

From a photograph of the model in the Transportation Building, St. Louis. This vast hall will measure 85 feet in width by 300 feet In length by 150 feet in clear height.

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO., - - Editors and Proprietors

that ramapo scheme again.

The famous, or rather infamous, Ramapo scheme, by which a private corporation sought, during the Van Wyck regime, to control the sources of New York city's fiture water supply, was only defeated atter most earn(st efforts on the part of the Merchants' Association of this city, backed by the better and more enlightener element among the citizens. The scheme originated during the last Tammany administration, and received the most energetic indorsement of a large portion of the rounicipal administration of that time. After the Ramapo company had bought up all the sources of water stipply that were contemplated in the scheme, and the options on the same were safely stowed away, the derails of the plan were made public, and an effort was made to secure legislative sanction. Had the matter gone through, this great and growing city would have been subject to one of the most daring monopolies of a public necessily on record, while the sponsors of the scheme would have reaped enormous personal profits. Happily, the determined stand which was taken against the measure proved successful, and the bill authorizing the scheme was defeated. At the same time, proper steps, in the way of appointing an expert engineering commission, were promptly taken, and after a most exhaustive investigation, a comprehensive report was presented, and a scheme of future water supply, based not upon considerations of the gain of private individuals, but upon the highest regard for the necessities and finture welfare of the city, was drawn up.
With the change of administration the Ramapo company saw an opportunity to set their machinery once more in motion with some considerable hope of success, and the evidence of this is seen in the recent appointmen as Chief Engineer of the Water Supply Department of a man who was strongly in favor of the Ramapo scheme at the time of its first agitation. The new appointee, ignoring absolutely the careful report made by the expert commission above referred to, now announces that he has a ninety million dollar proposai for providing New York city with an adequate water supply-a proposal, by the way, which is virtually a rehabilitation of the Ramapo plans. Obviously, the better element in New York city must be prepared to fight the old battle over again. The task is, no doubt, distastefu! and wearisome; but it is a public duty which is urgent upon everyone that has the best interests of the city at heart.

the launching weight of the "connecticut."

 Considering the general excellence of the accounts given in the daily press of the launching of the "Connecticut," it is surprising that, one and all, they should have fallen into the error of speaking of the battleship as weighing, when she made her initial plunge into the water, some 16,500 tons, whereas, as a matter of fact, she did not weigh with in 9,500 tons of that amount. Her actual launching weight was only 6,999 tons. The oft-quoted 16,500 tons is the displacement, or actual weight, of the ship in her completed condition, with ammunition and all kinds of stores aboard, and 900 tons of coal in her bunkers. So that in point of weight, the "Connecticut" that swept down the ways on the 29th of September was a very different "Connecticut" from the one that some eighteen months from now will hoist her flag, completely equipped and ready to take her place, if need be, in line of battle. Out of the water and on the ways the battleship looked larger than she ever will again; for the spectator viewed the whole mass of the vessel from keel to superstructure deck. The 26 feet of hull that from now on will be submerged beneath the water was visible, and helped to give that predominant impression of bulk and weight, which was so much the object of remark among the thousands who witnessed the launching. The "Connecticut," however, was not by any means so heavy as she looked, being in fart but the mere shell of the ship, including the doublelinttom, the framing, the ckin onatiog, and the various
steel decks. From now on as she sits in the water she will take on weight very rapidly, that is, provided the armor-plate makers deal fairly by the ship, and make no discrimination in delivery of armor plate in favor of the contract-built sister vessel at Newport News. We speak advisedly here; for shipments of armor are finding their way to the southern shipyard with much greater alacrity than they are to the yard where the government-built ship is in hand. By the time that the armor plating has been put in place along the waterline, and over the central broadside batteries, upon the turrets, casemates, and on the conning towers, some turrets, casemates, and on the conning towers, some
4,000 tons of weight will have been added, bringing the total displacement of the ship up to about 11,000 tons. The other 5,500 tons will be made up of the large battery of boilers, the two main twin-screw engines, the various auxiliary engines, the thousand-and-one furnishings and fittings that enter into a ship of this size and importance, and finally the enormous amount of coal and stores that must be carried.
Long before the date of launching the "Connecticut," the naval constructors had made an accurate estimate of the rate at which she would gather headway in sliding down the ways, the sreed at which she would enter the water, and the distance to which she would travel by her own momentum after she was fairly afloat. The acceleration was very rapid, much more so than the layman who witnessed the launch would suppose, for the great bulk of the vessel made her appear to be moving more slowly than she actually was. As a mattor of fact, the velocity rose to about 15 knots an hour, or within 3 knots of the highest speed which the vessel is designed to make under full horse-power.

the menace of the pullman car.

The frightful epidemic of railroad disasters which is upon us just now, has brought the question to the Editor's desk as to what, in the wrecked train itself, is the most fruitful cause of fatalities. After several years' careful study of this question, we do not hesitate to say that in head-on collisions, where the wrecked train is made up of light day coaches and massive Pullman cars, it is the Pullmans that are chiefly responsible for the maiming and killing. In saying this, we are not forgetful that a few months ago we commented editorially on the fact that the Pullman Company have been able to boast of an extraordinarily small list of fatalities to Pullman passengers, during a period that had been more than usually fruitful in railroad disasters; for it is the very element of weight and strength in the Pullman cars that renders them at once a protection to those who travel in them and a menace to those who do not, but take passage in the more lightlyconstructed day coaches that are so frequently interposed between the engine and the Pullman cars. This remark, it must be understood, applies only to the case of head-on collisions. In the case of rear collisions, the Pullman cars are just as much a protection to the day coaches as they are a menace in head-on collisions; for in rear collisions the inertia of the Pullmans serves to al:sorb a large amount of the energy of the colliding train, although their enormous stiffness makes it certain that the residue of the striking energy will be transmitted in full to the day coaches ahead. The truth of these remarks was amply verified in the descriptions of the recent horrible accident on the Southern Railroad, where practically all the fatalities occurred in a train that was made up of day coaches and Pullmans, the Pullmans expending their energy in crumpling up the day coaches ahead of them, with a resulting loss of life that made this accident one of the most fatal on record. The experience on the Southern Railroad teaches nothing new. In fact, in reading the descriptions of any of the recent accidents, one is struck with the fact of their similarity in respect to the behavior of the Pullman car. The press dispatches almost invariably contain the customary note to the effect that the Pullman cars did not leave the track, and that although they were badly shaken up, the passengers received no serious injury. The only exception to this was the accident in which the Pullman cars broke away from the rest of the train, jumped the tracks, and swung over onto the opposite tracks a few moments before the passing of an overdue freight train, which struck the Pullman cars and wrecked them.
The question arises as to what is the proper way to even up the chances of safety for the railroad traveler, rendering day-coach travel less dangerous without sacrificing the security of the Pullman passenger. In answering this question, it. must first be admitted that the Pullman car is unreasonably heavy. By the judicious use of steel construction, equal strength could be obtained with a considerable reduction of weight. On the other hand, the admirable steel day coaches, which have been built for the Illinois Central Railroad, prove that the strength of the passenger car can be greatly increased without adding materially to its weight. Obviously, the wisest course to adopt-we do not say the most humane. for considerations of humanity seem to have but little place in determining the problems of railroad travel-would be to build all passanger equin-
ment entirely of steel. We would then have collisionproof trains; and although the shock of collision would still be present, the disastrons telescoping with its attendant horrors would be a thing of the past, and the Pullman passenger would no longer obtain his greater security at the peril of the other passengers on the train.
We take this opportunity to reply to the question that has frequently been asked by correspondents, as to what is the safest part of the train for a rassenger. In answer we have to say that for any kind of collision or derailment, the Pullman passenger is least exposed to injury; but in trains made up of homogeneous day coaches, such as are in use in suburban service, in a hcad-on collision, the last car is, of course, the least exposed to injury, and in rear collisions the first car. A consideration of the average accidents of railroad travel, therefore, will suggest that the passenger who is anxious for the safety of his person will run the least risk of injury if he seats himself a little forward of the center of the train.

CURIOUS FOODS.

Among civilized nations the variety of tastes att:acts but little attention. The vegetarians and the meat eaters each have their followers, and a recent school advocates less food and fewer meals, while there are countless fads for the delectation of the hungry.
That civilized man has missed some of the most toothsome dainties goes without saying, and it is evident that prejudice enters very largely into this. Thus, in California, the best fish it is said is the sculpin, but in the East this fish goes begging on account of its disagreeable appearance. In Arizona Indian children may be seen catching ants and eating them; and in Mexico the honey ant is eagerly sought after by the natives, who eat the well-rounded, currant-like abdomen. In South America the large lizard, the iguana, is a delicacy, not to speak of the larger snakes which in taste are like chicken. The ordinary rattle-snake, it is said, is very good eating if one can overcome the inborn prejudice
Americans are inclined to regard the Chinese as a race of rat eaters and denounce the animal as unclean, at the same time consuming tons yearly of the most loathsome of all animals-the hog. The rat is careful of its toilet, cleaning itself constantly; but the hog is the only animal of so-calle:l intelligence that revels in filth and prefers it to cleanliness. The common skunk, owing to its peculiar and offensive glands, will never be popular as food, yet its flesh is not only good, but delicious, according to various connoisseurs who have eaten it.
That insects do not enter more into the food supplies of nations is due to prejudice. Grasshoppers are eaten by some Western tribes. Ground up, they make a meal that is said to be both nourishing and agree able. Many a white man has pressed through a country, believing himself nearly starving as large game was not 10 be had, when worms and various insects were at hand. During the flight of locusts Indians sometimes collect them in bags, wash them, and cook them for a meal.
The nost singular food, in all probability, is the larve of a fly, common in certain portions of California and known as Ephydra. This insect is found in such vast quantities in Lake Mono, California, that it is washed upon the shores in vast windrows and can be collected by bushels. The water of Mono is very singular, seemingly very heavy and smooth like oil; so much so that it resists ordinary wind and refuses to become ruffled. When the larva begin to appear, the Indians gather from far and near and scrape them iip, place the worm-like creatures on cloths and racks in the sun and dry them, when they are beaten up and husked, looking then like rice. The Indians call the food koo-chah-bee, and many bushels are collected at this time; that larve is nutritious is shown by the condition of the Indians, who soon grow fat on the rich diet. Many birds are attracted by the larvæ and gorge themselves with the singular food.
On Lake Texcoco in Mexico a curious fly is found which also is eaten by the natives and known as ahuatl; the eggs of the insect, which are deposited on sedges, are also collected and eaten for food. On Lake Chalco a certain sedge is cultivated on which the eggs of a species of fly are deposited. Bundles are made of these and placed in Lake Texcoco for the purpose, and, when covered, the sedge is beaten over pieces of cloth and the eggs secured. These are collected and ground into a meal, also called ahuatl, and are in great demand on fast days when fish is required, the insects or eggs not being considered flesh as they come from the water. The food is made into small cakes and tastes not unlike caviare. Not only the eggs, but the larvæ, themselves a disagreeablelooking worm, are used as food under the name of puxi.
The civilized man perhaps turns from such food with disgust, but it is well to remember that epicures in
ica, are particularly fond of cheese when inhabited by the larvæ of a very common fly. In the United States the large octopus or squid, common on the Pacific coast, offends the American palate, but the Italian, Frenchman or Portuguese eats it with avidity and considers it a delicacy. The meat is clear and white like chicken and has the flavor of crab.
The question of national tastes is an interesting one, and the contrast between those of China and America is remarkable. 'The objects displayed in the Chinese quarter as dainties are often repugnant to Americans. We find the Chinaman selling eggs of unknown age, especially ducks' egggs containing ducklings ready to be hatched. Shark fins-a tough, disagreeable foodare in demand, while deer horns in the velvet and lizards of various kinds are eaten. The nest of the swallow, with its embedded secretion of the mouth glands of the bird, is nearly worth its weight in gold. Trepang, the tough, impossible holothurian, is eaten, and its collection is an important industry along the Malay coast, valued at at least $\$ 100,000$ per annum.
In France the sea anemone is used as food; stuffed like peppers and boiled it calls to mind crab or crayfish. The echini of various species is also used, cooked in the shell, like an egg, and eaten with a spoon. In nearly all the old countries of Europe of the type of Spain and Italy, the poor are so poor that everything in the nature of food is utilized. Absolutely nothing is wasted and meat is rare. The writer recalls the surprise of an Italian fisherman who landed in California after a trip around the Horn, and was amazed, not at the country, but with the abundance of food. He found his countrymen eating meat twice, perhaps three times a day, when he rarely had it once a. month. He saw hundreds of pounds of fish wasted, and discarded merely because the people did not care for it, when in Italy even the heads would be boiled and eaten. He saw big tunnies towed out to sea and thrown away because they were tough, when in his own land every scrap of this fish was saved. America was indeed the land of plenty to the poor of other nations.

Certain Indians consider earth worms a dainty. They are dried and rolled together into a peculiar flour. In Bahama and some of the Florida keys the conch is eaten-by far the toughest food known; more like India rubber than anything else, having to be beaten and pounded before it can be masticated or even cooked.

ODDITIES IN SELF-DEFENSE.

b ernest ingersoll.

