

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO..
Editors and Proprietors

Published Weokly at
No. 361 Broadway. New York

NEW YORK, SATURDAY, JULY 16, 1904.
The Editor is al ways glad 10 receive for examination illustrated
articles on subjects of timely interest. If the photographs are share, the articies short, and the facts athentic, the contributions
wall receves ppecal altention. Accepted articles will be paid for
at regular space rates.

HOW LONG MUST WE SUFFER? OUR ENGINEERING department at present the creature of party politics.
Every evening between half past five and half past six o'clock the Brooklyn Bridge on the Manhattan side of the East River presents a scene which mere words describe but feebly. In that brief hour, tens of thousands of men and women who live in Brooklyn and work in New York city pour out of the downtown office buildings, rush for the trolley and elevated cars that circle in cramped loops around the Manhattan terminal, and literally fight for a place to sit, often for a place to stand. Men and women struggle in this throng, so utterly regardess of the common courtesies of life, that even injuries are sustained by those who are least able to wage this evening strife. Long ago the conditions became so shocking that policemen were stationed at the tracks to preserve something like order, and to restrain the over-energetic from worming themselves through the car windows in an ambitious attempt to outdo those who fought their way through the end gates.
This state of affairs has prevailed for years. Finally, the cry for better transportation facilities aroused even the sluggish municipal officials, and induced them to divert their attention for a time from the less onerous exigencies of politics to the city's immediate needs. Several bridges were authorized. One of these, the Williamsburg Bridge, is completed. For the time being it is of little or no value in relieving the congestion in City Hall Park, because the railway companies have not as yet laid the tracks for which ample roadways have been reserved. Two bridges are still in course of construction. When they will be completed, no one can foretell.

With thousands of Brooklyn residents clamoring for better means of reaching their homes, one would suppose that the municipality would make a determined effort to rneet the situation. Officials to whom the construction and care of bridges are intrusted have not been idle; but their activity has been expended very largely in drawing plans for imposing structures, in discarding them, and in providing others to take the place of those discarded. The Bridge Department of one administration seems to exert its utmost endeavors to undo the work of previous office holders, and to substitute its own ideas of what the city wants, regardless of the disgraceful scenes that occur daily before their very eyes at the Brooklyn Bridge. What may be regarded as a typical instance of the delays by which the patience of New Yorkers has been taxed for years is offered by the history of the Manhattan Bridge-a history which is anything but diverting, and in which politics, personal spite, useless engineering debates have played their part.
We first heard of the Manhattan Bridge about six years ago. On November 30, 1898, resolutions were passed by the Board of Aldermen, authorizing the preparation of plans for the structure. That was the first step. An ordinary business man would be justified in assuming that these plans were adopted after reasonable consideration, and that the necessary money was appropriated without unnecessary delay to carry them into effect. Unfortunately, however, New York city is administered on political, and not business principles. It was not until January 1, 1900, that the construction of the bridge was authorized. For some inexplicable reason the aldermen saw fit to appropriate, not a lump sum for the building of the structure, but to set apart a small amount for the construction of certain parts-an amount which the engineers in the Department of Bridges considered absurdly inadequate, even for the particular purpose for which it was intended.

This method of procedure was not without its ef fect on the Department of Bridges. In the summer of 1899 following the resolution authorizing the preparation of drawings, the drafting force of the Department began its work. In the summer of 1900 plans for one tower and its foundation had been completed, and the drawings for the other parts had been developed to a degree rendered necessary in pre paring the tower plans. In the inscrutable wiscom of the Board of Aldermen, only money enough for the building of a single tower had been appropriated at first. That money not being immediately available, the contract for the single tower in question was not let until the spring of 1901.
Three years had elapsed, and not a spadeful of earth had been turned.
Meanwhile the drawings for the Manhattan tower had been prepared. In printed form they were ready for bidding contractors by January 1, 1902. Then came a turn in the tide of political affairs. When the Reform administration came into power, every Tammany man was swept out of office. The Commissionership of Bridges was wisely intrusted to an eminent engineer of international reputation, undoubtedly to the Department's benefit. The new incumbent objected to the plans of the Manhattan Bridge, because he considered the structure which they represented entirely inadequate. New plans were prepared. For the wire cable suspension bridge that had been proposed, he substituted an eye-bar cable structure. The newlyproposed plans, however, aroused such a storm of criticism that the mayor of the city deemed it advisable to submit them to a board of experts for approval. That board, composed of men who stand in the front rank of their profession, gave their unqualified approval to the eye-bar design. After this delay, the substituted plans for the bridge were completed in a general way by the summer of 1903, and duly approved by the Municipal Art Commission.
Five years had elapsed. The foundations of the towers loomed up on the shores of the East River-all that had been done.
The elections of 1903 brought defeat to the Reform administration. Following the usual American practice, the change of administration again resulted in turning out the department engineers. A new Commissioner and a new engineering force began the administration of the Department of Bridges. Eyebar cable designs, which had cost so much time and trouble to prepare, and over which so much ink had been spilled in alternate disparagement and approval, were thrown aside. The old wire cable design was dug up; its architectural faults were remedied so far as possible; the whole entailing an expenditure of $\$ 75,000$ to $\$ 100,000$ in the preparation of new drawings and loss of time that cannot be measured in money.
Six years have passed; and still, all that the city can show in actual work completed is the foundations on the shores of the East River.
Those who know something of the leisurely delivery of the wire cable used in the construction of the Williamsburg Bridge, place the date of completion of the Manhattan bridge at 1909. Meanwhile the Williamsburg Bridge is still trackless; and crowds still struggle for a chance to ride home across the old Brooklyn Bridge every night.
Where is this hopelessly unbusinesslike and impractical metho of constructing the engineering works of a large city to bring us? How long will it take to build the Manhattan Bridge, if each new Commissioner is to discard his predecessor's plans and substitute others for them? If it has taken six years to build the tower foundations, how long will t take to build a whole bridge?
One conclusion must inevitably be drawn from the history of the unfortunate Manhattan Bridge, and that lesson is this: Municipal engineering should be free from every political influence. Is it advisable to change the engineering force of the Department of change the engineering force of the Department of
Bridges with each election? No well-conducted manuBridges with each election? No well-conducted manu-
facturing company would dream of placing the management of its affairs every two years in the hands of a new man, just after the old had succeeded in mastering the intricacies of his business, and become of some value to his employers. And yet this is the very proceeding which is adopted not only in the Depart ment of Bridges of New York city, but in every other department. We tear up our streets to lay sewers, and, having laid them, fill up the trenches and carefully repave the streets. Two weeks later excavations are begun in the same streets, for the purpose of laying gas pipes or electric wires, all to the great public in convenience. A permanent engineering force in charge of those municipal departments which require the exercise of engineering judgment is certainly a crying need of New York city, an engineering force so permanent in its nature that its plans are not likely to be overthrown with each election, so well selected in its personnel that the interests of the city will be conserved with the same care that marks the management of a well-conducted manufacturing corporation.

Corrosion of steam boilers.

In a paper recently published in a German contemporary (Stahl und Eisen) Mr. L. Vogt takes exception to the current practice of judging the availability of boiler-feed water exclusively according to its hardness, i. e., its percentage in substances susceptible of forming scale. According to him, the remaining components of the water should also be ascertained, as these give rise to repairs much more frequently than the former and even directly result in explosions. This problem is the more important as cleaning the water will in many cases produce strong corrosion, when, relying on the efficiency of the cleaning, the boilers are kept in operation for too long a period. In most cases, the prevailing substances forming scales, namely, sulphates and bicarbonate, are precipitated by means of soda and lime water, sodium sulphate being dissolved and pumped into the boiler along with the cleaned water. After the water has been vaporized, the sodium sulphate will remain undissolved in the boiler water. Now as with continued cleaning the concentration of the sodium sulphate is increased up to rather higher figures, this salt will finally exert corrosive effects on the boiler wall. The various nitrates and chlorides always present in boiler-water will, especially in the presence of air, be even much more noxious. Of all these substances, magnesium chloride seems to be the most noxious, barium and sodium chloride coming next.
In order to obviate the destructive effects of such substances as do not form scales, the author suggests maintaining their concentration below the limit at which they attain the property of attacking iron. It should, however, be borne in mind in this connection that a thorough intermixing of the water does not take place except in boilers with very active water circulation, whereas in many other cases the average concentration found by calculation is not immediately available for deciding the question at issue, which depends, on the contrary, on the maximum value of concentration, as obtaining at the point of strongest vaporization, i. e., in the neighborhood of the heat source. The author thinks soft water containing a not immaterial percentage of salt remaining in solution, to be more dangerous in this respect than a water otherwise equivalent but containing a higher percentage of scale formers, sheet iron being the more easily destroyed as its surface is of higher metallic purity. As regards the question as to whether cast iron or wrought iron offers less resistance to corrosion, Mr. Vogt thinks cast iron not to be less advantageous than wrought, corrosion being most likely due not to the material of the boiler but to the quality of the boiler water.
In testing a specimen of water, the minimum amount should be 3 quarts, so as to allow of a good quantitative analysis being made together with a checking analysis. Should it be necessary to use inferior water, parts of the contents of the boiler would have to be blown out every week and the boiler emptied out every 6 or 8 weeks, rinsed. and filled with fresh water. In the case of soda being not objectionable, owing to manufacturing reasons, a daily addition of soda of sufficient strength to give a slight alkali reaction would be advisable.

NEW METHOD OF GOLD EXTRACTION FROM PYRITES USED IN ITALY.

The process of gold extraction which has been put in practice in Italy by the Belgian chemist Body is awakening great interest among metallurgists. A few years ago the English geologist Morse and others observed that wherever there were placers of free gold there was also to be found in the neighborhood a source of combined gold in a volcanic matrix which was much richer in the metal. This theory has just been confirmed in a striking manner by M. Body. The process which he is now using in Italy is in reality only the geological synthesis of the formation of alluvia, and confirms the theory which attributes the formation of the placers to volcanic action.
The process is based, not upon the elimination of sulphur, but upon its addition; although this seems in contradiction to the present metallurgical processes, the result is said to be remarkable, and the output of gold obtained in this way greatly exceeds that which is given by the usual processes. The method is founded on the polysulphuration which is obtained by chemically disaggregating the mixture by means of special salts, under the influence of a temperature which does not exceed a cherry red. The process is of a relatively short duration. The disaggre gating action removes the gold from its most stable compounds. At the Piedmont works, where the process is now employed, it costs only $\$ 2$ or $\$ 3$ to treat a ton of ore. It should be remarked that the new process is not an extraction of the gold, properly speaking but a process of transforming the pyrites, which is so difficult to treat, into a product which can be worked in the ordinary way. As gold-bearing pyrites exists in great quantities in nature, the new process is likely to prove of great value.

BORAX. AND FOOD.
Dr. Wiley's elaborate investigations on the influence of boric acid and borax on digestion and health will shortly be published by the Department of Agriculture. We are enabled to present the following preliminary account of results obtained:
These investigations were commenced in the autumn of 1902. Prior to their beginning, a careful study of similar work done in this and other countries was undertaken and some of the laboratories where this work had been carried on, notably the laboratory of the Imperial Board of Health of Germany, at Charlottenburg, were visited and the method of experimenting investigated. The plan finally decided upon was to secure the voluntary services of a number of young men who would try the effect of the added substances upon their digestion and health, to make the necessary observations, and to submit themselves to the rigid analytical control which such a series of investigations required.
The number finally selected for experiment was 12 , as this was found to be about the maximum number which could be cared for with the analytical and culinary facilities afforded by the Bureau of Chemistry. A kitchen and a dining room were fitted up in the basement of the Bureau and in December, 1902, the actual experimental work ${ }^{\text {began, and it continued }}$ in the case of boric acid and borax until July 1, 1903. The work was so divided that no one of the young men under observation was required to submit himself to the rigid control necessary to the conduct of the work more than one-half of the time. The men selected were taken partly from the force of the Bureau of Chemistry and the rest from other Divisions and Bureaus of the Department of Agriculture. Each one was required to subscribe to a pledge to obey all the rules and regulations prescribed, and to abstain from all food and drink during the period of observation save that which was given him in the course of the experiment. Careful medical inspection of each of the members of the experimental class was secured, both directly and by collaboration with the Public Health and Marine Hospital Service. The details of the work, both analytical and medical, are found in full in the bulletin above mentioned, which is now in press.
A summary of the results of the investigations, omitting all technical and analytical detail, is as follows:
(1) Both boric acid and borax, when mixed with the food, are excreted from the body chiefly through the kidneys, about 80 per cent of the total amount exhibited being recovered in the urine. The rest of these bodies is excreted chiefly through the skin with the perspiration. Only traces of them are excreted in the feces. These facts show that these bodies are almost if not quite all absorbed into the circulation from the intestinal canal.
(2) When borax or boric acid is administered in the food it appears in traces in the urine in a very short time, but if equal quantities of this preservative be administered daily the maximum quantity excreted in the urine does not appear until about the third day. After that if the same quantities be continued equivalent quantities are excreted from day to day. These facts show that there is not any great tendency to the accumulation of these bodies in the system beyond what would be given over a period of abouit three days, and even the whole of this is not found in the body at once, as small portions of it, gradually increasing in quantity, begin almost immediately to be excreted after exhibition.
(3) The most convenient method of administering this preservative is by inclosing it in capsules. When mixed directly with the food it tends to give the person eating it a dislike for the food in which the borax is found, due largely to the mental attitude rather than to a bad taste or flavor.
(4) When boric acid or borax equivalent thereto, in small quantities not exceeding a half grain per day, is given in the food, no notable effects are immediately produced. If, however, these small doses be continued for a long while, as for instance in one case 50 days, there are occasional periods of loss of appetite, bad feeling, fullness in the head, and distress in the stomach. These symptoms, however, are not developed in every person within the time covered by the experiment, for some are far more sensitive to the action of these bodies in small quantities than others. There is no tendency in such cases to the establishment of diarrhœa or of diuresis, though there is a slight tendency to increase to a very small extent the amount of water in the feces. There is, however, no measurable tendency to increase the volume of the urine.
(5) When boric acid, or borax in equivalent quantities, is given in larger and increasing doses, there is a tendency to the somewhat rapid development in a more accentuated form of the symptoms above described. The most common symptom developed is a persistent headache, a sense of fullness in the head, with a clouding to a slight extent of the mental processes. When the doses are increased to 3 grammes a
day these symptoms are established in a majority of
the cases but not in every case. They are also sometimes attended by a very distinct feeling of nausea and occasionally by vomiting, though the latter act is rarely established. There is a general feeling of discomfort, however, in almost every case, but the quantities required to establish these symptoms vary greatly with different individuals. In some cases very greatly with different individuals. In some cases very
large quantities may be taken without the establishment of marked symptoms, while in other cases from 1 to 2 grammes per day serve to produce in a short time feelings of discomfort and distress.
(6) The specific action of the boric acid and the borax upon the digestive processes is not very well marked. There is but little apparent disturbance in the process of digestion or assimilation. But there is a slight tendency to decrease the proportions of the food which are digested and assimilated, and thus to cause the excretion of larger quantities of undigested materials in the feces. This action, though it may be traced definitely when large numbers are submitted to experiment, is not of a character to cause any very serious consequences. It is, moreover, not marked enough to warrant the statement that the administration of these bodies in small quantities causes a distinctly unfavorable effect upon the processes of digestion and assimilation, except when its use is long continued.
(7) The effect of the administration of borax upon the weight of the body is very well marked. As its continued exhibition decreases the desire for food, interferes somewhat with the digestion of the food in the alimentary canal, and produces, in certain cases, persistent headache, bad feeling, and discomfort in the region of the stomach, its final effect in diminishing the weight of the body is not doubtful. The compilation of the weights of the body obtained during the tion of the weights of the body obtained during the
whole period of the observations shows a slight tendency to diminish the weight of the body during the administration of the preservative. This tendency becomes so well fixed that it is not entirely eliminated for several days after the administration of the preservative ceases. In the after periods extending in some cases for ten days, and during which time the subject was kept under observation after the administration of the preservative ceased, there was not a uniform nor even a general recovery of the original weight and of the original condition. Any effects produced by the administration of the borax do not extend to any considerable period of time, and apparently no permanent injury to any one of those experimented upon is produced.
(8) No conclusions were reached in regard to smaller quantities than half a gramme per day of the preservative, and therefore, any statements in regard to the administration of smaller quantities must be based largely upon the results obtained with the quantities actually employed. It is reasonable to infer that bodies of this kind not natural to nor necessary in foods which exert a marked injurious effect, when used in large quantities for short periods of time, would have a tendency to produce an injurious effect when used in small quantities for a long time. The general course of reasoning, therefore, would seem to indicate that it is not advisable to use borax in those articles of food intended for common and continuous use. When placed in food products which are used occasionally and in small quantities it seems only right, in view of the above summary of facts, to require that the quantity and character of the preservative, that is, whether borax or boric acid, be plainly marked so that the consumer may understand the nature of the food he is eating.
(9) The use of borax or boric acid as an external application to cured meats to preserve them in a proper condition during shipment to foreign countries when the use of such preservatives is not prohibited in such countries and when it is especially asked by the purchasers that they may be used, is a question which is not to be decided upon the data which have been obtained. Inasmuch as it is evident that in cured meats the processes of absorption and diffusion will be very much restricted, it is evident that unless the shipment of the product in question extends over a long period of time there could be no very great penetration of the preservatives to the interior of the package. The quantity of borax thus introduced into the food product would be minimal and the desirability or undesirability of its presence would be a question which should be left solely to the decision of the authorities in the countries to which the product is sent.
(10) The convincing justification of the use of boric acid and borax for domestic food products must lie in the possibility of proof on the part of those using them that the food products in question if not preserved in this manner would develop qualities far more injurious to health than the preservatives themselves.
(11) While many of the individual data obtained are contradictory, the general results of the investigation secured by combining into single expressions all the data relating to each particular problem studied show in a convincing way that even in doses not exceeding half a gramme ($71 / 2$, grains) a day boric acid
and horax equivalent thereto are prejudicial when consumed for a long time. It is undoubtedly true that no patent effects may be produced in persons of good health by the occasional use of preservatives of this kind in small quantities, but the young, the debilitated, and the sick must not be forgotten, and the safe rule to follow is to exclude these preservatives from foods for general consumption.

