? A. An engine with a single cylinder ould be the series of operations that an ensine goes through during a single stroke. ngine, during the forward stroke of a steam
nters the cylinder ; the admision valve closes; the steam expands; the release valve opens. This is not a common
term and is not one of special value, because
the "cycle" is not complete. 4. Must a two
cycle engine have two cylinders? cycle engine have two cylinders? A. No.
$(9697) \quad$ C. S. J. asks: 1. Do two objects, for example a ball of lead 4 inches in
diameter and a cork ball 4 inches in diameter diameter and a cork ball 4 inches in diameter
(thus presentirg an equal surface for the air to act upon), fall to the eam the same height
space of time if dropped from space of time if dropped from the same her re-
at the same moment, under atmospheric res
sistance? A. A ball of lead falls faster through the air than a ball of cork of the
same size, since it has more momentum for overcoming the resistance of the air. This is
easily observed. If you watch motes floating in the air, or a feather, you will see the effect motion of light bodies. They lack weight for pushing the air out of their way pushing the air out of their way. the result be changed if the cork ball be, say,
8 inches in diameter and the lead ball 1 inch in diameter? A. The result will be the same
if the cork ball is made larger, for the surface presented to the air increases as the square of
the radius of the ball, while the weight in the radius of the ball, while the weight in-
creases as the cube of the radius. The ability 3. Or would it make any difference in
time of descent if the cork be, say, only 1 inch in diameter and the lead ase 8 inches in
diameter if dropped from the same height a the same time, under normal conditions of the
air? A. You cannot make a cork ball fall a fast as a lead ball by any proportions what
ever, so long as the densities of the two ar so different. Compress the cork and it wi fall faster. 4. In pumping water from a
with a common suction pump, does the pumping by means of the pump-handle
column of air of the same diameter as the
well tube, thus letting the atmosphere outside of the tube press the water up into, and out
of the tube? A. The piston of a suction pum removes the pressure of the air from the sur-
face of the water in the barrel of the pump. The pressure of the atmosphere in the well pump. The person pumping lifts the air in barrel is 5 square inches he must lift 75 size of the well.
(9698) F. L. J. asks: 1. Are the pol ished parts of a bicycle nickel plated, or are
they polished with an acid, as I have been told? A. The parts of a bicycle which have a silvery luster are nickel-plated. 2 . Why is
it that people do not receive shocks from a
trolley rail! If you could touch the overhead get a shock? I have seen birds do this last and think the reason they can do it, is tha I right or wrong? A. If by a trolley rail you
mean the rail of the track upon which the car wheels run, there is no reason why a per
son should receive a shock from it. It is a the same potential as the earth. If one could catch a trolley wire while in the air he wou
receive little shock because the potential his body would soon be the same as the wire,
which is at a low voltage, only about 550 volts. No current would flow through him electric cars jump the track, I have seen the to the trucks to complete the circuit Is this necessary? The wheels are in good contact
with the ground, and I have heard that the current returned to the station through the
ground as well as the rails. A. When electric cars jump the track, it is necessary to provide a better contact than that of the dirt for the
current to flow from the motor to the rails. current to flow from the motor to the rails.
Dry earth is not a conductor nor is pulverized earth to the power house it must find a better current is to make a swift return. by leakage. 4. I have asked several persons why they build roofs over their porches, and have, been told it, was to keep the rain and
dev have learned that dew does not fall, but is contact with cold objects. How can a roof tainly there is rood sense in the "dew part" have roofs. Dew forms on a body exposed to radiation, so that its temperature can fall be-
low that of surrounding objects, that is, below low that of surrounding objects, that is, $\begin{aligned} & \text { that of the air. Under a roof or under a tree }\end{aligned}$ the heat which is radiated upward is arrested easily escaping to the sky, with the result that the space underneath the roof or tree is this by moving your chair out from under a ing. You will find it colder than under the roof, and dew forms more quickly. Clouds act in the same manner to screen the earth,
there is rarely dew on a cloudy night.

[^0]how ores may be located scientifically by elec-
trical tests. The science of terreohmetry, as
it is called, has received a large amount of
study and original investigation by the author,
who has incorporated in his manual the results
of many lessons learned from practical experi-
ence in making mining surveys throughout this
country, Canada, and Mexico. A clear descrip-
tion of all the necessary apparatus is given,
and full directions will also be found as to the
method of using the same in locating ore.
MODERN Iron Foundry Practice. Part II.
By George R. Bale, Assoc. M. Inst.

