

Displacement, 9,700 tons. Speed, 22 knots. Bunker Capacity, 1,500 tons. Armor: Belt, 4 inches; topsides, 4 inches; deck, flat, 2 inches; slopes, 3 inches. Armament : Fourteen 6 -inch R. F.; eighteen 3 -inch R. F.; twelve 3 -pounder semi-automatic ; four 1 -pounder automatic ; two 3 -inch field guns; two 0.30 -caliber machine guns; eight 0.30 -caliber automatics. Complement, bi5. PROTECTED CRUISER "MILWAUKEE," LAUNCHED SEPTEMBER 10, AT UNION IRON WORKS, SAN FRANCISCO.


# SCIENTIFIC AMERICAN 

ESTABLISHED 1845

## MUNN \& CO.. - - Editors and Proprietors

No. 361 Broadwav. New York

## terms to slibsciribers

 the scientific amemican Publications.


NEW YORK, SATURDAY, OCTOBER $1,1904$. The Editor is allays glad 10 receive for examiuation illustrated
articles on subjects or timely interest.


WARSHIP CONSTRUCTION IN GOVERNMENT YARDS The fact that the first large battleship to be constructed in a government yard has been built in the same time as that required to construct a sister ship in what is probably the best equipped private yard in the United States, is a matter that is giving the Navy Department no little satisfaction; for it has disposed effectually of the popular belief that warship construction in a government yard was necessarily tedious, costly, and poorly done.
How it has come about that such an impression exists is a question that takes us back to the day of the building of the "Maine" and the "Texas." Both of these vessels were long in construction, the cost of which was very high; but this is explained by the fact that when they were built, our navy yards were suffering from very serious political interference, and were burdened with a large number of employees who had gained their entrance to the yards through political influence, and regarded their positions as of that kind in which a minimum amount of work is to be done for a maximum amount of pay. To turn out efficient work under such circumstances, especially in the difficult art of warship construction, was a simple impossibility-as the various naval constructors soon found out to their sorrow. Moreover, when the "Maine" and the "Texas" were built, steel warship construction was in its infancy in this country, and the navy yards were but poorly equipped for the task, much of the plant being quite out of date.
To-day, however, we have changed all that. Thanks largely to the energy and courage of the late Chief Naval Constructor, our navy yards have been entirely emancipated from political control, new drydocks, buildings, and plants have been built and installed, until to-day our best yards, and notably that at Brooklyn, are in first-class condition, and capable of turning cut the very best work.
The Bureau of Construction and Repair, as soon as it felt that it was in condition to handle warship construction to advantage, began to urge strongly upon the Secretary of the Navy the advantage of constructing some of our new ships in government yards. The principal arguments in favor of such a course were, first, that the private builders, who were showing a great lack of diligence in the prosecution of their contracts for new ships, would be stimulated to greater activity if they knew that ships were being built in government yards, and a new standard of expeditious work thereby set up. Anotier, and not less important object aimed at, was to insure that the full working staff of the navy yard would be constantiy employed at all seasons of the year. Hitherto the navy yards had labored under the great disadvantage that when the regular repair work was completed, it became neces sary to discharge a large proportion of the working force. The mechanics thus set free scattered in search of work, and in the following season, when repair work became active, it was necessary to gather a new force, which had to become acquainted with the plant and the general working of the navy yard before the best results could be secured. Now, it was judged that by having one or more new ships always on the stocks, the necessity for discharging any of the force, when repair work slackened, would be removed, inasmuch as it could be transferred to new construction.
It is now nearly two years since the new regulations were put in force, and it was decided to put them to a searching test by ordering the construction at the Brooklyn navy yard of one of the largest battleships ever built for any navy. At the same time, the contract for a sister ship was placed at the private yard of the Newport News Shipbuilding Company, one of the most completely equipped plants in the world.
The results have exceeded the most sanguine expectations of the Navy Department, for, in spite of the disadvantages under which the Brooklyn navy yard lat:ored, owing to the fact that it had to build entirely new wavs and erect a large cantilever traveling crane before the keel of the vessel could be laid, the
"Connecticut" has been built in about the same time, namely, eighteen months, as was the "Louisiana," while both the time of construction and the cost of the vessel have been considerably less than was estimated at the time the order for the vessel was given-and this in spite of the fact that the hours of labor are shorter, and the pay is higher in government than it is in private shipyards.
The Scientific American has always been a strong advocate of the policy of building some of our new warships at government yards, and therefore it gives us particular pleasure to congratulate the naval constructors on the excellent results that have been achieved in the case of the "Connecticut." The effect of the new policy on the private shipbuilding firms of the country has been everything that could be desired. There has been a notable acceleration in the rate of construction, the "Louisiana" having been launched in tighteen months from the date of the laying of the keel, no less than 7,000 tons of steel being worked into her hull at that period. This is a great improvement on any previous work, the best record previous to this for a battleship being about two years' time, and this for a vessel of smaller size and less importance than the "Louisiana." It is to be hoped that the good results that have been attained will encourage Congress to allot a certain portion of every shipbuilding programme to government yards, and that not only New York, but League Island, Boston, and other leading goverument yards will be given their share of the work.

## the challenge cup motor-boat contest.

The races for the Gold Challenge Cup of the American Power Boat Association, which are being run off as we go to press, have proved that the development of the motor boat in this country has progressed to a point at which it can compare in point of speed and reliability with the fastest of the European craft. In saying this it is but fair to state, however, that many of the boats are carrying engines of foreign make, and to this extent the performance is robbed of much of its purely American character. In the lines of the boats, and the design of their propellers, however, both elements of the highest importance as affecting the speed, even of these diminutive craft, the contestants are the product of our own builders.

In the first day's race, intended to be over a 32 -knot course from the Columbia Boat Club House, West 85th Street, up the Hudson and back, but actually measuring 27.25 knots, the best performances were those of the winner, Mr. W. K. Vanderbilt's "Mercedes VI.," and the "Vingt-et-un," which made the highest speed over the course. The "Challenger," which has just returned from her unsuccessful quest of the Harmsworth Cup in England, was the scratch boat, and she allowed "Vingt-et-un" 10 minutes 17 seconds; "Speedway," 19 minutes 20 seconds; "Mercedes," U. S. A., 20 minutes 5 seconds; "Macaroni," 26 minutes 56 seconds; "Mercedes VI.," 31 minutes 12 seconds; "Shooting Star," 31 minutes 29 seconds; "Flip," 32 minutes 17 seconds; "Marcirene II.," 56 minutes 55 seconds; and "Josephine," 59 minutes 17 seconds. The first to cross the line was to be the winner. The "Mersedes VI.," steered by Mr. Vanderbilt, proved so speedy that she was the first to overtake the mark boat, which had to drop anchor at once, in order to furnish a turning point. The "Mercedes VI." finished first, covering the course at a speed of 23.07 miles an hour. The "Vingt-et-un," which finished fifth, made the best speed, averaging 24.76 miles an hour. The second race was run off in a nasty sea, and many of the smaller boats shipped so much water that they had to stop to bale out, the "Mercedes VI.,"" which was the first around the mark, being one of these. The "Vingt-etun" came through in splendid style, thanks to her high freeboard, and careful handling, covering the course at an average speed of 25.36 statute miles per hour. This performance is particularly gratifying because of the fact that she carries an American-built engine. This speed brings the American record within less than a mile of the 26.25 miles an hour recently made at Monte Carlo by the "Trefle-a-Quatre." In both races the "Challenger," as the result of some defect in her thrust block, did not go over the course.

## water versus steam power.

Steam power is going out of fashion. Water power is coming in. Electrical transmission is working the change. Carried to its possible results, this utilization of water powers means the extinction of the steam engine. Such a complete victory for water power in many cases is by no means improbable. An example is ready at hand. In Niagara Falls, a city of large and varied manufacturing interests, not a single steam engine is at work. This instance is not as exceptional in its conditions as might be thought. Great as is the power of Niagara Falls, the cost of dev lopment per unit of plant capacity is quite as large as that on many another river. On the other band, the price of steam
coal at Niagara Falls is much below that in New Eng land and many other parts of the country.
Results in the extinction of steam power plants at Niagara Falls are exceptional in degree rather than in kind. In hundreds of villages and towns throughout the country steam engines have been almost, if not altogether, displaced by electrically-transmitted water power. in scores of cities steam engines of the largest sizes have been shut down, and their work taken up by electric power from distant waterfalls. The steam plants thus rendered silent and useless are not designed for any particular line of industry. Some stand in former power houses of electrical supply and railway systems, that are now operated from sub-stations with transmitted water power. Idle steam plants in such locations may be seen at Montreal and Albany, Buffalo and St. Paul, Salt Lake City and San Francisco. In some such cases, as at Buffalo and Montreal, the steam plants are not started even at times of maximum loads on the electric systems. Others of these idle steam plants are in large cotton mills, as at Montreal, where the electric motors that are doing the former work of the steam equipment have an aggregate of thousands of horse-power. Large machine works furnish other il lustrations of steam plants that have been put out of service by transmitted water power and electric motors In one such case, at Concord, N. H., the shops of the railway that hauls all of the coal entering the city are operated by electric motors of about 550 horse-power total rating, and the steam plant that formerly did the work is permanently out of use. Another case this time in Buffalo, shows the substitution of electric water power for steam in a plant for the manufacture of pumps, where the horse-power required is over two thousand. So the list might be indefinitely extended to include grain elevators and malt houses, flour and cereal mills, rubber works and iron foundries, ore smelters and chemical works, and almost every sor: ot nanufacturing industry that requires mechanical power in large or small units. No loads are too great to be operated by transmitted water power, and none are too small for efficient driving with elec:ric motors. The sewing machine making shirts, and the heavy machincry employed in the construction of steel ships, are alike moved by the transmitted energy of distant, falling water.
With factory loads as well as electrical supply and railway systems shifting from steam to water power the amount regularly transmitted to cities is already large and is rapidly increasing. Portland, Me., and Springfield, Mass., each receive more than two thousand horse-power electrically transmitted from water falls. At both Manchester, N. H., and Hartford. Conn., the corresponding figures are more than three thousand. About ten thousand horse-power goes alike to Schenectady, N. Y., and San Francisco, Cal. St. Paul, Minn., gets approximately four thousand horse-power Albany, N. Y., fully as much, and Los Angeles, Cal., more. Montreal leads the list of centers for transmit ted water power with nearly thirty thousand, and Buffalo is a close second with much more than twenty thousand horse-power, at times of maximum load. The city of Niagara Falls itself is so close to the elcetri? generating stations that its supply of energy may lie said to be distributcd rather than transmitted, but the amount utilized there is nearly seventy thousand horsepower. To this striking example of great industries built up about an electrically-deveioped water nower may be added that of Shawenegan Falls, Massena, and Sault Ste. Marie, near each of which thousands of electrical horse-power are distributed to manufacturing plants.
Without the aid of electrical transmission and distribution this displacement of steam by water power could never have taken place on its present great scale. Even at water-power cities the distribution and the application of energy to manufacturing plants is accomplished much more readily by electrical means than with the water itself. It is largely for this reason that many water powers previously unused are now hecoming centers of industry. The great majority of manufacturers, however, cannot be drawn away from the centers of population, even by the advantages of cheap water power, and for them the choice is necessarily between steam plants and transmission from distant waterfalls. This choice is based on commercial rather than on sentimental or even sanitary reasons. Electrical energy transmitted from water powers displaces steam in manufacturing plants, not so much because the former is cleaner, safer, and more conducive to good health, as because it is cheaper. Perhaps the most remarkable feature of the electrical development of water power is the fact that the energy can be transmitted ten, scores, and even hundreds of miles, and then delivered in large units at prices below the cost of power from coal. Of course, the distances over which water power can be profitably transmitted vary much with the conditions at both the generating and the receiving ends of the line, but experience has amply shown that a transmission of some length may be made to advantage from almost every water power
of considerable size. As the cost of fuel goes up, the distance of profitable transmission for water power increases, but even very cheap fuel sometimes fails in competition with transmitted water power. Even free fuel could not hold its own against transmitted water power in all cases, because the labor cost of operation is much higher in a steam than in a water-power plant. For illustration of these facts, to some extent, it is only necessary to consider the case of Buffalo, where the price of steam coal sinks sometimes as low as $\$ 1.50$ per ton, and water power is delivered from a distance of 23 miles. As an example of the rates for transmitted energy from water falls that have enabled it to displace steam power, the flat charge of twenty-five dollars per horse-power year may be mentioned. This charge for power, 24 hours per day and 365 days in the year, is made to large consumers by several transmission systems, and is constant for the number of horse-power covered by the contract without regard to the time during each day that it is actually consumed. If the purchaser of electric power on this basis can use it only 10 hours per day and 300 days per year, or 3,000 hours, his rate per horse-power hour amounts to 0.83 cent for the energy actually consumed. Where the power can be used 24 hours per day and every day in the year, the flat rate of $\$ 25$ per horse-power year amounts to only 0.29 cent per horse-power hour. Who would shovel coal for this money?