SCIENCE NOTES.

An interesting discovery of old Roman and AngloSaxon relics has been made in the course of some cavations in a field at Mitcham, a southwestern suburb of London. Seven skeletons in a group accompanied by several spearheads were at first unearthed. A little later this discovery was followed by the finding of three more skeletons, all in an excellent state of preservation. In every case, the skeleton was lying on its back with the feet toward the east, and in separate graves made in the gravel. Remnants of old-fashione armor, some spurs, and a two-edged broadsword were found near the remains. Several three-inch lengths of brass or bronze rod, with eyelets at the head, and portions of an old handsomely carved glazed vase were found on the chest of one of the skeletons. A nother skeleton had a spearhead to the left of the skull, with a buckle and knife or dagger at the waist. The skeletons and relics of the implements have been carefully examined by archeologists, and their investigations incline to the theory that the bodies were buried about the year A. D. 400. As a matter of fact, there exists records of a battle having been fought near Mitcham about this period. The researches are to be continued carefully under the supervision of scientists and antiquarians, and it is anticipated that many more interesting links with the past will be discovered.
It has been observed that oysters grow much more slowly on some beds than on others-that in certain places they fail to fatten. These places were usually on overcrowded beds, and sometimes good results could be secured by transplanting or thinning out. Qualilative and quantitative study of the diatoms (which constitute the food of oysters) on beds where the oysters fatten well, and on other beds where they fatten poorly, showed that the number of diatoms per liter of water was very much greater in the former than in the latter. It was therefore believed that if the supply of diatoms could be increased on the unproductive beds the oysters on them would grow and fatten. Experiments along these lines were recently inaugurated at Lynnhaven, Va., under the immediate direction of Dr. H. F. Moore, of the Bureau of Fisheries. A small cove was selected where the bottom and the saiinity of the water were favorable, but where diatoms were scarce. Commercial fertilizers of certain kinds were used to furnish food for the diatoms, and it was very soon found that the latter greatly increased in abundance, and lean oysters transferred to this cove fattened rapidly. Details of the process need not be given here, but it is believed that the experiments will demonstrate the entire practicability of the artificial feeding and fattening of oysters on a commercial basis.National Geographic Magazine.
Some time before the ashes and lava of Vesuvius in 79 A. D. covered up Herculaneum and Pompeii, a municipal election was held in the latter city. Mr. Joseph Offord read a paper before the Society for the Encouragement of the Fine Arts concerning this elecion, about which nothing would have been known but for the terrible eruption, which from 79 to 1755 buried the municipium and its electors alike in a lava tomb. Mr. Offord showed that many of the inscripions uncovered on the walls of the city relate to elections and claims of candidates, much in the same way as do the placards posted in our streets to-day. Some were rudely inscribed, others set forth with artistic embellishment, and one, at least, contained a topical verse written by some minor poet, and painted in red. Like our candidates, those in Pompeii were run by their supporters, who represented various trades and interests. The wood-cutters, fishers, perfumers, dyers, barbers, and the like had their men pledged to promote or protect their rights and privileges. There were faddists, too, in Pompeii, who were looked after by such societies as the Ball-players, Long Sleepers, Deep Drinkers, and Little Thieves, to adopt a free translation of some of their titles. At Pompeii's ultimate civic contest the Long Sleepers and Deep Drinkers appear most appropriately to have run a candidate in common-the main plank in their platform being the suppression of street noises. Even Pompeii had its religious difficulty. As every visitor to those wondrous unburied ruins knows, it was the home of a cosmopolitan and, for its age, cultured and tolerant people, and to this day stand altars erected to Egyptian gods side by side with those of the established worship of Venus. Naturally there arose some differences between them. It is suggested that further excavations may prove that at the 79 election there were Isis passive resisters. Thus near came imperial Rome to representative gov. ernment.

A NOVEL AIR COMPRESSOR

The air compressor is now so universally used for mining and braking purposes, that it would seem as if it had reached the stage of completeness for economical work. It appears, however, improvements have been invented whereby it is thought the efficiency of the compressor as compared with the steam pressure employed is considerably increased.
The compressor shown in the accompanying illustration is constructed upon an entirely different principle from those in ordinary use, that is, the steam power is transmitted from the crank of the steam engine through what is termed a floating beam and toggle joints to two direct sin-gle-acting air-compressing cylinders.
In this way it is possible to extend the stroke and to combine the energy exerted through both scts of toggles in their straightening and deflecting motions.

Thus the whole force developed through the toggles up to their exhaustion is available for the work of compression nearly the first nine-tenths of the stroke, hence the compression is continued by the deflecting set through the agency of the floating beam. The large illustration, taken from a photograph, gives an excellent idea of the general appearance of the machine. The diagram in the upper left-hand corner shows the plan of construction. The operating horizontal connecting bar \boldsymbol{E} is reciprocated to and fro by the revolution of the steam engine crank, and is connected at each end to the knees of the toggles D and C. These are stationarily pivoted at their lower ends to the base of the compressor,
while their upper ends are pivoted to the floating beam A; from the extreme ends of this beam rise the air compressor piston connecting rods, to the pistons shown in the compression cylinders G and H.
The beam A is supported at its center on a vertically movable support to allow for the variations in the movements of the toggles. One form of this variable support is a weight placed on a lever at F, the other end supporting the pivot rod E, on which the beam A. rests. It is obvious other means for allowing for this variation can be used.
In the position shown, the toggle lever C has been straightened by the movement of the connecting bar \boldsymbol{B} to the left, which has forced the beam A upward, and made a compression in the cylinder, while in the cylinder G the piston has been drawn down by the bending of the knee of the toggle \boldsymbol{D}, and is in a position to begin compression on the movement of the bar B to the right.

As the beam A overhangs the toggles by one-fourth of its length, it becomes a simple lever, with each toggle set alternately acting as a fulcrum. The motion on the joints is very slight, an arc of only one-eighth of a circle representing the frictional travel on the pins.
The size of the cylinders of the compressor a c t u a l 1 y experi mented with, is 12 inches in diameter by 16 inches stroke for the steam, an:? also 12 inches by 16 inches for the air cylinders, which are singleacting. The inventor tates that the mechanioal efficiency of the compressor is 90 per cent
Special arrangements are provided for the cool ing of the air durins compression, so that the results are practically isothermal, the air being discharged dry.
The compressor is the invention of Mr. Henry Bland, of Sydney, Australia, and is being introduced by the Bland Compressor Company, Limited.
We are informed that the representative in the United States is Mr. T. B. Reynolds, Whitehall Building, No. 17 Battery Place, this eity. The com-

THE BLAND AIR COMPRESSOR
ciency of 97 per cent. The amount of horse-power required to compress a given quantity of air to a given pressure is in the proportion of six horse-power to one hundred cubic feet of free air compressed to 75 pounds pressure.

Various tests under the direction of Mr. Herbert E. Ross, C. E., have been made in different ways, showing a higher efficiency-from thirty to fifty per centthan is ordinarily the case under a stated steam pressure.
The utilization of the lever and toggle principle in securing greater compression is quite unique and novel. in an air compressor, and one that is shown by actual trial to be more economical in relation to the initial steam pressure than is usual.

an apparatus for preventing seasickness

by dr. alfred gradenwita
The pitching of a ship in a rough sea is certainly a serious drawback both to the physical welfare of passengers and crew and to the expedition of any work made on board. While any endeavors made to prevent or to diminish pitching have so far been in vain,

mb. schlick and his model of an apparatus for redocing the rolling ox a mexp.

A new machine for pro ducing belting and textile fabrics has been invented by Mr. J. W. Hyatt, of London. The apparatus is a combination of the loom and the sewing machine. The belting it turns out is a first-class article, doubleselvedged and of great strength and durability. The most prominent feature of this belting is its small amount of elasticity, and imperviousness to water, oil, and chemicals. It has a stretching strain of only three per cent, and its breaking strain is 30,000 pounds, as compared with the 7,000 pound breaking strain of the best leather belting, while it can be produced about fifty per cent cheaper. Demonstrations with this new production have proved such a high standard of strength and durability, that a motor-tire manufacturing firm has decided to utilize the fabric for the foundation of tires instead of canvas.
the plans for the new manhattan bridge. Gustav Lindenthal's design for an eye-bar bridge across the East River has probably received it s quietus. In its stead, plans for a wire-cable sus. pension bridge have been submitted to the Municipal Art Commission, which plans will probably be finally adopted. In the present article we shall dwell simply upon the architectural features of the new plans, leaving an engineering discussion of the bridge to a future issue.

It may be stated that structurally the new Manhattan Bridge is not very different from that which Mr. Lindenthal condemned. The stiffening truss, which has so successfully contributed to the monumental hideousness of the Williamsburg Bridge, will also be a feature of the Manhattan Bridge. It will be shallower than the Williamsburg truss, however, and architecturally less objectionable. In the original wire suspension plans, the cables passed under the stiffening truss, supporting the roadway and carrying it horizontally into a plain cubical mass of masonry, which constituted the anchorage. In the new bridge the cables will extend to the top chord of the stiffening truss and over the saddles on the anchorage. This new arrangement of cables has necessitated a redistribution of strains, and a modification of some structural details.
Architecturally considered, it must be confessed that the plans for the new structure are pleasing enough. The lifting of the cables above the truss has undoubtedly added to the beauty of the structure. The architects have devoted most attention to the anchorages. On either side of the footways peristyle courts are to be built, 120 feet above the water level. The anchorages, with their area of 225 feet in length by 175 in width, certainly lend themselves well to such treatment. An attempt has been made to utilize the masonry supports for the anchorage saddles by combining them with a colonnade. One of the

Longitudinal Section of an Anchorage.

Side Elevation of a New Tower.

Front Elevation of a New Tower.
pavilions of the colonnade on either side of the anchorage will be provided with staircases connecting with the interior of the anchorage, and finally with the street. Such has been the treatment of the anchorage courts and the towers, that the bridge will afford ample accommodation for those who care to rest under cover and obtain a view of the beroughs of Manhattan and Brooklyn. The bridge, therefore, becomes something more than a means of communication between two great communities that flank the East River; it will become, in a word, a vast "recreation pier" in the hot weather.
Since the tower foundations have already been built, the main dimensions of the bridge will probably remain substantially what they were before Commissioner Lindenthal entered into offic . The clear span is fixed at 1,470 feet, with two identical shore spans, each 725 feet long. The width of the bridge will be 120 feet. Comparing this with the 84 feet width of the old Brooklyn Bridge, it becomes evident that ample provision has been made for traffic. Over the roadway an elevated railway is to be built. The central roadway will be 35 feet wide, and the footpaths each 10 feet wide. Between the roadway and footpaths on each side double trolley tracks will be built.
In striking contrast both to the old Brooklyn Bridge and the recently completed Williamsburg Bridge are the towers. These rise some 320 feet above the water level, and are extremely slender, almost delicately so, in form. They will be practically solid metal, and will be only 18 feet wide. The cuts show each tower to be an oblong frame of twin towers strongly braced, with a central arch not unlike that of the picturesque Brooklyn Bridge towers. The architects found the main lines of the cables and suspended trusses as designed by the engineers so graceful that further architectural treatment seemed to them unnecessary. Therefore the tops of the towers are ornamented simply with a cornice.

