

Cylinders, 22 inches by 28 inches. Driving wheels, 80 inches. Weight on driving wheels, 145,000 pounds. Total weight of engine, 221,300 pounds. Weight of engine and tender, 307,300 pounds. Heating surface, 3,436 square feet. Drawbar pull, 28,798 pounds. Built for fast passenger service ofthe Chicago and Alton Railroad.

HUGE PROPORTIONS OF THE MODERN EXPRESS LOCOMOTIVE.-[See page 402.]

SCIENTIFIC AMERICAN

ESTABLISHED 1845
MUNN \& CO.,
Editors and Proprietors

Published Woekly at
 No. 361 Broadway. New York

terms to subsurlbers

NEW YORK, SATURDAY, MAY 20,1905

The Editor is always glad to receive for examination illustrated articles on subiects o timely interest. If the photographs are regular space rates.

THE RECENT RAILROAD HORROR.

The shocking railroad disaster near Harrisburg on the Pennsylvania Railroad lines is strangely like the still more fatal accident that occurred on the allied lines of the same system, when over half a handred lives were lost. In each case the wreck of the passenger train was caused by a freight train on the adjoining tracks. In the accident of over a year ago the loss of life was due to careless loading of timber on a flat car, the material being insufficiently secured against lateral displacement due to the jolting and lurching effects in passing around the curves. Some timbers were displaced and struck the cars of the passenger train, precipitating the disaster. In the present case, the wreck was caused by the buckling or crumpling up of a long freight train, to which the brakes were being suddenly applied to prevent a collision between the freight train and a switching engine. The buckling of the train threw the cars against the express, wrecking the train and causing the detonation of some high explosives that were on the derailed freight cars. Much of the horror of the accident, which involved the death of over twenty people, and the injury of probably a hundred others, was heightened by the frightful explosions and the subsequent burning of the wreckage which contained many of the imprisoned passengers. The marvel of the wreck is not that so many, but so few, were killed.
We wish to draw attention to the fact that this catastrophe shows, in a most dramatic way, what a great peril the passenger trains on four-track railroads are exposed to in having to sweep past the whole length of the many 40 - and 50 -car freight trains, which they meet so frequently in traveling through busy manufacturing districts such as those traversed by the Pennsylvania Railroad. It is a fact well understood Pennsylvania Railroad. It is a fact well understood
by railroad men that the enormous length to which by railroad men that the enormous length to which
freight trains have grown of late years exposes them freight trains have grown of late years exposes them
to exactly the kind of accident which caused the recent disaster, namely, the crumpling up of the train when the brakes are suddenly applied if the action of the brakes is not uniform throughout the whole length of the train. If a freight train of 40 or 50 cars and weighing over 2,000 tons is traveling say at 20 miles an hour, and the air brakes are applied and act simultaneously and with equal efficiency on every car, the whole train would be brought to rest without any danger of crushing or displacing the cars. But if the action of the brakes should be faulty, and the brakes should be set hard on say only the first half or third of the train, the enormous momentum of the last half or two-thirds, expending itself on the portion upon which the brakes are in full action, brings a crushing strain which the cars are unable to withstand, and they are forced into one another or twisted from the track and thrown sidewise onto the adjoining tracks. It is well known among railroad men that accidents of this kind are extremely frequent, and that they constitute a standing menace to fast trains on the adjoining passenger tracks-a menace that cannot be safeguarded by signals, not, at least, if the wreck should take place when the express is within a short distance of or passing the freight train. This is one of the perils to which the recent rapid growth of freight traffic, and the endeavor to cheapen its transportation by using enormous engines and trains of exaggerated length, have brought us. The only safeguard against it is the exercise of eternal vigilance on the part of the engineers of passenger trains, and the most careful use of the air brakes on the part of the engineers of long and heavy freight trains.

two great ocean contests.

The eyes of the world just now are fixed with fascinated interest upon two great contests on the high seas, the like of which the world surely has never witnessed before. In each case the prize is a big one, and its .possession means so much to the contestants, that every nerve will be strained to the utmost for its
coveted possession. It is in this element of keen rivalry alone, however, that the two great struggles have anything in common. Outside of that they are as far asunder as love and hate, exhilarating life and bitter death.
On the Atlantic eleven noble yachts are speeding to the eastward as fast as swelling canvas and straining sheets can drive them. The prize is the greatest that can be offered in our noblest field of sport; for the winning flag will represent, beyond dispute, the supremacy of yachting on the high seas.
On the Pacific, two mighty armadas are engaged in a life-and-death struggle, the like of which, we may say again, has never been witnessed in the history of the world. Two hundred modern ships of war, embodying, among them, the very latest constructive skill of the naval architect, and, on one side at least, the highest professional skill and leadership of the officers. and daring and devotion of the crews, are moving to meet in the shock of a struggle, the prize of which is an empire of fabulous wealth and untold possibilities.

Is there not something of encouragement and sincere gratification to be found in the fact that at this hour a peaceful struggle between less than a dozen yachts for a golden cup should so completely have absorbed the interest of the public as to make them lose sight, for the moment, of the stupendous conflict impending in far eastern waters?

Of the yachting contest, we have spoken at some length on another page. In forecasting the possible outcome of the great struggle between the fleets under Togo and Rojestvensky, we must be careful to bear in mind that any mere tabular statement of the material contained in the opposing fleets may be very misleading. Before we can judge the actual fighting strength, we must know something of the quality of the material, its age, and its efficiency-considerations which might easily change a balance which seemed to be in favor of one fleet until it became a balance entirely in favor of the other. To make clear our meaning, let us take the case of the total number of heavy armor-piercing guns carried by each fleet. One might say, remembering that the battles of the war have been fought at long range, that only guns of 9 , 10 , and 12 -inch caliber should be reckoned as effective in a fight between armored vessels capable of standing in the front line of battle, and that only heavily-armored ships of the battleship and coast-defense type should be included. Judged on this basis, and disregarding any other considerations, Rojestvensky would appear to have a sufficient preponderance of gun fire to absolutely crush Admiral Togo and sweep him from the eastern seas. Now that Admiral Nebogatoff has effected a junction with the Baltic fleet, Rojestvensky can theoretically put into the front line of battle eight battleships and three coast-defense vessels, carrying between them a total of forty-five heavy armor-piercing guns of from 9 to 12 -inch caliber, and of these twenty-six are 12 -inch guns. Against these Admiral Togo could put in the first line only five battleships, carrying twenty 12 -inch guns.
When we come to look into details, however, we find that althoush the Japanese have a numerical inferiority so great, their ships are all modern, and their guns of high velocity. Among the Russian battleships three, at least, are so old and their heavy guns are of such short length and low velocity, that they must be reckoned as distinctly of the second class; while one of them, that is protected with compound armor, must be reckoned as almost obsolete. Furthermore, the 9 -inch guns are of such low velocity and limited carrying power that they have less penetration by fully thirty per cent than the 8 -inch guns carried by the Japanese armored cruisers. If these older battleships are fit to fight in the first line of battle, so surely are the eight armored cruisers of the Japanese, with their high-velocity 8 -inch guns, of which they mount thirty-two altogether, and their 7 -inch facehardened armor, which is probably as effective at long ranges in bursting and breaking up armor-piercing shells as the soft, compound armor carried by at least one of the Russian battleships. Add to these facts that the Japanese have an overwhelming superiority in light cruisers, scouts, and torpedo boats; that they are" fighting in or near their home waters; and that the Russian fleet depends for coal upon colliers that are liable to capture when once the fleet has passed into Japanese waters, and it will be seen that the total advantage does not by any means lie with the Russian fleet, powerful though it be.

COMPLETE THE COAST DEFENSES.

On January 16, 1886, the Endicott Board of the army outlined a system of sea-coast defense for the adequate protection of our seaboard. During the past nine years work has been done on the emplacements and the guns as fast as appropriations by Congre~s would allow. Wp to date $\$ 110,000,000$ has been exnended: and it is estimated that it will take $\$ 65,000,000$ more to complete the work. The guns already emplaced include nïnety-three 12 -inch, onè hündred and nineteen 10 inch, ninety-three 8 -inch, three hundred and fifty 12 -
inch mortars, and one hundred and eighty-five rapidfire guns. This means that eighty-three per cent of the heavy guns, sixty-six per cent of the 12 -inch mortars, and fourteen per cent of the rapid-fire guns required for our coast fortifications are already mounted. So far, so good.
Unfortunately, as matters now stand, the value of this fine equipment is reduced by about sixty-six per cent, because it is not provided, or is very ill-provided, with the range-finding apparatus which is necessary to the efficiency of a modern long-range battery.
Unless big guns of 10 and 12 -inch caliber be provided with accurate range-finders, they cannot make good shooting beyond ranges of two miles; but with accurate range-finders, these guns are effective against the enemy up to an extreme range of six miles, and the smaller caliber guns at proportionately decreasing distances. The ineffective work done by the heavy guns at Port Arthur against the Japanese fleet has been a matter of general comment, and the following explanation has been given by the Russian general of artillery, Martushev: "The remarkable action of the Quantoon fortress artillery," at Port Arthur, "as manifested during the repulses of the Japanese fleet, leaves nothing to wish for in what concerns the shooting at middle or short ranges. But when the ranges are 10,000 or $12,0.00$ meters, this artillery does not shoot at all, or fires without results. If it were otherwise, it could never have happened that the bombardments at Port Arthur, lasting sometimes several hours without interruption, were without results, when under the circumstances every minute ought to have caused the loss of some ship, small or big.'
Brigadier-General J. P. Story, chief of artillery, U. S. A., states in his last report that it would be impossible, if the position-finding equipment were completely installed on our fortifications, for hostile vessels to remain at 10,000 or 12,000 meters from our batteries of 12-inch guns or mortars for two or three hours, and not be destroyed. He then proceeds to make the following astounding statement: "I regret, however, to have to say that even at this date most of our fortified harbors are no better supplied with position-finding equipment than apparently is Port Arthur."
Evidently some of the amazement which we have been expressing at the apparent lack of preparedness of the Russian authorities, displayed at Port Arthur, may well be reserved for the extraordinary condition of things thus revealed in our own defenses.
In its annual report of 1903, the Board of Ordnance and Fortification recommended that $\$ 2,000,000$ be appropriated each year for the next few years, for rangefinders and other instruments for fire control, etc., and stated that it was aware of no object for which sums of money could be more effectively expended, or from which greater benefit would be derived. In its annual report for 1904 the Board made the further statement that, in the present state of coast defense, money can be more advantageously expended for fire control than for any other permanent installation.
It has been a characteristic of modern military inventions during the past few years, that several small and comparatively inexpensive devices have been produced which enormously increased the effective value of heavy and costly war material. We may mention the soft cap for armor-piercing projectiles, the telescopic sight, and the modern position or range finder, now under discussion. So great is the influence of such inventions, that their possession by one of two contending forces might easily determine the fortunes of a battle, or even of a whole campaign. As one illustration of this, we may mention that in the naval battle of August 10 , the Japanese did and the Russians did not carry telescopic sights on their guns-a difference which in itself was quite sufficient to determine the issue of that fight.
We commend these facts to the careful consideration of Congress, to whom it must surely be evident that no appropriation could be granted to better effect than the annual $\$ 2,000,000$ necessary to render our present costly coast defenses fully efficient.

THE INTERNATIONAL RAILWAY CONGRESS.
Although the International Railway Congress in Washington was primarily a gathering of the foremost railroad men of the world for the discussion of the technical and commercial side of the great subject of railway transportation, the exposition of American railway appliances, which was held on the grounds adjoining the Washington Monument, played a most important part in connection with the great international gathering. Although it was understood that the foreign delegates would travel widely in the United States before returning to their various and widelyscattered homes, and would, therefore, have the opportunity to become acquainted with the American railroad in its active operation, it was realized that the limited time at their disposal would prevent many, of them from obtaining as intimate a view of our railway plant and appliances as they might wish to secure. Hence the suggestion, which soon took practical shane, to hold an exposition of railway material at Washing.
ton, and erect buildings and set apart grounds of sufficient area and size to contain a complete exhibit of American railway plans and appliances. This was practically the first exclusive exhibition of its kind ever held, and, apart from the main exhibition build ing, there were several buildings erected by the larg est and most widely known manufacturing firms who deal exclusively with railway material. The exhibi tion fulfilled its purpose of bringing the railway dele gates in touch with the latest improvements, and as these are the men upon whose word the adoption of new plants and the placing of large orders really de pends, it is believed that the exposition will have an important effect in increasing the exports of American made railway supplies and material
The questions that came up for discussion at the Congress were grouped in five main sections, as follows First, Ways and Works; second, Locomotives and Rolling Stock; third, Working; fourth, General; and fifth Light Railways. Under the head of Ways and Work there were four sub-sections, the first of which dealt with wooden sleepers or cross-ties, and was concerned with a study of the selection of kinds of wood and also a study of the processes of preservation of railway sleepers or ties. Then followed articles and a dis cussion of Rails for Lines with Fast Trains, in which the question of cross-sections of heavier rails, the best metal for rails and ties, rail joints, suspended joints, and supported joints were gone into at great length. The third sub-section was concerned with improved rail crossings, spring and movable point frogs, and continuous rail crossings. The fourth sub section was devoted to a discussion of Concrete and Embedded Material. Under the head of Locomotives and Rolling Stock one of the most interesting papers dealt with the great increase which has taken place during the past ten years in the size and power of locomotives, an increase amounting on some roads to as much as 45 per cent. The important question of automatic couplers was discussed in papers showing the advantages and disadvantages of such couplers; the improvements effected in their construction, and their use in conjunction with other couplers

No papers dealt with under this head commanded more absorbing interest than those concerning elec tric traction, in which its progress on important lines of railways was traced, and the much-discussed ques tions of the comparative value of continuous, alternat ing, and polyphase current received lengthy attention In Section 3, devoted to the Working of the Rail ways, the sub-section possessing most interest was that devoted to the Automatic Block System, in which the recent improvements in automatic block signaling were discussed, and it was shown what progress had been made in their introduction. In Section 4, de voted to General Subjects, the questions of slow freight rates, bookkeeping, duration and regulation of work, and provident institutions were the subject of papers and full discussion. In the last section, Light Rail ways, it was shown what influence the construction of light railways may have had on the traffic of the main lines and working of light railways. The sec ond section under this head was devoted to the consideration of the direct financial co-operation by the State and by localities interested in the development of light railways, and a paper was given outlining the results obtained in Belgium by the in stitution of a central authority for studying the pro jects, and supervising the construction and organizing the working of secondary railways constructed with the financial assistance of the State and of the district affected. The third section considered the organization f a cheap service on main railway branch lines which carry little traffic and on light railways. The subject of the last section, Traffic Conveyed by Automobiles, brought the Congress to the consideration of what may safely be termed the very latest development of railway transportation. It dealt with the question of the organization of service of auto-motors on routes where there was not enough traffic for a railway. The development of the separate steam or gasoline-propelled railway car is as important a change, in its more limited sphere, as the electrifying of the main lines of some of the steam railways.
The magnitude of the International Congress may be judged from the fact that the home and foreign delegates together numbered nearly one thousand, and that there was not a single one among these many who was not qualified to rank as an expert in some branch of the complex construction, organization, and management of the world's railroad systems. These delegates come from every corner of the earth; they have built and operated railroads under every possible condition of topography, climate, population, and private and government control. The intercommunica tion of ideas by papers, addresses, and discussions must result in a general improvement of method, the rejection of old and the incorporation of new and better construction, plant, and operation; results which will be furthered by the personal contact and private exchange of views and experience between individual members.

Vice-President Fairbanks, who in the absence of the President presided at the opening of the Congress, gave a broad touch of human and international interest and meaning to the Congress in some happily-chosen words, when he said that the sessions of the International Railway Congress "bring into closer fellowship distinguished and able representatives of many naions inspired by a wholesome, common impulse. They bring together those who are engaged in promoting the arts of peace and who are desirous of advancing the welfare of mankind. They enlarge the circle of international acquaintance and tend to preserve international amity. They emphasize the fact that our common good is to be promoted by the maintenance of a broad, fraternal, international spirit. While deliberating upon methods to promote the efficiency of the railway, let us hope that you may cultivate a purpose to promote the adjustment, through the arbitrament of reason, so far as may be done consistently with national honor, of those perplexing problems which sometimes arise to menace the world's peace. The nation which seeks an honorable settlement of differences with its neighbors in some other manner than by the sword, is not decadent; it is not wanting in national virility. It is merely manifesting an advanced degree of civilization. It is evidencing the fact that the barbaric strain has run out of its blood. The railroad is one of the most potent agents of modern civilization. With the steamship it has done as much, perhaps more than any other agency to break down the barriers of ignorant prejudice, and unite the world in a common feeling of brotherhood."
an electric process for manufacturing peat. An electric process for the treatment of peat has lately been adopted in England at the Johnson and Phillips works. The peat is transformed into a hard combustible which is well adapted for use under boilers. The operation is said to last about two and a half hours and the material costs less than ordinary coal. The combustible which is thus produced has a high calorific value and gives scarcely any smoke. plant on a large scale is shortly to be installed in Ireland, and if successful it will be an important move in the direction of utilizing peat as fuel under the best conditions. In the present process the peat as it comes from the bogs is placed in cylinders which revolve at a high speed, and well pressed, while a set of air fans are used to drive off the water which forms about 80 per cent of the total. A set of electrodes is placed in the cylinders and connected with a. dynamo. The circuit is completed through the mass of the peat between the electrodes. The resistance which the peat offers to the current causes a considerable heat, and the latter breaks up the peat and pulverizes it, but without causing it to lose any of its properties. In order to increase the conductivity of some kinds of peat, they add certain chemical products. After this process the peat is treated by a set of kneading rollers which give it a plastic consistency so as to enable it to take any desired form. From here it passes to an automatic press which forms it into briquettes. It is then ready for use and is taken to the store-room. It is to be remarked that although the passage of the current through the peat gives rise to a heating effect, the results obtained in this way are quite different from those which another method of heating would produce. By a fire heat the particles of the peat lose their different constituent matters, while the electric heating causes them to disintegrate, thus freeing their cellular material and distributing it throughout the entire mass of the peat. Thus all the particles become adapted for combustion. To obtain a harder material, the disaggregated peat is given a longer treatment with the current. The air is kept out by a tight cover, and the mass is then treated with an adhesive solution so as to unite the particles. The experiments have been made with the above process on a large scale and at a great expense, and it is said to have been greatly improved in the details and can now be applied commercially.