A certain page of my notebook contains a lot of interesting memoranda on the way in which certain small and feeble creatures are guarded against their enemies, or guard themselves, by wearing overcoats of spiny, fuzzy, or rather disagreeable textures, or by having the power to throw out from the skin, or from a special reservoir, some offensive moisture or odor.
Thus extraordinary miniatures of the skunk are found in the small, brilliantly-colored ground beetles called by the French bombardiers. A typical species, common in Louisiana, when pursued by its special enemy, the fierce Calosoma, a much larger beetle, seems at first to have no chance for escape; but suddenly a popping explosion is heard, and a blue smoke, attended by a rancid smell, is seen to proceed from the hinder extremity of the body, which immediately stops the progress of its assailant. Should the calosoma recover from this and renew the pursuit, a second volley again arrests its course. The bombardier can fire its artillery twenty times, if necessary, and so protect its retreat, and in most cases make sure of an escape.

Not far removed from this, in classification, is the scorpion-fly (Panorpa), which, in spite of the formida-ble-looking forceps at the tip of the abdomen, would be quite harmless were it not that it carries a long gunthe Kentucky rifle of the insect hosts. When it is disturbed, this pretty fly darts out a slender tube, takes aim at the disturber, and lets fly a drop of yellow, malodorous fluid, which will send most, if not all, of its enemies to the right-about. Many true bugs, especially those of the aquatic group Heteroptera, emit an annoying spray, as also does the larva of the saw-fly. The vile odor of the cockroach and one or two other household pests are other too familiar examples of a long list of bugs provided with this disgusting property as a means of protection against their natural enemies, that is, enemies other than man; for here, as so often elsewhere in nature, provisions and habits and instincts, highly serviceable in all other relations, may be a source of danger and harm to an animal when it comes in contact with mankind. The brutes, large and small, are disposed to avoid bad-smelling bugs, but man often seeks them on purpose to put an end to the nuisance by killing its source. This is very different from the accidental death which many such an insect has suffered in spite of its protection, under the tread, or in the careless, browsing jaws, of some creature perhaps a thousand times as large as itself, for it is a direct turning against it of its own trusted method of defense.

Many insects smell decidedly of certain herbs, and sometimes this is pleasant to our nostrils, though evidently disagreeable to others, just as mosquitoes dis agree with us in respect to the aromatic pennyroyal. Insect odors are the product of essential oils; and the secretion exudes so plentifully from the joints in the family of oil-beetles, and is so corrosive, that it can be used in medicine as a substitute for the evil-smelling cantharides in making blistering preparations. Is it not fair to suppose that when an animal detects the odor of these corrosive insects, it avoids them for fear of their burning taste and that thus many oil-beetles are saved from an accidental as well as from intentional destruction? And as a further measure of safety, most of them are conspicuously colored, as though for the express purpose of advertising their harmfulness, just as we hoist a red or yellow flag over the door of a house where there is contagious disease.
This endowment is widely distributed and powerful among insects. The ladybird, for instance, has been recommended for the toothache, because its secretion furnishes a powerful counter-irritant; and in colonial times in New Orleans, says Von Reizenstein, the disgusting darkling beetle (Blaps) was in vogue as "an old woman's remedy" for chronic ulcers, when applied with cypress oil.
Here, as elsewhere, the kind of foes against which insects guard themselves must be considered, and, as has been said, man must be left out of account. The principal enemies of insects are other insects, birds, and some small mammals. A whole order of mammals, the Insectivores, subsists altogether upon them, and these seem irresistible; but the higher mammals will often refuse certain kinds. On the other hand, dogs seem furious to put to death certain evil-smelling ones, as cockroaches, without wanting to eat them, so here the odor defensive against most foes excites the de structive enmity of a few highly powerful ones.
Turning to the other extreme, the various fuzzy or malodorous exudations of caterpillars and other larvæ are often meant to repel parasites, such as ichneumons etc.-a matter of the highest importance in insect life. Birds destroy a vast number of insects, but it is unquestionable that large numbers are quite uneatable by birds, and safe from them, though highly colored and slow of flight, because of the nauseous odors or fluids that impregnate their bodies. The very common frittilaries are good examples among conspicuous butterflies; and more than a thousand species of three tropical families, Heliconids, Danaids, and Acræids, are thus protected, as also are millipeds and many other forms.
Speaking of this matter, Alfred Russell Wallace says that specimens of heliconid butterflies captured in South America by himself and Mr. Bates were less subject to vermin than those of other families, and were not attacked by insect-eating birds or dragon-flies. Although they swarmed in the forests, flying slowly and gaudily, the birds passed them in a chase after far swifter insects.
Thomas Belt's tame monkey in Nicaragua, which would greedily munch up other butterflies, would not eat heliconids. Similar testimony comes from India; and a series of experiments in an aviary, and with frogs and lizards, showed a numerous list of caterpillars that none of these animals would devour, spitting them out with every sign of disgust and of smarting when one was forced into the mouth.
An important reason why certain noxious "worms" (foliage-eating larvæ of moths) are so difficult to subdue is that most of them are covered with bristly hairs, and are not liked by most birds, apparently on that account. It is true that the list of birds which will eat the hairy caterpillars of the tent-worm, the gypsymoth, and other like pests, has been increased by closer observation of late (though some will eat nothing but the soft inner parts), yet as a rule birds avoid these for the smooth sorts, that have no hairs to prick their throats and irritate their digestive organs. The spiny protection enjoyed by many fishes and shellfish gives material for another essay.
Nearly under this head comes the exudation of slime with which some of the lower animals cover themselves. Snails appear to have no other means of repelling an enemy that may catch them out of hiding, and the naked slugs in particular exude a white mucus over their whole skin, the viscid consistency of which, cling. ing to a bird's beak or a hairy animal's lips, would seem to be disagreeable enough, apart from any bad taste, to make everything leave the creature alone; as a matter of fact, slugs are eaten mainly by carnivorous members of their own race, and by some reptiles. They are safe, as a rule, from binds and mammals.
A gigantic galley-worm, or myriapod of the tropics (Peripatus), offers a remarkable example of this repulsive armament; for when annoyed it ejects from gland openings near the mouth quantities of a sticky, tenacious fluid that forms into a network of threads about its head. An animal whose feathers or whiskers had once become entangled by this natural bird-lime would be very careful to avoid a second experience. That it takes a very small amount of such experience to teach
young animals to reeognize and let alone things they have found distasteful, is known to everybody who has watched young chicks or ducklings in a farmyard; the careful studies of Prof. Lloyd Morgan in this direction, as given in his valuable book, "Habit and Instinct," are well worth reading.

The same sort of defense is secured in various insects, especially in the Hemiptera, an order of true bugs, by the secretion of a cottony or scaly covering, as in the case of the bark lice and related forms so troublesome to fruit growers; and still others, as the frog hoppers, or froth flies, conceal their sap-sucking larvæ in the grass, or upon a leaf, beneath a frothy exudation, called by the country people "cuckoo spit" or "frog spittle." The pear and vine "slugs" are additional instances. These coverings not only hice and disguise the insects, but make them distasteful to many insectivorous animals.
One might carry this review very widely through the animal kingdom, but enough has been said to give a hint of the importance this sort of self-defense has a mong otherwise feeble folk.

AUTOMOBILE NOTES.

The recent automobile events of the Brescia Circuit, which were among the most successful ever held in Italy, have resulted in the founding of a new challenge cup by the Chevalier Florio, a well-known millionaire of that country and an ardent chauffeur. After having engaged two Panhard and two Mercedes cars in the Brescia Circuit, he now offers for next year's events a cup having the value of $\$ 20,000$. It is to be competed for over the same circuit as before. This offer. as might be expected, has made quite a sensation in automobile circles; it will also give an added impulse to the question of races in Italy, where the movement has already taken a good start. Chevalier Florio has also offered the sum of $\$ 1,000$ for the construction of a special automobile track in the Montechiari region. This route will be four kilometers. (2.4 miles) long in a straight line and is to be "westrumited" throughout. It is intended exclusively for the kilometer and mile tests with high-speed racing cars.
The annual hill-climbing contest up Mount Ventoux, in France, which took place recently, resulted in some extraordinary performances. The course is 21.6 kilometers (13.4 miles) in length, and the total vertical rise is within 39 feet of one mile, or 5,241 feet. Rougier, on a 45 -horse-power Gordon-Bennett Turcat-Méry racer, covered this distance in 21 minutes, $122-5 \mathrm{sec}$ onds, which broke the record, previously made by himself, by 3 minutes, $373-5$ seconds. His average speed was about 40 miles an hour, which means that his machine rose vertically 4.11 feet every second, or 247 feet a minute, which is somewhat more than half the speed of the fastest passenger elevators. The average gradient of the Mount Ventoux course is eight per cent, which is considerably less than that of Mount Washington in this country, where, it will be recalled, Mr. Harry Harkness made last July on a 60 -horsepower Mercedes, the remarkable time of 24 minutes $373-5$ seconds on the $71 / 2$-mile road leading to the summit through a vertical rise of 4,600 feet. The Stanley steam car also made a record of 28 minutes, $193-5 \mathrm{sec}-$ onds in the Mount Washington climb. In that at Mount Ventoux this year, two Darracq machines gained second and third places in $21: 41$ and $22: 26$ respectively, while a Hotchkiss car came in fourth in 22:49 4-5. The second Darracq car broke the previous record for lightweight cars by 2 minutes, 59 seconds, while a Darracq voiturette broke the existing record for cars of its class by 14 minutes, $102-5$ seconds, reducing it to $29: 25$. A Griffon motorcycle covered the-distance in 32 minutes, 20 seconds.

Probably the most scientific long-distance test of an automobile that has ever been made was that of a Packard touring car on the Grosse Point mile race track at Detroit, when the machine was driven around the oval 1,000 times without stopping the motor, in 29 hours, 53 minutes, and $373-5$ seconds, or at an avera.ge speed of $331 / 2$ miles an hour inclusive of stops for replenishment of fuel, lighting of lamps, and changing of tires. Exclusive of these stops, the speed figures out over 35 miles an hour. The great uniformity of running is shown by the fact that out of 35 consecutive miles run at an average time of $1: 46$, the time of but four of these miles was as much as 1 second away from the average. .This certainly is as fine a showing as any foreign. car could make. That the present model Packard car performs equally well upon the road has lately been demonstrated by some San Francisco men, who drove such a machine from that city to Los Angeles in 53 hours and 40 minutes, crossing the coast range of mountains five times and fording many rivers, without the use of a single spare part, and with the renewal of but two inner tubes of their tires. No mechanic was taken along or found necessary; and. although one of the inner hub brakes gave out. thus making it necessary to use the motor as a brake in descending the steep grades, the great strain thus put upon it and the transmission did not damage either.

The camera book

The "Photographic Book," invented by M. Leon Block, of Paris, is one of those apparatus in which an endeavor is made, through a descriptive form, to conceal the nature thereof from the sharpest e y e s-a thing that is often necessary if it be desired to take a snap shot of someone. All amateur photographers, no matter how little artistic sense they may have, have been annoyed and shocked at the pose of the soldier at pre-sent-arms, and baifled by the position that is immediately assumed by a person when he sees a camera leveled at him. The new apparatus is designed to prevent such drawbacks
and to permit of photographing a person secretly while off his guard. The victim may consider the process presumptuous and not very delicate, but in photography no attention is paid to trifles like that.
The photographic book, even when it is ready for operation, preserves the aspect of an ordinary pocket dictionary. The operator opens it at the first page, and while apparently reading, has really under his eyes the ground glass of the finder, and, at the side, a water-level to show whether or not the apparatus is horizontal. The finder is provided with a prism so arranged that the operator, while apparently looking in front of him, can actually see upon the ground glass an image of the objects situated at the side. The image that is depicted upon the finder is that of the persons who are located to the left of the instrument, and it is toward them that are turned the two objectives concealed in the back of the binding. The apparatus is stereoscopic and gives 1.5×2-inch im ages upon 1.75×4-inch plates, which are contained in small metallic plate holders, the number of which is limited only by the capacity of the operator's pockets. The plate holder is slid into one of two grooves formed in the edge of the book, and it is by the selection of one or the other of these grooves that the focusing is done. The one farther away from the lens serves for objects situated at a distance of one or two yards, and the other tor objects situated beyond such a dis ance. The shutter is capable of making the exposure instantaneous, and for such a purpose the apparatus is placed upon a table. The handle that serves to set the shutter, as well as the device for freeing it, is within easy reach of the hand, and both are so well concealed that the book loses nothing of its harmless aspect.

hydraulic press for embossing

 SILVERWARE AT the ST. LOUIS FAIRby the st. lotis correspondent of the scientific american.
When we remember the magnificent ex hibit made by the great Krupp firm at the Chicago World's Fair, it is surprising to find that there is no separate and distinctive Krupp exhibit to be found at the St. Louis Exposition. Here and there may be found specimens of their forgings and finished work em bodied in various machines and appliances, but with one single exception the famous German firm is not represented. The single exception, however, is a notable one. It consists of a massive hydraulic press, weighing in the aggregate $1 \approx 1$ tons, which is located in the Ma chinery Building. The press is a fine piece of work, but its attraction is the fact that it employs a hydraulic pressure that is altogether unprecedented, namely, 85.000 pounds to the square inch The purpose of the press is to produce by a quick and cheap method the finest forms of embossed silverware, chiefly in the way of flagons, vases, urns, etc.; and this it does at a speed, and with an accuracy of reproduction of the desired pat tern, that render the product exceeding.
ly cheap, the actual process of embossing taking only the few seconds' time during which the hydraulic pressure is acting upon the metal.
While the machine itself will be of interest, it can never be regarded with any very kindly feeling by the
upon some soft and more or less yielding substance, that allows the stroke of the hammer to produce the desired impression
In the present case, the vase or bowl is rolled out approximately into its inal form, and is then placel within a hollow steel die formed in four sections, in which the pattern has been cut by hand, the outside of the silver cup or vase lying in snug contact with the inside of the sectional hardsteel mold. Inside the silver form is in serted a rubber cup and to the inside of the cup is attached the hose of an air pump, the end of the hose being screwed into a nozzle, that passes through the rubber cup to its outer surface After the rubber cup is in