The Roadway Over the Anchorage, Showing the Colonnades.

the new manhattan wire-cable suspension bridge across the east river as it will appear when completed,

\section*{Electric Sterihzation of Milk.

by enue guabinl

by enue guabinl

The sterilization of milk is a problem that was once regarded as solved, but which is at present being earn estly discussed. The technical press has for several years been making public the profound transformations that heat brings about in the nutritive ingredients of milk. In order to sterilize milk, in fact, and guarantee its preservation almost indefinitely, it is necessary to prolong the action of fire for a considerable length of time. Ebullition of the liquid, however, even for a long time, does not by any means destroy all its germs, and, in practice, we are obliged to attain a temperature of 120 deg. C. (248 deg. F.) and continue the operation for 20 minutes in closed vessels. It is not astonishing that, through such a treatment, the milk should undergo a great modification. It is especially in infants that, through the gastric disorders that it occasions, we recognize the absence of digestive properties in milk thus treated. We remark, besides, in infants fed with sterilized milk, a tendency toward rachitis, due, it seems, to a want of phosphorus. The true cause of such anomalies has been found within the last few months. A very able chemist recently presented to the Academy of Sciences of Paris a highly interesting study of this subject based upon a long series of experiments. From this it results that in milk sterilized by the action of fire, lecythine, the valuable ingredient that furnishes the organism with the phosphorus necessary for its normal development, becomes transformed and ill adapted for absorption by the stomach, especially by that of infants. Although, on the one hand, hygienists wish to ostracize milk thus sterilized, the same disciples f_{f} Esculapius, on the other, put mothers on their guard against the germs of tuberculosis insidiously concealed in milk that has not passed through the sterilizing digester. The problem that therefore confronts us is this: how shall the microbes of milk be killed without altering the latter's composition? Some efforts have been made to solve this question, and in several different ways. Ozone has been employed at various times on account of its bactericidal properties; and trial has been made also of oxygenated water, which is quite a powerful disinfectant, but the practical results obtained do not seem sufficiently encouraging to warrant the use of this agent. In order to effect the destruction of the germs without carrying the action of fire too far, a partial saturation with oxygen has been tried. It is probable that in this direction the perseverance of experimenters will some day reach the solution of the important problem of milk sterilization. Driven to despair, and not knowing to what other saint to turn, an appeal has been made by some to electricity to perform for milk one of those numerous miracles that it alone can effect. The researches made up to the present day, especially in Italy, have not, however, given the results that were anticipated. Mr. Guarini and Dr. Samarini, nevertheless, have just solved the problem at Brussels after numerous and long researches. They have not only succeeded in sterilizing milk electrically, but have also explained why their predecessors were unable to obtain results reached by themselves. The alternating as well as the continuous current had been employed and it was concluded from the unsuccessful issue of the experiments that the problem could not be solved by electricity. Such was not the opinion of Messrs. Guarini and Samarini when they took up the question, since it was evident, a priori, that the investigators had not made their experiments with a sufficient knowledge of the phenomena invoked by them. In fact, for the experiments with a continuous current they had employed one generated by a few batteries or a high-tension one furnished by a static machine. If we consider that the deadly effects of the electric current are not produced by the tension, but by the intensity of the current, we shall see that the effects sought could be obtained in neither case. In the case of batteries the tension was too low to permit a current of sufficient intensity to traverse the milk, being given the great resistance of the latter. In the second case, the tension was sufficient, but the intensity was negligible, as it generally is in static machines. In order to verify the matter, Messrs. Guarini and Samarini, after trying the experiment again, with the same negative results, rendered it more striking by substituting fishes in water for the microbes in the milk, and found that the animals exhibited no uneasiness in the presence of the current. The experimenters then employed a continuous current up to 170 volts, and, with a quart of milk, raised the intensity to 5 amperes. By extracting some of the milk at a certain distance from the electrodes, by means of pipettes, it was found that it was perfectly sterilized and could be preserved. Unfortunately, however, the experimenters were confronted by another difficulty, and that was that the milk, beginning in the vicinity of the electrodes, became coagulated. Upon employing fishes in water, the animals were of course perfectly electrocuted. Upon employing special electrodes with a current of water, the coagulation was much diminished and almost imperceptible. The experimenters nevertheless abandoned the continuous for
the alternating current. In the first place they repeated the experiment of their predecessors, employing the Ruhmkorff coil. The milk was not sterilized, and the fishes, moreover, experienced but a slight shock. Messrs. Guarini and Samarini then had recourse to a 110 -volt alternating current, with carbon electrodes. The milk alternating current, with carbon electrodes. The milk
was perfectly sterilized when the density of the current was adequate and was not coagulated when the frequency of the current was sufficiently elevated. It might be thought that it would prove advantageous to add to the milk certain substances of a nature to render it more conductive; but the experimenters found that such was not at all the case, and that in such an event it became necessary to employ a much stronger current. They made this fact evident by electrically treating some fishes in fresh and salt water. In the second case it required a much greater intensity to kill the animals than it did in the first, because the greater part of the current went through the water and not through the body of the living organism.
It may be concluded from these very interesting experiments that, in order to effect an electric sterilization of milk, the three following conditions must be realized: (1) The milk must be traversed by an alternating current of sufficient frequency to prevent the decomposition of the liquid; (2) the density of the current must be sufficient to electrocute the microbes; (3) the alternating current must be of a sufficiently high tension to overcome the somewhat high resistance of the milk. If we have only an alternating current of low tension at our disposal, we might at a pinch add a salt or an acid to the milk in order to render it more conductive. In this case there would be required a much greater current intensity and substances capable much greater current intensity and substances capable
of being subsequently eliminated without altering the quality of the milk.
As for the practical application of the process, the apparatus for that is very simple, and consists of a well insulated receptacle and two electrodes, say of platinized carbon. Two factors evidently intervenethe duration of the treatment and the intensity of the current. Since the use of electricity is daily becoming more general, it may be that the process will be adopted to a certain extent, since it gives absolutely sterilized and in no wise altered milk.

bout a Baseball's Curves

by richare meade bache.
It is now thirty-three years since the question arose at Yale University as to whether or not a baseball thrown from the hand could be made to deviate horizontally from a straight line. The experiment was then and there tried, proving that the flight of a ball could be made to curve to the right or to the left by skillful pitching. This was accomplished by the simple expedient of placing a plank upright on the ground and, from a point at right angles to the middle of one of its broad sides, twirling a ball to a point back of the center of the plank. Since then, it is accepted as fact by all baseball players, that the flight of a ball can also, under fine handling, be made to incurve abnormally downward or upward with reference to its landing place; that is, either in the direction of, or ontrary to, the attraction of gravitation.
The period mentioned was in the infancy of skilled baseball playing. Since then, a generation of players of the game has grown up, and the constant repetition of the phenomenon mentioned has become so engrafted with common experience, that few persons conversant with the game ever think that it needs explanation. with the game ever think that it needs explanation.
The character of the pitch, whatever it may be, seems just as natural to them as that of the slight vertical curve of the ball when compounded simply of the forces of its projection and the attraction of gravitation. To so feel about the abnormal curved courses of the ball is, however, only a habit of mind, habitual experience of any kind of action mostly assuming, without appreciating, the reason for things. The average baseball player accounts for the phenomenon by saying that it is caused by the pitcher's giving the ball a twist as it leaves his hand. But that statement does not account for its being thereby compelled to move in an eccentric orbit.
If, in a calm, one lets fall a feather, one sees that it descends slowly and with deviation from the vertical. But, let him cause a feather to fall from the top of the inside of the exhausted glass receiver of an air pump, and he will see that it falls plumb, like a shot. A body projected in space would proceed forever at the same rate, and in a straight line, were not space full of bodies that would attract it. This is one of Sir Isaac Newton's laws of motion. Resistance of some kind is, in a word, indispensable to making a moving body deviate from the particular speed and course impressed upon it by its original projectile force and by the attraction of gravitation.
It is, therefore, the resistance of the atmosphere, as well as the forces of projection and rotation of the baseball, which makes the ball describe a curve to the right, to the left, upward, or downward. The righthanded pitcher delivers his "outshoot" with much
greater effect of incurve at the plate than he can accomplish with his "inshoot." 'The left-handed pitcher, in a reversed position, but correspondingly, delivers his "outshoot" more effectively than his "inshoot." The reason is that although, in each case, the speed of the ball for "outshoot" and "inshoot" is the same, the seed of its rotation is very different. The centrifugal rotary force impressed by the pitcher upon the ball, opposed by the friction of the atmosphere, packed by the ball's rapid duplex movement, being weaker in the "inshoot" than in the "outshoot," permits of less curvature there in the ball's flight than is possible in the "outshoot." In all cases, the ball makes its incurve at the plate, whether horizontally, from right or left, or vertically, from above or below, because friction of the atmosphere, compressed by the ball's combined velocity and speed of rotation, retards and finally exhausts its movement of rotation at the end of its flight. The two movements of the ball, and the resistance of the atmosphere, forming together three compounded forces, compel the flight of the ball to assume the form of a curve. As the ball leaves the hand of the pitcher, it whirls onward until, the quickness of its rotation being diminished by friction on its surface from the atmosphere, and thereby weakened, it curves either upward, inward, or from right or left with reference to the "plate" of the baseball field.
Anyone should be able to realize the truth of this demonstration of the principle through which the course of balls can be curved, if one has ever realized the density of the atmosphere, and the fact that it is a compressible, elastic gas. These properties of the atmosphere make of it, under the circumstances described, a continuous elastic cushion upon which the rotating ball impinges, and by the intervention of whose moderate resistance the course of the ball is modified in direction. The average pressure of the atmosphere, at the level of the sea, to the square inch of the earth's surface, is 14.7304 pounds, commonly called, in round numbers, 15 pounds. The average barometric height is about 30 inches at the level of the sea; but it is only 24.75 inches in height at Denver, Colorado, a difference in height between the two situations corresponding to a difference in weight of atmosphere of over two and a half pounds out of nearly fifteen. Yet it has been lately stated, that batting averages at Denver are the same as those on the eastern coast of the United States. However that may be (and it seems utterly irreconcilable with what has been shown here), there must be, in so rare an atmosphere as that of Denver, compared with that of the eastern coast of the United States, less possible curvature to the flight of balls than is common to pitching them in the latter region.

The main fact here elaborated as to cause may be concisely stated in language not forbiddingly scientific. The "upshoot," "downshoot," and right and left "outshoot" and "inshoot" of the baseball, thrown by pitcher to "plate" of baseball field, represent, through their various incurves at the "plate," resultants corresponding with the compounded forces of the projection of the ball, its rotation in varying positions of its axis of revolution, and the resistance due to the density of the atmosphere; the last factor being known as vis inertic, the force of inertness, which involves resistance to motion, and which is therefore truly regarded as a species of force.

Remarkable Phenomenon of Crystallization. A curious phenomenon was observed lately by Prof. Stanislas Meunier, of the Paris University. He found that a certain number of plaster balls, left to dry after a short immersion in salt water, became entirely transformed into a conglomeration of gypsum crystals, and some of the latter reached 1-5 of an inch in length. In an account of this phenomenon which he gave to the Academie des Sciences, he states that although the balls of plaster had been formed under quite similar conditions and even used in the same experiments, they were far from showing the same crystalline appearance. In some of them a glass was needed to see the crystals, while in others they could be distinguished with the naked eye and were from 0.2 to 0.25 inch long. Some of the specimens showed a radial arrangement of the crystals which is not seen in the natural plaster stone. The crystalline structure varies with the distance from the surface in the same ball. It is scarcely noticeable on the surface, and the ball must be broken in order to observe it. When broken in halves, the crystallization is more strongly marked near the center than in the outer parts. At the periphery there is a compact coating or skin about 1-30 inch thick. Starting from this, the mass assumes the character of an irregular assemblage of crystals, more or less coherent, which often fall apart at the least shock. As to the cause of this remarkable phenomenon, it seems that the salt which was used to impregnate the plaster must have a kind of crystallogenic faculty, acting as it does to bring about the formaticin of crystals. If this is so, it is one step toward explaining the causes which bring the gypsum in the earth's strata into the crystalline state.

Coxiextuandente.

Paper-Lined Tin Cans.

To the Editor of the SCIENTIFIC AMERAN in your issue of July 2 an English invention for lining tin food cans with paper parchment. tion for lining tin food cans with paper parchment.
I would suggest that instead of lining the finished cans, the sheets be covered before making up. There is also a great field for capital in making long strips or coils of tin, paper-coated, of suitable width for the body of the cans, thus saving cost both in the first manufacture of the tin and also in the better adaptation of long coils to the use of automatic machinery for making the cans. Geqge D. Clark.
Plainville, Conn., July 4, 1904.

Halter Embedded in Horse's Skull.

To the Editor of the Scientific American
I am familiar with the photograph of horse's skull published in last week's issue.

The skull is of a three-year-old colt, and it was found in the bush at a place called Swan Hill, distant $2141 / 2$ miles from Melbourne, or 114 from Bendigo. It was found in this condition some thirty years ago, and was given me three years since by the person who found it.

There appear no facts beyond what the skull itself and equine pathology teach us, i. e., when the periosteum of this species is injured, a deposition of bone is thrown out-Nature's endeavor to strengthen and assist the part-which becoming ossified, gives rise to many external blemishes.
This has assuredly taken place. The skull still growing, and the rope probably contracting at the same time, then the rotary movement of the jaws during mastication caused this irritation to the periosteum, and hence in time brought about the condition seen in the photograph. The animal probably died of starvation.

It is by no means a made-up specimen; and has been examined by many veterinary surgeons of this State, and all the medical men of this city, who one and all agree that it is the most wonderful specimen they have yet seen.
Bendigo, Australia.
Discovery of One Hundred and Fifty-two New
Variable Stars in the Large Magellanic Cloud. careful study, on account of the extraordinary physical conditions which prevail in them. They have not, however, heretofore been known as regions in which variable stars are numerous. The discovery of a large number of variable stars in the Small Magellanic Cloud led to an examination by Miss Leavitt of the Large Cloud, although a detailed examination of the region immediately surrounding N. G. C. 2070, the Looped Nebula, had already been made, with negative results. Over one hundred variable stars have thus been found. Twenty-one plates, taken with the Bruce 24 -inch telescope and having exposures of from one to five hours, were used. A series of six of these, taken within ten days of each other, has made it possible to derive some inferences as to the periods.

The variability of all of these stars has been confirmed either by Mrs. Fleming or by Miss Leland. It is probable that the range will be increased when a photometric scale is substituted for that here used. Many of the faint stars in the Large Magellanic Cloud show slight fluctuations in brightness. This renders it probable that many more variables may be discovered from an examination of later plates.
Preparations are being made for determining the precise positions, periods, and light curves of all of these variables.
The total number of variables found in nebulous regions by Miss Leavitt is at least 277. It is a : 2 markable illustration of the results to be expected from a systematic study of the Harvard Library of Astronomical Photographs. Durin 1903 , a grant from the Carnegie Institution permitted a corps of eight or more observers to carry on such investigations. Since then this corps has been disbanded, and the means of the Observatory have permitted but one observer to be employed on similar work, with the results here shown.

Edward C. Pickering.
Harvard College Observatory.

Whe Current Supplement.

The current Supplement, No. 1489, opens with an account of the giant 5,000 -horse-pover engine and dynamo furnishing the lighting current for the Louisiana Purchase Exposition. An excellent picture accompanies the text. The Paris correspondent of the Scientific American tells much that is interesting of the house of the Vetii, a Pompeian villa that has been the subject of considerable archeological discussion. Mr. H. G. Wells' article on the "Discovery of the Future" is concluded. Mr. Charles A. Stevenson describes the making of leather from alligator skins. Some excellent formulas for varnishes are given. An illustrated description of storage battery locomotives
for shop transportation is published. Dr. L. Brandt writes interestingly on the sensitiveness of chemical reactions.