## THE HEAVENS IN OCTOBER.

We may begin our survey of the sky this month by going out about 9 o'clock on any clear evening in the middle of October, facing south, and looking up about two-thirds of the way from the horizon toward the zenith. The constellation directly betore our eyes will then be Pegasus. Its characteristic feature is a large square of second magnitude stars, which has now nearly reached the meridian. A number of stars on the right also belong to the constellation.
Below this is the extensive but inconspicuous Aquarius, south of which, and in line with the western side of the great square of Pegasus, is a solitary bright star, Fomalhaut, in the otherwise unimportant constellation of the Southern Fish. Still farther south, and almost on the horizon, is Grus-the Crane-a constellation conspicuous in the southern skies, whose two brightest stars just rise above the horizon of New York.
West of Aquarius is Capricornus. The bright object in this constellation is the planet Saturn. It contains no very bright stars, the most conspicuous ones being a little pair to the right of Saturn, both of which appear double in a field-glass.
From the northeastern corner of the great square of Pegasus, a line of stars of about the second magnitude extends to the left, parallel to the Milky Way. The first two of these are in Andromeda, and are both of some interest. The second in order-Gamma An-dromedæ-is a fine double star, whose green companion is again divided by powerful telescopes into a close pair in rapid orbital motion.
The first of the two-Beta Andromedæ-serves as a pointer to one of the most interesting objects in the heavens-the Great Nebula of Andromeda. This can be seen, even with the naked eye, as a faint patch of light on the line from Beta Andromedæ through the faint star to the northward, produced about as far again. With a field-glass it appears as a dull patch of light, very different in appearance from the .neighboring stars. A larger instrument shows more detail, but it is left to photography to show that the visible part of the nebula is but a portion of a magnificent spiral system, covering an area of sky about as large as the full moon.
Photographs of this nebula have been so frequently published that they are probably familiar to most of our readers. No satisfactory explanation of the re markable form of this nebula, and the many similar ones, has yet been suggested.
Farther to the left, beyond Andromeda, is Perseusa group of fairly bright stars in the Milky Way-and lewer still is Auriga, with the brilliant star Capella.
The planet Jupiter is by far the most conspicuous object in the southeastern sky. The small triangle of stars above it marks the head of Aries. The lower southeastern sky is occupied by Cetus-a very large but rather uninteresting constellation. A polygon of stars below Jupiter marks the monster's head, and its body extends a long way to the westward, including one conspicuous star, which stands very much alone about 30 deg. west of Fomalhaut.
Taurus is near the eastern horizon, with Aldebaran just risen, and the Pleiades higher up.
Following the Milky Way west from Perseus, we first reach the familiar zigzag of Cassiopeia, pass next through the scattered stars of Cepheus, and so reach Cygnus-a constellation full of interest. Its brightest star-Alpha Cygni-is remarkable for its enormous distance from us. The most careful measurements tail to show any sensible parallax, and we may con-
clude that the star is so remote that its light must take hundreds of years 10 reach us, and that it is probably thousands of times brighter than our sun.
A contrast to this enormous orb is afforded by the little star 61 Cygni, which may be found as follows: Alpha Cygni is at the head of a cross of stars lying in the Milky Way. If we complete the quadrilateral formed by the top and the castern arm of the cross, we come upon a triangle of faint stars. The southernmost and faintest of these-just comfortably visible to the naked eye-is 61 Cygni.

This has long lreen known as a remarkable star, both because it is double, and especially on account of its very large proper motion, which would carry it over a distance equal to the moon's apparent diameter in about 350 years.
It was one of the first stars investigated for parallax, and the first for which a definite positive result was obtained. The value first found by Bessel for its distance has been but slightly altered by the results oi later observers, and it appears that its distance is about 500,000 times that of the sun. At this distance the sun would appear about as bright as the pole-star does to us, so that it is evident that the two components of 61 Cgyni are by no means as bright as the sun.

Below Cygnus, in the Milky Way, is Aquila, marked by the bright star Altair, with a fainter one on each side. North of this, and west of Cygnus, is the still brighter star Vega, in Lyra.
Hercules is below this in the northwest. Draco lies between Hercules and the pole, and Ursa Major is low on the northern horizon.

## the planets.

Mercury is morning star in Virgo, and is at his greatcst elongation on the 1 st, when he is 18 deg. west of the sun. This distance is less than the average, because the planet is almost at the nearest point in his orbit to the sum. On this account he receives more than the average amount of light, which compensates for his closeness to the sun by making him appear brighter, so that he is as easy to see as usual.

During the first week of the month he rises at about 4:30 A. M. almost due east, and is well visible before the dawn interferes.
Later in the month he gets nearer the sun, and is not easy to see. On the 20 th he is about 4 deg. north of the bright star Spica Virginis, but the conjunction will be hard to observe.

Venus is evening star in Libra and Scorpio. She is gradually getting farther from the sun, but is still south of him, and hence inconspicuous, because she sets so early-about 6:30 P. M. on the 15th. She is still $140,000,000$ miles from us, and is only one-quarter as bright as at her best.
Mars is morning star in Leo. At the beginning of the month he is quite near Regulus, and moving slowly southeastward toward Beta Virginis. He rises at about $2: 30 \mathrm{~A}$. M. on the 15 th , and within a few minutes of this time all through the month.

Jupiter is in Aries, and is in opposition on the 18tn. He is visible all night long, and is the most conspicuous object in the sky.
Some unusually interesting configurations of his satellites occur during this month. On the 1st, the second and third satellites are eclipsed, while the first travels across the planet's disk. On the 3d, the first and second satellites and their shadows transit across the planet at the same time, affording a very interesting sight. With a telescope of fair size, it is possible to notice the differences in the size of the satellites and their shadows, and in their rate of motion.

The first satellite comes on later, but makes up about half its delay during the transit. The phenomena last from 7 to 11 P. M., and so are at a very convenient time for observation.

The same thing happens again on the evening of the 10 th, beginining at $10 \mathrm{P} . \mathrm{M}$. This time the second satellite comes on first, is overtaken by the first, and leaves the planet last. The two sate!lites are very close together all the time.

On the 12th, before 7:15 P. M., Jupiter has but one visible satellite, the first and third being in front of the planet, and the second behind it. The same phenomenon occurs about 9 P. M. on the 19th. There are other eclipses and transits of the satellites during the month, but they are less interesting.

Saturn is evening star in Capricornus. crossing the meridian at $8: 30$ on the 1 st and $6: 30$ on the 31 st. Uranus is evening star in Sagittarius, setting at about $8: 30$ on the 15 th.
Neptune is morning star in Gemini, and crosses the meridian at about 4:30 A. M. on the same date. the moon.
Last quarter occurs at 9 A. M. on the 2d, new moon at midnight on the 8 th, first quarter at 1 A . M. on the 16 th, full moon at 6 A . M. on the 24 th , and last quarter again at $6 \mathrm{P} . \mathrm{M}$. on the 31 st .
The moon is nearest the earth on the 8th, and farthest away on the 20th. She is in conjunction with Neptune on the 2d, Mars on the 6th. Mercury on the

7th, Venus on the 10th, Uranus on the 13th, Saturn on the 17th, Jupiter on the 23d, and Neptune again on the 29th. None of these conjunctions is close, but on the 27th there is an occultation of the first magnitude star Aldebaran. As seen from Washington, the star disappears at $7: 28 \mathrm{~A}$. M. and reappears at $8: 26$. It will be daylight at the time, but the occultation can be observed telescopically.
At Sea, September 14, 1904

## SCIENCE NOTES.

W. M. Watts has previously shown that there appear to be two distinct kinds of connection between the spectra of allied elements and their atomic weights. In the case of zinc, cadmium, and mercury, and of gal lium and iridium, the differences between the oscillation frequencies of certain lines of the one element are to the differences between the oscillation frequencies of the other element as the squares of their atomic weights. In applying this method, some uncertainty exists as to the correspondence of the lines in the different spectra; but it is possible, by accumulating evidence of this kind, to obtain indications as to the probable atomic weight of radium from a comparison of its spectrum with those of mercury, barium, and calcium. By selecting appropriate lines, it is possible to deduce for the atomic weight of radium the values $226.32,226.42,225.21,225.3 \dot{2}, 226.52$, from the first type of relationship, and the values $225.05,223.47,220.36$. $223.13,227.39$, and 224.63 from the second type of relationship. The mean of all these results is 224.89 , the experimental value being 225 . While the spectroscopic evidence now adduced is not of a very certain charac ter, it serves to throw doubt upon the calculations by which Runge and Precht deduced the value 258 for he atomic weight of radium, and indicates that the analytical value is not incapable of being reconciled with the spectroscopic evidence.
In a paper recently presented to the Académie des Sciences, Dr. Charles Repin brings out a new method of acting directly upon the blood and freeing it from loxic substances which it may have absorbed. By a special apparatus which he uses, he literally washes the blood by drawing off the serum and replacing it by an artificial serum formed of a saline solution. In this way the corpuscles are furnished with a fresh liquid and the serum containing the poisonous substances is eliminated from the body. To carry this out, the blood, which is taken by aspiration from a punctured vein, is at once mixed with eight or ten times its volume of a saline solution. The mixture is sent into a centrifugal separator which is so arranged that all the blood corpuscles are collected at one point. They are taken from the separator by a pump which re-injects them into the system at once. The apparatus is entirely automatic and works continuously. It extracts the plasma with ail the toxic products and replaces it by an artificial serum. No harm is done to the corpuscles, which do not suffer from their short passage to the outside. M. Repin's method has been applied at the Pasteur Institute. The apparatus is operated by a horizontal shaft which revolves at a high speed. The shaft carries four arms projecting at right angles and each arm has a conical chamber mounted on the end. The shaft and chambers are traversed by a system of tubes which allow three functions to be carried out: First, the blood mixture is brought into the chamber; second, the globules are separated and provided with the right amount of liquid for re-constituting the original volume; third, the surplus of the diluting liquid is drawn off. The apparat us contains a number of details which are necessary to prevent coagulation of the blood and make it work successfully. These will no doubt be illustrated in a succeeding description. By simply passing the blood through the apparatus, all the operations are carried out automatically and the re-constituted blood is returned to the system, after having been washed entirely free from the toxic matter it may have absorbed. Dr. Repin is now demonstrating the physiological effects of this method.

Dr. P. L. Sclater writes an account in Knowledge of the cape jumping hare, an animal so rarely seen in London that the animal from which the artist, Mr. Goodchild, has drawn the illustration is the only one which has ever been brought alive to England. The spring-haas, or cape jumping hare, is nocturnal, or, at any rate, crepuscular, in its habits. It lives in small communities on the open veldt, both in the plains and in the mountain ranges, and makes large and deep burrows in the ground, whence it emerges toward sunset, being rarely seen in the bright daylight. When chased in the open it proceeds in great bounds like a jerboa or kangaroo, for which its highly developed hind legs are admirably adapted, and is even said to move faster up hill than down. Its food is entirely of a vegetable nature, and consists of roots and green stuff of all sorts. Its flesh, according to Le Vaillant, is very good to eat, and in his day was much appreciated by the Hottentots and Kaffirs.

## A NOVEL AUTOMATIC PUMP FOR INFLATING AUTO. MOBILE TIRES.

Every automobilist is painfully aware of the arduousness, time, and manual labor involved in the inflation of pneumatic tires. With a view to overcoming this exhausting, and, to say the least, primitive system

aUtomatic automobile tire inflater.
ber of the apparatus. This cylindrical chamber which is made of nickel, is for the purpose of purify ing the exploded gases. Within are placed a series of circular baffle plates with a narrow opening at one point of their peripheries, to admit of the gases trav eling from one concentric passage to the other. The gas enters the purifying box in the center, and is forced around the circular baffle plates into the outside passage. This chamber serves a useful object in arresting all oil or other impurities that may be admitted from the combustion chamber of the motor, and which would prove deleterious to the fabric of the tire.

