

View inside the fortification, showing complete concealment of the piece and the gun detachment during loading.
Disappearing 10-Inch Breech-Loading Gun in the Loading Position.

The gun is swinging back and down to the loading position.
Discharge of a 6-Inch Disappearing Gun.

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

terms to subscribers

 the scientific american publications.

NEW YORK, SATURDAY, APRIL 22, 1905.
The Editor is almays glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are

maximum load due to crowding.

It certainly does seem rather late in the day to discover that the assumed maximum load on bridges, platforms, and floors, due to a crowd of people, is much greater than our engineers have been accustomed to suppose. In designing any bridge or framed structure that will be subjected to varying degrees of loading, it is customary to assume a certain maximum amount which can never be exceeded, and then so proportion the structure that when this maximum loading occurs, no part will be strained beyond a certain predetermined amount, usually stated as so many pounds to the square inch of section. Evidently the ability of a structure to stand well up to its work, supposing that all the subsequent calculations of the design are.correct, will depend upon the accuracy of this assumed maximum loading. In the case of a bridge, the principal sources of stress are the weight of the structure itself, commonly known as the dead load; the weight of the moving loads, such as trains, vehicles, and pedestrians, commonly known as the live load; the loads due to wind pressure; and, lastly, the irregular changes of form in the structure resulting from variations of temperature. A few weeks ago we commented editorially on the fact that the wind stresses that have hitherto been assumed for frame structures were too large, particularly in the case of bridges of great length, and roofs or buildings presenting very large areas to the wind. That was one of the rare instances in which engineers have erred on the side of caution. It now seems that in the case of platforms, and floor surfaces which are liable to be very heavily crowded, the assumed unit of loading has been altogether too small; \cdot and in proof of this, we direct attention to the experiments of Mr. L. J. Johnson, professor of engineering at Harvard University, which are described in another column of the present issue. It is shown very clearly, in these experiments, that in the case of floors, platforms, and bridges, that are liable to be heavily congested with a crowd of people, the assumed loading of say from 50 to 100 pounds per square foot is really much smaller than the loading that may actually occur. It is probably the suspicion of this fact that has caused the bridge department of this city to close such structures as the Brooklyn Bridge and the Williamsburg Bridge to foot passenger traffic, whenever there was any public event, pageant, or whenever there was any public event, pageant, or
what-not, in their vicinity which would lead to their being densely crowded.
The danger, however, does not lie in these important structures, so much as in the numberless stairways, foot-bridges, and platforms that lead to the great centers of traffic in our larger cities, of which the most notable instances, perhaps, are to be found in connection with the approaches to the terminals of the Brooklyn Bridge on both sides of the river. Mr. Johnson has found that the weight per square foot due to a crowd of people may be as high as 181.3 pounds, and that it may easily and frequently reach the figure of 160 pounds. Now there is a foot-bridge leading from the Fulton Street and Brighton Beach Railway terminals to the main terminal of the Brooklyn Bridge, which is some 18 or 20 feet in width and nearly 150 feet in length, that is liable, at times, to be crowded quite as densely as was the platform on which Mr. Johnson determined the load to be equal to over 180 pounds to the square foot. It is an interesting question, which we commend to the engineer who designed that structure, as to how far his assumed loading agrees with the maximum loading as determined in these experiments at Harvard University. There are doubtless many other similar footbridges, stairways, etc., in various parts of the country of which the question might be asked with equal pertinence.

Never, surely, in the history of naval warfare did the fortunes of his country depend so absolutely upon a single man as do those of the Russian empire upon Rojestvensky and the fleet which he has taken into the China Sea. Strategically considered, the present stage of the Japanese war is critical and dramatic to the highest degree. Both by sea and by land the Russian forces have been subjected to an unbroken series of disastrous defeats. Save for a pitiful remnant of three badly-battered ships at Vladivostock, the once powerful Pacific fleet of Russia has ceased to exist. Her great armies, gathered from all corners of her empire, commanded by her picked generals, lavishly equipped with the best implements of modern warfare, have suffered three overwhelming defeats, and the shattered remnant is being driven back steadily before the resistless wave of Japanese invasion.

And now, at the eleventh hour, when the whole world, friends and foes alike, is telling Russia that the game is lost, she launches into the very heart of the conflict her last despairing forlorn hope, in the person of Admiral Rojestvensky with his travel-worn fleet of something less than half a hundred ships. At the present writing this fleet is steaming directly along the frequented trade routes, with no effort at concealment, and with an evident determination to seek out the thrice-victorious Togo and try conclusions in a desperate fight to a finish.

Whatever may have been said about the Baltic fleetthe haste with which it was gathered, its oft-delayed start, its terrible blunder among the fishing fleet in the North Sea-the whole world must join in giving the Russian admiral his full meed of praise for steaming straight for his powerful enemy at the close of his 17,000 -mile voyage which is no small accomplishment in itself. The task before him is truly appalling. With half a hemisphere between him and a home port; with a veteran and tried fleet of the enemy guarding the only avenues of approach to the one remaining Russian port far to the north; with that port blockaded and its entrances heavily mined; with no friendly harbor nigh at hand to which he can retire to recover from the stress of a hard-earned victory, or shelter after a disastrous defeat; it must be admitted, in all fairness, that what Rojestvensky has done and is aim ing to do, has been well done, and is being attempted in a manner truly heroic
It would be a rash prophecy to declare that in the impending battle victory must necessarily fall to the Japanese fleet. Matters are not as they were when the determination was first taken to dispatch a second fleet to the Pacific. Since that time at least one, and probably two, of the Japanese battleships have been lost beyond recovery, and it is quite possible that Togo can oppose but four battleships to the seven battleships under Rojestvensky-and it is battleships that decide, and ever will decide, the fate of a naval campaign.
There can be no question that the Baltic fleet has been greatly underestimated by the general public, partly because of the North Sea incident, and partly because of the widely-circulated rumor that this was a "scratch fleet," composed of obsolete vessels. As to this last, nothing could be farther from the truth. Four of the battleships are absolutely new. They are an improvement upon the "Czarevitch," which, it will be remembered, stood for hours the concentrated attack of Togo's battleships, without having any of her big guns silenced or the structural efficiency of her hull seriously impaired. These four ships are probably able to stand a severer hammering, and are more difficult to sink by gun fire than any ships afloat in the world to-day. The "Borodino," "Orel," "Alexander III.,"" and "Suvaroff" mount, among them, sixteen 12 -inch, 40 -caliber guns, which, being absolutely new, are good for a muzzle velocity of 2,600 feet per second. The Russians, use capped projectiles, and with these the gun is capable of penetrating 12 inches of Krupp steel at 5,000 yards and 15 inches at 3,000 yards. If Admiral Togo is to sink these ships, or so cripple them as to have them at his mercy, he will have to fight at a range so near that the Russian ships cannot fail to place their shells with considerable effect upon his vessels. In addition to these battleships there is the "Osliabia," built in 1900, which carries four 10 -inch guns, capable of penetrating $101 / 2$ inches of steel at 5.000 yards and 13 inches at 3,000 yards. All of these vessels have a trial speed of 18 knots an hour, although, of course, they are just now much slower because of foul kottoms. The other two battleships, "Sissoi Veliky" and "Navarin," mount between them eight 12 -inch, 35 -caliber guns, capable of penetrating $81 / 2$ inches of Krupp steel at 5,000 and 11 inches at 3,000 yards. Their speed is two knots slower than that of the other battleships. The four Japanese battleships (or five, as the case may be) mount between them either sixteen or twenty 12 -inch guns of about the same penetrative power as the Russian pieces. With the exception of the "Mikasa," however, they are protected by Harveyized armor, of considerably less resistance
than the Krupp steel on the latest Russian ships. : In battleships the Russians have undoubtedly a preponderance of power.
It is to be borne in mind, however, that Japan possesses eight or seven (one is reported to have been lost) very effective armored cruisers, any one of which is more than a match for the two old armored cruisers "Nakhimoff" and "Donskoi" of the Russian fleet. They mount, between them, thirty-two guns of 8 -inch caliber, and they are protected by 6 to 7 inches of Krupp armor. It is scarcely likely, however, that these ships will be placed in the first line of battle, within range of the 12 -inch guns of the Russian fleet; and with the possible exception of the Italian-built "Kasuฐa"' and "Nisshin," they will probably be held in reserve until it is seen how the fight between the battleships is going. Should Togo be able to draw the sting from the Russian battleships, and seriously cripple them, his armored cruisers would close in to assist in delivering the coup de grace.
The Russian fleet includes several fine protected cruisers of between 3,000 and 6,000 tons displacement, and a few torpedo boats. If Rojestvensky should by any chance elude Admiral Togo and effect a junc tion with the armored cruisers at Vladivostock, his fleet would be greatly strengthened, and his chances of success enhanced; but that is a remote possibility.
So much for the materiel of the fleet; and it must be admitted that, judged on this basis, the' second Pacific squadron is a menace to Japan's command of the sea, so serious as to make it possible that a victorious peace may be snatched from her grasp in the very moment of its attainment. But when we come to consider the other elements of efficiency, such as the condition of the ships, the familiarity of officers and crews with their vessels, the skill of the gunners, and the general morale of the whole fleet, it must be admitted that the advantages lie very greatly with Japan. The Japanese are familiar with the sound and the shock of battle. The Russians, who doubtless have been doing much target practice during their six months' cruise, are accustomed merely to the disharge of their own guns-they know nothing of the awful crash of bursting shell; the rending of steel plating; the sight of shattered limbs and all the hideous carnage of a 'tween decks that is being swept by the enemy's fire. It is one thing to aim at a floating target during the quiet routine of a cruise, and another to aim at a target that is making the deck upon which one stands a veritable shambles. Rojestvensky leads his fleet to what the world, perhaps unjustly, considers to be at best but a forlorn hope; whereas the Japanese steam into battle flushed with all the confidence and self-possession born of an unbroken succession of victories. Rarely did two contending fleets fight with such stupendous consequences hanging upon the result. Should Japan win, she will reap the fruits of a series of victories that is without parallel in the history of the world, and move at a bound to the front rank as a world power. Should Rojestvensky, by crushing the enemy, obtain command of the seas, and cut off Oyama and his armies from Japan, he will have wrested victory from defeat, and saved to Russia an empire that has all but fallen from her grasp.

RADIUM ON METALS

M. Bronislas Sabat recently made a series of experiments in M. Curie's laboratory as to the action of radium rays on the electric resistance of different metals. The rays were obtained with the strongest preparation of radium in the laboratory, namely, "a"bulb containing $0: 2$ gramme of pure radium bromide. Thin wires of the different metals were rolledwaround paper tubes in order to form a resistance coil, and the radium bulb was placed in the center of the tube. The rays of the radium thus act upon the wire. As an example, an iron wire which started with a resistance of 4.64 ohms, at once rose to 4.66 under the first action of the rays, and after five minutes' action rose to 4.68 , which is the maximum effect. After removing the radium, the wire comes back to the original resistance in a few minutes. For iron, this gives a difference of 0.776 per cent. In the case of a platinum wire of the same diameter (0.1 millimeter) he finds 0.257 per cent. For German silver, it is but 0.092 per cent. Bismuth shows 0.284 per cent. The variations depend upon the size of the wire and the absorbing power for the rays, etc. A certain increase of resistance is thus found at once, and before the heat is communicated from the radium. The greatest variation of the resistance sometimes goes beyond the point which would be reached by the heat sent from the radium alone, and it is probable that the metals absorb the rays (principally the (3 -rays) and these are transformed to heat, raising the temperature of the metals and then changing their electric resistance. This action is analogous to the absorption of the cathodic rays by metals. The β-rays give a smaller heat effect, however, as they are absorbed by the metals in a less degree than the cathode rays.

OUR HERITAGE OF THE MECHANICAL ARTS.

 alex.The most important event in the history of the mechanical arts, the discovery of iron, is without a cer tain date. Iron is mentioned in the Vedas, the Upanishads, the Bible, and the Iliad; it appears in the frag ments of Sanchoniathon; it is delineated upon the Egyptian monuments assigned to Thothmes III. nevertheless, the date of its discovery is a problem which is not yet satisfactorily solved. The secret of smelting iron ores and converting them into metal was certainly discovered by somebody, somewhere and at some remote time; but we know not where when, nor by whom. When this discovery did occur at all events when it became publicly known and com monly put into practice, it must have exercised as profound an influence upon the ancient world, as that of gunpowder and firearms has had upon the modern Iron not only armed the people who discovered it with superior offensive weapons; it enabled them to build ramparts of stone, to pierce the rocks for silver, copper, and lead, and to fabricate nearly all those implements, tools, and devices which distinguish the mechanical arts. The name chalybo, for iron, points o Chalybia, and of damas, for steel, to Damas, or as we write it, Damascus. In the vicinity of both of these districts, very ancient iron mines have been discov ered; and in the former district, at Ayazinn, Mr. Ram say found rock sepulchers, guarded by gigantic carved lions, and a large chapel, all carved out of the solid rock, which could only have been executed with steel ools. Col. Leake found at Nacolaeia, in the Sangarius valley, a royal tomb, in the form of a temple, carved in the solid rock, with a Phrygian inscription by Attes, dedicated to Midas; while, near by, were the remains of a city, which, from its great extent, is sup posed to have been the capital of the Sangarians, or Maryandians.
In the age assigned to the Judges of Israel, about the twelfth century B. C., Jabin, the King of Canaan, or Phœnicia, who dwelt at Hazor, about sixty miles southwest of Damascus, is said to have possessed nine hundred chariots of iron. (Judges iv, 3.) "Can one break iron from the North?" (Jer. xv, 12) and "I will break the bar of Damascus" (Amos i, 5) are pas sages which were probably written several centuries before our era, and may refer to a still more remote period; while they evidently point to the vicinity of Damascus as a well-known iron center.
Could we accept these indications for a certain guide, the advent of iron, at least so far as the western world is concerned, might be fixed at about the twelfth century before our era. Both iron and steel were cer tainly very scarce in the West at the periods men tioned. Homer, tenth century, mentions poleaxes, shipwrights' tools, plowshares, sheep-hooks, and char-iot-wheels in the Troad; yet in Lacedæmonia, in the time of Lycurgus, ninth century, iron was still so val uable that he employed it as a material for money The theory has been advanced that the Chalybes, Veneti, and Dorians were the same people, who, after being driven out of Asia, invaded Greece, and with their iron weapons destroyed that splendid bronze civilization which is revealed in the magnificent remains of Tiryns and Mycenæ-a theory that the pedimented hexastyle temple, carved in the Sargon relief at Mona sier, goes somewhat to substantiate. Twenty-six cen turies later, Cortes performed a similar exploit in Mexico. There is admittedly a gap of three centuries both in the literature and archæology of Greece, a gap that extends from the assumed date of the Dorian invasion, 1104 B. C., to the Lycurgan age. Whatever may have been the history of iron and steel during this interval, these metals only came into géneral use during the Solonic era, when, by their agency in opening the silver mines of Laurium, they threw upon the world those treasures which extended and quickened commerce, established the mechanical arts, and offered such rewards to discovery and invention, as will ever render that age memorable. A bare list of the illustrious men who adorned it is sufficient to suggest the most notable discoveries known to man.
The mechanical inventions which came more or less into general use during the Solonic age embrace the iron or steel hammer, saw, adz, auger, shovel, pick, chisel, gimlet, square, flint-and-steel, lock, key, and lathe; for although these and many more inventions were assigned by Pliny and others to mythological personages of a remoter age, no remains have been found of these tools, or of their products, of a period earlier than about the eighth century; this being also the age of similar implements found by Layard at Nineveh. The Vedas frequently mention iron or steel weapons, armor and tools, including the razor; but Romesh Chunder Dutt, the native historian of India, assures us that no stone statues, or other works made by iron or steel tools, have been found in India of an age much before the Buddhic era. Mr. Grote, the historian of Greece, comes to much the same conclisision with regard to that country; there are no works which involved the use of iron or steel, or even of bronze im-
plements, much before the Solonic age. Schliemann's discoveries point to somewhat the same result. Most of the utensils, axes, hammers, knives, and saws found at Hissarlik (Troy) were of stone, but few of bronze, and none of iron. At Mycenæ, the arrows were flint-headed; the shields were made of wood, with leather attachments; while the swords, knives, ools, and utensils were of bronze. Even these were of the Iron age. The final determination of the inquiry is that while perhaps the fabrication of iron was known to the Brahmins so early as the fifteenth century, it was kept secret in the temples until the period assigned to the Mahabharata war, when it escaped to Chalybia, and there gave rise to that notable industry whose marks still excite the curiosity of the archæologist.