Engineering Notes.
The project of digging under the English Channel has raised a storm of objection in Great Britain. Every time the scheme crops up, the same criticisms are leveled at it. Mathieu's proposal made in 1802, which received parliamentary sanction both in France and in England, came nearest to realization. The plan has again been proposed, and seems no nearer realization than before. M. Peltereau in an elaborate report shows how commercially advantageous it would be to England and to France. Englishmen, however, have received the French advances with anything but cordiality. Admitting the economic advantages which would result, and the comparative ease with which modern engineers could build the tunnel, they deplore the moral effect on the British nation, whatever that moral effect may be. Fears are expressed that a powerful army would steal through the tunnel, and invade England with the utmost ease. The absurdity of the objection hardly deserves comment.
According to the Elektrotechnische Rundschau, a new process for utilizing exhaust steam to produce power in low pressure steam turbines has been developed in Germany. The device is especially intended for utilizing the exhaust from intermittently working mining engines. While an ordinary condensation in most of these engines will have but a very slight effect (the vacuum in the cylinders being negligible, and considerable condensation losses being caused by a high cooling of the steam cylinder during stoppages), the new outfit will permit the use of the exhaust from these machines so as to secure higher economy than can be obtained, for instance, in the case of a high-class triple-expansion engine. From the exhaust steam from a hauling engine 500 , and from that from a reversing machine 1,000 , electric horse-power may be generated. Moreover, the first cost is much lower than in a high-tension steam plant of the same output, while there are no expenses for operation worth mentioning. The principle of the process consists in storing the exhaust steam issuing in variable amounts from the intermittently working engines in an exhaust steam accumulator and of transmitting the stored steam in a uniform manner to a low-tension turbine. The latter, after receiving the steam as a rule at atmospheric tension, will give it off again at the condenser tension. In the accumulator the exhaust steam has a pressure by 0.15 to 0.3 atmospheres higher, the pressure varying within these low limits with the charging and discharging of the apparatus.
In the case of an amount of heat, \boldsymbol{Q}, per hour traversing a wall, there must be, as is well known, a certain temperature gradient. Considering a portion of the boiler heating surface, the side of the sheet metal turned toward the water will take the temperature, t, and the side turned toward the fire the higher temperature, t_{1}. In the case, however, of any portion of the water side of the plate being coated with boiler scale, there is an obstacle to the heat being drawn off, so that the fire side of the plate will have to assume a higher temperature, T, in order to be traversed by the same quantity of heat. The temperature gradient trus increases from $t_{1}-t$ to $T-t$, when a "stagnation of heat" takes place beneath the boiler scale coating. This phenomenon, the name of which does not seem to be well chosen, plays an important part in connection with boiler explosions. According to Austin's researches, a discontinuity in the behavior of the temperature will occur in similar cases, the water side of the sheet metal wall having a temperature superior by some degrees to the immediately adjoining water layer. The experiments carried out by the Physikalische Reichsanstalt have shown this sudden fall of temperature to be smaller in the case of the water being stirred up violently, as compared with the case of calm water. According to Volk, in a paper recently read before the Cologne section of the Verein Deutscher Ingenieure, this accounts for the so-called ebullition delay, which formerly was resorted to for explaining the occurrence of explosions produced on heating. In fact, as soon as the valve is opened, a veating. In fact, as soon as the valve is opened, a water being stirred up and the fall in temperature water being stirred up and the fall in temperature
becoming less, and as the wall thus is hotter than necessary, the surplus heat is set free suddenly. According to Mr. Ernst, about 2,000 heat units would traverse each hour a plate of boiler scale 1 millimeter (. 039 inch) in thickness and 1 cubic millimeter in area with a temperature gradient of 1 deg., while an oil layer will lead 100 heat units under the same conditions, and a coating of ashes 65 heat units. When considering that in the same case 50,000 to 60,000 heat units will traverse the iron, it will be possible to ascertain the temperature limits in the passage of heat through the boil=" heating surfaces. This local superheating of the walls results in the firebox being put
to higher strains, while the influence exerted on the walls themselves is still more important, an altera. tion in the shape and a diminution in their resistability being produced. A similar superheating may be produced not only by deposits of scaie, but as well by the effect of the flame; moreover, the walls of the boiler will be prevented from cooling by adjoining masonry or by ashes, thus remaining at a much higher temperature than the surroundings.

Electrical Notes

The Schuckert \& Co. Electric Company, of Nuremberg, made some time ago comparative tests of incandescent gas and electric arc lights, the results of which have just come to hand. These experiments, carried out by Dr. Lehmann Richter, gave the following results: The surface luminous intensity at the level of the eye proved fully satisfactory for both light sources, the arc light affording also a uniform distribution of light. In the case of the electric arc light, no noxious alteration of the air was noted, the temperature would not rise to any appreciable extent, nor would the percentage of carbonic acid be augmented. With incandescent gas light, on the other hand, the temperature at the level of the eye was found to rise by about 6 deg. C. in the course of three hours, while the percentage of carbonic acid was found to increase to more than five times the initial figure. As regards the cost of operation of both classes of light, this proved somewhat smaller in the beginning with the Auer light, whereas, after a short time, the figure corresponding to the cost of operation of the arc light was reached, even without taking the lighting flame into account. When accounting for the lighting flame, on the other hand, the cost of the Auer light would be much higher than that of the electric arc light.

In a recent issue of La Energía Eléctrica, Madrid, Mr. G. J. de Guillén Garcia records some interesting experiments made by him in conjunction with his son. In connection with some wireless telegraphic researches, the younger Garcia happened to note that in the telephone of the Tommasi coherer located at the receiving station, there was a difference in sound varying according to the air gap in the interrupter of the Ruhmkorff apparatus. This suggested the idea that a similar apparatus would be susceptible of transmitting the human voice to a distance without wires. The author was eventually enabled through the courtesy of Prof. Marcel, of the Barcelona Seminary, to carry out his idea. The experimental apparatus is rather simple. At the transmitting station there is a Ruhmkorff apparatus 3 centimeters in spark length, as well as the necessary oscillator, a small antenna, and a grounded conductor. Between the transformer (i. e., the Ruhmkorff coil) and a small battery of Grenet cells, is a special microphone, acting both as manipulator and as interrupter. The automatic interrupter of the induction coil is stopped, while the condenser is used for enforcing the oscillator spark. At the receiving station is a Tommasi coherer, connected with the receiving antenna and the grounded conductor. In a telephone receiver, the noise produced by the Hertzian waves on traversing the coherer is noted. On bringing the mouth to the microphone and singing or speaking, every sound vibration will be attended by an interruption in the passage of the electric current through the primary circuit of the transformer, the number of sparks in the oscillator thus being varied. The underlying principle shows therefore some analogy with the mechanism of an ordinary telephone. Any results so far obtained in the reproduction of singing are said to be quite satisfactory, whereas the rendering of language leaves much to be desired. The defect seems to be the difficulty of designing a microphone of sufficient intensity; Mr. Garcia, it is true, has remedied the imperfections of his apparatus to a certain extent, by using a condenser and augmenting the potential difference; this, however, could not be driven because electric arcs were easily formed.

An interesting lecture was recently delivered in Londion by J. M. Bacen, the aeronaut, upon the subject of photographing from a balloon. There is great uncertainty about obtaming good photographs from a balloon, on account of the atmospheric influences. Even on a clear day, when the sun during the ascent is shining, definition gradually becomes blurred, until at a height of 4,000 feet photography becomes impossible, owing to the dust motes that reflect the simlight. Warm and cold air currents coming in contact with one another give rise to conditions that prevent photographv, but over water sharp definition is generally possible, owing to the moisture in the air. Some of the most striking resuits have been obtained on a dismal. rainy day, when leaving the earth and passing through the clouds into genial weather above, while the cloud masses below were brilliantly illuminated by the sun. An ascent from Clifton on the occasion of the meeting of the British Association produced some exceptionally beautiful photographs, that were obtained toward sunset.

THE NEW WHITE STAR LINER "BALTIC"-THE LARGEST VESSEL IN THE WORLD.
by the english corresponpent of the scientific ameilican.
The success of the "Oceanic" showed that the most remunerative type of craft for the transatlantic trafic is the vessel of a medium speed, maintained under all varying conditions, but of a tremendous tonnage. Although speed may be an important desideratum from one point of view, such a qualification is in reality only appealing to a limited quota of passengers, the bulk of travelers preferring greater comfort and stead iness of the vessel, especially in rough weather. Each of the two vessels built after the "Oceanic" has marked an increase in size and tonnage upon its predecessor.
The latest liner, the "Baltic," surpasses in size any thing that has thus far been attempted, though it is by no means the finite, for Messrs. Harland \& Wolff have declared their readiness to build a. vessel of 50,000 tons. The realization of such a vessel is dependent upon the capacity of a dock to accommodate it.
The length of the "Baltic" over all is 725 feet 9 inches. This is an increase upon the length of the
and the two houses below contain the deck staterooms. All the first-class accommodation is situated amidships. One of the most notable features in the "Baltic" is the grand dining saloon situated on the upper deck. It extends the full width of the ship, 75 feet, is exceptionally lofty and airy, and has seating accommodation for 350 people. It has a domed skylight, and the decorations are most artistically and effectively carried out.

Immediately abaft the first-class is the second-class accommodation, together with a comfortable smokeroom and library.

The third-class passengers are provided for abaft the second-class, and to a limited extent at the fore end of the vessel. A great feature in this accommodation is the large number of staterooms two, three, and four-berth, and the commodious and comfortable dining rooms, fitted with tables and revolving chairs. The maximum of safety is secured by the exceptional strength and structure of the vessel, together with the elaborate system of watertight compartments. One very important safety device which is the first instance

The cooking and refrigerators are also electrically operated, by which provision greater cleanliness and coolness are obtained. The odors of the cooking galley are withdrawn by means of electric fans and carried through pipes and exhausted into the open air at the stern of the vessel. The machines for the refrigerating chambers are worked upon the $\mathrm{C} \mathrm{O}_{2}$ principle. The whole of this plant is electrically operated, thereby obtaining an appreciable economy in ice storage, as the vessel will be able to leave port with a smaller supply of ice than is feasible upon other vessels fitted with existing systems.
The private staterooms are equipped with electric chafing dishes, warming pans, and other utensils, which the passengers can immediately use whenever desired, an innovation which will doubtless be highly appreciated.
The vessel is not speedy. In the case of the "Oceanic" a speed of 20 knots can be maintained, but in the subsequent vessels this was reduced to about $161 / 2$ knots. The "Baltic" will approximate the same speed, with a great reserve of power, to enable this

In the Library.

The Four Decks of the "Baltic."

Length, 725 feet, 9 inches. Beam, 75 feet. Maximum Displacement, 40,000 tons.
THE NEW TRANSATLANTIC STEAMSHIP "BALTIC," THE LARGEST VESSEL AFLOAT.
"Celtic" and "Cedric" of 25 feet. The beam is the same, being 75 feet; the depth, 49 feet. The gross tonnage is 23,000 tons, an increase of about 3,000 tons. The cargo capacity is about 28,000 tons, and the total displacement at the load draft approximates 40,000 tons.
Although the two sister ships are practically of re cent construction, yet so rapid is the progress of development in shipbuilding design and construction that this latest vessel contains several interesting improvements, possible of embodiment owing to the immense size of the boat.
The same standard of luxury and comfort in the accommodation and appointments for the convenience of the passengers so characteristic in the previous ships is maintained, ut the accommodation is more commodious. The total complement of passengers is 3,000 passengers, and a crew of about 350 . The gen eral arrangement of the ship is similar to the other two vessels of this type-a continuous shade deck running fore and aft, with three tiers of deckhouses and two promenade decks above same. On the upper prom enade deck is the first-class smokeroom and library,
of its application to a mercantile vessel is the electrical indicator, which is utilized in the British navy, for the prevention of collisions. This device is placed on the bridge. It indicates the exact position of any other vessel entering its magnetic zone. There is a dial carrying a needle on its face similar to a compass. Directly the other vessel enters the magnetic zone, the radius of which in this instance is five miles, the needle revolves and points directly toward it, thereby indicating its precise location. This apparatus is highly sensitive, and even the screw revolutions of the approaching vessel are registered by the wave vibrations. In this manner the officer on the bridge can estimate the exact time he is distant from the other vessel, and act accordingly so as to clear it. With this precautionary device it is absolutely impossible for another vessel to creep up even in foggy weather or under cover of darkness without the officer being aware of its approach.
Other important devices which tend to insure greater safety are the electrical lead and log. When in operation the speed of the ship and the depth of water are indicated at regular intervals of ten seconds.
rate of traveling to be maintained even under adverse conditions.
The "Baltic" is fitted with engines of Harland \& Wolff's quadruple-expansion type, developing about 13,000 I. H. P. The engines are arranged on the bal ance principle, which practically does away with all vibration. The twin engines and twin screws afford another element of safety to the ship and passengers, and the possibility of danger is reduced to a minimum.
The maiden trip of the "Baltic" was made without in cident. Her trip occupied 7 days, 13 hours and 37 min utes. She left Liverpool at 5 P. M. on June 29, and by $8: 21$ had passed Rock Light on her way to Queens. town. Her daily runs were: July 1, 312 knots; July 2, 395 knots; July 3,403 knots; July 4, 417 knots; July 5, 387 knots; July 6, 407 knots; July 7, 414 knots. The engines ran from seventy-eight to eighty revolutions a minute, while the forty-eight furnaces consumed only 235 tons of coal a day. The "Baltic's" best day's run was on July 4, when 417 knots were logged, and she maintained an average hourly speed of seventeen knots. Her average for the trip was 16.1

Part of the Colonnade and the Lateral Cascade.

The Festival Hall, the Colonnade of States, and the Cascades.

knots an hour. Her engine and fireroom force is corsparatively small-fourteen engineers, fifteen oilers, thirty-six firemen, twenty-six coal passers, two storekeepers, two stewards and one winchman making up the three watches.

CASCADES AND COLONNADE OF STATES AT THE EXPOSITION.