To the upper part of the cylindrical box is attached the flexible rub ber hose leading to the valve of the tire.
Owing to the fact that no interfer ence is afforded to the combustion of the gases in the explosion cham ber by the insertion of the ignition plug into the special fitting or valv box, this section of the apparatus can always be left in connection. When the operation of tire inflation is no in progress, the flexible India-rubber hose is disconnected from the cylin drical purifying chamber, and a cap screwed on to render it a perfectly tight joint.
To operate the apparatus, the en gine is first stopped. The valve of the deflated tire is then connected to the fized cylindrical purifying box by the flexible rubber tubing. The motor is started again. The greater part of the exploded gases in the cylinder to which the special plug is screwed pass through the inlet valve of the valve box at the plug. The valve then closes, and as the gases cannot escape back again, they pass through the coiled steel hose, cooling in transit, pass through the purifying cham ber, and thence pass into the tire When the desired pressure in the tire is attained, as indicated by the gage attached to the purifying cham ber, the engine is stopped, and the flexible rubber tubing is disconnected
for the inflation of tires, a novel and convenient apparatus, called the "Pompeesi," has been placed on the market by Messrs. Jarrott \& Letts, Lid., of London, who handle the American Oldsmobile runabout in Great Britain.
In this device manual labor is entirely dispensed with, for the process is accomplished entirely by the engine. Inflation is achieved by utilizing the force generated by the explosion of the gaseous vapor in the cylinder of the motor, in a simple and efficient manner. Furthermore, owing to the ingenious system adopted, it can be utilized with an engine comprising any number oî cylinders, the work being as efficient with one cylinder as a multiple-cylinder engine. As will be recognized from the accompanying illustration, the device is small and-compact, and constitutes a permanent fixture of the vehicle, being attached to the frame, dashboard, or any other convenient spot.
The apparatus consists primarily of a special plug. fitting. One of the ignition plugs is unscrewed and withdrawn from its place in the cylinder wall, and this special fitting is inserted. This special fitting, although it allows the ignition plug perfect and free communication with the combustion chamber, at the same time does not permit of its being screwed close against the cylinder wall. The fitting is a small metal box provided with a valve, which admits the consumed gaseous vapor from the cylinder after the explosion.
From this valve box extends a length of coiled steel tubing to the main part of the apparatus. A long section of pipe is provided, so that the hot gases may be sufficiently cooled before they enter the cham.


THE ROBIN AUTOMATIC INCANDESCENT MANTLE-MARING MACHINE; CAPACITY, 4,500 MANTLES PER WORKING DAY OF TEN HOURS,
of the tires, too, is considerably reduced, varying from two to three minutes according tc the size of the tire. Experience has shown that the consumed gases of the explosive mixture exercise no deleterious effect upon the fabric of the tires. In fact, the reverse has proved tc be the case, as they act more as a preservative. The tires furthermore stand inflated appreciably longer by this means, for the temperature of the gases is reduced to that of the outer atmosphere, which fact was proved in a special test, no fall in the pressure being observed on the gage after the tires had stood inflated for twenty-four hours. Owing to the simplicity of the device, there is nothing to get out of order. It can be as easily adapted to all engines, whether the plugs be fitted horizontally or vertically, or whether magneto ignition is employed. The device, which is of French


NOVEL SPARE WHEEL AND TIRE DEVICE FOR AUTOMOBILES.
origin, has been awarded the gold medal by the Automobile Club of France.

## NOVEL SPARE WHEEL AND TIRE DEVICE FOR

 AUTOMOBILES.An interesting reserve-tire device has been placed upon the English market. By this contrivance, instead of carrying a spare tire or tube ready for replacing a tire that fails through puncture or any other defect on the road, a complete rim and tire fully inflated ready for use is carried on the car. The device comprises a special rim carrying the tire, which is fully inflated. To this rim are fixed three clips. When a puncture occurs, instead of stripping the defective tire from the wheel, and substituting a new tire or repairing the defective one, this reserve wheel and tire is firmly clipped by thumb screws to the rim of the defective wheel. This wheel lifts the punctured tire off the ground and carries all the friction, so that the punctured tire is as safe as if it were withdrawn from the wheel.
The advantage of this invention is that delay on the road through a failing tire is reduced to the minimum. The spare tire and wheel only occupies one minute to attach in position and even tire inflation is dispensed with, as the tire is carried already fully inflated. The accomṕanying illustration shows the principle of the invention, and how it is at tached. When carried, a hoop or ring is made the same size as the tire in or der to clip it thereto. This appliance is the invention of Messrs. Davies Brotners, of Llanelly, Wales.

## A MACHINE FOR AUTOMATI-

 CALLY MAKING INCAN. DESCENT GAS MANTLES.In this country, at the present time, about forty million incandescent sas mantles are used annually. Vast as this quantity is, the industry in America is still in its infancy; and widely as the mantle itself has been introduced, the aver age user knows little of the composition of the mantle.
Briefly stated, a mantle is made as follows: A "stocking" is first knitted of cotton thread and then saturated with a solution of thorium.

Thus impregnated, one of the stocking's ends is sewed up with asbestos thread, a loop being left by which the stocking is manipulated in the subsequent steps of the process. The sewed stocking is ignited at its top by a flame for the pur pose of consuming the thread. After this treatment, all that is left is a reticulated structure consisting almost entirely of oxide of thorium. "Shaping and hardening" are the next stages through which the mantle must pass, both being effected by the Bunsen flame Lastly, the mantle is dipped into a coating solution in order to protect it from breakage in transportation.
All these processes have hitherto been carried out by hand. The asbestos loop to which we have referred constitutes a means whereby a workman can pick up the mantle with a hooked rod and hold it over the Bunsen flame in shaping it. The percentage of losses incurred through imperfect shaping and breakage is high. The shaping and harden ing of the mantle is accompanied by an unequal shrinkage which often renders the mantle unfit foifore. Even if this did not occur, irregula "ties in the wall of the stocking may be formed, the result of imperfections in the thread, which cause unequal absorption of the impreg. nating thorium. In addition to these objections, expense naturally plays its part. The number of mantles which a single workman is able to burn off and shape in a day is necessarily limited. The number of imperfect mantles is large; consequently, the cost of the hand-made mantle is relatively high.
For the purpose of overcoming these objections, Mr. Joseph T. Robin, 258 Canal Street, New York city, has invented and patented what is probably the first machine for automatically making incandescent mantles. So successful has his apparatus been in actual operation, that it is fast taking the place of handwork in America and in Europe. A single machine is able to produce as many as four hundred and fifty perfect mantles per hour, and does the work of eight shapers, besides that of the dippers and others. Only two operators are required to serve the machine, one to place the stockings in position, the other to remove them after they are finished. An indicating device shows the exact number of mantles treated by means of the apparatus.
Naturally, the first improvement introduced by Mr. Robin in the process of making mantles was the prevention of irregularities caused by imperfections in the thread of the fabric. This difficulty Mr. Robin succeeds in overcoming by employing a metal ring, secured to the bottom of the stocking, which ring is of sufficient weight to lessen the contraction of the stocking during the operation of burning out. Furthermore, the ring prevents the formation of folds. In the accompanying diagram we illustrate a mantle, or rather an impregnated stocking, in which the full lines indicate the fabric before it is burnt off, and the dotted lines the form of the structure after the fab ric has been destroved. The ring clearly appears at tha bottom of the mantle pictured in the diagram. Besides answering the purpose speci fied, the ring also serves to hold open the lower end of the stocking, so that the flames of the shaping and hardening burners can easily enter the interior, and to avoid the collapsing of the stocking during the dipping or coating process.
As shown in the accompanying photographic reproduction of an ac tual machine in operation, only two operators are needed. These operators are placed one in front and the other at one end of the machine. The operator seated within the machine has simply to hang the impregnated stockings by their asbestos loops upon the hooks of a series of carrier bars that intermittently move before her during the regular operation of the machine. Each carrier bar, by an ingenious ar rangement of sprocket wheels and chains, is caused to move first over a set of burners by which the fabric of the stockings is burnt off; then to a set of burners by which the lower part of the mantle is shaped;


SIDE AND END ELEVATIONS OF THE AUTOMATIC INCANDESCENT MANTLEMAKING MACHINE, AND A MANTLE WITH A RING, THE DOTTED LINES SHOWING THE AMOUNT OF SHRINKAGE.
completely finished. Here the machine automatically removes the mantles from the hooks of the carrier-bars, each mantle falling on a trimming device. By a single movement of a lever, the operator causes a series of rotary knives to sever the bottoms of a series of mantles, thereby removing the rings (too cheap to save). Thus it will be seen that after the first operator has hung up the mantles on the carrier-bars, the machine passes them through the various processes. The gearing of the apparatus is so timed that the mantles are suspended over the burners and dipped just for the proper interval of time, the mantles traveling in an approximately oblong path from the starting point to the finishing point.
Limitations of space prevent our giving a detailed description of the machine. Broadly speaking, however, it may be said to consist of endless chains, connected with and extending between which are the carrier-bars from which the stockings are suspended. The chains are intermittently moved to bring the mantles over the various burners and the dipping cups. The accompanying diagram clearly indicates the general plan of the machine's construction and operation. Loss is entirely prevented;
after this, to another set of burners by which the upper portions are shaped; next, to a set of burners by which the mantles are hardened, and finally to a series of cups containing a coating solution, into which the mantles are dipped. Now practically com plete, the mantles are elevated to the top of the frame work of the machine, travel slowly toward the second operator, drying as they travel, and finally reach her,


METHOD OF OBTAINING HOT WATER IN A COUNTRY BATH-ROOM. whatever breakage does occur is due to the carelessness of the operator. Rarely is a mantle lost. The uniform excellence of the machine-made mantles, moreover, cannot be attained even by the most skillful operator

## DOMESTIC BATH PLUMBING.

Throughoue the country districts, one of the great needs of the residences-a convenient bath-tub-is seriously felt. The absence of this adjunct is felt in every household; for there are no water mains in the roadways, no sewers to carry away the waste, no gas to heat the water. As for heating the water by the teakettleful on the kitchen stove, and carrying it to the tub, that is too tiresome, and destroys the anticipated pleasure.

In the accompanying illustration it is shown how up-to-date facilities for a bath may be secured at a reasonable cost; given, first, a good soft water supply from well or cistern near the house, and secondly, deftness of the householder's hands to screw the pipes together, from the water supply to the tub. All of these conditions fell to the lot of the writer in his country house, within twenty miles of New York city; and the illustrations show how the idea may be realized without the aid of a plumber
The cost (completed as shown) to the writer, was a trifle less than $\$ 75$. This outlay, for a permanent luxury, seems easily within reach of many on farm or roadside.
Having decided upon the location of the tub, in the interior of the house, measure accurately the distance from the water supply, where a $11 / 4$-inch water pipe can be laid, under the ground, through the side of the house or cellar, up to the floor on which the tub is to be located, and thence to an outlet into a suspended metal tank holding 30 gallons of water, and an additional pipe reaching from the bottom of the first tank to an auxiliary tank, as shown, having a capacity of about 20 gallons. The necessary elbows, stop cocks and waste cock for emptying the pipe of water during the winter's cold must also be allowed for. Send these measurements, with a rough diagram of the different courses and turns of the pipe, giving the lengths of each course in feet and inches, to some large plumbers' supply dealer for estimate of cost, including a por-celain-lined tub and copper-bottom, galvanized tank, the estimate to include threaded ends of pipe, threaded elbows, and cocks, all ready to screw together. The tanks for water should be for the larger 14 x $16 \times 31$ inches, the other $14 \times 16 \times$ 20 inches, cross-braced on the inside both ways to prevent bulging, a "tell-tale" $1<-$-inch lead pipe solder. ed into a hole 1 inch from the top and long enough to pass through the side of the house, to overflow
when full, and ears on the sides, as shown, fer suspension to $1 / 1$-inch hooks that pass up through ceiling and bolt through crosspieces of wood, rest ing on the garret joists.
The tub shown is 5 feet long, of the usual standard make. Have a piece of lead pipe 3 feet long, soldered to the bent outlet of the tub, to run the waste water out of doors; suspend the tanks as shown, with their tops on the same level, so that both tanks may fill at the same time; then close the cock in the pipe to the smaller tank, keeping the cold water in it to temper the hot water when it is run into the tub.
The connection of the iron water pipe with the pump is accomplished by the use of a piece of rubber hose, to one end of which the usual "force and lift pump" coupling is attached, the other end being wired on to the iron water pipe terminal. The hose may be loosened from the pump and held aside on a hook, to permit the usual uses of the pump.
The larger tank of water is heated by a single blue flame, wickless kerosene heater. If there be a small stove in the room, used ordinarily, for keeping the chill out of the room in the winter time, a portion of the heat of the fire may be utilized to heat the water, without using the kerosene heater. This is done by having a piece of $1 / 2$-inch iron water pipe, 40 nches long, bent over like a hairpin, and having two rubber-hose connections with tank, by means of two unions, located, one near the bottom and the second a few inches above it. This insures circulation, and very hot water in the winter, when the bent pipe has been lowered into the fire, through hole or holes in the stove cover, as shown. With either of these two arrangements of water heating, both simple, and of little expense, any temperature of water desirable for bathing purposes may be had. When all is in com plete working order, as pictured in our illustrations, many happy hours may be healthfully passed in its pool. It is probably unnecessary to call attention to the many accessories which add to the comfort of the tather; such as the movable soap dish, sponge holder, holding bar, towel rack, looking glass, etc.