ARTIFICIAL COTTON

Some recent experiments have been made in Bavaria in regard to preparing artificial cotton from pine wood, and it is said that the new process allows it to be made cheaply enough so that the artificial cotton may compete with the natural product. In the method which has proved the most successful the wood, which has had the bark removed, is cut into thin sticks or fibers one-sixteenth of an inch or less in thickness. These are placed in a large horizontal copper cylinder lined with lead, into which steam is passed. When the sepa rating action of the steam on the wood fiber has been prolonged sufficiently, an acid solution of sodium sulphite is added and the cylinder is heated under a pressure of three atmospheres during thirty-six hours. The wood, which has become completely white, is washed and then passed through a crusher. After washing again, the fibers are further whitened by a chloride of lime treatment. The matter which is thus obtained is dried and constitutes a pure cellulose which
is then heated under pressure with a mixture of nitric and hydrochloric acids and chloride of zinc. The pasty mass thus formed is mixed with a little gelatine and castor oil, which give a certain resistance to the fiber The cellulose is then formed into fine threads by a spinning machine, and these are washed in a carbonate of soda solution and dried. These threads are said to form a very good fabric when woven, and can easily be dyed. Although the experiments have as yet been carried on only in the laboratory, there is no doubt that the process may be applied on a large scale, thus coming into the European market as a competitor for the imported cotton.

SCIENCE NOTES.

A series of discoveries of great value to antiquarians and geographers have been made in the barren desert of the Fayoum by Mr. Seton Karr, the explorer. These investigations show that at some bygone period the old Kurun Lake consisted of a chain of minor oases running in a northwesterly direction from the exist ing lake and about fifteen miles distant from the act ual border line. The explorer brought to light a large number of millstones, plates for grinding meal, and flint implements of the unmistakable Fayoum pattern, strewn over the whole length of the plateau lying parallel to the lake. A number of these trophies, some of which are surmised to belong to the neolithic period, while all afford undoubted evidence of primi tive village communities, have been deposited in the Cairo Museum.
The British consul-general at Naples describes in he course of a recent report a new, easy, and com mercially profitable system of cultivating truffles that has been discovered by two eminent Italian botanists, Prof. Mattei, who occupies the chair of botany at the Naples University, and Dr. Serra, of Castellammare who also holds an important position in the botanical world. They have patented a mycelium, and they consider that once the ground has been thoroughly reated therewith, generation will be so spontaneous that further use of what may be callec. the 'protoplasm" becomes unnecessary for a number of years; for the cultivated tuber will propagate itself the same as the wild one has done for unnumbered generations. They further assert that the crop which they propose to sow almost immediately will be ready to be gathered from October onward. Each oak tree is calculated to produce among its roots from 5 to 10 kilogrammes per year, which means that at $\$ 2$ per kilogramme each ree will produce from $\$ 10$ to $\$ 20$ per annum. The chief hope of the botanists referred to, of material profit, however, lies in the Terfezia leonis. This species of truffle originates from the roots of Helianithe mum guttalum, a herbaceous annual which can be own from year to year where it will best flourish. It is the easiest of all the varieties to grow, and is prac tically independent of water. In Tripoli the Terfezia practically takes the place occupied by the potato in more northern countries. It grows there to the size f an orange, and when taken from the ground is cut up and dried, and carried as food for the caravans which cross the desert. It can be cooked when required, either in water or in camel's milk, and will keep good for an indefinite period.
An important research expedition, which has for its objects the thorough investigation of the hydrography and biology of the central and western sections of the Indian Ocean, which are not explored by the "Challenger" expedition, is to be carried out under private auspices. The British Admiralty survey yacht "Sealark" has been obtained for the purpose. The party will first proceed from Colombo (Ceylon) to the group f coral atolls and submerged banks known as the Chagos Archipelago. This field opens considerable faciliies for research, since no clear data regarding this portion of the Indian Ocean has been gathered since 1837. Thence it will go to Mauritius in August, to replenish stores, proceeding subsequently to the surface reef of Cargados and along the Seychelles group and Saya de Mabha bank. This route has been selectdor the purpose of conclusively determining the depth of the ocean bed between Mauritius and Seyhelles, about which there is at present much diversity of opinion. After leaving the Seychelles the expedition will survey the Agalegas group, finally returning to Colombo. Elaborate soundings and temperature tests are to be carried out, and the determination of the existence of any relatively shallow banks connecting India with the South African continent, or Mauritius with the Seychelles, the mutual relationships of the Chagos atolls, the general ocean changes that have occurred since the last surveys, and the nature of the currents at varying, depths. Frequent dredgings will be undertaken for biological purposes, and he examination of the pelagic flora and fauna at various depths from 50 to 500 fathoms, as well as the ocean bed, and all parts of the coral reefs visited. The expedition hopes by this careful survey to obtain some definite information concerning the vertical distribution of animals and plants. The expedition will be absent for several months.

AN ASTRONOMICAL Clock with an automatic
adjustment of time and church calendar. by ciarles a. brassler.
Be it ever so simple, there is a certain fascination about a clockwork which cannot fail to rivet the attention. That with a spring or a weight and four wheels the period of time between sunrise and sunrise called a day can be divided into eighty-six thousand four hundred exact parts, and this subdivision be repeated indefinitely, is certainly most astonishing and very near akin to a miracle. And yet this is the simplest duty of a clock. Those of us whose qualifications adapt them to extend their observations to the phenomena of nature other than the passage of time, find that certain events occur and constantly recur with marvelous exactness. Mechanical minds are not content with knowing this; they are impelled with a desire to indicate the changes mechanically, and some of the more daring ones reach out to the prediction of the events far into the future centuries
Having once acquired the knowledge and skill necessary to subdivide one of the smaller periods of time, a day, into its parts, the rest is simply a matter of computation; for, with slight variations which have been discovered, the other events follow successively in regular order and at tolerably regular periods. What mechanism could be conceived, then, which would mark off these occurrences with equal precision to the clockwork, wherein it is possible to cause a wheel to revolve once a minute or once in four years? The phenomena of nature are such daily events as the rising and setting of the sun, of the moon, the ebb and flow of the tides, the longer periods of the seasons, the spring and the neap tides, the church holidays and festivals, the regular yearly revolution of the earth about the sun, the precession of the equinoxes, and with reference to our sphere the movements in their respective orbits of the planets and stars.
Clocks which show all these are called astronomical clocks. Such a clock we are now about to consider, and from the number of these events which it records, and the method by which it does it during a long period of time, correcting automatically the errors which occur in the advancing years, it is entitled to rank among the wonderful productions of the human brain and hand.
Our illustration depicts a highly ornamental clock constructed by Mr. Ernest Weber, a horologist in Georgenthal, Thuringia. By the aid of an armillary sphere, it displays the apparent courses of the stars visible to the unaided eye, combined with some of the phenomena which attend them; it moreover regulates a continual Gregorian time and church calendàr (Computus ecclesi asticus) as well as a so-called perpetual calendar.
Themechanismis driven by a spring with a winding period of nine days. The escapement, which is plainly visible just above the seconds dial, is a chronometer es capement with a compen sated balance vibrating under the influence of a spiral cylinder - shaped spring. Besides this, the case contains a striking work for the hours and an alarm of the same winding period.
With reference to the data in the calendar, be it said that the day of the month changes suddenly every day at midnight, while the name of the month and the week day have an uninterrupted but slow motion. In order not to demand too much power from the main spring at one time, those fixed dates, which remain unaltered through the course of any one year, change successively during the twenty-four hours devoted to December 31 of the closing year, and in such a manner that all the data for the new year are in position and visible a its opening.
To effect these changes more quickly by the aid of the striking work, and
at the stroke of twelve midnight, as is the custom with similar clocks, has been avoided here, for the reason, as we shall see later, that it is often desirable to disconnect the sphere movement from the regular clockwork, in order to set it upon some past or

an astronomical clock

that indicates the apparent course of the stars, Gregorian time, and astronomical time, besides including a perpetual calendar.
future dates; thus all the calendar data, and particularly the festival of Easter, must be capable at the change of the year of moving themselves either forward or backward, which could not be effected if they were attached to the striking mechanism.
Though it may be unnecessary, we shall further remark that it is not necessary to change the monthly indicator for months of uneven length, for the clock
does this for itself, as well as inserting the inter calary day every fourth year, as also the intercalary day every four hundred years, so that the year 1900 appears as a common year, while 2000 is a leap year, and again 2100,2200 , and 2300 are successively common years. The casing of the clock is a hollow cube of 34 centimeters in height and 27 centimeters in width and depth resting upon four compressed balls for feet. It is provided with a plinth both top and bottom, which is enameled in white and ornamented with gold. Within this compass is contained all the movement of the clock proper, the striking work, the alarm, and the transmission to the globe above. The four sides of the cube are formed of plate glass, behind which the different dials for time, calendar, and holidays are visible. Upon the front, shown in the cut, are seen the following: the date of the current year, stating as to whether it be a common or a leap year, showing February with 28 or 29 days, also the month, the day of the month, the name of the week day, and the day divided into daylight and darkness. Upon the main dial are seen the hours and minutes, divided into the customary twice twelve hours, with the seconds upon a special dial. The several hands upon this dial show the time (mean solar time) for Gotha, the mean time for Europe, as well as that for Greenwich. Moreover, upon two small dials within the ring of the main dial are shown the hours and minutes of the true solar time, as well as the hours, minutes, and seconds of the sidereal or star time, as well for Gotha as for Greenwich, which can be read from the inner ring of the seconds dial.
Upon the side displaying the church calendar appear such data as the ecliptic, the golden number, the Roman indiction, the dominical letters, the epacts, the Luna XIV or date of the spring full moon, as well as the dates of Easter festival and the first Sunday in Advent; besides these, the running time (winding and unwinding work), the alarm dial, and the dial for connecting or disconnecting the striking work. On this side also is found the winding staff. Upon the left side of the casing are shown the days of the week, with the dominical letters and epacts, as well as the dates of the Easter festivals for the future, whereas upon the right side appears the church calendar with the dates of the Ash Wednesdays. Behind the rear face of the cube appear the saints' days and such like as are customarily shown in calendars.
On the platform or upper surface of the cube rests a handsomely decorated foot 24 centimeters high, carrying upon its uppermost end a transparent glass sphere or globe, 17 centimeters in diameter, which turns within meridian and horizon rings of 30 centimeters outside diameter. Upon this glass sphere representing the firmament are visible some of the fixed stars and about it revolve not only the planets, but also the sun and moon in their correct petiods. Perched upon the top of all is a small globe representing the earth, and on this is neatly balanced a magnetic needle, which points toward the south instead of the north, its barb having been made the south pole instead of the usual north. This needle is used in adjusting the clock exactly on the meridian of the place wherever it may be situated.

A so-called perpetual calendar is seen on the front of the base of the clock. This is not mechanical, but is manipulated by the hand, and will show instantly a complete year for any date, either in the past or the future.
An idea of the complexity of the work may be gained when we know that it contains more than three hundred wheels and pinions. The height over all is something over three feet, and to keep out the dust and preserve its untarnished appearance, the whole is covered with a glass shade, which for clearness in definition has been left out of the drawing.

CONCRETE FOUNDATIONS OF THE NEW PASSENGER STATION, WASHINGTON, D. C.

by day allen willey.
The Union passenger station under construction at Washington is notable for the reasor that it is not only one of the most elaborate ever designed, but by reason of the interesting features of construction which it involves. The site chosen for the depot and approaches-at the intersection of Massachusetts and Delaware Avenues-was 22 feet above tidewater, but the main floor of the station is at an elevation of 58 feet, the surface of the basement being 42 feet. To construct the roadbed for the terminal tracks and grade the area surrounding the depot, a large amount of excavation and filling was required, approximating $3,000,000$ cubic yards. The contracts for grading the northern approach to the station alone represent $2,600,000$ cubic yards of earthwork, in addition to 100,000 yards of masonry; while to bring the site of the station and its surroundings to the required level, no less than $1,000,000$ cubic yards of material were needed, the average height of the filling being 20 feet above the ordinary surface. Most of the excavation was performed with steam shovels, each removing 1,000 cubic yards daily.
Because of its architecture and dimensions, the edifice, which is included in the group proposed to be erected to conform to the plan of L'Enfant for improving the city, will be one of the most picturesque and imposing structures of any kind in the United States. Consequently, a brief description may not be

Detail of Outer Wall Support, Showing Massiveness of Concrete Work.
types. These central doorways will lead into a vaulted open-air vestibule, and thence into the main waiting room. At the end pavilions will be located two forty-foot arch carriage entrances, the last one leading to a suite of apartments for the President of the United States and his guests, and the one at the west end will lead to a general carriage porch near the ticket and baggage lobby. The central vestibule and the end pavilions are connected by an open-air

Molds for Interior Columns.

out of place in this article. Facing the dome of the Capitol, it will be approached by a grand plaza 1,000 feet in length and 500 feet in width, terraced and ornamented with balustrades and fountains. From the plaza nine thoroughfares will radiate to the east south, west, and northwest. The main building will be 620 feet long and from 65 to 120 feet in height. It is being built of white granite. The three entrance arches will each be 50 feet in height and 30 feet in width, and far exceed in scale their Roman proto-
portico, and constitute a continuous covered porch along the front of the entire building.
The general waiting room will be 220 feet long by 130 feet wide, and covered by a Roman barrel-vault 90 feet high, that will be decorated with sunken coffers or panels after the manner of the Baths of Diocletian. Natural light will be supplied by a great semicircular window at each end, 75 feet in diameter, and by five semicircular windows 30 feet in diameter, on each side. At the east end of this hall will be
grouped the dining room, lunch room, and women's waiting room. At the west end, and on opposite sides of a lobby 50 feet wide, are located the ticket offices and baggage checking room, with the smoking room and package room adjacent. Telephone and telegraph booths will be provided in the general waiting room. The baggage room will be located in the basement, and reached from the west side of the station. To avoid conflict between passengers and baggage on the train platforms, certain platforms will be set aside exclusively for use in handling baggage. The size of the passenger concourse, or lobby, will far exceed anything ever built for a similar purpose. It will be 760 feet long and 130 feet wide, and will be covered by an arched ceiling in a single span, decorated with panels, and part of which will transmit the light.