Compared with previous expositions, the present grounds at the St. Louis Fair are laid out on a scale of magnificence which renders them certainly the most imposing and beautiful architectural display ever made in an enterprise of this character. The architects took advantage of a dominating hill about 100 feet in height, which slopes gradually to the plain upon which the exhibition palaces are grouped, and placed upon the apex of this hill the leading architectural feature of the whole. The exhibit palaces are laid out on avenues which radiate from this common center, and upon the crest of the hill stands the central architectural building, the great Hall of Festivals, forming a center of a vast gently curving structure known as the Colonnade of States. The latter terminates at either end in circular pavilions, each 140 feet in height and corresponding somewhat in architectural treat ment to Festival Hall. The Colonnade itself, which is 52 feet in height and over a quarter of a mile in length, forms a vast arc of a circle along the brow of the hill, crowning the crest of a natural amphitheater that rises 70 feet above the surrounding country

At intervals along the Colonnade are mammoth allegorical statues, representing the fourteen States included in the Louisiana Purchase. The face of the hillside fronting the Industrial Palaces is laid out as a sloping lawn, which just now is blazing with a wealth of color, due to the wealth of bloom in the flower beds. From the front of the Festival Hall and of each pavilion flanking the Colonnade, there gushes forth the water of three large cascades. The central cascade starts with a width of 50 feet, and gradually broadens out to a width of 152 feet, where it takes its final plunge into the central cascade basin below. The total fall is 95 feet, and the length down the face of the falling water is about 300 feet. All three cascades converge to the central lagoon, and at night time, by the aid of colored electric lighting, a most beautiful and varied effect is produced. From an engineering standpoint the cascades are a truly notable performance, involving as they do the lifting of 90,000 gallons of water every minute to a height of 95 feet, the water circulating in this way from the lagoon to the summit of the cascades and back again. The pumping machinery is located beneath one of the side cascades, and the work is done by three large centrifugal pumps that are operated by induction motors, each of 2,000 horse-power capacity.
The lagoons from which the water is drawn hold about twenty-five million gallons, and when the pumps are running at the rate of 90,000 gal lons a minute, it takes about four and one-half hours to pass the entire water in the lagoon through the pumps. It is evident that such rapid handling of the water necessitated special provisions to prevent a vortex in the lagoon; and to overcome the difficulty, and to promote a general circulation of the water, the suction pipe leading to the pumps is carried some 500 feet down the main lagoon, and is so arranged that water can be drawn at will through screened openings dis. tributed throughout its entire length.
The great Hall of Festivals itself carries a dome 140 feet in diameter that rivals in size that of St. Peter's at Rome. Of course, in height it is considerably smaller than St. Peter's, which extends some 450 feet from the ground level, where as the height from the grand court to the top of the dome of Festival Hall is about 250 feet The diameter of the hall at its base is 192 feet, if we exclude the terrace upon which it stands. The whole building covers more than two acres, and it has accommodations for about 4,000 people.
As the building has a strictly festive purpose, the architect and the sculptor have aimed to render it joyous in its spirit and treatment; but above and beyond that, the entire composition of the Cascades, the Colonnade, and Festival Hall has been given an historic as well as an allegorical significance, expressive of the jubilation which a great nation must naturally feel that the sway of liberty was extended by the Louisiana Purchase from the Atlantic to the Pacific. This idea is strongly brought out in the sculptural decorations. Around the central cascades stair ways descend on both sides, and swing away in opposite directions to the Basin below. The side cascades represent in their treatment the Spirit of the Atlantic and the Spirit of the Pacific. Each is 400 feet in length, and the scheme includes fifteen groups of sta-
tuary for each side. At the head of each cascade and in front of the pavilions are groups which the sculptor has named respectively "Spirit of the Atlantic" and "Spirit of the Pacific," the Atlantic Ocean being symbolized by the figure of a vigorous youth at whose feet soars an eagle, typifying the restless and turbulent character of the Atlantic, while beneath are groups of children and forms of sea lions. A graceful girl reclining above a sea gull, a grizzled sea god, and other allegorical expressions are scattered throughout the length of this cascade.

The fountain for the opposite cascade is surmounted by a flying female figure with an albatross, and var-

LENSLESS PHOTOGRAPHY.

by n. r. briees.

The taking of a photograph, and a good one, too, with a camera without a lens, may seem to many utterly incredulous. Nevertheless, it is done, and this innovation in photography has become an interesting feature with many lovers of the photographic art. A piece of tinfoil, through which was pierced a fine needle hole, to serve the purpose of a lens in admitting light to the sensitive plate, was secure to the front piece of the camera, in place of a lens, and the exposure made in the regular manner. Pictures thus made are now popularly known as pinhole photographs. The pictures, however, were not wholly satisfactory, owing to the difficulty of getting a perfectly round and smooth hole through this soft, flexible metal, 1 or in this lay the main principle of success. But this has led to the bringing out of a new invention called the "radioscope," which consists of a very thin piece of hammered brass plate, through which is bored an accur ately round and smooth hole, and so mounted that it can be quickly adjusted to any camera, or any light-tight box that fancy may dictate.
The accompanying illustration is from a reproduction of a pinhole photograph of a scene in Central Park, taken for the writer by Mr Charles G. Willoughby, of New York.

As will be observed, there is a lack of that extreme sharpness produced by a regular photographic lens; but, as has been wisely said, this is more than compensated for by a softness of tone equaled only by the brush of an artist.
The interest manifested in this new objective is due to the fact that it is of universal focus -the rays focusing in the stop; the perspective is true, no part of the picture being out of focus, while interior and architectural photographs are rectilinear, that is, without distortion of any kind, for the rays of light fall directly upon the plate without interference of any kind.
Nor is the work of the pinhole objective confined to any one subject, for with it most pleasing portraits can be made. And it is said that work requiring the sharpest definition, such as copies, reproductions of documents, etc., can be often better done by the pinhole objective than it can with a fine lens. The reason is obvious. A lens focuses often sharper than the eye, giving a staring, unnatural effect to the resulting eye, gi
print.
Another singular feature in connection with the pinhole objective is that any size camera may be used. For instance, it will take a picture upon a plate three inches long or twenty inches long. Therefore, it will be seen that all one has to do is to arrange his camera for a small or large plate, and with the latter, interesting panoramic views could be secured. There is no doubt that a very cheap and satisfactory folding camera, in which to use any of the present series of roll films, could be made for special panoramic work.
Of course, it should be understood that, owing to the small amount of light admitted through a pinhole objective, the time of exposure will nat urally be longer than with a lens; and while it is possible to overexpose, there is less liability than with a lers.

Smoke as a Preventive of Frost.

M. Bignon has recently addressed to the French National Society of Agriculture a note giving interesting information on the efficacy of artificial clouds in preventing late frosts. For many years he has successfully practised this. His vineyard thus protected covers about 15 acres and is divided into five parts, separated from east to west by walks 12 to 15 feet wide and circled by an avenue of equal width. These walks facilitate the placing of the fires, which are built in a small basin sunk into the earth and filled with 15 or 20 pounds of resinous matter and some pieces of pine and other vegetable débris. The basins are some 50 feet apart.
In 1903 the frosts were very heavy for a week, and recourse was had four times to artificial fires. The total expense was $\$ 400$. The effect is stated as having preserved 25 per cent of the harvest, or some 125 to 150 barrels of wine.
It is stated that any substance can be burnt which gives a thick and abundant smoke, such as green herbs, moss, damp straw, tufts of grass, etc., but best results have been obtained in France by the heavy oils which are the residues of gas.

Every Danish state locomotive that has gone for some years past into the shops for repairs has had its wheel peripheries gaged, and, besides less wear with large wheels, it is found that single drivers run better than four-coupled, and four than six-coupled, where the road is the same, and that, in each class, where the road is more flimsv, the wear is greater.

Patent Department

the new australian patent act
On the inauguration of the Commonwealth of Australia on the 1st of January, 1901, inventors and their representatives looked forward to an early change in the patent practice of that British co'nny. Under the laws then in force, it was necessary to secure separate patents in each of the seven Australian colonies in which the inventor was desirous of protecting his invention, but when it was known that the confederation of six of the colonies was an accomplished fact, it seemed that it would be but a short time before the patent laws would be amended and an inventor would be enabled to protect his invention in the several states forming the new colony, under a patent granted on a single application, with the payment of only one government fee. But in that, interested persons were mistaken, for time passed and the question of the passage of a new law received little, if any, attention of the Australian legislators, whose time was much occupied with the consideration of other questions which the general changes in the administrative departments made of prime importance.
The new law after receiving the consideration of the legislators for several months was not passed until October 22, 1903, and it was even then provided that the law would not go into effect until it was subsequently proclaimed. At last the new law has been proclaimed, and the new provisions are now in full force. With the exception of New Zealand, the commonwealth includes all the Australian colonies, including Tasmania.
While under the law it remains for the commissioner of patents to define the section referring to the novelty of invention, it is thought that from the other sections and the general provisions of the patent laws of Great Britain and its colonies, the commissioner will, without doubt, rule that patent applications should be filed before the invention is publicly known in the commonwealth, either by the publication of the invention in public print or the public use of the new device. As the United States Patent Office Gazette is sent to Australia, and as most inventions are fully disclosed in the claims and drawings which appear in the Gazette, inventors should not delay their Australian applications, but should file them before the issue of the United States patent. Applications will be examined to ascertain whether the inventions are novel in Australia.
There is no requirement that the patented invention be manufactured, but if the patentee fails to supply the reasonable requirements of the public, he may, after two years from the granting of the patent, be compelled to grant licenses to others for a reasonable consideration.
Patents previously granted under the Australian state patent acts remain in force for their full time, and, under the commonwealth act, they may be extended throughout the commonwealth, provided action is taken before the invention is publicly known in the states other than the one in which the patent was granted. Inventors who have secured patents under the old laws and who desire to extend them under the new law, should proceed with their commonwealth applications without loss of time.
Provision has meen made for the Australian commonwealth to join the International Convention for the Protection of Industrial Property, but until it is so ordered by the King of Great Britain, through an order in council, inventors will be unable to claim in Australia protection under the provisions of that treaty.
Instead of annual taxes, the new law makes it necessary to pay after the issue, and during the life of the patent, only one tax of $£ 5$, which becomes due before the expiration of the seventh year of the patent term of fourteen years.

Every patented article sold in Australia under a patent granted in that country should be marked with the wor "Patented," together with the number of the patent and the day and year it was granted. Failure to so mark the patented goods may prevent the patentee from recovering damages for the infringement of the patent.

Henry C. Peabody, the inventor of the rifle bearing his name, who died a short time ago, left an estate valued at $\$ 375,000$ which, by the terms of his will, was left for the founding of the Peabody Industrial School for Girls.

We illustrate herewith a novel type of voting ma chine, invented by Mr. Andrew H. Hart, of Winchester, Ky. This machine is designed to carry a bust or photograph of each candidate to be voted for, so that

a novel type of voting machine.

the voter may be given some idea of the man for whom he is voting. Our illustration shows the voting machine as arranged for only two tickets of six candidates each, but it will be evident that a machine could be built on the same principle for recording the votes on any desired number of candidates and any number of tickets. The machine consists of a casing inclos-

diagram showing two positions of windmill.

a compensating windmill
ing two groups of roils, one for each icket, and arranged one in advance of the other. These groups consist of pairs of rolls, one pair for each candidate. Coiled on the forward roll of each pair is a tape which is printed with consecutive numbers. This tape passes under a glass-covered opening in the casing, and thence to the second roll, on which it is wound up. The flanges of the latter roll are formed with ratchet teeth which are engaged by a dog carried by a movable slide in the top of the casing. This slide is formed with a pin which is adapted to be engaged by the lower arm of a bell crank loosely mounted on a transverse shaft at the top of the casing. This bell crank may be moved laterally on this shaft to engage any one of the pins desired, and then when drawn forward to the dotted position shown, it moves back the slide which is engaged, rotating the ratchet one notch, thus bringing the next consecutive number into line with the glass-covered opening in the casing. The slide carries a spring latch which locks the parts against further movement. The portraits of candidates are mounted on hinged blocks, which are tipped forward as they are voted for by bars attached to the slides and engaging the lower edges of the blocks. To prevent a voter from casting votes for two candidates for the same office, the portrait blocks of rival candidates are connected by rods in such manner that when one is tipped forward, the other one will be also tipped. Each block is provided with a projecting finger which, when the block is tipped, engages the end of the bar on the slide and prevents the latter from being advanced to move the numbered tape. Thus when one candidate is voted for, no vote can be cast for the rival candidate for that same office. After the voter leaves the voting booth, an official turns a rock-shaft which releases all the latches and brings the parts to normal position. In order to compensate for the gradually increasing diameter of the tape on the take-up roll, the numbers are spaced gradually further apart, so that they will always register accurately with the glass-covered opening in the casing. If desired, a record of the number and names of the voters may be kept by requiring each one on entering the booth to write his name on a slip of paper and put it in a chamber in the machine through the slot shown in our illustration.

a compensating windmill.

Inventors have been endeavoring for some time to invent a windmill of such construction, that no matter how great the velocity of the wind, the power transmitted would be practically constant, or not above a predetermined limit. Many such constructions have been patented, but in the majority of cases they have proved impracticable when put to an actual test. In the accompanying engraving we show a construction which gives every promise of success, and which, moreover, is very ingeniously contrived. This windmill is so designed that as the strength of the wind increases, the windwheels will be tilted upward, as indicated by dotted lines in our diagram, so that the force of the wind upon them will be modified. The windmill is preferably made with two windwheels, whose sails are oppositely inclined, so that they will rot tate in opposite directions, and thus tend to balance each other. The inner wind wheel is secured to a hollow shaft, through which the shaft of the outer wheel passes. These shafts are mounted in a bracket, which has a universal joint connection with the windmill standard, and the weight of the wind wheels is balanced by an adjustable counterweight. At their inner ends the shafts carry bevel gears which, through the medium of a pair of idlers on the horizontal hinge pin of the windwheel bracket, transmit power to a pair of concentric bevel gears turning on a vertical axis. The outer one of these gear wheels is mounted on a hollow shaft which, at its lower end, carries a bevel gear engaging the upper teeth of the gear wheel on the power shaft of the windmill. The lower teeth of the power wheel are engaged by a bevel gear, secured to a shaft, which passes through the center of the hollow shaft, and carries at its upper end the inner bevel gear wheel of the concentric pair. As a result of this arrangement both wind wheels, though turning in opposite direr. tions, act together to drive the power shaft in the same direction. The vane of the windmill consists of alade or sail, which lies at. jacent to and below the level of the wint. wheels, and occupies a plane normally trans verse to the direction of the wind. As th? velocity of the wind increases, the pressur 3 against this blade causes the windwheels to rise, so that they will rotate at an acute angle with the direction of the wind, thus modifying the force of the wind upon them. It will be obvious that any increase in the velocity of the wind will be compensated by an increase in the angle between the axis of the
windwheels and the direction of the wind. Mr. Alfred Fornander, 32 West 66th Street, New York city, is the patentee of this novel windmill. He is an inventor of some note, having devised a number of machines and articles, among them tapestry-yarn printing machinery and the "perpetual" pencil. His present invention certainly seems a marked advance on the windmill with which most of us are iamiliar.

IMPROVED GAGE

The gage which is illustrated in the accompanying engraving is capable of quite a variety of uses. It

IMPROVED GAGE.

may be used either as a single-tooth gage for marking or as a double-tooth gage for mortising work, as a cutter for forming dovetails and deep cuts, or as a stop on auger bits to limit the depth of holes. As indicated in Fig. 1, the device comprises a bar which is I-shaped in cross section, and is graduated along the edge. Resting on the web of the bar is a slide, which is loosely held in place by a screw threaded therein, and passing through a central slot formed in the web. This is il lustrated in Fig. 2, which shows the underside of the device. A cutter is fastened to one end of the gage har. This cutter is provided at its opposite end with a scratch pin. A scratch pin is also secured to the adjacent end of the slide, for making parallel scratch lines for mortising work. The space between the scratch pins can be regulated by moving the slide to any desired position. The slide when thus adjusted is held by a clamping head adapted to abut against the side of the work when using the tool as a marking gage. The clamping head consists of two trans-versely-extending jaws, held together at their outer ends, against the tension of two coil springs, by means of thumb screws. When the clamp is to be used on an auger bit, the gage bar is dispensed with, and merely the clamping head is used. The latter is secured to the bit by means of two braces, one on each jaw, which engage opposite sides of the auger at its middle portion. A stop piece secured to one of the jaws serves to limit the inward movement of the auger after the hole has been drilled to a predetermined depth. Mr. Gcorge Arnold, of 7002 St. Lawrence Avenue, Chicago, I11., is the inventor of this improved gage.