From Chalybia the iron industry was extended or removed to the vicinity of Damascus, whence, by the agency of Phœnician commerce, it was carried to Argos in Greece and Tarshish in Spain. (Ezek. xxvii, 12.) As the voyages of the Phœnicians to Cassiterides, for tin, could hardly have been made, except in ships whose planks were fastened together with iron spikes, or rivets, or with copper ones; and as copper, except in very small quantities, could not have been obtained without the use of iron tools to cut the inclosing rocks, it follows that, owing to the scarcity of iron down to the Lycurgan age, the earlier commerce in tin, if made to Britain, was conducted, like the amber trade, overland. Baron von Humboldt has, however, pointed out that cashthira is merely the Sanskrit word for tin; so that the stream-tin, which the earlier Phœnicians got from "Cassiterides," the Land of Tin, may have come from Malacca in India, or Galicia in Spain; and that the Phœnicians did not trade by sea to Britain until a later age. As for the theory that there was a Bronze age before there was an Iron one, and that during such period copper tools were hardened by an application of tin, so as to cut quartz or porphyry, the burden of proof still rests upon its advocates. Thus far, archæology does not support them.

Among the elements of material progress which marked the Solonic age was the Public Library which Aulus Gellius (vi, 18) informs us was established at Athens by Pisistratus. At subsequent periods, Ptolemy Philadelphus at Alexandria, and Eumenes II. at Pergamus, formed extensive collections of books and parchments, but solely for their own benefit, and not for that of the public. After Pisistratus, the next public library was that of Asinius Pollio in Rome.

(To be continued.)

NOVELTIES IN FIRE ALARMS.

Two different types of automatic fire alarms have been devised by Scotch and Danish inventors respectively. The former contrivance, in addition to raising the alarm, becomes an automatic sprinkler of considerable power as well, and thus becomes a valuable first-aid appliance, while the action of the latter is solely confined to the ringing of the alarm bell
Some severe tests of a practical nature were recently carried out with the former device upon some extensive sawmills containing a large number of valuable woodworking machines in Aberdeen (Scotland). In this expansion system there is neither water nor compressed air in the sprinkler pipes, so that in the event of a sprinkler head becoming accidentally damaged, no flooding of the premises or other injury results. In the first test a mass of shavings and other combustibles were piled in a heap and saturated with oil and then ignited. Within ten seconds the sprinklers were pouring a volume of water upon the flames from three sprinkler heads, and the fire was rapidly extinguished.

In the second test the loading court of the mills, 65 feet in length by 25 feet wide and 3 feet high on either side, was selected. A pile of shavings similarly treated were fired here, and fanned by the severe draft blowing through the passage, was soon an immense sheet of flame. The sprinklers, however, acted, and in a few minutes the fire was completely extinguished.
For the third test, however, the machine room itself was selected to display the confidence of the inventors in their device. The mass of shavings was piled upon the floor among the seventy machines in the shop and fired. Within thirty seconds the detector acted, and streams of water poured upon the burning mass from three sprinklers, and the fire was quickly quelledlong before the arrival of the local fire brigade from the station one and one-quarter miles away, which was called by the detector. The success of this latter experiment conclusively demonstrated that the apparatus, if not successful in extinguishing a fire, is at any rate of sufficient power and value to localize it and prevent its spreading by soddening all the surroundings. The advantage of the system lies in the fact that it not only automatically calles the brigade, but renders valuable service during the initial stages of the conflagration.
In the Danish invention the alarm, which is of a very sensitive description, is only brought into action by a
sudden wave of heat. The appliance consists of a U shaped tube four inches in height filled with mercury the upper parts containing sulphuric ether and both ends being closed. One side of the tube is covered with non-conducting material. An even and gradual rise in the temperature simply warms the whole apparatus, but directly a wave of heat such as is caused by a fir comes into contact with it, the ether under the exposed glass is vaporized, forces down the mercury, closes a lo cal electric circuit, and thereby rings the alarm bell.

SCIENCE NOTES.

Course of Solidification of the Moon.-M. Loewy director of the Paris Observatory, and M. Puiseux, in a communication to the Académie des Sciences, hold that the solidification of the moon extends from the surface to the center, and not, as the English scientists think, from the center to the periphery. This view would modify various existing theories. Their con clusion is drawn from the examination of photograph executed at the observatory for reproduction in the new Lunar Atlas
The Saharan Sea of the Cretaceous Period.-M. De Lapparent announces in a communication to the Académie des Sciences that he has received fossils lately discovered by two French officers, Capt. Thé veniaud and Lieut. Desplagnes, a little to the north of Timbuctoo. A calcareous block containing fossils of the Cretaceous has also been found 350 kilometer from Timbuctoo. Therefore the sea which bathed the region of Bilma on the east extended more than 300 kilometers to the north of Timbuctoo.

A gramophone which, it is said, can be heard at a distance of three miles is the latest invention of the Hon. C. A. Parsons, of turbine fame. The instrument is named the auxetophone, and is worked by means of compressed air. This is pumped in by a small engine at a pressure which can be adjusted up to over 8 pounds, through a small valve, which takes the place of the ordinary diaphragm, into the trumpet. The valve consists of a number of small slots, covered with a fine comb, not unlike a mouth organ, and the vibra tion of this comb produces the sound. On a calm, windless day, it is estimated that, with a high pressure, the record could be distinctly heard three miles away.
Constitution of Meteorites.-The meteorite of the Cañon Diablo has been examined by MM. Moissan and Osmond, who have demonstrated that in the parts which appear homogeneous nuclei are met with formed of superposed layers of ferric phosphide and carbide Also, the study of the nodules has shown that these are formed of troilite; that is, ferric sulphide, surrounded with successive layers of phosphide and carbide. The composition of this meteorite is therefore quite complex and the micrographic examination justifies the conclusion that the metallic mass has been ubmitted to violent pressure. In some of the nodules the troilite has been, as it were, laminated and has taken on a schistose structure.

Prof. Flinders Petrie, the eminent Egyptologist, has made some important discoveries in the Sinai peninula. The ancient temple of Seabit el Khadem, five days' camel journey south of Suez, he found to be of a Semitic type, different from any other known Egyptian temple, possessing two courts for ablution, and a long series of subterranean chambers, added by successive kings from the eighteenth to the twentieth dynasties. Many previously unknown hieroglyphic inscriptions re lating to mining expeditions in Egypt were also brought to light by Prof. Petrie, who also found a very fine sculptured portrait of Queen Thy. The latter discovery is particularly interesting in the light of the recent opening of the queen's tomb at Luxor on the Nile.
Sir William Ramsay gave an account, at the Royal Society, of the quantities of neon and helium, gases discovered by him, which is interesting as showing the extremely small amounts with which modern physical chemistry can deal. First, argon, it will be remember ed, was found by Lord Rayleigh and himself to lurk in atmospheric air; then helium, a substance which had been detected by the spectroscope in the sun, was identified in the earth's atmosphere. Next, three other gases were revealed-krypton, xenon, and neon-hid ing themselves also in very minute quantities. Some time ago Sir William Ramsay communicated to the Society estimates of the amounts of krypton and of xenon in atmospheric air, and since then he has been doing the same for neon and helium. After a series of delicate investigations, which he described, he arrived at the conclusion that there are in gaseous air 86 parts by weight of neon in a thousand million, and 123 parts in the same by volume, while of helium there are 56 parts by weight in ten thousand million and 400 by volume in the same. Such minute amounts seem almost incalculably small, but corroborative tests had been applied, which indicated that the estimates could not be far from accurate.

MAXIMUM LOAD DUE TO A CROWD OF PEOPLE

The accompanying illustration does not represent the descent of a crowd of people down the shaft of a mine, nor an overloaded elevator. It is a photograph of a careful attempt to determine exactly how great a load of people may be crowded within any given space-a subject of the most vital importance. which ought to have been investigated in this careful manner long ago. The experiments were carried out at Harvard University by Mr. L. J. Johnson, professor of engineering, who recently published the results at a meeting of the American Society of Civil Engineers.
In obtaining this data, a box 6 feet square, provided with a gate at one side, was built, and a certain number of men, whose separate weights had been carefully taken, was placed within it. By dividing the aggregate weight of the men by the number of square feet within the box, the load per square foot was determined. In the first case eleven men were placed inside the box whose average weight was 154.6 pounds. This gave a load per square foot of 47.2 pounds, which is 2.2 pounds more than the loading that has been assumed in the designing of some floors, platforms, and bridges. That this loading does not represent the weight of an average crowd is proved by the fact that, when the men were lined up side by side around the walls of the box, they only covered three sides of it. Twentyeight men of an average weight of 167.7 pounds were found to be equivalent to a load of 130.4 pounds per square foot.
In the early experiments, when the men were allowed to stand facing in various directions, a maximum result of 156 pounds per square foot was obtained; but since, in crossing a bridge, or in a packed assembly hall, all the people face one way, the experiments were continued in order to determine how much a crowd of this kind would weigh, and a result of 176.4 pounds per square foot was obtained. On studying the photograph it was evident that the maximum had not been reached, and ultimately forty men, averaging 163.2 pounds, were placed in the box, with the result that a maximum load of 181.3 pounds per square foot was obtained. The men, all of them undergraduate students of engineering, ranged in weight from 119.6 to 203.1 pounds, twelve of them weighing less than 150 and ten more than 175 pounds.
A competent and careful observer of the test which resulted in a load of 176.4 pounds per square foot, declared that, in his opinion, the congestion did not differ much from that of the crowd on the local drawbridge after football games; and this statement was borne out by the testimony of the men themselves. In the discussion before the American Society of Civil Engineers, Mr. Theodore Cooper had given 45 pounds per square foot as the weight of the most
tion that crowds of 167 pounds per square foot are en tirely likely, and that from 130 to 140 pounds must be commonly reached in all places where people congregate standing.

DISAPPEARING COAST-DEFENSE GUNS.

One of the lessons that the present war has served

These 40 men , averaging 163.2 pounds in weight, gave an average loading of 181.3 pounds per square foot.

MAXIMUM POSSIBLE LOAD ON BRIDGES AND PLATFORMS.

to. emphasize very strongly, is the necessity for giving the greatest protection possible to the gán detachments. On land the question of the efficiency of artillery fire has resolved itself very largely into the question of invisibility. Such is the accuracy of the modern gun, so reliable are the means for finding the range, that when once a battery has been located, unless the cover is particularly complete, the silencing of the guns follows almost as a matter of course; and in the majority of cases it is the gunners, rather than the guns, that have been destroyed.

This question of invisibility is particularly important in the construction of fortifications and the emplacement of their guns. When the important scheme of defense drawn up by the Endicott board was determined upon, it was decided to make extensive use of the Buffington-Crozier system of disappearing guns, which is called after its inventors. The idea had received considerable attention in Europe previous to its adoption here, and was not, therefore, by any means in the nature of an experiment. The design which was then adopted, and has since been followed
the piston, and rods. for the flow of the liquil an increasing resistance to the recoil of the gun. The action of the system in recoiling is such that no matter at what elevation the gun may have been fired, it will have practically the same inclination to the horizontal, about seven degrees, when in the loading position.
The racer is of cast steel, and the base ring of gun iron. The base ring is fastened to the platform with a large number of heavy holding-down bolts. The traversing of the gun is accomplished by means of cranks operated by hand, and the elevation by means of elevating hand-wheels, mounted on a shaft passing through the mount, upon which are pinions of bronze, gearing into spur-wheels of cast steel. On the shaft with these are pinions of bronze, which gear into elevating racks attached to the lower end of the elevating

When the gun is in the lowered position, it will be evident that all the operations of sponging, loading, traversing, and elevating may be carried through with out exposing any of the gun detachment, except the

This view shows how little of the mount is exposed.
disappearing 10-INCH BREECH-LOADING RIFLE, IN THE FIRING POSITION.
densely packed crowds on the New York elevated trains. Those of us in New York who have experienced the crowding on these trains during rush hours will agree that the loading on the platforms and the cars must be nearer the 181.3 figure than the 45 pounds of Mr. Cooper's estimate.
We entirely agree with Mr. Johnson in his convic-
with only minor modifications, is probably the most satisfactory type of disappearing gun carriage in use at the present time.
The principal methods of mounting seacoast guns are the casemate, the barbette, and the disappearing mount. In the casemate system the gun fires through an opening in the masonry or metal wall of the fort,
man at the telescopic sight, whose head will be exposed above the line of the parapet. The breech of the gun in the lowered position is always at a predetermined height above the platform, so that when the ammunition is brought forward on its truck, it is at just the right height to be thrust from its tray into (Continued on page 322.)

The Famous Pyramid of Cholula Near the Volcano

The Port of Vera Cruz, from Which the Sulphur is Exported.

THE VESUVIUS OF AMERICA
by day allen willey
Every traveler through Old Mexico hears of one spot which is more attractive to tourists from abroad than any other. This is the volcano of Popocatepetl. Some have called it the "Vesuvius of America," owing to the frequent eruptions which have marked its history; but unlike Vesuvius, its crater has been entered by man, and, remarkable as it may seem, here has been for centuries the site of a great natural industry. Popocatepetl has been producing sulphur probably for ages, according to the opinion of geologists and other experts who have examined the interior of the crater as far as it has been possible to venture with safety. True, it is by no means an extinct volcano. By day clouds of steam and smoke arise from the summit of the mountain, and at times in the night the sky above is illuminated by the glow from the fiery mass whose existence is revealed through the occasional vent here and there in the temporary bottom of the crater. It is a strange sight to witness human beings toiling in this abyss day after day, ex tracting the sulphur ore, as it is called, with pick and shovel, and "packing" it on their backs to the edge of the crater where it is hoisted to the top Some of the peons have labored in these depths 550 feet beneath the earth's surface for the greater part of their lives, since sul phur mining, as it is called, has been carried on in

General View of the Volcano from the City of Puebla.
the bowels of Popocatepetl for four centuries; yet no one knows when an eruption may occur which would destroy every living thing for miles around.
From where they toil, the workmen can clearly discern the fissures whence the escaping sulphur fumes and smoke prove that beneath them there is a furnace of nature; but were it not for the crevices the accumulation of the sulphur deposit would cease, for they form a portion of the great natural laboratory in which this material is compounded. The history of Mexico proves the age of this indus try, for Cortez obtained sulphur, probably from the summit of the volcano, to use in manufacturing gunpowder for his soldiers. Since that time, the substance has been obtained by the natives when the volcano was not in such a state of activity as to keep them from approaching it. For several years recently a considerable quantity has been secured, although by a very crude method. As already stated, the beds are worked by hand labor, the sulphur being placed in bags containing 5 pounds each They are placed on the backs of human packers who carry them to the foot of the crater and attach them to a rope suspended from the top. Then each is hoisted singly by means of a windlass. At the top the bags are given to other peons who seat themselves on straw mats and lide over the snow which covers the outer porion of the moun ain to the timbe line. At this

Peons Carrying Sulphur to Timber Line by Sliding Over the Snow.