THE

 CAMERA-BOOK. rrom between its oute plat inner surface of the metal form, so a to place the two surfaces in snug contact. After sev eral pieces have been thus prepared, they are placed in a metal basket and lowered into the water within the cylinder of the hydraulic press, which in the case of the one herewith shown is 17 inches in diameter The cylinder stands on a platen located within a series of eight massive steel yokes, and at the top of the yoke is carried a hydraulic plunger. The platen rises, carrying the cylinder with it and as the plunger enters the hydraulic pressure is raised until it reaches 85,000 pounds to the square inch. Now, since the silver forms in their molds are im mersed in the water, it will be seen that there is a hydraulic pressure of 85,000 pounds on the outside of the sectional steel die, and on the inside of the rubber cup, the result being that the silver metal is squeezed into the recessed em bossing cut in the dies, and practically flows into the very finest interstices and hair lines of the pattern, producing a very perfect impression. At first thought, one would suppose that the rubber would be disintegrated under a pressure which is two and one-half times as great as the powder pressure in the powder chamber of the modern gun at the moment of firing, but in spite of its elastic character. rubber has extraordinary tenacity, and it seems to suffer no damage from being subjected to this enormous load.The press is 21 feet in height, and the frame is made up of eight Siemens-Martin open-hearth steel yokes, the legs of which are 3 inches in thickness by 12 inches in width, each yoke weighing 4 tons. The pump is run by a 70 -horse-power motor. which is belted to two three-plunger pumps. The press 1 E controiled from the upper platform, shown in our engraving. and the handling of the pieces is don by means of a hydraulic crane, shown to the right of the platform. When the press is working on small pieces, it is claimed that the loveliest specimens of embossed silverware can be turned out at the rate of so many a minute. While we cannot but admire the mechanical ingenuity and daring with which this remarkable press has been designed, we must be pardoned for a feeling of regret that herein we see one more of the fine arts cheapened by the substitution of mechanical for hand labor Such, however, is the tendency of the age, and it is certain that the end is not yet.

The torfedo-boat flotilla of the Austrian navy is to be reconstructed, and in view of the discussions which have taken place as to the speed required for de stroyers, the fact that the Austrians have fixed on 28 knots is interesting. This speed is to be attained when the vessels are carrying a load of 100 tons repre senting fuel and ammunition. The $251 / 2$ knot boats for the British navy are required to carry 120 tons, and it is matter for serious consideration whether this justifies the decrease in speed of the vessels.

SOME NEW TYPES OF LIFEBOATS

An interesting development of the gasoline mo tor for marine purposes has taken place in Eng. land, where it has been applied to a lifeboat for the Royal National Lifeboat Institution. For many years past the authorities have been following the progress of the utilization of this type of engine, with a view to its employment in liteboats, as a mechanical means of assistance to the men, thereby relieving them somewhat of the heavy work entailed in approaching a wreck against heavy seas and head winds.
Deeming the present a ripe and suitable time for such an experiment, the Institution, acting upon the advice of their consulting naval architect, Mr. G. L. Watson, resolved to select an old lifeboat, install therein a gasoline motor, carry out a series of exacting experiments therewith in all sorts and conditions of weather, and to act upon the experience thus derived in the construction of a special vessel for the purpose. In this manner valuable constructional data would be obtained, which would be impossible in any other manner. The general scheme on which the motor should be installed in this lifeboat, together with all the necessary details, were intrusted to Capt. E. du Boulay, the marine motor engineer of the firm of Thellusson \& Co., of Cowes, in the Isle of Wight.

The successiful adaptation of the gasoline moor to a lifeboat involves the surmounting of several inherent difficulties, such as do not present themselves in other boats, owing to the peculiar nature of the work the lifeboa ${ }^{\ddagger}$ has to fulfill, and the adverse conditions under which it has to operate. In the first place, it is imperative that the motor should be adequately protected from the violence of the waves that are incessantly shipped. To attain his end necessitates the inclosure of the ensine within a perfectly water-tight case. Yet here must be an adequate air supply, to obain the complete combustion of the gases. This requisition was fulfilled by a pipe leading into the case inclosing the engine, so arranged as to prevent the influx of water when waves broke over the craft, and to dry and heat the air be fore it reached the engine.
Then again the motor had to be as completely automatic as possible, since when once started the engineer would not be able to devote any minute or careful attention to it, especially on a cold, dark night with a heavy sea running, owing to the more important work he would have in hand. Under these circumstances completely reliable system of lubrication had o be incorporated, the orthodox sight feed oilers being entirely useless
Further, all those parts which from time to time require a certain amount of manipulation had to be lengthened and extended, so that they could be handled by the engineer from without the case, and moreover the handles to same had to be of different shapes, so that they could be readily and easily distinguished in the dark. The vaporizer had to be of special design, so as to readily and instantly accommodate itself to all possible positions, and not starve the engine or fail to work when the boat is standng more or less on end, or when heavily listed over by a sea or the pressure of the sails. But what was far more important was that the life ooat should not lose its self-righting qualities owing to the weight and position of the machinery, and also that the motor should automatically stop in the event of capsizing, since when it righted itself again it would race away uncontrolled, leaving the crew in the water and the latter might further be imperiled by the revolving propeller. Then again the en gine must not interfere with the ordinary row ing or sailing capacities of the boat while the engine itself had to be of the simplest construc tion in working, since it has to be manipuated by persons who invariably are not skilled mechanics, and must always be ready to start in stantly at any required moment, either in sum er or winter even atter ong periods of enforced dleness.
The craft selected for these exacting experiments was an old one withdrawn from the Folkestone station on the outh coast it measured 38 feet in length by 8 feet beam, was pulled by twelve oars doulle-banked, and was of the usual self-righting type. rigged

Ifeboat fitted with 2-cylinder 10 H . P. Gasoline HOTOR, INCLOSED IN A WATERTIGHT CASE TO PRO tect it from foul weather

THE MOTOR BOAT CAPSIZED.
As the boat turns, the motor automatically stops running; but it can be easily started up when the boat rights itself.
with jib, fore-lug, and mizzen. At the shipyard some of the air cases under the deck amidsnips were withdrawn, and a strong mahogany case measuring 4 feet long by 3 feet wide, and as high as the gunwales, lined with sheet copper so as to be watertight, with a closelyfitting lid easily removable if necessary, was fitted in their place. In this case was placed a two-cylinder
 oat, with her crew and gear in her, and her water ballast tanks filled.
2. With the equivalent weight of 13 men lashed on he thwarts, and with all the equipment on board, she was capsized by a crane tour times, but never failed o self-right, even with sails set and sheets made fast.
3. During the capsizing, the motor, which had been previously started, was automatically stopped directly the boat reached a position just beyond that of "on her beam ends."
4. After the capsizing, the motor started again at the second turn of the starting handle, and worked well.
From the foregoing it will be realized that the gasoline motor can be satisfactorily adapted to the requirements of lifeboat work. It gives in combination with the oars and sails an assistance for reaching a wreck, especially should the casualty have occurred dead to windward.
Encouraged by the success of these trials, the Institution has resolved to further test the lifeboat by placing it in regular service at Newhaven during this winter. By fcllowing the behavior of the craft under actual life-saving conditions much valuable data will be obtainable, which will be of inestimable service in the future construction of motor-propelled lifeboats. One of the most interesting features of the Life-Saving and Hygiene Exposition which is now being held in Paris is a new lifeboat invented by M. Albert Henry, who is connected with the Government Arsenal at Rochefort. The novel points lie in the combination of a movable keel, a set of water-tight compartments, and a screw operated by a gasoline motor. The new lifeboat possesses two valuable qualities, namely, that it is steady in all seas and is also insubmersible. This has been shown in actual tests, which are referred to below. The boat is an evolution of the old lifeboat which uses an iron keel fixed to the bottom of the boat about 20 inches below the water line and weighing 650 pounds. These figures seem to be about the limits which can be used in practice with this system. The weight of the keel cannot be increased too much, as the boat must be light and easily handled. On the other hand,
the keel cannot project too far down, as otherwise the boat will not run in shallow water.
In the new boat designed by M. Henry, stability is assured by a system composed of sheet-iron pieces which project from the bottom of the boat. To the lower part of these pieces is fixed a torpedo-shaped cast-iron weight of about 650 pounds which serves the same purpose as the weighted keel of the lifeboat mentioned above. By the present arrangement, the weight is made to descend much lower than in the former type, and it now has a leverage of over three feet, which greatly increases its efficacy in keeping the boat steady. As the sheet-iron plates have a surface of over three square yards, they offer a considerable resistance to the lateral movement of the boat. This arrangement of sheet iron support and weight has been employed for some time upon various forms of pleasure craft. But in these latter boats the device was fixed, and while it no doubt served sufficiently well in these cases, it could not be adopted for lifeboats, as the disadvantages of such a system are apparent in cases of landing the boat or putting it to sea. Some means therefore had to be found for making it movable and allowing it to be drawn up into the boat when not in use.
M. Henry has now succeeded in accomplishing this by a very simple device which presents no difficulty in operating and does not take up too much srace. The weight, with its sheet-iron carrying pieces, is movable up and down, and enters a chamber in the bottom of the boat. This occurs either automatically, as when the keel strikes an obstacle or comes ashore, or on the other hand, it can be drawn up by hand from the inside of the boat by a windlass, and does not come above the flooring. The new form of keel, which is somewhat crescent-shaped, will be noticed in the diasomewhat crescent-shaped, will be noticed in the dia-
gram at the middle of the boat. It has a comparatively short length and is formed of two sheet-ron wings, A A. At the top the wings carry a slot (which is placed so as not to reduce the side resistance) allowing them to slide upon two specially-designed bolts. At the lower part the wings carry a cast-iron weight B, which is made in two longitudinal parts bolted together, thus forming a slot in the middle which receives the wings. The latter are thus pivoted to the weight by bolts. To the middle of the weight is attached a steel cable of 0.15 square inch section which passes up in the middle of the boat and works upon a hand drum. Working the drum causes the keel to rise and take any desired height. When fully drawn up, the wings talie the position inside the chamber up, the wings take the position inside the chamber
which is shown in dotted lines, while the weight lies against the bottom of the boat. This chamber is made of an appropriate form to receive the keel and lies below the flooring of the boat. By this means the stability of the boat is assured in an efficient manner, for when the keel is lowered, the boat draws nearly five feet of water instead of less than two feet as before. With the keel up the draft is about two feet.
Another valuable point about the new boat is that it secures the complete evacuation of the water which is shipped. This is carried out by means of an orifice which runs along the whole length of the keelchamber. The resistance of th is chamber to the movement of the boat is stated to be ten times less than with the usual evacuation tubes. It has a surface of 45 square feet, being 18 feet long and 2.5 inches wide. This allows the instantaneous evacuation of the water A system of valves is used to prevent the projection of water from below through the chamber. The use of the specially-formed keel combined with the evacuation of the water prevents the boat from overturning, and it is also made insubmersible. To this end it is provided with a system of air-compartments which are separated by partitions. The compartments have oval-shaped doors and can be used for keeping differ ent kinds of stores.
As regards the propulsion of the boat, it is equipped with the usual sails and oars, besides a small petrol motor. The difficulty of placing a mechanical propelmotor. The in device in a lifeboat has been overcome in the present case. M. Henry uses a small gasoline motor which is intended as an auxiliary in connection with the ordinary means of propelling the boat. Its principal use is to facilitate the maneuver of entering or leaving the port, and to enable it to carry out all the necessary movements so that it can approach and aid necessary movements so that it can approach and aid it does by helping out the sails and oars, which are often difficult to handle when near the ship and offer great risks both for the crew and the passengers. In the present case the motor is placed as shown in the diagram in the stern chamber, C^{C}. As this chamber is of small size it makes the motor somewhat difficult to place, and its weight and nower must be limited to give a speed of 6 knots. This speed can be increased to 8 knots by using the sails at the same time. The form of the boat, which can carry 40 to 50 persons. is designed so as to give the greatest possible stability with the maximum load. High speed is a secondary point with this kind of craft, and is sacrificed to the general security.

The lifeboat has been recognized in France as one of the best craft of its kind. It was classed in the first place in the concourse which was held at Brest in 1903, for the best projects for lifeboats provided with auxiliary motors. M. Decout-Lacour, the constructor, shared the honors with M. Henry. The concourse was held under the patronage of the Brittany Life Saving Society, and the present lifeboat was recognized as possessing all the improvements and qualities necessary for this special form of service, and answered in all points to the requirements of the Commission. A series of actual tests upon a boat made according to the above project was made not long ago in the port of La Rochelle, in the presence of over 10,000 persons, among whom were delegates of different life-saving societies and other marine interests. The tests included putting the boat to sea by means of a special carriage, trials of its solidity by dropping it into the water from a crane at a height of 18 feet, tests of steadiness and evacuation of water (in one case a cask containing 120 cubic feet of water was emptied into the boat from a height of 15 feet); also tests of towing other boats, and maneuvers of lifesaving and landing. In all the trials the boat made a brilliant showing and was highly applauded. The first Henry lifeboat is now stationed at the port of Brest, and otiners have since been built.