By George R. Bale, Assoc. M. Inst.
C.E. London: The Technical Pub-
lishing Company, Ltd., 1905. 12 mo .; pp. 194. Price, $\$ 1.40$.
This part of the work on iron foundry prac-
tice deals with Machine Molding and Molding Machines ; Physical Tests of Cast Iron ; Methods of Cleaning Castings; Foundry Accounting,
etc. The machines illustrated and described are typical ones, and besides these descriptions of the physical tests of cast iron which, on engineer, has now generally to be very thor-
oughly tested before being put into use. The book is completed with an index, and will be
found most helpful to all connected with the ron industry.
Hendricis' Commercial Register of the E. Hendricks Company, 1905. 4to.; p. 1,279. Price, $\$ 7$.

This is the fourteenth annual edition of this plete and reliable index, containing over 350 ,-
or 000 names, addresses, and business classifica-
tions, of the architectural, mechanical, engiheering, contracting, electrical, railroad, iron, stee, mining, mill, quarrying, and kindred in
dustries. The book also contains a full list of the manufacturers of and dealers in everything employed in the manufacture of material, ma
chinery, and apparatus used in these great in dustries, from the raw material to the manu
factured article, and from the producer to the factured article, and from the producer to the
consumer. The book will be found extremely valuable as a buyers' reference book, for all
engaged in any way in the trades above mentioned.
Problems of the Panama Canal. In-
cluding Climatology of the Isthmus, Physics and Hydraulics of the River Chagres, Cut at the Continental Di-
vide, and Discussion of Plans for the Waterway. By Brig.-Gen. Henry L. Panama Canal Company. New York: The Macmillan Company, 1905 12 mo .; pp. 248. Price, $\$ 1.50$

$$
\begin{aligned}
& \text { This work, which is from the pen of one } \\
& \text { of the most qualified and lucid writers on the }
\end{aligned}
$$ problem of the Panama canal, appears at an

exceedingly opportune time. The America public, after being treated to successive re
ports by expert commissions, each giving ports by expert commissions, each giving a
series of recommendations differing, more or
less, from the others, will welcome this book less, from the others, will welcome this book,
which gives a complete but not over-elaborated statement of the various phases of the Panama canal question. Gen. Abbot was at one time
a member of the celebrated Comité Technique which, at the request of the new Panama
Canal Company, made an exhaustive examina tion of the vast amount of technical data gath-
ered by the engineers of the company. His ered by the engineers of the company. His
pen was one of the most potent influences in leading the United States government, and the American public at large, to see the superior
claims of the Panama to the Nicaragua canal oute, and the present work embodies much
data that have been presented in the various articles written to this end during the past Tew years by Gen. Abbot. The work opens with
a historical resume of the history of the canal,
and then takes up the subject of the rival routes and the physical conditions existing on
the isthmus. A whole chapter is devoted to the isthmus. A whole chapter is devoted to
the once-formidable and supposedly-insurmount able problem of the Chagres River. Then in ultimate disposal of rainfall in the basin abeve Bohio. The last chapter considers, in consid erable detail, the projects for the construction
of the canal. To all of those who desire of the cana.
something more than a superficial knowiedge
of this great national problem, we cordially of this great nationa
recommend this work.
The Mechanical Handling of Material. By George Frederick Zimmer, A.M
Inst. of C. E. New York:
Nostrand Company, 1905. 4to.; pp 521; 550 illustrations. Price, $\$ 10$. This work forms the first complete and con-
nected treatise on the Mechanical Handling of Material, in any language. Its author has
had over twenty years' experience in the designing and installing of machinery designed to handle material in the substitution of or
supplemental to hand labor, and all such ma chinery is described in full in the presen volume. The book is divided into three main
sections dealing with the Continuous Handling sections dealing with the Continuous Handing
of Material; the Intermittent Handling of
Material ; Unloading and Loading Appliances Material; Unloading and Loading Appliances
and Miscellaneous Handling Apparatus, such and Miscellaneous Handing Apparatus, such
as automatic weighers; apparatus for coaling
locomotives; coal-handling plants for gas works; power stations, boiler houses, etc.;
floor and silo warehouses for grain and seeds; and high-level or cantilever cranes. Section I.

