

Making the Full-Size Clay Original, Working from a Small Wax or Clay Model.
the "Cire-perdue" process of bronze casting.-[See page 264.]

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors

Published Wookly at
 No. 361 Broadway, New York

 THE SCIENTIFIC a MEHICAN PUBLICATIONS.

NEW YORK, SATURDAY, OCTOBER 15, 1904.

The Editor is almays glad to receive for examination illustrated
articlee un subjects or timely interest. If the photographs ure oharp, the artucles short, and the facts authentic, the contributions
will recelvespeculal attention. Accepted articles will be paid for

elevator fatalities and their prevention

Recently, in these columns, we were deploring the number of fatalities that occur in transportation on our railroads; but now it seems that the risk of travel on rallroads is insignificant compared with that to which those who use the modern elevator are exposed -at least in New York city. For according to a statement of Coroner Jackson, no less than thirty persons have lost their lives in elevator accidents in this city since the opening of the present year; and, of course, a still larger number of people have received injuries more or less serious. Although we had noticed the frequency with which accounts of elevator disasters appeared in the daily press, we were certainly not prepared for this astounding statement from an official whose duty it is to know the facts. Think of it; thirty deaths in nine months, or a rate of forty per year killed in one city alone, in a form of accident that would be altogether preventable were human life not held so cheap, and were ordinary care exercised in the selection and operation of the plant.
There is absolutely no excuse for ninety-five fer cent of the accidents that occur. The problem of pro viding an elevator that shall be perfectly able to perform its work, year in, year out, without any risk to the passenger, has been most carefully thought ou and solved by the best mechanical and engineering talent of the day, with the result that there are on the market to-day elevator systems which, in the hands of competent operators and subjected to constant and competent inspection, provide as safe a form of transportation as any that exists. Unfortunately for the safety of life and limb of the public, accident proof elevator systems cost money, and the combined parsimony and disregard for human safety of many of the owners of office buildings and ware houses leads to the selection of inferior and cheaper systems, of which there are sadly too many in this city at the present day. Moreover, there is apparently very little care exercised in the selection of operators. The elevators in important and crowded office buildings are often in the hands of mere boys, the test of whose fitness for the job seems to be the small amount of pay for which they will undertake it.
In view of the present condition of affairs, which can only be described as positively alarming, we are glad to iearn that the Superintendent of the Department of Public Buildings has drawn up an amendment to the Building Code which seems to cover the case adequately, and will make it possible for the Building Department to enforce any needed alterations in faulty elevators, whether they are used for passengers or freight. The principal items of the amendment are, that the Superintendent of Buildings shall cause an inspection of elevators, whether for passengers or employes, to be made at least every three months, and that he shall prescribe suitable qualifications for persons who are placed in charge of the running of passenger or freight elevators; any repairs found necessary by the Department to be made without delay by the owner or lessee. In case defects are found to exist which endanger life or limb, the use of such elevator, upon notice being given by the Superintendent of Buildings, shall at once cease, and it shall not again be used until the Superiṇtendent has granted a certificate certifying that the elevator has been made safe. Moreover, no person will be permitted to take charge of an elevator, whether for passengers or for freight, unless he shall first register at the office of the Superintendent of Buildings, giving his name and residence, and the location of the building in which he is to be employed, and shall first receive from the Superintendent of Buildings a certificate as to his competency. Now this is a really admirable measure. It covers the case adequately, and if its requirements are honestly carried out without fear or favor, there is no reason why the public should not be as safe in an elevator as they are upon the sidewalk or in their own homes.

bIG gUNS FOR FUTURE WARSHIPS.

Already the naval expert has begun to tabulate the lessons to be gathered from the naval war in the Far East. In some respects they vary widely; but there is one point on which they are all agreed, and that is as to the great value of the larger-caliber guns, say from the 8 -inch to the 12 -inch, as compared with the more rapid but less powerful guns of 6 -inch caliber and less. Before the war we heard a great deal about the wonder ful "hail of rapid-fire shell" with which the ship which carried a numerous battery of 5 -inch and 6 inch guns was to "smother" her adversary, and "wreck his unprotected sides and upper works." The Japanese tactics, forced upon him by the necessity of defeating the enemy with as little loss as possible to himself, have changed all that. Japan possessed only a limited navy, every ship of which was thrown at once into the field of operations. She had absolutely no reserve to draw upon, and any gap that was made in her fighting line she could not hope to fill up. Hence, in the battles of the war, whether against ships in the open or against land fortifications, she has elected to fight, or rather she had no choice but to fight at long range, trusting to her superior seamanship and gunnery to enable her to place a larger rercentage of effective hits upon the enemy than he could hope to do upon her own ships. The events of the war have shown that these tactics were correct; for the enormous losses that her gunners have inflicted upon the enemy have been brought about without the loss of a single ship, or even its serious disablement, at least as far as we know, by Russian gun fire.
To carry on a successful artillery duel at long range, however, is only possible with the high-powered, largecalibered gun. At the ranges of from 5,000 to 8,000 yards, at which the Japanese elected to fight, the 6 -inch, 5 -inch, and smaller-caliber guns were useless, the velocity of the smaller projectiles falling off so rapidly that they were, at such ranges, altogether ineffectual against the armored portions of a ship. Under such conditions, the engagements resolved themselves into a trial of skill between the marksmen of the 12 -inch and 8 -inch guns. And how excellent this was on the Japanese side may be judged from the fact that the official report sent in from the fiagship "Czarevitch" spoke of her as having received three 12 -inch projectiles in the neighborhood of the conning tower within a space of five minutes. Evidently the gun is supreme, and the big gun at that.
The effect of the war is showing itself in the designs for new battleships and cruisers that have lately been divulged. Japan herself has ordered from an English shipyard two battleships that will carry four 12 -inch and four 10 -inch guns, and a dozen 6 -inch. The 10 -inch gun forms the main battery of many modern battleships, notably those of the "Pobieda" class, now at Port Arthur, so that practically the new ships will have double the number of armor-piercing guns of the first class that are now carried by modern battleships. The British government are also following the same policy. Their new battleships of the "Lord Nelson" class will carry four 12 -inch guns of 45 calibers, but no 6 -inch or $71 / 2$-inch, their place being taken by ten 9.2 -inch guns of 50 calibers. Thus the whole of the main battery consists of armor-piercing guns of long range and great penetrative power, while the intermediate or secondary battery has been abolished, and the vessel carries in its place a numerous battery of small 3 -inch and other rap-id-firers for protection against torpedo-boat attack. The same policy has been followed in the first-class cruisers of the "Minotaur" class, which will not mount any 6 inch guns, but will be armed with four 50 -caliber 9.2 inch guns and ten 50 -caliber 7.5 -inch rapid-firers.
The 9.2 -inch piece, which was recently illustrated in this journal, fires a 380 -pound shell with a muzzle velocity of 3,100 feet per second, a muzzle energy of 25,485 foot-tons, and is capable of penetrating 12 inches of Krupp steel at a range of 3,000 yards. The 7.5 -inch gun, which forms the secondary battery of the cruisers, has a muzzle velocity of 3,000 feet per second, and fires a 200 -pound shell, with a muzzle energy of 12 ,540 foot-tons, and is capable of penetrating 8 inches of Krupp steel at a range of 3,000 yards. It is an interesting conjecture as to just where this progres sion toward the exclusive use of the larger-caliber guns will go; but it begins to look altogether possible, that before long we shall see the dream of Admiral Cuniberti of the Italian navy realized, when he drew up his plans for a 17,000 -ton battleship, carrying an armament of twelve 12 -inch guns and a dozen 12 pounders.

EXPERIMENTS ON THE MOSQUITO.

If the following experiments are interesting and curious they may also be valuable, for any matter concerning the habits of Stegomyia fasciata is of use in view of their relation to the transmission of infectious disease, as malaria, yellow fever, etc.
Experiment I. Securing the mosquito so that it cannot escape, and allowing the wings and proboscis free movement, a drop of liquid on the end of a blunt
probe is approached to the proboscis. When the distance of the proboscis from the drop of liquid is reduced to about two millimeters, the proboscis darts into it. Various liquids seem to bring about different distances of attraction.
Experiment II. If a drop of lysol, a phenol deriva tive, has been used, the proboscis darts into it at the distance of two millimeters. In the space of two or three seconds the wings relax and droop, but do not flutter unless the experiment has been performed while they were in that state of excitement.
Experiment III. A solution of ammonia produces the same results, but in interval of attraction.
Experiment IV. Repeated tests on the same animal using poisonous solutions, give identical results while life lasts. From the fact that the proboscis continues to fiy toward even poisonous solutions, and after their effects are apparent in weakening of vitality, I take it that-
(a) The movement of the proboscis is not voluntary, or not under the control of a reasoning intelligence.
(b) There is some inward suction, more or less con stant, in the passageway of the proboscis.
(c) Lysol and other solutions may produce poison ous effects when introduced by means of this passage way to the mosquito's economy.

arsenic needed for the body and found in

DIFFERENT FOODS

Not long ago M. Armand Gautier brought out the fact that arsenic is contained in minute quantities in nearly all the organs of the body. In some of the or gans the proportion is relatively large, and leads us to suppose that this element is necessary for the proper working of these organs, and indeed plays an important rôle in the entire system. In a paper which he recently presented to the Académie des Sciences he brings out some further researches upon this point. These relate especially to the different kinds of food from which the system takes its supply of arsenic. This element is found in a large proportion in the exterior larts of the body, and a certain amount is constantly being lost through the falling or cutting of the hair and nails, and also by the natural evacuations. It became there fore of interest to find out from what sources the sys tem receives the amount of arsenic which is needed to keep up the normal amount, and what is the propor tion given by the various kinds of food, both animal and vegetable. Accordingly he made a series of an alyses of different foods and showed the quantity of arsenic in each. The method he uses is to break down the organic tissue by a mixture of one part sulphuric and ten parts nitric acid. This is carried out at a low temperature. After re-treating with nitric acid the whole is finally carbonized. The arsenic is set free ly a Marsh apparatus, at least in most cases. In the case of salt and water it is found by direct precipitation. Great care was of course taken to use perfectly pure reagents. The following extracts are taken from he table which M. Gautier has drawn up as showing the percentage of arsenic in different foods, water, and salt absorbed by the body. The figure gives the weight f arsenic in 0.001 milligramme per 100 grammes $(0.22$ pound) of solids in the fresh state or in 1 liter of liquid: Beef (lean), 0.8 ; milk, 1.0 ; eggs, yolk, 0.5 ; white, 0.0 ; mackerel, 3.9 ; lobster (muscular part), 2.2; eggs, 35.7; shell, 104 ; water extract, 10.7; shrimp, 0.16 ; shell of same, 7.6 ; wheat. 0.7 ; potato, 1.12 ; wine, 0.89 ; beer, 0.01 ; salt, refined, 0.7 ; gray salt, 45 ; rock salt, 14; Seine water, 0.5 ; sea water from surface, 1.1; from 30 feet depth, 2.5 . The unusually large proportion contained in lobster shell and unrefined salt will be noted. Eggs have also a very high value.
From these results we may draw certain conclusions. The proportion of arsenic is extremely small in the muscular fiesh of mammals as compared with that which the arsenic-bearing organs contain. Among the different foods, some of the fish and crustaceans, and especially their more highly phosphated products, are found to contain the largest proportion of arsenic. Rock salt is also one of the highest in the list. Wheat bread contains very little, and the proportion is not greater for Graham bread, showing that this element is not furnished by the bran. Green leaves, cabbage, and green beans do not show a trace of it, even in a large quantity of matter. This seems to show that arsenic is not essential for cell-life, at least in the proportion of 0.001 milligramme per kilogramme. On the contrary, the system derives a considerable quantity from water, wine, and common salt. M. Gautier utilizes his results to make an interesting calculation as to just how much arsenic an inhabitant of Paris absorbs per day on the average, taking dS a base the statistics for the last decade. The result is as follows: Th first figure gives the number of grammes (15.43 grains) of food per day, and the second the quantity of arsenic (in 0.001 milligramme): Bread and pastry, 420 grammes rer day (arsenic, 2.9): meat, 180 (1.8): fish, 35 (4.3); eggs, 24 (0.05); vegetables, fresh, 250 (0.5) : vegetables, dry. 40 (?); potatoes, 100 (1.12); milk, 213 (0.10) ; wine, 518 (2.9); beer, 30 (0.0); salt, 10 (2.3);
water, 1 liter (5.0). The total quantity of arsenic taken into the system per day thus figures very close to 0.021 milligramme, or about 0.0003 grain.

AUTOMOBILE STEEL SPECIALTIES.

by georar e. walsh.

The manufacture of automobiles has reached such a stage of development that it proves a most important factor in the iron and steel trade. The millions of dollars invested in automobile plants indicate some thing of the growth of this special line of business Already the tendency toward the standardization of the different parts of the automobile has progressed rap idly, and it may not be long before shops will be es tablished for the mere assembling of the machines without any attempt to manufacture. Under existing conditions of patent rights and special manufacturing methods, it is possible to do this to-day without in fringing upon the rights of others.
Automobile steel has called for special lines of manufacture and experiment that have proved of advantage to mills anxious to capture this trade. The amount of steel that goes into the ordinary automobile is variously estimated from $1 / 1$ to 1 ton, according to the size and capacity of the machine either for passenger or freigh traffic. If the average is placed at 1,000 pounds, a manufacturing output of 5,000 machines a year would represent a total tonnage of $5,000,000$ pounds of steel required for this particular line of industry. But this estimate is comparatively low, and within a year or two the plants will be turning out far more than this number. The orders at the last automobile exhibition in New York for new machines amounted to consider ably more than a million dollars. With the average cost of a machine placed at a thousand dollars, this would represent over a thousand machines sold or or dered in one brief fortnight.
The iron and steel used in automobiles represents all degrees of hardness and strength. For the most part only the finest steel can enter into the manufacture of the driving part of the vehicle, and in the case of the high-power automobiles unusual strength of parts is required. In the specialization of parts there has grown up a line of steel manufacturing that is of peculiar interest.
The gears, chains, springs, and machine parts re quire steel so strong that it will stand the greatest resisting power. Extensive experiments have been carried on in some of the automobile plants with steel to test its qualities for the driving parts of the highpower automobiles. In one such series of tests over fifty tons of steel billets were destroyed to secure the most efficient results. As in the manufacture of highpower tool steel, there has been a gradual series of experiments that have virtually led up to the production of an article satisfactory to the trade. Most of the large automobile manufacturers have their own ideas of the kind and quality of steel they need, and the chemical tests and analyses show that they differ in the composition to only a slight degree. As the strength of the automobile must in the last analysis depend upon the quality of the steel used for the most important parts, it is quite evident that the manufacturers are justified in studying this problem exhaustively. In the former cheap grades of machines, the hreakdowns were due to some inferior steel parts that would give way in critical moments under the stress of special strains imposed upon them.
The modern American automobile is nearly, if not quite, as strong, powerful, and durable as the best French machines, and it is due as much to the special manufacture of important steel parts as to the gradual perfection of boiler, engines, and electrical equipments. A good many of the manufacturers require air-harden ed steel for parts that must be subjected to considerable strain and friction in the operation of the machines. The heating of the steel to a high temperature, and cooling suddenly in a blast of air, can give to the steel the desirable hardening qualities; but unless the compressed air-blast is sufficient to reduce the temperature of the steel uniformly and quickly there is always the danger of cracking and weakening of the parts.
As in the manufacture of steel for cutting tools and other high-grade purposes, there is a good deal of difference of opinion in the automobile trade as to the methods of obtaining the best steel for the machines. The application of water for reducing the temperature of the steel is employed differently in the various plants. There seems to be no absolute consensus of opinion in the trade regarding the exact treatment of the steel. A manufacturer who has had success with steel treated in one way cannot easily be induced to adopt any other method. He is slow to adopt new products of the steel trade.
Nevertheless, steel mills are not indifferent to the demands of the new trade. They have taken the matter up for serious consideration, and some of them are constantly carrying on tests for the benefit of the automobile trade, exhibiting to their customers the data thus obtained for their beneflt. Thus in manufacturing the chains. sprocket wheels, and gearing of
the high-power automobiles, specially refined and annealed steel has been made, which will practically withstand any amount of strain that can be imposed upon it by even a forty-horse-power motor. This steel is not only chemically perfect, but it can be made in the most uniform manner. This latter point is one of great importance to the automobile manufacturers. A standard machine must be guaranteed in all particulars, and each successive machine must be up to the same standard. Any lack of uniformity in the steel parts would manifestly handicap the manufacturers in guaranteeing the durability of the machines.

The wear and tear on automobiles must necessarily be greater than on cars which run on smooth rails or tracks, and consequently the item of repairs has always been large. The life of an automobile has been short owing to the lack of uniformity of steel parts, but manufacturers to-day are willing to guarantee the life of the average machine to be nearly twenty per cent longer than that of the machine built five years ago. This is largely due to the superiority of the parts used, and their more perfect operation when in use. The quality of the steel employed has steadily enhanced the usefulness of the automobile, and also improved its power and durability.