METAL CROSS TIE FOR RAILROADS.

A railroad tie has recently been invented which combines the cushioning effect of the ordinary wooden tie with the strength and durability of a metal tie. The rail rests on wooden blocks, which are securely held in metal boxes. The metal boxes form opposite ends of cross ties, being connected by pairs of metal plates, as indicated in our plan view. A recess is cut in the top plate of each box, to admit the base of the rail. A pair of ears are formed at diagonally opposite sides of this recess, to receive the pivot fins of a pair of clamping devices. The clamp on the inner side of the rail consists of a short arm formed with a widened

METAL CROSS TIE FOR RAILROADS.

end, which fits over the base flange of the rail. The opposite end of the arm is formed with a cam swell, adapted to pass through a slot in the top plate of the box, and rest on the wooden block. The outer clamping device is similarly formed, but is in addition provided with a limb, which projects diagonally upward and serves as a brace for the ball of the rail. When laying the track, the rail is placed in position, and the clamping device is adjusted before the wooden block is driven into place. When the block is driven in, it engages the cam swells of the clamps, pressing them securely in place. The block is then secured in place by a pair of spikes driven therein through slots in the top plate of the box. These slots are indicated in our plan view of the tie. The heads of the spikes overlap the base flange of the rail, and serve as additional securing devices. While this tie is applicable for general track use, it is designed more especially for a safety curve and bridge tie. When the wooden blocks wear out, they can be discarded and replaced with new ones. Only a short block of wood is used instead of a fulllength cross tie, thereby effecting a great saving of wood. The inventor of this cross tie is Mr. Allen Newell, of Guadalajara. Mexico.

The current supplement.
The current Supplemext. No. 1501, contains an unnisual variety of interesting articles. The Italian firstclass battleship "Regina Margherita" is fully described and illustrated, together with her engines. Of domestic interest is a brief but instructive article on non-poisonous textile and egg dyes for household use. The subject of plastic cements employed to secure joints in ves sels and connections (generally for temporary purposes) has been rather neglected in chemical literature For this reason Mr. Samuel S. Sadtler's contribution on "Lutes" should receive no little attention, containing as it does a great number of useful formulæ. Mer radier's system of attumed telegraphy is fully described and illustrated. Mercadier makes use of alternating
currents which, by the application of tuning fork interrupters, are taken from direct-current sources for
the transmission of telegraphic signals in his multiplex system. Mr. W. Watson describes an excellent quartz thread vertical force magnetograph. Prime Minister Henry A. Balfour's scholarly address on "The Work of a Great Ethnologist" is concluded. The St. Louis correspondent of the Scientific American describes the Chinese Pavilion and Exhibit at the Fair. Excellent pictures accompany his contribution. Mr. Walter Wood gives much curious information on Atlantic cattle carrying. A striking picture of the leg and foot of a spider is presented, striking for the reason that the picture in question was taken by means of a camera alone. One of the most valuable articles which has ever appeared in the Supplement is that by Prof. W. F. M. Goss on the modern steam locomotive. Dr. S. Tolver Preston contributes an excellent article on the mechanics of the gyroscope.

MODEL OF THE PENNSYLVANIA RAILROAD HUDSON

 RIVER TUNNEL STATION AT NEW YORK.Our front-page illustration, from a photograph taken at the St. Louis Fair of a large model of the Pennsylvania tunnel station that is to be built at New York, gives an excellent idea of the internal arrangements and vast proportions of this great struc ture. The ground on which the station is to be built measures 500 feet by 1,000 feet. The building itself measures 400 feet by 800 feet. The model is made on a scale of $\% / \%$ of an inch to one foot, and as it is 22 fcet in length, it is large enough to permit the architectural and constructional features to be made perfectly clear. The station will stand partly below and partly above the street level. It will be 45 feet from the street to the tracks, and there will be practically three floors-first the track level, with 21 parallel tracks running side by side the entire length of the station, then a second floor 20 feet above the tracks, and a third floor at street level. Our illustration shows the interior of the main rotunda, a magnificent hall 85 feet in width, 300 feet in length, and 150 feet in clear height. This will be the most magnificent hall of its kind and purpose in the world. At night time it will be lighted by the huge electric globes shown in our view, each of which will be 10 feet in diameter. There will be ladies' and gentlemen's waiting rooms on the right, and on the left of the rotunda will be a dining room and a combined waiting room for men and women. The broad concourse at the right of the rotunda will be roofed with glass; it will be 120 feet wide by 300 feet in length and 100 feet in clear height to the roof, and its floor will be on the same level as that of the main rotunda. At each end of the station, at the level of the second floor, will be the tracks of the pro posed Seventh and Eighth Avenue Rapid Transit subways, with convenient connections by broad entrances and exits from the subways to the Pennsylvania tunnel station. No one will be permitted to cross the tracks, gradual ascents and descents being made by stairways, although it is probable that by the time the station is built, moving stairways or elevators will be substituted. The superstructure of the building, above ground, will be three and four stories in height, and the noble façades will be treated in a severely classical style, consistent with the long perspectives and massive dignity of the building.
Adjacent to the model of the station, stands another fine specimen of the model maker's art, showing a section along the center line of the Pennsylvania Railroad tunnel from Hoboken to Long Island. The scale is $1-1,000$ full size, and the section is carried down from the surface of the ground to a level considerably below the bottom of the tunnel. The model in plan takes in a considerable stretch of Hoboken, Manhattan, and Long Island, and the buildings and streets are reproduced to exact scale with remarkable fidelity. At intervals, seven subsidiary cross sections are introduced, showing the nature of the construction at the points where the cross sections are taken. These represent the tunnel construction at such points as Bergen Hill; at the center of the North River, where the tunnel consists of two tubes carried on cast-iron piles; at the point where the two traclis merge in a common tunnel; at another point under Manhattan and nearer the station, where the tracks diverge into a three-track tunnel; and a section showing the four-track tunnel porfion between Eighth and Ninth Avenues. The two models together afford very complete information as to the leading engineering features of this, the greatst piece of tunnel and station construction ever undertaken by a railroad rompany.

Vesuvins's Latest Eruption.

Vesuvius is in eruption again. A piece of rock weighing about two tons shot out of the crater a week or so ago, and lava was flowing out of the crater so hot that it has melted the steel rails of the road that runs up the volcano.

Coxxeqpandente.

A Snake Poison Remedy.

To the Editor of the Scimxtral Ambicas
Having read the article in the August 13 number of the Scientific Americis on Dr. Vital's experiments with snake poison, I thought you might be interested to learn of another remedy for snake bites. A gentleman who has spent some time with the "cowboys" of the Indian Territory told me he had seen the remedy used many times with success. This remedy is the pure powdered indigo, which, when placed on the wound, seems to draw the poison entirely out. The "cowboys" carry little bags of indigo to be ready in case of emergency, either for themselves or any of their animals-horses, dogs, or cattle.
San José, Cal.
Mirs. G. W. Hiliton.

The sun's Rays and the Black Race

To the Editor of the Scientifie American:
In the "Journal of Experimental Medicine," Vol. IV., page 279, and Vol. I., page 361, for 1896 ; and in the "American Journal of Physiology," Vol. II., page 291, for 1899 ; also a little volume by Rev. Dr. S. Stanhope Smith, the late president of Princeton College, Princeton, N. J., on the "causes of the variety of complexion in human species" are exhaustive contributions of scientific literature, which have a bearing upon the relation of the pigment of the dark-skinned races to the sun.
Drs. Abel and Dorrs, of the chemical laboratory, Johns Hopkins University, Baltimore, and Prof. Chit tenden, of the physiological laboratory at Yale, both conclude that the pigment of the dark-skinned races protects them from the thermic rays of the sun.
In Prof. Keane's "Man Past and Present," in Ripley's "Races of Europe," in Dr. Giuseppi Sergi's "History of the Mediterranean Races," and in Lopinard's "Anthropology," are chapters of interesting light on "the effect of the sun upon the dark-skinned races." And while there are no black races indigenous outside oif the tropics, the leading American, English. French, and Italian ethnologists boldly teach that the white races of the world are simply modified negroes, and that the Anglo-Saxon and other white races are of an African origin, having crossed over into Europe during the Neolithic age, and that their habits, character of food, environments, attitude of their homes, climate, occupation, their greater distance from the rays of the tropical sun, are some of the etiological factors which have bleached our skins and made us white.

Rev. Jas. M. Bompy
Troy, N. Y. Liberty Street Presbyterian Church.
The Death of Prof, Neils R. Einsent.
Prof. Neils R. Finsen, discoverer of the method of curing lupus or tuberculosis of the skin and other skin diseases with light rays, and director of the Finsen Ray Institute in Copenhagen, is dead. For many years he suffered from a complication of diseases. So intense was his devotion to his work that he neglected himself day and night, to the despair of his friends, hardly sparing time enough from his duties for sleeping and eating. His death is attributed to overwork, aggravating the diseases from which ed to overwork, aggravating the diseases from which
he had suffered all his adult life. Prof. Finsen was he had suffered all his adult life. Prof. Finsen was
forty-three years old, and a native of one of the Faroe forty-three years old, and a native of one of the Faroe
Islands. The institute of which he had been the head since 1896 is supported through private benefactions and a Danish government endowment. For all this help, Prof. Finsen die! poor.
Prof. Finsen's great discovery, that sunlight and flectric light rays contain properties that can be used o cure skin diseases, was the outgrowth of his ex periments begun as a student in Copenhagen University. In a small attic of the old surgical academy building the investigation started. A fellow student, Sophus Bang, shared Finsen's enthusiasm for a complete reform in therapeutics. When ill health came o both, Bang sought refuge in Switzerland, and since has lecome one of the foremost anatomists of Europe. Finsen remained at home to carry on his investiga tions in the foggy and cold climate of Copenhagen.
In 1890 Prof. Finsen was graduated from the Copenhagen University, receiving his doctor's degree. Three years later he published in a medical journal an article on "The Influence of Light on the Skin," which aroused egeneral attention because of his assertion that cases of smallpox could be cured by putting red curtains at the windows of the sicliroom. This was the beginning of the final triumph. Smallpox became epidemic in 1894 in Copenhagen, and the new method was put to the test. The rell-room treatment became popular with both the medical profession and the public, for by it not only was the disease cured, but the red rays prevented suppuration, and left the patient unmarked by the dreaded scars.
The red-light treatment was but one application of Prof. Finsen's theory that light rays were healing, and at the best it was but a negative result; it cured only when the disease had run its course. To de-
velop the positive element of the light-ray cure, Prof Finsen began experimenting with artificial light rays. Soon he found it possible to concentrate rays of the ordinary electric light in such a way as to cure a lupus patient, who for eight years had tried every linown method. The cure attracted great attention, and both moral and financial support came to the young investigator and discoverer.

In 1896 the municipal hospital of Copenhagen gave room on its grounds for several small buildings, in which Prof. Finsen's experiments continued on an increasing scale. Then the Danish government came to the support of the institution, and it was enlarged and removed to Rosenvaenget, a pleasant suburb of Copenhagen.
In December, 1903, Prof. Finsen received the Nobel medical prize from the Norwegian parliament. This high testimonial to his great discovery is no less significant than the fact that although only nine years have elapsed since the first use of the Finsen rays, institutions for the use of the rays are now established in every civilized country.

The use of garnet as an abrasive has found a flattering reception among manufacturers; and while it meets the competition of quartz, corundum, crushed steel, and carborundum, these materials have not limited or decreased its popularity. According to the report of Mr. Pratt in the Mineral Resources of the United States for 1902, the total value of all natural abrasives produced in the United States for that year was $\$ 1,326,755$, and of this amount $\$ 132,820$ was represented by garnet, as against $\$ 104,605$ for corundum and sented.

Local shipping conditions infiuence the success of quarries of abrasive substances intimately. The Montana corundum deposits were practically shut out from the general market because of prejudicial freight rates. When these were removed, or modified, they began in July, 1903, to produce raw material at the rate of from 800 to 1,000 tons per year.

Mr. Pratt says that in 1902 the production of corundum in the United States was almost entirely of the emery variety. It was confined to Chester, Mass., and Peekskill, N. Y., the latter locality greatly increasing its output. The Canadian corundum is very largely imported into the United States, and this importation quite steadily increases. The total amount of commercial corundum produced in Canada in 1902 was 1 ,611,200 pounds, valued at $\$ 88,616$, or nearly $\$ 110$ per ton. It, for the most part, leaves Canada, and the United States is her largest customer.
Garnet as as abrasive has a good market. New localities of this material of fine quality and in accessible situations cannot fail to attract notice and reward development. An apparently rich deposit of garnet has been recently brought into business prominence, which is located on Little Pine Creek, Little Pine Creek Township, Madison County, North Carolina.

The garnets occur in a chloritic schist well developed and in large aogregates. They are the iron alumina variety-almandine-and not infrequently present superb gem surfaces, which furnish very superior cuttings.
The prospecting of this property began in January, 1904, and after the work of a month over twenty tons of good merchantable garnet was cleaned up. Work was resumed in March, and continued for two months. In this period over 160 tons were mined, and 140 tons shipped. The garnet is pronounced to be an excellent abrasive. The property promises important results, and will naturally attract some attention. The garnets resemble the famous Salida, Colorado, specimens, and furnish attractive mineral groups.