The building is supported entirely on a base of concrete, and the work of this character is probably the most elaborate which has yet been attempted in America, for no less than 50,000 cubic yards have been required. The columns of the steel framework rest upon columns of concrete, capped with iron, the size varying according to the requirements; while some are only $21 / 2$ feet square, others are no less than 6 feet square. The height of the retaining walls and pillars was partly governed by the formation upon which they rest, it being necessary in many instances to make a considerable excavation, in order to obtain a suitable base. To sustain the outside walls, the material was molded into massive piers, both solid and in the form of arches. Some of these masses were no less than 30 feet in length and 20 feet in thickness.
Despite the dimensions of the work and the large amount of material required for the base retaining walls and other supports, a remarkably short time has been required to complete the substructure, and the average number of men that has been employed in handling and mixing the concrete, filling the molds, making and removing the molds, has not been over 150. The material for the station was mixed almost entirely by a gravity process, the idea of Mr. Harlow Lewis, superintendent of construction for the contractors for the foundations and exterior. At a convenient point a trestle was erected, on which the carloads of crushed stone and sand were pushed, being emptied into bins built be-

Panoramic View, Showing Thickness of Concrete Piers for Outer Walls.
concrete foundations of the new passenger station, washington, d. c.
neath the trestle. The bins were within reach of a derrick placed on the platform of the mixer. When a batch of concrete was to be made, hand-cars containing buckets were run under the proper bins, and loaded by gravity with the requisite quantity of stone and sand. The buckets were then transferred to the mixing platform by means of the derrick, where the cement was added. The mixer was composed of three hoppers, each having a movable gate or trap in the lottom. In the first or top hopper the sand and stone were combined with the cement, and allowed to fall by gravity into the second hopper, where water was added, then into the third directly beneath it, where the process of composition was completed. From this the material fell into ladles mounted on cars, whence it was hauled by animal power to the vicinity of the mold. Here the loaded ladle was lifted by a derrick, its contents transferred to the mold, then replaced on the car to be again filled at the mixer. The derricks of the ordinary boom type, operated by steam hoisting engines, were set at convenient points on the station site. The tramways used were composed of rails weighing but 15 pounds to a section. Consequently, they could be quickly and easily laid by a half dozen men as fast as needed for moving the material.
At the beginning of the work, iron rods were used in connection with the concrete to give it more strength and tenacity, but wire was finally substituted for reinforcing the material. The sizes set into the material ranged from $1 / 4$ to $7 / 16$ of an inch in thickness, depending upon the nature of the work. In setting the wires in the molds, they were placed at an average distance of three inches apart, the outer sections being laid at right angles to each other. As the photographs show, the molds for the walls as well as the interior columns and piers were constructed of wooden framework in the usual manner. Where possible this was built in sections, so that when the concrete had solidified, the false work could be pulled off by means of a derrick, saving the time and expense of knocking it apart. One reason for the rapidity with which the foundations have been built, is the short time required for the concrete to solidify. In the spring and summer months it would set in a maximum period of 36 hours from the time material was poured into the molds in a semi-liquid state. The time in winter is somewhat longer, depending of course upon the temperature.

THE MODERN HIGH-SPEED LOCOMOTIVE.

The great increase that has taken place of late years in the size, weight, and power of fast passenger locomotives, is to be ascribed mainly to two causes. First, the increased weight of the trains, and second, the demand on the behalf of the public for faster trains. Of these two causes, the former has been the most active in influencing the design of the locomotive; for while there has been a decided increase in the speed of express trains, there has been a relatively greater increase in their weight, some of the trains being of a weight which, a few years ago, would have been considered prohibitive.
Contemporaneously with the increase in weight and power of express locomotives, there has taken place a decided change in type. Not many years ago the term "American locomotive," as applied to those that hauled passenger trains, was universally understood to mean an eight-wheel engine with a forward truck, four coupled wheels, and the cylinder driving the leading axle. The call for greater power and a larger boiler then led to the introduction of a third pair of driving wheels, giving us the six-coupled express engine which, for a while, held undisputed possession of the field for heavy fast passenger trains. This, in turn, was succeeded by the celebrated Atlantic type, a ten-wheeled engine with a forward truck; four coupled driving wheels, and a pair of trailing wheels beneath the firebox, the cylinder being connected to the rear driving wheels-a type that is in such wide use to-day that it may be considered the typical American locomotive of the opening years of the twentieth century. It has proved in every respect a most successful type, and some of the heaviest, fastest, and most famous trains in America are hauled exclusively by Atlantic engines. The credit for the introduction of this type belongs largely to the Baldwin Company, and the first engines turned out by them sprang into immediate favor and prominence by the great work they accomplished in hauling the fast summer expresses between Philadelphia and Atlantic City.
The remarkable photograph shown on the front page of this issue represents the most powerful express engine of this type in existence. It was built for the Chicago \& Alton Railway, for hauling their fast passenger trains between Chicago and St. Louis during the World's Fair. It is one of several that were or dered, and it formed part of the exhibit of the builders in the Transportation Building at St. Louis. Perhaps the best known of the large Atlantic engines are those which were built by the American Locomotive Company for handling the fast passenger traffic on the

New York Central Railroad, and the great power of this Chicago \& Alton engine can be understood by comparing its cylinder dimensions with. those of the New York Central engine, which are $21 \frac{1}{2}$ inches in diameter by 26 inches stroke. The Chicago engine has cylinders of 22 inches diameter and 28 inches stroke, and as the steam pressure, heating surface, and diameter of driving wheel are the same, the engine is, of course, more powerful than the New York Central engines, the tractive force or drawbar pull being 28,798 pounds. The weight on the drivers is 145,000 pounds, the weight of the engine in working order is 221,300 pounds, and the weight of the tender 166,000 pounds. The barrel of the boiler is 70 inches in diameter, and it contains 276 tubes, $21 / 4$ inches in diameter and 20 feet long, whose aggregate heating surface is 3,234 square feet. The firebox contains 202 square feet of heating surface, giving a total heating surface of 3,436 square feet. The driving wheels are 80 inches in diameter.
The engine shown on our front page was engaged in hauling, during last summer, what are known on the Chicago \& Alton road as trains No. 2 and No. 11. Train No. 2, running from St. Louis to Chicago, consisted of eight cars which, with baggage and passengers, weighed 475 tons. Five stops were made, the average duration of stops being four minutes, and the average speed of the train was 40 miles an hour including these stops. The weight of train No. 11, running from Chicago to St. Louis, varied from day to day, but frequently no less than fifteen cars were coupled on behind the big engine, in which case the weight of the train, passengers, and baggage exceeded 800 tons. This train was scheduled to make the same speed, and it had to do this in spite of four stops, the average duration of which was $41 / 2$ minutes.
When we read of 80 -inch driving wheels, 22 -inch cylinders, and 70 -inch boilers, the average reader receives no adequate impression of the resulting size of the locomotive. In the present case, the photographer selected a point of view that gives one a most impressive sense of the huge bulk and impressive dignity of this splendid engine.

THE GREAT $3,000-\mathrm{MILE}$ YACHT RACE.

The hearts of the deep-sea yachtsmen must have been gladdened on the afternoon of May 16, when they saw that noble fleet of nigh upon a dozen ocean-going yachts sweep over the starting line at the historic Sandy Hook lightship. Of late years, with every recurring international race, we have been accustomed to hear many an expression of regret that the influence of the America Cup contests on yacht design and construction should have resulted in the development of a yacht that was a racing machine pure and simple, costly to build, costly to operate, and practically worthless when the three brief races for the cup had been sailed. There is a large body of yachtsmen, including most of the older men and not a few of the younger and most progressive, that has been endeavoring to control the development of the mere racing machine, and bring back the design and construction of yachts to more reasonable models and more wholesome and less costly materials. There are two effective ways in which this may be accomplished. One is by framing rules of measurement which will give a yacht of wholesome model such a decided advantage in time allowance over yachts of the "freak" type that the motive for building these extreme "measurement cheaters," as they are called, will disappear, and yacht building will be brought back to normal conditions. Another sure way to eliminate the flimsy and freakish yacht is to encourage deep-sea or ocean racing; for it is a fact that the very extremes of form and dimensions which render a yacht fast in the more or less sheltered waters on which the majority of yachting courses are laid, produce a yacht that is entirely unsuited for the severe conditions that may be met on outside courses. Proof of this was shown during the last America cup races, when the "Shamrock" and "Reliance" were afraid to venture outside Sandy Hook one morning in weather that would have delighted the heart of a yachting skipper in the days of the good old ocean schooners "Henrietta," "Fleetwing," and "Dauntless."
The great ocean race which is now under way across the Atlantic will do much to assist in producing racing yachts of a stancher and more seaworthy type, and we may look for a revival of interest in the genuine oceangoing cruiser. This, in its turn, will improve the type of racing yacht that follows the regattas of the summer season; for owners will naturally wish to have a boat
that is capable of winning cups, whether the race be over a triangular course of thirty miles off Sandy Hook or a race for the Kaiser's cup for 3,000 miles across the broad Atlantic Ocean.
As to which yacht is likely to win this race, it is altogether idle to speculate. For the past few weeks, and at the present writing, prognostications as to the outcome have been and are very plentiful. The absolute uncertainty as to the winner undoubtedly lends to ocean yacht racing much of the charm that attaches to it. There are so many variable conditions affecting the result. In the first place, there is the wide variety among the yachts themselves; for they range in size from the little $8611 / 2$ foot schooner "Fleur-de-Lys" up to the great, full-rigged ship "Valhalla," which measures 240 feet on the waterline. They vary in age from Lord Brassey's world-renowned yacht "Sunbeam," now thir-ty-four years old, to the up-to-date fore-and-aft schooner "Atlantic," built as late as the year 1903. They vary in construction also from the heavy scantling of the "Valhalla," the "Apache," and the "Sunbeam" to the light construction of the out-and-out racing craft, as represented by the German fore-and-aft schooner "Hamburg" and the even more iightly constructed racing yawl "Ailsa." Some of the craft are sailing vessels pure and simple, such as "Fleur-de-Lys,"" "Thistle," "Ailsa," "Hildegarde," "Endymion," and "Hamburg." Others, such as "Sunbeam," "Valhalla," "Apache," "Utowana," and "Atlantic," are auxiliaries; that is to say, they carry engines and boilers of sufficient power to drive them at a speed of from 8 to 10 knots under steam alone. The auxiliaries, which have unshipped their propellers, are handicapped as compared with the other yachts by the fact that they must carry from 30 to 70 tons of dead weight in the way of engines, boilers, condensers, shafting, etc., which is not as favorably placed for stability as the same amount of weight when carried in the form of lead in the keels of such vessels as "Hamburg" and "Ailsa."
The greatest element of uncertainty is, of course, the weather, and this for the reason that each yacht, or rather each type of yacht, has its own best weather conditions for speed, and a wind that favors one may be disadvantageous for another. It is probable that the yachts will become considerably scattered. Some will take the more northerly and shorter course, disregarding the warnings of the government to the effect that a large amount of ice will be encountered on this course. They will judge that it is better to accept the interruptions, change of course, etc., that will be necessitated in sailing through an ice field, where the ice is closely strewn, and get through the difficult and dangerous belt as quickly as possible; while others again, among whom is Lord Brassey, who will navigate his own. ship, will prefer to take a more southerly course, where there will be no fear of being hindered by having to dodge ice floes and bergs. Those who take the northerly course, and have the good luck to avoid collision and escape delay in passing through the ice, will reap a great advantage in being able to sail a course laid on or approximately on a great circle, and, therefore, considerably shorter than a course laid more to the southward. It is this wide scattering of the yachts that brings in one of the greatest elements of uncertainty; for not only will the distance of the course vary, but the weather conditions also may be widely different. Thus a vessel may be so favored with wind and weather to her liking that she may show up at the Lizard ahead of faster competitors, which sailing under their own most favorable conditions could have easily outdistanced her.
Each skipper, of course, is praying that he may have the particular winds and weather that suit his craft. The big "Valhalla" would like nothing better than to have from half to three-quarters of a gale of wind three points aft of the beam for the whole distance; for under these conditions she could reel off 15 knots with ease. The Earl of Crawford informed the writer that on one occasion he sailed the "Valhalla" from Cape St. Vincent to Gibraltar, a distance of 190 knots, at an average speed of 16.8 knots an hour, the maximum possible tide with or against the yacht being 5-10 of a knot an hour. Under such conditions she could drop the fleet easily. But the probability of a continuous wind of, say, 40 to 45 miles an hour for the course is very remote. With head winds she would be easily left by the fore-and-aft-rigged vessels. Lord Brassey informs us that he has logged 300 miles a day in the "Sunbeam." The fore-and-aft schooners like "'Thistle," "Hildegarde," "Endymion," "Hamburg," and

Yacht.	Rig.	Where built.	Yacht Club.	Length in feet.	Beam in feet.	$\begin{aligned} & \text { Draft } \\ & \text { in feet. } \end{aligned}$	Owner.
Sunbeam.	Auxiliary Schooner.	England.	Royal Yacht Sguadron.	${ }_{19.7}^{15.7}$	${ }^{27.6}$	13.9	T.ord Brassey.
${ }_{\text {Thissili }}$	Schooner.	America.		19.0	${ }_{278}$	16.9 14.0 1.0	Reberrt E. Tod.
Flear-de-I,ys.	Schooner.	Ameria.	New York Yacht Club.	${ }^{8.5}$	21.9 372 18	13.0	Lewis A A Stimson.
A pache.	Auxiliary Bark.	England.	New York Yacht Club.	178.0	${ }_{28.0}$	${ }_{16.6}$	Edmund Randolph.
Utowana.	Auxiliary Schooner.	${ }^{\text {America. }}$	New York Yacht Club.	${ }^{155.0}$	$\stackrel{\text { 27.8 }}{\substack{27.0 \\ 29}}$	14.6.	Alison V. Armour.
	Alxiliary Schooner.	${ }_{\text {America. }}^{\text {America. }}$	New York Yacht Club.	${ }_{\substack{133.0 \\ 103.4}}$	$\stackrel{29.0}{29.0}$	16.5 16.9 16.9	Eidsard R. Coleman.
- Fndyymion.	Auxiliary Schooner. Schooner.	Amoria.	New York Yaotht Club Kaiserlicher Yacht Club.	1010 $\substack{116.0}$ 1	24.4 23.9 2.9	14.0 15.0	George Laiderer German Syndicate.

"Atlantic," would like nothing better than to have a whole-sail reaching breeze from start to finish; a breeze with less weight in it than the "Valhalla," "Utowana," "Sunbeam," and "Apache"" would call for. Probably under these conditions the race would lie (that is, if the yachts kept the same course) between the German entry "Hamburg" and Wilson Marshall's "Atlan tic," with the odds in favor of the "Hamburg," because of her deep lead and greater stability and her ability to carry canvas longer than the auxiliary yacht, although this would be compensated in great measure by the extra sailing length of the big three-masted schooner. Moreover, Capt. Barr, the most successful racing skipper of the day, is familiar with the ocean passage, and the "Atlantic" will be perfectly sailed and handled.
There is one vessel in the race which is notable for the fact that she is the only yacht built as an out-andout racing craft that is carrying her full racing canvas into the race. We refer to the handsome yawl "Ailsa," built originally as a cutter to defeat that famous yacht of the nineties, "Britannia." "Ailsa's" chance will come if conditions prevail throughout the course similar to those which are ordinarily met with in the regattas of our summer season. If she is favored with light breezes, in which she can use her big spread of canvas to its best advantage, breezes in which the subtle question of ratio of sail area to wetted surface becomes all important, and especially if light head winds should prevail, Grenville Kane and Capt. Miller will be wel repaid for the risk they have taken in stepping the big racing mast for this ocean race. Given her weather, "Ailsa" will prove to be a keen competitor for the cup.
The German yacht "Hamburg" is, like the "Ailsa," a strictly racing craft; but her rig has been greatly re duced-a wise precaution, if the winds should be strong and the seas heavy; but likely to spoil her chances if the winds are light
The big schooner "Atlantic" is generally picked as the winner, and the expectation is based upon her fine performance last season and upon the fact that Capt. Barr, of America Cup fame, is to be her skipper. Given weather in which she can carry her heavy rig, she should win. In heavy weather she will lose to "Hamburg", or to the square-riggers; in light weather and easterly winds, we look for "Ailsa" to prove her most dangerous competitor

Mont Pelés New Dome.

The Abbe Yvon climbed two-thirds of the way to the top of the new "dome" of Mont Pelé in the fall of 1904, and the expedition is thus described by him in La Martinique: The party which started for the mountain consisted of himself, the Abbé Altéroche of Morne Vert, M. Roux, gendarme at Le Carbet, and two porters. Leaving Le Carbet by canoe at 5 o'clock in the morning, they arrived at the mouth of the Rivière Blanche at $6: 30$, and disembarked. The dry bed of the river is now a gorge with walls averaging 15 meters high. Twice they found the gorge blocked by great rocks which formed cliffs 8 to 10 meters high. The first of these was encountered at twenty minutes' walk from the sea, and the second at one hour and a half. Fumaroles were observed at intervals along the river bed from the second kilometer to the foot of the talus of the new cone
The slope of the material filling the gorge of the Blanche becomes noticeably steeper at an altitude of about 500 meters above the sea. At this point the party stopped, had breakfast, and rested from the fatigues of the rough journey along the new gorge of the Blanche. When the question arose as to the continuance of the ascent, Abbé Altéroche declared himself too weary to go on. In the words of Abbé Yvon:
"M. Roux and Julien, the servant at Morne Vert, consented to follow me, and we directed our steps toward the middle of the base of the talus slope. My project was in general to climb to the level area on top of the 'dome' at the same altitude as the base of the needle which rises on the side toward Morne Lacroix. I was persuaded that the dome ought to be cold and that the fumaroles there, i. e., on the side toward St. Pierre, ought not to have a very high temperature. Furthermore, since the dome fills the crater of 1902 to 100 meters depth, who knows whether or not a new crater, an avenue of communication with the interior of the earth, does not exist in the summit at the place where, as viewed from Morne Vert, there seems to be a level area? Curiosity impelled me to determine the question if possible, and I resolved to climb clear to the top. The volcano was very tranquil and the vapors seemed less abundant than for days before."
After climbing for a few minutes farther, M. Roux decided to go no higher, but he agreed to await the return of Abbé Yvon and Julien; apparently this decision was reached in the breach of the old crater wall and near the base of the new dome. Beyond this point the first fifty meters were rendered difficult to traverse by the loose stones scattered thickly over the slope, which rolled under foot. Then the Abbe reached the white bands which are a prominent feature of the dome as
seen from the sea, which he found to be steep slopes* covered with fine white ash. These had been the path of countless dust-flows for two years. Scrambling across the zone of white bands, the two men reached the solid lava of the dome and were able to climb more easily. Noting a large fumarole to the south of their path, they started toward it. This divergence probably saved their lives, since they had scarcely turned aside before an explosion occurred in the upper part of the dome and in a few seconds an avalanche of great rocks traversed the route up which they had been climbing, scattering fragments even to their feet. M. Roux had barely time to take shelter behind a great rock, before the descending stones reached his level. The avalanche lasted about two minutes and impelled M. Roux to start down the mountain at full speed, as soon as it had ceased. The Abbé was determined to go on by a different route, but Julien was thoroughly frightened and would proceed no farther, so that the Abbé was forced to abandon the ascent when about two-thirds of the way up the dome. He was probably at an elevation of about 1,400 meters.
Before beginning the return journey, the large fumarole was visited and was found to be a crevice two or three centimeters wide and 20 to 25 meters long, beside a high, narrow, serrated ridge, resembling the dorsal fin of a fish placed radially with reference to the dome. Steam was rising vigorously from the fissure to a height of about three meters above the opening. Much sulphur was observed on the farther side of the crack, but the thickness of the deposit was not determined, because it did not seem prudent to cross the fumarole to measure it. On the return journey across the plateau between the Blanche and Sèche rivers and down the gorge of the latter stream, small fumaroles were seen here and there until within half a kilometer of the sea. These were discharging hot air, but no live steam, un der some pressure and with considerable noise

It may be remarked that although the Abbé found the portion of the dome that he ascended essentially cold, he would probably have found a different condi tion of affairs prevailing on the summit plateau which he was striving to attain, since the December bulletins of the French volcano commission on Martinique report continued explosions from near the top of the mountain and the frequent appearance of incandescent spots near the summit of the dome.