The cost of manufacture is always an item of prime importance, and the temptation to use inferior steel parts to lessen the cost of manufacture is strong, but it must be said in all fairness that few of the responsible manufacturers of machines in this country are willing to-sacrifice the reputation of their machines through any such short-sighted policy of false economy. The tendency is to use the best steel more and more, and to have every piece severely tested chemically and mechanically. The chemical test does not count for much in many plants, while special stress is placed upon the mechanical test. In other plants special emphasis is placed upon the chemical test, and all steel is immediately rejected that will not come up to the required chemical test. The later mechanical test is then applied to make sure of the accuracy of the first. The cost of maintaining a special laboratory for chemical and mechanical tests of all steel parts is quite considerable, and some of the plants are anxious to abolish it as a part of their equipment. But in their opinion this can only be done when manufacturers of steel will furnish them with a guaranteed uniform steel of certain qualities. Several of the steel plants are doing this to-day, furnishing elaborate data of chemical and mechanical tests with each piece of steel manufactured. These tests are open to the inspection of all, and the automobile manufacturers can any day assure themselves by personal inspection of the accuracy of the tests.

MUNICIPAL BAKERY EXPERIMENTS IN SICILY

The British consul at Sicily, in his latest reports, supplies some interesting details concerning the experiments of the Palermo municipality with baking and supplying breadstuffs for the inhabitants. During the past few years, the flour trade of Palermo hat been effectively cornered by one private establishment, and became practically a monopoly. It is estimated that the population of the city, which aggregates about 325,000 persons, consumes 260,000 pounds of bread and 110,000 pounds of macaroni daily. As the constituents of these staple foods were in the hands of one firm, the price of common bread was inflated to five cents per pound, thereby causing distress among the poorer classes of the city. Thereupon, in order to alleviate this suffering, the civic authorities decided to establish municipal bakeries.

In March, 1903, the system was inaugurated by the baking of some 20,000 pounds of bread daily. The suc cess of the experiment necessitated the utilization of the military emergency ovens, capable of turning out 11,000 pounds of bread per diem. In May the municipality acquired a private flour mill on a two years contract. This mill was of Italian construction. It employs 55 hands permanently, and 30 day laborers and can turn out in 24 hours, working day and night about 50 tons of flour. Attached to the mill is an old fashioned bakery capable of producing 20,000 pounds of bread daily, and a modern bakery, which kneads the flour mechanically and produces 8,800 pounds of bread per diem. During the initial stages of this municipal venture, municipal officials were detailed to the work in almost all its branches, and the municipal police retailed the bread in huts placed in the principal streets. The sum of $\$ 30,000$ was set aside as capital for working the mill and bakery. The municipality actually produces some 44,000 pounds of bread daily-about a sixth of the daily consumption of the city of Palermo. It serves the purpose of maintaining the standard rates which the municipality considered equitable, and allowing a fair profit to the trade. The net result has been reduction of the prices of the different qualities of bread by about one cent per pound.
The municipality retails its flour and by-products to the public. There are twenty-four shanties where the bread is sold by municipal guards, who receive, in
addition to their ordinary pay, a premium of two cents per five dollars of cash taken. When the shanties were first put up, a good deal of hostility was shown them. Private retail dealers are encouraged to take up the distribution of the bread. They pay all their ex penses out of a profit of 15 cents per 200 pounds weight of bread, which is delivered to them free. At the present moment there are some thirty such retail dealers. The municipality is planning the erection of a flour mill capable of dealing with 300 tons of grain daily, and of a bakery which shall produce 26,500 pounds of bread, besides pastes, daily.

AUTOMOBILE NOTES

In a crowded garage, there is often considerable difficulty in moving the vehicles around in getting them in and out of cheir places, and in order that this may be done with the least possible expense of floor space, a western manufacturer of accessories has made a roller device more like a roller skate than anything else, which is designed to be slipped under the wheels of the automobile, whereupon it may move around in ts own length. A pair of these will answer all purposes and it is not necessary to have one of the devices under each wheel. The wheels on these are pivoted in the same manner as casters.
Among the recently introduced automobile accessories is a leather tire which comes from England and which is said to be much more serviceable and less expensive than the tires of rubber. The tire consists of an inner tube and shoe, with an additional shoe of eather. Over the running surface of the leather shoe is an auxiliary strip of leather fastened with a number of heavy rivets. The double ply of leather makes a very substantial tire, and the metal of the rivets is said to take a hold on the surface of the road, no mat ter what its character, that makes anything like an anti-skidding device quite unnecessary.
The Automobile Club of France announces that the ext annual show will be held in the Grand Palais from the 9 th to the 25 th of December. In order to make this year's show especially brilliant the committee is organizing an annex show in the large Horticultural Building near by. Here will be found a series of veritable factories, which will give the public an idea of the successive phases of construction of an automobile car. Already numerous propositions have come in to the commission and no doubt many of the large firms will be represented. This will form an interesting feature of the show, and a most instructive one.
By the arrival in New York on October 7 of the 24-horse-power Columbia touring car, the Chicago-New York road record for the intervening distance of 1,127 miles was reduced to 58 hours and 45 minutes. The car was driven by H. H. Holcomb, Lawrence Duffy, and E. C. Bald, who alternated at the wheel. The best previous record, which was made a short time ago by Messrs. Ellis and Schmidt, of Chicago, in an Apperson car, was 72 hours, 36 minutes, so that the new record very materially reduces this. The last part of the journey was through the Catskill Mountains and was made through heavy showers; but not a mishap occurred then or throughout any of the trip. The est has shown well the endurance of the stock Columbia machine.
It would hardly seem likely that there would be any lemand for a bucket capable of being carried in the pocket, but such a device has been recently placed on the market. The thing was primarily designed for the use of automobilists who require to take on a supply f water at regular intervals but it is also said to be a convenience to campers and tourists. The device is made of waterproofed material fastened to a jointed frame, and when it is desired to pack the thing in a small space, it can be folded up to a size about the same as a pocket hat. If it were necessary to carry the bucket in the pocket it could be done without trouble. Since putting the bucket on the market the manufacturers have made and are selling a small bathtub on precisely the same lines, which is said to be a great convenience in the nursery.
A new type of tire especially adapted for automobiles has been designed by a London inventor. Instead of a single inner air tube there are two, placed side by side on a steel rim. These are inclosed and protected by an outer head made of hard papier maché in sections of twelve or more. Each of these tread shields, as they are called, is attached to the rim of the wheel, by means of a bolt which has a free up and down movement, but has no lateral play. When all these shields are fixed in position, they constitute a kind of armor around the two air tubes. By this arrangement it is claimed punctures are rendered impossible, unless the papier mache is pierced, which, in view of its hard texture, is considered impossible. The heads, however, present a resilient surface to the road. Precantions against side slip are provided by means of links which are placed between each tread shield.

THE TAXOMETER.

The accompanying figure illustrates a new type of ounter recently adopted for the public hacks of Paris The apparatus is actuated by a very simple mechan ism that causes it to register, through a measurement

11 resembles the carburet of tungsten, already known, which is not considered surprising, as the metals tungsten and molybdenum are much alike. It is thought that this new compound may play a rôle in molyl). denum steels. The method of preparation shows that even at a rather high temperature (that of boiling aluminitim) a molybdenum compound is ohtained which contains twice as much carbon as the compounds formed at the highest heat obtainable in the electric furnace.

THE DIVING HORSE

Our illustration of a horse in midair represents very forcibly the possibilities of animal training. An incline runway about 25 feet above the ground is arranged for the horses to walk or run un, from which they make a plunge and fall into a tank of water below about 12 by 20 feet in area and 12 feet deep. Usually the horses like to make the dive, and the momant they come in sight of the runway they fight to get to it first. The mare goes up first and without hesitation jumps off. The stallion, however, is more diplomatic, for he
THE DISTANCE AND FARE INDICATOR IN USE ON PARISIAN HACKS.
of the number of revclutions of one of the wheels, the distance traveled by the vehicle during the period of time indicated by a clock carried by the counter
A tappet secured to a collar mounted upon the hul of one of the wheels strikes, once per revolution, the cam of a pump fixed to the axle. Each of these impacts produces a variation in the pressure of a volume of air contained in the pump; and such variation is transmitted, through a rubieer tube, to a small bulb of which every inflation causes a ratchet wheel to re volve by one tooth, through the intermedium of a metallic rod. A train of multiplying wheels, analogous to those of a clock, afterward causes the following readings to appear upon the dial: "Fare to be paid, "Distance traveled," "Extra fare," etc. Every 400 meters (about $1 / 4$ of a mile), for example, the fare to be paid increases by 10 centimes (2 cents). From the experience of the short time that has elapsed since the appearance of the first hacks with these counters, the following conclusions may be deduced: The new fare is very advantageous for short trips. The first hour costs more than formerly, say $21 /$ francs (50 cents) instead of 2 (40 cents); but this is largely compensated for by the privilege allowed the passenger of stopping as many times as he desires without being compelled to pay for the complete hour

New Carbon Compound.

At a recent meeting of the Academy of Sciences of France, held at Paris, M. Henri Moissan presented a paper concerning the preparation and characteristics of a new carbon compound containing molybdenum. This compound is obtained by heating charcoal with melted molybdenum and aluminium in an electric furnace. The resultant metallic mass is treated with a concentrated solution of potash, and needles of well-
excites the on'ookers by bows right and left, and then after an inspection of the surroundings he goes slowly forward and quite deliberately jumps, successfully rising in the water well pleased as the crowd cheers. It appears to be as much sport to the horses as to the spectators.

TRANSPORTABLE WIRELESS TELE

 GRAPH STATION FOR WAR PURPOSES by ock berlin correspondentThe company which was started some time ago as a consequence of an understanding brought about between the two leading German electrica companies, has since the beginning paid special attention to the use of wireless telegraphy both for naval and military purposes. According to the results so far oltained, communication by two bodies of troops within four days' marching distance of each other is possible with the Morse recording apparatus, while with an acoustic in dicator the distance may even be doubled.
In the following, a short description is given of their latest form of portable stations for military purposes.

The stations are arranged for two wave lengths, namely, for a short wave of 350 meters and a long wave of 1,050 meters, the antenna remaining the same for both. With the short wave, the antenna will oscillate in three-quarters, and with the long wave in one-quarter of a wave. The antenna is outbalanced, in the first case, by a counterweight of 6 square meters of copper gauze ex-

the trained diving horse.

former. By means of a door on the side wall easy access is afforded to permit the renewal of the Leyden jars and the regulation of the spark gap. In the rear is arranged the Morse key, and on a board placed on stout springs, two receiving apparatus and a Morse recorder, while on the board of the latter the smaller

transportable wireless telegraph station for war purposes.
defined crystals of the new carbon compound are obtained.
The substance is very hard, is hardly attacked by acids other than nitric, and is not decomposed by water or steam at a temperature below 600 deg . C.
tended at a height of about 1 meter from the ground, while the amount necessary in the second case is as high as twenty-four square meters. The antenna is supported either by balloons or by linen kites; the former have a volume of 10 cubic meters and a draft
receiving transiormer is located. On the frame sepa rating the car has been arranged the large receiving transformer, the receiving plug as well as a counterweight switch with two levers. On one of the side walls is the acoustic indicator, comprising an nlestro-
of ahout : kilogrammes, while the effective wind silt face of the latter is 1.1 square meter, so as to be used even in the case of small wind pressures on account of the saving of gas.
Each station comprises three two-wheel arts, namely, first the power cart; second, the apparatus cart; and third, the tool cart.
The power cart contains the source of current, con sisting of a benzine motor of about 4 horse-power, direct connected to an alternating current generator of an effective output of about 1 kilowatt, and the exciter. The cooling of the motor is effected by water, carried along in a reservoir located above the benzine dynamo. The circulation of the water is effected automatically by means of a small cog-wheel pump, the water being cooled by a tule system and by a ventilator. The benzine necessary for the operation of the motor is carried in a reservoir about 30 liters in capacity, located adjacent to the water receptacle, this capacity being sufficient for a continuous telegraphic service of about 30 hours.
The igniter of the motor is electrical and operated by accumulators, charged automatically from the ex citer of the alternate current generator.
A full supply of accessories and reserve parts is located in the tool box fixed outside of the cart. the side walls of which contain, in addition, the two counterweights as well as loars supporting the latter. The apparatus cart, separated into two compart ments by a frame, contains both the sending and receiving apparatus. In the front part, protected against contacts, are located the high-tension instruments, comprising the induction coil, a battery of Leyden jars with adjustable spark gaps and the high-tension trans

lytic detector and a telephone, while on the duor a removable alarm bell has ieen placed. These instruments have been so installed as to permit the removal of the per part without withdrawing any connection. 'The accu' ulator necessary for lighting purposes is placed in a protecting loox at the left-hand outer side.

The tool car. finally, contains the gas reservoir and the necessary intrenching tools, as well as the balloon

INSECT WING MECHANISM.

1.- Longitudinal section through thotax of blue-bottle fly (Calliphora). Arrow shows position of wing. 2.-Cross section
of same, through wings, showing the vertical muscles, v, and the of same, through wings, showing the verical muscles, v, and thie
laterai arms, m, attached to the wings. 3.-Extrene upward position of wings during flight aum the lateral muscles in the lower position. 4.-- Extreme downward position of the wings in flight and the lateral muscles in the upper p.sition.
and a reserve benzine reservoir. The gas receptacles are built in the car and have each a capacity of about 5 cubic meters at a pressure of 120 atmospheres, two reservoirs being sufficient for filling the balloon with the aid of a filling hose.
The same outfit has been used in connection with the Gordon Bennett cup for signaling the progress of the race ifrom one point of the race ground to the other.

2

SFA.
insect wing mechanism.
1.-Longitudinal section through thorax of dragon-fly (Aeschina), showing the hundles $\begin{array}{lll}\text { of muscles. 2.-Crosssesection of same between fore and hind wings. } & \text { 3.-Plan of muscn- } \\ \text { lar operation of wiug-harizontal position --muscles pull at } a \text { and } h . & \text { 4.--same-extreme }\end{array}$ lar operation of wiug-horizontal position-muscles pull at a and . 4.-Same-extreme
up ward position in fight-muscles pull downward at a. 5.-Extreme downward position in fight-muscles pull inward at h . At the base of the wing the veins are hrofdened into rigid plates that are attached fipmly to the plable tegument. This is the fulcrum

insect wings.

The method and mechanism of insect flight seem to have been little studied, though perhaps there is no subject relating to insects that will attiord more entertainment to the investigator. It is probable that the student of aerial navigation may profit from knowing how insects fly, hough the gravity differences between the man and the bug, and the principles evolved and upset thereby, are obvious. We can be more encouraged by observing the flight of the larger birds, but in the construction of wings and aeroplanes and the method of propulsion we can learn more from the insects.
In developing flight nature has adopted the very best and practically the same means for all winged creatures. With the weightlifting downward stroke of a resisting, surface is combine a slight posterior incline of the surface, and propulsion is thus gained by the wedge principle. In the uplift or regaining position of the wing there is an unresisting upper surface. This treble part is taken by the strong primary and secondary feathers of the bird's wings and by the posteriorly pliable wing membrane of the bats and insects.
The stroke of the wing is vertical and the uplift also, and this can be readily observed in slow-flying insects and birds. The trajectory of the tips of the wings, therefore, may be indicated by a series of waves, the length and brealt! 1 of which depend on the height of the stroke and the number of strokes to the speed per distance. The anterior portion of the insect wing is always more strongly braced with stout veins, and in line with the base, is the part directly operated. It is the downward stroke of this rigid part that exerts the lifting force. The posterior portion of the wing, lightly veined, and out of line of the base, is comparatively pliable. If the insect body is held horizontally the posterior rortion of the wing will lee observed to bend much more easily downward than upward, owing to the construction of the attachment to the body. This explains at once the means of propulsion in the downstroke and the unresisting recovery of the upstroke. In the former the slight upward bend of the posterior portion serves the wedge principle; in the latter the wing is lifted edgeways to the air resistance and has little tendency to check the forward motion of the body.

Insects present very wide differences in their wing structure, more than in any other part. From the rudimentary appendages of certain orthoptera and beetles to the great spreading wings of the swallowtailed butterflies and giant moths there are many types and variations. The nicely balanced, high-power wings of the flies, bees, and hornets, the over-large yet perfectly controlled wings of the larger lepidoptera and the slimming, short-motion, acrobatic wings of the dragonflies will serve to illustrate modifications of wing outline and muscular control among insects with the highest wing development.