The company now engaged in the exploitation of this property is the Nortin Carolina Garnet Company, incorporated under the laws of New York State.

M. Charley's $\mathbf{\$ 2 0 , 0 0 0}$ Prize.

The offer which has been made by IM. Charley, the Paris representative of the Mercedes Company, of the sum of $\$ 20,000$ for the first motor boat to cross the ocean has brought out considerable discussion in Paris, and most of it is favorable to the enterprise. This may be seen from the fact that there are already no less than seven entries, among whom are Henry Fournier and H. Farman. As there has been some misunderstanding about the matter, M. Charley stated in a recent interview that the present idea is the natural outcome of the development which the racing boats have now reached in Europe. At the Lucerne races the different small craft made a brilliant performance. The boats covered a distance of 70 miles with a mean speed of 25 miles an hour and arrived at the finish with only a few seconds difference between them. The present racing boats are nearly ready to make an ocean trip, and if they are not quite up to the point they will be so before long. As to the opinion that a supply of 2,000 gallons of petrol will be needed to cross the ocean, he thinks a good motor should not consume more than half this amount. As to the practical value
of such a performance, one point is that the transatlantic liners could carry a number of such small craft on board which would be greatly superior to the ordinary lifeboat and would run at 25 miles an hour toward the coast or to seek aid. It is understood that the Atlantic trip can be made starting either from New York or from Havre. Owing to the difference of opinion as to the original idea of the project, it may bo well to state exactly what the promoters meant in proposing the $\$ 20,000$ prize. The question (ame up) at the time of the Lucerne races during a conversation between M. Charley and a number of other sportsmen. The question of high speed was discussed, and some thought that the motor boat would soon develop like the automobile and would reach a speed of 50 miles an hour before long. Others thought such a speed was too high, and after some discussion M. Charley proposed to bring the maiter to a head by opening a contest for high-speed boats. it was understood that the Atlantic trip was to be made iy a high-sperd automobile boat which would be a further devolopment of the present class of racers and could approach the speed of the transatlantic liners. It was not a question of heavy slow-speed craft which would take a long time to cross and would carry a great quantity of supplies.
The rules which will be drawn up will follow this order of ideas, and their object will be to devclop the high-speed racing boat. The question of supplies of gasoline will be one of the most important points. There is no doubt that relays of gasoline will be needed along the way, and this can only be carried out at considerable expense, which will limit the number of entries. Besides the industrial question the event is, to be largely one of sport and will bring out the kill and energy of the best pilots. It is to be stated that M. Charley does not stop at the $\$ 20.000$ prize, but now offers to found an International Atlantic Cup which will be held by the winner as usual. To show how favorably the idea is being received here, it need only be mentioned that up to the 16 th of September there were already seven engagements received. One of these is from Fournier, the winner of the Lucerne up with the Hetchkiss boat. It. is inis intention to undertake the Atlantic trip along the lines proposed by M. Charley. He expects to start next May or June with an automobile boat which will vary from 60 to 100 feet in length. The motor will be of nearly 100 horse-power, and a noteworthy point is that he experts to use heavy petroleum as fuel, with a specially designed carbureter. He has also provided for securing supplies of petroleum by the aid of five yachts along the route, as he does not expect to carry more than 200 or 250 gallons on board. Besides this, two Mercedes boats will be built for the occasion, along the lines which proved so successful in the "Mercedes IV." M. Quernel, the eminent naval engineer who laid out the plans of the latter craft, is thoroughly convinced that the idea is practicable. According to him, with a boat of 80 horse-power, a displacement of 20 tons, and a speed of 15 miles an hour, the trip would take 10 or 12 days. But allowing it to take on surplies en route, the boat could be considerably smaller and travel much faster. Another entry is that of M. Noé Boyer, of Paris, with the "Cananto Boyer." It is to have a 100 -horse-power motor, built by Thevenin Bros., and Henri Loste will pilot it. Following these four engagements is a fifth from iH. Farman and Wimille, a sixth from Thubron, who has entered the "Trèfle-à-Quatre" (Geo. Richard make), the winner in the Monte Carlo races The seventh entry is that of M. Louis Ravel.
In England the question has awakened great interest. Mr. S. F. Edge, the constructor and pilot of the Napier boats, states that he approves the idea thoroughly, and even before this had thought of crossing the Atlantic. In fact, he had taken an order from an American sportsman for a 300 -horse-power boat, which was to be delivered next March. It was stipulated in the contract that the boat was to come to New York by sea, so that M. Edge now proposes to enter the con test if the rules will permit, and thus accomplish a double purrose.

Prof. Van't Hoff, through the medium of the Zeitschrift für physikalische Chemie, offers a prize of $\$ 300$ for the best and most complete synopsis of the literature of catalytic phenomena. The last day for the receipt of papers in this competition is June 30,1905 ; the papers must be addressed to the Editors of the Zeitschrift, 2 Linnéstrasse, Leip\%ig. The competition is to be decided by Profs. Van't Hoff, Arrhenius, and Ostwald.

In Madagascar, a motor car service, which was commenced on June 1, 1903, for the conveyance of mails and passengers between the East Coast and Antananarivo, has been worked with regularity and has given very satisfactory results. The road is 152 miles in length; its width is 16 feet 6 inches, of which 10 feet is macadamized. The maximum gradient is 1 in 12.5 , and its minimum radius 11 yards.

ARMOR AND WEAPONS OF THE DE DINO COLLECTION.-II.
by ieabel r. wallach
In a previous article published in these columns, the more prominent pieces of armor in the admirable De Dino collection, lately acquired by the Metropolitan

Museum of Art, New York city, were described and illustrated. It is the purpose of the present brief review to tell something of the more important weapons, which add much to the historical value of that collection, and of some additional suits of armor.
One of the most splendid specimens of these medieval
weapons is the Papal sword of Sixtus V., emblazoned with the arms of the haughty Albani. Other blades are here of rare Toledo and Milanese workmanship, show ing the wonderful siill attained by the swordsmiths of the period. The wea!th of decoration lavished upon (Continued on page ...in.)

The Sword of Aben Achmet.

The Helmet of Henri II. Seen from Both sides. Its Rich Ornamentation Pictures the Heroic Deeds of Hercules.

Calendar Hunting Knife with Pistol, which Marks the Transition Stage to Firearms.

An Early Double-barreled Firearm in the De Dino Collection.

The Flutes of This Maximilien Suit Imitate the Ruffs and Slashes of the Court Dress of the Epoch (1530).

Armor Made by Colman of Augsburg About 1550. The Tournament Plates for Reinforcing the Armor of Shoulder and Face are Added.

ARMOR AND WEAPONS OF THE DE DINO COLLECTION.

PEARY'S NEW SHIP FOR WORK IN ARCTIC SEAS
All that experience and all that the cunning of the naval architect can suggest will be combined in Commander Peary's new ship, that he is having built in Maine for his final effort to reach the North Pole. Fashioned of unusual strength and girded and armored as was never Arctic craft before, it is Commander Peary's belief that he may be able to force his way through the interfering ice until he has carried his vessel within reasonably easy striking distance of the topmost point of the globe. His intention is to force the vessel as far north along the frigid shores of Grant Land as possible, and there, from this utmost land base, to make his dash by sledge across the great central polar pack. Apart from giving him a shore base a hundred miles nearer the pole than would Franz Josef Land, the coast-line will give him an easier line of retreat on the return trip. To carry his party and two years' supplies so far northward into the great ice barrier of that region, the new vessel will be strong enough to force its way successfully through the opposing floes, and, by reason of her great endurance and the power in her engines, be able to cleave a way where others have failed.
The new ship is not large, but she is of ample size for the work cut out for her, and everything has been done to make her handy and serviceable. Her principal dimensions are: length on load water-line, between perpendiculars, 161 feet; length over all, 181 feet; beam, maximum, at load water-line, 32 feet; beam, maximum, over guard strake, 34 feet, 2 inches; mean draft, 16 feet; full-load displacement, about 1,500 tons.
The structural get-up of the craft will be very massive, and the stem, sternpost, keel, keelsons, and frames will all be of very carefully selected white oak, fastened and secured with exceptional thoroughness. The frames, molded at heel 16 inches and at head 10 inches, will be spaced only 24 inches apart, from center to center. Immediately over the frames will be laid diagonal straps of steel, making a lattice lacing

CROSS-SECTION OF COMMANDER PEARY'S NEW SHIP.

beam will be supported by heavy diagonal braces of yellow pine, likewise well anchored and through bolted. To give greater vertical stiffness, each beam will be supported by tie-rod stanchions of steel and wrought-iron piping, so arranged that they may be set up from time to time during construction, thus to provide against any sag developed in building and to insure a most rigid support. As can be seen, the craft is built to withstand very heavy pressures acting normally to the sides, bilges, and bottom; and the shape of her cross-section is such as to tend to raise the vessel out of water as the ice pack presses upon her below water. A heavy white-oak guard, 8 inches by 20 inches, will be worked abreast of the plank
she be frozen in-her own weight, in settiins again, combined with the wedge-like form of bow and stern, being enough to break a wide crevasse in the ice, thus opening clear a way for progress. The second operation will be automatic, and will relieve the ship from the grinding, crushing effect of gathering ice packs in motion. To take the worst of the rub of passing ice, the bow, the stern, and the water-line will be armored. The bow protection will consist of 1 -inch steel plating worked from the keel up to three feet above the water-line, and extending att for ten feet. The stern protection will be of like strength, reaching from the keel up above the water-line, and extending forward for fourteen feet. The water-line armoring, extending completely between the bow and the stern protection, will be of $: 1 / 5 \cdot$ inch plating, 5 feet wide, one foot only being above board at load draft. The main deck will be planked with 3 inch by 4 inch yellow pine most carefully calked, and the hatch coamings, of stout white oak, will be nearly as high as the top of the bulwarks, thereby adding to the effective freeboard of the ship.

The vessel will carry two deck houses, and the forward one, which will be portable, will be large enough to accommodate Commander Peary, the scientific staff, and the officers of the ship. When the ship has reached as far north as it is possible to force her, this deck house will be carried ashore to serve as winter quarters, and, upon the departure of the sledge expedition, as a store-house for the more important supplies. The crew will be comfortably housed either in the fore castle or aft between decks, where accommodations will be provided for them. It is highly likely that the Eskimos and their dogs, which Commander Peary will take on at Whale Sound, will be housed under the forecastle; but this is a detail not yet settled.
The living spaces will be comfortably but very simply finished, and the ship will be heated by steam and lighted both by electricity and by oil lamps.

The motive power will consist of a single, inverted, compound engine, driving a single 10 -foot screw, and

the new ship which commander peary is building for his next dash for the pole.
from bow to stern and from stern to bow, leaving rectangular openings betweer., six feet square. Outside, over the straps, will be laid a double course of 5 -inch planking, the inner course of yellow pine or spruce and the outer course of well-seasoned white oak. Between the two courses will be spread a sheathing of tarred hemp or tarred canvas. The courses will be secured to the frames very thoroughly, and the outer course, after it has been most carefully calked, will be overlaid with extra heavy sheet copper. Inside, the frames will be covered with 3 -inch yellow-pine ceiling, and
sheer from stem to stern, and so securely fastened to the frames, plank sheer, and waterway, that it will be able to support the weight of the entire ship. On the face and under side, this guard strake will be protected by a heavy angle-bar of steel. The purpose of this guard strake is two-fold: First, to add greatly to the longitudinal stiffness of the ship and, second, to serve to lift the craft out of water, either by jacks placed upon the ice or by the upward pressure of the ce pack itself catching under the counter of the guard. The firsi operation is to relieve the ship should
steam will be supplied by two water-tube boilers. Under forced draft, the engine will be able to develop 1,400 indicated horse-pow ϵ, and under natural draft, 1,200 indicated horse-power. The bunker capacity is 700 tons of coal; and at starting, the vessel will carry a deck load, in bags, of 150 tons more. With this supply, at a 10 -knot cruising speed, she should be able to do between four and five thousand knots.
There will be a steam capstan and steam steering gear.
The vessel's rig is rather unusual, but is sufficient in
spread of canvas to make her manageable under sail alone. The individual sails are designed to make it easy for a small crew to handle them. The standing rigging will be of galvanized steel wire rope. The foremast and the mizzenmast will be single sticks. A crow's nest will be carried on the maintopmast.
The hull of the new ship is building at the shipyard of McKay \& Dix, Verona, Me., and complete will cost about $\$ 75,000$. The engines and auxiliary, being constructed by the Portland Company, Portland, Me., will cost quite $\$ 45,000$. The utmost dispatch, consistent with thoroughness, is to be devoted to turning the boat out by the early spring.
Some time in June or early in July, Commander Peary hopes to start northward, the ship's complement to consist of about forty persons, exclusive of Eskimos, and by the end of the Arctic summer he expects to have forced the ship to the far north shore of Grant Land. With the first return of light, he will start on his sledge journey over the great central polar ice pack, using the flower of the Eskimos for the rank and file of his party.

Commander Peary's indomitable will and physical force are wonderfully, though passively, graven in every line of the sturdy craft that has been designed to bear him farther north than ship yet has broken her way; and to Mr. William E. Winant, naval architect, much credit is due for the skillful manner in which he has planned to meet every contingency of that severe Arctic climate and service.

ARMOR AND WEAPONS OF THE DE DINO COLLECTION.-II.