View of the Crater Which Forms the Greatest Sulphur Mine in the World.
point the sulphur is placed on mules to be transported to the railway station about nine miles distant.
Various estimates have been made of the quantity of sulphur which at present exists in the crater, some figures placing it at fully $100,000,000$ tons. Von Humboldt, who made an exhaustive study of the interior of the volcano, gave the opinion that the bed is the largest in the world. A commission of experts appointed by the Mexican government, however, made a careful study of the crater and confirm the statements that the quantity of sulphur is undoubtedly enormous. These reports have led to such an interest being taken in Popocatepetl that it has actually become American property and the flag of the United States is probably ere this floating above its summit, for a company of capitalists from the States have actually purchased this great factory of nature and intend mining the sulphur on an extensive scale.
Consequently the famous mountain has become a subject of more than usual interest. As is well known, it is one of the highest peaks on the American continent, reaching to a point 17,520 feet above sea level. The crater itself is somewhat unique, since its present form resembles a bell rather than a cone, to which most craters bear a similarity. The opening is 2,700 feet at its greatest diameter, which is from east to west, while the greatest diameter at right angles to this line is 1,200 feet. The rim of the crater is considerably lower on the side toward the city of Puebla, which is situated within sight of it. At this point the hoisting windlass has been erected. From the hoisting platform to the floor of the interior, as already stated, is no less than 550 feet, of which 225 feet comprises a wall, which is practically vertical. Fortunately the walls are formed of the trachytic and porphyritic rock, covered at the summit by a lava which has been thrown out in past eruptions. The lava rock has assumed such a curious shape that the rim near the hoisting side is popularly known as the "Devil's Spine" -a very proper term. That the sulphur is continually being formed is shown by an examination of the bottom of the crater near the fissures. Here the rocks have been found covered with a layer of powdered sulphur recently deposited. From time to time openings have been made in the mass of debris which has accumulated in the crater as the result of eruptions. These pits have revealed masses of sulphur ranging from 6 to 10 feet in depth. The commission of Mexican experts has traced the deposits, covering spaces which represent nearly half a mile in area, while borings indicate a depth ranging over a thousand feet. The quantity of sulphur secured during the last thirty years, however, gives possibly the best conception of the extent of this curious industry, for it amounts to 10.000 tons, although every pound was taken from the deposits and carried away from the mountain by men and animals.
When the plans of the new owners are carried into execution, the crater will become the site of a most interesting series of operations. Arrangements have been made to install pneumatic machinery which will cut away all of the rock formation which can be reached. It is then believed that the sulphur can be obtained merely by the use of the pick and shovel, since it exists in slich a loose formation. A tramway will be built along the floor of the crater with tracks reaching the principal workings. As the sulphur is mined it will be loaded into cars and hauled to the foot of a cableway consisting of a series of huge buckets, traveling along an endless wire rope. As fast as the buckets are filled with sulphur, they will be hoisted to the edge of the crater, thence carried down the mountain to a refinery which is to be built at the foot Here the impurities will be separated from the sulphur and it will be transported by another cable system to the Interoceanic Railway, whence it will be shipped to the city of Vera Cruz, the nearest seaport.

DISAPPEARING COAST-DEFENSE GUNS.

(Continued from page 320.)
the breech. The action of the carriage is as follows: Upon firing the piece the central pivot of the levers moves horizontally to the rear, carrying the top carriage with it. The lower end moves vertically upward, being constrained by the crosshead guides. The gun moves downward and to the rear in the arc of an ellipse. The energy of recoil is absorbed partly by raising the counterweight and partly by the resistance of the hydraulic cylinders. After loading, the pawls are tripped, and the greater moment of the counter weight enables it to raise the piece into battery. The return to battery is softened by the hydraulic counter recoil buffers in the cylinders, forming a sort of dashpot.
An attacking fleet would be practically at the mercy of such a battery of disappearing guns. At the outset it would be ignorant of the location of the fort; and the use of smokeless powder would render the detection of the guns, during the few seconds that they showed above the parapet, a difficult matter. The
only possible chance to place a shell inside the fort would be by making use of high angle fire; and this is impracticable in the modern warship as at present constructed, for two reasons: first, that the existing gun carriages will not allow the breech to be sufficiently depressed to admit of such fire; and, secondly, that the existing decks are not strong enough to with stand the heavy vertical strain of the recoil. The aiming of the gun is all done under shelter. By means of a "range finder" and the "converter board" the gunner can lay the piece with perfect accuracy while it is yet below the level of the parapet. Gun for gun, such a battery has an enormous advantage over the floating fortress, for it would have in its favor: 1. Invisibility. 2. Absolute protection from gun fire. 3. Absolutely steady platform. 4. Absolute determination of the range and bearing of the enemy. To this must be added the moral effect upon the cour age and endurance of the gun crews, resulting from their superior protection.

The Current Supplement

The events which are now occurring in the Far East lend a peculiar interest to the launching of the new first-class battleship "Kashima." Harold J. Shepstone describes the ship in the opening article of the current Supplement, No. 1529. A demand exists for posts that are strong, convenient, durable, and cheap, particularly in those parts of the country where timber is difficult to obtain. C. L. Catherman believes that cement posts admirably answer all requirements, and presents convincing arguments to uphold his view in an instructive article. Dr. O. N. Witt presents another one of his instructive papers on Patina, giving explanations that are wonderfully simple. "Friction Clutches" is the title of a most exhaustive discussion by George A. F. Pover. The so-called main spring of a watch finds manifold application as the cheapest and simplest means for mechanically driving simple apparatus. Emil Riedel tells how the motor spring is to be calculated. A highly suggestive lecture was recently deliv ered before the Royal Institution by Prof. J. J. Thom son on the Structure of the Atom. An abstract of the lecture is published in the current Supplement. For several years American engineers have bent their ener gies to the designing of a simple and safe single-phase alternating-current railway. Mr. A. Frederick Collins describes the first successful American road of this type. Jeanette Macdonald presents a vivid picture of a California Hop Garden. Prof. Charles Fisher publishes a description of the objects belonging to the later Greek period, showing their marked differences from the Babylonian type, and contrasting them with the objects of the first Greek or Mycenaean period. The first of three papers by the late Alfred J. Hipkins is presented, the installment describing stringed or musical instruments without keyboards.

Population of the Philippines.

The total population of the Philippine archipelago as returned from 342 independent islands is $7,635,426$. Of this number almost seven million are more or less civilized. The wild tribes form about 9 per cent of the entire population. The civilized tribes are practically all adherents of the Catholic Church. The Moros are Mohammedans, and the other wild peoples have no recognized religious beliefs.
The total population, according to the most reliable authorities, is a little more than four times as great as it was one hundred years ago. During the same period that of the United States multiplied almost fifteen times. The excess of birth rate over death rate in the Philippines has been large, in spite of sudden and great losses as a result of epidemics of various diseases.
While it is true that the enumeration of the wild tribes, according to the methods employed among civilized peoples, was not practicable, very careful and painstaking estimates were made, and the returns are probably within 10 per cent of the true number. The total number of non-Christian peoples is stated to be 647,740.

A "Bureau of Authenticity,"

Owing to the prevalence of spurious but often deceptive imitations of old and of contemporary masters, the Society of Friends of the Luxembourg Museum, under the patronage of M. Dujardin-Beaumetz, UnderSecretary of State for Fine Arts, is about to organize a "bureau of authenticity" for works of art. A number of experts are to be attached to the bureau, duly provided by the Prefect of Police with the full authority of police magistrates. There is to be a thorough search, high and low, for falsified pictures and statuary. The idea is new in France, and its application will meet with almost insurmountable difficulties, but M. DujardinBeaumetz is confident that with patience and indefatigable perseverance these will in due time be surmounted. -New York Tribune.

(tuxxedpanudente

About the Moving Stone Ball.

To the Editor of the Scientific American :
Noticing the article in your paper this week regard ing the stone ball on the monument moving spon taneously, I make free to express an opinion on it. I think the theory that the ball becomes more heated than the base is wrong, as the ball is polished, whereas the base is finished with a rough surface; it would therefore look to me that the base becomes more heated, and expanding somewhat, "bites" the ball slightly on the south side, and in contracting when cooling again, draws the ball down a little to the south.

John Goodsmith.
Washington, D. C., April 13, 1905.
The Projections on the old Chinese Temple Bells. To the Editor of the Scientific American:
In the issue of April 8, article "Some Remarkable Old Chinese Bronzes," the writer speaks of the thumblike projections on the temple bells as being for the purpose of adjusting the sound. Many Chinese and Japanese: bells have similar projections, but in every one of them these are above the sound bow of the bell. This would not be the case if the above theory were correct. An educated Japanese gave me another reason to wit: Once upon a time Buddha was so engrossed in his meditations that he did not observe the sun's beat ing down on his bare head. The snails, seeing his plight, covered his scalp with their slimy bodies and prevented his having a sunstroke. Since then Buddhist bells that were cast had these twisted prouberances, while those of beaten metal have been covered with small convex bosses
Washington, April 10, 1905.
E. H. Hawley.

Death of Col. Nicolas Pike.
Col. Nicolas Pike, soldier, author, and naturalist, descendant of a line of scientific men, and a relative of Capt. Zebulon R. Pike, for whom Pike's Peak is named, died on April 11.
The Pike family were Puritans, landing in New England in 1635. Col. Pike was born in Newburyport, Mass., eighty-seven years ago. In early man hood he settled in Brooklyn, where he first identified mastodon bones and teeth exhumed near Jamaica Through Daniel Webster he obtained the appointment as United States consul in the island of Mauritius, in the Indian Ocean, where he made a great collection of birds, fishes, algæ, and shells. He presented to Cambridge University more than 800 drawings of the fish of the Indian Ocean, and received letters of thanks from Prof. Agassiz. His work, "Sub-Tropical Ram bles in the Land of the Aphanapteryx," dealt with Mauritius. Upon returning to this country, his home in Clinton Street, Brooklyn, became a Mecca for stud ents of natural history.
In the civil war he organized an engineer regiment and did notable work in adapting photography to the needs of the army. Among the curiosities he leaves is a three-sheet autograph letter from Washington to his uncle, Nicholas Pike, commending him as the au thor of the first arithmetic published in the United States. He also possessed the camp chest presented to Dr. David Livingstone by Sir Moses Montefiore.
Col. Pike was a very well-known figure in the office of the Scientific American. For years he contributed articles on various subjects of natural history to its columns. It was always a pleasure to see this rugged old gentleman enter the editorial sanctum, bringing with him a light heart, a sparkling eye, and the vivac ity of youth.
He was a magnificent specimen of humanity, with his deep chest and active physique. Even after the age of eighty he would frequently appear at the office after having had a six or eight-mile walk, but with his cheeks flushed with the glow of health.
Those who were accustomed to his visits will for a long time miss the influence of his buoyant nature and always cheering presence.

Opening of the Simplon Tunnel.

The Simplon tunnel was opened on April 2, when from the Swiss and Italian sides the first trains passed through, meeting at the center. Herr Brandau, the engineer who had directed the work on the tunnel, conducted the Italian train, which was lighted part of the way by miners with lanterns. The train from the Ital ian end was the first to reach the iron door at the center, but a little later the train from the Swiss end was heard on the other side. There was a brief time spent in communicating by means of hammering, and then the door was knocked down amid frantic applause and cries of "Long live Switzerland" and "Long live Italy." Bands played the Italian royal march and the Swiss anthem, and the two parties embraced and kissed each other. Herr Brandau shook hands with Herr Rosemund, the director of the work on the Swiss side and Italian Bishop Novara embraced the Swiss Bishop Sion. The latter bishop preached a short sermon, and blessed the tunnel.

A LEADLES: SOUNDING APPARATUS

An ingenious apparatus for determining the depth of the sea without being in actual touch with its bot tom has recently been invented by a Norwegian engineer, Mr. H. Berggraf. The particulars in the following account, as well as the illustration, are taken from Elektroteknisk Tidskrift, Copenhagen.
As generally understood, it is a comparatively simple matter to measure the depth of the sea. All that is necessary is to fasten a weight to a line, drop it overboard, allow it to sink to the bottom, and measure the length of line run out. And in fact all the measuring apparatus hitherto devised is based on this method of procedure, though in some cases the actual arrangement is more complicated to overcome the many difficulties encountered in practice.
The most useful arrangement would evidently be such that the depth of water under the vessel at any moment would be registered on a dial. An apparatus of this kind, besides being extremely convenient, would possess the highest scientific value for topographic measurement. Moreover, it would be invaluable as an aid to navigation, for while a single reading of the depth may apply to numberless points on the chart, a series of continuous readings can apply to but one given line.
The apparatus invented by Mr. Berggraf is designed for continuous recording of this kind. The underlying principle is one of acoustics, the propagation of a sound wave from the vessel to the bottom of the sea and back, and the measurement of the time required for this. Substantially the action is as follows: A sound wave is emitted by the closing of an electric circuit which at the same time starts the index moving across the dial. The index continues its movement until the sound wave is reflected and returns to the apparatus. When this occurs a second circuit is closed, which thereby stops the movement of the index. It is evident that the greater the distance to the reflecting surface, the longer will be the travel of the index and that its movement is directly proportional to the distance between the vessel and this sound-reflecting wall-in this case the bottom of the ocean. The apparatus may be so constructed that an alarm is sounded when the water shallows to a certain depth, and by this alarm the danger of grounding would be considerably decreased.
Instead of using a graduated dial, it is more convenient to have the record automatically marked upon a moving strip of paper. This is the arrangement in the "bathometer" as constructed by Mr. Berggraf. The illustration shows the details of the apparatus.
The disk a rotates relatively slowly in the direction of the arrow. The projection, c, at a given time comes into contact with d, completing the circuit, and causing the hammer, g, of the electro-magnet to strike the diaphragm, h. This projects sound waves against the bottom of the sea, whence they are thrown back to the vessel and transmitted through the diaphragm, i, to the microphone, k. In the circuit of the microphone is inserted an apparatus, l, designed on the same principle as a telephone. Because of the resonance tube, n, the mechanism responds only to the vibration to which it is attuned, and is insensitive to foreign sounds. As the sound emitted has a period corresponding to that of the resonance tube, the membrane, m, will vibrate strongly, closing the circuit, q, through the arm, o, and the screw, p. The electromagnet, r, included in the circuit, q, then attracts the armature, s. To ascertain the depth of the sea it is now necessary to measure the time that has elapsed between the transmitting and the receiving of the sound.
The shaft, 1, turns continuously while a gear wheel, 4 , is free to move on the axle, 5 . The wheel, 4, alternately acts as armature to the two electromagnets, 2 and 3. The direction of rotation of 4 , and also of the spur wheel, 6 , depends upon whether one or the other of the electromagnets attracts 4 in its capacity as armature. Correspondingly the rod, 8 , receives an advance or retrograde movement by means of the screw, 7.
At the same time that comes into contact with d and starts the sound waves on their travels, one end, 9 , of the double lever is actuated. The latter is free to move about 10. The contact roller, 11, will be shifted on to the contact plate, 12, thus closing the circuit, 13. The electromagnet, 2 , then attracts the armature, 4, and the rod, 18, moves in the direction of the arrow, 14. On one end of the rod, 8 , is mounted a recording pencil, 15, which inscribes a straight line on the paper strip, 16.
When the sound wave returns to the receiving apparatus, the electromagnet, r, will be energized and attract the armature, s. The contact roller, 11, will then be shifted on to the plate, 17, and the circuit, 18, closed.