All swift-flying insects have broad wings and stout bodies, the latter to make room for the mass of muscles that is required to drive the wings at a high power. The breadth of wings must depend on the power of the muscles to drive them. In the swiftest insects there is a nice balance of musle and wing surface. Many stont-iodied, hroad-winged insects are weak flyers. Their muscles have not developed toward the control of the wings They are runners, diggers jumpers, or swinmers, and use their wings only to rise in air and drift along with the wind. Many species of tive two-winged flies of the genere Musca, Tabanis, Tachina. and Bombylius, no doubt rejoice in their less complicated mechanism, for they are the swiftest of all insects. The hornets and bees, little inferior, have the shorter hind wings attached to the fore wings by a row of little marginal hocks and thus, operating with the stouter fore wings, they constitute the broad posterior development necessary fir speed. The butterflies, moths, and dragon flies use their fore and hind wings separately and the posterior deveiopment

insect wing mechanism.
1.-Longitudinal section of butterfly thorax showing the sreat number of muscles contained herein. 2.-Crose section of the same through anterior wing bases; the wings held horizon. tally and the mass of greatest density of the muscles being in a middle position. 3.-The nass of greatest density above at a. In flying, the wing motion does not reach the extremes of 3 and 4 , but an angle frow the horizontain of alyout ing motion does int reach
of the fore wings is on or beyond the center to malie room for the shortsir and broader hind wings.
The muscles of insects are pale yellowish or pinkish ir color, have a somewhat ropy character, but are very soft and easily separated. The muscles that control the head, wings, and legs are contained in and nearly fill the thorax. The veins of the wings broaden at the base and are attached firmly to the tegument of the thorax which is pliable above and below the base of the wing. This attachment may be called the fulcrum. The muscles operate the pliable portions and by contracting and expanding inem ipull and foree the wings upward and downward. In the flies the wings are attached to the side of the thorax above the center a n d the muscles stretch from the top to he bottom of the tho the bottom on the tho ax with an arm extending to the wing. This arm worls up and down upon the vertical muscles, pulling the wing from the center of ts fulcrum and operat. its fulcrum and operating the pliable tegument, in the opposite direction from its motion. In the butterflies the wings are hinged on or a little below the

3

INSECT WINGS.

The middle position of a tlys wing in flying. The arrows shows approxmately the resistance of the air. 1.Downstroke. 2.-Upstroke. 3.-Trajectory of a fly's wing tip when feet per second Arrow shows direc. tion of flight. center, the legs and abdomen effecting the lalance. The muscle, also attached to the base of the wing. acts upon the pliable tegument above and below the fulcrum, and where it expands it appears as a mass of greater density. This apparent density works up and down the muscle; thus it will expand aloove and
contract below and so force the wing downward With the dragon flies the muscles are in nearly ver tical bundles and the operation of the wings apparently depends only on the pull of the contracting muscles. Thus the pull on the pliable tegument be tween the wings brings the wings up and the pull in ward, below, by a heavier set of muscles, brings the wings down. The figures serve to illustrate this far more clearly than it can be described.
Observations in the field are of most interest, and a clover field may be the chosen spot. Here will come the honey lovers, of course, and the predaceous species to prey upon them. Watch one of the big, lazy winged butterflies soaring over the fragrant blossoms, suddenly arrested by one especially to its liking, turn or drop at right angles by a quick beat of the wings Here are the hornets, seeking spider, cicada, or other victims and getting them by a dash almost too rapic for the eye to follow. And here is the big Aeschna dragon fly, skimming over the field like a swallow and bent upon a like quest-gnats and midges and other tid-bits whose wings are not quick enough to escape his lightning flashes. Down in the clover a musical buzz commences and quickly grows louder and higher, for a few moments constantly ascending the scale This is Bombylius, the little yellow, fuzzy, bee-fly, and in the hope of finding him we have brought along a handy little instrument. Now quickly striking a note in tune with its wings we find that the fly's limit is reached at G, above middle C. Musca, the house fly, is credited with 330 vibrations of its wings per second. This corresponds to the note of E in the octave below middle C. But the little bee fly attains nearly 800 vibrations, incredible as it seems; and as the upstrokes hardly resist air sufficiently to occasion sound, it is rrobable that this means 800 down strokes per second. And there are other flies of the Tachinidæ and certain small Andrenid bees that vibrate their wings at a like tremendous velocity.

DASTARDLY ATTEMPT TO WRECK THE "CONNECTICUT."

 In connection with the building and launching of the battleship "Connecticut," there has been perpetrated a crime which, not many decades ago, would have subjected the culprit to the death penalty. We refer to the persistent and pernicious attempts made to wreck that ship, which were only discovered through the careful vigilance of those in charge of her construction. The first attempt was discovered over six months ago, during an inspection of the. work already done on the ship; the second on September 14 last, when the divers were making an examination of the under-water portion of the launching ways to see if everything was in good shape for the launching; and the third effort was discovered on the day of the launch, fortunately before any injury re sulted to the ship. The various at-tempts bear strong internal evidence
of the fact that they were made by a skilled oper ator who was thoroughly familiar, not only with the use of shipbuilding tools, but with the conditions attending the construction, inspection, and launch of such a ship as this. The portions of the ship attacked, and the means taken to wreck her during the launch, show that the guilty party or parties understood perfectly well what portions of the ship to attack and what means of obstruction to use, if they would evade the very searching inspection to which a warship is exposed during her construction and launching.
To understand the cunning way in which the at tack was planned, it must be understood that, during her construction, the weight of the vessel was carried mainly by three longitudinal and continuous lines of support, namely, a center line of keel blocks, extending practically for the whole length of the vessel, immediately below the keel, and two sets of launching ways located on each side of and parallel with the keel blocks, at a sufficient distance therefrom to give a fairly even distribution of the weight of the ship during construction and to provide sufficient lateral stability when the vessel is carried by the launching ways alone during her passage down into the water. During her construction, every part of the outside of the hull of a ship is open to inspection, except that which is covered by these three lines of support; and should any hole be drilled in the bottom, on the excosed portion of the hull, it will be certain of detection. The criminals who attempted to injure the vessel decided, therefore, to drill through her hull where it rested upon the keel blocks and sliding ways. The first attempt, discovered on March 31, was made in compartment B-87, and immediately against the vertical keel of the ship. This compartment forms part of the cellular double-bottom and the fellow who did the work was therefore in a very remote and secluded place, where, with an accomplice to give
him warning from the manhole that led into the compartment, he might easily carry out his job without immediate detection. For his attack he chose two of the $\pi / 3$-inch rivets which pass through the flat outer and inner keel plates. First, he chipped off the heads of the rivets on the inside of the ship; then he drilled a $5 / 3$-inch hole centrally through each rivet, so that it could be easily driven outward; and then, either by means of a brace, or by using a hydraulic jack set up against the under side of the inner bottom of the ship, he drove these two rivets out of the plating and into the soft wood of the keel block. Here, then, were two $\%$-inch holes clear through the ship, with the outside of them concealed by the permanent blocking, and safe against detection. No doubt it was imagined that among the million of rivets throughout the whole ship, these two missing rivet heads would escape detection until the ship was afloat.
Upon the fortunate detection of this attempt, the party or parties determined upon a mort deadly plan, namely, that of wrecking the vessel during the delicate operation of launching. To effect this, they selected a spot several feet below low water mark, on the smooth, inclined surface of the starboard launching ways, over which the sliding ways pass when the ship is being launched, and drove into them at about the center of their width a bar of 1%-inch round steel, leaving some six inches of the bar projecting above the ways. This seems rather an inadequate obstacle to place in the way of an object weighing 7,000 tons, that is moving down-grade, with a speed, say, of 8 or 10 miles an hour, and it is probable that when the ways struck it, the bar would have been bent over and flattened down into the permanent launching ways and the vessel would have passed safely over it. At the same time it is entirely possible that it would have had sufficient resistance to split the sliding ways, and cause a crumpling up and disarrangement of the timbers, that would have slewed the ship and caused her to bind upon the ways, stopping her progress. If so, she would probably have come to rest with one-half of her bulk on the ways, and the other half hanging out in the water. This would not have hurt her so long
the construction of the ship there are hundreds of men at work with chipping hammers and drills Also with regard to the attempt on the launching ways, it would be possible for any one of the divers who was sent down to do work upon these ways, to drill the hole and with a few strokes of the hammer drive in the iron bar. The crime, in regard to the difficulty of detecting it, was as easy of performance as the mis placing of a switch or a signal in an attempt at train wrecking.

It is sincerely to be hoped the man or men who did this work will be brought to the severest justice that can be dealt to them. Speculation as to who the guilty parties are, and what their motive, is idle. But it is generally supposed to be either the work of some disgruntled workman, or of some demented person with a mania for wrecking the ship. It is also re membered that in the earlier stages of the construc tion of the vessel there was trouble with the labor unions, some of whose representatives had to be for cibly expelled from the navy yard. The indignation among the workmen employed on the ship, who as a body have taken the greatest interest in her construc tion, is unbounded, and it is probable that from the men themselves the clews leading to the detection of the wreckers will be obtained.

Roman Forum Excavations.

One of the most important finds which has been made lately by Comm. Boni in the Roman Forum is that of a tomb which dates back to the foundation of the city. It is one of the most ancient of all the late discoveries. The excavation was made in a spot which had not been touched before, a few square yards of ground under the Temple of Antoninus and Faustina near the Arch of Septimius Severus. Below the foundation of the temple Comm. Boni found six different layers of ground. The last layer covered a slab of greenish-gray tufa which was broken in several frag ments. Under the stone lay a great vase or pot (dolium), at the bottom of a shallow pit. The dolium contained nine different vases, one of which was an olla filled with calcined bones. There was no doubt that they had uncovered a burial place. The main containing vessel, or dolium, is a vase or pot of unusual size; the material is of red terra cotta. It is very thick and seems to have been made by hand and polish ed with a spatula. The vessel is burned in severai places and black ened in others. It measures 17 inches in diameter at the top border, 21 inches in the middle or largest part, and 10 inches at the bottom. It has a cover of tufa stone which is rounded and resembles a tortoise shell in form. The olla or pot containing the bones is relatively smal and is 10 inches high. It is also made of red clay, but of a more care ful workmanship, with an overturn ed border and lugs or ears which ar provided with rings. The cover of
as it was high tide. and the hull was water-borne; but as the tide receded the support of the after half of the vessel would have been removed, and the enormous bending strain thus set up would have seriously strained her hull, if, indeed, it did not cause it to break entirely in half. Fortunately, the divers found the obstruction, and the piece shown in our engraving was sawn off flush with the ways, leaving the other part of the bolt imbedded.
The third attempt was discovered on the day of the launch, after the ship was afloat, when it was found that water was entering compartment B-88. As soon as the water was pumped down, it was found that a $7 / 3$-inch hole had been drilled through the skin plating of the ship, at the point where it rested upon the launching ways. Upon its discovery the hole was temporarily closed by inserting a hooked bolt of the kind shown in our drawing, provided with washers and a nut, which was screwed down firmly from the inside, forming a water-tight joint. Permanent repairs will be made when the vessel goes into drydock.
The intelligence and skill with which the attempts on the ship were made, made it evident to the authorities that they had to deal with a culprit of no mean ability, and orders were immediately given to subject the ship to special surveillance, even to the extent of having special arc lights placed around her from dark to dawn, and setting up a searchlight on one of the adjoining ships to sweep the water in her neighborhood during the same interval. To the lay mind, it will, of course, appear to be an extraordinary thing that such dastardly attempts on a United States vessel should be repeated under the very eyes of the officials who are responsible for her safety. But it must be remembered, on the other hand, that the wreckers chose just those very methods of operation which would bear the appearance to the official eye of being part of the regular workmen's duties. During
this pot has the form of the roof of a Latin cottage or hut. The olla contains the remains of a body which had been burned on a funeral pyre, with debris of half burned bones and fragments of skull. Dr. Roncali estimates that the individual was about thirty years old Around the burial urn containing the bones which oc cupied the center of the dolium were disposed the different vases and other objects which were buried with the dead as in the usual case. These latter objects ar modeled of a blackish earth and formed by hand. Their surface is finished by strokes of the spatula The objects comprise two pots for containing preserved food with strokes in relief to imitate the basket-work with which the ancients protected such vessels; a poculum (goblet) channeled on the surface, which probably had a wood cover originally, but the latter had rotted away; a lamp of the usual flat form, a large cup and three small cups with handles. These objects recall the specimens of the same kind which have been found in the most ancient tombs of the Alban burial grounds and elsewhere. They resemble those of the Velletri and Ardea sepulchers, also those of Tarquinia and other Etruscan cities. On this account the present find is of the greatest interest on account of the place where it was located. There seems to be no doubt that the tomb dates from the period of the foundation of Rome. When the Forum became the center of the city such burial places were no longer allowed.

The coal transporter at Rouen, connecting the river Seine with the docks, is 600 feet in length, and has a raised platform 50 feet in height on the quay side of the river and 30 feet on the dock side. This transporter, which is said to be the largest in the world is supported by three arches, sliding on rails, and under the wagon is suspended a huge bucket, capable of holding 32 hundredweight of coal.

Coxiexpuondente.

"Cyclone" or "Tornado."

To the Editor of the Scientific American:
In your current number appears an article criticising my description of a storm disaster in Minnesota, in which the writer takes exception to my use of the word "cyclone," and makes the statement: "It should be scarcely necessary to say that a cyclone is not a tornado, but is one of those widely distributed circular storms which are constantly sweeping over the earth's surface."
Permit me to say that I used the word "cyclone" advisedly, and not without a clear definition of its meaning as differing from other storms. The generally acrepted definition of the word as given in the dictionary and encyclopedia is "a violent storm of wind rotating around a. calm center." While no meteorologist or other expert observer witnessed the one at St. Charles, its cyclonic character was marked in several distinct ways. At the same time it could be termed a tornado as well, since, according to the same authorities, it is a form of cyclone, only on a more limited scale.
The critic takes the ground that a part of the damage was probably caused by air pressure from the interior of the buildings, and gives an interesting theory in support of his argument. I referred to this in describing the wreck of the grain elevator. Here the downward suction of the air current apparently produced a centrifugal motion, which removed or forced cut most of the grain. The cause of the damage, however, was the storm of air current, which by its force doubtless in several instances caused what might be termed interior atmospheric explosions, causing partial acuum without.

Day Allen Willey.
Baltimore, Md., September 8, 1904.

Effect of the Sun on the Black Race.

To the Editor of the Scientific American:
As regards the "effects of the sun upon the black race," as discussed by Prof. E. G. Dexter in the Scientific American, August 20, he has, in my estimation, overlooked a very important factor, which is found in the laws of evaporation.
In prima facie, Prof. Dexter's argument seems well founded, viz., that a heat-absorbing complexion should for the reasons given be placed by compensatịve Nature in cold climates, and vice versa. When we come to study this subject more deeply we find that though a black skin may serve to elevate the normal temperature of the body in the already overheated tropics, the inconvenience so caused would not be near so great as that caused by the evaporation of the body's moisture, which must necessarily rob the latter of its nervous heat. Whatever physical distress or loss of energy may be due to tropical heat seems explainable as follows: In the first place, since the humid atmosphere causes profuse perspiration, the temperature of the body will be lowered very much, so that a greater difference must exist between itself and the surrounding air or sun. This condition gives rise to the nervous sensation of "burning," but it is really a delusion, for the lody is not at all overheated. Nevertheless, it would be unjust to say that because the body temperature is low, the nerves are not actually burning. Forsooth, their stimulus is absorljed by water-evaporating skin more rapidly than it can be replenished. And this causes the lassitude with which we are so famıliar.
Wise Naturo, being aware of these difficulties, seems to show its foresight by not only salting the sweat to decrease its volatility, but it so colors the ;kin in the tropics that much of the heat required by the inevitable laws of evaporation is abstracted from the. sun instead of the body.

Alibert F. Shore.
Brooklyn, N. X., August 20, 1904.

Lessons of a Railuay Wreck.

To the Editor of the Scientific American:
There are some possible lessons in connection with the disastrous wreck which occurred on the Southern Railway near here last Saturday which may not be noticed farther away, where the details are not so well linown. The west-bound train consisted of a light engine and three ordinary coaches, running at a rate estimated at 40 to 50 miles an hour; the east-bound one had a much heavier engine, drawing a mail and baggage car, two day coaches and three Pullmans, the latter, as usual, being on the rear end. It was running about 30 miles an hour. Of the 60 or more persons killed, all were on the east-bound train, except the engineer and fireman of the west-bound. Not a person in the Pullmans was seriously injured. It would seem that when the light train struck the heavy one it was simply thrown to one side (the meeting was on a curve), throwing the cars about in a way langerous to life and limb, but not crushing them more than would be the natural consequence of throwing them about so. On the other hand, the force of
the blow stopped the heavy engine of the east-bound train, while the three heavy Pullmans in the rear came on with a force which crushed the four cars ahead of them as though they were but chicken coops. With an immovable engine ahead and such tremendous energy coming on behind, it came near being an exemplification of the irresistible force striking an immovable body, with those cars serving as a buffer. The fate of the buffer in such cases may be imagined when it is remembered that from one of these coaches ouly two persons are known to have escaped alive.

Orders will be forgotten or disregarded as long as trains are run by mere human beings, and so there will be no end of collisions. The public has long known, and if I mistake not the Scientific American has pointed out, that the Pullman car is the safest on the train, usually escaping except from rear-end collisions, and then suffering little if any worse than the lighter coaches before them. Those who can afford them wi?l continue to ride in them, for the added safoty as well as comfort; but may not the day come when that part of the public that travels on a cheaper scale will demand that railroad companies cease to make a buffer of it to place between the obstructions on the track and its high-priced traffic riding in the bomb-proof Pullmans?