"Star" Lathes
or fine, accurate work
Send for Catalogue B.
SENECA FALLS MFG. CO 695 Water Street,
Seneca Falls, N. Y., U.S. A
ormo

There and - Back

WHAT A RELIEF
Whin bidis
RADIUM AND THE RADIO-ACTIVE

Motors for Lighting Plants
The "ASTER", is the bes: French
motor on the market for lighting houses,
hotets, etc. Small, compact, simple and

Do You Use Chucks?

THE CUSHMAN CHUCK WORKS

TMIS

Hartford, Conn
GRINDER

WFLI ${ }^{\text {millums }}$ Machines

JAGER Marine
4-Cycle Engines

conveyors, and Section II. with endless chain
and rope haulage, ropeways, and aerial cable ways. Section III. deals with the loading and unloading of vessels, cars, etc., and describes is printed on fine paper, and is very com pletely illustrated with a large number of
half-tones and numerous line cuts, showing details of machinery. It will no doulbt be wel most useful handbook.
Farm Grasses of the United States. By William Jasper Spillman. New
York: Orange Judd Company, 1905 York: Orange Judd Company, 1905.
12mo.; pp. 248. Price, $\$ 1$. 12mo.; Pp. 248. Price,
This volume presents, in connected form, the can farms. Actual practice in grass growing erning this is available. The country has been divided into four regions, each of which presents a different set of problems. The probems of growing grass in the South and the
semi-arid lands of the West are discussed, and full information given concerning them. The book forms a practical treatise on the grass
crop, seeding and management of meadows and pastures, descriptions of the best varieties, the ditions, etc. Building Materials. Their Nature, Prop erties, and Manufacture. By G. A. T.
Middleton. New York: William T
$\begin{array}{lll}\text { Middleton. } & \text { New York: } & \text { William } \\ \text { Comstock, } & \text { 1905. } & 8 \mathrm{vo} \text {.; }\end{array}$
Comstock,
Price, $\$ 4$.
This book is one of the most recent an complete works on the subject of building
materials which has come to our notice. It is ing the formations in which British buildin materials occur, and by a second introductory chapter dealing with the chemistry and physic of building material. After citing the variou
stones and their classification, these are al described in detail, a chapter being devoted to each. Other building material, such as lime sand and stone, and their methods of manu facture, are described in detall and illustrated devoted to timber, the various woods and their method of seasoning and preservation being
described. The main varieties of iron, their impurities, strength, and test, are also consid ered in detail. Steel, copper, zinc, and lead are the description cial paints, goes int iron and stone preservatives, giving full direc ing, polishing, enameling, and lacquering are also described in the latter portion of the
work. Glass and wall and ceiling papers, be sides stamped metal linings, etc., are among the sundry materials of lesser importance which will be found described. The work is a com
plete textbook for students and others engaged The Pocket Book of Refrigleration and Ice-Makicg. Edited by A. J. Wallis
Thayer, C.E. New York: The Nor maner, C.E. New York: The Nor
1905. 16mo.; pp. 184. Price, $\$ 1.50$.

This volume contains in a handy form such onstantly refrigeration and cold-storage industries.
is a very reliable handbook, giving full in , of Ice; Insulation; the Testing and Managebook has a large number of general tables and memoranda, and is completed by an in Knotting and Splicing Ropes and CordAge. By Paul N. Hasluck. Philadel
phia: David McKay, 1905. 16mo.; pp. 160. Price, 50 cents.

This small handbook, which is fully illustrated with numerous engravings and diagrams, Was compiled by the author for everyday use mation on this subject, obtained from the col umns of Work. Among the different kinds of
lnots described are eye knots, ring knots, and fancy knots. Rope formation, shartening, and
splicing are also described. One chapter is devoted to "Working Cordage," another to "Lash
ings and Ties for Scaffolding," and a third to
"splicing and Socketing Wire "Splicing and Socketing Wire Ropes." Two of
the most useful chapters are on "Simple and Useful Knots" and "IItitches and Bends." The the information it contains readily available
Cement and Concrete. By Louis Carlton Sabin, B.S., C.E. New York: Mc-
Graw Publishing Company,
1905. Graw Publishing Company, 1905 This volume is one of the most complete and usas. It is divided into four parts, which Manufacture of Cement; the Properties of Ce ments and Methods of Testing Them; the crete; and the Use of Mortar and Concrete. The author has produced a work which, alas some others, still gives all the informa-
tion essential to the young engineer of to-day,
to whom we heartily recommend the work as a most helpful reference book.