## A NOVEL RESPIRATORY APPARATUS.

In mine explosions, in emanations of fire-damp, in catastrophes like that of the Metropolitan Railroad of Paris, and in many fires, it is not the heat of the flames, but asphyxia, that claims the great est number of victims. In order to ente irrespirable gases, the life-saver has up to the present had no other resource than to connect himself with a tube through which air was pumped to him from the exterior just as it is pumped to the diver. This sys tem presents great drawbacks, and, when the distance to be traveled is considerable the pipe becomes heavy and may become ob structed by bends, folds, etc. It is, therefore, but natural that an effort should have or a long time been made to devise an ap paratus, which, by permitting a person to carry t:pon him a sufficient quantity of air to allow him to live for a certain length of time in any sort of atmosphere, should ren der him independent of the external air.
The first thing that suggested itself was the use of compressed air, and Lieutenant of Engineers Vaginot devised an apparatus that constituted a very great improvement upon all previous ones by permitting life-savers to greatly increase their sphere of action. This apparatus consisted of a reservoir of compressed air which the life-saver utilized for his respiration, and regularly expelled to the exterior the air respired. It per mitted him to remain for ten or twelve min utes in any kind of irrespirable gas what ever. Physiology teaches us that in the air that we breathe (composed of 79 per cent of nitrogen and 21 of oxygen) the nitrogen plays no part in the exchange of respiratory gases. It is, therefore, useless to overload the life-saver by storing up nitrogen under pressure, for, while a tube of 35 cubic.feet of compressed air weighs 30 pounds, a tube of oxygen of 7 cubic feet, which permits of living just as long, weighs but 5 . On the other hand, we know that our blood absorbs only 4 per cent of the oxygen that enters our lungs, the remaining 96 per cent being expired without having been utilized.
The fact, based upon the experiments of Regnault and Reiset, and which Dr. Guglielminetti's new apparatus has clearly confirmed, is, that if the eliminated carbonic acid be absorbed by potash, and the oxygen be replaced in measure as it is consumed, a limited quantity of nitrogen may be used for respiration for an indefinite length of time
In the Guglielminetti apparatus, the pure compressed oxygen is contained in a small recentacle provided with an expander and a meter for indicating the quantity of gas remaining in the former. The expanded oxygen is discharged at the rate of 120 cubic inches a
minute, and flows automatically through a tube to the mouth of the life-saver. The escapement pressure is sufficient to allow the air expired into a respiratory bag to be drawn by the current of oxygen as by a Giffard injector, through a regenerator containing granulated caustic potash, which absorbs all the carbonic acid eliminated. The air, thus purified, having been heated in its formation, passes into a refrigerating apparatus and afterward becomes charged with oxygen by its passage in front of the aspiration device. It is thus possible for a person carrying the apparatus to remain for 25 or 30 minutes without danger in an absolutely deleterious medium; but, after the expiration of this time, since the air contained in the apparatus has become heated to 98 or 100 deg. F., the individual is less at his ease, although neither syncope nor any other accident supervenes any more than when hot air is inhaled in a Turkish bath. In practice, the apparatus is capable of operating uninterruptedly for two hours if two oxygen tubes are employed.

The important point is that all the carbonic acid expired shall be absorbed by the potash, that the oxygen shall be renewed in sufficiently large quantities, and that the person carrying the apparatus shall, without the least effort, breathe as freely as in the open air.
The accompanying figures give a diagram of the apparatus and two views of it. Fig. 2 gives a front view of the apparatus, while Fig. 3 shows an apparatus specially designed for firemen, the mouthpiece here being held between the lips, the nose being closed by


Fig. 1.-Diagram of Respiratory Apparatus.


Fig. 2. Front View.
Fig. 3.-Apparatus for Firemen.
the guglielminetti-draeger respiratory apparatus.
pincers, and the helmet being discarded as useless In conclusion, we may state that the apparatus weighs but 22 poinds, inclusive of the helmet, and that the firemen of Paris, who have placed it upon trial have been fully satisfied with the results obtained. The inventor is at present studying the application of the apparatus to diving.
Life-Saving Bag and Box.-The object of these apparatus, both of which contain a small 4 -cubic-foot tube or oxygen, is to permit of the direct respiration of oxy gen from the compression tube, to which is secured an expander that accurately regulates the discharge of the gas, a pressure gage that always shows exactly the quantity that remains in the tube, and a metallic mask provided with a Cailletet valve for expiration, and that permits of fixing the mask upon the face of an asphyxiated person. It is thus possible to combine oxygen inhalation with artificial respiration and, thanks to a mask for the nose, with rhythmic tractions oif the tongue. We wish to dwell particularly upon this latter arrangement, which is of great importance, since in many cases traction of the tongue in the asphyxiated brings about a beginning of respiration,
which is not kept up. If, at this moment, the patient ke made to absorb oxygen instead of air, we know from the experiments of Grehaut that he will have many chances for his life. As he cannot utilize the oxygen during expiration, a small bag of gold-beater's skin interposed between the tube and the mask forms a reservoir into which the oxygen flows during the expiration This apparatus is therefore always ready for operation, and easily carried to a place of accident, either by hand or upon a bicycle. This is a very important matter in cases of asphyxia, in which a gain of a few minutes may often save a person's life.

## The 2,000,000-Mile Record Run of a

We have on more than one occasion drawn atten ion in these pages to the different practice of English and American railroads with respect to the retention of locomotives for a prolonged period of service. In this country, the general method is to run a locomotive for a limited number of years, and then to relegate it to the scrap heap in favor of a more modern type of engine. On the other side, however, the practice is to retain a locomotive in service as long as it will run, irrespective of the developments and improvements that may be incorporated in the prog ress of time. The result is that upon the English railroads may be seen engines still in hard use, which we should consider long past their term of service. Yet no English engine has attained the unique distinction achieved by the locomotive No. 955, "Charles Dickens," upon the London and Northwestern Railway, which has covered close upon $2,100,000$ miles, n the haulage of express trains.
This engine issued from the Crewe engineering shops of the railroad on February 6, 1882, and has been engaged in the London-Manchester service regu larly every day, except in those periods in which it was undergoing overhauling, ever since. This locomotive is fitted with cylinders of 17 inches diameter and having a stroke of 24 inches. The driving and trailing wheels are of 6 feet 6 inches and leading wheels 3 feet 6 inches diameter. The mean diameter of the boiler outside is 4 feet 1 inch and length of bar rel 9 feet $93 / 4$ inches, with a heating surface of 194 tubes, yielding an area of 960.2 square feet, and a firebox heating surface of 103.5 square feet. The boiler pressure is 150 pounds per square inch. The weight of the engine in working order is as follows: On leading wheels, 10 tons 12 hundredweight; on driving wheels, 12 tons 10 hundredweight; on trailing wheels, 12 tons 10 hundredweight. The tender has a water capacity of 1,800 gallons and a coal capacity of 3 tons. The total weight of the engine and tender in working order is 60 tons 12 hundredweight.

This locomotive was installed upon the express service, hauling the train leaving Manchester at 7.45 in the morning, and returning with the train out of London at 4 P. M. the same afternoon, thus covering 387 miles a day. The engine ran regularly in all weathers without the slightest mishap. On the 2,651st round trip it recorded the remarkable feat of having run $1,000,000$ miles, covered in 9 years and 219 days. During this time 12,515 tons of coal were consumed, and 93,237 tons of water were evaporated. During 11 years' service but few repairs had to be effected, the most important being the supply of two new sets of "digestive organs." Even these, however, were by no means worn out when discarded, for they were immediately installed in the sister engine "Snowdon," which covered 191,236 miles with them, and then yet a third locomotive, "Balmoral," appropriated them, and ran with them for many years. The second set, after replacement, were placed in the engine "Courier," and were satisfactory for several years.
The locomotive "Charles Dickens" continued with the samee express, and on the 5 th of August, 1902, during the 5,312 th round trip from Manchester to London, notched its $2,000,000$ miles, a feat which has not been paralleled on any other railroad in any other part of the world. Notwithstanding the extensive improvements and developments that had been effected in the 20 years and 181 days that had elapsed during the covering of this enormous mileage, this engine still remained one of the fastest and most punctual upon the road.
During the latter part of this time, however, there was a great change in the character of the rolling stock. Dining and sleeping coaches were introduced, which considerably increased the weight of the train. Furthermore, the requirements of faster traveling necessitated the engine being appreciahly speeded up. This was gradually done up to $501-3$ miles per hour. During this $2,000,000$ miles, the engine consumed $27,-$ 486 tons of coal and 204,771 tons of water. The fuel consumption, including the raising of steam, has not
once exceeded 32 pounds per mile, while the cost of maintaining the engine in working efficiency has aver aged 3.56 cents per mile run. Owing to the system of standardization which is a feature of the Crewe Works the enforced idleness of the engine consequent upon re newals and repairs has only averaged 12 per cent of work ing time. This huge mileage has been covered without the slightest mishap of any kind. Although the spee of many trains upon this system has been considerably augmented during the past few years, yet this expres hauled by "Charles Dickens" still remains one of the lastest upon the system, and owing to the present ex cellent condition and running of the locomotive, it will probably still be retained upon the 387 -mile daily run for some time to come