The magnet, 3 , is then excited and attracts 4, thus moving the rod, 8 , in the direction of the arrow, 19. If 8 strikes against the arm, 20, of the double lever, the arm, 21 , will shift the contact roller into the neutral position, 22 , when the circuit, 18, being broken, the motion of the rod, 8 , is stopped. This whole process above is repeated at each revolution of the disk, a.
Should the vessel enter shallow water, the magnet, r, is energized before the rod, 8 , leaves 23 , and the metal strip, 24, makes contact between 25 and the arm, 9 , thereby setting off the alarm bell.

A Modern Ventilating system for the Capitol.

x day allen whey.

In the Capitol at Washington five hundred persons occupy the chambers of the Senate and of the House of Representatives during the period when Congress is in session. They spend fully six hours daily on an average in these apartments, and consequently require a large quantity of fresh air if the hygienic conditions are properly observed. Until recently the open window and steam pipe were depended upon principally for changing the atmosphere, but at last a system has been installed which has proved to be so satisfactory, that it may be adopted extensively in public buildings throughout the country. To a certain extent it is modeled upon that employed in the Houses of Parlia ment in London, but differs in the manner in which the air is distributed, and in some other essentials.
In considering how to secure the proper volume of pure air, the sanitary engineers had to study not only the arrangement of the Capitol building, but its loca tion. While Capitol Hill is one of the highest elevations in Washington, it has been excavated to a con siderable depth to provide the necessary space for committee rooms, restaurants, and other apartments, to say nothing of the many corridors which ramify this section of the great building. The air from the pas-

A LEADLESS SOUNDING APPARATUS.

sageways is no better than that in the chambers above since it is being continually breathed by the hundreds of attendants as well as the outsiders, who are continually coming into the committee rooms. After a careful study of the situation, it was decided to con struct a duct through a portion of the sub-basement and connect it with a series of air shafts, which would be entirely independent of other portions of the building. This duct is in reality a tunnel, in some places large enough for three persons to walk abreast with out difficulty. It extends from a point in the Capitol grounds near Pennsylvania Avenue, the inner end terminating nearly under the center of the building. It is massively constructed of brick, and the inner sur face coated with whitewash for the purpose of cleanli ness. The inner portion is curved into an elbow, into which is set a Sturtevant fan, cperated by a 40 -horse power electric motor. The fan furnishes sufficient suc tion to draw the air from the outside through the duct at the rate of 1,750 cubic feet per minute. After passing through the fan, the air enters a chamber which is provided wit' several openings in the top, each form ing the mouth of another and smaller duct, which con veys it to the conduits distributing it to the chambers. These conduits are metal pipes constructed under the floors of the apartments.

It may be unnecessary to say that each member of Congress is provided with a desk, the desks being ar ranged in a great semicircle fronting the Speaker or the President, and raised upon successive platforms like the tiers of seats in a theater. The desks are stationary, and are provided with revolving chairs, which are also set into stationary peaestals. The bot tom of the side supports of each desk is hollowed out, and a ventilator set in them connected with the air duct in the floor beneath, thus allowing the air current to flow through the box and out of the grating. One
or more of the legs of each chair is also attached to a entilating tube, and provided with a similar grating. In this way the occupant of the desk is supplied with fresh air from two sources, while the space covered by the ventilators is so large, that pure air enters all portions of the rooms served by the system.
It is of course necessary to maintain a healthful temperature, especially in winter, and in order to heat he air to the required degree, special apparatus is provided. Before the air passing through the duct from the outside reaches the fan, it is drawn between a grating of pipes filled with steam at a high pressure. The pipes are fastened in a row extending from the top to the bottom of the duct, and are so close together that the space between each represents but a fraction of an inch. Thus the temperature of the current is raised a considerable extent, but before it enters the Senate chamber, for example, it comes in contact with a series of six coils of steam pipe, by which it can be heated to the extent desired, even in the coldest weather. As an illustration of the efficacy of this method, it may be said that air which enters the duct at a temperature below freezing point can be raised to 60 degrees before has passed through all of the coils, and what might be called the heater grating adds from 10 to 15 degrees alone.
The entire system is controlled in such a manner, that the engineer in charge of the ventilation can regulate every portion of it without leaving his station. Each of the steam coils, for example, is operated by means of an electric governor, and the steam can be shut off or turned on by the opening or closing of the switch in the engineer's room. The six switches controlling the coils are placed on an ordinary switchboard, while in connection with each is an electric thermometer, so that by merely pressing a button the operator can tell the exact temperature in the vicinity of each coil, as it is registered on a dial above the button. The thermometer system, however, extends throughout the apartments ventilated as well as along the air duct and the various passages leading to it. For example, one ives the temperature of the street, another the temperature at the heater grating, while another indicates the degree to which the air has been heated in the chamber connected with the fan shaft
It may be said incidentally, that the members of Congress have a decided difference of opinion as to the manner in which the chambers should be heated. The Southern members, as might be expected, usually prefer more heat than those from more northern latitudes, and sometimes amusing controversies occur as to the proper ventilation. The air pressure is so moderate, however, that when the fan is in operation, the current passing through the desk grating, for example, is not strong enough to create a draft, and if a person places his hand a few inches away from the grating, it is difficult to detect any movement of the air.
The rules are drawn up for the concourse of electric cabs which is to be held at Paris next May. The competition will bear upon the cost of running per day, the comfort, manipulation, and easy running of the vehicles, as well as the total cost. The vehicles in question are to be of the ordinary type which is designed for city and suburban use, and must be able to cover 60 miles per day. All systems of electric cabs will be admitted. These will be divided into three classes according to total weight and capacity. The first class is to carry two persons and weigh less than 2,900 pounds; the second, four persons and 3,500 pounds, and the third, six persons and 6,000 pounds with a place for baggage overhead.
Although the number of vehicles to be entered is not limited, the same constructor cannot enter two vehicles of the same type and dimensions. The entry fee for each vehicle will be 20 francs ($\$ 4$) up to the 15th of March, and after that date it will be raised to $\$ 8$. The entries will be closed on the first of May. At least ten days before the concourse each constructor is to give the necessary data to the committee, relating to the plan of the vehicle and motor, the distribution of the weight upon the axles when the cab is empty or loaded, also the weight of the storage battery and the energy taken by the charge per day. The concourse will consist of a series of tasts covering 8 days, and the cabs will be run over different circuits of 60 miles each day, either in the city or suburbs, returning to the charging station at night. A special meter will be placed on each vehicle by the Commission in order to measure the energy supplied to it. The jury consists of three members appointed by the constructors and three by the Commission. It will award gold and silver medals for the best performances. Now that the electric vehicle has been perfected and come into such ide use for city work, our constructors would do well to embrace this opportunity of demonstration abroad.

REALISM IN MILITARY MANEUVERS

y w. g. fitz-gerald

The Titanic struggle now being waged in Manchuria between two armies, each approximating half a mil lion of men, in which the line of battle often covers a front of fifty miles or more, has brought to a head the suspicion that the military maneuvers do not represent modern con ditions, when guns may come into action at a dis tance of four or five miles, and small-arm fir likewise has a range for merly undreamed of.
Shortly after the Anglo Boer war, the various chiefs of staff in the mili tary cabinets of the world pointed out in war councils that the days of dash ing cavalry charges, and the advance of infantry in dense masses was a thing of the past; and for the last year or so the great armies of the world have been steadily endeavoring to reproduce, as nearly as possible, in their maneu vers, the actual conditions of modern warfare, as they are shown in the Russo Japanese battles of to day.
But to reproduce these conditions calls for vastly extended territory-a difficult and costly condition in the case of a very smal country like Great Britain It has been found that the
famous military camp at Aldershot is altogether too circumscribed in area for the reproduction of the actual war conditions of to-day. Hence the British war department has acquired immense tracts of land on Salisbury Plain.
The French war office, as well as the military departments of Germany, Austria, Italy, and Russia, are also expropriating vast tracts of land, which are chosen not only on account of their great size but also by reason of their remoteness from human habitation, and the presence of "cover," rocky dells, hills, and other "conditions."
On Salisbury Plain the British government has laid down a portable railroad on which is run an armored train. One can imagine nothing more curious than to see these queer khaki-colored steel trucks flying along at five and twenty miles an hour under a per fect hail of shot and shell from an invisible "enemy." And yet, the train only contains two living personsone the driver, and the other a recording officer, whose duty it is to report the number of hits and the genera rcsult of the fusillade.
Out of the top of the train, however, stick dummy heads of supposed soldiers, and concealed marksmen on either side of the line take very careful aim at them -for it should be said here that the most important innovation of all is the doing away with the old blankcartridge system, whether in heavy ordnance or in small arms, and the substitution therefor of ball cart ridge and live shell. So severe were British losses in the Boer war from attacks on farmhouses and other dwellings, that the British have erected several most curious structures of canvas and iron framework to represent houses of all kinds. These are defended by troops concealed in pits on the loor of the house and both they nd the attackers who are deployed over a very wide front, use bail cartridges.
Incidentally it may be remarked hat the Japanese too, have suffered very severely from defended houses in Muk houses in Muk den and elsewhere. The dan ger to the attack ing force unde these conditions is sufficiently obvious, and need not further be em phasized. Inside the "farmhouses"

Dummy Guns Made of Wood Are Placed in Position on the Field. A Firecracker or Two is Attached, Revealing Its Presence. Often the Wooden Guns Are Blown to Pieces.
realism in military maneuvers.
but the merest fragments. There can be no doubt that the termination of the present war will see yet another change, even in the most realistic war maneuvers of to-day. It is com mon knowledge that attachés of the military powers of the world are constantly forwarding to the various war offices voluminous reports and suggestions; but so important and far-reaching are the changes in volved or suggested, that it is probable the war de partments will wait until all is over before inaugurating the new régime
the concrete amphitheater at berkeley, cal Y Enos brown

The Greek amphitheater of the University of Calicornia at Berkeley, ten miles east of San Francisco, was completed about eighteen months ago. As an essential adjunct of that great institution it has proved its utility and, structuraliy, its perfect success.
It has been the scene of important academic func tions in which the President of the United States has taken the leading part, and witnessed the production of classic plays, performed by students in the garb of antiquity and recited in the sonorous tongue in which these monuments of Grecian literary genius were writ ten over twenty centuries ago.
Nature provided a convenient site for this remark able structure in one of the valleys of the university grounds, which extend in successive undulations from the base to the summit of the lofty range which forms the eastern boundary.
No institution of learning in the world has so in comparably magnificent a site or will (when the pres ent architectural scheme is carried out) be housed in so splendid a group of structures as the University of Ca is fornia. The choice of a location for the amphitheater was decided by the natural ad vantages pos sessed by the lit tle valley which by the foresight of earlier years had been inclosed in a thick growth of eucailyptus trees. The base formed a level platform, and from all sides the banks arose in regular ascent to considerable height.
Prior to the

Scaffolding for Concrete Forms of Stage.

Preparing Concrete and Conveying to Steps of Amphitheater.

Tiers of Seats Cut into the Embankment.-Covering Steps with Concrete.

Stage Looking South.
Forms for Stage, Concrete Columns.

Class Day in Amphitheater.
building of the amphitheater, the University of California had no structure large enough to accommodate its own students, much less the multitudes which at certain periods throng to the various commendatory exercises of the scholastic year.
Construction began in the middle of February, 1903, and progressed so rapidly that in May the President of the United States delivered from the stage an address that excited the rapt attention of an audience of over 8,000 people. In the following September the amphitheater was completed to its present stage, the "Birds" of Aristophanes being performed in the original tongue by a company of students.
The building is composed of two unconnected parts, the auditorium, or theatron, of the Greeks and the stage.
The auditorium is a great semi-circle, 254 feet 8 inches in diameter, with two tiers of seats. The center is a level circle, 50 feet 8 inches in diameter, and 5 feet 5 inches below the stage floor. It is distant from the stage 7 feet. The circle corresponds to the orchestra of the ancient Greek theater, the part appropriated to the chorus. Surrounding this circle rise twelve steps each 3 feet in width and having a rise of 5 inches. Upon these steps 1,600 chairs may be placed. Between the lower tier and the upper sections of seats an aisle, the diazoma, extends 9 feet in width, on an exact level with the stage floor as
well as of the side entrances between the auditorium and the stage. On the outer circle of the diazoma, or aisle, is a wall 10 inches thick and 5 feet high. A bench at the foot of the inner base of the wall will seat 160 persons. Above the wall, at an incline of 30 degrees, so as to afford spestators a perfect view of the stage, rise the main ser.s of the auditorium ar ranged in nineteen rows of sceps each having a width of 30 inches and an 18 -inch rise. Eleven aisles lead from the lower wall and divide the seats into ten sections, the steps in the aisles being 15 - inches wide and 9 inches high. A wall, two feet high and pierced by nine openings, surrounds the outer circumference, Each end of the auditorium is flanked by a retaining wall rising 3 feet above the steps and 10 inches in thickness at the top. The walls step out under the seats in 1-foot ledges to a total width of 10 feet at the foundation.
The stage of the amphitheater is the only portion of the edifice in which the simplicity of the design has permitted the intro duction by the archi tect of a certain amount of well-judged ornamentation. The nclosing wall is face by sixteen fluted Doric columns which support a classic cornice with triglyphs and metopes, enriched by bosses. The end walls terminate in massive pylons. There are five entrances-one at each end and one on each side of the great cen tral door opening in the rear wall of the stage. The height of the stage floor corre sponds. with the eleva tion of the diazoma or aisle surrounding the central circle and the paradoi or entrances on each side between the stage and audito rium. The total length of the stage is 134 feet. The paneled
wall on the back and ends is 42 feet high. The inside wall, following the ancient types, is designed to represent a castle or temple, and is purely classical.
The original design of the architect calls for an open parapet with clustered columns and bronze ornamentation on top of the stage wall while an encircling colonnade and covered promenade will surround the

an electric street sprinkler in use in hartrord, conn.
ancourt, engineer, has tested the Claude astrolabe in Madagascar, and confirms the high precision which won for it a prize in France. The determinations did not exhibit an error of more than half a second. Tests at the observatory at Montsouris tend to show that it furnishes results as precise as those of the fixed instruments of the observatories.
top of the auditorium. It is also in contemplation to cover the concrete work of the auditorium with stone, marble or other permanent material.