TYPEWRIIERS SNA
Shipe at hali MANUFACURERS' PRICES,
Typed with privilege of examination. Send for Cat.
We'IlClean One Boiler Free

An Ideal Electric Light Engine

 because or its simplicity, safety andreliabolity undider all conditionsi be-
cause it is built on tried principles
after years of experients Universal Experiments is the Automatic in operation easily start-
 per actual horse power hour. Praised
wherever used. Highest efficiency at
Thwert address.
UNIVERSAL KEROSENE ENGINE 6, 8 and 10 First St., Now York

ELECTRIC LAUNCH MOTOR. - THE design in this paper is for a motor of unusual simplicity
of constrution which can easily be built ty an amaceur
at small cost. it it in intended for a boat of about 24 feet
and over all and 4 feet 6 inches beam, drawing 18 inches, an
is capable of propelling such craft at a speed of 7 miles per hour. Illustrated with 21 cuts. See SCIENTIFr
AMERICAN SUPLEMENT, No. 120. Price 10 cents by
mail, from this office. and from ail newsdealers.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending

July 4, 1905

AND EACH BEARING THATDATE

Address forms in strips, machine for mount
ing, L. A. Agnew.................... Advertising
F. M.
device operating mechanism, Advertising machines, reversible buäe for
changeable E. O. Wilcox................ Advertising trick device or puzzle, w. H
Burn nimal holder, R . Thompson
Arm rest for bookkeepers
matic, ${ }^{W}$. ${ }^{W} \mathrm{~W}$ Williams.

Automatic switch, W, W.
Awning crank
gearing,,$~$
E.
Pimpson....
Rosenberg
Awning crank gearing,
Ale
xle
lubricator,
G. Rosenberg

and bottom, spring, J. F. Brown
Bed, bouch, C. A. Bake red
Bedstead, A. J. Orson......................
 Billiards or the like, apparatus for indicat-
ing the scores of players in such games
an

manufacture of steam, gearing \& Rain-
forth

\section*{| Bol |
| :--- |
| Boor |
| Boo |}

 Bottle cleansing machine, Ortmann \& Herbst
Bottle, non-refillable. P. H. Edward....
Botle, non-reflable A. Schek........
Bottles or other containers, closure for, J. Bottles or orther contain
B. Williamson
Bracket, W. B. Oliver..

Brakerod she, A. A. Smith. A. Woodman.......
Brick machine, compressed air operated.

Brush, pneumatic, 'L. W.
Buckle, C. A. Mann.....
Bunge
Bunging apparamgartne
Bung, J. P. Baumgartner.....................
Bunging apparatus, J. P. Baumgartner....

Car door lock, C. © o. Johultz.............................
Car frame and bolster, railway, J. J. Hen

Carbonating apparatus, H.
Carbureter, G. W. Fallin.
Carbureter, A. H. Helmle.
Carpet lining, J. H. Beale

ash-register, Bockhoff \& von
Catch, safety, I. M. Brittain...
Cattle guard, M. J. Comerford.:.
Ca
Ce
Ch
Ch

Conveyer, Ror A. A. Feessende...... bars,
Cooker, steam, S. S. T. Willia.

Corset, apparel, D. Kops..........
Cot, folding, R. L. Herman.....
Cotton separator, w. A. Patterson.

Crate or container for hats, shipping, L. F. F.
Crate or
Towns Cream separator, centrifugal, s. ©. A. Anker-
 Cultivator, surface, J. A. Hamelbac Current motor, P. P. Hencichs.
Currycomb,
Curtain han

 Curtain shade cutting machine, P. A. Uze
Cushion-spring, W. R. Smith. Dental chair head rest, F. Ritter.....
Dental drill handpiece, G. R. Gossling Dental engine handpiece, G. G. Russling Goslin.....
Dental plates, means for securing artificia
teeth to, L. E. Evslin....

WINCHESTER

> RIFLES FOR ALL KINDS OF HUNTING. Winchester rifles are not the choice of any one special class, but of all intelligent sportsmen who go to the woods, the plains, or the mountains in quest of game. They are designed to handle all calibers and types of cartridges, to meet the requirements of all kinds of shooting, and can always be counted on to shoot where they are pointed when the trigger is pulted. Winchester rifles and Winchester cartridges are made for one another. FREE: Send ame and addess on a postal cordfor our large llustated colalogue, WINCHESTER REPEATING ARMS CO., CONN.