## LAUNCHING OF THE "CONNECTICUT" AND MILWAUKEE.'

On September 29, eighteen months after the laying of her keel, the United States battleship "Connecticut," which shares with the British battleships of the "King Edward" class the distinction of being the largest ye constructed, was launched at the New York navy yard, Brooklyn. The event was marked by the customary ceremonies, and it was witnessed by a great crowd o visitors, who had been admitted to the grand stand and inclosures of the navy yard by tickets of invitation. It is an historical fact, deserving of mention in this connection, that the "Connecticut" was launched from the very spot at which the old prison ship "Jersey" was beached, after she had performed her notorious duties during the Revolutionary war; and when the piling was being driven for the building ways, no little difficulty was experienced in getting it down through the remains of the sunken vessel.
The "Connecticut," and the sister ship "Louisiana," which was launched a month ago at the Newport News yard, were authorized by act of Congress on July 1 1902, ind under the terms of the act the contrac for one of these vessels was to be let to a private firm, and the other ship was to be built in a government yard. The determination of Congress to renew the practice of building warships at the navy yards was brought about by the urgent representation of the Navy Department, which claimed that with its present plant and fine organization, such a yard as that at New York was thoroughly equipped for the speedy and economical construction of warships. Consequently, the construction of the "Connecticut," being undertaken at the same time as that of the "Louisiana," has been watched with the keenest interest; and it is extremely gratifying to the government that she hould have been completed in practically the same space of time as the contract-built vessel.
The "Connecticut" is 450 feet in length on the waterline, 76 feet 10 inches in beam; and when the ship s fully equipped ready for sea, with all stores on board and a normal supply of coal in the bunkers, she displaces 16,000 tons on a draft of 24 feet 6 inches. Her full load displacement with her bunkers filled and stores aboard for an extended cruise is 17,666 tons. She is propelled by twin-screw, vertical, triple-expansion engines, of 16,500 indicated horse-power, which are designed to drive her at a speed of 18 knots an hour. The normal coal supply is 900 tons, but her bunker capacity is 2,200 tons. When the ship is fully loaded, her maximum draft aft is 26 feet $91 / \pm$ inches. Her boilers are of the Babcock \& Wilcox type, and she carries enough coal to enable her to steam at a speed of 10 knots an hour continuously for a distance of 5,275 miles.
Officially, the "Connecticut" is known as a sea-going battleship with two 12 -inch and four 8 -inch barbette turrets. She is remarkable for her great offensive and defensive powers, in both of which she is unexcelled by any foreign ship. All of her armor is of the best Krupp face-hardened type. The protection consists of a waterline belt, which extends from stem to stern. For one-third of her length amidships, the belt is 11 inches thick at the top and 9 inches thick at the cottom, and from these dimensions it tapers fore and aft to an even thickness of 4 inches at the bow and stern. Above the main belt, and for the distance beween the main barbettes, there is a continuous wall of side armor 7 inches in thickness reaching from the main belt to the main deck. At the ends of this armor, bulkheads of 7 -inch armor extend athwartship to a connection with the main barbettes. There is a continuous protective deck, which is 1 inch thick on the flat and $21 / 2$ inches thick forward and aft, the thickness of the side slopes being 3 inches. The main barbettes are protected by 10 inches of armor, and the main turrets by 12 inches. The four turrets of the 8 -inch guns are protected by 8 inches of armor, while the barbettes below carry 6 inches.
The unusually powerful battery is composed of four 12 -inch 40 -caliber guns in two turrets fore and aft, eight 8 -inch 45 -caliber guns in four turrets, two on each broadside the two forward turrets having an arc of fire from dead ahead to a point well aft of
the beam, and the after pair of turrets is similarly able to fire from forward of abeam to dead astern. On the gun deck, and firing througn casemates in the 7 -inch side armor, is a powerful battery of twelve 7 -inch, 50 -caliber guns. The 7 -inch gun is a new piece of high velocity and great penetration, that in these vessels takes the place of the usual 6 -inch guns. This piece has a velocity of 2,900 feet a second and a muzzle energy of 9,646 foot-tons. It fires a projectile of 165 pounds with sufficient energy to penetrate 28.7 inches of iron at the muzzle. This is a great advance over the 6 -inch guns which will be mounted on the "Georgia" class, the smaller weapon having the same velocity and firing a 100 -pound projectile with a muzzle energy of 5,840 foot-tons and a penetration of iron at the muzzle of 24.2 inches. The armament also includes twelve 3 -inch 14 -pounder rapid-fire guns, six of them mounted on the gun deck, two in the bow and four at the stern, and firing through casemates protected by 2 inches of armor, the other six being mounted on the main deck in broadside between the 8 -inch gun turrets, with 2 inches of protection on the casemates. There are also twelve 3 -pounders and fourteen machine guns distributed on the roof of the turrets, the superstructure, the bridges, and in the fighting tops. The forward conning tower, which incloses the base of the military mast, is protected with 9 inches of Krupp steel, and the after conning tower, sometimes known as the signal tower, which is located beneath the after bridge, has 5 inches of protection. As originally designed, the "Connecticut" does not carry any submerged torpedoes, but in consequence of agitation of the subject it was subsequently decided to provide her with four such tubes, two located in a compart ment forward and two in a compartment aft, in a posi tion slightly forward and aft, respectively, of the 12 -inch turrets.

Although she is not such an important vessel as th "Connecticut," the "Milwaukee," of 9,700 tons displace ment, which was launched on the tenth of the same month at the yards of the Union Iron Works, San Francisco, is a vessel which a few years ago would have excited widespread attention.
She is a twin-screw protected cruiser, and a sister ship to the "St. Louis" and the (new) "Charleston," now building at the yards of Neafie \& Levy and the Newport News Shipbuilding and Dry Dock Company The dimensions of the "Milwaukee" are: Length on normal load waterline, 424 feet; breadth, extreme, 66 feet; mean draft, 22 feet 6 inches; displacement, about 9,700 tons; speed, 22 knots; bunker capacity 1,500 tons.
The "Milwaukee" will have a protective deck of nickel-steel the entire length of the ship, $11 / 2$ inches thick on flat and $21 / 2$ inches on slopes. The nickel steel plates are laid on $1 / 2$-inch steel plating, giving the deck a total thickness of 2 and 3 inches. The main side armor belt is 7 feet 6 inches wide and 4 inche thick, and is placed abreast of boilers and engines for a distance of about 196 feet. Above the main belt is the lower casemate, with a uniform thickness of inches, protecting the central portion of the hull for a. distance of about 196 feet, and extending up to the gun deck. Above the lower casemate is the upper case mate, with a uniform thickness of 4 inches, protecting the central portion of the hull for a distance of about 1.36 feet, and extending up to the main deck. At each end on the berih and gun decks, and worked in to meet the ends of the side armor, is athwartship armor 3 inches in thickness. There will be worked in from the protective deck to above the waterline the usual cel lulose cofferdam.
The main battery consists of fourteen 6 -inch breech loading rapid-fire rifles of 50 calibers in length. Of these, six are mounted on the main deck, and eight are mounted on the gun deck. The secondary battery consists of eighteen 3 -inch breech-loading rapid-fire rifles, of 50 calibers in length; twelve 3 -pounder semiautomatic guns; four 1-pounder automatic guns; and eight 1 -pounder rapid-fire guns; there are also two 3 -inch field guns, two machine guns 0.30 caliber, and eight automatic guns 0.30 caliber.
The "Milwaukee" will have twin engines of the vertical, inverted-cylinder, direct-acting, triple-expan sion type, each with a high-pressure cylinder 36 inches, an intermediate-pressure cylinder 59 inches, and two low-pressure cylinders 69 inches in diameter; the stroke of all pistons being 45 inches. The order of the cylinders, beginning forward, is: Forward low pressure, high-pressure, intermediate-pressure, and after low-pressure. The framing of the engines con sists of forged-steel columns trussed by forged-stee stays; the bedplates are of cast steel. The indicated horse-power of both engines will be 21,000 when mak ing about 133 revolutions per minute and with steam pressure of 250 pounds at the throttle. The designed speed on trial is 22 knots.
There will be sixteen boilers of the water-tube type, placed in four water-tight compartments forward of the engine rooms; the forced draft system will con-
sist of blowers discharging into closed ashpits, there being one blower for each boiler. There will be a complete electric plant on board, consisting of two 150 -kilowatt and three 50 -kilowatt generators, direct connected to compound engines, using steam at 150 pounds. Over 78 electric motors will be installed, of from one to thirty horse-power; they will be used to operate boat cranes, deck winches, blowers for ventilation, ammunition hoists, etc
The "Milwaukee" will have a complement of 645 officeŕs and men.
A few years ago the "Milwaukee" would have ranked as an armored cruiser; but to-day, because of the unprotected ends at the waterline, and the weakness of the side armor (only 4 inches in thickness), she is classed in the navy list only as a protected cruiser.

## Automobile Notes.

The crowning racing event of the year in this country will take place on Long Island, October 8. The race is known as the Vanderbilt Cup race, and it is an international race for a trophy presented by Mr. Wil iam K. Vanderbilt, Jr. It will be run on a 30.24 -mile course, which will be traversed ten times by the competing cars. Some of the best European cars are found among the eighteen entries, while but few leading American makes are represented. Among the latter are two 60-horse-power Pope-Toledo racers, the Packard 30-horse-power "Gray Wolf," a 30-horse-power Royal Tourist, and a 75-horse-power Simplex. The French team consists of three 90 -horse-power Panhards and ne Renault of the same power, besides a De Dietrich and a Clement-Bayard 80-horse-power car. Five 60 -horse-power Mercedes cars will represent Germany, nd two 90 -horse-power Fiat machines Italy. In order o entirely do away with dust, the course will be thor ughly sprinkled with oil throughout the entire distance, and it is estimated that 100,000 gallons of crude etroleum will be needed for this purpose. The course has a number of very sharp turns, which it will require skillful driving to round without mishap.
A 614-mile reliability test of light cars has just been held in England. The test consisted of a 50 -mile run out from Hercford and back again, or 100 miles in all ,er day, besides hill-climbing, stopping, and starting on grades as high as 15 per cent. Twenty minutes was allowed each morning for adjusting the cars. Out of thirty-eight cars that started, twerty-six finished successfully, while but four managed to make absolute non-stop runs throughout. Of these, two were 6 -horse-power Wolseley and Siddely cars, which sell or about $\$ 875$ each; and the remaining two were a 6 -horse-power De Dion and an 8 to 10 -horse-power Croxed, valued at $\$ 1,000$ each. Nearly all of the cars were of the light, two-passenger type. Besides the four cars mentioned, four others-a $61 / 2$-horse-power Wolseley, two $71 / 2$-horse-power Humbers, and another 6 -horse-power De Dion-made eleven out of a possible welve non-stop runs. The two Woiseleys and the wo De Dions were run as teams, and it speaks very well for the former that but 10 minutes time was lost ,etween them during this long road test, while the only troubles with the De Dion cars happened to the second one, driven by Miss Dorothy Levitt, which was detained an hour and a quarter during the last 50 mile run by the needle-valve sticking in the carbureter. The trials have shown very well the possibilities of the unabout automobile for touring purpeses, and have gain demonstrated the reliability and lack of tire trouble which are the features of this type of car.

## The Current Supplement.

The current Supplement, No. 1500, is opened with an excellently illustrated article by our St. Louis correspondent entitled "The United States Commission of Fish and Fisheries Building." Of technological importance are an instructive contribution on the practical production of bronze leather, a risume of the action of explosives, and a very exhaustive paper on rtificial stone. Mr. Harold Busbridge writes on the shrinkage and warping of timber, illustrating his opinons with many striking illustrations. "Art and Engineering" is the title of a discourse upon a subject of considerable importance, in so far as it affects American municipalities. Prof. Robert MacDougall outlines in an interesting way the evolution of the human hand. The Porta Volta electric supply station of Milan is noteworthy, in so far as it embodies a 5,000 -horse-power three-phase turbo-alternator of new lesign. A fully illustrated article on the plant is published in the Supplement. The Prime Minister of England, Mr. Henry A. Balfour, delivered a splendid address before the British Association for the Advancement of Science, a discourse in which he outlines the development of modern anthropology. One oi those practical articles in which the construction of experimental apparatus is described, and for which he Supplement is noted, is also published. It bears the title, "The Construction of an Indicating or Recording Tin Plate Aneroid Barometer." It is written by Dr. N. Monroe Hopkins.

LOCOMOTIVE HISTORY AT THE WORLD'S FAIR, ST. LOUIS.
by herbeht t. walker.
Not the least important and interesting section of the Transportation Exhibit at the World's Fair at St. Louis is the remarkable collection of old locomotives, that present a graphic history of the development of transportation by steam from its earliest inception down to the present day.
It will be remembered that some time prior to the opening of the Columbian Exposition in 1893, Major J. G. Pangborn, representing the Baltimore \& Ohio Railroad Company, visited Europe and acquired a large number of drawings and other data of early locomo-
thus supplying the missing links, and forming a chain of locomotive history that is practically complete, presenting the matter to the student in a way that enables him to grasp the subject as no written work would do.

The history of the locomotive is a difficult and complex subject, and one, moreover, that has never been written in book form. The value, therefore, of this historical display, from an educational standpoint, can scarcely be overestimated.

It would be impossible to do justice to the elaborate exhibit, now at St. Louis, within the limits of a single notice; and, as illustrated articles on these historical locomotives have appeared in this journal from
on's suggestion, made in the year 1680, for a vehicle to be propelled by a jet of steam working on the reaction principle utilized in the famous Turbine of Hero of Alexandria in the year 150 B . C. It is needless to say this idea was never put into practical form.
The next exhibit is an enlarged reproduction of Murdock's road locomotive of 1784 , and is the first engine shown in Fig. 2. Murdock's engine was a small brass model, which worked satisfactorily on a table or floor; but the reproduction at St. Louis is made larger, and, as seen in Fig. 6, the figure of an engineer has been placed thereon. Murdock's engine had but three wheels, and was worked by a single cylinder and a grasshopper beam.


Fig. 3.-Typical Norris Locomotive of 1837.


Fig. 5.-The First Locomotive in Chicago, 1848.


Fig. 2.-A Portion of One Line of the Historical Exhibit at the World's Fatr.


Fig. 4. - " De Witt Clinton" and Train, 1831.


Fig. 6.-Murdock's Road Locomotive, 1784.