The amphitheater, as it stands, is a work of distinction. Its architectural features deserve high encomium, but the chief merit of the structure consists in the fine use of material and the success with which con-

Chemical Reactions at Extremely High

Temperatures.

Very high temperatures may be attained by the burning of aluminium in air or oxygen. According to Prof. C. Zenghalis, in the Elektrotechnische Zeit schrift, Goldschmidt succeeded in obtaining a tem perature of 3,000 deg. C. through the direct burning of aluminium by means of combined oxygen. The theoretical calculation for the burning of aluminium in free oxygen permits us to expect temperatures far exceeding this, in fact the astonishing figure of $19,062 \mathrm{deg}$. C. should be reached. The experiment was carried on in this wise: The aluminium was placed in a highly-heated crucible, and burned while passing through it a stream of oxygen. The collected data resulted in the following findings: The temperature reached is not below that of the electric arc light; platinum, lime, and magnesia melted and volatilized immediately, while the lime and magnesia further combined to form aluminates. The unconsumed aluminium took on a spherical shape. Another interesting circumstance is this: When a mixture of either powdered graphite or soot and aluminium was burned together, the result was aluminium carbide. When, instead of oxygen, nitrogen was supplied, as much as 38.57 , per cent of the aluminium could be converted into a nitrite. In the presence of carbon dioxide and carbon protox ide, aluminium burnt violently at a temperature of over $1,000 \mathrm{deg}$. C., the burning of the carbon went forward without incident, and aluminium oxide or carbide was formed. $\mathrm{N}_{2} \mathrm{O}$ and NO will react equally carbide was formed. $\mathrm{N}_{2} \mathrm{O}$ and NO will react equally
as violently with aluminium under like conditions, as violently with aluminium under like conditions,
that is always presupposing a very high temperature.

AN ELECTRIC STREET SPRINKLER.

A few weeks ago the Edward Balf Company, street sprinkling contractors, of Hartford, Conn., placed an order with the Electric Vehicle Company for an elec tric sprinkler. The machine was delivered last week and immediately put into commission. It is pronounced a complete success and has attracted a great deal of attention in daily use on Hartford's principal thor oughfares.
In general style the sprinkler resembles the ordinary build of horse-drawn sprinkler. The iron water tank is of the usual boiler pattern and has a capacity of 600 gallons. This tank is mounted on a medium-weight truck chassis, power being derived from an underslung Exide battery of 44 cells There are two motors normally rated at from eight to ten horse-power, and the normal speed is six miles per hour
The machine covers from 30 to 40 miles daily in actual use, or about twice the mileage of a two-horse sprinkler with one change of horses; in other words, the ma chine does double the work of four horses.
As this is the first attempt to substitute automobiles for horses in street sprinkling, the outcome of the experiment will be watched with a great deal of interest. From present indications it will be thoroughly successful One obvious advantage is that at times when the sprinkler cannot be used on account of the season of wet weather, the owner is not obliged to maintain horses in idleness. The maintenance of the storage battery should cost but little in the present case, as the service it has to perform is light.

APPARATUS FOR WINDING BRAID, LACE, ETC., ON CARDS.
The winding apparatus illustrated in the accompanying engraving should prove useful in retail drygoods stores and like places, for winding up braids, laces, veilings, and similar goods onto stiff cards or boarãs. It comprises a pair of standards hinged to a

APPARATUS FOR WINDING BRAID, ETC., ON CARDS.
suitable base, and forming supports for the winding reel. The reel consists of two thin metallic clamping plates, riveted together at one end. This end carries a trunnion, terminating in a crank arm, and adapted to drop into a slot in the top of one of the standards. The trunnion, at the other end, is made in two parts fastened to the free ends of the spring plates, and the two parts together engage a closed bearing in the other standard. In use the card or board on which the material is to be wound is inserted between the plates, which are thereupon sprung together and mounted in their bearings, thus firmly clamping the card in place. The winding can then be conveniently and speedily done by turning the crank handle. When the winding operation is completed, it is only necessary to lift the reel out of its bearings, and then the card with the material wound on it can be drawn off the spring plates. As these plates are very thin, they do not interfere to any extent with the tight winding of the material on the card. When not in use the device can be conveniently folded, and stored away in a comparatively small space. Mr. E. C. Naylor, of Gloversville, N. Y., has recently been granted a patent on this winding apparatus.

IMPROVED BELT-STUD TOOL.

A patent has just been granted to Mr. John Stocker, of Muscatine, Iowa, on an improved tool for applying belt-studs, especially those of the Blake variety. Heretofore tools had been designed for a similar purpose, but they have usually been in the form of nippers, and have always been so arranged that it is necessary to grip the handle, or some other part, in order to retain the stud in the tool, and when the tool was laid down for any purpose, the stud would drop out. It was also necessary to use a separate awl for spreading the belt holes in order to apply the stud. In Mr. Stocker's tool the stud is retained without any attention on the part of the user, and at a convenient point on the implement an awl is formed. The holding de-

vice, as shown best in Fig. 3, consists of a T-slot, $C D$, cut in the end of the rod, which forms the body of the tool. In this slot a stud, A, is laid, and a sleeve on the rod is then moved over it to prevent it from slipping out. This sleeve is normally held in this position by a compression spring, and a handle is formed at one end of the sleeve, whereby it may be drawn back to remove the stud or insert a new one. A screw, B, threaded into the handle, and passing through a slot in the sleeve, serves to retain the latter. The handle of the implement is formed by bending the rod in a loop, and an extension which turns at right angles to the rest of the tool is flattened to serve as an awl. It will be observed that the stud is securely held in position, ready to be inserted at any time, and that if the tool is laid aside or used for the purpose of enlarging the belt holes, there will be no danger of the stud dropping out.

IMPROVED SHELL-DIGGER.

A new type of shell-digger has just been patented, which can be much more conveniently operated than the common; double-handled type now in use. The implement is adapted for digging shell-fish of all kinds, but particularly pearl-bearing clams or mussels. As shown in the accompanying engraving, the improved shell-digger has but one handle bar, and the scoops or rakes are opened and closed by operating a lever at the upper end of the bar. The operating lever is connected by a link to a rod that passes down through the center bore of the handle bar, and engages a tubular shank, which is fitted to slide in the

OYSTER DREDGE.

lower end of the bar. This shank carries a yoke plate, to which the inner ends of a pair of angle levers are connected. At their outer ends the levers carry the scoops, which are of the usual type. These angle levers are fulcrumed to pairs of link bars, depending from the bottom of the handle bar to which they are attached. In use the operating lever is first lowered, depressing the inner ends of the angle levers, and causing the rakes to spread open. Then the lever is pumped up and down a few times, to drive the prongs of the rakes into the sand or mud. When the prongs are properly embedded in the bottom of the watercourse, the operating lever is raised, closing the rakes. A spring catch at the bottom of the handle bar then slips over the yoke plate, locking the rakes in closed position, which permits the device to be raised from the water without disturbing its contents. The implement is so designed that it may be readily taken apart for repairs when necessary. The inventor of this shell-digger is Mr. William McCoy, of New Harmony, Ind. (care of Mr. William Du Hamel).

The United States Patent Office will issue a list of ciassified inventions on July 1. Such volumes are issued at intervals of three or four years, and the last one was in 1901. The task of getting together the data for such a list is now a monumental one, on account of the vastly-increased work of this department. During the month of December last, the Commissioner of Patents announced his intention to have this work done, and the examiners were given from January 3 to February 6 in which to prepare the reports of their respective divisions.

ODDITIES IN INVENTIONS.

Shingle Cutter.-A very neat little machine has been invented by Mr. Mathias Knapp, of Enid, Oklahoma Ty., for trimming or cutting the course of shingles on the comb of a roof. The device consists of a circular saw, which is manually-driven through step-up gearing. The gearing is held between two side plates, the forward ends of which are tapered to such an angle that when they are rested on the roof, the

SHINGLE CUTTER.

saw will be held in the right position to cut the shingles. For convenience in handling the machine, a strap is attached to one side, through which the left hand is passed, while the right hand operates the crank handle. It is claimed that the device will do its work very rapidly and efficiently. One important advantage of the construction is that the saw is fed forward, enabling the operator to better guide it along a given line.
Syrup Pitcher.-A Texan inventor has devised a rather novel syrup pitcher, designed to release the overflow of the syrup, and permit it to flow back into the pitcher. Most syrup pitchers are provided with an inner lip, t the base of which here is of which here is a channel to catch the overflow or drip. No provision, however, is made for returning this drip to the pitcher. In the present instance the lip is hinged to the pitcher, and connected by links to the lid in such manner that when it is

SYRUP PITCHER. closed the lip is swung up out of its seat, as shown in the section view, and the drip is then free to flow back into the pitcher.
Artist's Sketch Box.-Pictured in the accompanying engraving is a very convenient sketch box, recently patented by a New York inventor. The box is arranged to safely hold the stretched canvas and the palette, also pastels, or such other materials as an artist may desire to carry with him. At one end the cover of the box and the upper part of the body portion are open, and grooves are cut in the former to receive the stretched canvas, while the palette is supported in grooves in the body of the box. Thus they are spaced apart, and there is no danger of injuring the painting while the box is being carried. Below the palette there are several compartments for different materials, and these should preferably be covered with a cloth, to keep them from contact with the palette. A hinged section covers the ends of the grooves when the box is closed, and by means of a hook thereon, the cover and body portion are locked together.

ARTISTMS SKETCH BOX.

RECENTLY PATENTED INVENTIONS.

 Electrical Devices.mULTIPLE-HOOD INSULATOR.-L. Steinberger, New York, N. Y. This invention re-
lates to insulators for supporting electrical lates to insulators for supporting electrical
conductors, Mr. Steinberger's more particular object being to produce a neat, cheap, efficient, and reliable insulator of composite character and which may be taken apart and put to-
gether at will. For insulating material employed in making the hood the inventor prefers a substance known under the trade-name of
STRAIN.-IL. Steinberger, New York, N. Y. The present improvement has reference to
strains of the kind employed in connection with wiring, and admits of general use for all purposes in which a strain is generally em-
ployed. The strain possesses extraordinary ployed. The strain possesses extraordnar tensile strength, which may be combined
the most absolute certainty of insulation. illuminating Device.-C. F. Allin ILLUMinating DEViCE.-C. F. Alline,
Fort Dodge, Iowa. Fort Dodge, lowa. In the present patent the new and improved illuminating device for
use in show-windows and other places and arranged to attract the attention of passers by and other persons. The device is very sim ple and durable in construction and can b cheaply manufactured.

of Interest to Farmers.

Wire-stretcher. - C. F. Hofeldt, Lloyd, Mont. The invention relates to im-
provements in devices for stretching and repairing wires of wire-fences, the object being
to provide a wire-stretcher of simple and novel to provide a wire-stretcher of simple and novel
construction and by means of which a wire may be tightly drawn with comparatively little manual exertion. If the first stretching is not sufficient, the wire may be clamped in
the middle clamp or with the clamp attached to the post and the frame again opened and operated.
HOG-RINGING IMPLEMENT.-J. Gould, Sr., Clinton, Pa. In this instance the inven-
tion refers to mechanical means for insertin tion refers to mechanical means for inserting to prevent the beast from rooting soil, and has for its object to provide novel features of construction for a hog-ringing implement that are
simple, practical, and easily operated, and simple, practical, and easily operated, and
which adapt the tool to automatically close the ring in the rim of the snout when applied
thereto.
Plow-point.-H. N. Berry, Meridian, Miss. The invention is an improvement in points for plows, and especially for use on plow-stocks, having longitudinal slots or open-
ings extending from front to rear. It provides a thin, long point which may be applied adjustable along its securing-bolt and is also provided at its upper end with a rearwardly-
extending tongue operating in the slot of extending tongue operating in the slot of a
plow-stock and preventing any turning move-
ment of the point-blade on its securing-bolt.

Of General Interest

SMELTING-FURNACE.-P. Healey, Campbird, Col. This invention uses neither water
nor air alone, but a mixture of the two in the form of an atomized spray, which mixture of form of an atomized spray, which mix cure of
air and spray secures a much better cooling
effect, and which spray after having become effect, and which spray after having become
converted into steam by the absorbed heat is converted into steam by the ass into the stack
discharged through the twyers
to promote a more rapid combustion and gento promote a more rapid
erate a more intense heat.
road-smoother.-J. Force, Craig, Neb In this instance the principal object is to pro-
vide a device with means whereby it may be adjusted to furnish any desired angle between the parts, so that the road can be scraped on
both sides of the grade, no matter at what angle the grade may be run from the center. APPARATUS FOR MARKING SUNKEN VESSELS.-F. W. Johnson, Dawson, Canada.
The apparatus comprises a buoy connected with a vessel to rise to the surface as vessel sinks. It has an annular bell and a ball arranged to way, the ball being confined until buoy i water-borne. The buoy is connected with
vault arranged with a reel on which the line i vault arranged with a reel on which the line is
wound, and having compartments for storage of ship's valuables. This vault is connected to vessel by means of a line for which a second
reel is provided. Should vessel sink the buoy reel is provided. Should vessel sink the buoy
rises to surface. Doing so releases the ball, the bell continually sounding. By hauling up ship's position marked by second line, which CORSET.-E. Savore, 35 Rue du Caire, a corset, each half comprising a breast part a corset, each half comprising a breast part
having one edge concaved and the other convexed, a waist part having one edge concaved and the other convexed for a portion of the
length and terminating in a straight line, and an abdominal part having its lower edge con vexed and terminating in outward curves, the
upper edge of said part being formed with a upper edge of said part being formed with a
curved and straight line. This corset affords an agreeable appearance by means of the seam-
lines alone and comfort in wearing, because the lines can be reduced to very small number, say two-none intersecting vertically the
BEARING FOR HANDLE-CAPS.-L. B

Prahar, New York, N. Y. The purpose of th
inventor is to provide a bearing for the cap employed in connection with the handles of bags, the bearings being so shaped that they may not only be conveniently and readily se cured to the bag frame, but are also so con
structed that they may be quickly and readily ightened around the cap, even after the bear ngs have been secured to the frame
MIRROR-FRAME.-L. B. Prahar, New York, N. Y. The present invention provides an mprovement upon the construction shown
a former patent granted to Mr. Prahar for a similar article, wherein the frame is made in dies each time the design on the handle is changed. In the new construction the frame is made in three parts, a back section in one plece, including a closed body member an
handle member, and a front section consist ng of a bezel and front handle member in in dependent pieces, rendering it possible with
change of design in front handle member or change of design in front handle member or nember to be changed
Keyboard.-M. H. Odell, Cincinnati, Ohio. The object of this inventor is to pro
vide a keyboard, in which the keys are not liable to stick on account of the tightening of the bushing on the balance and guide pins caused by the swelling of the wood carrying
the bushing and at the same time allowing the use of any kind of fall-board, as all crossrails, key-binders, and like devices are entirely dispensed with
Reinforce.-J. F. Francia, Paris, France. The object of the present invention is the provision of a reinforce for sticks,
poles, masts, and other articles made of wood r like materials and arranged to give grea strength and rigidity to withstand heavy strains without danger of breaking or impair-
ing the wooden core or the shape or strength of the article and to allow of conveniently securing he wooden core without danger of weakening either the strips or core. The invention relates to reinforces such as shown and de
scribed in the Letters Patent of the United States formerly granted to Mr. Francia.
THEATER APPLIANCE.-A. M. AnderSon, Moorhead, Minn. Upon the discovery of fre the means provided will cause the screw
haft to operate in a nut and carry the stage with all parts attached thereto, back through an opening in the rear. The partition and
all parts in front of the stage will remain stationary. In its movement backward the stage through the instrumentality of a flexible
connection will pull down the fire-shield, and the asbestos curtain should go down with it or before it in order that the audience may not see that anything unusual has happened. The to the height of the fire-shield.
exercising apparatus.-G. H. Pfund, San Francisco, Cal. The physical-culture apparatus is more especially designed for
straightening the back and expanding the chest. By its use any deviation of the spinal
column can be readily prevented or cured, whether forward or sidewise. The use also tends to make the lungs and heart strong, beauty of the exterior body. The apparatus has been adopted in a number of colleges.
FISHING-REEL BRAKE.-J. A. MaCMAHon, New York, N. Y. The aim of the im allow freedom of movement of the spool when the line is run out, to prevent backlash,
and to permit the fisherman to give any de sired resistance to the reel with a view to increase or decrease the tension of the line when the
require it.