WE GUARANTEE

OUR OUTFITS TO HANDLE MORE AIR FOR THE POWER

LATEST EDITION

of
 Supplement Catalogue

Just Out!

Write for it. It costs nothing.
The new Catalogue contains 65 pages and gives a list of over 17,000 articles.

If there is any scientific, mechanical or engineering subject on which you wish special information, you will find in this Catalogue some papers in which it is thoroughly discussed by a competent authority.

Scientific American Supplement papers for the most part have been written by the world's most eminent engineers and scientists. They contain information that is not always accessible in books.

MUNN \& COMPANY, Publishers 361 Broadway, New York

Service and the OLDSMOBILE

Just think a moment: Do you buy a particular car because of a peculiar spring adjustment, a few pounds more or less of weight, the motor, the transmission, or the carburetor equipment alone, or because of the complete co-ordination of every part to every other part, and the way each part does its work ?

When you buy an automobile it's just common business sense to look for the car that gives you the most for your money-the Oldsmobile. If your car is to be an investment and not an expense, it must give you satisfactory service, which means : reasonable first cost, low cost of maintenance, ef ficiency without complication, hillclimbing ability, speed, and above all, absolute ease of control, especially in emergency-all distinctive Oldsmobile characteristics.

The Oldsmobile is a recognized public utility-as indispensable as the telephone, the typewriter or sewing machine. It fits into your requirements as a business or professional man, as well as into the average pocket-book.

Olds Motor Works, Detroit, U.S. A.

SOUTHERN FARMS

GOOD LANDS AT LOW PRICES the-year working season.
The South is now extile and Manufacturing Plants. other section. If you would learn about its develop ments and the opportunities for good locations along
the Southern Railway, write for copies of our publications, including The Southern Field, a 16 -page illus
M. V. RICHARDS

For runabout service you can find no equal to the Oldsmobile Standard Runabout at $\$ 650$. Its single cylinder horizontal motor gives durability with freedom from complication. It is equipped with new side springs, which are a revelation in spring suspension. The differential brake is superseded by a ratchet brake acting on a drum attached directly to front sprocket.
Equally serviceable is the Oldsmobile Touring Runabout at $\$ 750$.

For touring service the Oldsmobile Touring Car, at $\$ 1,400$, is a prime favorite. In design it is distinctive; in construction strong and substantial. Its 20 h. p. two-cylinder motor gives ample speed. It has side entrance tonneau, tilting steering post, and all the latest Oldsmobile improvements. You will find it a tremendous hill climber.

If you need a car for everyday business use, for pleasure, for commercial service, or as an investment, buy an Oldsmobile. Catalog ' 21 ' sent on request.

Knock Down Boats

American Boat \& Machine Co., 3517 S. 2nd St.. St. Louis, Mt the white mountains. Beautiful Scenery and wonderful works The White Mountains of New Hampshire are famous
the country over as Americas most beautiful summer-

.The, Nation's pleasure ground and sani-
tarium.,

THE

ADIRONDACK
MOUNTAINS.
The lakes and streams in the Adirondack Mountains are full of fish; the woods are inviting, the air is filled with
health, and the nights are cool and resthul. If you visit this region once, you will go there again. An answer to almost any question in regard to the Adirondacks will be found in No. 20 of the
"Four-Track Series," "'The Adirondack Mountains and How to Reach
Them;" issued by the

NEW YORK CENTRAL

EyERY ONE

OFTIS
 THE BESTLLOHT

U.S. A. LIQL!D PISTOL

Some very interesting privileges are presented for the enjoyment of travelers
over the Lake Shore \& Michigan over the Lake Shore \& Michigan
Southern Ry. this summer, as follows: Stop-over at Niagara Falls for a period not
to exceed ten days o exceed ten days,
Stop-over at Westfield, N. Y., for a visit to
Lake Chautauqua. Lake Chautauqua.
Stopoper at Sandusky for a side trip visit to
Put-in-Bay and Cedar Point. Put-in-Bay and Cedar Point.
Option of traveling by boat or rail, either Option of traveling by boat or rail, either
wayt between Cleveland and Buffalo. Does
not apply on tickets sold locally between
those cities. those cities.
Option of traveling between Albany and New York City, either way, on Hubson River
(day or night) boats, or rail on New York (day or night)' boats, or rail on New York
Central. These matters are explained in folder
"Travel Privileges," sent free on request. As a route for vacation journeys the practically, by its through trains or directconnections, all the leading summer places east and west.
The widespread popularity of the Lake Shore is a matter of much com-
ment; the explanation is simple-it maintains in the highest degree of perfection everything that enters into the
successful operation of its train service, so that its patrons travel safely, comfortably and promptly.