LOCOMOTIVE HISTORY AT THE WORLD'S FAIR, ST. LOUIS.
tives. He also secured like material from the railroads and engine builders of the United States; and from this rich mine of information, full-size reproductions of nearly all the types of locomotives were constructed. Furthermore, wherever possible, specimens of real locomotives were secured, and these with the full-size reproductions formed, at Chicago, a unique exhibit which presented an almost unbroken chain in he history of the locomotive engine.
On the closing of the Columbian Exposition, the collection was removed to the Field Museum, and thence it was recentiy transferred to St. Louis, at which time additional historical material was collected,
time to time, it will suffice for the getheral reader if we glance at a few of the more noteworthy examples. Before describing the engines which we illustrate mention should be made of the fact that all the engines stand upon either the original or the exact counterpart of the track of their period; and that, in many instances, lifelike figures of the contemporary enginemen have been mounted on the footplates.
These two features of the engines lend additional historical flavor to this most valuable collection
Fig. 1 of the accompanying illustrations shows the commencement of one line of the Historical Exhibit and the object before us is a model of Sir Isaac New-

The second engine, appearing in Fig. 2, is a fullsize reproduction of the "Stourbridge Lion," the original of which was built in England in 1828, and was run on the Delaware \& Hudson Canal Company's railroad. This engine had grasshopper beams, and was the first locomotive to turn a wheel in the United States.
We next observe "La Fayette" of 1837. This was one of the first Norris locomotives that had adhesion sufficient to surmount heavy grades, and, as seen in Fig. a figure of an engine driver with one hand on the throttle lever and the other holding the reversing lever has been placed on the footboard, giving a realistic finish to this pioneer American engine, which, with
its drop "D" hook motion and dome firebox, will repay careful study.
The fourth engine shown in Fig. 2 is the "Experiment," designed by John B. Jervis in 1832 for the Mohawk \& Hudson Railroad. It was the first engine to have a swiveling truck-a feature of the American locomotive that has helped to make it so successful.
Then follows in the line the "Puffing Billy," a celebrated English locomotive designed by Blackett and Hedley in the year 1813, for hauling coal trains on the Wylam Colliery Railway, Newcastle-on-Tyne. It has upright cylinders and grasshopper beams, similar to the "Stourbridge Lion," already noticed.
The rest of the engines shown in this illustration become too indistinct in the perspective to be clearly seen, but among them will be found Eastwick and Harrison's "Hercules" of 1837-38, the first locomotive to have equalizing levers; the first American eight-wheel engine, designed by Campbell in 1836; James' engine of 1832, the first en gine in the world with link motion, and many others of equal interest. Limitations of space forbid more than a brief reference to one of Ross Winans' celebrated "Camel" engines, that astonished the railway world fifty years ago with its great hauling power We must not, however, pass by a full-sice reproduction of Stephenson's "Rocket" of 1829, which at the celebrated competition at Rainhill, England, attained a speed of 24 miles an hour. It possessed all the essential features of the modern locomotive, and is; perhaps, the most important historical locomotive in the world.
In other parts of the historical display will be found several engines worthy of no tice, among them the "Pioneer" of 1848. (See Fig. 5.) This is a working locomotive. It was the first locomotive seen in Chicago, and ran on a railroad that is now a part of the Chicago \& Northwestern system. It weighs about 10 tons, and has inside cylinders. The eccentrics are outside, and are fitted with drop " $V$ " hooks. This feature alone makes the engine of special interest.
Perhaps the best specimen of a full-size reproduction to be found in the whole display is that of the "De Witt Clinton," which was the first engine to draw a train in the State of New York. The original was built for the Mohawk \& Hudson Railroad, now a part of the New York Central \& Hudson River Railroad, in the year 1831. This exhiver Railroad, in complete, as it includes the tender and three passenger cars, and is illustrated in Fig. 4. It will be observed that these cars are built on the lines of the old stage coach. The baggage was carried on the roof, and an outside seat was provided for the guard or conductor.
Passing over the rest of the engines in this great exhibit, it may be said in conclusion that the Baltimore \& Ohio Railroad Company have supplemented it by the addition of several modern locomotives of the most approved design, including the Mallet articulated compound engine, which has the distinction of being the heaviest locomotive ever built. It has four cylinders and twelve driving wheels arranged in two sets of six wheels each, the frame for the front set of wheels being pivoted to the rear section of the frame, thus enabling the engine to round the sharpest curves with ease. The total heating surface of this mammoth machine amounts iu 5,586 square feet-the largest heating surface ever put into a locomotive. Its enormous power may be conceived in the drawbar pull of 70,000 pounds which it exerts when working compound, but when in simple gear the tractive effort reaches over 80,000 pounds. The weight of the engine in working order is 334,500 pounds.

A good idea of the great increase in the size and power of locomotives since Stephenson's time may be obtained by comparing his engine with the


Submerged Bag with Stirrers for Breeding Lobsters. Getting Out "Fourth-Stagers" for Liberation.
tion will not (as at one time seemed pos sible) be broken up at the close of the St. Louis Fair, arrangements having been practically completed for placing it in a permanent home in one of the eastern cities, with ample provision for its subsequent safe keeping.

## ARTIFICIAL PROPAGATION OF LOBSTERS

## 號

The artificial propagation of lobsters, one of the most interesting of biological problems, and of great economical importance to the United States, has been successfully solved. This noteworthy discovery, which has baffled scientists up to the present, has been practically worked out by the Rhode Island Commission of Inland Fisheries through the investigations carried on by Dr. A. D. Mead, of Brown University, who is director of the floating laboratory of the Commission at Wickford, R. I. The U. S. Fish Commission also co-operated in these experiments. For the past three years or more this has been anchored in Mill Cove and turned into a lobster experimental station, with specially-devised apparatus, and is to-day the first successful lobster-hatching plant in the world. New life is now assured to the declinıng lobster industry, which otherwise seemed doomed to extinction. The annual output is smaller each year, due partially to the unceasing trapping and reckless destruction of the female egg and short lobsters by certain of the crafty and ignorant fishermen, who fail to observe the regulations, and evade the fishing laws. It should be stated however, that early experiments were carried on on behall of the United States Fish Commission at Wood's Holl in 1899-1900 by Prof. Hermän C. Bumpus, then director of the United States Biological Laboratory. His series of promising investigations awakened general interest in the artificial rearing of lobsters, and many different devices for the inclosures were tried, all of which proved unsatisfactory and resulted more in killing than in the rearing of the lobster fry. Later the experiments were transferred to the Wickford Station. The writer, in July of this year, at the Wickford Laboratory, had the opportunity of visiting the lobster-hatching plant, when Dr. Mead outlined the apparatus and his successful method of rearing the young lobsters from the eggs through the critical four stages of two to three weeks which is necessary before they become fitted for the struggle for existence. The following narrative embodies the salient and latest features of Dr. Mead's investigations, obtained from an interview and his official report. The hatchery is installed in a house-boat, some fifty feet in length, built on two pontoons, having a house ten by ten on each end, which is used for a laboratory, sleeping apartments, and the storing of appliances. A well of twenty feet is arranged between the two houses. Two large floats on both sides of the house-boat contain the essential apparatus for the breeding and rearing of the young fry. This, the most vital and important feature of the whole work, viz., the inclosure used to harbor the young fry, consists of a stout canvas bag twelve feet square, submerged to the depth of four feet and supplied with a rotating propeller. After innumerable experiments, it was found that the keynote to success was that the water in which the young fry were inclosed should be kept in continuous motion. This accomplishes two things: it prevents the fry from settling into pockets to smother or devour one another, and it keeps food in suspension, so that they can obtain it. In order to admit a free cirsuliation of water in these bags, windows of copper screens are placed in the bottom and in the sides near the top. The bottom ones are twenty by thirty inches, through which the water enters the bag. The side ones are five feet long and ten inches broad, and placed ten inches from the top, through
which the water escapes in the bag. The windows are covered on the inside with linen scrim, which prevents the lobsters from being caught in the copper screen. The rotating propellers create an upward current through the bottom windows, which flows out through those on the side. The paddle blades are four feet long and operated by a gasoline engine, which turns the main shaft, revolving the whole series. The largest number of "lobsterlings" raised to the fourth stage at one time was 12,750 , being over filty per cent. In a series of experiments in which the fry were counted at the beginning and at the end, from sixteen to fifty per cent of the fry in the first stage were carried through to the required final fourth. In the experiment which yielded fifty per cent 1,000 specimens were used, with 2,500 forty per cent were carried through, and over twenty per cent in an experiment with 5,000 , kept together in a small inclosure. A percentage of fifty-four was obtained in one case. Hitherto the lest percentage under the old method and with most favorable conditions at Wood's Holl yielded only a quarter of one per cent. The Norwegian investigator Appellöf, who has recently conducted experiments, reports that by the use of the greatest precautions he succeeded in carrying over, out of 1,500 larvæ of the second stage, only one hundred individvals into the fourth, less than ten per cent. The first step in the artificial propagation is obtaining eggs from the female lobsters. These are bought from the Creek Newport fishermen in July and August. The cggs are carried through the winter and spring under the tail of the female, attached to the swimmerets, and the hatching begins in May and ends about the middie of July. The number of eggs rooluced varies with the size of the lobster, cn! ranges all the way from three thousand to ninety thousand. The maternal care which the female lobsters display for the young is small. The newly-hatched fry are cntirely free, have no means of attachment, and are readily scattered by the tide and waves and become easy prey for the other marine animals. The eggs are combed from the female into a bag occupying the space between the two cabins on the house-boat, and after being hatched are transferred into the regular canvas bags with propellers. Here they are carried through the interval of two to three weeks. The chief difficulty in rearing fry through this period in any considerable numbers consists in so confining them that they will not die from the effects of suffocation, mechanical shock, starvation, cannibalism, or parasites. This is remedied effectively by keeping the water constantly stirred, and the lobsters and their food suspended in the water. The attack from parasites constitutes one of the most serious difficulties to contend with. Frequently the young lobsters are so completely covered with a growth of parasites, which hinders their movements, that it interferes with feeding and with moulting, so much so as to finally cause death. Of unusual interest is Dr. Mead's observations on the early life habits and appearance of the young lobsters, hitherto not generally known, during the four stages of their infancy. The huge white bag, swarming with millions of the tiny creatures, furnishes at all times a fascinatirg and kaleidoscopic picture of marine life. The best food so far discovered for the young fry is the soft part of clams, the bodies of which were cut out and chopped into fine pieces and then thrown into the bag. Their habit of cannibalism made the question of ample food supply an important one. The only way found to prevent them from destroying one another was to give them an abundance of food. In the process of liatching, the first stage lasts about three days, the second about four or five, and the third five or six, though the length of each period varies greatly, depending upon the water temperature, the food supply, and the general health of the young fry. From nine to sixteen days are required for the larvæ to pass from the first to the fourth stage. The young, immediately after hatching, are designated as belonging to the "first stage"; after they have moulted once, as belonging to the "second stage," and so on. The surest and quickest means of distinguishing the different stages is by the appendages along the underside of the abdomen (tail). In the first stage there are none; in the second stage several pairs of swimmerets are present; in the third stage appendages appear upon the end segment of the tail. The fourth stage is so different from the preceding ones that no difficulty is ever experienced in distinguishing it.