Household Utilities.

CABINET-KITCHEN. - C. F. Parker, employs a structure comprising a stationary section and a swinging section applied there to, the latter adapted to be carried against the
first so as to completely inclose all interior first so as to completely inclose all interior parts of the structure. The upper part of the
interior of stationary section is of special construction as is the lower part thereof, and mounted in the lower is a revoluble series of specially-constructed receptacles, together with specially-constructed eswinging frame interior of
construction.
DEVICE FOR MAKING TEA, COFFEE, OR OTHER INFUSIONS.-C. McKenzie, Butte Mont. The invention pertains to an improve
ment in devices for making tea, coffee, or other beverages, steeped or boiled, and has for its object to produce a device in which the cording to the varying tastes of the users, and still use the same pot and the same amount
of tea or coffee or other infusion material in of tea or
every case
curtain-fixture.-B. F. Rice, Milford, v. H. The invention has reference to devices for supporting the rolls of window-curtains,
and has for its principal objects the provision nd has for its principal objects the provision
of a secure fixture which without altering the point of attachment to the casing may be point of attachment to the casing may be
readily adapted to support rolls of different

DOMESTIC SINK.-J. H. Doyle, New Orleans, La. In the present patent the invention has reference to domestic sinks, basins, and nventor being the provision of means for flushing the drain-pipe without the necessity f passing water through the sink, basin, or
SAD-IRON HEATER.-C. M. Best, Lamar, S. C. This improvement is in that class of
small portable heaters which comprise a base part adapted to sit upon a stove or to contain pyramidal top part, which is attached to such ase and against which the irons rest when being heated. It is made in such proportions that it is easily portable, and may be set upon a stove, stove-opening, or other support,
s convenience requires. The detachability of the base and top parts and the grate proides for convenient manipulation when the to clean the grate.

Machines and nechanical Devices.
VEnding-MACHINE.-T. B. Erwin and H. C. Meyer, Britt, Iowa. The invention is
mbodied in a machine for vending cigars mbodied in a machine for vending cigars
from a box or other receptacle in which the from a box or other receptacle in which the
igars are packed in separate holders, which igars are packed in separate holders, which
are attached at intervals of equal length to a lexible web or strip, preferably of paper. The cexible web or strip, preferably of paper. The to obtain articles from the machine by fraudulent means. The improvement may be embodAPPARATUS FOR TRANSFORMING MO TION.-F. E. M. Bastiou, Hotel de Couquedec, Lannion, Côtes-du-Nord, France. Dr, Bastiou's device consists essentially of a lever of special arrangement, at one end of the extremities of which the force to be transmitted acts, while the other extremity presents two
arms, one of which is directed upwardly and arms, one of which is directed upwardly and
the other downwardly and acting upon two the other downwardly and acting upon two
ratchet-wheels keyed upon the shaft from which movement is to be transmitted. These two arms drive their respective ratchettwo arms drive their respective ratchet-
wheels alternately, one in rising and the other in descent and always in the same direction. The form of lever is applicable to many other purposes. For example, employed for transshaft by the intermediary of pedals.

Medical Appliances.

DENTAL-ENGINE ATTACHMENT.-J. E. Morgan, Emporia, Kan. The attachment furrom the cavity of a tooth as fast as they are drilled, saving time by not stopping the
drill and reducing pain by keeping the drill rill and reducing pain by keeping the drill cool and avoiding heat due to friction. A fanthe upper portion of the ordinary dental engine and be operated by same belt which opertes the drill and provided with a blast tube leading to a nozzle mounted on the handpiece in such proximity to its drill as to piece i
properl
tooth.

CLINICAL-THERMOMETER CASE-O. G. Bell and R. C. Stofer, Norwich, N. Y. The object of the invention is to provide a case
arranged to protect the glass tube containing the antiseptic solution against breakage and o permit convenient and quick withdrawal of the thermometer from the solution whenever it
is desired to use the thermometer for its legitimate purpose
Syringe.-F. Wackenhuth, New York, . Y. The invention has reference especially to hypodermic syringes, although certain fea-
tures of the improvement could be readily applied to syringes of other types. Among its
advantages it will be found that should the needle break at any time it is only necessary apply a new needle, and the bushing may be removed at any time for the purpose of cleaning or packing the syringe and also to permit
the introduction into the cylinder of the ringe of the medicine to be injected.
surgical appliance.-A. Breslin and . Lees, Summithill, Pa. The invention is adapted to be easily applied to the body and
worn with ease and comfort without applying undue pressure at any point to prevent rest or sleep. The patient is controlled as to his posiabdomen, or side, according as the appliance abdomen, or side, according as the appliance ping-down jackets would not be tolerated, as well as for preventing nightmare and other disturbances which usually occur while sleeping on the left side or back.

Prime Movers and Their Accessories.

SELLF-ADJUSTING CYLINDER-RING.-M.J. Klleroy, New York, N. Y. The purpose of this
invention is to provide a construction of steamring and bull-ring for a cylinder and a connecor rings will be forced by the pressure of the steam to accommodate themselves to any irface of the cylinder, and yet be held against d movement.
EMERGENCY THROTTLE-VALVE. - L. Note.-Copies of any of these patents will Neumann, Gleiwitz, Prussia, Germany. The
invention relates to a valve adapted to close
automatically in the event of the pipe in which
it is fitted breaking. One advantage of the present valve is that it can be arranged in
every horizontal or vertical position and that by means of the lever provided outside the valve-casing it can be easily ascertained whether the valve is in order or not, while the combination of the piston with the valve
adapted to close in the direction of the pasadapted to close in the direction of the pas-
sage of the steam prevents the latter from being operated by small variations in consumplikely to injure plant if the pipe breaks.

Pertaining to Vehicles.

bugGy-top brace.-P. W. Moyer and D. D. Moyer, Luray, Va. It is a special feature the invention that the jointed brace is piv oted to the seat-back at a point far enoug with the pivotal connection of the top bow to support the top and hold it rigidy, and not to be raised by jolts or oscillations an wagon-body. Thus the brace is pivoted at on end to top portion of buggy and at the other to top portion of the rear bow. The two braces have the rule-joint, which allows them to yield when top is folded and lowered, which when
the jointed brace extends, maintains itself, with the jointed brace extends, maintains itself, with
parts in rigid alinement, thus bracing the top parts in rigid alinement, thus bracing the top.
The inventors have made another invention of a Buggy-Top Brace, comprising means for supa Buggy-Top Brace, comprising means for sup-
porting a buggy-top when raised, and holding it porting a buggy-top when raised, and hock-shaft,
down when folded. They employ a rock arranged horizontally on the back of the seat, and provided at its ends with jointed with the connected with the top, and centrally adapted to bear for preventing rotation of shaft when the top is adjusted in either of the po sitions stated.

Railways and Their Accessories.

CAR-FENDER.-C. H. Turner, New York, . Y. The object of the invention is to pro construction of comparatively light yet strong cost, that out requiring change in applied to a car with that will easily slide underneath a car upon striking an obstruction other than a person, such as a truck or the like, thus avoiding pos ing such obstruction ane of the fender by mee damage to a vehicle against which it may strike.
RAILWAY FROG AND GUARD-RAIL.-D J. Sming, Hagan, Ga. Mr. Swing's invention relates to improvements in switch-frogs and
guard-rails for railways, the object being to provide a frog connection between main-line rails and siding-rails so arranged that the frog may be swung clear of the main fine, thus pro viding solid or continuous main-line rails the siding, and making it unnecessary to on the main line. The frog and guad rail may be readily attached to railway lines with out disturbing the general construction of the line, and as the frog and guard-rails are pre ferably made of hardened steel they will wea for a very considerable time
MEANS FOR FASTENING IN POSITION RAILWAY-SPIKES OR THE LIKE.-G. G. France. The present invention has for its ob ject to spikes or the like in their holes, and chiefly railway-lines. It relates more particularly to means applied to spikes used for securing broadooted rails in position with the purpose to prevent any inclination of the latter outsid the rail. York, N. Y. This invention relates to improvements in devices of the character in seats are movable along an endless track, particular feature of the invention being the erection of the same in and around pleasure re
sorts or parks, so that the passengers may con sorts or parks, so that the passengers may con
veniently observe the various attractions.
recharging device.-J. V. Wells, Braddock, Pa. This invention relates to a de vice adapted to be used in connection with tems. It is useful in connection with tripl valves of various sorts, but especially with the triple valve forming the subject-matter Mr. Wells' copending application formerly filed by him. The object is to provide means fo retaining the brake-cylinder pressure during the recharging of the auxiliary reservoir in such a manner, however, as will enable the
brakes to be quickly and fully released, when the predetermined auxiliary-reservoir pressure has been reached.
STANDARD FOR LOGGING-CARS.-C. H Allen, Savannah, Ga. The design of this in-
ventor is to provide a standard which is to be arranged on the ends of the transvers rolling off when in transit, but which is capable of adjustment to permit the easy or unloading of the logs. The device is equally applicable to cars for handling heavy lumber iron beams, etc.

Business and Personal zJants.

READ THIS COLUMN CAREFEULLYY-You
will find inquiries for certain classes of articles numbered in consecutive order. If you manu-
facture these goods write us at once nad we will send you the name and address of the party desir
ing the information. Iu every case it is neces-
sary to sary to give the number of the inquiry.

Marne Iron Works. Chicazo. Catalogue free
Tnquiry No. 673.2.-For manufacturers of ma-
chines to make compressed medical tablets.
Inguiry No. $\mathbf{N z 3 3}$.-Wanted, address of firm mak-
ing Radiora, or radium gold. Perforated Metals, Harrington \& King Perforating Inquiry
powr pulverizing machines.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.
Chasrin Falls
 Adding, multiplying and dividin,
Felt \& Tarrant Mfg. Co., Chicago.
 ing a specitic measure when muney is put in slot.
Commercially purenickel tube manufactured Standard Welding Co., Cleveland, o.
 manuf fet uring elastio stoch
tacturers of papier maché.
Sawmill machinery and outfts manu
Lane Mfg. Co.. Box 13, Montpelier, Vt .
Inquiry No. 64 38. - For manufacturers of moto
The celebrated "Hornsby-Akroyd" Patent Safety oil Engine is built by the De La Vergne Machine Company Inquiry No. 6\%39.- Wanted, a pump, something compessed air instead of steam. one that will not
Waste much arir or will return part or the waste back
Gut strings for Lawn Tennis, Musical Instruments, and Packers Avenue, Chicago, Ill.
Inquiry No. 6840.-Wanted, the address of a
marty to tonanutacture disks made of tiber in sizes from
3/8to 1% for steam valves. In buying or selling patents money may be saved and time gained by writing Cohas.
Inquiry No. 6941. -For manufacturers of slated
cloth.
We Manufacture on Contract anvthing in light Hard ware. Write us for estimates. Edmonds-Metzel Mfg
Co., 143 -153 South Jefferson Street, Chicago. Inquiry No. 694\%.-For manufacturers of toy bal-
We manufacture iron and steel forgings, from twenty pounds to twenty-five tons. Crank shafts of all varie Inguiry No. 6y 43 .- For manufacturers of crude
oil burners for engines and stoves of all kinds. Have you found a manufacturer for your invention Model Works, 508 Pearl Streer, New York.
Inquiry No. 6944.-For manufacturers of power
transmitting cables such as doctors use in massage
creatment.
We manufacture anything in metal. Patented arti cles, metal stamping, dies, screw mach. work
Metal Novelty Works, 43 Canal Street, Chicago.
Inquiry No. $6 \mathbf{6 4 5}$. - For manufacturers of grits.
suchas are used
of rouge for coloring brass. WANTED.-A patented article to manufacture on culars to the W. E. McChristie Co., Camden, Ohio.
Inquiry No. 6\%46.-For manufacturers of steel
faced iron, soch as is used for making planing knives,
shoe cutters dies, etc.
The Scientific A ing a practical series of illustrated articles on experi mental electro-chemistry by N. Monroe Hopkins.
Inquiry No. 674\%. ${ }^{\text {For }}$ manufacturers of roa General Utilities Company. 299 Broadway, New York offers unusual facilities for placing inventions and de
vices of merit before the public. Correspondence in vices
vited.
Inquiry No, $\mathbf{6 y 4 8}$.-For manufacturer of Colum-
bia dictionary stand or holder. Perfected kerosene wickless industrial oil burner adapted for torches, stoves, ete. Large demand. Pat-
ent or rights for sale. E. Lyons, 332 Johnson Avenue Jersey City.
Inquiry No. 6. 649.- For manufacturers of cotton
tie roller for straightening cotton ties. WANTED.-Colonial silverware. Any one wishing to the eighteenth century, please communicate with C M., Box 7\%3, New York. Inqui
bines. Manufacturers of patent articles, dies, metal stamps ery and toois. Quadriga Manufacturing Company, South Canal Street, Chicago.
Inquiry No. 6\%51.-For manufacturers of hatters,
supplies. You can rent a well equipped private laboratory by
day. week or month from Electrical Testing Laboratories. 548 East 80th Street, New Inquiry No. 69.5. - For manufac
icals, such as those used in explosives.
Space with power. heat, light and machiners, if sired, in a large New England manu facturing corcern, having more room than is necessary for their business. Incuiry No. G\%53.- Wanted address of man
turers of sheet aluminum, also aluminum chains. Wanted.-Bids on plant capable of turning out 100
gross of suecial pencilis per day. For specifications and full particulars address Continental Manufacturin Co., 1155 Broadway, Oakland, Cal., Suite 23 . Inquiry No. ©
дed gim tacks of
Various colors.

The Economy and Advantages

Resulting from the Use of Concrete or Cement Blocks in the Construction of Buildings

The Concrete and Cement industry is aged, but the Cement Block industry is rapidly taking the place of stone, brick and wood in the construction of all kinds of uildings for the following reasons.
First.-Concrete or cement blocks can be made and laid in a wall for less than the cost of common brick covering the same space. and and cement and properly cured, are stronger, last longer, withstand quality of better than the best of natural stone. They also improve with age, where or fir limestone, etc., brick or wood deteriorate with age. Third.-It is now simply a question of accuracy and rapidity in the manufacture of
these blocks, which of course requires a machine well designed, simple, durable to withstand rough usage, perfectly made in all its parts.
Hayden Automatic" "Hayden Automatic" is manufactured by a firm that has been in the foundry and
machine business for seventy-five years, and has a reputation second to none.