An Inside-Connected Locomotive for Purdue University.
Purdue University is to receive from the New York, New Haven and Hartford Railroad the historic locomotive "Daniel Nason." A few years ago the univer sity interested itself in securing from railways samples of such classes of locomotives as are now being superseded, its purpose being to preserve as museum exhibits types of design which were becoming extinct and a number of valuable relics are already upon its grounds. From the beginning of this movement an effort has been made to secure a representative of a type which was common throughout New England thirty years ago, namely, an eight-wheeled engine hav ing cylinders inside the frames connecting with the crank axle. This effort has now been crowned with success. The. "Daniel Nason" is said to have been built in 1858. It was exhibited in Chicago in 1893 and has since been held as a relic at Roxbury, Mass. The engine weighs about 25 tons, is complete with its tender, and will be shipped to the university at Lafayette, Ind., upon its own wheels.
The university is also to become the custodian, in behalf of the same railway, of a stage-coach passenger car which is said to have been placed in service in 1835. It consists of the body of a stage coach suspended over a simple railway truck by means of thorough braces. It will seat inside and on its top about twenty persons.-American Machinist.

The Current supplement.

The English correspondent of the Scientific American opens the current Supplement, No. 1533, with an illustrated article on the hydraulic power works on the River Glommen, Norway. Some striking illustrations accompany the text. George W. Dickie's paper on "The Man and the Ship" is concluded. A. Frederick Collins describes the Massie wireless telegraphy system at length. Other articles that deserve to be mentioned are those entitled "Decorative Insulating Beads for Electric Light Wires," "Photographic Chemistry," "The Cement Industry," "A New Form of Friction Clutch," "Salt Furnace for Steel Hardening," "Radium Testing," and the "Present Status of Electric Furnace Working." Karl F. Kellerman discusses copper as an algicide and a disinfectant in water supply.

On the railways of the United Kingdom there is one locomotive and thirty-six vehicles per mile of line. In the United States there is only one per four miles of railway, and thirty-six vehicles per mile.
1903.-E.O.H.

(foviexpurntlente.

Why the Stone Lall Moves.

The movement of the stone ball may be the result of The movement of the stone ball may be the result of earth vibration, caused by trains on some railway with
in a radius of five miles.
C. Bartholomew. East Toronto, May 8, 190
c. Bartholomew

Another Solution of the Stone Ball Puzzle.

To the Editor of the Scientific American
The photograph and article about the stone ball that is slowly moving around interested me very much. I was sure that you would have a good many letters on the subject, but I do not read in any one of them a suggestion that the moving might be due to some metal embedded in the stone, which is being drawn toward the pole as the needle of a compass is naturally drawn. I do not know if the ball is moving in the right direcion for this suggestion to be admissible; but might it not be as near the mark as some of the other ones? I hope that some time we may hear the correct so lution of the subject.
N. L. Ladd. East Orange, N. J.

That stone Ball.

To the Editor of the Scientific American
The spontaneous moving stone ball is a very simple problem, if my theory be right. I am willing to leave the matter to you as to whether it is worth mention or not. It is my opinion, based on the theory that the sphere is unbalanced, not due to imperfection in its shape or symmetry, but to density; in other words one side is heavier than the other. Then the effect of the expansion and contraction of the base or pedestal upon which the ball rests must be considered. The base has a flat surface directly facing the south, and must of course be affected by the sun's rays, producing the creeping motion of the ball. When the heavy part of the ball has reached ihe bottom, in my opinion it will cease to move. If it continues to move more han half a revolution, then my theory is wrong. It will take time to settle the matter
New Paris, Ohio, May 4, 1905 Dr. C. M. Wilcox.

Sentiment Versus Commercialism.

o the Editor of the Scientific American:
Referring to an article entitled "Sentiment Versus Sense" in the Scientific American for May 6, I would like to ask why utilitarian John Pratt does not use the right word? It is not a question of sense, but of dollars and cents. The people who are alive to the beauties of nature, to whom Niagara is not "a great mass of dead matter tumbling in meaningless froth and noise," do not object to a sane withdrawal of water for the production of power.
When, however, the falls are put in danger of ultimate extinction, it will be found that the people of New York State and of the whole country will not be ready to enter upon the "grand and beneficent purpose" of fattening one more corporation. Are the projectors willing to pay for the water? No; if the State offered to sell power for what it is worth, we would not be troubled with these business philanthropists, who would incidentally line their pockets with the millions of dollars which would result from the sale of this power. Nothing that can be put on a good paying basis is safe from the greed of some men. There are other and better standards of value in life than that of money, and we would do well to recognize them.
But whether power is sold or given away, Niagara must not be lost to the millions of people who find delight in it, for the sake of enriching a few capitalists.
H. L. Jackson,

A citizen of New York State.
Boston, Mass, May 7, $19(5$.
Output of Baltimore Locornotive Works in 1904. The total output of the Baldwis Locomotive Works for 1904 was 1,453 locomotives, of which $\mathbf{P}, 352$ were steam, 94 electric and 7 compressediair. This is nearly one-third less than the number built in 1903, which was 2,022 . The falling off in business, which began in the autumn of 1903, affected the locomotive industry. The works were run at their full capacity until last spring, but from June until the latter part of October very few orders were received. During the year 286 locomotives were exported to the following countries: Argentina, Brazil, Canada, Chile, Colombia, Costa Rica, Cuba, Guatemala, Hawaii, Japan, Korea, Mexico, New Zealand, Peru, Porto Rico and South Africa.-The Railroad Gazette.

A new and ingenious pocket calculator, automatic in its action, has been designed by a German inventor. The device comprises a small case about six inches in length made of steel and aluminium. There is a keyboard of nine figures corresponding to the numerals, and it is additionally provided with a small spring for the supply of the tens and hundreds. There is also a small dial, and by pressing the requisite keys the total amount is recorded upon the dial.

THE MONTGOMERY AEROPLANE

The first public trial test of the Montgomery aeroplane "Santa Clara," named after the college in which the inventor is professor, took place on Satur day, April 29, in the presence of a large number of invited guests and the representatives of many of the great newspapers of the country. The event was coincident with a regularly observed anniversary of

Bailoon and Attached Aeroplane Ready to Start.
the college, which annually draws together the alumni and many distinguished officials of church and state.
The Montgomery aeroplane had heretofore made four experimental flights at a little hamlet named St. Leonards, located in the Santa Cruz Mountains to the west, but only in the presence of the inventor, the Rev. R. H. Bell, the aeronaut, and a few farmers. The public was excluded, the private tests being for the benefit of the inventor only, and for an obvious pur-

A light six-knot breeze came out of the north, and the sky was beautifully clear. The sun shone bright. A better day never was known, even in Santa Clara. The necessary aids and appliances were simple and even elementary, and consisted only of a gigantic hotair balloon, by which the aeroplane was to be elevated. As soon as the great bag began to expand, preparations for the flight were rapidly made. Prof. Montgomery and the intrepid aeronaut, who certainly had most at stake, superintended every detail, intent that no accident should mar the perfect symmetry of the conclusive trial as announced. Minutes progressed, the great balloon was tugging at its full strength, as if anxious to pull itself away from the many hands which detained it. The preparations were at last complete. The aeronaut took his position astride a small carpet-covered saddle, his feet hanging unsupported, his hands clinging to the bracing wires. "All ready!" shouted the professor. "Let go!" was the signal, and at a bound the huge bag quickly sprung a hundred feet in the air, the aeroplane, like a great bird, dangling below. Higher and higher soared the balloon, the gymnast in the saddle having recovered from the momentary thrill of his sudden elevation, and anxious, apparently, to assure the breathless crowd below that his iron nerve had not deserted him and that his composure was undisturbed. To convince, the man clinging to the machine attempted a few acrobatic feats, but they seemed artificial and forced, and subsided at last into a waving of hands. The spectators were cheering vociferously as the balloon ascended rapidly until the form of the aeronaut grew indistinct at the great height.
The ascent continued as long as the hot air could carry the balloon, which was fully 4,000 feet above the ground. The estimate of the operator coincides with this figure. Then the aeroplane was released by cutting the connecting cable, and suddenly dropped, perhaps a hundred feet, when it quickly regained its equilibrium, and floated with the air current. The flight was deliberate, and the descent gradual. A piece of paper dropped from an elevation on a still
its return to earth again, appeared to the writer like the action of a huge bird on the wing. Persons who have watched the motions of vultures in southern latitudes, know that for long periods these birds will poise high up in the air, and float backward and forward without the flutter of a pinion. To these birds of carrion is given the most graceful and effortless powers of flight, and the aeroplane seemed to imitate the same movements; to follow exactly the deliberation and grace of the vultures in its flight through the air. From the moment the aeroplane left the earth until it landed in a wheat field, three-quarters of a mile away, perhaps twenty minutes elapsed. The ascent started at 11:13 o'clock and flight concluded at 11:32. The landing was effected with the most perfect ease; the aeroplane emerged from the trial without a scratch. The orders of Prof. Montgomery to the aeronaut were to land at a certain designated spot in a certain field to the southeast of the college grounds. This

Aeroplane Attached to Balloon. is exactly what the operator succeeded in doing. In appearance the aeroplane is a light framework of hickory braced in its different sections by light piano wire supporting two wings, 24 feet in length from tip to tip, covered with thin muslin. Together, the wings have a surface of 185 square feet.
The wings are fixed on the exterior circumference, but hinged to the light frame on the inner sides. Their shape is parabolic. A rudder, movable, consisting of

The Two Right-Hand Figures are Prof. Montgomery and the Aeronaut.
pose. The same aeroplane was used in each trial, and without modification in construction. Its form and details were unchanged. The experience gained while conducting the early experiments enabled the inventor to determine the best methods of guidance, and to familiarize the aeronaut with the conditions required for successful flight, as well as to inspire him with personal confidence.
The day which was to introduce the new aeroplane to the world officially was in every respect perfect.
day might indicate the nature of the flight "as it seemed to the spectator.
The operator, in order to demonstrate his supreme control, caused the machine to describe circles, to raise itself, to back and to go forward, and to perform difficult evolutions, which were convincing that the control of the aeroplane in its gradual descent was well within the power of the will of the aeronaut.
The gliding flight of the aeroplane, from the moment of its release from the balloon to the instant of

Aeroplane Showing the Tail.
two half-spherical surfaces, is placed at the rear. Its purpose is to raise or lower the entire machine during its flight. The weight of the flying machine itself is 42 pounds; as the aeronaut weighed 156 pounds, the total weight carried can be readily computed.
The technical description of Prof. Montgomery's aeroplane is as follows:
Prof. Montgomery has, for over twenty years, been a student of atmospheric phenomena, and his researches have led to the discovery of certain laws

Prof. J. J. Montgomery and His Aeroplane.
General View of the "Santa Clara."

governing the motion of air, which are at variance from those generally accepted by scientists. The construction of an airship in accordance with and adapted to these conditions has occupied his atten tion since 1884. His deductions, after being reduced tG a mathematical formula, have resulted in the con struction of the aeroplane "Santa Clara." Guided by the practical suggestions given by theories and experiments, the aeroplane used in the present work has been constructed. It consists of two wing surfaces, parabolic from the front to the rear edge, a flat tail, and a vertical keel. The two surfaces are so formed and placed that they lead to a uniform action in the building up of a gen eral rotation, very much as if they were the front and rear portions of a large wing. To this extent they are the elements of a divided wing; yet, inasmuch as they are separate, they have independent mod fied forms and adjustments, the purpose of this arrangement being to obtain by the use of two points of support, fore-and-aft equilibrium, and yet retain the elements necessary for the production of the com plete rotary tendencies in the air. The rear portions of the wing surfaces ar hinged at the center, and free to drop from above, but are restrained in their upward movements by wires so adjusted that they may swing like the arms of a balance, yield ing automatically to excessive air pressure on one side or to the effort of the aeronaut in contending with unfavorable gusts or directing its course. The relative adjust ment of these edges is such that the control of the wings on either side may be sim ilarly changed, or one side move in onc direction while the other undergoes an op posite but reciprocal change. The tail or rudder is so placed relative to the rea surface that any change in its position im mediately produces a change of pressure along the entire wing, thus meeting the requirements of fore and-aft equilibrium, these requirements changing with variations of speed as the pressure on the sur face moves toward the front edges with increased peed, and vice versa. The ventral fin serves partly to preserve the side equilibrium and is so formed and placed as to meet antagonistic requirements of pres sure above and beyond the surfaces.
By a change of form and position of the rear sur face, the varied pressures necessary to the fore-andaft equilibrium are developed, and the aeroplane may be caused to dart downward, move horizontally or rise, or to check its position suddenly. With proper manipulation, the machine travels in a wave line through the air, with a gradual descent, turning in circles to the right or left, as the form of the surface n either side is modified.
Owing to gen erally prevailing ideas on the sub ject of flight many exaggerat ed opinions have been expressed ince the firs announcement of he experiments with the present aeroplane, which Prof Montgom ery does not anction, as thes may give rise t radical conclu sions, and lead to disappoint ments. It is no loubt true that e experiment were of an ex reme nature, for when the aero naut, at an elevation of several housand feet, cut oose from the balloon and trust ed to the aero plane, there were only two alternatives before hima dash to the earth and a crushed and lifeless corpse, or a convincing success of the aeroplane.
In reference to the experiment which the writer witnessed under most satisfactory circumstances, the conclusion is that an advance has been established in the science of navigating the air, though that probem is not yet solved. A great step, in the opinion of the writer, a great leap forward, has been accomplished and maintained. It is but just to Prof, Mont gomery and his distinguished coadjutor, the Rev.

Drifting in Chefoo Harbor
R. H. Bell, S.J., Professor of Physics in Santa Clara College, that no countenance has been afforded the extravagant declarations relative to the aeroplane which they have jointly conceived. An aeroplane has been constructed that in all circumstances will retain its equilibrium and is subject in its gliding flight to the control and guidance of an operator, but beyond this there remain two other obstacles which are to be overcome before navigating the air is either practically or commercially possible. There remains continuance in flight, as an essential, and lastly, the power of a

The Mine After Being Dragged Ashore

machine to raise itself from the surface. The first principle has been solved beyond a doubt. The two remaining, perhaps the most difficult of all, await solution.

Driverless Engine.

Germany possesses a miniature but most useful railway, to which no parallel is found in this country. It peculiarity is that its trains have no drivers. It is used for carrying salt from the salt mines at Stassfurt. The trains consist of thirty trucks, each carrying half a ton of salt. The engines are electric, of twenty-four horse power each. As it aproaches a station, of which there are five along the line, the train automatically rings a bell and the station attendant turns a switch to re ceive it He is able to stop it at any moment. To start it again he stands on the locomotive, switches the

Americar Ufficers Examining Shothole in the Mine charge of about 250 pounds of wet guncotton. distance. ball carried on a flexible vertical rod, provided with a

destroying a russian mine

current and then descends again before the engine has gained speed.-Railroad Men.