For any desired particulars addres
C. F. DALY. Passenger Traffic Manager,
$e^{\text {A. J. }}$

Valuable Books!

REVISED and ENIARGED EDITION
The Scientific American
Cyclopedia
15,000 Receipts. 734 Pages. Price, \$5.00 in Cloth. $\$ 6.00$ in Sheep. $\$ 6.50$

This work has been re-
vised and enlarged, 900 New Formulas. The work is so arranged
as to be of use not only to as to be of use not only to
the specialist, but to the
general reader. It should general reader. It shout
have a place in ever
home and workshop. circular containing f $u 11$
Tatble of Contents will be sent on application.
The these whe already have
the Cyclopedia may obtain
1901 APPENDIX.
Price, bound in cloth, 81.00
rice, bound in cloth, $\$ 1.00$
postpaid.
Home Mechanics for Amateurs

TWENTY-THIRD EDITION
EXPERIMENTAL SCIENCE.

Practical Pointers For Patentees THE SALE OF PATENTS An Elucidation of the Best Methods Employed by the
Most Successful Inventors in Handing Their $\underset{\text { By F. A. CRESEE, M.E. }}{\mathbf{1 4 4} \text { Pages. }} \underset{\text { Cloth. }}{\text { Price, }} \mathbf{\$ 1 . 0 0}$.

Scientific American Reference Book

 ness man. It de als with mat-
tens ot interest overybory.
The book ontains 50.000 fact,
and is much more complete and more exhaustive than
anything of the kind which
hase
 wants of thousands. It has
been revised by eminent sta-
tisticians. Information tas been drawn from over one ton
ot Goverument reports alone.
It it a book of everday reter-
ence-more useful than an en-ence-more useful than an en
cyclopdia, because you will
find what you want inan in-
stant in a more ondensed
form. Sixty years of experi-

[^1] No. 361 Broadway, New York City'

for variable, N. T. Harrington
Spinning frame, Todd \&

cooking, W. A. Koneman.
urveying instrument, J. Marbow
Suspender

\&STANDARD
Two=Speed Automatic Coaster Brake Hub

STANDARD SPOKE AND NIPPLE CO. Torrington, Conn

$\$ 37.50$

engine
ONLY

Hequht zizhbs:

 Auto-Marine Motors from 1 to 20 h . p.
Detroit Auto-Flarine Co., 75 E. Congress St., Detroit, Mich.

WARIREN'S

Motsinger Auto-Sparker

LUFKIN
TAPES AND RULES

ARTESIAN

 quired to drill and complete
Same. Portable Horse Prive
and Mounted Steam Diling
Macchines for 100 to 1200 feet
Tinter ますwewin