During the first three stages the lobsters swim near the surface in an aimless, jerky way. They are entirely unfitted for a bottom life. The thorax bears five pairs of forked limbs, which ultimately become the walking linbs of the lolsster. One branch of each leg -the lowe ${ }_{1}$-extends forward and downward, and is
used solely for feeding; the other, which is fringed with long hairs, bends upward to the side of the thorax, and by vigorous downward strokes helps to keep the larva afloat. The abdomen (tail) of these lobsters is bent downward at right angles to the body and is the chief swimming organ, and by means of rapid, irregular, downward strokes sends the animal tumbling over and over. When the lobster has nearly reached the surface, it often rests for a little, and sinks gradually toward the bottom.
The most marvelous and astonishing change of form and habits occurs at the third moult. The emerg. ing fourth-stage lobster has the general form of the adult. The abdomen is no longer bent down, at right angles with the body, but now extends straight behind. The downward stroke of the abdomen, which was the chief means of motion during larval life, is now used, as in the adult, only for rapid retreat. All five pairs of walking legs have lost their upper branches, and the first pair, which are now the large, characteristic nippers, are extended straight in front of the head while the lobster is swimming. The other walking legs are relatively shorter than in the larvæ, and are fitted for walking. These structural changes are accompanied by more radical differences in habits and instincts. He is no longer helpless upon the bottom, but burrows under shells or stones for a home, crawls wer the bottom or swims about in search of food, avoids enemies, and instantly retreats from danger when attacked. A new style of locomotion is adopted, and he swims forward in a straight and perfectly definite course by the strokes of the swimmerets. In the


The Auto-bolide, on which an Automobile and Its Occupant Travel at the Rate of 130 Miles an Hour and Incidentally Turn a Complete Somersault in the Air.
fourth stage the lobster has passed the most crucial period of its entire life, and is vastly better fitted for the struggle for existence than in any earlier stage After lobsters have been carried through to the fourth stage, they are liberated in lots of one to five thousand at various points. One of the most suitable methods adopted was to set them free in the morning upon a stony shore, when the tide was out. Here they could find a satisfactory place to burrow and hide from their nemies, also a chance to obtain food. If thrown over board in large quantities in deep water at one place, hey would undoubtedly attract large numbers of fishes and other enemies, and consequently be devoured. The hiding and burrowing habits which are taken up when the fourth stage is reached, continue to be characteristic of the lobster during the earlier period, and doubtless throughout life. In the cars where they are confined, the lobsters show a ready appreciation of anything which will serve as a hiding place, such as shells, stones, seaweed, etc. Aside from rearing the young fry up to the last stage, many new and important problems are being worked out, such as the rate of growth. age of maturity, regeneration, migration of adult lobsters along the coast, to and from deep water. These are copper-tagged with a number and request to return, when caught, to the hatchery. The record one for traveling up to date covered a distance of ten statute miles in less than eight days. By experiment it has also been proved that the young lobster could withstand the cold of winter and the freshened water of early spring. They were submerged in cars in November, and were sunk
in the channel in irom eight to ten feet of water and left undisturbed until spring. No food was given them, although they may have obtained some from the water or from the animals which grew in the car. In the spring they were raised, and seemed not to have suffered from their long fast and winter's exposure. They were all in a healthy condition, but so torpid with the cold that they could be picked up with the hand, becoming very lively, however, when warmed. It was found that the size of the lobsters of the same age varied greatly, though reared in exact conditions The immediate cause of these differences is probably due to the amount of food taken, as some are more courageous than others in foraging
The Wickford hatchery, through the painstaking and scholarly researches of Dr. Mead, has conclusively proven that artificial lobster culture upon a large scale is now practicable; while the establishment of numerous hatching plants, liberating millions of young fry annually, is destined ultimately to reclaim the valuable waning lobster industry of this country. The author acknowledges his indebtedness to Dr. A. D. Mead for data incorporated in the foregoing sketch, and to Mr. Hadley for drawings reproduced of the rewly-hatched "lobsterlings."

## THE AUTO-BOLIDE.

The latest of those daring contrivances which seem to defy all dynamic laws, and for which Parisians in particular seem to have an overweening fondness, is the "Auto-Bolide"-compared with which "loopingthe loop," "the circle of death," and other felicitouslynamed "amusement" apparatus seem tamely commonplace. .The accompanying illustration, which is reproduced from L'Illustration, shows the apparatus clearly enough, but the account which that paper gives of the principle upon which Mlle. de Tiers whirls around this structure, in a speciallyconstructed automobie, is anything but clear. We are simply vouchsafed the information that a platform is situated a considerable distance from the ground, from which platform two rails descend at an angle of 45 degrees, terminating in a sharp though graceful upward curve. Separated from the end of this curve by an air gap of some 30 feet is an ordinary loop-the-loop track. The entire contrivance resembles more the letter $S$ than anything else. Indeed, at the Folies-Bergère this piece of acrobatic foolishness is called "la boucle en S."
From the very obscure description of Mlle. de Tiers' automobile, it would seem that the vehicle is provided with rollers which grip the track on the downward plunge, leaving it at the air gap, and allowing the automobile to finisn the last stretch of this hazardous course on its own wheels. Since the occupant of the vehicle must turn a complete somersault in the air, a heavy counterweight is secured to the front part of the machine, to assist it in its revolution. The leap across the gap is said to be "impressive." Startling, would be a more fitting description. The tires receive a violent shock, but seem to stand it well enough. The entire distance of 50 meters ( 164 feet) is covered in four seconds, or at a speed of about 130 miles an hour. It may be a matter of rejcicing to engineers to know that not a member of their profession is the inventor of this absurdity, but a painter, M. Alonzo Perez by name.

## Fiala Rescue Expedition Fails.

W. S. Champ, leader of the expedition that started to relieve Ziegler's North Pole expedition under Anthony Fiala, telegraphs as follows:
"I regret to report my failure to reach Franz Joseph Land. The ice is insurmountable. The approaching winter and heavy frost have compelled me to abandon further effort."
Fiala left New York in May, 1903, for Norway, where his ship, the "America," was waiting. His plan was to go to Camp Ziegler, Alger Island, for win ter quarters, and in the spring of this year to make the dash for the pole.

A notable locomotive engineer, Mr. William Adams, M.I.C.E., has recently passed away in his eightyfirst year at Putney, England. He was one of those most closely associated with the development of the present type of locomotive, and was the first to pro duce an engine especially adapted for short-distance traffic. This engine, which was designed in 1868 for stoppinz and starting with great acceleration, has served as a model for this class of work ever since. During the course of his brilliant career Mr. Adams was the locomotive engineer for three of the v ost promin ent trunk railroads in Great Britain.

## spelterinis egyptian pictures.

Among the means employed for obtaining bird's-eye views of elevated objects are kites and balloons. Cameras have been sent up on the strings of powerful kites and so arranged that the sensitive plate contained therein could be exposed to the reflection of the picture below. No mean results have been thus obtained, yet this scheme serves only in the absence of the more exhilarating medium, the balloon ascension. What is thus obtained can never approach a view taken where, instead of depending upon a favorable puff of wind, the mind of the operator directs the lens from the basket of a balloon. Such a picture we take pleasure in reproducing here from the Illustrierte Aeronautische Mitteilungen. It is one of several views of the vicinity taken by Mr. Ed. Spelterini on February 21, 1904. Our photograph fails to reproduce all the luxuriance of color, all the sensations engendered by this prospect under an African sky
From the height, which must have reached several thousands of feet, we clearly see the canal of Jusuf, which is at times a dry bed, but just now is apparently filled with the life-giving fluid so bountifully dispensed by Father Nile; again, in the distance, is equal ly clearly discerned the 8 -mile straight-away, tree-bordered drive from the town of Ghizeh to the Mena Honse situated al most at the very foot of the great Pyramid.

## The Living crystal.

The researches of Dr. Otto von Schrön, Prof. of Pathological Anatomy in the Univer sity of Naples, says a writer in Knowledge and Scientific News, gave meaning some ten years ago to the exprossion "the living crystal." He showed that living matter, largely albuminous in character, takes the crystalline form, and, while still living and crystalline, obeys so many of the laws and manifests so many of the prop-
erties of inorganic crystallization, that its crystalline character may be said to be established. From these experiments he drew the inference that crystallization in its terrestrial origin was a manifestation of lifeof vital energy; in short, that a crystal grew for the same reasons that a plant grows, or the brain grows, or as amœba grows; that the vital forces stirring the one are no more than a different form of the forces that develop the other. The "living crystal," the "vital crystal" which," for example, he discovered as one of the products evolved by various of the bacilli that he examined, became thus, in his theory, the bridge between what had heretofore been called living matteranimal and vegetable-and dead matter-mineral. The first crystals which set him on the road to this theory were the crystals of the Asiatic cholera bacillus, which he examined as long ago as 1886. They were long, needle-shaped prisms. Other bacilli examined exhib-

bird's.eye photograph of the egyptian pyramids taken from a balloon.
ited distinct crystals of different forms. The bacillus subtilis, for instance, formed bayonet rhombs; the bacillus tenuaformis, hexagonal prisms; the tubercle bacillus develops square rhombs; anthrax, elongated rhombs; any given bacillus being immediately identi fied by its crystal, which never varies in the shape as sumed in its original formation. These objects are per fect crystals in form; yet, as anyone may see, they are alive, and their life, their motion, and their reproduction are as visible and undoubted as their death when it ensues is undoubted. Their death occurs when all the living matter which originally formed part of the crystal has eliminated itself. On death they become the crystals that we know, ordinary mineral crystals.

Scrap leather is the latest substitute for wood in the manufacture of railroad ties. This process has been worked out by F. W. Dunnell, of West Warren, Mass., who has had occasion to give the subject of paper making some study, and the leather railroad tie is the result. He claims that the tie can be made so hard that it will resist a spike, if this were desirable; but when the tie is made at a proper density for railroad purposes, it will take the spike as nicely as wood, and will hold it much better. The tie is said to resist the action of water and chemicals to a great extent, and the inventor estimates its life at thirty-five years.
Samples of this tie put down some twenty-eight months ago in the yard or the Boston \& Albany Railroad at West Apringfield nave not shown the least wear, although they have been subjected to the hardest usage. The material from which these ties are made represents the waste of the shoe and leather goods factories, of which there are many in New England.

## RECENTLY PATENTED INVENTIONS.

## Of General Interest.

 Bay, Wis. In this case the invention consists in an improved manner of constructing metallic hulls, and it lies particularly in the means for fastening the metallic sheathing to the
frame, in the manner of joining the sheathingframe, in the manner of joining the sheathing. stiffening the entire structure.
men's neckwear.-J. in. Stakk, New York, N. Y. The invention refers particularly to improvements in neckwear or scarfs of the
class having an apron or aprons depending from a collar-engaging device, an ol ject being to so construct the parts that the apron may be readily rotated around a vertical axis relatively to the head or collar engaging device to pre-
sent new or different surfaces, thus practically sent new or different surfaces, thus practically
providing two scarfs in one. providing two scarfs in one.
rackage-can.-m. Shairta and P . Shinitis, New York, N. Y. In this patent the invention has reference to the construction of
cans preferably made of metal and adapted cans preferably made of metal and adapted
especially for liguid contents. the cans being especially for liguid contents. the cans being
of that type in which a removable cover is of hat type in which a removable cover is
employed. held in place by frictional engagement with the mouth-section of the body of the can.
bididng-mhock-G. Gernerdis, York. N. Y. The invention relates to masonry ; and its object is the provision of a new and improved block for forming partition-walls and the like, arranged to permit easy and
quicik setting of the blocks and a firm uniting quicik setting of the blocks and a firm uniting of adjacent blocks to produce an exceedingly strong, durable, and light wall
eyeglasses.-H. Masters, Putte, Mont. Mr. Masters in this instance has invented an improvement in eyeglasses, and particularly
in glasses involving double lenses or two pair of lenses. Bow-clamps clamp directly upon
 the lenses, and are slightly outturned :t their
free ends, forming rounded surfaces :gainst free ends, forming rounded surfaces against
the lenses, so they can be applied tigitly to the lenses, so they can be applied tig.
the lenses without injuring the latter.
tobacco-pipe-R. S. Koch, Bethlehem, Pa. The principal object in this improvement is to provide means for absorling and retaining moisture and preventing it $f=\mathrm{mm}$ interferink with the draft. Moisture collecting in the stem is a very disagreeable feature, and many attempts have been made to do away with it, but the inventor is not aware any have been
practically successful practically surcessful. The chief aim is to dinsh this object
Double Retirn-Envelor: - It $Q$. Dixov. St. Louis. Mo. Mr. Dixons invention
is an improvement in that class of envelops is an improvement in that class of envelops
known as "double" or "return" envelope and
which are constructed of a single blank adapted
to le folded one portion being adapted to to he folded, one portion being adapted to be
folded within the other and serving as the Colded within the other and serving as the
return-envelop proper when the outer portion is detached by the addressee.
bashl-sctront for display-bones.$\therefore$ W. De Laser, Hammond, Ind. The object here is to provide details of construction for a device which affords a reliable support for
display display-box that may be readily attached there and rearwardly inclined position for an ex hibition of goods held in the box and also a conspicuous display of advertising matter placed on the lox and easel-support.
Clanir For welding tires.-C. $s$. Mrakri, Worth, Mo. In this patent the improvement has reference to clamps for use in heating and welding tires: and its principal
cbjects are to provide such a device for abjects are to prote sin a device for hold for making a lap-weld. thus enabling the smith to dispense with a helper's services.
shower-ring.-W. if. Lawrence. Worcester. Mass. This invention pertains to bath-
ny apparatus: and its object is the prowish ny apparatus: and its object is the provision
of a new and improved shower-ring arrange to permit the bather to readily place the ring in position on the neck and remove it there from whenever it is desired to do so.
attacinient for surveying instru ments.-E. r. Abmistrong, Beaumont, Texas There are several objects of Mr. Armstrong's invention, which relates to surveying and othe instruments of a kindred claracter in which a telescope is isea to and in measuring distances and angles: but the principal object is to pro vide for reading all data directly from the calculations which usually have to be made at night after fieldwork is rendered impossible by darkness.