(Continued from page 2.28.)
blade, hilt, and scabbard partakes of the goldsmith's art rather than that of the craftsman in steel. Great two-handed swords may here be found of dimension and temper that bear out the tales told of men cleft in twain at a single stroke.
But of all the knightly swords, the most valuable in the present collection, and the one that appeals strongest to our sympathies, is the magnificent blade of Aben Achmet. Sheath and steel are of rare Hispano-Moorish workmanship, resplendent with enamel and gold and silver filigree. It figured in a tragedy accompanying the fall of the house of Abencerrages and the ruin of Granada. Pathetically near the historic sword lies the elaborately-wrought Koran case of its liege, Boabdil the Unlucky, last of the long line of Moorish kings to reign in Europe. The pole arms of this period are characterized by brutal savagery curiously wedded to exquisite art. The heavy spiked mace, the enormous battle-axes and hammers, the torturing triple-edged pikes, amply justified the iron sheathing in which the warrior incased himself.
A curious and most interesting weapon is an elaborately gilded dagger, made in Germany in the latter half of the sixteenth century, and carrying a pistol concealed within its blade. The removable tip of the dag. ger forms the key. which, inserted in the knob of the hilt, wound the wheel-lock. The latter is visible through the oblong opening at the upper end of the blade. A flint is attached to the under side of the band of repoussí that bridges the hilt. This bridge is movable, and, as it descends, it releases the spring that revolves the wheel, brings the flint in contact with the wheel and sends a shower of sparks into the pistol beneath, discharging its bullet. The weapon is ingeniously contrived, and was no doubt highly prized by its owner.
Unlike the dagger, the Calendar hunting-knife, dated 1540. carries its firearm openly. Its German maker must have been proud of his clever handiwork, for boldly has he made it declare: "icuens .. had . disse.\therefore kollendeli \therefore (iemachit." (Ichenn made this calendar.)
There is also exhibited a sword-cane once the property of Philip II. of Spain. It has a Toledo blade of wonderful temper. Still another remarkable piece has a pistol dated 1612, which displays a complete double battery. The mechanism of the ingenious wheel-lock is clearly seen.
The harquebuses and pistols show how far the love of ornamentation was carried. Inlay of pearl and ivory and overlay of gold and silver, repoussí and incised work cover the stocks. The metal work of the weapon, as well as its wheel-lock, key, and powder flask, show treatment akin to that of the goldsmith's art.
Among the smaller weapons are specimens interesting alike for their beauty and ornament, and for the ingenious devices that insure the attainment of their fatal purpose. The early firearms attracted much attention, specially those in which the mechanism of the old-time wheel-lock is visible. Prototypes crude and curious are here displayed of our modern rifle and double-barreled gun.
The finest specimen in the De Dino collection, so far as weapons are concerned, and, indeed. the finest specimen of its kind in the world, is a sword fashioned during the reign of Francis I. The hilt is wound with braided gold wire of extreme fineness and ends in the bust of a woman, the modeling and carving of which
are perfect. Similar busts terminate the cross-bar, and a coiled serpent guards the end.

The exhibit of the helmets in the collection is likewise most comprehensive. Those who have read the previous article will recall the many types there illustrated. It may be fitting in this place, however, to call attention to the royal burginet of Henri II. of France. Its sides tell in rich relief of the victory of Hercules. The casque forms part of the gilded armor he wore when as Dauphin he visited his royal father, Emperor Charles, confined a prisoner of war in Madrid.
In the previous article some splendid specimens of armor in the collection were illustrated and described. Moving from case to case of the collection, one cannot help noting how fashion changed in these steel garments, even as it does in ordinary dress to-day. The earliest suits show shoes ending in a cruel spike, with other spikes projecting from the arm pieces. A swift thrust from a foot or elbow thus armed was likely to leave an indelible mark. Later the square-toed shoe, supple and flexible, by reason of its many plates, came into favor. It is to be seen in the royal suit of Philip II. of Spain, of bloody memory in England and the Netherlands. Over the heart is the cross of Calatrava and d'Alcantara. It is hard to reconcile the meaning of this symbol with the ruthless persecution its wearer instituted in the Protestant lands he sought to conquer. A large portion of this richly-decorated suit, as stated by Baron de Cosson, formed a part of the collection of the Madrid Armeria Real. From this armory nine

A Large Portion of This Highly-Decorated Suit Belonged to Philip II. of Spain. It Bears the Cross of Calatrava and d'Alcantara.

ARMOR AND WEAPONS OF THE DE DINO COLLECTION.

pieces of this suit were abstracted in 1839. The backplate, the breastplate (with its dependent pieces), footplate, and the defense of one forearm are added from a similar suit. The latter pieces formed part of the harness, of which parts are still preserved in the Madrid Armeria, which appears to have belonged to a member of the family of d'Onata. The suit was made in Germany about 1554.
Still another suit belonging to Philip II. is also displayed. Philip II. was painted in this second armor by Titian and Rubens. A century later, Velasque\% used it in his portrait of Count Benavente, now in the Prado Gallery in Madrid. This armor was fashioned by a German artist about 1550 . The numerous pieces of richly-decorated armor in the particular case containing the suit and in a neighboring case formed a comrlete panoply of which the parts could be changed according to the needs of its wearer. In the specimen illustrated, the tournament plates that reinforce the armor of the shoulder and face are added. The suit was probably made by Colman of Augsburg. The sword hilt in the left hand of the armor is of Spanish make, and dates from the middle of the sixteenth century. It is the work of Sohagun el Viejo of Toledo, the swordsmith of Philip II.
A very rare specimen is a florid and tlamboyant suit with its grotesque visor mask. The puffing and slashing of the court dress of the day (1530) is imitated in the metal, and the anatomical lines are followed with
admirable fidelity, even to the instep and gauntlet. Every vulnerable point is guarded; yet nowhere is the movement of the joint or muscle hampered in the slightest degree. The lightness of the plates indicates that the armor was designed for occasions of ceremony. The human face visor is rare. Baron de Cosson finds evidence regarding this armor (one of the most valuable of the collection) as having been a gift of the Emperor Maximilien to one of the dignitaries of his court. The left hand of the armor holds a Spanish sword made during the sixteenth century.
A remarkable harness is the jousting armor made by a German craltsman about 1500 . This is an example of the most specialized form of jousting armor. Its weight is nearly 90 pounds. The helmet, weighing 22 pounds, was bolted to the breastplate, and is of sufficient size to enable the wearer to turn his head. The armpits were protected by large rondelles, and a shield fastened at a single point served as a mark for a lance thrusi. The lance of this period was sometimes over 16 feet long (about 4 inches in diameter near the hand), and weighed nearly 40 pounds. It could not, therefore, bt, held very well, but had to be balanced between a separate "fork," attached to the breastplate, and a long arm riveted to the backplate. Such was the weight of the armor, and the rapidity of the charge, that a lance which struck squarely would be splintered. A barrier separated the jousters, and rendered armor for the legs unnecessary. The headpiece of a horse mounted under the suit illustrated indicates that the horses were sometimes blindfolded to prevent their shying.

Hydroplanes-New forms of Giding Boats.
This name, formed on the analogy of aeroplane, is suggested for vessels which, instead of floating in water, glide over its surface as sleighs glide over ice.

Two such gliding boats have recently been invented in France, one by the well-known constructor Ader, the other by Count Lambert. Ader's is a flat-bottomed boat provided with wings and tail like a bird's, which, when expanded, graze the surface of the water. Air at the pressure of one-twentieth of an atmosphere is forced under the wings and tail, raising them and the boat with them until the bottom just touches the surface. The resistance being thus diminished, the boat is driven forward rapidly by a submerged propeller.

Though-the boat worked fairly well, it is too complicated and unwieldy for practical use, and has been presented by its inventor to the Conservatoire des Arts et Métiers, where it is to be preserved as the embodiment of an ingenious idea.
Count Lambert's boat is much simpler and more practical. It somewhat resembles a raft, being six meters long and three meters wide. Under the bottom are five planes, whose inclinations to the horizontal increase progressively from the first, at the bow, to the last, at the stern. When at rest the boat is submerged to a depth corresponding to its weight; but when the motor and propeller are started, the bow and then the stern are forced upward by the pressure of the water on the inclined planes until the boat is raised to the surface, over which it skims with astonishing velocity. At the first trials, in May of this year, it made 32 kilometers an hour with a 14 -horse-power motor. A boat of ordinary construction would have needed 40 horsepower for such a speed, and the motor actually used would not have driven it faster than 15 kilometers an hour. In a later trial, after some alterations had been made in the machinery, the Lambert boat made a record of 34.5 kilometers (21.42 miles) an hour.
The screw works between two rudders which, of course, are very deep. The boat cannot move backward except very slowly, but this defect could be remedied by making the planes movable, and reversing their inclinations with the reversal of the screw.
It is obviously unsuited for rough water, but its simple construction and great speed with small consumption of power recommend it highly for use in harbors and rivers.
Here its sphere of usefulness is restricted, like that of any other screw-propelled boat, by shoal water and by vegetation; for though Lambert's boat has no appreciable draft when moving at full speed, its screw is deeply submerged when at rest. Screw-propelled boats also have the unpleasant property of fouling shallow waters and driving away fish.
All these disadvantages, in the case of the Lambert boat, can be obviated by replacing the water propeller by an air propeller.
The air propeller is not a new invention. It was used by Count Zeppelin in a boat designed to assist in the trials of his first airship, and was described and illustrated in these columns. An aluminium windmill about two meters in diameter, driven by a 12 -horsepower motor, propelled this boat at the rate of 12 or 14 kilometers an hour, a performance nearly equal to that of boats with submerged propellers of the same horsepower.
A Lambert boat, or "hydroplane," similiarly equipped, should skim with ease over very shallow water and over or through vegetation.

PERFECT WORKING MODEL OF A WINTON TOURING GAR. In the Scientific American of September 19, 1903, were illustrated some very interesting models, made by Dr. Frank W. Brandow, of Pittsfield, Mass. By far the best model which Dr. Brandow made, one which was not included among those published in the issue referred to, was a beautiful miniature Winton touring car. It was exhibited at Tiffany's for a time.
Dr. Brandow makes these models simply for pastime, and never sells them. The model of the Winton touring car is perfectly made to scale, oneeighth of an inch to the foot, from blue prints and a set of drawings furnished by the Winton Motor Carriage Company. The little car is constructed of silver-plated and oxidized bronze, silver, copper, and aluminium. The silver lamp is a perfect model; the side lights are reproductions of the Dietz lamp. The upholstery is made of kid. All the working parts have been carefully fashioned, such as the steering gear, brake lever, and the like. The artillery wheels are also exact copies, the tires having been made by a Chicago firm. The entire model weighs about fifteen pounds, and is two feet long.

THE LARGEST NARWHAL TUSK.

> by walter l. beasley.

Probably one of the least known and strangest of all the sea animals is the narwhal (lionodon monoceros) conjectured by some to be the original of the fabled unicorn. The great peculiarity of this graceful cetacean lies in its long tusk, a polished ivory shaft, straight as an arrow and sharp as a lance, which protrudes from its head to a great distance. This formidable and glittering appendage gives to the animal a striking and spectacular appearance, excelling most of the other land and water inhabitants of the frozen world. One of the most showy and highly-prized trophies which Lieut. Robert E. Peary brought back from his last journey. to Greenland was the ivory tusk of a narwhal, recently presented to the American Museum of Natural History. This is the record-breaking specimen of the world, so far reported, measuring eight feet in length and eight inches in circumference at its thickest part. A realization of its height is gained when it is placed alongside a man, the extreme point of the tusk overtopping his head two feet. An extremely rare specimen of interest to naturalists is a head having two horns, one twisted in an unusual manner. The big tusk is spirally grooved. Its use is thought to have been for defense, breaking the weak

Whale Sound, Inglefield Gulf, Cape Sabine, and Payer Harbor are favorite haunts of this animal. Mr. Waldemar Jochelson, of the Jesup expedition, reports having seen a narwhal tusk at Kulic Bay, on the Arctic coast of northeast Siberia, which was longer than a native's height by a foot. The Asiatic Eskimos and maritime Chukchee, who dwell along this desolate and frozen region, from the mouth of the Kolyma and frozen region, from the mouth of the Kolyma
River to East Cape, a stretch of 3,000 miles, go out

PERFECT WORKING MODEL OF A WINTON TOURING CAR.
into the open sea in pursuit of this animal. Clever ivory carvings in miniature of animals and natural objects are executed by the natives on the tusks, also fashioned into various implements. They are of systematic habits in Greenland, appearing at certain times in schools, making excursions into the various bays and fjords in search of food. A band of a hundred or more form a picturesque sight when plowing through the water in military-like procession, the long, glittering horns all rising in unison as they come up to the surface to blow. Their advent is hailed with delight by the Eskimos, as they are said to be the forerunners of the early approach of the right whale, which, like the narwhal, uses the same kind

AN 8-FOOT NARWHAL TUSK, THE LARGEST ON RECORD.
of food, consisting of mollusks, fish, etc. A skate over two feet long and one foot in breadth has been found inside a narwhal. It is considered somewhat remarkable that it managed to swallow a fish whose breadth is nearly three times as great as the width of its own mouth. It is most probable that the fish was pierced with the narwhal's horn and killed before it passed

down the throat of the toothless animal. The body of the narwhal is dotted with black and white spots, the eyes are small, and the blowhole is situated on the top of the head.