Rutledge, Tenn., September 29, 1904.

The Rlack Race.

To the Editor of the Scientific American:
In your issue of August 20, Prof. E. G. Dexter asks why the black races have been "placed" in the tropics where they are most affected by the sun's rays, instead of near the poles, and he seems to look to some other science than physics for an answer to this query.

According to the now generally-accepted theory, pigmentation is produced by the sun's rays or rather by the heat produced by the sun. Now, geology teaches that our earth was a very hot place when organic life first made its appearance upon its surface, and there is every reason to suppose that man appeared upon earth at a period when the coolest place upon it (where man undoubtedly first made his appearance) was a great deal hotter than the hottest place at the present time. Consequently, the first human race must have been a black race (which, however, is far from saying that it was a negro race)-blacker, perhaps, than any race now existing. The bleaching process which has been going on through the ages, is in strict conformity both with the law referred to by Prof. Dexter, namely, that a white surface absorbs less heat from the sun than a dark surface, and the wellknown fact that not only the human skin is fairer in cold climates than in warm climates, but even animals and birds have lighter covering in the former than in the latter; for as animal life first made its appearance in a higher temperature than that under which it now exists, the phenomenon under discussion is in strict accordance with the law of adaptation to the environment, and not a contradiction "between a fact in nature and a natural law," as the professor seems to think, erroneously assuming that sunlight is an "evil" even in the tropics, the fact being that it is the greatest blessing nature has bestowed upon our planet, and without which organic or animal life could not exist.

Pigmentation, then, may be explained as Nature's effort to absorb as much as possible of the greatest of all earthly blessings, and the loss of it, as the acrentuation of the evil resulting from yielding too readily to conditions which tend to deprive one of it. The black man has "placed" himself in tropical countries because life there is sustained by the minimum of effort, the least expenditure of energy, while the loss of pigmentation and consequent decrease in the absorption of heat resulting from living under a lower temperature is Nature's way of warning man not to ex pend energy too fast by sceking his abode where less sunlight and heat makes life more strenuous and exhausting. When the majority of the human race have chosen or have been forced to live under such conditions, the increased struggle for existence has indeed brought them the blessings of civilization; but the development of intellect resulting from this struggle has generally been at the expense of the physical per-fection-health and strength, if not beauty-enjoyed by black races.
Except for the constant infusion of dark blood into the white race, thus retarding the bleaching process, this race must long ago have become extinct.

The professor is rignt in intimating that one science should corroborate the truths discovered by another, and if he will .ip a little more deeply into other sciences than his own specialty, he will find that there is not even "a seeming contradiction between a fact in nature and a natural law." though the above brief explanation of the object of pigmentation in the black races may not at first glance seem satisfactory. Chicago, Ill., August 22, 1904 . O. M. Peterson.

Kapok and Its Uses.

Chambers's Journal contains the following:
Every year that busy center of commerce, Amsterdam, receives nearly 1,000 pounds' weight of a curious and interesting vegetable substance known in Java and in the trade as kapok, which is found very useful for stuffing cheap mattresses and pillows, among other purposes. It is a sort of yellow wadding which nature uses as a covering for the seeds of certain trees in the Malaccas. Its fibers being very non-resisting, it has been found impossible to spin or weave it, but it gives excellent results for bedding, making a mattress delightfully soft if it is exposed to the sun before being used. It is exceedingly light and buoyant, in this respect greatly surpassing cork, as it will support in the water thirty-five times its own weight. The tree whence it is derived (Eriodendron) grows rapidly, and in the second year is 12 to 15 feet high, but it does not fruit abundantly until the fourth year. Like the cotton plant, it bestows two gifts on man-the special wadding mentioned, which lines the husk, and the oil extracted from the seeds, which is used especially in the Chinese markets. The threads of the soft fiber taken from the pods are light yellow, rather silky, and only about an inch in length. They are made into thin rings. Kapok, it is said, never decays. Among the ever-increasing uses to which this curious vegetable product is put-causing the culture of the Eriodendron to make great strides in the Dutch Indies, while efforts are being made to cultivate it in similar climates-it has been suggested that excellent life-saving apparatus might be made from it, which should be in the form of mattresses and cushions, easily obtainable in moments of danger. Three hundred grammes of kapok ($101 / 2$ ounces) will support a man of 10 stone 5 pounds (145 pounds) in the water; and experiments by a French society with articles made of this wadding, which had previously been soaked in water for eighteen hours, gave excellent results. One small mettress supported several men. It is probable that soon all ships' beds will be made of kapok.

The Current supplement.
The Eighth International Geographic Congress forms the first-page illustration, and some interesting por traits of distinguished scientists are given. An electrical heating apparatus of a new type and its application to the baking of bread are described. The future historian of the progress of tele graphy and telephony in America must devote much space to the invention of the telegraphic relay. Dr. John Trowbridge discusses the subject in the current Supplement, and seems to think there is a prospect of the relay's practical use in telephoning. Prof Edward S. Holden, librarian of the United States military academy, contributes a scholarly article on Copernicus. Two articles from the pen of the St. Louis correspondent of the Scientific American are published, the one on the French pavilion and gardens at the fair (an excellent replica of the Grand Trianon at Versailles) ; the other on the mining exhibits at the fair, describing a typical gold concentrating plant. Prof. Dr. R. von Lendenfeld writes a very thorough article on climate and glaciers. Still another article of meteorological interest is one by Dr. W. N. Shaw, F.R.S., on the "Mechanics of the Atmosphere." Scientifically considered, one of the most important contributions of the current Supplement is the first in stallation of a splendid article by Prof. E. Rutherford on the "Radiation and Emanation of Radium." The article considers the subject in the light of the most recent research and describes experiments made with radium.

In Knowledge, Mr. R. Lydekker traces the "Later History of the Horse," and endeavors to decide between the alternative theories of its derivation from those primitive breeds, when, as Mr. Kipling says in the "Just So" stories, the horse followed the dog in becoming the friend of man. There is, says Mr. Lydekker, decisive evidence of the existence in Egypt in 1900 B. C., or earlier, of a long-maned breed of Arab horse totally unlike the wild tarpan or the prehistoric horses familiar to the cave-dwellers of La Madelaine. Such a breed must have been the result either of a long antecedent domestication, or must have been produced from a wild species furnished with a long mane and tail. Probably the former view is correct so far as the development of the mane and tail is concerned, although it is most likely that the breed traces its origin to a species distinct from the tarpan and prehistoric horse of western Europe. That such a breed should have been introduced into Germany and Britain in pre-Cæsarian times-at all events, in such numbers as to obliterate all traces of crossing with the wild horses which abounded in those countries during that period-seems to him in the highest degree improbable; and he therefore cannot at present see any valid reason for refusing to credit the view of Flower that in Palæolithic and Neolithic times the indigenous hogmaned wild horses were domesticated by the aborigines.

THE "CIRE-PERDUE" PROCESS OF BRONZE CASTING. In very many of the artistic sciences and crafts we in this country are still behind the Europeans. That this is the case is of course easily explained by our comparatively short national life and the fact that the artists and craftsmen of the Old World have been perfecting themselves and developing the processes of their sciences for hundreds and sometimes thousands of years. In the casting of architectural and art bronzes is this generally, and with truth, believed to be the rase. It has only been within a few years that we have been able to approach the French, Italian, and Russian bronze work. Even to-day work that can fairly be considered the equal of any done in Europe

Retouching Plaster Model.

Sand Molding.
is accomplished by but few firms in this country; and the success of these companies is entirely due to the introduction of the "cire-perdue" process of making bronze castings. This process, while it has been in use in Europe for hundreds of years, was not introduced in the United States until about a decade ago.
While a similar though much cruder method was in use by the ancient Greeks and Romans, it was developed to essentially its present state by the great Florentine goldsmith and bron\%e worker, Benvenuto Cellini, about the middle of the sixteenth century and has remained practically unchanged to the present day
The "cire-perdue" process differs radically from the common or sand casting in several way:s, and the latte can in no wise compare with it. Its principal ad-
vantage is that no matter how complicated or involved the original may be, the bronze reproduction can be cast in a single piece. This does away with assembling the separately cast bronze pieces, with the consequent inevitable traces of the joining. Further, there is no tamping of sand in the mold, with the danger of: destroying detail, and finally, a complete casting takes about half as long to make by this method as by the other.

Though the sculptor usually carries out his conception in clay or wax of the same size as the intended bronze, it is sometimes inconvenient, especially if the statue is to be of heroic size, to do this, and consequently the artist's original is frequently much smaller

Finishing Model of General Porter.

Completely Assembled Wax Positive or Pattern. THE "CIRE-PERDUE" PROCESS OF BRONZE CASTING.
in size. As, however, full-size plaster casts are necessary in this or any other process of bronze casting, a full-size clay model must be constructed from the small original. The illustrations show the manner in which the whole or the parts of a model are enlarged.

When the original or plaster replica is received from the artist, the first step in the "cire-perdue" process is to make a plaster or gelatine mold or "negative." Within this negative a hollow wax figure or positive is now built up, the wax being applied with a brush till it is of the thickness that the finished bronze is to be. This part of the process, as is easily seen, is analogous to sand molding, and the wax figure must be made in separate pieces whose size and number are
determined by their shape; for instance, if a half closed hand is to be molded, the fingers and the body of the hand would have to be separately reproduced and afterward assembled, as otherwise it would be manifestly impossible to remove the pattern in one piece without destroying the mold. The analogy ceases with the assembling of the separate wax pieces. The complete figure is retouched as much as necessary and, as the medium is wax, by using heat in the assembling the joints can be absolutely done away with, so that we have an exact wax likeness of the artist's original. A great advantage of this method is that, if he desires to do so, the artist can change or retouch the wax figure as much as he pleases. The wax is

Putting on Channels, Gates, and Cores.

Finished Bronze.
sufficiently hard to permit handling, and will take the most delicate impression
The next step is the making of the final mold for the metal. This is made of a composition, liquid in form, that hardens in a few minutes after its application This composition is poured around the wax figure and, as can be easily understood, makes as exact a mold as can be produced, and, moreover, entirely without ramming or tamping. At the same time an outer shell of a coarser composition is built up around the mold to give it greater strength. An opening or two is left in the hollow wax figure so that the composition may be poured into it to form the inside core. Bronze rods are clriven through the wax at several places, projecting on the inside as woll as
the outside, in order to hold the outer and inner cores in their proper relative positions on removing the wax. Before the completion of the outer core, wax rods or bars, that later form channels for the metal or vents, are attached to the wax figure wherever necessary, all leading to one main channel in the upper end of the mold. The enveloping of the figure with the composition is now completed, and the mold placed in an oven and baked over a slow fire. Under this treatment the wax runs out, leaving a mold of the complete figure, while at the same time the composition hardens. The mold is now ready for running the molten metal.

The casts come from the mold in an almost perfect condition, the minutest detail being as clear and dis. tinct as if chiseled by hand. Beyond removing the channels and vents, which of course have been filled with metal, and brushing off the particles of the hardened composition with a stiff brush, the figure requires no attention other than the usual final coloring or patining, which is done with acids and chemicals.
In the "Cire-perdue," freely translated "lost wax," process as used by the Greeks and Romans, an inner core was made roughly of the desired shape and covered with a layer of wax. In this wax the artist modeled the figure and then the outer core was put on surrounding it. The mold was then baked, the wax melting out, and the metal run in. While this made an exceedingly good bronze of the artist's conception, it did not permit of making more than one and was consequently impracticable for modern use, till the genius of Cellini developed the process to its present state.
For the information contained in the above account, we are indebted to the courtesy of the Roman Bronze Works, of Greenpoint, Brooklyn.

A NOVEL SUSPENSION BRIDGE.

That "necessity is the mother of inven the mother of inven ion indifer the case where man is confronted with an engineering problem with nothing but na wre's tools-his hands -to solve it. Great praise has been forth coming for the genius whose brain evolved the plans of such a bridge as the New Yorli and Brooklyn suspension bridge; but would that same skill which, aided by every facility possible, has produced such mas sive and well-sustained monuments of stone and steel, be equal to the emerg ency if confronted by the same problem, though on a diminutive scale, a thousand miles from a machine shop and possibly a hundred from a hammer and nails?
This, however, is the position of the natives in many parts of Mexico and Central America, where fairly wide and rapid-running streams are so numerous that even in some of the miniature republics above the isthmus their water power in the aggregate might compare favorably with that of Niagara. They are never dry and seldom fordable; when swollen by un usual rains they are often absolutely impassable for weeks except by a lofty bridge, and this the native has provided alone and unaided.
The tropical forest supplies lianas of every imaginable length and diameter, from the quarter-inch tendril to the vine with the girth of a man, and all, barring flexibility, with practically the same properties as steel cables. These, with a little rope and the boarding required for the footwalk, which is also supplied by the trees at hand, are all that are required. Work is begun without any controversy as to eye bars or suspension cables, and within a month, more or less-for there is never any hurry-the completed suspension bridge will be gently swinging in the breeze, unique in its freedom from iron or metal fastenings of any nature. A glance at the one shown in the accompanying illustration reveals the fact that, with the exception of anchorages, which are entirely lacking, all the principles of the suspension bridge as known to modern practice are in evidence. Stout trees are utilized as towers and form the bridge's sole support. The work throughout is done in the crudest manner, and as a rule one must mount several feet into a tree in order to begin the journey. To the uninitiated a trip across one of these britges is not always an unalloyed pleasure, for it sways uncomfort-
ably, sinks with any weight to a rather alarming degree, and the creaking and groaning of its members are far from reassuring. Nevertheless, they are built to last and are not temporary in any sense, occasional repairs being sufficient to maintain them for years. Needless to add, the capacity of one of these bridges is limited to man and his burden; a four-legged animal would have a difficult time crossing.

exhibits in the boiler house and the palace OF MACHINERY, ST. LOUIS.

The purpose of the collection of exhibits in the Palace of Machinery and in the Boiler House, officially known as the Steam, Gas, and Fuel Building, is to show, first, the modern methods for developing and using power, and secondly, the machinery and appa atus used in making machines.
The Power House and Machinery Building, in spite of the serious omission of several large European gas engines and producers that were contracted for but failed to materialize, is a most interesting field of study. The total fuel consumption averages somewhat over 400 tons per day. To insure that the requisite amount of fuel should be on hand, the Commissioner purchased 170 fifty-ton coal cars, which bring the coal direct from the mine to the power hollse. n order to provide against mishap, a large number of loaded cars are maintained at all times on the sidings, so as to insure that there shall be several days' supply of fuel on hand.
It is a significant fact that the whole of the boiler installation is of the water-tube type. First we have sixteen Babcock \& Wilcox boilers of 400 horse-power
presses, metal-bending and shaping tools, and forge shop requirements are grouped. Adjacent to these on one side is a fine display of abrasives and machinery for using abrasives. Next on the opposite side are pumps, ail compressors and water meters. Beyond these are the gas and gasoline engines, a display which is good as ïar as it goes, but for reasons above stated gives an altogether inadequate idea of the remarkable development of the art as reached in Europe. To the east of the gas engine department is a collection of belts, pulleys, hangers, and shafting; and then follow hoisting engines, winches, and other apparatus and appliances for lifting heavy bodies. In succession follow pneumatic tools and appliances, fire hose and fire escapes and miscellaneous machinery, until the very interesting woodworking group is reached in the southeast quarter of the building, where several machines may be witnessed in operation.