This position is obsained by thrswing out side or long lever frow a perpendicular (cut No. 1) to a horizontan
position (cut No. 2), and the inside lever is broght from a perpendicular positioni furward as
Compare the following points of advantage with other machines
1st. AUTOMATIC. \cdots The Hayden Machine is the ONLY automatic block mak:ng machine on the market,
for the followin reasons:
By one movement of s lever attached to mould-box rock-shaft, all moulds in which block is made are simul

 not requiring great care in the striking off ope block by the operator, thus saving time and expert alabor, as ail
the laying sides of blocks made on the thayden Automatic are accurately moulded in the machine. This

Cut No. 3-The fnal position of machine. showing Binck automatically delivered, away from the moulds, in a
position to be carried away for $:$ couring.
1 inquiries and information regarding the "Hayden Automatic" will be gladly given upon request, and we are always pleased to demonstrate and invite the inspection of anyone interested in a thoroughly up-to-date and automatic cement block machine. HAYDEN AUTOMATIC \& EQUIPMENT CO., 26 Cortlandt St., New York, U.S. A. THE HAYDEN AUTOMATIC BLOCK MACHINE CO., Columbus, Ohio, U. S. A.

Business and Personal KJants.

W ANTED.-Representative to sell our spinning, weav ing and batting machinery, by oldest firm in Franc Address Steeg, 563 William Street, Bu ffalo.
Inquiry No. $\mathbf{6 y 5 5}$.-Wanted, name and address of
inventor of a new material named Kryptol used to pru-
duce high temperatures All Manufacturers Take Notice!-Patent rights for All Manufacturers Take Notice!-Patent rights for
sale with royalty. Easiest of terms. Improved bicycle -more than three times the power of common bicycle. Attachment can be used on any Bicycle. See cut in
Nov. 5th's issue. Use larger saddle. A. A. Kennedy No. 1233 N. 19th Street, Cam
Inquiry N. N. No. For manufacturers of gate
valve boxes (cast iron) used in city streets.
Splendid opening for a high-grade mechanical engi-
neer, who has had a broad experience in managing maneer, who has the manufacture of machinery, engine and metal specialties. Applicants must be in prime of life and now employed. Preference will be given to applicants who have had modern scientiffc training in ferences will be exacted. All communications received ferences will be exacted. Alt codential. Address
will beregarded as strictly confldention
Mechanical Engineer, Box 733 , New York. Mechanical Engineer, Box 773, New York.
Inquiry No. $6 \% 5 \%$. For machinery for producin Inquiry No. 675\%.-For machinery for producin
sheet steel corrugated elbows.
Models, dies, boxes, metal stampings, patent articles Models, dies, boxes, metal stampings, patent and num. U. S. Novelty Co., Lily Dale, N.
Inquiry No. 6758.- For manufacturers of lumber
ramways and cableways for timber. Engineer having first-class Chicazo office desires to epresent manufacturers. Address Representative Box 773, N. Y. Y.
Inquiry No.
6959.-For manufacturers of presses or molding popcorn.
WANTED.-An engineer experienced in the desig, construction and use of gasoline motors for aut mobiles. Address J. F., Box $\tau 73$, New York.
Inquiry No 6760 -

Notes Ned and Queries

HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters or
no attention will be paid thereto. This is for our information and not for publication.
$\begin{gathered}\text { nefleren five } \\ \text { date of to former articles or answers should giver and page or number of question. }\end{gathered}$ date of paper and page or number of question
Inquiries not answered in reasonambe time should b b
repeated, correspondents will bear in wind that
some answers require not a littie research, and
repeated; correspondents will bear in wind tha
some answers require not a little research, and,
thongh we endeavor to reply to all either b
letter or in this department each must tali his turn.
Burs wishing to purchase any article not adver
tised in or columns will be furnished wit
addresses of houses manufacturing or carryine the same.
Special ritten Information on matters of personal
rather than general interest cannot be expected Witbout remuneration.
Scientific American Supplements referred to may b
had at the office. Price 10 cents each. Scientinc Americen Supplements referred to may be
had at the office. Price 10 eents each.
Books referred to promptly supplied on receipt of price.
$\begin{gathered}\text { Minerals sent for examination should be distinctis } \\ \text { marksed or labeled. }\end{gathered}$
(9618) J. M. C. says: I am making an armature core, and after cutting out about
one hundred disks, I thought that may be the ron (?) I am using is not free from steel I send you three pieces. Examine them, and write me as soon as possible if they are all
right. I have an equal number of all three grades cut. No one here can give me a de cided answer as to their being strictly iron
Would it make so much difference if there a little steel in them? The three are all species I can find here except tin. Is tin good for disks? A. Any one of the three pieces of sheet steel you send will answer for the ar mature core of a dynamo. The piece marked 3 is thinner and softer than the others and will be better, since more disks can be got into the same space. You cannot get sheet iron nowadays very easily. Steel has crowded it out of the market. As you may know, steel dif carbon in it. It is iron with carbon, not a different substance
(9619) J. H. M. asks: What is the real explanation for the fact that snakes frogs, etc., are unable to exist on the "Emerald tion of Ireland has doubtless protected it from the incursions of many pests, and among them the ones you specify. Perhaps if they were introduced they would overrun the land, as the Colorado beetle did our States a short time often has a flora and fauna peculiar to itsel in many respects.
(9620) J. S. asks: If you shoot a bul. let through a board with such force that it comes out the other side, which gets through bullet makes? I say that it is the bullet Will you be so kind as to decide the question A. If by "gets through the board" in thls question is meant "entirely" through the board, then the hole gets through first, since the bul-
let is not entirely through the board until it let is not entirely through the board until it
has traveled its length after the hole is has traveled its length after the hole is
through the board. Its rear end must be clear through the board. Its rear end must be clear
of the hole before it is through the board. The hole is through the board when the tip of the bullet is seen at the surface of the board on its path through. If the phrase means that the bullet is through when its tip pieices the surface of the board, then hole and bullet come through the board at the same time.

 8 LIGHT DYNAMO $\$ 26.50$ MOTORS

${ }^{\text {Hydroo }}$ Carbon Motors
Headiess
It is as easily controlled a sa steam ngine. Variable sparker. The
only perfect moderate priced
nunch launch engine on the market.
Let us convince you. Write
odday.
Grani-Ferris Co., Troy, N. Y.

THE CURTIS DOUBLE CYLINDER MOTOR

 G. H. HanTis MFG. CO. The WONDER ALTERNATOR

How To Increase

(9621) C. S. W. asks: It takes several years for light from the sun to reach the
arth; the light we now see started from the sun years ago. If the sun's slight were extin
guished, would we continue to get sunlight for guished, would we continue to get sunlight for
as long a time as it takes the light to reach the earth? On this theory, does an eclipse sccur at the time we see it, or is it only the
result that we see several years after the eclipse takes place? A. It requires 499 sec
onds for the light to come from the sun to the earth, and about one and one-third seconds
to come from the moon to us. Hence, if the moon intercepts the light of the sun, we see the
fact in one and one-third seconds after it hap pe
aff aifect its light, we see at such a time after
it occurs as may be required for the light pass over the may be reetuired for the light Anything that occurs on the sun is seen by us
8 minutes and 19 seconds after it occurs (9622) M. J. McC. asks: Does the while in motion stop while the other part of the
 is in contact with the ground is at rest while the rest of the wheel moves along in the dithe whole wheel moves around a line drawn through the center of the axle. Both statements are facts. We might add to this cu
riosity of motion that the top of the rim o riosity of motion that the top of the rim of
the wheel moves forward in the direction in the wheel moves forward in the direction in
which the wagon is going twice as fast as the whb of the wheel moves. To understand the matter it is necessary to distinguish kind
motion. The wheel has two certainly moves with a rolling motion over the earth
mover
it rotates on its axle. Its motion of rotation as viewed by a fly which might be standing on and of the spokes is a continuous motion round
and round, always repeating itself. The mo
tion along the ground is of another kind. If
a fly stood on the ground as the wheel passed a fly stood on the ground as the wheel passed
by him, he would see a point of the rim come down to his side and stop. It would im
mediately begin to rise, and would go up high mediately air only to descend again, and so on with the earth is not in motion with reference to the point of the earth on which it is
pressing unless it is slipping backward, a con dition which this case does not include
 around its hub or axle. Rest and motion are frequently relative. To some point a body may be at rest. To some other point it may be in motion. And it is sometimes quite puz
zling to determine the rest and motion as it zling to determine the rest and me in reality. This is the case with The motion of a wheel may be tested by taking a small circular disk and fastening a chalk
crayon in a hole close to its edge. Then roll crayon in a hole close to its edge. Then roll
it along a fence in such a way that the chalk will mark a line on the boards. You will be
interested in seeing its real path. You will see that it contains a point of rest. The
traced by the crayon is called a cycloid.
INDEX OF INVENTIONS
INDEX OF INVENTIONS
For which Letters Patent of the

.... ${ }^{\text {anis- }} \begin{gathered}787,87 \\ 786,87 \\ 78\end{gathered}$

Simple, Sate and Efficient. Needs little
attention, is less likely to get out of
orde order, and is chaper to rar than any
otber endine manafactured.
cal and Easily Operated International Power Vehicle Co.
Stamford, Conn.
 STEAM TURBINES. - THEIR CON-

Bargains in Marine Engines

Mark Your Tools

TERROR To THIEVES!
 FREE

PERRY AUSTEN MFG. CO.,
320 Park Place, - - \quad New York

Valuable Volumes

Modern Gas=Engines

Producer = Gas Plants

314 Pages Bound in Cloth 152 Illustrations Price \$2.50, Postpaid

 A Practical Guide for the Gas-Engine Designer andUser.
A book that tells how to construct, seiect, buy, install, operate. and maintain a agas-engine., seiect,
No cumbrous mathematics : just plain words and clear The oniy book that thoroughly discusses producer-
Tas, the coming fuel for gas-engines. Every important

JUST PUBLISHED

American Tool Making and Interchangeable Manufacturing

 chanoeniy inchinitst Tool Maker, Desimner, Die Maker
 Output and the Income. A book on the System of In-
tercoangeable Manufacturing The System that has
oon for the United States the Industrial Supremacy of
of the World. 535 Pages.

$$
\text { PRICE } \$ 4.00
$$

MECHANICAL MOVEMENTS
Powers, Devices, and Appliances By GARDNER D. HISCOX, M.E. Large 8vo. 402 Pages. 1,649 Illustrations,

IIECHANICAL APPLIANCES

Mechanical Movements and Novelties of Construction
By GARDNER D. HISCOX, M.E.
Being a Supplementary Volume to the Anthements, Powers and Devices. Contains I, ooo Special Made Engravings. 400 pages. Cloth Bound.
Price $\$ 3.00$.
The above two volumes sold together for \$5.oo postpaid.

A Complete Electrical Library.

JUST PUBLISHED

American Estates and Gardens
 \section*{by barr ferree}

4to. 11×131 inches. Illuminated Cover and
275
nllustrations. 340 Pages, Price $\mathbf{\$ 1 0 . 0 0}$
Special circular of contents of these volumes sent free
MUNN \& CO.

361 Broadway New York City

3 REASONS
Cocomobile
5ws 5. All material analyzed,
5. Forgings throưhout.
6. Interchangeable
Solid
Solid Interchangeable parts.
Solid corgea ale
Indestructible bearing

GLOBE MARINE GASOLINE ENGINE

Thoroughly Reliable Simple in Construction Unsurpassed as Auxiliary Power Suitable for Launches or Working Boats
WRITEFOR CATALOGUE PENNSYLVANIA IKAN WORKS CO

$\$ 95.00$

 Bull fup." Complete catalog of en
gines for askining. FAIRFIELD MOTOR WORKS, Fairfield, Conn. The Nickel Plate Road between New York

 $\xrightarrow{\text { A MONEY MAKER }}$

 Chimney and lining therefor, J. M. Bragg.
Chuck, spindle turning machine. A. Thorsby
Churn, H. H. \& S. I. Hunter.......... Churn, Hower, M. M. I. Grimm.
Cigar rolling table and w.
Liberman $\ldots \ldots \ldots \ldots$ wrapper cutter,
Cigarette packages, machine for making

F. D. Barros.
Coffee pot strainer and hoider combined, w
Wasserman

Combing machine, Wenning \& Gegauff..
Concrete block mold machine, E. Keagy.
Conveyer conduit ebow, H. J. Fodlesak
Conveyer, pneumatic, J. M. Akers......

otton chopper, J. Mackle...
Cotton picker, J. Summerfien

alternating, M. Mon Dolivo-Dobrow
Current meter, direct, J. S. Anthony..
Current motor, alternating, Mn. Milch.
Curent merer
Current
Latour
Current
Current transforming means,
Steinmetz
Currycomb, Hackett \& Hodges.

 Door fastening device, grain, J. J. Hä.....
Door lock and check, combined portable, $: ~$

 Dynamo, E. B. Jacobson.:
Egg carrier, Finn \& Pike.

 Electrical distribution system, w..............
 Elevator safety devichanism, F. J. S. Mu
Engine. See Beating engine. Austin

bngine, speed controlling means, steam, J .
H. Clark
 Heffron
Fabric trimming and sewing machine,
Neveux
Neveux,$\ldots \ldots \ldots$........iei
Feed regulator, automatic
 Fence post, steel, H. H. F. J. Si..............
Fence weaving machine, wire, G. W. W. Whit

MICROSCOPES 5avinus. L New Large Laboratory Microscope, full outfit, - -. 18.00 Dept. 6, WILLIANIS, BRO of mounting material with each microscope. Send for lists SAEETY EOR CYCLISTS.
" When cycling do not trouble borrow.
But brake yourself with the safe MorRow."

Mullins Stamped Steel Boats Can't Sink

Motor Boats, Row Boats

 Hunting and Fishing BoatsStaunchly built of strong, rigid steel plates, with air chambers in each end like a life boat-
oyant-strong-safe-speedy. They don't leak, crack, dry out, wear out or sink. Mullins Steel Motor Boats are elegantly equipped, full fledged, torpedo stern launches-
Motor Boats, 16 foot, $11 / 2$ h. p., $\$ 135$; 18 foot, 3 h. p., $\$ 240$. Row Boats $\$ 20$ up.
Every Boatman Should Send for 1905 Catalogue
The W. H. Mullins Co. (The Steel Boat Builders) 118 Franklin St., Salem, Ohio.

HOW DILLARS ARE SAVED WITH A, CADILLC C 7
Among all automobiles
the Cadillac stands pre-eminent for its low cost of maintenance. Simple, durable, com-mon-sense construction makes i truly the "Car of Economy.
Because of simplicity of power development and efficiency of trans mission there is practically no energy alone reduces by a big percentage the cost of fuel, lubrication, etc.
The Cadillac mechanism is de signed with a view to making it irtually trouble-proof, with the esult that the liabryection damaging mistake in manipulation is reduced to a minimum. Absolute control a all times and under all conditions is maintained more easily-with felver things to think of-in the Cadillac han in any other machine. This means that the Cadillac is the safest he most reliable and most easily perated of all motor car
Model F-Side-Entrance Touring Ca Model B-Touring Car, with detach Model E-Light, stylis
Runabout, divided seat, $\$ 750$ D-Four-C ylinder, 30 h . All prices f.o.b. Detroit.
Write for Catalog N , and address of
nearest eacler, where you can see and try CADILLAC AUTOMOBILE CO., Detroit, Mich.
Member A. L. A.M.