In Golden Gate Park, San Francisco, there has been installed a large windmill of the familiar old Dutch type for pumping water. With the wind at ten miles an hour it develops 4.65 horse-power, and at thirty miles an hour the horse-power is 126 . Its daily pump ing record in June, 1904, ranged from 5,460 gallons to 371,397 gallons against a gage pressure sometimes of 32 pounds and sometimes of 53 pounds.

DESTROYING A RUSSIAN MINE.

The accompanying photographs give a fair idea o the appearance of the mines whieh the Russians are using to protect their harbors. These mines are usual y held several feet below the surface of the water by heavy anchors, but on account of their buoyancy and the action of the tides and storms they frequently break their cables and become a floating menace to all shipping in the vicinity. It is knewn that scores of these deadly machines have broken adrift; and al though several have been located and destroyed, there re many others yet afloat upon the high seas.
This one had undoubtedly broken loose from its moorings at or near Port Arthur and been carried by wind and tide to the harbor of Chefoo, China, where it was found. The discovery was reported to the commanding officer of the U. S. S. "New Orleans," who promptly ordered an officer to go out with a party and destroy the floating danger Wishing to investigate the construction of the mine more closely than could be done while it was floating, a long line was at tached to it, and from the safe side of a high bank on one of the small islands in the harbor, it was hauled to the beach and up out of the water. The party then went out several hundred yards from shore and after several attempts succeeded in striking the mine with a shell fired from a one-pounder mounted on the bow of the steam launch. The mine, however, could be exploded by electricity only, and although the shell tore a hole through the casing, the guncotton charge remained intact. Through the opening thus made the electrical connections were cut, and the mine rendered practically harmless.

Each of the lead spines on the outside of the mine incloses a thin glass bottle con taining acids, and when the spine is bent by collision with a ship or other floating body, the bottle is broken and the acids emptied into a receptacle containing zinc-carbon elements. The combination instantly produces an electrical current and the spark ignites a fulminate detonator, which in turn explodes the main

After the mechanism had been carefully examinied electrical connections were laid from the mine to the lee side of the bluffs which are seen in the accompanying photographs and the charge exploded from a safe

This Russian mine may be compared with the Japanese mine which was illustrated in the issue of the Scientific American of March 11 of this year. In the Japanese mine, the firing arrangement consisted of a contact disk which, when the mine was struck, came in contact with a ring of metal and closed the electrical circuit, thereby detonating the mine. The chief interest in this Russian mine lies in the contact mechanism, which would not appear to have been very effective, at least in this particular mine, inasmuch as when the mine was dragged ashore, the lead spines must have been bent and the glass bottles broken without causing the firing mechanism to operate. During the Spanish war, immunity from disaster from submarine mines, in the case of at least two of our warships, was due to the fact that the contact fingers or triggers, which should have detonated the mines, were so incrusted with marine growth and otherwise out of order, that although the mines were struck and roughly Eandled, one of them being torn adrift by the propellers of the "Texas," no damage was done.

Incandescent gases under slight pressure give light composed of lines, but under pressure a continuous spectrum.

COMPARATIVE TESTS OF STEAM AND ELECTRIC LOCOMOTIVES.

In our issue of February 18 of this year will be found an illustrated article describing the six-mile stretch of experimental track upon which the New York Central Railroad Company is carrying on very exhaustive tests of its new electric equipment. This locomotive is the first of a large order, and it is the type to which will be intrusted the important work of handling the express-train service running into and out of New York city. The tests were carried on day by day, throughout the whole of the winter and spring under every condition of weather. On April 29 last it was decided to carry through a series of comparative tests between the new electric locomotive and the new est and most powerful express locomotive that is now handling the New York Central trains. There wer wo sets of tests, one with an eight-car and one with a six-car train. The steam locomotive, which is a truly enormous engine, has 22 x 26 -inch cylinders, 3,757 square feet of heating surface, and weighs with its tender, 342,000 pounds. In the first test it was placed on the express tracks, opposite the point at which the electrically-equipped local stretch of track begins, with eight or six passenger cars behind it. The electric lo comotive, which weighs 200,500 pounds, was placed on the electric racks with the same number of ars behind it, and these cars wer loaded so as to bring up the total weight of engine and train to that f the steam train with its engine Consequently, the electric locomo tive was hauling, in the case of the eight-car train, a load greater than that hauled by the steam locomo tive by 70.75 tons. This fact should be borne carefully in mind if we would appreciate the great super iority shown by the electric loco motive. In every test the two trains started from rest, and care ful records were made of the speed, distance, time, and power consumption. The trials were witnessed by Mr. W. J. Wilgus, vice-president, and Mr. E. B. Kettee, electrical en gineer of the New York Centra Railroad Company, and by Mr. E. W. Rice and

Electric Train Pulling Clear of Steam Train at 1500 Feet from the Start. STEAM VERSUS ELECTRICITY.
t the station of 700 volts to a track voltage as low as 325 volts. At 3,000 feet from the starting point the electric locomotive gained the same speed as the steam locomotive, and from that point accelerated more rapidly, so that at a distance of two miles from the start ing point the electric locomotive passed the steam locomotive, and at the shutting-off point was two train lengths ahead. The maximum speed of the steam locomotive was 50 miles per hour. The maximum speed of the electric locomotive was 57 miles per hour.
Run "B".-This run was made under the same conditions as run "A," with results practically the same, except that the speeds were higher, as follows: Maximum speed of steam locomotive, 53.6 miles per hour; maximum speed of electric locomotive, 60 miles per hour.
RUN "C".-This run was made with six-car train for both locomotives, with total train weights as follows: Electric locomotive, 407.5 tons; steam locomotive, 427 tons. Owing to extreme low voltage under the conditions above stated, which during acceleration fell as low as 330 volts, at first the steam locomotive accelerated more rapidly, but at the end of about a mile the electric locomotive overtook the steam train, and continued to forge ahead until the power was shut off. Maximum speed of electric locomo-
tive, 61.6 miles per hour; maximum speed of steam locomotive, 56 miles per hour.

Run " D ".-In order to secure as nearly as possible results comparable with the conditions of voltage that will obtain in the actual operating zone, this run with six-car trains, similar to those used in run "C," was started at a point nearer the sub-station, near mile-post 164. For this run the electric locomotive from the first turn of the wheels accelerated faster than the steam locomotive, as plainly illustrated in the attached photograph, where at a distance of 1,500 feet from the starting point the electric locomotive led by a train length.
RuN " E ".-This run was made with the electric locomotive and one coach, a maximum speed of 79 miles per hour having been attained. RUN "F".other officers of the General Electric Company, the builders of the engine.
Time of Test and Weather Conditions. The test started about 8 A . M. and coninued until about 1 P. M. of April 29, 1905; temperature averaging about 50 eg. Fahr. cloudy. During he time of the test no rain fell, so that the rails were perfectly dry.

Description of Experimental Track.-The experimental track, six miles in length, is the portion of old track No. 4 formerly used for east-bound freight movements between mile-posts 162 and 168 west of Schenec tady. The working conductor consists of top-contact 70-pound steel rail reinforced with copper, and covered in part with a board protection. The alignment and grades on the six-mile stretch of track ("race track" for the time being) are easy. From the easterly end of the track at mile-post 162 , going westerly, the rising gradients vary from 5 feet to 17 feet per mile to a summit between mile-posts 166 and 167, and thence the track descends on gradients varying from 6 to 19 feet per mile to the end of the track at mile-post 168 . In the six miles there are seven curves varying from 0 deg 48 min . to 20 deg .17 min ., the maximum length of tan ent being 7,565 feet
Source of Power, Transmission Line and Sub-Sta TION.-The power for testing purposes is furnished by the General Electric Company, and for this purpose there has been installed at their Schenectady plant a 2,000-kilowatt three-phase 25 -cycle Curtis turbo-gener ator, delivering 11,000 volts to the line. A special high-tension transmission line has been constructed for the intervening distance of about five miles to a sub station that has been erected by the railroad company near mile-post 165 . This sub-station contains a 1,500
kilowatt, 650 -volt rotary converter, with static transformers for reducing the potential from 11,000 volts to 475 volts.

解

Electric Train.			Steam Train.		
No.	Car No.	Weight Loaded.	No.	Car No.	Weight No Load.
8	1060	101,900	1	2527	79,900
	1070 1082	100,400 106 1000	2 2 3	1547 1534	86,100 87800
	1082 1092	106,200 100,100	3 4 4	1534 1521	87,800 84.500
	1097	107,650	5	1059	86,300
	1550	102,800	${ }_{6}^{6}$	1099	87,400
	1552	106,000 104,750	7 8	1563 1513	86,400 86,700
	Locomo.	$\begin{aligned} & 1000,500 \\ & 200 \end{aligned}$		Locomo.	$\begin{aligned} & 342,000 \\ & 513 \text { tons } \end{aligned}$

It will be noted that, due to the restricted cross-section of conductors, the voltage dropped during acceleration considerably lower than will obtain in actual practice within the electric zone in the neighborhood of New York. Therefore the results obtained in this comparative test are much less favorable for the electric locomotive than will be secured in actual practice.

Cylinders, 22×26 Inches. Heating Surface, 3757 square Feet. Drawbar Pull, 28,500 Pounds. THE POWERFUL 170-TON STEAM LOCOMOTIVE USED IN THE NEW YORK CENTRAL SPEED TESTS.

This run was made with the electric locomotive running light and with the power shut off on curves, a maximum speed having been ttained of 80.2 miles per hour.
Had it not been neces sary to shut off the current on curves, it is believed that the locomotive would have at tained a speed of over 90 $\begin{array}{lr}\text { of over } & 90 \\ \text { miles } & \text { per }\end{array}$

RUN "A".-The "Pacific" type steam locomotive had an eight-car train, with a total weight, including the locomotive, of 513 tons, as compared with the eight-car train behind the electric locomotive weighing 513.6 tons. Both trains started together, with the steam locomotive accelerating faster than the electric locomotive due to the abnormal drop in voltage from the pressure

Electric Train.			Steam Train.		
No.	Car No.	Weight Loaded.	No.	Car No.	Weight No Load.
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	1060	101,900	1	2527	79,900
	1070	100,400	2	1547	86,100
	${ }_{1097}^{1092}$	100,107 104650	3	1534	87,800 84,500
	1550	102,800	${ }_{5}^{4}$	1069	86,300
	1558	$\stackrel{104,750}{ }$	6	1099	87,400
	$\underset{\text { Locomo }}{\substack{\text { Totai, }}}$	$\begin{aligned} & 200,500 \\ & 407.5 \text { tons } \end{aligned}$		Locomo. Totail	${ }^{342,000} 4,7$ tons

Runs.	Series.	SeriesMultiple.	Multiple.
	520	540	325
$\stackrel{\text { B }}{ }$	620 600	520 540	275 330
D	600 680	640 680	330 515
E	650	600	420
F	600	620	455

hour in this comparatively short run.*
Summary of Results.-The most important test is run " D," as the voltage during that test more nearly approached the conditions that will be obtained in the electric zone. Therefore, the following comparison of the steam and electric locomotives based upon the results of run "D" are very interesting as illustrating the marked superiority in acceleration of the electric locomotive over the steam locomotive, considering the fact that the "Pacific" type of steam locomotive has practically the same weight upon the drivers.

CONDItion in run "d."

	Steam.	Electric.	Difference in favor of Electric.
Length over all.	$67 \mathrm{ft} .73 / 4 \mathrm{in}$.	$36 \mathrm{ft} .11 \frac{1}{4} \mathrm{in}$.	$30 \mathrm{ft} .81 / 2 \mathrm{in}$.
Total weight (inc. tender for steam locomotive)..	$342,000 \mathrm{lb}$.	$200,500 \mathrm{lb}$.	$141,500 \mathrm{lb}$.
Concentrated weight on	$47,000 \mathrm{lb}$.	35,500 lb.	$11,500 \mathrm{lb}$.
Revenue-bearing load back of locomotive	256 tons.	307.25 tons.	51.25 tons.
Acceleration miles perhour per second average up to 50 M. P. H. .	0246	0.394	0.148
Time required to reach	203 sec .	127 sec .	76 sec .

RAILROAD TIE AND CLAMP

Pictured in the accompanying engraving is an im proved railway tie and clamp recently patented by Mr . Henry S. Kilbourne, of Hayden Building, Nashville, Tenn. The construction is quite simple and inexpen-

RAILROAD TIE AND CLAMP.

sive, and yet it possesses great strength and durability. The tie is composed of two steel tubes united near their extremities by steel plates, A and B. The latter are cormed with saddles which fit the tubes, C, and are welded thereto. This arrangement is preferably used in light road construction. Where it seems advisable to give the tubes additional strength, the plates are formed with sleeves which are shrunk on to the tubes The clamp consists of bars, D, which are bent at the ends to hook under the edges of plate, B, on which the bars rest. These bars are formed with jaws to receive the base flanges of the rails. Each bar, D, is provided with a tongue, E, bent downward at the rear, forming an ear which projects below the plate, B. The clamping plates on opposite sides of the rail are joined by a bolt, which passes under the plate, B, between the tubes, C, and through ears, E, against which the nuts on the bolt are tightened. The bolt is threaded at each end, but the main body is of square cross section, so that it will fit snugly against the under face of the plate, B, which is provided with a recess in each end to receive lugs formed on the bolt. In practice it would probably be found advisable to fill the tubes, C, with broken stone or ballast. The tubes may be plugged up to prevent entrance of water. On curves, where there is a tendency for the track to shift laterally, the plates, A, may be formed with flanges, which would press down into the roadbed and hold the track secure.

AN IMPROVED VISCOSIMETER.

In the accompanying engraving we illustrate an improved apparatus adapted for determining the viscosity of oils. The principle on which the apparatus operates is very simple. The oil is heated to a predetermined temperature, and then permitted to flow through an orifice of given dimensions, when its viscosity will be ascertained by the length of time required for the oil to pass through the orifice. The viscosimeter consists of a container or bath for oil, supported on a standard. The legs of the standard termi-

nate in blocks, through which leveling screws are threaded. Attached to one of the legs is a Bunsen burner, which may be clamped at any desired position below the oil retainer. The retainer is formed with a central sleeve, into which is fitted a testing cup. A trough surrounds the upper end of the cup, to receive any oil that may overflow, due to expansion when it is heated to the required temperature. In the bottom of the cup is the orifice through which the heated oil must flow. Normally, however, the orifice is closed by a needle valve, the stem of which is guided in a sleeve carried by a spider resting on the rim of the trough. The sleeve is slotted to receive a pin on the stem of the valve. When it is desired to hold the valve open, the stem is raised and turned, so that the pin will rest on the upper edge of the sleeve. Two thermometers are used, one for the bath, and the other for the test cup. They are suspended from adjustable supports, clamped to the retainer. In operation, oil is placed in the bath and also in the testing cup, the latter being filled nearly to the top. Then, after leveling the apparatus and placing the thermometer in position, the gas is lighted, and when the same degree of temperature is indicated in the two thermometers, this degree being, of course, predetermined and depending on the character of the oil, the needle valve is raised, permitting the oil to pass in drops from the cup into a suitable receptacle. By means of a stop watch or the like, the time elapsed in the passing of the oil through the orifice, into this receiver, will give the viscosity of the oil. A patent on this viscosimeter is owned by the Fiske Brothers Refining Company, of 59 Water Street, New York city.

Brief Notes Concerning Patents.

During the latter part of December last, the death took place of Henry Hohorst, a resident of Brooklyn, who for forty years had been a very prominent person in shipping circles. He was the inventor of several pieces of machinery for the loading and unloading of vessels. He was born in Bremen, Germany, eighty-three years ago.

An addition to pleasure cars of that kind established mainly at fairs and seaside amusement resorts, has been furnished by the recent invention made by Mr. J. D. Walsh, of St. Louis. This inventor provides a car whose axles are secured eccentrically to the running wheels, so that as the latter roll along either on an inclined or a horizontal track, the car body will oscillate up and down, producing a rocking sensation intended to be highly exhilarating and enjoyable to occupants who find pleasure in this sort of diversion. From the arrangement described above, the inventor claims that the character of oscillations imparted to the car may be almost unlimited, and need to be neither regular nor happen at the same time. This may be readily done by using on the forward trucks wheels of different diameter from those of the rear trucks.
A life-saving belt which has a number of features which are unique, if nothing else, was recently given a trial at Los Angeles, Cal., which is the home of the inventor, Z. C. Angevine. The device is of the nature of a canvas jacket, which is tied around the chest by means of stout cords. The interior is rubber-lined and divided into a number of compartments, so that in case one or more should become damaged from any reason whatever, the buoyancy of the remainder would be sufficient to keep the jacket and its wearer afloat. Besides this water-tight bulkhead construction, the coat is supplied with a number of pockets which the inven tor has filled with articles that he divines would be of use to a person adrift on the high seas. The provisions consist of concentrated foods, a quart of stimulants which might be consumed by the aid of a rubber hose conveniently located, a gallon of water for drinking purposes, an aluminium pouch for the reception of valu ables, a gun and set of signal cartridges, a collapsible pole eight feet long with an inverted American flag on it as a means to attract assistance, a knife and some other things of minor importance, which might assist in making the wearer of the belt quite comfortable. The inventor says that a person wearing one of these belts is provisioned for five days. At the test referred to, it was shown that besides carrying the load of supplies tucked about in the various compartments of the coat the garment had a capacity of supporting three persons in the water without any effort on their part. The inventor expects to realize quite handsomely by selling and renting the life-saving coats to persons compelled to go to sea.