Within the scope of the present article it is im possible to give any detailed account of the numerous exhibits; that has been and will be done in various illustrated articles in this journal. In the present connection we show a series of views taken in both the Boiler House and the Machinery Building. The Westinghouse Company exhibit a Parsons turbine di rect-connected to a 400 -kilowatt generator. Though it is a comparatively small turbine compared with the powerful units that this company is building for powe station service, it is thoroughly typical of this very interesting development in prime movers. The turbine is running at a speed of 3,600 revolutions per minute and delivers a three-phase, 60 -cycle current at a potential of 440 volts.
The fine engine built by the Elsaessische Maschin enbau A.-G. and the 700-kilowatt generator to which it is direct connected, built at Bel fort by the Société Al sacienne de Construc tions, deserve all the favorable comment hat they are eliciting The engine is of 1,000 horse-power. Steam is admitted by trans verse piston valves, carried above the cy linders, one at each end. These are oper ated by eccentrics, one eccentric serving to operate looth the steam admission and the exhaust. The alternat ing, three-phase generator has a capacity or 700 kilowatts, and a voltage of 2,300 .
Another exhibit that we illustrate is a Weber suction gas lro ducer It consists of a two-cylinder, upright 125-horse-power en gine, direct-connected

A NOVEL SUSPENSION BRIDGE.

each. Then follow the eight Heine boilers, which are also of 400 horse-power. Aultman \& Taylor are represented by sixteen boilers, eight of them of 500 horse-power, and eight of them of 400 horsepower. Durr is represented by a 700 -horse-power boiler that can carry 1,200 horse-power; Niclausse is represented by two 800 horse-power boilers that can carry 1,000 horse-power; Belleville has three boilers of 500 horse-power; Clonbrock one 300 -horse-power unit of the marine type and one 250 -horse-power stationary boiler. The most modern boiler in the whole installation is a Schuette boiler of 500 horse-power, manufactured at Stettin. In addition to the boilers themselves there is, of course, all the concomitant plant in the way of blowers, pumps, etc., that is necessary for the running of the plant. Some of these, however, have received separate treatment in this journal and need not be enumerated at the present writing.
To the second object aimed at by the Commissioners in charge of the Machinery Building, namely, the exhilition of machinery and apparatus used in making machines, about two-thirds of Machinery Hall is devoted. With a few exceptions the exhibits to accomplish similar results are found grouped in and about certain well-defined locations. Thus, means for guiding and controlling the flow of water, steam, and gas are located along or near the northerly wall of the building. Next, and toward the south, are machines for cutting and forming metals; the range of this assortmeni extending from the huge machines used in ship, engine, and car works, down to the pigmy tools used in watch making. Instruments which will meas ure to one ten-thousandth part of an inch and tools which do work so accurate as to require such refinement in measuring are here exhibited.
Toward the center of the building, power punches,
to a 75 -kilowatt generator. The unit also comprises a producer, a scrubber and a receiver. It is entirely automatic, the feed of fuel being regulated according to the requirements of the producer; and the whole plant running with great regularity.
The group of fourteen Worthington fire pumps supplies the whole fire service of the exhibition grounds The steam cylinders are 18 inches, the water cylinders 10 inches in diameter, and the common strolie is 12 inches. The battery of Cahall watertube boilers is ex liibited ly the Aultman \& Taylor Company, who have contributed sixteen boilers of 400 and 500 horse-fower to the boiler house plant. The Willans central-valve, high-speed engine is represented by a 1,000 horse-nower unit which is running at 277 revolutions per minute. It is direct-connected to a 600 -kilowatt Stanley generator. The engine is of the single-acting type, and runs under a working pressure of 175 pounds to the square inch.
The veneer-cutting machine shown carries the log between centers on which it rotates, and the veneer is cut by a knife held in a horizontal rest-in other words, the veneer sheet is "turned" off the log, and is nothing more nor less than a mammoth shaving several feet in width and length.
One of the "loig" things in the Machinery Build:ag is a huge 20 -foot boring and turning mill that weigh; no less than 375,000 pounds. The central boring bar and gear are carried on two massive columns. The machine is driven by Bullock motors, that for the main drive being of 80 horse-power and that for elevating the cross-rail of 10 horse-power. The Niles Company lo not share the rather prevalent prejudice against any but a positive drive; for this great machine is driven by the friction feed shown in the foreground of the illustration.

A Veneering Machine in the Machinery Building.

In the Boiler House. Weber Suction Gas Producer and Engine Direct-Connected to 75-K. W. Generator.

A $1,000-\mathrm{H}$. P. High-Speed Central Valve Engine, Direct-Connected to a $600-\mathrm{K}$. W. Generator.

Group of Cahall Vertical Watert

Parsons Turbine in the Machinery Building, Con revolutions pe

The Largest Tool in the Machinery Building.
375,000 Po1

be Boilers in the Boiler House.

rected to $\mathbf{4 0 0}-\mathrm{K}$. W. Generator. Speed $\mathbf{3 , 6 0 0}$ r minute.

230-Foot Boring and Turning Mill; Weight, unds.

Valve Gear of the $1,000-\mathrm{H}$. P. Muelhausen Engine in the Machinery Building.

In the Boiler House. A Group of Fourteen Fire Pumps for the Fire Service of the Exposition.

700-K. W. Generator, Built at Belfort, France.

CONVERTIBLE WRENCH AND VISE.

Pictured in the accompanying engraving is a very handy tool, which may, at will, be used either as a

CONVERTIBLE WRENCH AND VISE

wrench or a vise. The wrench is of the usual slidingjaw type. The handle, however, is detachable, being screwed into the lever bar and normally held by a lieeper bolt, as shown in Fig. 1. When it is desired to convert the wrench into a vise, this bolt is drawn loack, and the handle unscrewed from the bar and screwed instead into the heels of the fixed jaw of the wrench. The movable jaw is then operated by means ol a lever rod, which is passed through an opening in the milled head of the adjusting screw, and, as shown in Fig. 2, the tool is thus converted into a small but powerful hand wrench. As a convenient and preferred means for converting the hand vise into a vise capable of being readily fixed upon a stationary bench or the like for holding work, a bracket plate is provided. As shown in Fig. 3, this plate consists of a flat sheet of metal, having an open slot formed therein and adapted to receive the heel of the fixed jaw of the wrench. The side walls of the slot fit snugly into a pair of channels formed in the fixed jaw, thereby securely holding the device against turning, as indicated in Fig. 4. The bracket is held by screws to the edge of the work bench, and thus the tool is converted into a bench vise. Mr. W. P. Foster, of Jacumba Hot Springs, Campo, Cal., has just procured a patent on this ingenious combination tool.

A PORTABLE PNEUMATIC DUSTER.

The use of suction apparatus for household cleaning is now so general that it no longer arouses comment. A form of apparatus in which the same principle is involved, has recently been brought out in Paris and will doubtless prove of interest, although the principle is not new. The contrivance in question is a portable

a pnevmatic duster.
pneumatic duster, consisting of a bellows constructed somewhat after the fashion of an accordion. From the bellows a tube leads, by which an ordinary duster is carried. Within the bellows packing material is contained which retains the dust gathered. The duster is passed over the object to be cleaned in the ordinary way, and the dust which is displaced is drawn into the tube by operating the bellows. As soon as the dust is caught by the packing material, it cannot be discharged by compressing the bellows. When the packing is quite full of dust, it is taken out and thrown away and new packing is inserted.

FRUIT AND POTATO SORTER.

We illustrate herewith a very simple yet effective machine for sorting fruit or potatoes, which has recently been patented by Messrs. Dana W. Lamb and George Fair, of Pontiac, Mich. The machine comprises a frame in which the sorting cylinder is mounted to rotate. The sorting cylinder consists of two screen sections formed by two series of parallel bars connecting two outer head rings with a common intermediate ring. In the first section of the cylinder these bars are fixed, but in the other section, or the discharge end of the cylinder, the bars are so arranged that they can be adjusted to increase or decrease the screen openings formed between them. This arrangement is indicated in Fig. 3. The bars are oval in cross section, and turn in bearings in the head ring and intermediate ring. Each bar is provided at the outer end with an operating lever, of spring metal, which lies against the face of the head ring. By means of these levers the bars may be turned with the longer axes of the ovals in vertical position, or with these axes in horizontal position, as shown, being held in these two positions by pins on the head ring. It will be evident from Fig. 3 that when the bars are upright, the widest possible space is obtained between them.

FRUIT AND POTATO SORTER
In operation the potatoes or fruit are fed into the cylincler from a hopper, shown at the right in our drawing, and the screen is rotated by means of a crank on the end of a shaft, which is secured to the intermediate ring of the cylinder, as illustrated in the cross section, Fig. 2. The cylinder is slightly tilted to assist the potatoes in traversing its length. Below each screen section and at the end of the cylinder is a chute leading to a suitable receptacle. The smallest potatoes will fall through the opening in the first section, and the seed potatoes through the second or adjustable section, while the large or marketable potatoes pass out at the end of the cylinder.

DEVICE FOR MUFFLING THE EXHAUST FROM ENGINES. A patent has recently been granted to Mr. William J. Hewitt, of Del Mente, Cal., for an improved mulfler adapted to muffle the exhaust from engines, particularly explosive engines. As shown in the accompanying engraving, the muffler consists of a cylinder within which a series of circulating wheels are mounted to rotate. Each circulating wheel comprises a number of blades inclined like fan blades and arranged in circular series about a hub. A face view of one of these wheels is shown in the engraving. The circulating wheels are suitably spaced apart, on the shaft which carries them by means of collars. The heads of the cylinder are formed with projecting sleeves terminating in brackets which provide suitable support for the muffler. Ball bearings are formed in these brackets for the shaft of the muffler. The shaft is rolated by means of a sprocket wheel at one end. In operation, the exhaust passes into the cylinder through the inlet pije shown at the left in the engraving. The circulating wheels, it will be observed, are located near the outlet end of the cylinder, and the exhaust is permitted to expand in the space betwren the inlet and the circulating members, thus losing a portion of its energy.

It then impinges against the moving blades, whereby additional force is absorbed, while the revolution of these blades produces a suction which tends to draw out the burned gases from the exhaust valve and considerably decreases the back pressure, thereby increasing the speed of the engine. The exhaust is now discharged through the outlet pipe with hardly audible sound. If it is desired, the circulating members may be so positioned upon the shaft that the space between

MUFFLER FOR EXPLOSIVE ENGINES.

them gradually increases as they approach the oullet, thus giving the gas a better opportunity to expand.

Oddities in invention.

Sabmes.-Pictured in the accompanying engraving is a saddle provided with stirrups so constructed as to ease the jolts of horseback riding. Instead of the stirrup straps usually employed. a spring hanger is substituted, which as shown rich, as shown y dotted lines, $\begin{array}{lcccc}\text { consists } & \text { of } & \text { a } \\ \text { heavy } & \text { c } & \text { o } & \text { i } & 1\end{array}$ heavy e o i l
spring,
concealed under the side flap of the saddle. In use addle. In use he rider bears his weight on the straps, and the uneven or sudden movements of the horse are taken up by t he
 ppy the springs, which STRAP. hus cushion the jolts. This renders horsebadi riding much lesis fatiguing, rarticularly to those who are not accusomed to this sport
Staky.-It is difficult to classify the novel vehicle shown in the accompanying engraving. It is in reality a cross between a saddle and a sulky. The seal of the sulky occupies the position of the ordinary saddle, and the feet of the driver are supported in stirrups. But the saddle, instead of resting on the horse, is supported on a yoke frame, that carries a pair of sulky wheels, which run along the ground on either side of the orse Coil suring are intemosed batween the posis hich Corls hich carry the wheels and the yoke piece to which he saddle is secured, so as to talie up any unevenness in the road. With this type of sulliy the driver is afforded all the facilities of a ridling jockey in the con-

SULEY.
trol of his horse, while at the same time the horse carries no weight. Sharper turns can be made than if the vehicle were dragged behind the horse and, furthermore, the sulky tends to steady the running of the horse
Can-Opener.-In the accompanying illustration we show a very simple can-opener which has recently been patented. It consists of a handle formed of heavy wire bent to proper form and terminating in a sharp prong adapted to be driven into the top of the can at

ADJUSTABLE CAN-OPENER.

the center to serve as a pivot or fulcrum on which to turn the can-opener. The cutter comprises a carrier also formed of heavy wire and a projecting prong with sharpened edge and point which constitutes the cutter proper. The carrier is mounted on the handle in such manner that it may be moved to any desired position thereon. The can-opener is thus made adjustable to any size of can. The method of using the device is clearly shown in the illustration.
Wrevch.-The wrench shown herewith is adapted to be instantly adjusted to fit any nut merely by the pressure of the hand, in which adjustment it automatically becomes rigidly locked when pressure is applied between the jaws. Instead of the usual rack and worm feed for the movable jaw, the latter is moved by hand to the desired position, and is there held by a steel ball which is carried in a suitable housing in the movable jaw. This ball is pressed ioy a coil spring between

Wrench.

the shank of the wrench and the inclined wall of the housing. It will be evident, if cresstire be applied to move the jaws apart, the movement will tend to move the bali into the narrower end of the housing, and firmly wedge it between the inclined wall ant the shank of the wrench. Thus the greater the pressure between the jaws, the more securely will the movable jaw be locked. When it is desired to move the jaws apart, this can readily be done by seizing the ball beween the fingers and drawing it lack, when the movable jaw will be unlocked, and can be moved to any desired position.
Fme-Escapr.-The fire-escape shown in the accompanying illustration, is made up of a series of intermeshing linlis, which are individually hooked into eyes set into the side of the building. The advantage of this construction lies in its chearness and simplicity, and the readiness with which the links may be applied or removed. The links are formed of metal rods bent to a U-shape, or similar to the links of a "ladder," or "square link" chain; but the free ends of each link are bent back to form hooks for engagement with the eye. In setting up a ladder the bottom linli is first applied; then the ends of the next link are passed through the first linli and hooked on to their respective eyes, and so on, each link serving to hold in place the upper end of the one immediately below it. The upper end of the last link is held in place ly a metal

LINK fire.escape
bar, secured to the sides of the building. In order to provide access to the ladder from all parts of the provide access to the ladder from all parts of the tier of windows, so that a person walking on th lower rail, and using the upper one as a hand rail, can easily make his way to the ladder. These rails are held in socket pieces attached to the building, and can be readily applied or removed when desired. Fiulit Picker.-A simple device for picking fruit, which has recently been invented, is illustrated in the accompanying engraving. It consists of a wire basket formed with an upwardly-projecting hood, which is provided at its upper edge with projecting wire hooks. In use these hooks are slipped over the particular apple, pear, or other fruit desired, and then a slight pull will cause the fruit to drop in the basket. The fall being very short avoids bruising of the fruit. The openwork of the basket prevents dirt from collecting therein and permits the picker to determine when
 it is full.
Mair. Shears.-When opening an envelope by cutting off the end with a pair of shears, one is quite apt to clip off an excessive portion, and cut into or injure the contents of the envelope. To prevent this the scissors guard illustrated herewith has been invented. It consists of a piece of sheet metal of approximately triangular shape which is fastened to the upper blade of the shears, and extends downward against the lower blade. An ear formed on the lower corner of the plate prevents the blades from opening too far. In use the end of the envelope is pressed against this suard plate, which serves as a gage to determine the width of the portion cut oif. The plate is held in place

MAIL SHEARS.
by screws, so that it may be easily removed when it is desired to use the shears for other purposes

Bricf Notes concerning Inventions.

A tablet to the memory of Eli Whitney, the inventor of the ratton gin, has been erected at the roadside on the old Whitney estate at Westboro, Mass. The memo rial is quite a modest one, but it was placed in such a position that it will be olserved by all passers-by.

A machine for skinning tomatoes was recently put into operation at a large canning factory at Woodstown, N. J. Heretofore this work has been done by vomen, and in the larger establishments it was necessary to employ a great number of them during the tomato canning season, but the operation of the machine is said to iee such a great success that it is likely that there will be lut little for these girls to to in the fiture. The machine takes the vegetable directly from the scalding vat and removes the slin from the to mato quickly and effectually.

Public attention has leen called in England to a fur hace of new design which, it is claimed, will not only prevent smoke but greatly increase the efficiency of the coal used in it. The invention was announced by Sir Joseph Primrose, who is very largely responsible for the invention. at a banquet in Glasgow which was at tended by engineers and others interested in matters of this character. The invention consists of burning the coal in a furnace surrounded ly a water jacliet separated from the boiler so that the gases do not come in contact with the boiler until they have been completely burned. Sir Joseph sair that he had declined to say anything about this new boiler until he had been thoroughly satisfied of its efficiency in every way by actual tests. The matter was made the subject of a report by Consul-General Richard Guenther at Franlifort, Germany

An entirely new thing in the manufacture of pocket linives comes from Germany, the firm of J. A. Hen chels. Solingen. being responsible for it. In these linives, the handle:s are sawed from one solid piece of inory, pearl, or tortoise shell. There are no bolsters and as the lining and back are in one piece the differ
ent parts consist merely of the blades, springs, rivets, and handles. In this construction all the blades are necessarily on one side. The one of ivory, for instance, is $5 / 8$ inch wide and $9-32$ inch thick. It has four blades, and the two pairs are separated from each other by a partition of ivory. Because of the impossibility of obtaining pearl and tortoise shell of sufficient thickness, these materials are made up into small two bladed knives only. These knives have an exceedingly neat appearance, the absence of metal being very noticeable.
In a recent report made by Consul-General Guenther at Frankfort, Germany, he calls attention to a new metal wh ich seems to be possessed of a number of virtues, the invention of a French engineer, Albert Nodon, and who has called the new material "nodium," alter his own name. It is lighter than aluminium, has the color, luster, and structure of steel, has the malleability of bronze and has a conductibility for the electric current equal to that of copper of the same weight. It is suitable for being cast into forms, and the inventor hopes that it will be found available not only for electric wires and cables, but also for parts of mechanical construction of various kinds where strength is required and where it is desirable to have the parts as light as possible. No information is given about the composition of the new metal, but it is said to be made by an electrical process at a cost of about 15 cents per pound.