Valuable Scientific Papers ON TIMELY TOPICS

Price 10 cents each, by mail ELECTRONS AND THE ELECTROSUPPLEMENTS 1428, 1429, 1430, 1431, THE PANAMA CANAL is described from the engineering standpoint in
AMERICAN SUPLLEMENT 1359. WIRELESS TELEGRAPHY, Its Progress SCIENTIFIC AMERICAN SUPLEMENTS 1425,
$1426,14271386.1388,1389,1383$,
$1381,1327,1328,1329,1431$. HOW TO CONSTRUCT AN EFFIAPPARATUS AT SMALL COST is
haustive review of the subject is published
in SCIENTIFIC AMERICA
$\mathbf{1 4 1 4 , 1 4 1 5 , 1 2 2 2 , 1 2 2 3 .}$
SELENIUM AND ITS REMARKABLE
SCIENTIFIC AMERICAN SUPPLLEMENT 1430 .
The paper is illustrated by numerous en-
gravings.
THE INTERNAL WORK OF THE
WIND. By S. P. LANGLEY. A painstak-
ing discussion by th leading authority on
An Aerorynamics, of a subject of value to al
interested in arships, ScIINTIFIC AMERICA LANGLEY'S AERODROME.
scribed and illustrated in ScIENTIFI,
CAN SUPPLEMENTS 1404 and 1405. STEAM TURBINES. Their Construction SCIENTIFIC AMERICAN SUPPLEMENTS 1306,
$1307,1308,1422,1400,1447,1370 ;$
$1372,1521$. The articles have all been PORTLAND CEMENT MAKING is deSCIENTIFIC AMERICAN SUPLEMENTS 1433,
$1465,1466,1510,1511$ PERIAL NAVIGATYON. Theoretical and
Practical Discussions. Pictures and DescripPractical Discussions. Pictures and Descrip-
tions of actually-built dirigible balloons and
aeroplanes will be found in ScIENTFIC aeroplanes wil
AMERICAN SUPPLEMENTS $1161,1149,1150$,
$1151, \mathbf{1 4 0 4}, \mathbf{1 4 0 5}, 1413,1455$. THE TANTALUM LAMP. A full illus-
trated description of a a amp having a metal-
lic filament and burning at once without lic filament and burrining at on
prelininaty heating appears in
AMERICAN SUPPLEMENT 1523.
THE WATERPROOFING OF FABRICS THE SPARK COIL ITS CONSTRUC TIFIC AMERICAN SUPPLEMENT 1522 . ELECTRIC IGNITERS FOR GAS EN-
GINES are discussed in SCIENTIFIC AMERICAN SUPPLEMENT 1514.
CARBURETERS, a subject of immense im portance to automobilists and
oil enines, is well trated in
AMERICAN SUPPLEMENT 1508 .
EPICYCLIC TRAINS, which play an im described in ScIENTIFIC AMERICAN SUPPLE
MENT 1524.

Price 10 cents each, by mail MUNN Q COMPANY

[^2]
Agents Wanted

in every railway shop to
解ailwanatlaster atlechanic LIBERAL COMMISSION TO AGENTS

Railway Master Mechanic 305 Dearborn Street Chicago

Izy giwndziz

 MAIL-ORDER Importers and Exporters of Linguistic Books.Specialists in Dictionaries in All Languages on All Sujects.

YOU USE GRINDSTONES ?

 The CLEEELAND STONE CO.
2d Floor. Wilshire. Cleveland. 0 .

 SENSITIVE LABORATORY BALANCE.

Hermaphrodite Calipers

 SAWYER TOOL MFG.
Fitchburg, Mass.

An Automatic Pump

 Niagara Hydraulic Engine C_{0}
CHESTER, PA

THE EUREKA CLIP

BALLOONS $\quad \begin{gathered}\text { Aeronaut L. S. Sevens, } \\ \text { Box } 181 \text { Madison Sq, N. } \overline{\mathrm{Y}} \text {, }\end{gathered}$
 Model Machinery nad Ex Eerimental Work.
W.H. CRAWPORD IM Broad way, Nem York City.
Exnerimenal 2 Motede Work
RUBBER
PARKER, STEARNS \& SUTTON, 228.229 South St., New York INVENTORS, AND MACHINISTS', Machines

WHAT WE DO-HOW WE DO IT

MASON'S NEW PAT. WHP HOIST

Marical Apparatus.ATOSORAGE BAMERIES BRAZE CAST IRON WITH BRAZIRON
 THE A. Sos. MANUFACTURING COMPANY IN VENTORS.-Our specianty is practically devel.

NOW OFFERED TO THE GENERAL PUBLIC FOR THE FIRST TIME

Prof. Edwin J. Houston's

"Electricity in Every-Day Life

Vol. I. The Generation of Electricity and Magnetism; 584 pages, 217 illustrations, of which 19 are full pages (3 in full color)

Vol. iI. The Electric Arts and Sciences; 566 pages, 313 illustrations, of which 19 are full pages (3 in full color)
Vol. III. The Electric Arts and Sciences (continued); 609 pages, 270 illustrations, of which 18 are full pages (2 in full color)

This is undoubtedly the most comprehensive and extensive popular treatise on electrical subjects. It is written by the foremost electrical expert of the United States, Prof. Edwin J. Houston, a founder of the famous Thomson-Houston Electric Company, now known as the General Electric Company, whose arc and incandescent lights and trolley-car system are now used practically all over the world.

It is no longer a mater of choice whether or not one shall become acquainted with the general facts and principles of electric science. So intimately does electricity enter into our every-day life, that to know noth ing of its peculiar properties or application is, to say the least, to be severely handicapped in the struggle for existence.