AN IMPROVED FIRE EXTINGUISHER

A patent has recently been procured by Mr. Charles W. Aton, of Clairton, Pa ., on an improved fire ex tinguisher, which we illustrate herewith. The construction is such that upon inverting the extinguisher, chemicals for exerting pressure will be set free, and thereupon the fluid will be forced out of the nozzle in
any direction desired. The device can be charged with a higher pressure than most fire extinguishers, and is, therefore, particularly adapted for use in shops and warehouses with high ceilings, and also for passenger coaches and stations. The handles are insulated so that the fluid can be directed upon highlycharged electrical wires without danger. The device consists of a tubular casing closed at one end by a plug threaded therein, and at the other by a cap in which the nozzle is formed. Within the casing is a large tube, A, and a smaller one, B. The latter is coupled at its upper end to a small duct, which enters a sleeve projecting inward from the nozzle. A spring-pressed coupling on this sleeve makes a tight joint between the sleeve and the duct. In the upper end of the tube, A, is the acid bottle, C. The clip which holds the tube, A, in place projects through openings in the latter, and holds the bottle, C, also. A plug is similarly held at the lower end of the tube, and on this plug a ball, D, rests. When the extinguisher is inverted, the ball rolls down and breaks the frangible bottom of the bottle, C, and the gases immediately generated rise and collect in the bottom of the inverted receptacle. Thence they pass into the tube, B, forcing the fluid in the latter out through the nozzle. The fluid enters the tube, B, through the valve, E. The latter, however, is so arranged that it will close when the device is turned nozzle upward, and then the fluid enters through the perforations at lower end of the tube

AN IMPROVED FIRE EXTINGUISHER. under pressure of the gas, which will then have risen to the top of the receptacle.

APPARATUS FOR TESTING FLASHING POINTS OF OILS,

 A patent has recently been secured by the Fiske Brothers Refining Company, of 59 Water Street, New York city, on an improved device for determining the flashing points of inflammable liquids, such as oils. The device is of simple construction, easily kept clean, and so arranged that the igniting flame will pass over the surface of the oil in a uniform and practically horizontal direction. The apparatus comprises a ringlike support, mounted on legs provided with leveling crews at their lower ends. Resting on the ring is a flue, which receives the flame from a Bunsen burner clamped to one of the legs. A test cup fits into the upper end of the flue, resting on lugs formed on the rim of the flue. This test cup is provided with a trough surrounding its upper end, which is designed to receive any overflow of oil due to its expansion when heated. A gas-burner tip is adjustably supported over the cup, and the thermometer is hung from an adjustable arm clamped to one of the legs of the standard. In operation the apparatus is first leveled, and then the cup is filled nearly to the brim with oil. The Bunsen burner is adjusted to regulate the thermometer, which is suspended with its bulb immersed in the oil. The burner tip is now adjusted to extend slightly over the edge of the test cup. The flame from the ip will then pass in a substantially horizontal plane over the surface of the oil, and when the oil flashes, its flash point will be indicated by the mercury in the thermometer.

APPARATUS FOR TESTING FLASHING POINTS OF OILS.

recently patented inventions.

Electrical Devices.
DYNAMO OR MOTOR.-J. A. Titzel, Sr., oluble armature and a fragmentary field, the latter consisting of separate groups of mag-
nets mounted upon sector-like blocks which nets mounted upon sector-like blocks which
are detachably secured to a circular frame. The field magnets are arranged to act successively upon separate magnets of the armature, and the blocks carrying field magnets are adjustable relatively to the frame. All mag-
nets, both in field and armature are provided nets, both in field and armature are provided
with poles disposed tangentally so as to improve the magnetic field. The machine may be made comparat

of Interest to Farmers.

binder attachment.-A. Williams, oliet, Mont. In this patent the invention is an improvement in self-binding harvesters, be by which to collect grain and grass-seed which are ordinarily wasted off the deck of a binder. A box is so arranged as to receive the seeds
as they discharge from the table, and the binder-table being inclined downward toward binder-table
TRACTION-ENGINE.-B. B. Stauffer, Kansas City, Mo. The invention relates to
traction-engines or portable engines, and its traction-engines or portable engines, and its
object is to provide an improved steering mechanism by means of which the power of ing purposes. The improvement can be ating purposes. The improvement can tached to trac
struction withou
different parts.
CANE-HARVESTER.-G. D. Luce, New Orleans, La. The particular object of this
invention resides in a novel form of feeding and carrying mechanism. As the machine moves forward the cane will pass between divergent portions of the chain and be carried
to the cutters, and then the cut cane will be to the cutters, and then the cut cane will be
moved rearward while in upright position and discharged in windrows, and the cane will be above the same as the carrier-chains are inabove the same as the carrier-chains are in-
clined upward toward the rear. Improvements are substantially of the character of harvesters shown in former patents granted to Mr. Luce. HAY-SWEEP ATTACHMENT:-J. R. Judge, to provide a novel attachment for a hay-gathering sweep which will effect a proper deposit
of a load of hay from the sweep onto the stacker and prevent the dislodgment of any portion of the load upon withdrawing the sweep from the stacker, which will expedite
the work and lessen the labor entailed in oper the work and lessen the la
ating a stacker and sweep.
CUltivator.-S. H. Coleman, Villisca, Iowa. The cultivator is especially adapted for working corn and garden-truck; and the inventor's purpose is to provide a light, durable,
and economic apparatus of such arrangement that the blades or shares may be made to enter more or less deeply into the ground and will cut at each passage all weeds between up the plants in many respects better than shovel-cultivators. The blades enter the ground readily and work equally as well on rough
soddy ground as on soft and will also efficiently soddy ground as on soft and will also efficiently
work on a hillside. It will not choke or beome clogged wh re in the way.
COTTON-PICKER.-S. L. Bond, Charleston, S. C. In this case the invention pertains to simple device of its class which is provided with improved means for picking the cotton and delivering it into a receptacle. The device is expected to be pushed along by a plantation
hand and can be completely controlled by one hand arson.

Of General Interest.

Plating apparatus.-L. Schulte, New York, N. Y. This invention relates to electro paratus for plating all kinds of articles, especially, however, sheet metal, band-iron, wire, and the like, arranged to allow the use of a
high current to plate the article in a compara high current to plate the article in a compara-
tively short time, to insure uniform plating of the entire surface of the article,
bright appearance to the deposit
SOAP-DISPENSING APPARATUS.-W. R. Salitzgaber and C. J. Carmichael, Knoxville,
Tenn. This improved apparatus is particular Tenn. This improved apparatus is particularnot only effects economy, but will absolutely obviate the danger of infection from the use of soap which has been contaminated by per-
sons previously handling it. In this connection it should be noted that not only can the soap be supplied to the receptacle in an unevapor-
able and sterile condition and so maintained able and sterile condition and so maintained, but that it is unnecessary for the user to
handle any portion of the apparatus at any time.
ANTISEPTIC BOTTTLE.-F. Sonnenfelid and J. Gjass, New York, N. Y. It is the prin-
cipal object of the inventors to provide a botan indefinite number of times without the possibility ef carrying disease-germs or poison-
ous chemical compounds when it is submitted
to an ordinary washing process, and which, be ing transparent, will indicate to the public th
fact of containing foreign substances, so as to fact of containing foreign substances, so as to
necessitate thorough cleaning before refilling.
F'ISH-HOOK.-W. E. Kосн, Whitehall, N. Y. This invention refers particularly to im provements in hooks of the gang type used for
trolling, an object being to provide in connec trolling, an object being to provide in connec-
tion with a main hook a simple means for at tion with a main hook a simple means for at
taching an auxiliary or gang of hooks thereto the connection between the parts being such as to cause the bait-minnow, either alive or
dead, to float in an upright and natural postdead,
tion.
MINER'S LAMP.-F. Koch, West Hazleton, Pa. The object of the inventor is to provide in connection with a lamp-spout a wick-raiser arranged to prevent leakage. To project wick the wick-raiser is moved downward, and
then upon an upward movement the inwardlythen upon an upward movement the inwardly-
turned portion of a plate will engage in the turned portion of a plate will engage in the
wick and cause its upward movement with the wick and cause its upward movement with the
plate. During downward movement of the plate the teeth in the upper end of the tube will
wick.
MOLD FOR FORMING CEMENT BUILD-ing-Blocks.-B. Ely and J. I. Taylor, Rock Rapids, Iowa. In this case the invention is an improvement in knock-down or separable molds adapted for forming clay or cement building
blocks having cavities or passages, permitting circulation of air. The invention relates par ticularly to the means for forming longitudina and transverse air-passages in the molded block
and also to the means for forming a thin block adapted for use as
METHOD OF WELDING.-O. Eigen, 12 Brauerstrasse, Duisburg, Germany. The two xtremities of a chain-link, of two bars, rails,
or the like to be welded together and which have been heated to welding heat are submitted to the action of two pressure-rolls rotating in same direction in such manner that
the extremities to be united are pressed on the extremities to be united are pressed one
against the other both in longitudinal dire against the other both in longitudinal direc-
tion of bar and also transversely of same These rolls may act upon the joint either with equal or unequal circumferential velocities. velocities of rolls are different, parts to gether, but the work will at same time advanced between the rolls. Displacement of work may be effected mechanically by any other means.
MAIL-bOX.-J. h. Dickson, Polk, Pa. The purpose of the invention is to provide a mailthe which will require the use of but one hand oox that it will be strand to so construct the and able to stand any reasonable test and wherein also the box will be waterproof and practically burglar-proof.
BUTTON ATTAC-IMENT FOR GARMENTS. -J. D. Burns, Washington, D. C. That class of buttons which are provided with means for attaching them to a garment are improved purpose a wire which. is permanently to a button and formed with a spiral coil adja cent to the latter, the wire being extended aterally from. the coil so to form a piercing point and lever, which is utilized in applying the button to a garment.
ICE-CREEPER.-E. C. Bartley, Mifflintown, the heel of an worn with rubbers or overshoes. For the purpose intended it is a simple, cheap, and folded into a small compass to en
readily carried in the pocket, etc.
SPLASH-GUARD FOR BATHING APPAR ATUS.-E. J. Bissell, Bartold, Mo. The purient and economical guard which may be conveniently attached to an ordinary washtub or to one or two pails. Broadly stated, his placed on top of one or two vessels, with an opening provided in the bottom of the basin opposite either one or both of the vessels.

SAFETY-RAZOR.-B. KIAM, New Orleans, may be readily thus facilitating the thorough cleansing of the razor, and Mr. Kiam is able to secure the blade in place without perforating the said blade which presses against the blade and bends the same to any desired curve in the use of the amention.
disinfecting device.-G. Krueger, ohnstown, Pa. The invention refers to deing particularly useful in connection with the combustion of sulfur to produce sulfurous-acid vapor. Its principal objects are to provide a he vessel for effective device for the purpose. with a body of water, thus obviating any danger of fire or damage to surrounding ob-hair-tonic.-E. Marosi, New York, N. Y. The compound consists of the following in-
gredients combined in the proportions statedgredients combined in the proportions stated-
viz., infusion of one-half pound of mustard one pint of turpentine. The liquid compound is repeatedly rubbed on the bald head of the human body to insure the formation of a new
growth of hair.

ABDOMINAL CORSET.-C. MUNTER, New
York, N. Y. One purpose of this invention is York, N. Y. One purpose of this invention is
to provide an article of apparel which serves as a conformer for the body and which may be readily applied and operated to properly and which can be comfortably worn with bene ficial effect. It provides for an equal distribu ion of flesh over parts not naturally fleshy without detrimental strain, tends to impart a orfect form to the figure, at the lower portion
of the body and supports the abdomen with of the body and supports the abdomen with

COVER FOR RECEPTACLES.-A. Q. Walsh, New York, N. Y. The purpose here
is to provide a cover, especially such as are adapted to contain tobacco, cigars, or cigarettes, and to so construct it that it can be closing said receptacle in practically a liquid to be quickly and conveniently removed or

FISH-HOOK-H. S. WeSt, Council Bluffs, owa. An object of this improvement is the provision of a book with a novel and effectual yield for the hooking of a fish, but not liable to be detached from the hook-point by lateral r direct pressure when drawn through weeds not be detached by a fish.
VALVE.-H. Zins, Nicollet, Minn. The object here is to provide means whereby when
the drain-pipe running from the pump-barre to the water-tank freezes, the water which may be drawn from the well by the pump or en-
gine after such freezing will by its pressure cause the valve constituting part of the im provement to open and allow such water to escape into the pit or other suitable place, and age the pump, rod, engine, windmill, or other age the pump, rod, engine, w
parts of the pumping system.
FISH-HOOK.-G. W. Blackburn, Sarasota Fla. Mr. Blackburn's purpose in this inven
tion is to construct a fish-hook so as to mini mize the danger of losing the fish when once hooked. This end he attains by providing the hook as usually constructed with a peculiarly arranged spur, which is preferably barbed and into action when the fish is hooked, the spur moving toward the point of the hook proper and forming therewith a complete ring or in-
closure from which it is almost impossible for the from to become disengaged. The hook has been test
woven fabric.-H. Sarafian, Yonkers, roduce an improved fabric of Mr. Sarafian to tinguished by cheapness and yet present a ornamental appearance. The same is com-
posed of a body or under portion consisting of cheap yet strong and durable materialsuch, for example, as cotton or jute-and a top or surface portion consisting of better and more ornamental material, such as silk or
worsted. The invention is embodied in the manner of arranging threads or strands composing the ornamental surface material and the weft for tying
DETACHABLE HANDLE FOR BROOMS, MOPS, ETC.-M. Hartman, Upper Sandusky Ohio. The invention pertains to improvement ts object being to provide improved mean whereby a handle can be put on a new broom, to provide improved means whereby the handle can be readily taken apart and packed in smal and shipping.
DEVICE FOR REMOVING OBSTRUCTIONS FROM BETWEEN THE TEETH.-C. F. RoTH tween the teeth, which cannot be accomplished by the ordinary toothpick, can be done by this device. It is small, can be easily carried in removed for cleansing placed, knobs at the ends of the strip operating to prevent any displacement of the latter in

Heating and Lighting.

ACETYLENE-GAS GENERATOR.-O. H. Hasneder, Seaford, N. Y. A particular pur
pose of the inventor is to provide a readily comprehensible safety-feed mechanism for the carbid from the hopper to the generator, con the mechanism when operated in one direction imultaneously opens access to hoper, the delivery-section of hopper, and establishes communication between hopper and outside at mosphere for escape of any gas which may be in hopper prior to introducing carbid there in, the feed mechanism operated one direction acting to close inlet of hopper and the vent
for gases and open communication between hopper and generator.
bunsen burner.-H. F. Mielenhausfn, New York, N. Y. In the present patent the nvention is an improvement upon a burner which is intended especially for use in connec mon with gas-lights which employ incandescent mantles, the object being to so construct the
burner as to prevent smoking and bring about a more complete mixture

Household Utilities.
FLEXIBLE ELASTIC BINDER.-C. T. Whitsett, Indianapolis, Ind. When used as
a supporting device for the covering for a supporting device for the covering for a
bathtub the binder is extended transversely cross the tub substantially midway between the ends of the latter, and the elastic strip hooks are caught over the rim of the tub at pposite points. Elasticity of the strip pertub and draws hooks into close engagement with the rim, supporting the cover-sheet securely. When used upon a bundle formed by olding or rolling the sheet, one of the hooks caught upon one corner of the bundle, while site corner, the corner portion of the bundle site corner, the corner portion of the bundle
passing between bends of the two hooks.
flat-iron heater.-J. A. Lofstedt, Yonkers, \mathbf{N}. Y. The principal objects of this viening , which re to opening and closing heater, are to provide means for securing the proper heating of fat-irons, for in the wrong portions, and for providing means for closing the heater when the iron is introduced and opening it when the iron is withdrawn.