Marcus T. Hitchcock, the inventor of a car-ventilating system which has been in almost general use for the last thirty-five years, died at his home on Boylston Street, Boston, Mass., November 23, 1903. He was 86 years of age, and had not been actively engaged in business for some years, iut his health had been good until a few days prior to his death. His father was one of the "minute men" of the revolution, and resided at Springfield, Mass., where Marcus Hitchcock was born and reared. His inventive genius croppcil out early in his youth, when he was employed at a milling machine in the Springfield arsenal. The machine not suiting his purpose, he improved it, and the improvement was soon adopted and a number of other machines built according to his suggestion. He afterward iecame master car inspector for one of the railroads of the New England States, and while working in this capacity he designed the ventilator bearing his name. He was also the inventor of a smoke-burning clevice, an apple dryer, and a number of similar things.
Leonard Henkle, the man who originated the Rochester lamp, which is now in use all over the world, died almost in poverty at Rochester. N. Y. He was also the inventor of features of other lamps, but none attracted so much aitention as the Rochester. He was l:orn on May 15, 1834, and much of his time is said to have been spent in fostering various schemes, most of which had for their objects the uplifting of his fellow man. Many of these were visionary and but few of them received any support from those whose interest he endeavored to enlist, because of the absence of pecuniary rewards. In many respects Mr. Henkle was far ahead of his time, and he is said to have been the first person to suggest the idea of a great power 1)!ant driven by the Falls of Niagara. He spent considerable time in traveling among the cities of New York in the vicinity of the Falls and endeavoring to get them enlisted in a great industrial movement having for its object the utilization of the Falls, but this was considered far from practical at the time, and he was laughed at for his trouble. The old man lived to see the greatest fower plant in the world in operation at this point, but the project was brought about on lines very different from those suggested by him.
The latest development of the car-fare register consists of a device which makes a printed and detailed record of the business of each trip made by the car and gives the totals for the day. This report is made on a sheet which can be filed away for future reference and the value of such a record is apparent to anyone acquainted with the street railway business. Such a report, it is said by the inventor, will do away with the possibility of disputes between conductors and railway officials involving the business done. It not only makes a visual record of every fare as it is paid, just as do the registers at present in use, but also makes the permanent record of such matters as the number of liull fares, number of hall fares, and the tickets of various liinds; also the number of the conductor who may have ieen in charge of the car on each particular trip, and finally, the number of the inspector or other official whose business it may have been to take the printed sheet from the machine. The record of th? conductor is secured by making the machine inactive until an individual key supplied to the conductor has been inserted in its proper place. The conductor must do this when he takes charge of the car, withdrawing the key when he leaves it. In order to unlock the machine the succeerling conductor must make use of his own key, and thus the change of responsibility will be made apparent. This machine is the invention of Will I. Ohmer, of Dayton, Ohio.

Recently patented inventions Apparatus tor Special Purposes.
condevser, 0 . The invention relates to a condenser especially intended for use with an apparatus for extract ing ded for use with an apparatus for extract-
ing mercury from cinnabar and analogous ores. In operation the vapors generated in a furnace retort are led into the upper part of the con denser shell where they are met by a spray
The vapors are therely condensed and the The vapors are therelyy condensed and the
condensate falls to the bottom of the shell. condensate falls to the bottom of the shell.
A body of water in the bottom of the condenser prevents the falling quicksilver from
striking the bottom of the condenser and be. would tend to return it to particles, whic

Dental appliances.

mextistry.-I). T. Hhle, Syracuse, Neb. The invention provides a simple means for se curing artificial molars and bicuspids in position in such manner that the denture cannot
be accidentally displaced, but may be readily removed when desired. The locking device comprises a box-like member provided with
-shaped spring. This attaches to the rubber plate on which the artificial teeth are secure and the locking device itself is secured dental a pilliance.-F. c. rood, walla Walla, Wash. Dr. Rood's invention relates particularly to devices for trimming the root of teeth in preparing them for crowning with
Richmonc, Logan, ov other dowel or pin
crowns. The arrangement is such that the pin which enters the root canal is connected movably with a cutter, so that the cutter can
be turned at different angles without displacing the pin from the root canal and without necessitating
this canal.

Electrical Devices.
INTERCHANGEABLE TELEGRAPHIC KLYY.-W. C. Deav, Quitman, Ga. This inven tion is an improvement upon that form of in-
terchangeable telegraphic key or combined key terchangeable telegraphic key or combined key and switch in which a single key is so conwith any number of telegraphic circuits and intruments, doing away wis position from one the operator changing his position from one
instrument to another, and also of carrying a typewriter from instrument to instrument when messages are to be transcribed thereon.

Of Interest to Farmers.

K.NOTTER-GEARING.-J. M. Rector and w. II. Rossule, Monarch, Mont. The object of the invention is to dispense with toothe driving shaft with the knotter shaft, and to provide a superior means for transmitting the and a link connecting them.

Of General Interest.

Clifese-gage.-W. H. Frank, Burkesville, K y. The invention is an improvement in that
class of cheese gages which are adapted for use in cutting up cheese into slices of a de-
sired weight, size, or price. The present insired weight, size, or price. The present in-
vention is an improvement upon one previously vention is an improvement upon one previously
patented by Mr: Frank, and is arranged to hold and guide the cheese in an improved manner so that the slices severed will have uniform
faces instead of being cut at greater or less faces instead of being cut at greater or
angles, as might otherwise be the case.
Colfar.-A. Jomvson, Wellsville, Ohio. The invention is an improvement in dog colbe contracted when the dog pulls on the chain thus exerting a pressure to restrain the dog. It will be found especially useful with dogs adjusting. and the weight of the dog chain
and the as the will regulate its size. The dog, therefore, will
not be able to get the collar off, as the harder not be able to get the collar off, as the harder
he pulls, the smaller the collar will become. COMIOSITION OF MATTERR.-E. C. May -hicago, 111. The object of the invention is to provide an improved composition of matter for
the manuracture of firebricks, tiling, etc., and the manuracture of firebricks, tiling, etc., and
which is exceedingly hard and solid, and not liable to deteriorate under the influence of air or high heat. The composition of matter con-
sists of the following ingredients: Pulverized sists of the following ingredients: Pulverized
and ashes, 1 ton; powdered silica, $1-5$ ton; and a binding material, such as cement, or
lime, $1-5$ ton. GOODAS-ENHIBITOR - P. J. Koll and .I. .I. Kobl., Narling, Iowa. This apparatus is de-
signed and adapted by these inventors for use by merchants for suspending and displaying robes, rugs. and the like. The chief ohjects
aimed at in its construction are simplicity, heapmess, strength, portability. and adaptation for exliibition of a series of robes or rugs
the lest advantage and in minimum space. calcllating apparates.-a. b. Bly Ottumwa, Iowa. The invention relates to ap-
paratus for performing various mathematical operations, being partcularly adapted for the addition of serials of numbers. Its principal objects are to provide a simple yet accurate ap-
paratus. Any combination of numerals. the paratus. Any combination of numerals, the
sum of which does not exceed the capacity of the apparat'rs or is less than thousand millions, may be addea. The same general metho is
number to be deducted belts are moved in opposite direction. Multiplications may be treated as multiple
subtraction.
book-finisiler's Stand.- V. Kling, Council Bluffs, Iowa. In finishing books on the back it is the usual practice to place the book in a clamp to hold it firmly; but as the book
mnst be turned many times in order to do the work on either side of the "hubs" it is necessary to open the clamp and manually turn the ook and again place it in the clamp. To ob means of which is the aim of the livily turne without taking it out of the clamp until the bris entirely hnished.
DLST-COLLECTOR.-R. L. Hollingsworth aith, Ga. Though adapted for use in other
laces the inventor's inprovements are intended more especially for use in factories, mills, and the like for collecting from the air therein any and all dust, shavings, or other solid particles with which such air may be laden; and one of
his principal objects is to provide a device simis principal objects is to provide a device simto in construction, comparatively inexpensive liable in operation.
bracket.-J. F. Kress, w. Loshelder II. O. Gross and II. Loshelder, Jk., Pittsburg,
ra. While this bracket is simple and inexPa. While this bracket is simple and inex
pensive to construct, it serves to support both the shade and drapery for windows of any of shade-rolls and drapery-poles after the rackets have been fixed in place, thus providing without change in position for the curtains of different users and for variations in
the position of draperies in accordance with dif. erent tastes
Garment.-I. L. Marrow, New York, n. \mathbf{Y}. It is customary to provide garments, espe-
cially such as men's and boy's drawers, with non-elastic loops of tape at or near the top. through which may be passed suspender-ends or other supporting attachments for holding the
garments in the proper position. As these and garments in the proper position. As these and
the material of which the garments are made do not stretch, the loops are frequently of no waists, especially for tall men, and when the row's main object is to overcome these objections.
CALENDAR FOR PENCILS, ETC.-F. Stil abject is to provide a calendar for pencils, the holders, and like articles arranged to permit the user of such articles to have ready refer ance at any time to the calendar for obtaining desired date of the present month, the cal ndar being very simple in construction and bily applied to the article
BOOK-CLAMP.-J. N. Bostick, Fresno, al. More definitely stated, this invention re
 or other securing means. Specifically stated, e invention adapted to be secured upon the top of a table or other support and means for top of a ta
working it.
FOUNDATION-ANCIIOR FOR BRIDGES -r. P. Cabler, Estill Springs, Tenn. In this ide an improved means for fastening hollow bridge columns or pipes used for other pur ooses in stone or rock foundations. To thi end Mr. Carver has adopted and successfully
employed the means. The invention is appli employed the means. The invention
cable in cases where no water exists.

Hardware.

wRENCH.-R. J. Cosseboon, Leadville Colo. Mr. Cosseboom's invention relates to improvements in pipe-wrenches of general type,
the object being to provide a wrench of this the object being to provide a wrench of this
character that will be simple in construction. character that will be simple in construction.
having no parts liable to get out of order, and having no parts liable to get out of order, and and rigidly grip the same without danger o marring or crushing it.
SAT:-G. G. McGill, Decatur, Ind. The principal object of this invention is to make soard, timber, and the like, at all places wher a section of board is to be removed without first boring holes and using a Keyhole saw to at the tip and provided with teeth both on the lower and the upper edce.
DOOR OR WINDOW LOCK.-W. F. Mar riN, New York. N. Y. The purpose of this inention is to provide an absolutely secture the like against entry from one side. the purpose
being in practice to place the lock on the In side of the door or window, so as to lock the same agalnst opening from the outside. Wrench.-C. H. Rutrs. Wausa. Neb. In
this case the invention relates to lmprovements in wrenches. particularly adapted for tlghten ing screw-threaded calks in horseshoes, bu obviously adanted for tlghtening nuts. lag
screws. and the like: and the object is to provide a wrench of this character that will be very simple in construction and adapted
to operate with comparatively little manual

Heating and Lighting.

Broomela, York, Pa, In this patent the in-l
vention is an improvement in water-heating apparatus commonly called "fuel economizers," and has for an object to provide a novel con-
struction whereby to prevent the splitting of the headers from the pressure exerted in forcin the headers from the pressure exerted
the tubes or pipes into such headers.
hot-water heater.-J. a. Coipride Roanoke, Va. This hot-water heater com prises a hrebos formed of four corner stand pipes connected by horizontal pipes and leading
to a hollow crown sheet or dome. The whole is encased in a metal or brick casing. The dome is formed with depending chambers for heat out to the radiators. The firebox is provided

Machines and Mechanical Devices.

\section*{LEAD GAGE AND ARBOR Levell.-M.} Bams:, Atlanta, Ga. The device is adapted for setting a carriage arbor so ar cill cut parallel to the carriage. By means of thi device, the crude and clumsy method of using long strivg or cord for gaging the carriage obviated. The device can be gaged within ng up a mill and getting the desired lead. | NLT-HIOLDER.-G. F. Zwilling and C. W |
| :--- |

Richares, Cleveland, Ohio. This nut-holder
is designed especially for automatic nut-tap. ping machines. The device is arranged to pro vide for holding the nut with that firmness and yet ailowing the nut a certain bodily movement transversely of the tap, so that be shifted laterally as the tap enters the nut, and the tap allowed to operate evenly.
Canerra.-L. Nesbarany, New York. N. Y The purpose of the lamera in which accommodation is afforded for a large reel of films, and means for conducting the films past the rear
of the camera box in such manner that "moving pictures" may be taken or so that indi vidual pictures may be taken at will. An
alarm is provided which will be sounded after predetermined number of pictures have been taken.
AMISEMENT APPARATI'S.-C. V. Jomsson, Salt Lake City, Ltah. In this apparatus a rolling object, such as a bicycle, under the control of a riaer, travels about a vertical from its passage down an incline leading to the loop. It is more particularly applicable o apparatus in which a portion of the path s omitted to cause the rider to leap across
he gap thus formed under the impetus he has attained.
WORL-Carrier.-G. A. Ensign, Defiance.
Ohio. The invention relates to woodworking machines, such as mortising machines, boring machines, and the like. The workcarrie: is
arranged to have a limited sliding motion be ween adjustable stops, or a free unlimited sliding motion for any desired distance inde
pendent of the stops.
actonatic DOOR-ALARM.-P. Bocrne, New York, N. Y. One purpose of this im provement is the provision of an alarm at achment for doors brought into operation by the device is connected and which device may of action whenever desired
MOFABLI: MAP AND MACIINE FOR OPERATIN SAN The purpose here is to provide a ma chine having means whereby maps may ie moved relatively to each other simultaneously or in any secuunce, and whereby any one map panoramic led over by a party demonstrate a route travgraphic features traversed and line of travel, as from town to town, country to country, etc. and to provide means for illuminating portions
of maps and displaying at intervals illuminated scenes in travel of the person and forming the sulject of the display or lecture.
tyiperinecting device in type asting maciines.-J. Mayer and C. Al ates to a device of the kind described in the lates to a device of the kind described in the patent. The type-mold there described is adapted for producing a plurality of types at allel cross-cavities in a plane, and consequently the type-ejecting device comprises a comb-like e.jector. the teeth of which are either made in ne piece with a part of the machine or secured thereon by suitable known means. In the lat
ease the constructon is such that distance between the several teeth can be varied to the
circumstances.
CLAMI FOR IIAT-PRESSING MACHINES -V. J. Lawson, New York. N. Y.. In this pat ent the invention has reference particnlarly to a new and improved clamp intended for use in
connection with hat-pressing machines, by means of which the felt may be drawn outward from the mold in case the felt does not reach to the edges thereof.
FOR MINING-MACIINES.-M.
FACK Raines, Decota,
especially adapted to that form of mining-ma-
to be braced betweon the roof and the floor of vein in order to serare the proper pressure
for operation. It is applicab, boweres various forms of mining-machines and not limbited to the mining of any particular material, although the inventor desires it specially to REVERSING MECHANISM.-F. r. Mme Ellisgrove, III. The invention relates to er
centrics reversibly mounted on their shat for entrics reversibly mounted on their shalt. sm more especially designed for use on locemb, and arranged to allow concenient machines the eccentric at the will of the operator and protect the working parts against dust, etc... to insure a proper working of device at all imes
machint: Folk calcteating momerst ell, oklahoma Ter: The purmste of this invenion is to provide a machine for calculating nterest and percentage which will be of simte and economical construction, concise, accuate, and readily operated. The machine acomplishes this, in such transactions, as, When the rate of interest and hime are given to find the interest: when the interest and rate are
given to find the time. etc., in an impored and satisfactory manner.

rime Movers and

 boiler STAY-bolit- J. Petmes and J Colemas, el raso, Texas. This imporement isin the nature of a novel form of steam-loiler ay-bolt, designed to connect the cown-shecet of the firelox with the outside shell of the bolt and the combination of the same with the sheet and shell as will secure a strong connertion of these parts, which will compensate for expansion and be capalle of adjustment, and which will also facilitate the making of repat:s and the tightening up of the bolts again.st

Rallways and Their Accessories.

THIRI-RAIL coverivg. - T. Beckles

 New York, N. Y. The invention relates to of the weather, and also to the proteretion of life and property against the damgers of the rail when energized. A wall is located on eachside of the rail and two arelnod mecal coverside of the rail and two arellod meral cover-
ings protect it above. These coverings are normally held in engagement with cach of her y coiled splings but art adalpted to be spread
part by pilot-slooes to admit the contact-shoe f the car.
CAR-NILLEL ANi) ANLE.-W. A. Hones:as, Wallace. Idaho. In carrying out the present invention the object particulaty in
view is the provision of an improvement which view is the provision of an improvement which
will be exceedingly simple in it? (onstruction will be exceedingly simple in it: construction
and which will be duratle-that is. able to tand the hard uses incident to conditions under whith it is employed. The inventor ine-
vides an axle which is self-oiling: and means for locking the wheels in position on the axle, the construction being such that a minimum of friction is had with the maximum strength and security.
 ort Jervis, N. Y. In this palent the inven ject is to provide a coupling arranged th permit of conveniently tying or coupling the drawheads of adjacent cars together in case the coupling mechanism of the draw-heads is broken coupling mechan out order.
or out

Pertaining to vehirles.

Sthering idevice.-W. II. Dodghas, Belleville. N. .I. The inventor's object is to
provide a device which can only be actuated provide a device which can only be actuated
from the steering-whel, and when not reftirect or steering needs no attention or holding on the part of the operator, as it is locked in any by jars or strains when the conveyance travels over rough roads, for instance, the device requiring bnt little power to actuate when it is desired to steer the conve automobiles and similar road wedicles. aerial
and marine vessels, and other mechanial conveyances requiring steering.

Designs.