The Electrical Age
 ||| The Best Electrical |||
 THE ELECTRICAL AGE

Lead-Golored Slate Poncils, Rubber Bands,
Erasers, Inks Pentoondars Rulers. Water
Colors, Improved Calculating Rules. 44-60 East 23d Street, New York, N. Y
Grand Prize, Highest Award, St. Louls, 1904.

> FEATURES

 The HAYNES-Apperson Co. Kokomo, Ind.

$\left\lvert\, \begin{aligned} & \text { Fruit gathering } \\ & \text { Fruit } \\ & \text { pickerer }\end{aligned}\right.$
 Game apparatus, E. Fahl.o.itiail.
Game, ball and bat, E. Rosent

 Gravering implement, R . s . S. Siveldon
Grain

\qquad
 H

 Helt, boom or shoe, J. No Misteara
Heel

 Horses, device for the breakin
Horseshoe, E. E . Hennessy et

Injector, Kremer \& Alderfer.
Inking device for numbering

 W. Hyatt machine link and chain

Lamp, electric arc, B. Jackisch.
Lamp, gas, J. \&G. G. Doorenbos

 Lorro or dumping-car, Weliman \& seaver

 Milk, condinsea, S. Soe. Renea..:
 Molding machine, E. D. Misiner.
Molding machine. A. Choniere
Molding machine, D. W. Lopy. Molding machine, D. W. Lher.
Motor.
See
Car

Paper machine K E.E. Rogers. $\mathrm{F} . \mathrm{Br}$.
Partition construction, M Markrat
Pasting box H. H. La Sor.
Pen fontain, S . H Hodges.
Pen
Pen, selff-filing fountain. J. T. T.
Pencil sharpener, E . Wooburs.
P.

 Piano, ete.

Picture-extionneumatic, A. A. J. Hobarbe...
Picture
Pcture hook, Bin Lehman.
Piemaking machine. C .

HOW TO MAKE AN ELECTRICAL Furnace for Amateurs Use.-The utilization of 110 volt
electric circuits for smail furrace work. By N Mo

BUILD YOUD OWN BOAT By THF BROOKS

 find pages of testimonials from these successful amateur buildThe Brooksue. System consists of exact size printed
paper patterns of every piece that goes into the boat a com

 We tell you how to lay the pattern of each particular part on
the prope piece of material and exacly how to cut- you cut.
we then tell
 plies thise-how is shown in the catalogue.
Many professional men are taking up the Brooks Svstom or mental relaxation-for the pleasure of
 he design-they did the work and sold the boats at a big profit. You need buy nothing from us but the patterns. W , have
them of aill kinds and sizes, from a small rowboat to a $5 t$
foot cruising yacht. Over six thousand amatours successfully built
boats by the Brooks System last year.

KNOCK DOWN BOATS COMPLETE

from keel to cushions and fittings. We send you a complete Knocked Down Boat,
oven to the paint, at a cost of very litile more than the cost of the raw material.

BROOKS BOAT MFG. CO.

ORIGINATORS OF THE PATTERN SYSTEM OF BOAT BUILDING 404 ship street, BAY ClTY, M|CH.. u. s. A.

By Merit
By Achievement

UNDERWOOD

has earned its leadership by doing the best work
in the shortest time, with least tronble, becaase of VISIBLE WRITING E"Known by its work UNDERWOOD TYPEWRRITER CO
241 Broadway, NeW Yorkc.

Saves time Nofoublemotions The smith premier Hypew tiler

forndings at sea, apparatus for taking,
w. Gillie

Ramblev

SURREY TYPE ONE 18 horse power, $\$ 1350$ ple and natural. The ignition is automatic. The brakes are operated With the stecring wheal and throttle, attached to it, operable by one hand, the other is ahrayss free to manage the clutches by the sinquast. U Other models $\$ 750, \$ 850$, $\$ 2000$ and $\$ 3000$. Immediate defiver): THOMAS B. JEFFERY \& COMPANY

GUARANTEE BACKED BY THE BANKS

Failure of tonics to grow hair is due to the fact that such treatment does not reach the seat of the trouble. The hair roots must be nourished before
the hair will grow and this can beaccomplished only by the presence of blood the hair will grow and this can be accomplished only by the presence of bloo
in the scalp. A vigorous rubbing of the scalp produces a pleasant sensation but it does not open up the veins which supply food to the follicles. Use tonics if you want to osften the hair and make it glossy, but if you want to
grow hair or keep it from falling out you must cultivate the roots. Hair fa11s out for the same reason that a plant dies-lack of nourish-
ment-therefore to preserve it, you need only supply ment-therefore to preserve it, you need only supply nourish-
ment to the hair roots. This can be done only by the Evans Vacuum Cap. Our Guarantee

EVERYTHING FOR THE AUTOMOBILE

Y ANKEE

 GRADE-METER Gives the grade accurately up to40 per cent. up and down. Easily 40 per cent. up and.
read from the seat. $\underset{\text { Closed End, } \$ 1.50}{\text { Yankee Mica Spark }}$ Plug Open End, 1.00 Both guaranteed 90 days
E. J. WILLIS CO., 2 Park Place, N. Y.
$\boldsymbol{C}_{\mathrm{c}} \mathrm{R} . \mathrm{Q}$ \& .
$\mathrm{M}_{\text {agnericic }}$ Liquad Indacaror SHOWS AT A GLANCE the amount of LIQUID in a tank. For
Motor Car tanks, Motor Boat tanks, Sotor ${ }^{\text {tanks, etc. Gasoline, Oil or }}$
Water. Operated under PRESSURE-or gravity feed. Absolutely reliable and can be applied to the Filler Opening of Motor Car tanks in place or ordinary
Cap, or searate. For Motor Car tanks,
or any tank up to $\mathbf{1 6}$ in. in DEPTH. Write for full Pricscription and illustrations \& C. INDICATOR CO., Inc BRIDGEPORT CONN., U. S. A

U. S. A.

LIDND PISTOL

 mail, 50c. Rubber.covered holster 5c. extra.
PARKER, STEARNS \& SUTTON, 226 South St., NewYork

WELL
DRILLING Machines
shallow wells in any kinc or soil or rock. Mouted
on Whells or on sills. With engines or norse powers.
Strong, simple and durable. Any mechanic can
on wheels or on sils. With engines or mo
Strong, simple and durable. Any me
Operate them easily. Send for catalog.
WILLIAMS biros., Ithaca, N. Y.

ELECTRIC SEWING MACHINE MO-tor.-The instructions and numerous illustrations of de-
taiss contained in this article will enable any mechanic of average ability to build an efficiant motor that will
operate a sewing machine. The cont of materials for
this machine should not exced fly

Automobile Tires
 Every accessory and part for an automobile builder or
neser eqally low. You miss it if you don't get our large
FREE Catalogue. $\frac{\text { J. H. NEUSTADT CO., St. Louis. Mo. }}{\text { ARTESAN }}$

ARTESIAN

Write us stating exactly Fhat
Is required and send for inas-
trated catalogue. Adress

American Homes and Gardens

(Successor to SCIENTIFIC AMERICAN BUILDING MONTHLY)

THIS new monthly magazine will be much broader in scope than its predecessor. It will have the word "HOME" for its keynote. The man to whom this word has no meaning will have no interest in this new publication. It is the intention of the Editor to take the reader with him to various parts of the country and show him how the better class of people live, whether the house may have cost $\$ 3,000$ or $\$ 300,000$. Good taste is, perhaps, more necessary in the building and furnishing of a house of small cost than in a mansion of importance.

The Editor will not leave you on the outer doorstep, however, but will take you within, where you may see how the house is furnished and decorated and how the owners live. Then you may have a walk through the garden, and then to the summer house, where, perhaps, the plan of the formal garden culminates.

There will be published articles on room decoration and furnishing, showing how the furniture may be arranged to produce the best effects, what pictures may be hung, and what bric-a-brac, inherited from some former mansion, may with advantage be discarded. In short, the new publication is intended to be

OF	To the one who has a Home. To the one who has not a Home, but who intends to have one.
INTEREST	To the one who wishes to improve the Home and make it more atractive. To the one who appreciest sthat the Garden and the House should form part of an harmonious scheme.

Each issue will contain an article on some important mansion, showing, if possible, various views of the exterior, the interior, and the garden. Plans are published with most of the residences shown.

The new publication will be issued monthly, and will be somewhat smaller in page size than the "Building Monthly," viz.: $101 / 2 \times 14$. It will have a handsome colored cover. It will have about 50 pages each issue. Price, 25 cents each issue; $\$ 3$ a year.

SPECIAL OFFER TO READERS OF THE "SCIENTIFIC AMERICAN"

To any one subscribing before May 1, 1905, the subscription price will be $\$ 2.50$ for "American Homes and Gardens" for one year from July 1, 1905, to July 1, 1906, and the subscriber will receive free of charge the "Scientific American Building Monthly" for May and June.

To any one subscribing before June 1,1905 , the same terms will be offered, with a free copy of the June issue included.
To any one subscribing after June 1, 1905, the subscription price, without exception, will be $\$ 3.00$ a year.
Subscribe at once and obtain the most favorable terms.
CONTRACTS FOR ADVERTISING SPACE IN "AMERICAN HOMES AND GARDENS" may now be secured. Write at once to "Scientific American" Advertising Department and secure preferred locations.

April 22, 1905

FIFTH REVISED EDITION. Langbein.-Electro Deposition of Metals

TAKE-DOWN REPEATING SHOTGUNS No matter how big the bird; no matter how heavy its plumage or swift its flight, you can bring it to bag with a long, strong, straight shooting Winchester Repeater loaded with Winchester Factory Loaded Shotgun Shells. Results are what count. This combination, which is within reach of everybody's pocket-book, always gives the best results in field, fowl or trap shooting. Winchester guns and Winchester cartridges are made for each other.

FREE Send name and address on a postal card for our large illustrated colato ogue.
NEW HAVEN, CONN.

[C] MAGEITNSS
MODELS $\underset{\text { Inventions developed. Special Machinery. }}{\text { \& }}$

W.lel Hachinervind and erimental work.

Manuffacturers HARDWARE SPECIALTIES
Contrat Manufacturers and will market articles of
merit. LARIMER MFG. Co., 155 S. Jefferson St., Chicag

E.KONIGSLOW STAMPING \& TOCL WORKS, GLEVE LAND, 0.
ORNAMENTS $\begin{aligned} & \text { mounted, soldered and finished, in } \\ & \text { all metais. } \\ & \text { Souvenir and special }\end{aligned}$
work solicited. Gold and siliser patavening and special
J. H. ARTH UR Co.. 45 Edy St., Providence, R. I.
Experimental \& Model Work

 INSTRUMENTS OF PRECISION HIGH GRADE MACHINERY
P. A. GEIER ComPANY, 50 High St, cleveland, 0
for Gutricger hoists. Faster than Filevators, and hoists direct from teams. Saves handling at less expense.
Manfd. by VOLNEY W. MASON \& CO., Inc.

BUBIER'S POPULAR ELECTRICIAN

 25c. Pator hicks catalogue, free. Over 700 engravin Are you interested in Patents, Model or Experimentar-
work? Our booklet entitied WHAT WE DO-HOW WE DO IT KNICKERBOCKER MACHINE Wingerk.
8-10-12 Jones Mtreet. New York.

SLIGHTLY USED FURRIIURE

:STANDARD
Two =Speed Automatic Coaster Brake Hub
 STANDARD SPOKE AND NIPPLE CO. - Torrington, Conn

\%/2CNT A MILE

WALTHAM-ORIENT TOURING CARS

AUTOMOBILES

Do you want to buy a second-haud automobile? Ex-
change or sell, write us
new are the largest dealers in new and second-hand automobiles in the world. Write
us for our bargain sheet of machines on hand. We are
sure we have what you want TIMES SQUARE AUTOMOBILE COMPANY

Protect Your Checks

 $\underset{\text { 217 Jay Street }}{\text { Rochester Metal Mfe, }} \underset{\text { Rochester, }}{\text { Mo. }}$, y.

ChARTER Stationaries, Portables, Hoisters. Pump
ers. SSawing and Boat Outflts, Combine Gasoline, Gas, Kerosene. Send for Catalogue.
State Power Needs.
Charter gas engine co., Box 148 , sterling, ill.

What Is Daus' Tip-Top?

CRUDE ASBESTOS direct from mines

 for Manutacturers use $220 \mathrm{~B}^{\prime}$ way, New York.
Cheap Power from Kerosene SAFE, SITTPLE, VALVELESS
aND RELIABLE and reliable Universal Kerosene Engine. Automatic in operation, easily start

 universal UNIVERSAL KEROSENE ENGINE CO
6, 8 and 10 First St., Now York

Our Microsconops, Micitomomes, Latarotaror Glass- MICRO S SCOPFES

 ${ }^{\text {catalogs }}$ Bausch Lomb Opt. Co.

I Am The Maker of

cosmos is an alloy which has proved an unqualified success I personally superintend the manufacture of every bar. My guarantee goes with each one. There are many good reasons why
Robson's "Cosmos" is better than any other anti-friction metal. Read them. I make every claim good.
I.-Oxidizes less; 2.-Wears longer, therefore economical; ; 3.-
Runs cool ; 4.-Runs smooth ; 5.-Stands harder usage; 6 .-Double Runs cool; 4.-Runs smooth; 5.-Stands harder usage; 6.-Double

 Write for prices at once. You are taking no chances. You will
ind "Cosmos" positively the best all-around anti-friction bearing metal on the market. A trial is all I ask,

ABSOLUTE CUARANTEE

I guarantee that if Robson's "Cosmos" anti-frictio metal is not satisfactory, you may, in thirty days after
shipment, return at my expense all unused "Cosmos "and I will refund your money.

LE GRAND
0. ROBSON

1234 Broadway,
BUFFALO
 - Intod Militiary

The man who owns os rives an Auto should not use an expensive watch. The New England screw cased watches are perfection for Motor work. Dust and wet proof. Accuracy guaranteed
THE NEW ENGLAND WATCH CO., 37 \&, 39 Maiden Lane, New York
Stempel Marine Fire Extinouishers

Went FIRE EXTINGUISHER MFG. CO
Range Bargains For Gash Buyers
$\$ 3000$ STEEL RANGES FOR $\$ 15.00$
orb

雨

The Modern Machines for Mechanics

Wefore arple YOUR OWN ELECTRIC LIGHTS

 ELECTRIC DEPARTMENT RICHARDSON ENGINEERING CỌ., Hartford, Conn.

STARRETT

HOROLOGIGAL DEPARTMENT bRadley polyerinic insurite PREORIA, ILL LARGEST and BEST
WATCH SCHOOL in AMERICA

Convert Your Bícycle into a Motorcycle

WARREN'S NATURAL ASPAALT SAND OOFIN	