HOSE OR PIPE COUPLING.

A novel hose or pipe coupling, which has been invented by Mr. S. N. Vernon, of Sonora, Ohio, is illus-

HOSE OR PIPE COUPLING.
trated herewith. The improved construction provides a very simple and convenient locking device, which will securely clamp the coupling sections together in a water-tight manner. The two coupling sections are made of metal, and are threaded at their outer ends to receive the hose or pipe. One of the sections, that shown at the right in the engraving, is cup-shaped at the inner end, to receive the neck formed on the inner
end of the other section. A packing ring is placed at the bottom of the cup, against which the sharpened edge of the neck section bears, and, similarly, a packing ring is placed at the base of the neck, to receive the sharpened edge of the cup section. Fulcrumed to the right-hand member is a locking link of general Ushaped formation, that is, it comprises two levers connected at their outer ends by a yoke band. A second, shorter member of similar formohas its two arms pivoted to the two arms of the locking link just back of the main fulcrum. The shorter member is formed with hooks on each arm adjacent to the yoke band, which are adapted to hook over two pins formed on the lefthand coupling section. To couple the two sections together, it is merely necessary to slip the neck of one into the cup of the other, bring the hook member into engagement with the pins, and then press down the locking link which, owing to the eccentric pivotal connection of the hook member with the locking link, will result in drawing the coupling sections tightly together and pressing their sharpened edges into the flexible packing rings, thus effecting a water-tight joint. In this position the coupling sections will be locked until the locking link is lifted again. Recesses are formed in the left-hand coupling section to receive the yokes of the two 11 -shaped levers

GRAIN LIFTER FOR HEADERS.

The improved grain lifter, illustrated herewith, is adapted for removable attachment to any header or like machine, and is especially designed for straightening individual stalks of the grain, so that the heads need not be lost in the cutting The device is not in tended for use upon grain lying flat upon the ground but particularly for use in connection with grain upon which the header can be readily worked, or grain in which the heads have sagged down for any cause, so as to be below the level of the platform of the machine when the platform is at its lowest point. The body of the device consists of a bar, preferably tubular, and a series of lifting arms or fingers carried thereon, and located at desired intervals apart along the length of

GRAIN LIFTER FOR HEADERS.
the bar. The lifting fingers are formed of spring steel rods, which project horizontally forward from the body bar, and are bent upward and backward at their outer ends, as shown. To prevent the fingers from turning in the body bar, they are made with rectangular shanks, which fit into rectangular openings in the bar. The grain lifter is mounted in hangers secured to the header. A pair of crank arms are secured to the body bar, from which suitable connections extend to an adjusting lever. The latter may be operated to raise or lower the lifting fingers, according to the condition of the grain to be operated upon. It is evident that the device will very effectually raise the majority of the heads of grain which may have dropped from any cause, and carry these heads upward, so that the grain can be acted upon at a suitable point below the heads, and be cut by the sickle blades of the machine. It will be noted that all the operating parts of the device are carried rearward beneath the platform of the header, so that it can readily be attached thereto, and will in no manner interfere with the proper operation of the machine. The inventor of this improved grain lifter is Mr. Jacol Mees, of Lane, So. Dak.

Blanks for Pearl Buttons.

In the cutting of blanks for pearl buttons, much of the operator's time is consumed in the sharpening of the saw, which must be done at very frequent intervals. This must be done three or four times an hour, and each time about three minutes is consumed in putting a new edge on the saw teeth. A new invention by which this can be done in about ten seconds has recently been patented by J. W. Miller, of Muscatine, Iowa, and the inventor claims that not only is this time saved but better work is done. The timo saved alone represents an additional product of be tween fifteen and twenty gross of blanks in the courc of a week. The device is merely an attachment made to the regular blank cutting machine, being fastened adjacent to the maple plug. When an operator wishes to set his saw, he adjusts the machine and without stopping the cutter, sets the saw. He then stops the machine and adjusts the filing machine, which consists of a number of small steel files working rapidly back and forth on the teeth of the saw In ten seconds
the saw is filed and set and the cutter has nearly a half a gross of buttons cut before his neighbor who is using the old method has finished filing his saw.

VENTILATED EYE-SHADE

The ordinary type of eye-shade possesses the serious defect of improper ventilation. It is arranged to fit closely to the eye, and its shape is such as to catch and hold the heated air which drifts therein. This pocket of hot air is very annoying to the eyes, and causes them to burn and smart. The heat aiso affects the head, producing a dull, stupefying headache. These ill effects are avoided in the eye-shade here illustrated, since ample provision is made to permit the

ventilated eye-shade.

heated air to escape. The eye-shade is spaced from the forehead by means of a flexible ribbon, secured along its upper, inner edge. This ribbon is sinuously disposed on the eye-shade, that is, it is looped, instead of lying flat thereon, and these loops bear against the lorehead, causing the eye-shade to stand out a distance of about a quarter of an inch, thus forming a large ventilation passage for the heated air. A patent on this eye-shade has recently been granted to Mr. William S. Bevan, of 829 Gates Ave., Brooklyn, N. Y.

CHAIN CLAMP.

In the accompanying illustration we show a simple clamp, which can be attached to any chain in such manner as to relieve the tension on any part, to permit removal or separation of that part from the rest of the chain. The device will be found very useful in repairing automobile chains while on the road. The main advantage of the invention is that one or more links may be removed from the chain without taking the chain off the surockets or letting it drop to the ground thus bviating the possibility of dirt or sand clogging or injuring the chain or sprockets. By use of this chain clamp, injured links may be removed from the chain without disturbing its adjustment. The clamp is a very compact little device, as shown. It comprises a metal bar formed with two slots, to receive the depending arms of two blocks. These arms, at their lower ends, are threaded to receive a screw rod. One-half of the screw rod is cut with a right-hand thread, and the other half is cut with a left-hand thread, so that when the rod is turned in one direction the blocks will be drawn together, and when turned in the opposite direction the blocks will move apart. The blocks are formed at their upper ends with curved lugs adapted to fit against the pivot pins or bolts of

chain clamp.

the sprocket chain. When the lugs are thus applied back of the chain pins on opposite side of the injured section, the screw rod is turned to draw the links together. This relieves the tension from the injured section, and permits removal of the broken or weakened link without otherwise disturbing the rest of the chain. Mr. Hermann Hubn, of Macon, Ga., is the inventor of this impreved clamp.

RECENTLY PATENTED INVENTIONS. ULTRA-VIOLET-RAY ELECTIODE--C. F W. Horn, New York, N. Y. In this patent the
invention relates to electrodes for the produc tion of ultra-violet rays; and the principal an electrode by means of which these rays
may be produced in large quantities and which may be conveniently employed in the appli-

Of Interest to Farmers.

stock-Waterer.--N. S. Seymour, Manchester, lowa. The present invention relates
to certain improvements in apparatus for containing an automatically-regulated supply
drinking water for live stock, particularly drinking water for live stock, particularly on
farms, but alse in towns, villages, and in such other places as it may be desirable to care f the stock. The water is kept che effects of temperature, thus keeping the liquid cool in summer and preventing winter freezing.
CULTIVA'Tor.-M. Jlennings and J. H. ratus is especially an improvement in stradale row cultivators, and one object of the inven-
tion, among others, is to provide a construction of beam and of devices for supporting the Same so the different sections of the beams
can be readily adjusted in order to set the plows in any desired relation.
AUTOMATIC COUPLING.-T. W. Lurishs
and 1:. Intimis, Hoopeston, ill. An object of and 1: Huciriss, Hoopeston, in. An object of
the invention is to provide an automatic will hold with absolnte security, preventing
accidental uncoupling of the engine from its load when on the road, and which may be
quickly and easily uncoupled, the uncoupling of the coupler being effective to set it in
position for automatic action when the coup-ling-bar intinkivis ared
 invention relates to an apparat tus for cultivat ing tool or toels mounted on a wheeled frame ing tool or tools mounted on a wheeled frame with the tool or tools and with the traction-
wheels, so that the tools may be operated and the vehicle propelled over the ground tofollow
the operation of the tools. TIIResiling-maciine.--M. Davis
W. A. Laminnaume, Ames, Okiahoma T purpose of this invention is to provide a box
or casing in which is located a hollow shaft carrying knives tapering in direction of the edues shaft, and, further, to provide a drivear shaft, being turned thereon in an opposit direction, and to provide a governing comb
opposite the delivery ends of the knives to pre vent a toe rapid feed of the cut material t
the fans and off-take mechanism. It is a the fans and off-take mechanism. It is
improvement on a former patent allowed
Vind-CUTTER.-S. V. Jamionds, Waycress, Ga. Mr. Jeffords's invention relates to that
type or class of culters employing suitably by horse or manual power and having blades the row, the runners being provided with
handles adapting them to be guided as they are drawn along.

 vilatilized along with the steam, which still
holds formaldehyde abserbed in it. This is passed through a superheater. The high tem-
perature entirely liberates formaldehyde from perature entirely liberates formaldehyde from
the steam, converts polymers int active for-
maldehyde, maldehyde, and discharges it with the steam
in superheated state tirongh the door int the n superheated state throw,
FOLDING boy--A. L. Rifynolds, Madisen, N. J. Mr. Reynolds' \bullet bject is t \bullet provide a be
arranged t \bullet permit packing and shipping it arranged to permit packing and shipping it flat or collapsed, to allow quick and convenient
setting up of the box for immediate use, and
to securely lock the parts in position and preto securely lock the parts in position and pre-
vent accidental unlocking, and at the same
time presenting unobstructed inner faces of the top, bottom, sides, and ends of the box
ERASER.--II. B. Tookir, New York, N. ERASER.--II. B. Tooker, New York, N.
This mechanical eraser is more especially This mechanical eraser is more especially de
igned for use on type-writing machines and signed for use on type-writing machines and
arranged to enable the operator to quickly and
accurately erase either a single letter, sign, accurately erase either a single letter, sign,
or the like or a word or an entire line withor injuring the paper, and to readily brush the paper clean of abrading matter to allow of
striking an ther letter on the erased part with. striking ane
ART OF PURIFYing NITROCLLLLDLOSL Pont's invention refers to improvements in the art of purifying mitrocellulose and analogous
substances, his more particular object being to dislodge impurities which affect the stability - I nitrocellulose and alse to remove any
gaseous impurities which may be occluded
 relates to the manufacture of homologues of
alpha and beta ionone illustrated by the follow. ing example: Fiifty parts of crude or pure cy-
clo-citral are mixed with one hundred of methyl-ethyl-ketone, and to this mixture five parts of sodium dissolved in alcohol are added.
This is left at ordinary temperature an hour This is left at ordinary temperature an hour
or twe or more, if necessary, until the odor of cyclo-citral has disappeared. It is then
accidifed slightty with a solution of weal acid,
such as tartaric acid an is which carries over first all excess of the methyl-ethyl-ketone and finally the methyl-
none. rost-LIITER.-II. Rorvols, Hesper,
Iowa. In operation to pull posts, large ol
small, the lifter may be placed with the stand about a foot from the base of the post. The
hande end of the lever may now be lifted up and the barb pressed against the post as low down as possible and the chain be passed
around the post from the eye and secured upon the returned end at the opposite side of the
point at the end of the level. The chain will prevent any slipping of barb or spur on the post, and the handle end will be brought
down and the post be lifted out of the ground FLUID-PRESSURE . WGGLATOR.-J. W. scort, Colorade Springs, Col. The aim of
present invention is to provide a regulator ranged to permit the diaphragm to expand and rections to prevent buckling of the diaphragm and tollow up-and-down movement without danger of the diaphragm bending unduly. The
invention relates to fluid-pressure regulators Such as shown and described in the former Let-
ters Patent granted to Mr. Scott.
 Tlon.-R. II. Previer, New York, N. Y. Means
are provided in this case for increasing the
strength and efficiency of the mortar or cement joint between superposed tiles, and to attain this end a metallic member of open-work con-
struction is placed between the courses of tiles and imbedded in the plastic bond in a way for
the material while plastic to pass throllgh the metallic member and to adhere to the
surfaces of adjacent tiles, the mortar and the open-work member producing a thin, strong,
and secure joint between the tiles.

FIdNCE.-J. Punce, Gratis, Ohie. In this instance the invention his reference to im-
provements in metal picket fences, an object being the provision of a metal fence, preferably made of steel, that will be of light stroc
ture, yet very strong and serviceable, and that DUST-ARRESTER.-W. J. Newron and R. Drgilie, Accrington, Lancashire, and
son, Leeds, York County, England.
case the invention relates to improvements in dust-arresters, an olject being to provide an automatic and effectual means of arresting or
preventing the escape of dust or the like from se arranged that the accumulated matter may so arranged that the accumulated matter may
be removed without interfering with the fur-
nace-draft. nace-draft.
VIENDING Silow-CaSE--I. Klayman, Baltimose, Ma. Mr. Klayman's invention is in
the nature of a vending show-case f retail tradesmen for containing all sorts of small articles held for sale, such as candies, spool
cotton mand silk, screws, nails, bolts, and various cotton and slk, screws, nalls, bolts, and various
other small articles which are kept in assorted musical insple
mtasical instrimment. Sabait w. particnlarly to improvements in upright pianes
or similar upright musical instruments, an or similar upright musical instruments, an
object being to employ in connection with
and
a curved or concaved lid, which alse serves
as a medium to diffuse and give enlarged tone
and effect to the sounds deflected upen it by and effect to the sounds deflected upon it TRANSFER-T I CKEIT.-W. Klern, Jr.,
Brooklyn, N. Y. This inventor's ticket is par Brooklyn, N. Y. This inventor's ticket is par-
ticularly designed and adapted for use in transferring passengers from one line of cars to in-
tersecting lines, and for this purpose the ticket is composed of a body or main portion
and attached coupons. The purpese of the in a circuit on the cars of any street-railway system, and it is an effective check against
this. SAFETY Hoof or Ring.--D. L. Troyler, Shanesville, Ohie. Though adapted to various
uses or purpeses, the device is intended more uses or purposes, the device is intended more necting the ring of a watch, charm, locket,
the like t a chain, f , guard, ol similar trivance. It is alse admirably adapted as
key-ring, as well as a connector for belts,
cables, etc.
PORTABLE APPARATUS FOR TIIAWING Wash. The object in this instance is Seattle, Wash. The object in this instance is te pre-
vide a pertable apparatus adapted to utilize the combustion of wood for thawing frozen
ground in a very economical manner, effect rapid dissipation of frost that pervades the
ground by directing the entire volume of heat flom fuel combustion upon the bottom sur-
face of an excavation, a further object being to enable the starting of the fire at the upper
surface of the ground, and als enable convenient removal of the heating apparatus from
the excavation to permit the thawed ground te be

ACID-PR@OF COMPOSITION.-F. A. Pank, Butte, Mont. This composition ol paint when

 applied te ir•on pipes used in copper-mining industry prevents their corrosion by acids nol mally contained in the copper water. Heret.
fore such pipes were lined with wod expensive and cumbersome lining of wood expensive and cumbersome lining of wood
may be dispensed with if the pipes hav
been propery coated with this paint been properly coated with this paint. It ad
mits of general use, and is not limited in its application to pipes of this kind, being
able for use in building, marine, naval,
osion of iron and steel generally.
KNocKDown CASE.- R. Schourmen, KNOCKDOWN CASE. - R. Schourinn,
Keokuk, I \quad, Tha. improvements in cases or boxes particularly
adapted for shipping bread or the like, an adapted for shipping bread or the like, an
object being to provide a case that will be light yet strong and durable and se constructed that it may be compactly folded to take up
but little space during the return shipment or C $\bullet L$ L A PSI B LE MEGAPHONE. -- II S'rurges, New York, N. Y. In this patent the
object of the inventor is the provision of a new and improved megaphone adapted to b
collapsed and folded int comparatively litt space for convenient storing abeard ship
-ther place and adapted t be quickly and
retort-Lid.-C. F. A. Hentschial, Stettin Germany. The invention refers to a cover'
lid for securing, tightly closing, or sealing ves ls, mainly retorts used for purposes of coa other distillation, the object of the in
vention being to avoid as far as possille the hitherto proved to be a grave inconvenience in practice and one that very seriously interEXPANSilile roli.-J. II. Brisck, Brisol, N. II. Mr. Rreck's invention relates to size, and more particularly to those adapted difficulties ocrur that cause loss of time and production in stopping operations, and dam-
age often is caused. $T \bullet$ obviate these difficulties and provide means for readily varying
the rolls without the necessity for stopping
the machine are the principal objects of his horsicsilef.-R. E. Johnson, New York This shoe is provided with a pad shock to the horse due to striking the hoo
on the ground. The invention comprises the combination, with the shoe proper, of a com pressible frame arranged to be clamped on the
shoe carrying the pad which engages the musicund as the horse travels.
MUSIC-TRANSPOSITION CIART,--W. II Findey, Chicage, Ill. The purpose of this
improvement is to provide a chart through improvement is to provide a chart througl
the medium of which any one can transposc mistake and which will be of material aid persons writing music. It will prove an ac-
curate guide readily understandable to any one having a slight knowledge of the principles
of musical composition.