DESIGN FOR A FOLDNGG-(IIAILR-II. an ornamental chair shown in persipective. It and straight lines and finely proportioned. A dotted four-pointed star with a ring in its center, in which a round slot is
the midde of the chair seat.
BADGE-C. L. Thwings. Leander. Tos This is a design for an article or device in
tended for use on goods. dhattels or other prop erty to Indlcate that they are for sale. The device is in the nature of a badge which may
be attached to the clothing or property of a person, or otherwise employed for the purpose above stated. The article is a fiokres in dif.
having its face ornamented by figl having its face ornamented a ftract atlention.

Nore.--Copies of any of these patents will
he furnished by Munn \& Co. for ten cente each Please state by Munn \& Co. for ten rents each. the invention, and date of this paper.

Business and Personal ZUants.

 Marme Iron Works. Chicago. Catalogue free.
Inguiry No. $\mathbf{6 0 6 3}$. - For manufacturess Autos.-Duryea Power Co.. Reading. Pa.

For bridge erecting engines. J. S. Mundy, Newark, N.J.
 P'rirorated
Co. Cbicago.
Indiniry No. 6067.-Tor parties to do drop press
work on wire steel. Handle \& Spoke Mchy. Ober Mfr. Co., 10 Bell St. Jnuiry, No. $\mathbf{6 0 6 8 5}$. - For makers of Newhall and If it is a paper tube we can supply it. Textile Tub Inquir ry No. 6069.-
supplies for tatiooing.
Sawmill machinery and outtsts man
I.ane Mfy. Co.. Box 13, Montpelier, vt.
 1) A. Be.aton. Practical Lead Burner. P. P.
Wowurn, Mass. Fifteen years' experience.

special Machinery to order., manufacturing. me
stampings, etc., Brickner Mnchine Co., Tiffin, Obio.
Induiry No. bu7.:.-For makers of solder for
solering aluminum.
Ameri can inventions negotiated in Europe. Wenzel Inquiry No. 603 3. - For manhinery for extracting
in thom oranges and iemons, and for parties enkaked
in the sume.
Patented inventions of brass, bronze, composition or luminum construction placed on market. W
Inguiry No. Gill74.-For apparatus for burning
wood into cbarcoal. For SALE.- Valuable patent, esf.159. $\begin{aligned} & \text { Specifications } \\ & \text { nd drawings sent on request. } \\ & \text { H. O. O. }\end{aligned}$ Saratoga Street, East Boston, Mass.
Inquiry ©. 607.5.-For a very light-draft, stem
Wheei gasoline boat 25 to 35 feet length. The celebrated "Hornsog-A krogd" Patent Safety oil
Engine is built by the De La vergne Machine Company Engine is built by the De La Vergne Machine Company
Foot of East 138tb Street, New York. Inquiry No. 6076 . - For makers of small Ferris
Wheels. Dry Batteries.-How to make and usethem. Prac-
tical, with original drawings. Mailed for 25 cents. Spon tical, with original drawings. Mailed for 25 cent.
$\&$ Cbamberlain. 123 S Liberty Street. New York.
Inquiry No. 609\%.-For manufacturers of napping
machines. Sheet metal. any kind, cut, formed any shape. Die
making, wire tormiug, embossing, lettering, stamping, punching. Metal Stamping Co., Niagara Falls, N. Y. Ingniry No. 6078.
burns icetylene gas.
vas a railroad lantern which merit. Must begood sellers. Will buy outright or sef
on royalty basis. The Cleveland Sales Company, 407

I"quiry No. $6109!$.-For a thermometer which will
ceister 500 deg. or 000 deg. below zero
Manufacturers of patent articles, dies, metal stampnufacturing Company, 18 South Canalstreet. Chicago.
Inguiny
corkscrews. T'wo patents for sale. Supply tanks for water service,
No. $\boldsymbol{T} \dot{6} 9,500$. Vaive. a cut-off, for suppls tanks, No. 37,941. Can furnish some valves, cut-off, in working order. P. J. Leithauser, Clarendon, Texas.
Imporiant Patent For Sale. - The only pe
or talking machines. Patent No. $\approx \pi 1,4+1$ is a basic patent absolutely necessary to manufacturers of talkng niachines. Address Horns, Box TTi, New York. Wavteli,-First-class man for engineering depart-
ment. One familiar with sbop practice and designing. ment oble to draw up ideas. State age, experience and
and and
asilary expected. Address The Ohio Brass Co., Mans and able to
saliry expe
ficldo obio.
 10, 193.3. Covering vital points in telephone develop, ment. Impurtant subsequent improven
purchaser. Address \quad Dennis O'Brien,
Winona, Minnesota.-Population, 21,000- Wants Man. facturing Plants. For particulars address Geo. W \& Send for new and complete
St Sond for new and complete catalogue of Scientifc
and other Books for sale by Munn \& Co., 3i1 Broadway, New York. Free on application.
Foir SAle.-U. S. patent No. 667.866 , patentey August
16. 1104. Variable speed and reversing bear c.un be ap16. 11.04. Variable speed and reversing bear c:un be ap-
plied directly to any machine. motor carriage and plied directly to any machine. moto
launches. Address John C. Busche.
17 Brown Ave.. Turtle Creek, Pa.
Wanted-Revolutionary Documents. Autograph Letgrs. Journals. Prints. Washington Portraits, Early Americin Illustrated Mayazines, Early Patents signed
by Presidents of the United States. Valentine's
\qquad
iddress C.A. M., Box 7T3. New York
Wanted.-A frst-class, all-around mechanic, tonl maker and tool designer, preferably between 35 and 45 years of age, with considerable executive ability in
handling men; one having bad considerable experience in the designing and building of special tools, jigs and fixtures, such as are used on fine special machinery requiring accuracy and duplication of parts. A man capable of bringing tools and machinery up to the
highest possible point of efficiency. A frst.class position. and one of rapidly growing responsibility to the
ight man. Address, giving aze. experience in full. stating positions held in past. references, and salary
 HINTS TO CORRE:SPONDENTS. and Address must accompany all letters or
attention will be paid thereto. This is for ur information and not for publication.
eeferences to former articles or answers should given
ate of paper and page or number of question

yers wishing to purchase any article not adver-
tise in our columns wwll be furnished with
addresses or bouses manufacturing or carrying
the same. the same.
pecial Written Information on matters of personal
rather than general interest cannot be expected without remeneration.
Scientific American Supplents referred to may be
had at the ofice. Price 10 eents each.
Booss referred to promptly supplicd on receipt of
price.

(9465) S. A. C. asks: Will you please tell me why the problem of squaring the circle is said to be impossible? I know that the ratio of circumference to diameter, which en-
ters into the problem, is an incommensurable ters into the problem, is an incommensurable
ratio, but how can anyone say that a method can never be found for drawing two lines in lated to each other by incommensurable ratios, and I fail to see why that particular ratio should be impossible. I am always laughed at when I say I am trying to square the requires the finding of the side of a square whose area shall be equal to that of the given
circle. No such square can be found. The rea of a circle is π^{2}, as is proved in geometry The numerical value of π is 3.141592 , etc It has been calculated to 250 places of deci mals, and will never end. That means that has no exact value. Any desired degree there is only an approximation, and not a definite, accurate result. Since π has not an merical value. No circle can have its area es pressed in a whole number if its radius, or diameter, or circumference is expressed in a
whole number; and on the other hand, if the area of a circle were a whole number, the radius, diameter, or circumference could not be a whole number. Now, if the area of a circle
is not a whole number, the square root of that area, winch is the side of the square of the same area, will not be a whole number, no will the square root ever terminate, however
far it is carried out. Thus you will see that the side of a square of the same are as an given circle cannot be found. All such con structions as you inclose are more or less clos approximations, useful in mechanical drawing but of no value in exact mathematical work The squaring of the circle is known to ever mathematician to be impossible. In applica tion of this, take 1 inch as the radius of a
circle; the area Is 3.1416 square inches nearly The side of the equivalent square is 1.76688 inches. This is close enough for ordinary pur poses, but Is not mathematically exact and
never can be calculated to exactness. This is what is meant when it is said that the squar of a circle is impossible
(9466) C. E. F. asks: Could you tel me the properties that they use in making dry batteries? A. The materials used in dry bat-
teries are sal-ammoniac, zinc oxide, plaster of Paris, sometimes flour or starch and water. are used on the carbon plate For full in structions how to proceed in making dry cells we would refer you to Scirvitic Aubrica Supplement, Nos. 1001, 1383, and 1387, price 10 cents each. These give the whole story with (9467) H. S. asks: Will you kindly tion of the optics of Queries brief explana lens used in cameras of the "Kodak" type A. A "fixed-focus" lens is one so adjusted that all objects in the field are in sufficiently good focus for a landscape picture. It must have
a short focus. and can only be used on a comparatively small plate. The shorter the focus the greater the depth of focus, that is objects
will be in focus over a wider range. This is, however, a relative matter. In no lens can objects at all distances be in equally good
focus. The rule frequently employed in making fixed-focus cameras, as laid down by a the stop be a fortieth part of the focus of the lens, the depth of focus will range from in many feet as there are inches in the foca length of the lens." Thus with a four-inch lens, all objects beyond sixteen feet will be in focus. A different result is given in a
table published in Taylor's "Optics of Photog raphy," price $\$ 1$, from the report of a com mittee of the Amateur Photographic Societ
of New York.
(9468) G. R. F. asks: 1. Can you oblige me with a good formula for dry cells?
A. A very useful formula for dry cells is . A very useful formula for dry cells is
Oxide of zinc, 1 part; ammonium chloride. Oxide of zinc, 1 part; ammonium chloride.
part; plaster of Paris, 3 parts; zinc chloride

1 part, water; 2 parts. All parts are given
by weight. All dry cells owe their action to ammoniun chloride. We have published in the Scientific american Supplement, Nos
1383 and 1387 , price 10 cents each, most ex cellent directions and drawings for making
dry cells. You cannot do better that dr'y cells. You cannot do better than to ge The directions for compounding the formulas The directions for compounding the formulas a note. 2 . Also, have you a later issue of send price, and I will get one. A. There ha since 1876. We recommend you to purchas "The Scientific American Cyclopedia of Rereceipts, 734 pages, cloth bound, price $\$ 5$ by mail or express prepaid.

NEW BOOKS, ETC

Gefechtswerte von Kriegsschiffen Von Otto Kretschmer. Sonderab druck aus der Zeitschrift Schiffbau e's Verlag Berlin SW. 12 Wilhelm ke's Verlag, Berlin SW. 12, Wilhelm
strasse 105 . Price, 50 cents. The readers of the Scientific Anierican ar formula for calculating the fighting value of ships. In this pamphlet he has given a very thorough explanation of the underlying mathe matical principles upon which he places his tions, of course, are based upon those factor which can be determined with certainty namely, such factors as guns, armament, ar mor, engine powe
Practical Measurements in Magnetism and Electricity. By George A
Hoadley, A.M., C.E. New York, Cincinnati, and Chicago: American Book Company, 1904.

$$
\text { 111. Price, } 75 \text { cents. }
$$

This small volume has been prepared for courses in preparatory schools to prepare for the more advanced instruction in college. It and magnetism, which show the various prin ciples and laws governing these forces. The book is very completely illustrated with dia grams and cuts, and treats of such subjects as magnetic induction, galvanometers, batteries
of various types, resistances and the measure It will be found to very completely
The T A.M. New York: D. Van Nostrand Company, 1904. 32 mo .; pp. 128 Price, 50 cents.
This volume forms the second edition, revised and enlarged, of this practical and useful little
handbook. Besides the chapter on the optical principles involved in the construction of re fracting and reflecting telescopes, the second edition contains a new chapter on the evolu
tion of the modern telescope to date-an evolu tion which has made possible the wonderful progress in celestial photography, which has
revealed so many new stars and satellites. The revealed so many new stars and satelites. The scientific papers, and periodical literature re photography, spectroscopy and spectroscopes photography, spectroscopy and spectroscopes
telescopic accessories, and the making of ob servations.
The Centrifugal Pump, Turbines, and Theory and Practice of Hydraulics
Theory and Practice of Hydraulics.
By Charles H. Innes, M.A. Man-
chester, England: The Technical
Publishing Company, Ltd., 1904. New
York: D. Van Nostrand Company.
12 mo .; pp. 340. Price, \$1.75.
The present, or fourth, edition of this valuble work has been enlarged by the addition of a chapter on centrifugal pumps for high
ifts, and fans or blowers capable of creating considerable pressures. Following the open ing chapters on hydraulics, the measurement the power of streams, friction of piping, etc., hydraulic engines and both axial and ra-
dial flow turbines are discussed theoretically and described practically. The Pelton or tanential water wheel is also dealt with, and there are several chapters on centrifugal pumps. One chapter deals with the great hy
draulic plant at Niagara. The book is both theoretical and practical in character, and
will he of great advantage to all who have to will he of great advantage to
do with hydraulic machinery
Spangenberg's Steam and Electrical
Engineering. In Questions and An
swers. By E. Spangenberg, M.E.;
Albert Uhl, A.I.E.E.; and E. W.
Albert Uhl, A.I.E.E.; and E. W.
Pratt, Master Mechanic. St. Louis:
Pratt, Master Mechanic. St. Louis:
George A. Zeller, 1904. 8vo.; pp. 672 ; 648 engravings. Price $\$ 3.50$
This is a carefully-prepared textbook cover ing the field of steam and electrical engineerlng by means of more than a thousand questions
and answers. 'The three experts who are responslhle for the work have not only the necessary knowledge, but also the rarer glft of abilormerly superintendent of the St. Louis School of Engineering, and Mr. Uhl an instructor in the same school. Mr. Pratt has made the loco-
motive a life study, and his contributions, slm. motive a life study, and his contributions, slm-
subject in few words, and are thus in hamomy With the spirit of the whole. Among the
themes treated are compressed air, mechanical refrigeration, gas and gasoline engines, and hdraulic elevators. The diagrams and illusrations are not reproductions from photoraphs of old cuts, but were all drawn by hand for the particular purpose in view. Evidently neither time nor expense has been
spared to make the manual a success as a teacher and guide, and the result
have fully justified the expenditure.

NDEX OF INVENTIONS
 For which Letters Patent of the United States were Issued for the Week Ending October 4, 1904

ANDEACHBEARINGTHATDATE

T. W. Worral facing therefor, building,
Bricks and apparation therefor, coating, Mi.

 PALMER
 Eclipse Pocket Ammeter EOf

ELECTRIC LAUNCH MOTOR－THE

W户己 $\begin{gathered}\text { DRILLING }\end{gathered}$

 1

Leveler graining machine，C．H．Keete．
Limbs，eteld，R M．Shant for artificiai，G．Rein－

 Lock，W．A．Grant．
Lock，J．Seppens
Locomotive．tender，C．

 Mechanilal movement，F．F．W．Blanchard．．． 71,484
Meta Is，obtaining，Von Kugelgen \＆Danneei 771,646

Milling machnine vertical spindie attachment： 771,609

 Motion，dobby head，
Motor，W．Blackbunt
Motor，W．P．Clifrord

 Ores，concentrating，A．
Packing case，A．The
Packing，rod，A．W．Krieger ．．．．

 Paper basoard receptacles，mold for making，

 Pen，fountain，A．Ebersein
Peramulator，A．E．Mecill
Phase transformation，A．
 Phase transiormation，A．D．Lunt，771，
Phonogram or sound record，C．N．Nurth
Phonograph reproducer，J．J．Neumann．
Phonographs or similar machines，horn

 Planing machine feed roil，H. ．B．Ross．．．：
Plaung machine locking device，H．B．Reoss．
Planter，W．T．Arold
Planter，corn，L．P．Graham

Printing press，multicolor，F．E．Kempf．．．
Pulleys，maklig，A．Beran
Pulp or cellulose，means for relioing wood，

Fump，centrifugal，T．Reuter
Punch．R．W．Barker
Punchng machne，H．ABines
Punching machine

The Apple

Learn to STUFF BIRDS and ANIMALS

Everything for the Automobile

1Auto Fur Coats, - - $\$ 20.00$ up
Auto Rubber Coats, - $-\mathbf{6 . 0 0}$ Auto Rubber Coats, - - 6.00 up
Auto Cravenette Clothing. Yankee Spark Plugs, --
Yankee Electrical Cut-Out Yankee Electrical Cut-Out
Switches, Big Free Catalog
E. J. WILLIS CO., 2 Park Place, N. Y. FORD'SWEATliERSIRIP

Instructive Scientific Papers ON TIMELY TOPICS
Price 10 Cents each by mail
ARTIFICliAL STONE. By I. PR Ford. A architert and builder. SCIENTIFIC AMERITHE SHRINKAGE AND WARPING excellent presentation of modern views;
fully illustrated. ${ }^{\text {S. }}$.
SUPIENTIFIC AMERICAN
COUPLEMENTIONOF OF AN INDICAT-
ING OR RECORDING TIN PLATE
ANEROID BAROMETER. My N. ING OR RECORDING TIN PLATE
ANEROID BARONETER. PN N
Monroe Hopkins. Fully illustrated. ScIEs-DIRECT-VISION SPECTROSCOPES By T. H. Blakesles. M.A. An admirably
writen, instrutive and copiously inlustrated article. SCIENTI
MENT No. 1493.
HOME MADE DYNAMOS, SCIENTIFIC AMERICAN SUPPLEMENTS 161 and 600 con
tain excellent articles with full drawings.
 scribe their construction so clearly DYNAMO AND MOTOR COMBINED. Fully described and illustrated in SCIENTIDIC
AMERICAN SUPPLEMENTS 844 and 865.
The machines can be run either as dynamos
ELECTRICAL MOTORS. Their Con Struction at Home. SCIENTIFIC AME
SUPPEMENTS 759, 761,767,641. THE MAKING OF A DRY BATTERY. SCIENTIFIC AMERICAN SUPPLEMENTS 1001
1387, 1383 . Invaluable for experimental
students.
ELECTRICAL FURNACES are fully deMENTS 1182, 1107, 1374, 1375, 1419,
 instructive paper, fully illustrated. SCIEN.
TIFIC AMERICAN SUPPLEMENTS 1503 and
1504.