The animal furnishes a highly esteemed food for the Greenlanders, and is actively pursued during the hunting season. A big carcass is considered a rich prize by the fortunate hunter. The nutritious skin forms the most delicious sort of chewing gum for both men and women, and is regarded as a choice luxury. The body is covered to a depth of three or four inches with a layer of fine blubber, weighing hall a ton and yielding a large amount of the best grade of oil. In laying in stores for his dasi over the Greenland ice-cap, Lieut. Peary has stated that the animal provided some of his most nourishing supplies. The blubber was cut into small chunks, and packed in tin cans. The skin was divided into strips, and given as food to the dogs. It appears hardly credible to the sportsman of civilization, yet it is all the more a tribute to the bravery and skill of the Eskimo hunter, that this leviathan of the Arctic, with a powertul body and tusks havilig a combined length of from 20 to 25 fect, could be killed by his captor seated in a frail skin kayak, with only a crude bone harpoon as weapon, yet such is the cas?. Modern firearms have not yet been adopted in this remote region. White explorers shoot the narwhal, but in many instances fail to secure their game, owing to the sinking of the body before it can be reached. According to Lieut. Peary, the surest method is the one adopted by the natives, who cautiously approach the narwhals in their kayaks, while they are feeding or sporting in the water. During these playful exhibitions, as they rise to the surface, they sometimes cross their horns as in fencing. On these occasions, the keen-eyed and experienced hunter watches for the moment when the animal reaches the surface to blow, and then hurls his harpoon with all his strength into its body. After this weapon has been thrown, it penetrates the animal's flesh in a longitudinal manner. Soon, however, owing to the weight and pressure of the shaft, and also to the increased movement of the wounded narwhal, the head of the shaft is forced into a transverse position in the flesh, and the head of the harpoon at the same time becomes detached from the shaft. The injured narwhal is then held secure by the line until exhausted. The weapon has an inflated skin buoy or float attached to it, which

A DOUBLE-HORNED NARWHAL, WITH TWISTED TUSK-A RARE SPECIMEN.
ice to obtain breathing holes, and also as a weapon to secure prey. These strong, piercing tusks could easily penetrate the bottom of a good-sized vessel, if she was fairly struck when the animal was moving at fùll speed. The range of the narwhal is from 76 degrees to 83 degrees north latitude in Greenland, which takes in the extreme north of the western hemisphere.

THE TAIL OF THE LARGEST NARWHAL EVER CAPTURED.
is used to keep the body from sinking while it is being towed home or to the shore, to be cachéd in a rock or high ledge.

The experience gained with the use of pressed peat as locomotive fuel in Bavaria, Austria. Sweden, and Russia is stated to we very satisfactory.

RECENTLY PATENTED INVENTIONS

Apparatus for Special Purposes.

 cover for coking leat with re COVERY OF BY-PRODUCTS.-E. BremerMariupol, Russia. The object of the inven Mariupol, Russia. The object of the inven-
tion is to provide an oven more especially tion is to provide an oven more espectially
designed for coking peat by dry distillation designed for coking peat by dry distination
ia a rery ecomucuical manacr by uctizing die Ia a rery ecourumiad usanacr by uctizing the
gases produced as fuel fer the heating of the
reducing-retorts. Its construction consists of reducing-retorts. Its construction consists of
a suitable number of vertical retorts, of refractory material and :urranged side by side, of any suitable material, the retorts being
combined into groups and allowing free access combined into grou
from the bottom.
snow-meltine
wars, Philadelphia, Pa. The invention provides novel details of construction for a snow-
melting apparatus that afford convenient, practical means for the speedy conversion of snow
from the city streets into water. By the pro from the city streets into water. By the pro-
vision of such apparatus at suitable points in the streets it will be possible to remove the show on
travel.
TURiPNTINE-STILL.-J. F. Baher, Valprelhends a still, special steam-heating means arehronds a stin, special steam-heating means, therein any suitable worm or column condenser, the worm being in open communication with
the upper part of the still, and a steam-operated pump, having suitable connection with the supply of cold water, the condenser tank,
and the stcam generator. The pump is worked by steam which has in its live state served for
heating the still. Improved results are atheating the still. Improved results are at-
tained through inductive action produced by the pumb, in the steam passageways through he still, whereby with a minimum use of tar. and resin is had.

Of Interest to Farmer

 Mowing-Machinde-C. II. Hewna, High Street, (ricklade, Wilts, England. Mr. Hewer'sinvention relates to a track-cleaner for mowinvention relates to a track-cleancr for mow-
ing-machines designed to cloar the cout grass from the standing crop during the first colt and thereby dispense with the manual labor usnally regured to remove
before ine field or piece can be completed.
a reguirement which often entails great loss of time and crop.

Of Gieneral Interest.

MIRROR-FRAME-L. B. Prahar, New York, S. Y. The purpose of the invention is
to provide an exceedingly simple construction of mirror frame, wherin the mirror can be seentering the other, and the flange at the outer section lie rolled or clamped upon the
corresponding flange on the inner or front section in such manner as to make a smooth, overlap
solder.
DEVICE FOR USE in sharifeving PWNCILS.-A. I. Fagrenifs, Chicago, Ill. The object of this invention is to provide
an improved device for sharpening pencils with a knife, which is simple in construction a porket nod to allow an accurate and quick sharpening of the pencil. The device com-
prises a sleeve. formed with guide fingers against which the knife is drawn when sharpening the pencil. and which therefore prevent
the knife from cutting too deeply into the wood and from breaking the lead of the Non-hefillaible botrile.-l. Megrathe,
Hibbing. Minn. Mr. Mecirath's invention is Hibbing. Minn. Mr. Mccirath's invention is an improvement in that class of attachments
for bottles adapted to render them non-refillable. The attachment in the present instanc consists of a pair of ball valves, adapted to
assume different positions, according to the assume different positions, according
position in which the bottle is held, so
allow or prevent escape of the liquid.
 provides a simple and inexpensive device which provides a simple and inexpensive device which
is especially designed to securely fasten a rope
without chating or cutting the same, and at the s:me time permit the rope to be pulled out of place easily and quicklv, the rope being so
manipulated that it will not double or kink manipulated that it will not double or kink
during the operations of fastening or releasing the same.

chanism is provided ly this inventor to overwinding of the clockwork, and thas the form of a hook which protr m the lock and is moved laterally. eral dial wheels may be read off togeth gle pointer being common to them all. ention relates to time-locks. such as d for safes, vaults, and rompartments wh valuables are stried.

Railways and Their Accensories. mbicathagracking holber for Md. By this invention Mr. Patten seeks t provide a lubricating device in which the packing carrier will hold the packing and pre-
vent it from shifting in the direction of the circumference of journal. and in which the springs so that the latter will not tend to con dense or compress the packing against the journal.
be furnisheopes of any of these patents wil be furnished by Munn \& Co. for ten cents each the invention, and date of the paper.

Business and Personal WUants.

READ THIS COLUND CAREFULIYY--You facture these goods write us at once and we wil
send you the name and address of the party desir
ing the information. Iu every case it is meces

Marine Iron w,
Inaniry No. 604.- For machinerv for peeling,
cracking, cleaniugand bleaching walluts. Autos.-Duryea Power Co., Keading, Pa .
Inquiry No. $\mathbf{6 0 4 5}$.- For outhts and supplies for
confectioners, bakers, etc.
Inquiry No. 6046. - For manufacturers of broon
Perforated Metals. Harrington \& King Perforating
luquiry No. G047.-Fir manufacturers of wnod
and metal hathes. sirss, drills, work benclies, etc., for
mainual training scliool

If it is a paper tube we ca Company, Fall River, Mass.

Inquiry No. $\mathbf{6 0 4 8}$. - For builders of st caw engines
for automobiles, or makers of stean aut omotiles.
Sawmill machinery and outits manufactured by the
Lane Mfk. Co.. Box 13 , Montpelier, Vt .
lnquiry No. 60.49.-For manufacturers of machin
ery for excelsior plants.
D. A. Beaton, Practical Lead Burner, P. O. Box 334
Woburn, Mass. Fifteenyears' experience. Inquiry No. (6030.-For makers of
paper, to be used as a substitute for leather
\& Hamburger, Equitable Building, Berlin, Germany.

Agents wanted to sell the Ryede puzzle. Sample by
mail for 10c. Ryede Specialty Works, Rochester, N. Y.
Inquiry No. $\mathbf{6 0 5 y}$.-For the makers of an appa-
ratus alled "Lin Tom "which are fixed on the wall,
and a coin is fired by ismall cannon.
Artificial Silk.-Wanted to purchase a practical
sikik box

In buying or selling patents money may be saved
and time gained by writing Chas. A. Scott, 719 Mutual Life Buildmg, Buffalo, New York
Inquiry No. fing4.
ing iron for aluminium.
Rmportant Patent Riphts for Sale. An improved ice Address Patent Rights, Box Tin, New York.
Inguiry No. Go.j.-. For a freezing
making ice in small and large quantities.
Patented inventions of brass, bronze, composition or
aluminum construction placed on market. W
A merican Brass Foundry Co., Hyde Park, Mass.
Inguiry No. ©0.5fi.-Fir manufacturers of scre
maclines, monitor lithes and drull presses.
We manufacture anything in metal. Patented arti-
cles, metal stamping, dies, screw mach. wor
Metal Novelty Works, 43 Canal Street, Chicago.
luquiry No. G0.57.-For manufacturers of horse
shoe and small mignets.
Send for new and complete catalogue of Scientitic
and other Books for sale by Munn \& Co., 361 Broadwa
New York. Free on appllication
Iuquiry No. ©OMS.
Brooks water tube briler.
Manufacturers of patent articles, dies, metal stamp-
ing, screw machine work, hardware specialties, machinery and toois. Quadriga Manufacturing Company, South
thas.

r3i.94. Can furnisi, some valves, catt iff,
order. P.J. Leithianser, Clarendon, Texas.

The celebrated " Hurnsby-A brord" Patent Safety oi Engine is built by the De La vergne Machine Comoang
Inguiry No. Gugit.-For makers of small gassline
engines and motors.
Wanted-lRevolutionary Documents, Autograph Let
ters, Journals. Irints. Wishington Portraits, Farls American Illustrated Masazines, Early Pitents, simbed
by Presidents of the linited states. Valcminne's
Manuals of the early 4 's. Correspondence solicited.
Inguiry No. b06s. For makers of small hot air
engines.
Superintendent.-In trim and woodwork factory of the highest grade, to work on salary, commission or
both as desired. New want in New York city. Men
with more than tiften yoars' cxperionce noed not al

and Address must incoppuy. al

Mrice.
$\begin{array}{c}\text { Minerals } \\ \text { marked or or labelect. }\end{array}$

Queries column, the answers to the following questions? 1. How is muzale chuygy callui-
lated? For example, how is it that the 10 nch, 40-caliber,, B. L. gun firing a $\overline{\text { NoO }}$ pomand projectile, with a muzzle velocity of 2. soon foot-
seconds, develons 27,204 foot-tons muzzle energy: A. The muzale energy of a gun is com-
puted ly multiplying the weight of the shot in pounds by the squate of the muzzle shotocity in feet per second, and dividing the product
by twice gravity ($64: 32$) multiplied by pormds in a ton $(2,240)$; thus $\frac{500 \times 2,800)^{2}}{}=27,207$ foot-tons. 2 . How is the striking energy of a mogectile calculated: A. The striking of a
vhot is its velocity mergy assmond, from the muzale energy, less air friction, divided by the distance that the force of the shot is arrested
in feet or decimals of a foot. Sec Somextric
 pounds per square foot per inch of thickness. example, does one square foot of 5 -inch armor weigh 200 pounds, of 6 -inch 240 pounds, and
of 7 -inch 280 pounds? A. The weight of steel of 7 -inch 280 pounds: A. The weight of steel
plate is correct as stated. 4. The 13,000 -tom battlestip "Idaho" is designed for a speed of 7 knots with 10,000 horse-power. On page
1 of the $190: 3$ Report of the Chief of the 31 of the 1903 Report of the Chief of the
Iureau of Ordnance, it is stated that to inon increase of 6,000 horse-power. Please ex plain how this increase of horse-power was peed of ressels is, cube of velocity in knots ber hour multiplied hy the cube root of the square of the displacement in tons, and pro-
duct divided by a coefficient for mold or the vessel. Have no data of the Ordnance Sureau. 5. recently wrote to the Bureau of Ordnance
equesting information relative to the weights of certain gun mounts, and the number
received an answer stating hiat such data tion. confidential, and not issued for publica Mmican for October 12.1901 . it is stated
hat the mount of the 6 -inch 50 -aliber I . F . Gun weighs $5.4: 3$ tons. and the shield 2.7 tons,
waking the total weight for the mount 8.13 making the total weight for the mount 8.13
tons: and in an article on the armored cruisers of the "(aliforna" type in the serentric
Dmbican for Inecember 1. 1900 (p . 344) it is tated that 500 romids are allotted to the 6 -inch, 4,500 rounds for the eighteen 3 -inch tc. Are these figures authentic, or are they merely the result of guesswork? I notice that in the tables of guns given in Brassey's Naval Annual the weights of the mounts are seldom, hat this data is no less important than the weight of the gon itself. A. We cannot account information that occasionally leaks out in

NEW BOOKS, ETC.