The three volumes will be sent by express, prepaid, on receipt of $\$ 4.00$ in stamps, draft, money order or registered letter. A special easy payment offer will be submitted upon request. A prospectus will be sent upon
request. Address
P. F. COLLIER \& SON, 418 West Thirteenth St., New York City

AUTOMOBILES
 TIMES SQUALE A UTOMOBILE COMPANY
164 W , 46th St., near Broadway, New York City
Hackett Automodile Jack A necessity for automobile owners.
It in faster, stronger and easier to op
erate than any other make erate than any other make. Twenty
diferent lifts. Can be unlocked so as to
prevent weight ranging any part of a atomomoile.
to very small size. Price $\$ 3.50$
. hackett manufacturivg co
41\% Frankin Ave., St. Louis, Mo. NORTHERN Aurtomobiles The Silent Northern Touring Car-side entrance- 18 H. P..,
price $\$ 1,700$,
and Noiseless. The 24-Inch Fly Wheel with Fan Blades sends a powerful blast of air under the car toward the rear axle,
destroying the vacuum caused by swiftly moving car and driving away all dust. Riders in the Silent Northern engoy complete
freedom from the dust nuisance, remardess of speed.
Northern mechanism-all Northern mechanism - all under the hood- 1 is the simplest.
most accessible and most coopact in the world. The silent
Northern is the only car at the price equipped with FourInch Tires. Write for Catalogue No. 21. Illustrates com-
plete line, including the sturdy Northern Runabout 7 h.. . $\$ 650$. NORTHERN MANUFACTURING CO. Member Association Licensed Automobile

LEARN TO BE A WATCHMAKER
 LARGEST and BEST
WATCH SCHOOL in
 school at moderate rates.
Send for Catalog of Information.

Whatis Daus Minterops 2 2 max
 TheFPelix A. B. Daus Duplicator Co., Daus Blidg, 111 John St., New York
 Money. Lists Free. CHICAGO SCALE Co.. Chicago. III
CRUDE ASBESTOS
 ASBESTOS FIBRE OFFICE, ST.PAUL BUILDING
 EHIMTMLWans

Rushton

 Canoes

 As rapid in delivery as she is speedy in th water-no ceciay-mmmeurate shipments-strong, light and graceful. Built ofseasoned cedar-covered with best quality of canvas. Price. packed, $\$ 32$ to $\$ 44$. Send for catalogue of Dinghies, pleasure
Seost J. H. RUSHTON, 819 Water Street, Canton, N.Y.

Che ZJatres Gas Engine ZUbistle

is an innovation for marine motoring. It is operated simply by spent gas and does not affect the running of the engine. Whistle blown by the touch of a cord at engineer's elbow. Blows simultaneously three tones of chromatic scale and can be clearly heard two miles away Does away with all hand pumping. The device is simple, easily attached and has nothing to get out of order. It is absolutely safe and satisfactory. Thirty days' trial allowed, then, if not satisfactory,

GAS ENGINE WHISTLE COMPANY, 1137 Broadway, New York

JUSTSENDMEONEDOLLAR
and I will ship C. O. D. to any railroad station in the U. S.
this fine Willard St .
Range Anyone can say they have the best range in the world, but 1 will furnish the evidence
and leave the verdict to you. After you examine this range,
if you are satisfied in every way pay Agent $\$ 14.00$ and freight; and you become th" po sessor of the best range in the world
tor the money, The range has six 8 -ich yid; 18 -inch oven;
15-gallon reservoir; large warming el set; top cooking ser-

WM. G. WILLARD

ST. LOUIS, Mо

Opaque Projector

 Williams, Brown \& E. Earle
Dept. 6 , 918 Chestrut
ROAD EMy

ELECTRIC TRUCKS More Economical than
POPE MOTOR CAR CO.
Indianapolis, Ind., U. S. A.

Volt Ammeters

 ot ber circuits. etc Also, Volt metersAmmers tor
Aencral measurements.

The Most Modera Marine Motor
 Bostus
20 Parts Suare
Boulevard.
. \qquad

[^0]: NEW BOOKS, ETC
 Mandal of Terreohmetry. By Ethan
 Scheidler. South Pasadena, CaI.: Ethan Scheidler, 1905. 16mo.; pp. 44. Price, $\$ 2$.
 aid to mining men, for the purpose of showing

[^1]: ence alone have made it possible for the publishers of
 the 8 SIETMTIFI AMEICAX to present the the prchasers
 of this book a remarkable aggregation of information.

[^2]: Now York