Machines and Mechanical Devices
AUTOMATIC PIANO-PLAYER. - J. B. Walker, New York, N. Y. In rendering music
it is desirable that the theme, air, melody, or other desired portions of the music be
played with a different degree of intensity played with a different degree of intensity mainder of the music, and also desirable that vary at will while he is playing the music the relative intensity of tone of theme and accompaniment. Not only should he be able to vary the relative strength of tone of theme , but to secure the best ef ects be able to vary strength of tone of the hole series of accompaniment notes as such ndependently at will while playing the music, laying the accompaniment softly while playng the theme more loudly, or vice versa. In the present, which is an improvement upon ending, Mr. Walker achieves the above now APPARATUS FOR THE TREATMENT OF ORES.-R. G. Reilly, Albuquerque, New Mex. An object of the invention is to provide an
apparatus for treating ores in the dry way, whereby the metallic contents thereof may be enditure of fuel and at a more rapid rate than has heretofore been possible. Further, an apparatus employed to reduce metallic constituents of ores to the free state or with
dqual success in desulfurizing certain ores without reducing metallic constituents to the free

MACHINE FOR MAKING PAPER BAGS.B. J. Jensen, 60 Oelenschlaegersgade, Copen-
hagen, Denmark. The present invention rehagen, Denmark. The present invention re-
fers to improvements in machines for making aper bags and which are provided with fold-ng-rollers and folding-knives. These suffer from that the folded she come shagey, so that the two sides of the half-finished bag are no longer smooth or do not lie closely together. When such a bag is the folding-knife, the fold lies aslant on ollers or cre latter will when passing the ets a less attractive look. This invention lleviates this drawback.
STEAM-HAMMER.-F. C. Emrick, Bluehill, Veb. One of the leading features of the invender and piston-rod, the latter passing through tuffing boxes in both of the cylinder-heads, tional guides for the piston-rod. A further eature lies in the location of the valve-chest near the lower end of the cylinder and in
enating the valve by means of a peculiar ear actuated from the upper end of the rod. LOG-SAWING MACIIINE.-C. E. BROWN, Mr. Brown's invention refers
to log-sawing machines, and particularly to og-sawing machines, and particularly to a cant-handler, is combined a friction-nigg provides a construction wherein the above amed parts are controlled by a single lever apable of operation in four directions, and herein there are no steam pistons or joints
to be kept in order, as in a steam-nigger, and herein the log turns away from the nigger, reventing it from tearing off slivers, and herein, further, the log falls upon the skids when turning, thereby avoiding jar to the cariage. Thin wide cants may be turned one at in mills having no pony-saw.
Web-Winding machine.-E. Schoening, Berlin, Germany. Mr. Schoening's invention relates to winding-machines for winding paper, pon a roller, and has for its object to provide machine of the character indicated, which ill automatically and tightly wind the web a straight and uniform manner. The inweb for regulating the speed of the roller upon which the web is wound.
Vending-machine.-F. Lynes, Johns-
particularly to improvements in ejecting de
vices for coin-controlled vending machines vices for coin-controlled vending machines-
such, for instance, as shown in a former application filed by Mr. Lynes-an object being t provide a simple device whereby a cigar or
other vended article when raised to dischargother vended article when raised to discharg top of the machine-casing.
apparatus for printing warps on PRINTING-DRUMS.-F. SChmidT, 7 Edison-
strasse,
Oberschöneweide
near many. The present invention relates to an ap paratus for printing warps on printing-drums, wherein it is essential that the adjustment of the drum is effected in such a manner that its movement is dependent upon the movement
of the adjusting device for the design. In manipulation of the apparatus, the operativ places an indicator upon the threads to be printed, and turns the hand-wheel till indi
cator points to the check to be printed. Print ing of warps can be then immediately proceeded with by means of rollers or the like, as the with by means of rollers or the like, as the the same time as the pattern-drum.
DOUBLE PRINTING-DRUM FOR WARPS -F. SChmidt, 7 Edisonstrasse, Oberschöne weide, near Berlin, Germany. The subject
matter of the present invention is a double printing drum for warps, wherein it is essentia that there be two drums of different circum ference which can simultaneously be printed with the same pattern, as both drums receive
the same angular rotation. This uniform the same angular rotation. This uniform ion of gearing. It is furthermore essential that the two warp-drums of different circum ference be driven together with a drum containing the design or pattern, the driving
thereof being effected in that driving-crowns thereof provided on the circumference of the drums.
Prime Movers and Their Accessories. DRIVER-WhEEL.-E. Stanclify, York, N. Y. The invention provides an attach ment for a locomotive driving-wheel adapted
to economize power and reduce frictional re sistance. It consists essentially of an annular ing provided on its outer circumference with dange and a tread surface, of the usual type rolls on the inner circumference of the ring the latter being formed with a groove to re-
ceive the flange of the wheel. The construcceive partakes of the nature of an internal gear BOILER.-H. L. Des Anges, New York, in which water-tubes are provided around which tubes the gases of combustion circulate and through which tubes internal or fire tube are passed, so that the heating-surface
boiler is very greatly increased; and it lates, second, to a novel manner of fitting the several tubes which holds them securely in place and at the same time allows any one of the tubes to be removed conveniently for pair and other purposes.
COMBINED THROTTLE AND GOVERNOR FOR EXPLOSION-ENGINES.-O. Minton,
New York, N. Y. The principal object of the nvention is to provide between a governor of any suitable design and the gas-inlet valve of an explosion-engine a connection whose
length may be varied so as to adapt the action of the governor and valve to the load carried by the engine. It has special refer-
cace to explosion-engines designed for use upon automobiles and other vehicles.
STEAM-TURBINE.-T. J. MAS'IERS, 29 St Mary's street, Cardiff, Glamorgan, England versible steam-turbine or rotary engine de signed to utilize both the impact or momentum and also the expansive force of the steam in such manner as to avoid back pressure and
economize power in a high degree, the improved turbine or rotary engine being provided also with means whereby the speed and direc-
tion of running may be controlled more efficiently than heretofore possible in engines of the same general type.

Railways and Their Accessories.

RAILROAD SYSTEM.-C. Mehring, Char ottesville, Va. In this instance the invention relates more particularly to single-rail car plify and improve similar railroad systems constructed as heretofore. The inventor's
leading idea is the employment of novel trucks, whereby the cars are prevented derail ment, with railroad systems as formerly not structed.
railroad cross-tie.-s. hoagland, Astor, Fla. The object of the invention is to provide a tie which is simple and durable in
construction, cheap to manufacture, and ar ranged to properly support and securely hold the rails in position, to avoid spreading of the
rails, and to allow of conveniently placing the ie and rails in position.
Register System.-A. Fevola, Yonkers, N. Y. Mr. Fevola's invention relates to sys tems for registering the number of persons
passing some predetermined point, it being espassing some predetermined point, it being es-
pecially useful in recording the number of pecially useful in recording the number of
passengers carried by such a public convey ance as a street car. Its principal objects are to provide a convenient apparatus which wil registration of the oxact number using the

VESTIBULE.-T. A. Ryan, Yonkers, N. Y the present patent the invention pertains
vestibules for the fronts of vehicles, it beng particularly convenient for use in conne ion with electric cars. Its principal object readily folded out of the way when not needed nd yet will furnish an effective closure when in use.
Lubricator.-J. McQuead, Hunt, Ill. This invention relates to lubricators, and in connection with the journal boxes of car ts principal objects are to provide such a de ice which will deliver the lubricant in sub stantially definite quantities when the car is in motion and will stop this supply when it is
Stock-guard.-H. A. Middaugh, Seattle Wash. Mr. Middaugh's invention has refe nce to improvements in stock-guards, the ob against the access of stock from the highway to the tracks of a railroad crossing the same and one which shall be simple, cheap, and easily applied and removed.

Pertaining to Vehicles.

PNEUMATIC TIRE.-G. Devoll, Boston, Mass., and G. H. Risley, Brielle, N. J. The resent invention has reference to pneumatic
tires, such as are used on the wheels of vehicles; and its object is to provide a new and mproved pneumatic tire arranged to preven tured and at the same time afford the desired elasticity.
Lamp-holder.-E. E. Henry, Georgetown, C. This holder is especially useful for supmobiles and bicycles. The object of the inven tion is to produce a device of simple construction and which will afford means for support ing a lamp movably, so that the rays of light will be always projected in advance of the ve-
hicle and in the direction in which it is adhicle an
vancing.
inner tube and means for inflat NG SAME-W. A. Hollis and H. S. Hollis Palmeira Av̇enue, Ilove, Sussex, Englan matic tires and means for inflating the same The improvement consists in the constructio and arrangement of two or more inner airtubes so that they lie around the rim of the wheel without shifting their relative positions and without bursting when the tire is inflated. COMBINATION TRUCK AND SCALE-PLATFORM.-P. Morgan, New Orleans, La.
Under the present systems of transferring offee-bags from the pile to the railway-car weighing and transferring are two separate
operations, each costing about three cents per operations, each costing about three cents per
bag. Mr. Morgan provides means for perbag. Mr. Morgan provides means for per-
forming these operations at once, thus making a great saving of cost and time. The invention is capable of use in other connection terial in sacks or other receptacles and als in bulk.
Motor-veilicle.-II. Sechaud, Gentilly, Seine, France. The invention has for its ob means of a single appliance changes of dire ion and velocity, throwing into and out of gear the braking, and also the regulation of by this device renders unnecessary all the in dividual parts hitherto employed for one in ing the different mechanism, leaves the hands of the driver at liberty, and renders it possible or complete novices to drive motor-vehicles. wheri.- J. b. McMullen, Howard County Md. In the present patent the invention is an improvement in wheels, and is designed particuarly for use on automobiles or other vehicles of that general character; and the inventor's struction whereby the tire may be conveniently applied and removed from the wheel by mean a removable side plate.
FOOT-WARMER.-C. H. Whitaker, Bordentown, N. J. The foot-warmer is intended especially for use in carriages and like vehi-
cles, and it is of that class in which a base les, and it is of that class in which a base
provided and heated by an ordinary lantern urner mounted on the base and having heat communicating means extending from the top of the burner to or into the base.
axle-Lubricator.-J. Aden, Ruralhall,
In this case the improvement pertains to automatic lubricating devices for vehicleis located on the axle, just back of the axle spindle by distributing-grooves. The oil is niformly fed without obstruction and in a gummy waste matters.

DESIGN FOR A Designs. Eptacle.-W. A. Bradley, New York, N This new design for a toilet-powder receptacle shows an oval contour of the box and
the radial fluted ornamentation appearing at the top of the box together with the fluted and apertured cap.
Note.-Copies of any of these paterits will be furnished by Munn \& Co. for ten cents each the invention, and date of this paper.

Business and Personal zuants. WEAD THIS COLUMN CAREFULYY-YO

Marne Iron Works. chicazo. Catalogue free.

Perforated Metals, Harrington \& King Perforatin Co., Chicago.
Inquiry No. 6840.
fetti-making machines.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St., Chagrin Falls, 0
Inquiry No. 6841--For manufacturers of sun
mot sur, or machine that derves its motive power from
he sum the sun.
Adding, multiplying and dividing machine, all in on
Inquiry No 6842 .
Commercially pure nickel tube, manufactured by The

Sawmill machinery and outfits manufactured by the
Inniry No. 684. For manufa
oi burners for stoves and turnace
The A. \& J. Mfg. Co.. 9 S. Canal St., Chicago.
Inteniry No. 6845.--For manufacturers of small
I sell patents. To buy them on anything, or haying
one to sell, write Chas. A. Scott, 19 Mutual Life Building, Butfalo, N. Y.
Inquiry No. 6846.-For manufacturers of weil
tubing.
The celebrated "Hornsby-Akroyd" Patent Safety oil Foot of East 138 th Street, New York

Gut strings for Lawn Tennis, Musical Instruments,
and other purposes made by P. F. Turner. 46th Stree. and other purposes made by P .
and Packers Avenue, Chicago, Ill.
Incuiry $N o .6848$ - For manufacturers of small
metat studs, such as are used in new and laundered
shirts. We manufacture iron and steel forgings, from twents pounds to twenty-five tons. Crank sha
ties. Erie Forge Company, Erie, Pa.

Models, dies, boxes, metal stampings, patent articles.
novelties, num. U.'s. Novelty Co, Lily Dale, N. Y.

WANTED.-An engineer experienced in the design construction and use of apasine motors for auto-
mobiles. "Address Pope Manufacturing Company

Inquiry No. 6851.- For manufacturers of
pistol or rife which cail be used tor small came.
WANTRD.-Experienced man to take charge of Metal
Deyartment. One competent to handle large $^{\text {Dies }}$,
Hammers and Presses. Address Federai Casket Com
Inquiry No.
cating ipparatus.
Wanted.-Colonial silverware. Any one wishing t
sell any authentic silver made in this country during the eighteenth century, please communicate with C. A.
M., Box 7 Tz3, New York.

You can rent a well equipped private laboratory by
day. week or month from Electrical Testing Labor-
atories. 548 East 80 th Street, New York. Absolute
privacy. Ask for terms and facilities
Inguiry No. 6854.-Wanted, catalogue of railroad
catte guards.
Manufacturers of patent articles, dies, metal stamp-
ng, serew machine work, hardware specialties, wood fiber machinery and toois. Quadriga Manufacturing

Space with power. heat, light and machinery, if de baving more room than is necessary for their businc ss

Box No. 40 , Providence, R. 1.

Manufacturers of all kinds sheet metal goods. Vend-
ing, gum and chocolate, matches, cigars and cigarettes,
amusement machines, made of pressed steel. Send
Inquiry No. 685% - For manufacturers or parties
sellinu a traction
gear on
which a
and
We Send for new and complete catalogue of Scientifc
New York. Free on application.
Inquiry No. 6858. - Wanted, the address of The
Daft Electric Light
WANTED.-The patents or sole agency for Britain
and France, of new machines and articles used in the Brewing and Allied Trades. Highest references siven "Wideawake," care of Streets Agency, 30 Cornhill,
Inquiry No. 6859.-For firms' names installing
rude oil
WANTED.-A first-class Machine Shop Foreman; ; possible cost. Must be a man of ideas and capable of
hiring and handling men. Reliability frrst considera-
tion. Steady position with opportunity to advance
Factory at Waterloo, Iowa. Address Manufacurer,
Box $\mathbf{~} 773$, New York.

Inquiry No. 6860. Wanted. addre
of
fery strong glass snown as agatine.
Splendid opening for a high-grade mechanical engi-
neer, who has had a broad experience in managing maChine shops, the manufacture of machinery, engines nd metal specialties. Applicants must be in prime of
ife and now employea. Preference will be tiven to pplicants who have had mechanical schools of high standing. Unqualifed reerences will be exacted. All communications received ill beregarded as strictly confidential. Address
Mechanical Engineer, Box $7 \pi 3$, New York.

Mechanical Engineer, Box 773, New York.
quiry No. $\mathbf{6 8 6 1}$.-For manufacturers of pluck-
Parties looking for factory sites should not overlook Maine. We have several towns where we are enabled bors free of cost and abate taxes for ten years. We build homes for operatives, and let, them pay for them on the rent plan at low interest. This gives the best elp and practical protection against labor troubles. villages than in ans big city in the world, and being home owners, take more interest in their employers'
welfare. We will also furnish you a Maine charter for your corporation, if you need one. Maine Realty Devel-

nts to correspondents.

(9632) A. G. L. asks: What is the cause of that buzzing noise when the receiver
of a telephone is held to the transmitter? Is of a elephone is held to the transmitter? Is
it a sign that the line is all right? How is a elephone wired that is used on the central
nergy system? A. When you hear a sound in
and energy system? A. When you hear a sound in
the receiver of a telephone, it means that something is going on over the line. It may be someone is talking on that line. which is all right. It may be cross talk from some other
line, in which case it is not all right. A central line, in which case it is not all right. A central
energy system is wired so that all instruments ave connection with the battery to ring their bells at all times when the telephones are on
the hooks. Diagrams of wiring will be furished for any system by those who handle and sell the instruments for that system.
(9633) A. B. asks: 1. Can you tell me of a simple test to tell platinum wire? A.
Platinum is characterized by its high fusing point, about 3450 deg. Fahrenheit. It cannot e melted by any temperature below that of
he oxyhydrogen flame. This is the simplest test. Heating in an ordinary flame does not test. Heating in an ordinary flame does not but is dissolved by aqua regia. 2. Is it true that there is a salt lake that has a crust of
salt on the surface? If so, what is the name f it? A. There is a place called Salton in California where salt is plowed up from the surface of the shore of a lake and purified for the market. Later another crop can be har-
vested from the same place. Salt does not float on water. There cannot be a crust of salt ver the surface of a lake. 3. Why is it that ise is a non-conductor and water is a conductor electricity? A. Neither ice nor water when
ure is a condictor of electricity. Water owes its condactivity to minute quantities of impurity in it. Ice tends to freeze itself pure
from impure water. Hence ice is usually a from impure water. Hence ice is usually a
non-conductor of electricity. 4. Can you explain to me what watt and watt-hours denote? att is the unit of electrical power. One power of one watt. One watt working for ower of one watt. One wares you would find insweredricity", which we an send for $\$ 2$.
(9634) W. S. M. says: I want to put an electrical plant on my farm for lighting, ater service. Have plenty of wind. Storage atteries, from my experience, have not been satisfactory during a calm. Has any one tried ompressed air as a power during a calm?
o you believe that compressed air could be sed to any advantage in generating electricity? . We know of no experiments or experience for electric lighting purposes, and would not advise its use. Storage batteries are also unsons. We woury in hands of inaline persene engine as the most satisfactory source f power in the majority of such cases as you
(9635) E. G. B. says: Would it be possible to revolve an iron plate $1 / 4$ inch thick,
6 feet diameter, at the rate of 616 revolutions
per second? In other words, would it be pos-
sible to make a point on the circumference of
the wheel move at the rate of 1,000 miles per
hour? If not, what would be the drawback?
Is air a fluid? Kindly describe a fluid.
A. The centrifugal force would cause the iron
plate to burst and fly in pieces at a speed far
below the one which you mention. Air is a
fluid. The definition of a fluid is "a substance
which will readily and without perceptible fric-
tion flow in such a way as to completely fill
any shaped vessel in which it may be put."
Liquids and gases are fluids.
(9636) H. O. N. asks: There has

Foot and Power and murere hathes, Paine

LUFKIN
TAPES AND RULES
ARE THE BEST.
For sale everywhere. Send for
Catalog No. 16 . LUFKIN RUULE
Saginaw, Mich., U. S. A.