Price 10 Cents each, by mail
Ord er through your newsdealer or from
MUNN \& COMPANY
361 Brosdway

 Sewing machine otir
c. D . Matthews

Sbaft locking devico, J. H. Palmer

 Sipb
Sku
Slac
Smo
Smo

 Stacker, hay, o. \& L. Nelson
Stacker, straw, Huber \& Ullich
Stage pocket, B. Beerwid. M...
Stage handle, hand. S. W. Mitcif
Steam hoiler, tubular. Hebert Steam hoiler, tubular, He berer \& Hyne
Steam controlling devvice A. E. Brows
Steam expanion engine, W. H. Hughes
Steam trpans
 Steen, M. V. B. Ethridge ..
Stone
Ste

Stopper puller, E. M. Wilcox
Stove, gas, H. G. Pape
Sto
Stove, gas, H. G. Pape
Stoves. Warming oven
Burnbam
Stove.

Stovepipe ventilator, \mathbf{H} co................
Strandren Stret scavenging machine,
Superbeater, F. D. Potter
Superbeater, C. Hagans Superbeater, F. D. Potter ...
Superbeater, C. Hagas
Suspenders, H. G. Macwiiiam
Swaging mill,

 Tenouing machine, S. F. Wige .ili.
Testing device, torque, A. L. E. Eiis
Treading mechanism, H. E. Boyd
Threading mechanile.
Tie. See Bale tile
Time recorder, E. Peterson, et al
 Tir e, resillent, Richardson \&
Tire, vebicle, w. R . Howe
Tobacco plug cutter, H.
Tobacco plug cutter, H. Smith
Tobacco, treating, J. L. Daniels;
Tool, C. N. Schooley
Torpedo placer,
Toy, E Lane
Toy pistol, E.

Transformer, muitiphase. J. J. Frank
Trignometrical meter, H. C. Percy.
Trolley catcher W,
Triggonometrical meter, H. C. Per
Trolley catcher, W. M. Mcarthur
Trolley barp. J . Heneler
Trolley whel. J. N. Drake
Trolleys, highting electric,
Tube cutiting machine,
F.
Tube cutiting machine, F. R. Starford......
Tube or flue cleane:e while moving through
the tubes or flues, device for turning, C.

Turbine running wheel,
Turf trimmer,
.

Turpentine collecting device, Smitio \& | inob |
| :--- |

Typewriter adjusting or leveling device,
G. S. Anderson and bearing therefor, E .

Universal joint, E. W. Bullard ${ }^{\text {Und........... }}$ Universal joint or coupling for shafting

 Ventilator, C. A. Withers Wagon, dumping, s. C. Lancester...7i......

A Fuel Saver!

Write for "Economy in the Boiler
interest to the man who pays the bills.
THE WM. B. PIERCE CO.
THENEW "Conlinon Sense" Clip
If it wasn't the best clip in the mar-
ket we wouldn't advertise it. We Fant you to try it. Send five two
cent stamps (ten cents) and we will cent stamps (ten cents) and we will
send you a sample box of 100 by mail postpaid. ook-Keeper PLblishing Co
Dept. C, Detroit. Mich.

for SKin diseases and cancer
$\mathrm{O}_{\text {describink the treated bonk }}^{\mathrm{UR}}$ 80-pat that
is indorsed and enduwed by rulers is indorsed and endowed by rulers
of fur nations tells how cancer
and all skin diseases are cured
without surkical operation. medi-
cine or pain. cine or pain.
It shows the large FIVBE.
Lamps and gives photos of cured Lamps an
vatients.
Write
Write to-day. Describe your

The Finsen Light Institute of America

ORIGINAL BARNES

 ${ }^{2}$ wede Upright Drills Send for Drill Catalogue.W. F. \& JNO. BARNES CO.
(Established 18:2) 1999 (Established 18i2)

MAKE YOUR OWN OAS ENBINE

Do Tou Wand fuac hamanaina Mienen?

Write to us and we will refer you to a Scientific American Supplement that will give you the very data you need. Scientific American Supplement articles are written by men who stand foremost in modern science and industry. Each Scientific American Supplement costs only io cts. But the information it contains may save you hundreds of dollars. Write for a catalogue of SUPPLEMENT articles. It costs nothing.

Act on this suggestion!

MUNN \& COMPANY

Leading Books on Metals and Alloys
 BRANN: The Metal Worker's Handy Book of Ree BRANS. Th. The Metalic Alloss. With an Appendix

 LA Nitib Biv Complete Treatise on the Electro-Depo

 its Aloss. 44 engra ${ }^{\text {In }}$ The above books sent thail, tree of postage, at the

 HENRYCAREY BAIRD © CO.

The HOW and WHY of Electricity by charles tripler child
 New York Sun: "We know nothing that kives so Published by electrical review pub. co. Sample copy of the Electrical Review FREE,
Electrical Engineering We hare every facility for producicg first.l.lass mork
 DYNAMO AND MOTOR COMBINED Fully described and illustrated in Scievtific AMERI

ON TYPEWRITERS
of all तakes

THE TYPEWRITER EXCHANGE
"The Nation's pleasure ground and sani-
tarium.

THE

ADIRONDACK
MOUNTAINS

The lakes and streams in the Adirondack Mountains are full of fish; the woods are inviting, the air is filled with health, and the nights are cool and restful. If you visit this region once, you will go there again. An answer to almost any question in regard to the Adirondacks will be found in No. 20 of the "Four-Track Series,"
"The Adirondack Mountains and How to Reach Them," issued by the

NEW YORK CENTRAL

Scientific American
 MUNN \& CO. ${ }^{361}$ broadway, NewYork

designs.

TRADE MARKS.
Banjos and drumbeads, Duplex Manufactur
ing
Co.

Cans, Conneaut can company
Decorative products for interior and exterior
ust
Paint certain named, Blanchite
Process

Enamels,
Envelops, ,erstendorrer Bros.
duplex
or twin, Dupiex

co wheat, Thornton \& CCeoster Mining

ment Manuracturimgeo.
 Reichard \& Schenber Manufacturing Co.

Soan, Henry Roever co. 1.
Suits.
overalls, and shirts, workingmens,
Cleaver
 Tires for vobicles, rubber, Hartford Rubber

LABELS.

'All Points,", for ctgars, J., G. Hansen....

 facturing
Cow-Tone.,
for medicine,

 "Old Tavern Club," for whisky, Krieger

 Reuter's So

The Gibson Number of Colliers
will have the largest and best collection of Gibson's Drawings ever published outside of book form.

On sale October 13, 1904
At all news stands, ten cents

A Special De Luxe Edition 50 cents

ANew Article on Radium...

By PROF. E. RUTHERFORD is published in SCIENTIFIC AMER-
ICAN SUPPLEMENTS 1502 and ICAN
1503. SUPPLEMENTS 1502 and
Price 20 cents by mail. The articlecontainsthe very latest
information on the subject, deinformation on the subject, describes interesting laboratory ex-
periments with radium, and isvery fully illustrated. No more authoritative contribution to radium literature has been published. MUNN \& COMPANY w w 361 Broadway, New York
 Reliable Man Wanted

FOR SALE.-Fully equipred wood-working plant,

For sale, original [Santos Dumont Airship No. 9]. In working order. Can be inspected any time. Complete hydrogen generating plant included. Edward C. Boyce, 302 Broadway, New York.

 Are you in terested in Paiense \bar{M} odel or Experimental WHAT WE DO-HOW WE DO IT

Scientific American Reference Book

12m0; 516 pages; illustrated ; 6 colored plates. Price $\$ 1.50$, postpaid.

πHE result of the queries of three generations of readers and correspondents is crystallized in this book, which has been in course of preparation for months. It is indispensable to every family and business man. It deals with matters of interest to everybody. The book contains 50,000 facts, and is much more complete and more exhaustive than anything of the kind which has ever been attempted.
IThe "Scientific American Reference Book" has been compiled after gauging the known wants of thousands. It has been revised by eminent statisticians. Information has been drawn from over one ton of Government reports alone. It is a book for everyday reference - more useful than an encylopedia, because you will find what you want in an instant in a more condensed form.
 One chapter contains everything relating to shipping, including the projected Cunarders of 1906. The section relating to navies is also most complete. Types of vessels are minutely described and illustrated. If you want to find the funnels and house flags of transatlantic fleets, look at the frontispiece in eight colors. If your son wishes to enter Annapolis, consult the "Scientific American Reference Book." The armies of the world are adequately treated. Railroads, both steam and electric, come in for a share of attention. If you wish to know how many are engaged in various trades in the United States, consult the full index and be referred to an elaborate table of occupations. The chapter relating to patents, trademarks and copyrights is a thorough one and aims to give inventors proper legal aid. The chapter on manufactures deals with most interesting figures, admirably presented for reference. The Departments of the Govermment, Post Office, international bureaus, mines and mining, farms and foods, all come in for attention. The astronomical section has a valuable star map. The chapter dealing with Mechanical Movements contains nearly three hundred illustrations, and they are more reliable than those published in any other

\qquad book-they are operative. The chemical chapter has valuable tables of elements and the value of rare metals and other substances. Weights and measures occupy a considerable section of the book, and are indispensable for purposes of reference. Sixty years of experience alone have made it possible for the publishers of the Scientific American to present to the purchasers of this book a remarkable aggregation of information. The very wide range of topics covered in the "Scientific American Reference Book" may be inferred by examining the table of contents printed below. The first edition of this work is 10,000 copies. The readers of the Scientific American are requested to send in their orders promptly. Remit $\$ 1.50$, and the book will be promptly mailed. Send to-day.

PARTIALLIST OFCONTENTS				
Part 1. CHAPTER I.	The Torpedo Boat. The Interior of a Battleship. Submarine Mines.	Number of Students in Schools and Colleges. Libraries of the United States.	CHAPTER X . Manufactires. Manufacturing in the United	PART II. CHAPTER I.
Division into Races		Libraries of the World.		Geometrical Figures.
Total Population and Area of World.	Armites of the World.	CHAPTER	Merchat	Geometrical Constructions
Languages of the World.	The Army of the Cnited St		tive Po	II.
Progress of Discovery	United States Military Academy.	marine Cables. lijeless	Value of 1 gricultural Imple-	Machine Elements.
The Polar and Antarctic Regions. The Great Cities of the World.	$\underset{\text { Fixteen-inch Gun. }}{\text { Firmies. }}$	Telegraphy, and Signaling.	ments.	hapter III.
CHAPTER II. Shipping and Yachts.	CHAPTER V. Rallroads of the lorld.	Land Lines of the World. Mileage of Lines and Wires. Morse Code.	Chapter Ni.	Mecimantcal Movements. With 250 illustrations.
Summary of Shipping.	Railroads of the World.	Telegraphic Time	Ent.	PART III.
Number sels. and Tonnage of Ves-	Railroads of the United States.	Variation of Time.	All Departments.	CHAPTER I.
Large and Fast Ocean Steamers.	Cape to Cairo Railway.	Wireless Telegraphy.	CHAPTER XII.	Chemistry
The Spreetis of Ocean Greyhounds.		International Code of Signals.	The lost ©faice.	Table of Elements.
The Largest Steamship (\%wners.	Chipter i.	Weather Bureau.	Postal Information. ${ }_{\text {The Postal Service of the Wor }}$	
	population ofthe the united	CHAPTER IN.		alue of Rare Elements.
$\underset{\substack{\text { From Chine. } \\ \text { Cruiser }}}{ }$ to Racing Ma- CHAPTER III.	Population of Eaci State. Official Census of the United States by Counties.	Patents. 1'atents in Relation to Manufactures.	Jnternational Institutions and Bureaus.	Radium and Radio-Activity. Prices of French Radium. CHUPTER II
The Navies of the W	Population of Cities of or over.	Distinguished Inventors Progress of Inventions.	The Nohel Prizes.	IMstronomy.
Construction and Classification of Warships. Navies of the World Compared.	Foreign Born P'opulation. Population at Work. Indians.	General Information Regarding Patents. Λ bstracts of Decisions.	The Pollok Prizes. Rhodes Scholarships.	Names of the Principal Stars. Magnitudes and Distances of
Relative Strength in Materiel.	Number of Pensioner	Foreign l'atents.	Carnegie Institution, etc.	
Relative Order of W'arship Strength.	Immigration. CHipTER VII	Patent Laws of the United States.	CHAPTER XII.	Refractors of the W'orld, etc.
Regulations of the Naval Acad-	Education, Itrraries, Printing	History of the Λ merican Patent	Mines and Minin	ART
List of Ships of the U. S. Navy. Submarine Boats.	and Publishing. The Value of an Education.	Copyright Law of the United States.	duction of the Linited States. Mines and Quarries.	Weights and Measures. Gives 36 pages of valuable tables.

MUNN \& CO., Publishers, Scientific American Office, 361 Broadway, New York City

KYINTRON

If you do not investigate the WINTON before you
buy a motor car you will not get its equal. Completely
 2, 300. Prompt deliveries. tie winton motor carriage co.. Cleveland, o., u.s.a
Orient Tonneau Car

Speed tweoty miles per hour. Will climb allordinary
gradea. The beat car fur the price in the world. WALTHAMMANUFACTURINGCO

CHARTIR

of Gor All work.
Fiv Stationaries, Portables. Hosters, Pump Send for Catalogue and Testimonials
State Your Power Needs.
HARTER GAS ENGINE CO., Box 148, STERLING, ILL

What IS Daus' Tip-Top?

The Pelir A. B. Daus Duplicator Co DausBl.dg Ill Jho Po

All Arithmetical

Keystone fire Extinguisher Fir Does the Work of 50 Pails Examined and approved under the standard of the National Board of Fire
Underwriters. Helps secure lowest insurance rates. Superior to water pails, powders or
grenades, because it quenches all fres grenades, because it quenches all fres At your dealer's, or of us direct. Send for free booklet.
16 JAMES BOYD \& BROTHER Fourth Street Philadelphis Mirs of Fire Protection Equilpment
ESSOP SGEEELCO
MFRSOFRUCNGLE SHEE STEEL

Waltham Watches

 have stood the test of time."The Perfected American Watch." an illustrated book of interesting information about watches, frze upon request. AHERICAN WALTHAM WATCH COMPANY, WALTHAM, MASS.

OUR NEW SKELETON WATCH

READY FORI DELIVERY OCTOBER 1st:

VATCMES

Our New Skeleton watch not only stows you the time but how time it made. Acurate THE NEW ENGLAND WATCH CO 37 c\& 39 Maiden Lane, New York ${ }_{7}$ Snow Hill. London, England
Crescent Machinery

Predominant | Use e |
| :---: |
| UTR |
| TRUE" GAS ENGINE |

MCDOSCDEC

0ur Microscopes, Microtames: Laboratory Glassware, Chemical Apparatus, Chemicals, Photo Lenses and Shutters, Field Glasses, Projection Apparatus, Photo-Micro Cameras are used by the leading
Laboratories and Government Departments Round the World. Catalogs Bausch \& Lomb Opt.Co.

 Any size place, summer homes, launches, yachts, etc.
Every detail included; very best material 1 Haractical.
So simple no electrician required. Light All the Time, So simple no electrician required. Light Ali the Time,
as storage battery incude. Gas, Gasoline or Steam as storage battery ine pure oas,
engine used give plenty of power for pump or
sawing water, sawing wood, refrigeration, etc. For our new s6-page
Catalogue describing over ioo different outats, atid:ess ELECTRIC DEPARTMENT
RICHARDSON ENGINEERING CO., Hartford, Conn。

Opaque Projector

 Wep. 6, Iis is mete brow 4.

equal in candle-power three ordinary incandescent gas lights on one third the consumption. They MUST have merit. 600,000 sold since January Ist, 1904, all over the world where gas is used surely indicates MERIT. Their sale presents an opportunity for profit which should be investigated immediately. A postal will bring full particulars together with a copy of our bcok " Some illustrated SuggesTIons." Energetic people (the kind we want) will write NOW.
LINDSAY LIGHT COMPANY CHICAGO, U. S. A.
Cables - 'I IINSLITE." Liebers Code.

PG CARDNED FRIATSURFALIS