## Heating and Lighting.

apparates for ar'tomaticalis dighitivg or extinglisiling street or otiler gas-taMips.-I. Bergas, Gran of this inventor is to provide an apparatus for lighting and extinguishing the street-lamps throughout an entire district or city by means of a device actuated from one central station or from district central stations. and conse. quently withont the necessity of daily at tention on the part of a lamplighter.

## Machines and Mechanical Devices.

 SCRNE SHFTIN: MECHANISM.-II. Sinvention has reference to improvements in mechanism for shifting scenic curtains, an ob ject being to provide a simple mechanism ar-
ranged in a comparatively small space where ranged in a comparatively small space, where
ly a plurality of screens may be raised and y a phrality of screens may be raised and
owered, one independently of another, to produce varying effects or illusions or to display suitable backgrounds.
REVERSIBLE FEED MECIIANISM FOR SEWING MaCIINES.-W. A. Smitif, New York, N. Y. The invention relates to improve
ments in reversible feed mechanisms for sew-ing-machines of the class disclosed in a prior patent granted to Mr. Smith; and one object of the present invention is the provision of a device for releasing and moving endwise the controlling or adjusting bar by a simple turn of the device in one direction or the other. Simple means release the adjusting-bar withvides an improved form of feed-dog, throatplate, and bridge on the bed-plate.
baNi-SAN:-C. Seymocr, Defiance, Ohio. The object of this inventor. is to provide a saw arranged to permit convenient and accurate ad
justment of the feed-table for making straight and beveled cuts. to allow the feed mechanism to automatically accommodate itself to inequal ties in the work, to insure proper guiding of the work past the saw-band, and to take up any slack in the endless saw-band, and to alow the latter to slightly yield tuder heavy strain, and to permit the operator to stop the eed instantly when desired.
SCPPLY'TANK FOR WATER SERVICE.P. .J. Lerithatser, Clarendon, Texas. The water service of an establishment frequently ncludes a supply-tank at a proper elevation o derive the desired head or fall of water, it being usually pumped into the tank as required. IIowever, the tank may be constructed entirely open at the top so that rainfalls supy the tank wors and strencth it is not uncommon to construct it of wooden staves held together by encircling metal bands. Tnder certain conditions the sides above the water become so dry as to cause the staves to shrink, warn. and nroduce leakages. The inventor's
principal object is to overcome this objection. principal object is to overcome this objection. CONTROLLLER FOR SPRING-ACTVATED gear whefls.-A. Hillgren. New York, N. Y. In this case the object is to provide means for causing the train to evenly deliver the ever-changing power imparted thereto by the uncoiling force of the mainspring to insure a uniform running of the train or gear-wheels
driven from the spring-barrel. so that in driven from the spring-barrel. so that in
watches. for instance, the balance-wheel will vibrate uniformly.

SINGLE-TRIGGER FIREARM.-II. E. WINs, Poughkeepsic. K .
I. This arm is in
tended to be a practical and successful device that will fulfill two important requirementsfirst, freedom from a tendency to discharge both barrels in rapid succession by an involun tary pull on the trigger, and. secondly. the ability of the user to select at will the right or left barrel for service.
metallic lacking.-J. J. Redner. New York, $\mathrm{N} . \mathrm{Y}$. This packing is intended for use on steam-pistons and similar purposes. The packings now on the market answer their pur
pose in a general way, but those having a lock to prevent them from turning on the piston other element to which they may be applied are so constructed that they sometimes becom caught on one side or in contracted position ventor remedies these defects by providing lip-lock packing-ring which cannot get caught LJBuicator A G puruu stour Wis. The invention relates to lubricators, par Wis. The invention those adapted for application to wind mills and the like. In apparatus of this clas on account of its comparative inaccessibility it is of importance to provide them with a de vice which will from a common reservoir pos tively deliver the lubricant to the frictiona surfaces of the mill in cold and warm weather this supply being furnished in varying mea ured quantities to different elements. The ob tar to act
CAR-BRAKE-II. Hofraiann, New Rochelle N. Y. The purpose in this instance is to proquick in action, and under perfect control of quick in action, and under perfect control the strength of the attendant be below normal The inventor dispenses with the winding of brake-chains directly on brake-shafts and pro vides a brake construction which will be eco nomic and readily adapted to any type of roll-ing-stock
STIB-SWITCII FOR RAILIWAYS.-J. G. McKrows, Phoenix, Canada. This invention has reference more especially to stub-switches and one of the principal objects thereof is $t$ overcome numerous disadvantages frequentl. met in the use of rates witch which is thoroughly effective and reliable in operation and comparatively inexpensive to manufacture. It comprises few parts, is easily regulated and possesses the capacity for long and repeated

## rvice.

Note.-Copies of any of these patents will furnished by Munn \& Co. for ten cents each the tuvention, and date of this paper.

## Sctoutcot tho old shuts!!

## DECREASE ${ }^{\text {the cast t fy our }}$ <br> — WHILE YOU <br> INCREASE ${ }^{\text {ties send and capacity }}$ of your teams

## The Steel Highway Track

Just what is needed for Factories, Coal and Lumber Yards, Breweries, Planrations, etc., to facilitate handling of Products at minimum expence.

Get prices and particulars.

Ask for booklet "A."


One horse on a Steel Highway Track can pull as heavy a load as six horses on a good macadam road, or twelve horses on a good gravel road


Correspondence solicited relative to the formation of subsidiary companies operating State rights

## Steel Highway Track Construction Co.

OF AMERICA


MAIN OFFICE:

## 758 Drexel Building

 Philadelphia


##  <br> 


 770,428
770,599



 $770,+11$
$7 \pi 0,+167$
 770,471
770,375


(V) Squabs Pay Hois


A HOW FAR DO YOU QWALK IN A DAY?





 MODERN MACHINERY COMPANY.
813 Security Building, CHICAGO, ILLINOIS


GUNSMITHS. TOOL MENTAL \& REPAIR WORK, ETC.




 Automatic Hand Winder
 Thit Best tool co., 76 Sherman St., Boston, Mass
The Brennan Motor


[^0]I

## 



| Railivay <br> Mour |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

: 770,5649
 Many social leaders in New York and other large cities-people who
demand and have the best of everything-are users of COLUMBIA Electric Broughams, Landaus, Landaulets, Hansoms, built from exclusive designs and are sold for private service only. Let us send are handsomely printed list of prominent purchasers and our special Town Carriage ELECTRIC VEHICLE CO., Hartford, Conn. NEW YORK. 134-138 w. 39th St. Chicago, 1413 michigan Ave. BOSTON, 74 Stanhope S

HAYIES


## EFFICIENCY

 in its highest degree can be obtained only throughthe employment of that which enables the auto-
milist gg conditions The Haynes 3 Speed 1 Lever Control st gear for sting moud ist gear for starting and mountain climbing.
2d gear for hills, sand and bad roads.

3d gear for good roads and moderate grades. RESULT: Never less than 80 per cent. efficiency tells why. Write for it to-day.
THE HAYNES-APPERSON CO. Kokomo ind. U.s.a.

None But Our Own Heads
 WE L DRILLING Over 7 sizes and styles, for drilling either deep or
shallow wells in an an kind or sill in rock Mounted
on wheels or on sills. With engites or norse ouwers. On wheels or on sills. With engines or norse powers.
Strong, simple ald
operate theme easily. Surable. Any mechanic can WILLIAMS BROS., Ithaca, $\mathbf{N}$. $\mathbf{Y}$.


[^1]

October I, 1904.
Scientific American

A Great Repository of Practical \& Scientific Information
 SIXTEENTH THOUSAND. PRICE \$8.00
Free of Postage to any Address in the World The Techno-Chemical Receient Book
 in the $\rightarrow$ rts and the Industries. Edited chiefly from the

 Price $¥ 2.00$. free of posta;e to any address in the $w$
 HENRY CAREY BAIRD \& CO. \&10 Walnut St., Philadelphia, Pa., U.A.A.
 ur Unusual Catalogue is easy to understand. Why not send for the UNUSUAL CATALOGUE
amd learn of the BEAUTIFUL WORK done by and leatn of the BEAUTIFUL WORK done by
the LIGHT RUNNING YOST? Sent free. yost writing machine co., 245 B'way, New York


Does This Fact Indicate Merit? 575,000 LINDSAY LIGHTS

Sold Since January 1, 1904
LINDSAY LiGIITS are intended for we
 and

 represenatis
 LINDSAY LIGHT COMPANY DEPT. $S$
CHICAGO, U. $S$
CHICAGO, U. S. A


## Send For This Atlas <br> An Atlas of the World containing a complete series of 106 Newly Enpraved and Colured Maps, cooverink every portion of the Globe, including separate maps of evary State and Territory of the Union and Special Maps of our new possessions. It also contains a short history of the United States, with illustrations of the interior and exterior of the Capitol and other public photographs of all the Presidents of the United States from Washington to Roosevelt, and short biographical sketches of each. A copy of this handy Atlas will be ings of Pittsburgh, Penn., on receipt of five two-cent stamps to cover postage and mailing expenses. Whin Writing, ask the bank to enclose you a free cony of Booklet No. $S$ 2., if you are interested in securing a safe

 Send For It To-Day You'll tind it almavs convenient tobave as a useful and instructive boot The new edition has 704 pares and is


The Genuine Armstrong's
STOCKS and DIES Acknowledged to be the best. Dififerent sizes and
capacities. Write for catalo.
THE ARTISTRONG MFG. CO., Bridgeport, Conn.

## Telegraphy:

STONE AXES-TO ETHNOLOGISTS



WNINTEON


If you do not investigate the WINTON before you
buy a motor car you will not get its equal. Completely
equipped, $\$ 2,500$ f. 0 . b. Cleveland; without top, S2, $\mathbf{3 0 0}$. Prumpt deliveries. the winton motor carriage co., Cleveland, o., u.S.A


Speed twenty milies per hour. Will climb all ordinary
grades. The best car for the price in the world. WALTHAMMANUFACTURINGCO

4. 4

TAR GAS and GASOLINE For All Work.
Stationaries. Portables, Hoisters, Pump
ers. Sa wing \& Boat Outtits. Send for Catalogue and Testimonials
State Your Power Needs. charter gas engine co., Box 148 , Sterling. ill


BRODERICK ABASCOM ROPE CO.
What Is Daus'Tip-Top?



The Felis A. B. Dans Daplieator Co., Daus Blug, 111 John St., Xen Yort

## 1854-1904 <br> Waltham Watches <br> have stood the test of time.

-d The Perfected American Watch," an illustrated book of (interesting information about watches, free upon request. , AMERICAN WALTHAM WATCH COMPANY, WALTHAM, MASS.


Price pales into insignificance beside the fact that " Taylor Old Style" roofing tin will last in good condition seventythree years. It is so good that you forget the price, yet the price is but little more than common kinds.



Sele-Ftllita Pign

 The Conklin Pen Co. ${ }^{119}$ Toledas ${ }^{\text {nin }}$

BARCAINS IN MARINE ENGINES


## Radium





## OUR NEW OUR NEW WATCH

## Kewlonglaud

 READY FOR DELIVERY OCTOBER ist
## WATCMES

 the new encland watch co. 37 Q 39 Maiden Lane, New York 7 Snow Hill. London, England
MAPOOD DOUBLE FLUE HOT BLAST RMMGE

L.E. Waterman Co. 173 Broadway - - Now York
Large Contracts -Solicited

## our factories are so numerous and

 so completely equipped that we can compete successfuily on large con-tracts-such as sheet steel stampings, general manufacturing and machine shop work:Pope Manufacturing Co.
21 Park Row, New York City
THE FRANKLIN MODEL SHOP
 $\left\{\begin{array}{l}\text { estimates. Send for wooklet No.9, free. } \\ \text { PARSELL \& WEED, 129.181 W. 31st St., New York }\end{array}\right.$

## "NUTSHELL"

Safety Razor
The Best, Safest, Quickest, Cleanest Smallest and Most Practical Razor in the World
S1=00
snecial Offer.-On receipt of $\$ \mathbf{1 . 0 0}$ Nutshell Safety Kazor, One Razor of razor and strop \$1.25). (regular price
funded if not satisfactory. Sold to Consum
39 Greenpoint Avenue, $\quad$ Brooklyn, N. Y. OpdRN All varieties at iowest prices. Best Rairvad



## The Apple



[^2]
[^0]:    RRENNAN MOTOR CO. - BTREOEON $\mathrm{K}_{0}$

[^1]:    JEFFREY
    ELEVATING--CONVEYING--POWER THE Catalogese adrese
    

[^2]:    D DARALLEL GHBESLY\&O
    GgCAMTSHIANGIESGicagoly
    15 to 21 cllnton street