Rateani SararceBofis
at prices way below the usual value. Annual Clearance Sale
after inventory of books ranging in price from
Five Cents to $\mathbf{\$ 1 . 5 0}$

A fine II2-page catalog containing some choice American and English books, and also a list of some of the scarcest books on America, the and kindred Subjects, will be SENT FREE on receipt of

The Burrows Brothers Co Cleveland, Ohio

 44-60 Eastt 23 d Street, New York, N. Y.
Grand Prize, Highest Award, St. Louis, 1904.
THE GEER MOTORCYCLE, SI50.00

 ${ }^{\text {Connerert }}$ Bicycle ${ }^{\text {Into }}$ Motorcycle

\%
ぞ
Everything for the Automobile Yankee Ampere Meter
Gives accurate reading
oto 30 amperes
PRICE $\$ 3 \times 50$ "Dead-beat" "indicator comest to
full stop at the correct reading E. J. WILLIS COMPANY

bigycles on trial

$\$ 10$ to $\$ 24$ $\$ 7$ Puncture-Proof Tires. $\$ 12$ Hand Wheels
$\$ 3$ to $\$ 8$

 escent Machinery euality and Price, both right
BAND SAWS, JoINTERI, SAW TABLES, BAND SAW BLADES

CrEsCENT MACHINE
230 Main Street, Leeter

ALL WATER YOU

CHESTER, PA.
CO Co

ARTESIAN

park length nowadays. There are two errors your note, one in underestimating the amount of wire used in secondaries and anomor in neglecting the air resistance as a factor in

 cutting down the amperes required in a sec-ondary coil for a given voltage. Now again
the self the self-induction at the moment of breaking ith effect upon the turns of the secondary, produced in the secondary coil. This rises
enormously above 30,000 volts when the spark istance is large. A table recently issued hows that 20,000 volts are required to throw ; while to throw a spark 15 inches, 150,000 olts are required. Now inches, 150,000 throw 45 inches. How many volts do they, very little thing. And what is the voltage or a lightning spark a mile or two long? 2 .
ow does magnetism interfere with the work-
gh of a watch? A. The magnetism of the eel parts of a watch affects the motion of
the hairspring and balance wheel when that Ilave diamonds ever been produced artificially : A. Diamonds have been made arti-
ficially by Moissan in his electric furnace experiments, and they have been found in
neteorites. See Moissan's "Electric Furnace,"
(9638) W. R. M. asks: I am puzzled ver a problem in electricity. Here it is: What att electric lamp?

$$
\begin{aligned}
& \\
& 1 \text { volt } \times 12 \text { amperes }=12 \text { watts } \\
& 2 \text { volts } \times 6 \\
& 3 \text { volts } \times 4 \\
& \text { amperes }=12 \text { amperes }=12 \text { watts } \\
& 4 \text { volts } \times 3
\end{aligned} \text { amperes }=12 \text { watts }
$$

You see the products are all the same from the xplain about the lamp and voltage and amperage. A. We do not see any puzzle about your
problem. You show that there can be seven different ways of dividing the volts and amperes
o that the lamp will have 12 watts. There is o that the lamp will have 12 watts. There is
o puzzle about that. It is quite true. The to divide the volts and the amperes. We would
decide that to be either the 6 volts and 2 amperes, or the 12 volts and 1 ampere, or 24
volts and $1 / 2$ ampere. The higher the voltage the smaller the wire necessary to carry the current
without overheating the wire, and so the (9639) C. B. R. writes: What controls the circulation of elaborated sap of trees?
Why does, or does, it rise in the spring? Or where does it come from? At what time each
month can a bush having sugar in its roots be cut so that it will sprout and grow? At stops the circulation or keeps it back from the roots at times? Why would freezing the a moderate flow? Why when a board or stra
is laid on the ground at certain times, it w A.
The rise of water in trees from the root tips outermost twig is a strange thing, and its
mechanics is not even yet clear. Capillarity The a part, as also does osmotic pressure. was once thought to explain it. Again, others leaf sumfaces causes the water below to rise filament of water. All these and perhaps other raise the water sometimes hundreds of feet.
The water rises most easily in the new wood, The water rises most easily in the new wood, spring. of the month has anything to do with the prouting of seeds or the growing of sprouts. This is an old superstition connected is cut off, the power of growth in the tree usually is
sufficient in the early part of the year to produce other shoots to take its place in the
support of the life of the tree. Late in the season these sprouts do not so readily appear. row if moisture is supplied to them. They may stay years without starting, and wounds given to the tree may then make them start
to grow. Sap circulates freely till the ring of wood and new bark is formed and the walls not easily pass through these walls. The is over for that year. The flow of sap out
of a tree in which a hole has been made, as in the sugar maple, in early spring is due not to the freezing of the ground, as water by the
but to the expansion of the
warmth of the sun during the day. The tree is gorged with sap, which is ready for the
production of wood for the spring. The nights re cold, below the freezing point, the day is warm; the large difference of temperature ex-
pands the sap, and forces some of it out of any
\qquad to the night and back again ceases, the tree
also ceases to give sap for sugar. We do not
anderstand the question of the board laid on the ground and sometimes sinking and at others
ising. We never saw or heard of that pe- fore.

Hydrozone

Sore Throat

A Harmless Antiseptic．
Endorsed by the medical profession． Send ten cents to pay postage on ing Druggists．Not genuine unless label bears my signature
Prof．Charles 16 oarchande

Dept．U， 63 Prince St．，N．Y．
Write for free booklet on Rational Treat－
nent of Disease．

THE WONDER GASOLINE MOTORS

Something New and Up－to－date

More power for less
money than any other
machine on the market．
No botves hears． tate ．
to get out of order．

 $\underset{\text { Grand Rapids，Mich．，U．S．A．}}{\text { Michigan }}$ ELECTRICAL MOTORS．－THEIR

There and

 －Back WHAT A RELIEF GRAyT．FERERIS
Troy，N． \mathbf{Y} ．

BABBITT METALS．－SIX IMPORTANT

 2d Floor．Wilshire．Cleveland． 0 ．

DYNAMO
$\$ 26.50$
MOTORS

Electricians＇Handy Book
A MODERN WORK OF REFERENCE
a compendium of useful data，covering the field of electrical engineering
Including The Theory of the Electric Current and Circuit，Electro－ Chemistry，Primary Batteries，Storage Batteries，Generation and Utilization of Electric Power，Alternating Current，Armature Winding，Dynamos and Motors，Motor Generators，Operation of the Central Station，Switchboards，Safety Appliances，Distri－ bution of Electric Light and Power，Street Mains，Transformers， Arc and Incandescent Lighting，Electric Measurements，Photo metry，Electric Railways，Telephony，Bell－Wiring，Electro－ Plating，Electric Heating，Wireless Telegraphy，Etc．，Etc．，Etc Containing 556 Illustrations and Diagrams
By T．O＇CONOR SLOANE，A．M．，E．M．，Ph．D． Handsomely Bound in Red Leather，with Titles and Edges in Gold，Pocket Book Style

```
［10 Special circular of contents free．
```

MUNN \＆COMPANY，Publisher＇s 36i Broadway，New York City

\section*{Whe

 }

 }

SLIGHTLY USED FURMITURE

 $\mathfrak{m y}$ catalogue of pleasure boats, all cedar and canvas-covered canoes, oars, paddles, sails and fittings, J. H. RUSHTON, 819 Water Street, Canton, N. Y.

The Power of this Runabout

$\begin{aligned} & \text { The horses, however, could furnish this power for only } 8 \text { hours a day. As the Autocar } \\ & \text { Runabout cank crun tor } 24 \text { hours a d dyy it will be seen that if both power and endurance are }\end{aligned}$
$\begin{aligned} & \text { This tremendous power coupled to a car weighing only } 1200 \text { Ibs. gives the Autocar Runabout } \\ & \text { great speed and hill-climbing ability and is one of the things that make it the most remarkable }\end{aligned}$
small car built.
$\begin{aligned} & \text { The motor in the Autocar Runabout is of the two cylinder horizontal opposed type. It is } \\ & \text { located in front under the hood, where it is instantly accessible. The transmission case may be }\end{aligned}$
$\begin{aligned} & \text { reached b bly liti ing the floor in front of the seat. This car has three forward speeds and reverse, } \\ & \text { and shaft drive. }\end{aligned}$
$\begin{aligned} & \text { Cataloguve descriptive of Type X, \$900, Type VIIL Tonneau Car, } \$ 1400 \text {, and Type XI Four } \\ & \text { Cylinder, Side Entrance Tonneau Car, } \$ 2000 \text {, with dealer's name, sent free upon request. }\end{aligned}$
THE AUTOCAR COMPANY, Ardmore, Pa.

*STANDARD
Two=Speed Automatic Coaster Brake Hub

SPECIAL

Gas Engine Generator
Steady light from an ordinary Gas or Gasoline Engine. Write for Bulletin.
ROCHESTER ELECTRIC MOTOR CO.

The Funds of Benevolent Institutions

Fraternal Societies, Churches, etc.,
earn 4 per cent. compound interest at this bank. Accounts may be started with any amount from $\$ \mathrm{I}$ up. On amounts of $\$ 1$, ooo or more we we
will issue certificates of deposit if de will issue certificates of deposit if de-
sired. These certificates bear interest sired. These certificates bear interest
from date and are payable or renewable at six months or one year.

Capital $\$ 1,000,000$ Surplus $\$ 1,000,000$
PEOPLESO SAVINGS BANK PITTSBURG, PA.

An Ideal Electric Light Engine

Are you sure to escape the law of average? If you a re, you will not be interested in our free booklet, "The How and the Why."

"THE

FOUR-TRACK
SERIES"
This is the title of a series of books of travel and education
Department of the
NEW YORK CENTRAL LINES
These small books are filled with information regarding the best modes of travel and
the education that can best be obtained by
travel.
They relate specifically to the great resorts
of America-to trips to the islands of the sea
and around the world.
They also contain numerous illustrations and new and accurate maps of the country described
A copy of the 5 52-page
of the
Illustratce
Coutalogue upon receipt of postage stamp. by George H .
Daaiels, General Passenger Agent, Vew York
Central \& Hudson River Rairoand, Grand Cer.

 Packing， p
$\begin{gathered}\text { Panin } \\ \text { Paint } \\ \text { Pain } \\ \text { Paper } \\ \text { dil }\end{gathered}$

Flatau $:$

Planter，corn，J．J．H．Wiiliam．
Planter，
Planting machine，
m．Sandifur

 Projectile，ordnance，C．F．\＆H．E．Co
Propelling apparatus，ship or boat，F．

 Shoo upper hiolder，w．H．Wood

\qquad

89，647789,40
789,438
789,43
789

芴蔦离㫏总
all charges prepaid

 rder or W Y．Y．draft to to be bersonal check，mone

The Ithaca Calendar Clock Co． Dept．104，Ithaca，N．Y．

Knock Down Boats $\substack{\text { Launches } \\ \text { row and sail } \\ \text { boats } \\ \text { Canoes and } \\ \text { Hunting } \\ \text { boats }}$ Of all Descriptions Send for Catalogue
American Boat \＆Machine C Co．， 3517 S．2nd St．，St．Louis，Mo． THE EJECTOR MUFFLER

FOR INSPECTIONTHE ITHACACABINET CLOCK

SHIPPED YOU FREE FOR INSPECTION

DESIGNS．

LABELS．

Airedale，
Batelele，
Hurd $\&$ wool and cotton fabrics，

\qquad

2，127

PRINTS．

Orient Surrey．Price $\$ 450$
There＇s Room for the Family

 WALTHAM MANUPACTURING COMPANY
Factory，Waltham，Mass． Address General Offices， 44 Broad Street，New York

AUTOMOBILES

 TIMES SQUARE AUTOMOBILE COMPANY
－CHARTER

Gasoline，Gas，Kerosene．
Send for cataloen Send for Catalogue．
tate Power CHARTER GAS ENGINE Co．，Box 148，StERLING．ILL What Is Daus＇Tip－Top？

 The Flis A．B．Dans Duplicator CO，Daus Bldg， 111 John St，New York

The Most Modern Marine Motor

 VAN AUKEN ACLEVAUC CO．
Yonkers．N．Y．．UU．S．A．

AUTOMOBILES \＄195

HOROLOGICAL DEPARTMENT C． ARGESTIA，ILD BEST LAAGEST and BEET
WATCH SCHOOL in AMERICA
 CRUDE ASBESTOS

HIGH GRADE TELEPHONE Apparatus and Supplies

 CENTRAL TELEPHONE \＆ELECTRIIC CO
2Rd \＆Lucas Ave，St．Louis．U．S A

15 to 21 Clinton Street

WINCHESTER

REPEATING RIFLES FOR HUNTING．
In the Spring the wily woodchuck is quarry worthy of the rifleman＇s skill． Riflemen differ as to what caliber cartridge is best adapted to＂chucking，＂but all agree that the rife for this，as for all kinds of hunting，is some one of the nine for all your shooting and Winchester make of cartridges in all your guns． WINCHESTER REPEATING ARMS CO．，－－NEW HAVEN，CONN．

9 zacm WATCHES

Interest you because while absolutely guaranteed for accuracy they are away ahead of any watch on the market in appear－
ance and workmanship－equal to the most expensive；but the sell for so little the price will surprise you．Ask any jeweler to show them to you．If you do not find them on inquiry－ write us．Write us anyway，for our Red book describing men＇s
watches，and our Blue book of ladies＇watches．We will send watches，and our Blue book of ladies＇watches．We will sen

The New England Watch Co． 37－39 Maiden Lane

63 Victoria Street New York City

Liverpool，England

JUSTSENDMEONEDOLLAR
and I will ship C．O．D．to any railroad station in the U．S．
this fine Willard Sttee Range Anyone can say they have
the best range in the world，but A will furnish the evidence the best range in the world，but 1 will furnish the evidence
and leave the verdict to you．After you examine this range， and leave the verdict to you．After you examine this range，
if you are satisfied in every way，py Agent $\$ 14.00$ and freight
and you become the possessor of the best range in the world and you become the porsessor of of the best range in the world
for the money．The range has six 8－inch lids； 18 －inch oven； for the money．The range has six 8 －inch lids； 18 －inch oven，
15－gallon reservoir；large warming closet；top cooking ser－
vice 30×34 ins 15－galion reservoir；large warming closet；top cooking ser－
vice 3x34 ins．Guaranteed to reach you in perfect order．
shipping weight， 400 lhs．Thousands in use and every one of shipping weight， 400 lhs ．Thousands in use and every one of
them giving satisfaction．Write for full description and

WM．G．WILLARD
No．12 Whard RULLing
310－320 CEETNUT STREET ST．LOUIS，MO

The Modern Machines for Mechanics Gra

 THE W．W．OLIVER MFG．CO．， 1482 Niagara St．，Buffalo，N．Y．Stas

Surveying and Drawing Instruments

DRAWING AND ARTISTS’ MATERIALS AND SUPPLIES We are the largest house in the world．Try us on BLUE PRINT PAPER．TRACING CLOTH，DRAWING
INES，or SURVEYIN \ddagger and ENGINEERING INSTRUMENTS A．S．ALOE $\underset{\text { Write for Catalog．}}{\mathbf{C O}} 515 \underset{\text {＂Sent Free，＂}}{\text { Olive }}$ Street， $\underset{\text { licited．}}{\text { St．}}$

Louis，Mo

[^0]

AGENTS WANTED

 make a ititle money on the side．
MODERN MACHINERY PUB．CO． 917 Security Bldg．，Chicago，Ill．

ne wonderful new heat－imparting

Thermalite Bag

保别e，and stay hot for hours． JOHN WANAMAKERE Says：＂There will be a
Thermaite Bas in every hore in tie tand and the in－ convenient hot－Water bothes will be out or date as soin
as people realize the convenience of the Thermalite
 thermalite co．， 171 Elm St．，New York，U．S．A．

[^0]: ค月 1 Nค New Students＇Compound Microscope，full outfit，
 New Small Laboratory Microscope，full outfit，
 $\$ \mathbf{9 . 0 0}$ $\begin{array}{r}\mathbf{\$ 6 . 0 0} \\ \mathbf{9 . 0 0} \\ \mathbf{1 8 . 0 0} \\ \hline\end{array}$ MUJGUL New Large Laboratory Microscope，full outfit，－$-\mathbf{1 8 . 0 0}$ Dept．6，WILLIAMS，BROWN \＆EARLE， 918 Chestnut St．，Philadelphia，Pa．