Hardware.

KNIFE-SILARPENIER.-A. W. Johnson New Brunswick, N. J. This invention con-
sists of a reversible grinding-tool having a coarse abrading-face on one side and a fine-
finishing face on the other, in connection with means for presenting the reespective facess of
the tool at different angles to the edle portion the tool at different angles to the elge portion
of the knife or blade, whereby the coarse side of the knife or blade, whereby the coarse sid
of the tool is available for grinding the beve
on the knife in a rapid manner, and the flne surface of the tool is presentable to act only
on the edge portion in a way to produce a keen

C@MPOUND T•OOL.--A. L. Ghieen, Creede Col. Mr. Gheen's object in view is the proision of a combined screw-drivel and nutpactly, so as to be carried conveniently in the pocket, provision being made for locking the - that the tool can be used to good advan-
hand-Teel.-W. w. Barton, Salt Lake City, Utah. Briefly stated, the device com-
prises tw \bullet jaw-like members having handles one end and a chain or other means for djustably connecting together their opposite
nds. Connected with the chain is a spike, which is employed in connection with the jaws for prying off covers or for various other
purposes, as will suggest themselves during purposes, as will suggest themselves during bucklef.-II. W. Luimann, Hays, Kas. buckle adapted t• clasp © clamp an attached strap, and thereby dispense with the nd is efficeted. It has advantages over all similar buckles in forming a bend over a transfected rib and by double-clamping action ef
onposite sides of the bend through means of cams and an under transverse rib. WIRE-TIGHTLENAR,-T. J. Corrigan, Aransas City, Kas. This invention relates to
imprevements in devices for tightening or takimprements in devices for tightening or tak-
ing up the slack in wires, particularly fenceof simple construction by means of which the wire may be quickly and neatly tightened with wire may be quickly and neatly tightened with
very little labor and without danger of dra wing the fastening-staples from the posts.

Heating and Lighting.

ACETYLENE-GAS GENERATOR.-J. C. Waugh, Moline, Ill. One object of this immagazine wherein the carbid is confined in lated layers by mechanical devices adapted manner for the purpose of dropping the carbid layers on the successive downward movements of the floating bell, such magazine being easily
removed for the purpose of cleaning the parts and renewing the carbid-supply.
ACETYLENE-GAS GENERATOR.- N. Likins, St. Paul, Minn. In this patent the inthe generation of acetylene gas. It is especially adapted for railway use and in other veniently whed. When, however, a gas-holder - be used, valves may have suitable connection with the gas-holder,
matically operated thereby.
acetrlene-gas machine.-G. AnderGis and F. A. Sull, Red Ledge, Mont. ply of carbid in given quantities when gas in the holder is diminished by consumption at
the burners; second, the quick and easy replenishing of carbid; third, the prevention of gas leakare through a hand-hole and sturingfifth, to expel gas and is dropped therein sumption of carbid in magazine before open acilitate discharge the same; sixth, to generator; finally connecting reserve generator battery to intermediate connecting device ith gas-holder
RANGE--Q. Crane, San Diege, Cal. In this patent the invention relates particularly - improvements in a combined range, baking ven, and serving-table, an object being to
provide a device of this character that shall be accessible from all sides, and that will occupy but comparatively little space, adapting
 The purpose in this instance is to provide a
construction which will be simple, durable, and effective, and such that the base can be verti-
cally adjusted to place a pan, gridale, gridiron or broiler, or other cooking vessel ol
utensil employed in the desired relation to the utensil
flame.

Household Devices.

Deor-@DENER.-T. F. Leve, Chulavista Cat. Though particularly adaptable to screen dion with doors of other sorts; and it com ism or frame which when engaged by the foet of a person passing the door will act to el able the person to pass through the door with Stid-LADDER-II. L. Schwalbe, Jers: City, N. I. In the present patent the inver ion step-ladders, the particular object be:n, the provision of a step-ladder of this char
acter that will be very simple in its contruction and very rigid and strong in any one its adjusted positions.
Cubtcain-hixturde - O. mamatrst, New York, N. Y. The pirpose of the inventor is nd which is employed as a fixture auxiliar
to the main bracket utilized as a support for
the curtain-pole or the pole adapted to sustain decorticating, ramie and other textile plants
a portiere or other heavy curtain, the auxil- and leaves, comprises rolls between which a portière or other heavy curtain, the auxil- and leaves, comprises rells between which iary fixture being so made that it may be stalks are fed, a beater-wheel for breaking
quickly and conveniently clamped upon the stalks and separating fiber from coarse imquickly and conveniently clamped upon the
lower limit of the main bracket and secured in position and as expeditiously and readily
removed. REVOLVING SASH.-J. F. Blanchard New York, N. Y. The invention relates to
sashes having horizontal pivets to the side sashes having horizontal pivots to the side A main feature of the invention consists of auxiliary sash stiles formed of twe longitudina
members; interposed springs bet ween the mem bers permit thew 10 move toward and from
each other, the springs yielding when the sash is turned on its pivets.
FldSilling-TANK.-B.
tin, Texas. A purpese of this invention is to provide means whereby the water may be let
out of the tauk through an outlet-pipe having out of the tallk through an outlet-pipe having
slip connection with a fixed flushing-pipe, which outlet-pipe is automatically closed by the
upward action of the tank, and to proride an -verflow-pipe in connection with the closing or valve device for the outlet-pipe whereby
regulate the amount of water toe received
by the tank to obviate the pounding noise com by the tank to olviate the pounding noise com
mon to flushing-tanks due largely to siphons
sucking air and water just as the siphonage sucking
is broken
 -T. S. Marma, Butte, Mont. In libraries, where tiers of shelves are of such height as
te reguire a temporary foot-rest to enable one to reach upprr shelves, it is desirable to have the foot-rest always in place and adapted for
vertical adjustment. The object in this case is to provide details of construction which afvertical adjustment and clamped connection worting shelves to enable one to readily reach
 M. Schlompis, New Rochelle, N. Y. The aim
of the invention is to provide a new and im
proved water-closet, more especially designed proved water-closet, more especially designed
for use on railread-cars, marine vessels, etc., for use on railroad-cars, marine vessels, etc.,
and arranged t prevent upward draft in the bowl and to allow of flushing the bowl to keep
the closet at all times in proper sanitary con the closet at all times in proper sanitary con
dition. DRAPLHRY-II0@K.-L. Nachmann, New
York, N. Y. The object the inventor has in York, N. Y. The object the inventor has in
view is the provision of an article adapted view is the provision of an article adapted
to sustain the upper edge portion of a cur-
tain above or alongside of the curtain-pole, whereby a plurality of the hooks serve to sup port the curtain or portière in a way to con
ceal the pole and the rings without resorting - stiffening media for holding the curtain. WINIOW-SASII. A. C. Goddard, Weod-
cliff, N. J. In this instance the invention relates particularly to that class of sash adapted to slide vertically in the window-cas
ing and to swing on horizontal pivots, se that the sash may be. turned te any desired angle ing both sides of the glass by a person within he room; and the object is to provide a mechanism permitting the movements with ease

Machines and Mechanical Devices.

FEED-GEARING.--J. B. HART, Clarksburg. W. Va. In this case the invention is an im
provement in the feed mechanism of sawmill carriages, and has for an object, among others, to provide a compact arrangement of devices
whereby motion is transmitted from the sawmandrel to the feed shaft of axle and to support the intermediate friction-wheel and the trolling frame.
whighit - regastering whighing MaChine. II. lotrin, 100 St. Lazare Street,
and L. M. Imacociama, 25 Caumartin Street, Paris, France. An important feature of this macline," consists in that the "weighing registering mechanism and takes up position -f eguipoise without moving any of the garts
save its own levers and its cursor, which mas be se arrmged as 10 move without any slid-
ing friction, se that the weighing ing friction, se that the weighing-machine may be of the very greatest sensibility. As the
registering mechanism is acted independently of the load to be weighed it may be of very
compact construction and made to fulfill a plurality of functions without impairing sensibility or precision of apparatus.
CAROUSEL-H. S. Timmis. New York, N. Y. In this case the invention has reference
t. imprevements in carousels or merry-sethis chara ter in which there is a variety movements and se arranged as to not only
give amusement to the riders, but alse to greduce a peculiar illusion to onloosers.
WENDINGMACHINE, F, LGNES, Johns
town, N. Y. Mr. Lynes, object in this invention is to provide a machine adapted to con-
tain articles of different values or grades, such as cigars, and operating to deliver an
article from any desired one of the several seceltactes upon the insertion of a coin, and
directing he money means of a novel
mechanism and a controlling mechanism for mechanism and a cont
the desired receptacle.
DECORTICATING-MACliNNE...-P. P. Faure, 21 Place du Champ de loire. Limeges,
stalks and separating fiber from coarse im-
purities, a shaker-frame for continuously agitating stalks while perate upon by the beaterwheel, a conveyor for removing fibers. drums arranged in parallel consecutive pairs and means for rotating said pairs of drum
ferent speeds for scraping the fiber.
TYPE-WHICRR- J. Adexanner, New York, N. Y. The aim of this inventor is the pro
vision of a type-writing machine of com paratively simple construction se arranged
that the type-carrying hars and operating that the typc-carrying hars and operating
levers may be moved to printing operation by a very little pressure and upon release quickly returned to their normal position.
WELL-DRILLING MACHINE.-H. Well-Drilling machine.-H. H. Wil-
burn, North Yakima, Wash. The main ebject burn, North Yakima, Wash. The main object
of this invention is the of this invention is the provision of a walk-
ing-beam with which a gasolene or steam engine may be successfully used for well-drilling,
s- shaped and hung as to cause the drillingtool to move in direct perpendicular lines, thus preventing the rope or cable from rub-
bing against the sides of the well and wearing the rope or cable away.

PUMP-CONTROLLING APPARATUS.-G.

 v. Ellis, New York, N. Y. The invention relates to an apparatus for automatically priming and starting pumps, particularly centrifugal umps used for lifting sewage, bilge-water, and the like. By its means as the water, and the like. By its means as the
level of the water rises to a height requiring its discharge a liquid-pressure is opened to
prime or fill the pump and simultaneously to throw the comptroller, whereby to start the operation of the pump. The present in-
vention represents a further adaptation automatic starting apparatus forming the
subject of a former patent grante to Mr. Ellis.
PRESSURE ATVACHMENT FOR LUM-Ber-matciling Macimines. A. Milare,
Burs's Falls, Ontarie, Canada. The principal object of the inventor is to provide a machine which shall have the pressure-arm carrying the blocks thereof so mounted on the
machine that they may be independently machine that they may be independently op-
erated - that is to say, if any uneven strip of erated-that is to say, if any uneven strip of
material is being passed through the machine the blocks will at all times bear upon the
under surfaces of the same in such manner under sulriaces of the same in such manner thereby prevent any unevenness in the matching of the same.
POLISHING-MACHINE.-G. A. ENSIGN,
Defiance, Ohie. More particularly this invention relates to polishing-machines using an endless sand or other polishing belt. The object is to provide a machine more especially
designed for polishing wagon and carriage designed for polishing wagon and carriage
wheel
spokes, neck-yokes,
swingletrees, whiffletrees, handles, and other turned articles requiring high finish, the machine being arranged to automatically rotate the article when moving it in contact with the polishing belt.
In this Shmer.-I. F. Monell, Boulder, Col. In this patent the invention has reference to
certain improvements in ore-slimers, a particu. certain improvements in ore-slimers, a particil.
lar object of Mr. Monell being the provision of an ore-slimer of novel construction and se arranged as to quickly and wholly separate
fine sold from sand and slimes. Decatur Inding Machine.-C. H. Colmar, Decatur, Ind. In this patent the object of the
invention is to provide a new and improved invention is to provide a new and improved banks and other financial institutions and business houses and arranged for making a complete record of all commercial papers re-
coived and sent out to permit of obtaining immediate reference at any future time orevious transactions or disposals of not
drafts, checks, domestic and foreign change, etc.

Pertaining to Vehicles.

WAGON-TOP.-J. Pohlig, New Orleans, La. In this instance the invention relates par-
ticularly to improvements in side-curtain mechanism for wagon-tops. an object being to orovide a simple and novel means for supportng the rolling side curtains, and a further cmitting certain elements shown in a former atent recently granted to Mr. pohlig.
TRICYCLE.-C. J. Madonna, New York, N. Y. The purpose of this improvement is to
povide a race-horse tricycle. or a tricycle in wo pivotally-connected parts, the rear being supported by twe wheels on the sa ne axle
and the forward part a single wheel which is a steering and at the same time a driving wheel, so that the head of the horse-like
always points in the direction of travel.

Photography.