The New Thoequit Siniplified. How To
Gain Harmony and Health. By Henry Wood. Boston: Lee \& Shepard, 1904. 12 mo .; pp. 195. Price, 80 cents.
Those interested in the New Thought movement, so called, are already familiar with Mr.
Wood's writings. Ife hats published a number f books, and has contributed largely to magaane literature. He is one of the more reasonistic or perchic hypothesis as opposed to the materialistic conception of being. Even to hose of the opposite persuasion. there are parts
of this exposition that will prove refreshing reading. and may furnish a new point of
view. After all. it is the dange in viewpoint which makes life a progression, and amimates existence with the spirit of promise and
of hope. exti Curcoli Fivti. By Ing. Italo
Ghersi. Milan: Ulrico Hopeli, 1901. 16 mo : ppl. 191.
This small volume contains many useful value by the physicist, chemist, and engineer,

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending September 27, 1904

Accoutren ent, II. R. Lemly.................
Aceunulator plates, nachine for making,

\qquad

Clak. proprim

Man liver ker,
\mathfrak{c}

ont ion

sind

Dress shield, 0

SECURED BY SMALL MONTHLY DAYMENTS

Five shares or acres in the great commercial rubber orchard yield you or Rubber Production Company will, at maturity, certain income of $\$ 1,200$ a year. No large cash-down paymodest monthly installments, just as the work of development modest monthly installments, just as the work of development
progresses. On our splendid domain of 6,175 acres of land in the semi-tropical State of Chiapas, Mexico (the finest rubber land in all the world, and with the finest climate), we are
changing the production of crude rubber from the primitive and destructive method hitherto employed by the natives, to the most scientific and successful plan known to modern for estry, and under Anglo-Saxon supervision.
There is nothing speculative about crude
rubber. It can be sold every day in the
year, in every market in the world, at a
stable price that has been steadily ad-
vancing for many years. For a quarter of
a century the world's supply has always
been spoken for months before it has
reached a civilizedmarket.

The semi-tropics were stripped years ago of their virgin rubler trees, the natives having ruthlessly "tapped them to death" to get every ounce of
the rublber milk from them. To-day, the golden harvest is sought for in the the rubler milk from them. To-day, the golden harvest is sought for in the added outlay of time and money. The natives there still pursue their merciless method, and no white man can live in that fever-zone to guide and restrain them. I Ience, the price of crude rubber is higher to-day than at any time since Goodyear first made it a commercial possibility. It has dou-
bled in a decade, and the question of the world's supply for the future becomes of vast moment. It is inconceivable that the production of one of the world's greatest necessities shall longer remain in such ignorant hands.

Here is a safe, conservative, and permanent investment in an industry new enough to be immensely profitable, yet old enough to have lost all element of risk.

The Mutual Rubber Production Co. was one of the first to enter into opportunity is now open to you to secure shares in our great plantation, each opportunity is now open to you to secure shares in our great plantation, each
share representing an undivided interest equivalent to an acre of land. Supposing you wish to buy only five such shares, and thus provide a competency for future years for yourself and your family. You pay $\$ 20$ a month for 12 months, then $\$ 15$ a month for 12 months, then $\$ 10$ a month for a limited period, until you have paid the full price of the shares in the present series-
$\$ 282$ each ; but during this period you will have received dividends amount$\$ 282$ each; but during this period you will have received dividends amount-
ing to $\$ 2$ Io per share ; hence the actual cost of your shares is only $\$ 72$ each, ing to $\$ 210$ per share ; hence the actual cost of your shares is only $\$ 72$ each,
and from the maturity period onward, longer than you can live, your five and from the maturity period onward, longer than you can live, your five
shares will yield you or your heirs a yearly income of $\$ \mathbf{1 , 2 0 0}$. This most conservative estimate is based on Government reports of the United States and Great Britain, the most reliable sources of information in the world. still, 25 shares will yield $\$ 6,000$ a year.

> Five Acres, or Shares, in our Rubber Orchard, planted to 1,000 Rubber trees, will at maturity yield you a sure and certain income of $\$ 100$ a month for more years than you can possibly live. Your dividends average 25 per cent. during the period ofsmallmonthly payments.

Every poss ble safeguard surrounds this investment. The State Street Trust Co. of Boston holds the title to our property in Mexico as trustee.
Ve agree to deposit with them the money paid in for shares, and we file We agree to deposit with them the money paid in for shares, and we file
with them sworn statements as to the development of the property. This company also acts as registrar of our stock. You are fully protected from loss in case of death or in case of lapse of payment, and we grant you a suspension of payments for go days any time you may wish. Furthermore, we
gree to loan you money on your shares.

We can prove to you that the five shares in this investment, paid for in small monthly installments, will bring you an average return of twen-ty-five per cent. on your money during the period of payment, and will then bring you $\mathbf{\$ 1 0 0}$ a month far more than a Iifetime. This opens the door for yoursclf. not to wealth. but to what is far better, a
competency for future years, when perhaps you will not be able to carn it. competency for future years, when perhaps you will not be able to carn it.
Payments of $\$ 4.00$ per month the first year and smaller payments thereafter secure you one share.

If you will write us at once, full and concise information proving every statement will be promptly furnished at our expense. This information will
quickly put you in close touch with every detail of our plan. Your every request will rective immediate attention

Mutual Rubber Production Company

 88 Milk Street, Boston, Mass.

MARINE ENGINES

ARTESIAN

,

PEERLESS $\begin{gathered}\text { Direct } \\ \text { TOURING CARS }\end{gathered}$
TOUR
 reasily accessible, 24 to 3.5 horse power, direct drive on high speed, sliding gear trans-
mission (four speeds forward , direct transmission of power to rear axie, luxurious
side door tonneau. 5 miles an hour speed and
yet as easily controlled as a light runabout.
(\$3,700 TO $\$ 6,000$ PEERLESS MOTOR CAR
ROTARY PUMPS AND ENGINES

The HOW and WHY of Electricity by charles tripler child
 Neer York sun. ". We know nothing that gives so published by ELectrical Review pub. co. Sample copy of the Electricial Reveew PREE,
 make,-BF. M. Hopkins. Description of a small elecing amateurs to nake a motor which might be driven
with advantage by acurrent derived with advantage by a current derived from a bate ery, and
which would have sufficient power to operate a foot
lathe or any nachi

A.W.FABER

LEAI PENCILS, COLORED PENCILS, SLATE PENCIL, WRITING SLATES, INES, STATIONER
GUBBER GOODS, RULERS. ARTISTS' COLORS.
78 Reade Street, New York, N. Y.
grand prize. Highest Award. PARIS. 1900.

The Standard Household Disinfectant

 ELECTRIC LAUNCH MOTOR. - THE design in this paper is or a mot moror of unusual simplicity
of construction which can easily be built ty an amateur
of amal at small cost. It is intended for a boat of a bout 24 fee
over all and 4 feet 6 inches beam, drawnin 18 inches. and
is capable of prupeling such crat at a speed of 7 mile

MACHINERY, our monthly magazine, which will keep you
posted on the great progress which is being made in the ma.
chinery world (and if you would keep abreas of the times
 MODERN MACHINERY COMPANY.
813 Security Building, CHICAGO, ILEINOIS WORK SHOPS out steam and Metal Workers, with-
power, equipped with
out MARNES FOOT POWER
MACHINERY
allow lower bids on jobs, and kive glow lower bids on jobs, and pive
greater protion the work Nachines
sent on trial if desirea. Catalog Free. in it desirea. Catalog Fre
\& JoHN BARNES CO.
Established 1872 .

Do Yo Want Gora infomation Chemen?

Write to us and we will refer you to a Scientific AmeriSUPPLEMENT that will give you the very data you need.
Scientific American Supplement articles are written by men who stand foremost in modern science and industry.

Each Scientific American Supplement costs only io cts. But the information it contains may save you hundreds of dollars. Write for a catalogue of Supplement articles. It costs nothing.

Act on this suggestion !
MUNN \& COMPANY
361 Broadway, New York

Send For This Atlas An Atias of the World containing a complete series
of 106 Newly Enaraved and Colured Maps, covering every portion of the Globe, including separate maps of
every state and Territory of the Union and Special
信 hapsory of the United States, with illustrations of the
intorior and exterior of the Capitol and other public buildings of Washington. D. C., together with half-tone photoyraphs of all the Presidents of the United States
from Washington to Roosevelt, and short biographical sketceses ot each. A copy of this handy A tlas will be
mai ised to any address by the Pittsburth Bank for Savstamps to cover postage and mailing exvenses. When
writing ask Booklet No. S 29 ? if you are interested in securing a safe

JIUJITSU

The Japanese National System
of Physical Training. For over two thousand years the
principles of JIU-JITSU have been religiously guarded. By an Imperial EFS forbidden outside of Japan. The friendly feeling, however, existing States has been instrumental in releasing JIU-JITSU from its oath-
bound secrecy, and all its secrets are now being revealed to the American people for the first time by Mr. Y. K. Yabe, formerly of the Ten-Shin Ryu
School of Jiu-Jitsu, who has formulated a chool of Jiu-Jitsu, who has formulated which is identical with the course

First Lesson Free.

An interesting book explaining the prin-
ciplcs of JIU-JITSU, has just been written by Mr. Yabe. This book, together with the
first lesson in the art first lesson in the art, will be sent free to in-
erested persons. The lesson is illustrated from photographs, and shows one of the most
effective methods from photographs, and shows one of the most posing of a dangerous antagonist. Write to-
day for this free book and sample lesson. They will be sent you by return mail, post-
paid. Address The YABE SCHOOL OF paid. Address The YABE SCHOOL OF
IIU-JITSu, 344 Realtyl Bldg., Rochester, N,

RUBBER STAMP MAKING. - THIS

 article describes a simple mettiod of making rubberstamps with inexpensive aparatus. A thorouxhiy
tractical article written by an antateur who has hadexprenience in rubber stamp making. One hillustration
Contained in SUPLEMENT 1/10. Price 10 cents. For
Cont
THE OBER LATHES

Sledge, Hatchet. Axe, Adamer, Auger
File, K inife and Chisel Handles
 Send for Circular A The Ober Mfg. Co., 10 Bell St.. Chagrin Falls, 0., U.S.A

MNWN Copyrights, Etc. quickly ascertain our opinion free whether an tions strict confidential. Handbook on Patents Scientific American
 MUNY \& CO.asi Reasera, NewTorik

TRADE MARKS

LABELS
y.ptian For
Hishhor
Hiabanitos.

PRIN TS

t the Euchre-Wouln't you like to hold
my hand? (for playing cards), Cnited

Cu-rheuma Cernahan
 Cametbard

\qquad

"Nervo Laxi Coupon." (for medicine) Carnahan \ldots..................... Carnshan "Sapplin Stove Pine Enamel.," for enamel). Gerstendorfer ,Bros "The Tom Thumb Wedding," (for J. W. Carnahan "Tom Thumb Cabinet,";"(for med

[^0]

KYINTTOMN

WONDER of the AGE

 byron jackson machine works,
san francisco, cal.

The Smith Premier Typewriter Co. Home office and Factory, Syracuse, N. Y.
Exhibit at world's Fair, st. Louss, section 23, Palace of Liberal Arts

The Felis A. B. Daus Duplicator Co., Daus Bllg, 111 Jobn St, Ieer York
 Moner. Lists Free.

HOROLOGICAL DEPARTMENT
 ornerly Parsons Horological Institut
PEORIA, ILLINOIS LARGEST and BEST $W_{\text {We teach }}$ SHOOL in AMERICA

Fine ZUood Flooring FTUH Parquet Floors \& Specialties Moore's Floor Wax Moore's Patent Rests Send for FREE
Illust rated CATA LOGUF
E. B. MOORE \& CO

CRUDE ASET ASBESTOS PREPARED
ASBESTOS FIBRE
R, H. MARTIN,
OFFICE, ST.PAUL BUILDING tor Manufacturers use, 220 B'way, New York.

ou USE GRINDSTONES?
 sept in stock. Rememner, we make
specialtyon selecinne stones for all pe
cial purposes.
\&* The CLEVELAND STONE CO.
2d Floor. Wilshire. Cleveland. 0 .

SPLTDORE STARK COILS

MAGIE LANTERNS
PAY

EveryMechanic Should Own It. Montgomery \& Co.'s Tool Catalogue
which in thoroughty up-to date.

Démindeß

$$
\begin{aligned}
& \text { A Wonderfui Help for Busy Men } \\
& \text { Handier, more useful than any memo. book or other } \\
& \text { card index. A fresh card comes to the front every } \\
& \text { day, in the elegant leather vest pocket case, which }
\end{aligned}
$$

OUR NEW WATCH

Keweinqual

 READY FOR DELIVERY OCTOBER ist
WATCMES

Our New Sikeleton Watch not only shows you the time, but how time is made. Accurate THE NEW ENGLAND WATCH CO., 37 Q 39 Maiden Lane, New York

This transmission is one of the reasons why a stock Cadillac with an 81/4 horse-power motor made 144 miles over rough and hilly roads in 5:38-the power is all used in driving the car.

CADILLAC AUTOMOBILE CO., Detroit, Mich.

Larǵe Contracts

Solicited $=$

Our factcries are so numerous and so completely equipped that we can compete successfully on large con-
tracis--such as sheet steel stamp. ings, general manufacturing and machine shop work.
Pope Manufacturing Co.
21 Park Row, New York City

Volt Ammeter watay

 THE INTERNAL WORK OF THE

[^1]
[^0]: A printed copy of the specification and draming nf any patent in the foregoing list, or any patent
 in print sisued sine is63, wil be furnished from
 this oftice for 10 cents. provided the name and
 York.
 Cana

[^1]: CARDNRDKSOAK
 CHBiifiraco cmicac