PIOTOGRAPHIC - SHICTYER-OPERATING Mich. The purpose of the invention is to mot vide a trigser operated cushion-controlled detion with an alarm device. a bulb operating device reerated ly the alarm device. the bulb actell upon loing comected with the shutep
of a camera, and means whereby the triser may be brought inte action manually or
hrough connections with an alarm clock
trap to effect closure of said circuit whereby de device may be set to provide for an aut instantaneous photography
FOCAL-PLANE SHUTTER-W. F. Fohmer, New York, N. Y. In this patent the invention
relates to an improvement in focal-plane shutrelates to an improvement in focal-plane shut-
ters; and its special purpose is to provide a construction whereby the alinement of the
shutters to each other and the alinement
the connection-tapers for the shutters with spect to the reeling device will we main tained under all conditions
STEREOSCOPIC APPARATUS.-V. S. I provement is torovide means for displaying stereoscopic views more effectively and in
greater numbers than heretofore. The pictures may be instantaneously changed without the necessity of taking the eyes from the lenses, and therefore strain and discomfort heretofore ng another are avoided. Als the pictures are effectively protected from abrasion and injury and the number which may be shown is prac tically limitless.
Filatideveloping machine.- J. M of the invention is Y. The primary object structure adapted for use in the daylight for the purpose of developing the sensitized ex oosed surfaces of a film and for fixing the de veloped surfaces without resorting to a dark room, either portable or stationary, and withut the possibility of the latent impressions
ecoming "light struck" during the process of treating the film.

Prime Movers and Their Accessories. Oll-FELDing device.-W. W. Mathews the invention relates to a means for introdue ng a supply of lubricating oil int steam on its way to the engine: and it consists in cer tain peculiar devices by which the flow lubricant may be resulated at will and sept MUFFLER.-I. B. Ullom, Claysville, Pa. In

 operation, the exhaust is introduced theughthe main inlet-pipe and upon striking the pre the main inlet-pipe and upon striking the pro
jection in the T is divided and passes out jection in the \boldsymbol{T} is divided and passes out
through brauch pipes int the casing, where it expands, losing force and impurities against jection oalls and being dected all direc tions back toward the center of the casing where the two portions meet and mix, where exhaust rising through the outlet-pipe is de-
flected by the cone and directed against the ing, the latter's concavity tending to return it toward the casing. These impacts further deaden sound and it escapes through ring HYDRAULIC AIR-COMPRESS Al.fxinder. Ymir, British Columbia, Canada. - provide an apparatus for compressing ain wherein a falling column of water is received connected with a hydraulic air-compression ap paratus proper whose operation is such that the air compressed by it may be delivered to the falls, and thus be conveyed int the said sepa rating-tank,
storage-tank.

LUBRICATOR.-O. E. (iM. Reckymeunt, N. The present invention has for an object to provide a novel construction whereby to
minimize the danger of breaking minimize the danger of breaking the glas
through which the feed is seen and to through which the foed is seen and to prewing such glass in each sight
vide cating the ther cylinder or the air-pum lubricating devices connecting with the same up.

Railways and Their Accessories.
FELD-VALVE: I. L. Curran, Recklin, Cal. the prime object of Mr. Curians invention in made to serve the purpose of the phitral walves tor attains by constructing the value with means facilitating its ready adjustiment from valve may be made to feed high or low pres
vare
 Winston Salem, N. C. This invention relates
particularly to screens for railwav-car winparticularly to screens for railway-car win-
dows to shield passengers from cinders. dust, and the like while riding with windows open, an object being to provide a screen of simple
constru:tion that may be sold at a very small price, easily placed in a window or removed therefrom by a passenger, compactly folded ol rolled when not in use, and conveniently car
ried in a valise or secured to the outer sid Designs.
DESIGN FOR A MEMBER FOR IBM, Flidnist \because filix. New lork, N. Y. This
inventor has designed an original and orna HESIGN FOR A PAIPE-WLIGHTT.-W. W.
conts an original and ornamental paper-weight, quare in form.
Nore.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of the invention, and date of this paper.

Business and Personal KUants. READ THIS COLUMN CAREFCLLLY--YOu numbered in consecutive order. If of art manu-
facture these gonds write us at once and we will facture these gonds write us at once and we will
send you the nameand ardiress of the party desir-
int theinformation. Fueveryseitis neees-
sary to give the number of the inquiry. Marine Iron Works. Chicaso. Catalogue free Inquiry No. 58 38.-For machinery for making
tarchirem corn and potatoes. Autos.-Duryea Power Co., Reading. Pa.
Inquiry No. 5739.-For machinery for pulling " L. S." Metal Polish. Indianavolis. Samoles free. Inquiry No. 57 40.-For manufacturers of gramo-
phones. phonographs, bicycles, etc.
Handle \& Svoke Mchy. Ober Mfg. Co., 10 Bell St., Hande \& Suoke Mchy. Ober Mfg. Co., 10 Bell St.,
Inquiry No. 5 (41.- For machinery for making If it is a paper tube we can supply it. Textile Tube Company, Fall River, Mass
Incuiry No. 574%.-Vor manufacturers of guta
percha f for cementin, cloth, alse for makers of patent
buttons for clothing.

Sawmill machinery and outfits manufactured by the ane Mfg. Co.. Box 13, Montpelier, Vt

 Inquiry No. 574.3 . Finr makers of toysand novel-ies to make a campaign puzzle. Wanted.-Exclusive sale improved a
cialties. Specialties, Box \tilde{T} ts. New York.
Inquirr No. 57.14 -- For makers of celluloid goods,
on make a smali celuloid capsule in large quantities. The celebrated "Hornsby-Akroyd" Patent Safety Oil Cugine is built by the De La Vergne Machine Comoany.
Focitof East 13sth Street, New York. Inquiry No. 5745 .-For dealers in celluloid goods. In buying or selling patents money may be saved
and time gained by writing Chas. A. Scott, 340 Cutler Building, Rochester. New York.
Inquiry No. 574 fi.--wanted, a beating plant for
beating college buldings. We manufacture anything in metal. Patented artias, metal stamping, dies, screw mach. work, etc.,
etal Novelty Works, 43 Canal Street. Chicago. Inquiry No. 574.
alking machines, etc.-For dealers in magic lanterns, Manufacturers of patent articles, dies, metal stamp-
ing, screw machine work, hardware specialties, machinry and toois. Quadriga Manufacturing Company, 18
Inquiry No. 5748 . - For a coat hook opening and
locking with check. TO MANUFACTURERS
ion. for daily fadvertising novelty, without compet1H. A. Catlin,

Inquiry No. $\mathbf{5 7 4 9 . -}$ For machinpry for cleaniug
and curine back moss, used in making mattresses, Inquiry No.
gives or motors. Inquiry No. 5751. -For makers of lava gages for
Welsbach burners. Inquiry
engine.
No.
572.-For castings for a $1 \mathrm{~h} . \mathrm{p}$. steam Inquiry No. 5y53.-Fer asteam plow and steam
eneine portabe on horses' backs, or ©n a one-wheel
hand push wagon. Inguiry No. 5754 .- For a set of tints for a tinto-
metter; must be of the Lovibond scale, for refined cot-
tonseed ail. Iuquiry No. $5755 .-$ For makers of word alcohol.
Inuiry No. 5956. -For makers of boot-blacking Inquiry No. 5959 - For a fan with either a bat-
ery atached

and then move., to sick ruom, desk, etc.

 Inguiry No. $5760-$-Hor a device for heating a
house by hot water citculation wherein the fuel used
is either oil or gas. Inquiny No. ij761.-Fir the necessary machitery
and tufting appliances for making horse collars, colli.r
pads, etc. Inquiry No. $\mathbf{5 7 6 2 .}$-For makers of ventilators and Incuiry No. 5963.-For gas motors suitable far
aerial navigation. Inguiry No. J76.4.-Fior automatic machites for
urnume and di iling pearl butons. Inginiry No. Sg6in.- For makers of pearl-buturn
machinery. Inquiry No. intic.- For makers of pemnastic ap
paratus made ot wood, such as Indian clubs, etc. Inguiry No. 576 6\%.-For manuacturers of mal m-
chines known as saw gins and roller gine, such as are
used in the South.

 Inquiry No. $\mathbf{5 7 9 1 0}$ - Fior manufacturers of electric
fans which run withadry battery.

 Inquiry No. 5y
wrapping moist goods. etc. Inquiry No. 5774.-For makers of gas traction

ars
Names and Address must aecompany all letters or
no
not atention will Beferen nes to former articiet or ar answers should giv
date of pape: and paye or number of question

 Scientific American Supplements referred to may me
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt
mineraces sent for examination should be distinct
marked or or lateleled.

(9420) I. H. C. asks: 1. What power

 (9420) I. H. C. asks: 1. What powerwould be required to operate a fan 7 feet
diameter of the best design to carry air into
a clinder the same diameter at the speed of diameter of the best design to carry air into
a cylinder the same diameter at the speed of
Geo. feet per minute? A. T. fot tan cannot
be practically driven to a greater speed than be practically driven to a sreater speed than
500 revolutions per minute, at which speed it should deliver 160,000 cubic feet of air per
minute wilh a velocity through a 7 -fout tube, minute wilh a velocity througha a 7 -foot tube,
without back pressure, of 4,210 feet per min-
wite ute. To run the alove fan at 500 revolution
per minute will require 36 herse power.
What pressure would be exerted upon a cir cuat pressure would be exerted upon a cir-
blowinace 7 feet in diameter by a wind
blow miles per hour? A. The pressure of wind on a flat surface at 70 miles per hour
is 26 pounds per square foot, or 1,000 pounds is 26 nounds per square foot, 0 or 1,000 p.
on a circular surface 7 feet in diameter.
(9421) F. G. B. writes: About a year
or two aso, in your column of answers t correspondents, there was siven a solution
of the problem of obtaining the number of feet, board measure, in a telegraph. pole. Please
sive me the date of paper. A. T. itain the
contents contents of a telegraph pose in board measure,
add together the squares of the diameters of each end in feet or decimals of a foot and
the product of the diameter of each end. Multhe product of the diameter of eache end. Mul-
tiply this sum by 0.7854 and the product by
the lensth of the pole in feet and divide the the length of the pole in feet and divide the
last product by 3 for the cubic feet. For the
board measure multiply the cubic feet by 10 board measure multiply the cubic feet by 10
to allow for scarts and waste.
(9422) J. M. S. writes: There is some device on the market for cooling water, etc.,
without the ice comins in contact with the
water. There is a contaner that water. There is a container that you put the
freezing matter in and set it right into the pitcher or vessel or whatever you wish to cool.
We saw an item concerning this in the ScrismTific Amirestcan albut a year aso, but we were
not interested then very much. Will y ou be
kind enough to advise us what youl know to kind enough to advise us what you know about
it, and reatly oblige? A. The material used
for cooling is nitrate of ammonia dissolved in for cooling is nitrate of ammonia dissolved in
its bulk oi water, in which the temperature falls from 50 def. to 4 des. F. Thus, by set-
ting a vessel of water into an ordinary water cooler with water and dropping in the nitrate
in small portions, the water in the inner vesmay be frozen with a full charge of the nitrate. The method you describe is alse a
rractical way of cooling a pitcher of water by filling a tin cylinder with equal parts of
nitrate of ammonia and water and setting it nitrate of ammonia and water and setting it
in the pitcher for a few minutes. See Sciestific American Supplement, Nos. 32 and
605 , for illustrated examples of this class of lomestic refrigeration, ten cents each mailed. (9423) A. T. L. asks: 1. Suppose a
jar which is a perfect vacuum to be instantly jar which is a perfect vacuum to be instantly
-pened, will there be a time when the air that opened, will there be a time when the air that
fills the jar would be at a greater density than
the air on the outside of the jar? A. If a small epening were made inte a jar in which
was a perfect vacuum, the air rushing in would fill the jar slowly. In this case the inquantity gradually until the jar was full, when it would cease. 2 . If there is a time
when the air in the jar is at a greater density than that on the exterior would this density
be increased by holding a funnel over the mouth of the jar while the air is rushing in to fill said jar. A. If the would be very shert it is probable that the air would rush in with a concussion, and
would oscillate somewhat to and fre before it settled to rest. This is because the air is an elastic body, and would rebound upon itself.
In this latter case it might be that the air within the jar would be momentarily at a
greater density than the air on the outside of the jar. If now the air were passed inte the
jar through a funnel, the action would be n different from that in the first case supposed,
since the funnel would simply constitute a small opening inte a larger place, and there would probably be ne time when the air within
the jar was denser than the external air. 3. the jar was denser than the external air. 3 .
Suppese the ground connection of a lightning
massing through that ground affect the steam boiler? A. The question you propese concerning
a lightning arrester connected to a steam boiler as a ground, may be answered by saying that the lightning would pass through the steam
boiler to the earth. We d not see that the metal of the steam boiler could have any elec
trical effect upon the lightning. The case ea. They are frequently struck and the light ning passes off from the hull int the water (9424) J. K. asks: Will you please tell me if a lightning rod placed on a pole a
few feet from a barn will insure the safety of
the bern the barn. In other words, if lightning is in rod placed in said pesition attract the lightning from its course? A. A lightning
standing above a building but attached te pole several feet from the building will make
it less likely that the building will be struck it less likely that the building will be struck
oy lightning. It does not act in the manner you describe, by draving a discharge which is
aimed at the building and is coming throush the air from its source and away from the building. A flash of lightning takes place in
ome such way as this: A cloud comes over
a place. The cloud is charged with electri. city. This attracts electricity of the opposite kind from the earth and int the highest ob-
jects of the earth under the cloud. These charges of electricity in the cloud and the arth react upon each other
strongly en eugh upen each other to rupture he air between them and then the flash whic most intense part of the charge on the earth
is in the building, the flash will go to the building; if it is in the lightning rod the f'ash goes to the rod. Now the chance is that the sigesest objects will be most higluy charged
by the action of the cloud, and thus be the discharge when once it starts for its destinaion, which os me mest intense place charged he cloud. It goes to that point and to no
oner. Nor are we to think that the ash always starts from the cloud and falls to the
earth. It as likely starts from the earth as from the cloud, and starts from both at the same instant. It sometimes flies back and
forth many times from cloud to earth and crom earth to cloud before the surging action
dies out. Rods protect by furnishing an dies out. Rods protect by furnishing an metal. Much may be learned upon this topic price $\$ 1.50$ by mail.
(9425) J. J. A. asks: Please answer dry cell? If so, let me know the pioper way a. A dry cell can be recharged in the same way as a storage cell is recharged, by sending a current through it in the opposite direction
to that in which the current comes from the ell when it is furnishing current. Connect the positive pole of the charging current to
the carbon of the dry cell and the negative pole of the current to the zinc of the dry cell. We ur Scientific American Supplement No. 451, price ten cents.
(9426) A. F. asks: 1. What are the advantages of using unsaturated (superheated) steam in running an engine? The superheat-
ed steam arrives at the cylinder having a ed steam arrives at the cylinder having a
high temperature, consequently there seems to be a small loss in condensation in the pipe
conducting the steam from the boiler to the engine. The pressure, however, of this steam is not higher than that of the saturated stean
in the boiler. What 1 would like toknow is this: Is the small condensation in the steamsuperheated steam, or has it any special qualities or advantages when working in the cylincause the pressure is the same as that of the saturated steam in the boiler-say 90 to 95
pounds_-and hence for doing an equal amount pounds-and hence for doing an equal amount
of work, the engine would apparently consume an equal amount of saturated or unsaturated (superheated) steam. A. The advantages
claimed for the use of superheated steam in engines are the saving from loss by condensation in the steam pipe, steam chest, and cylinder, and the gain from expansion of its velume
by its increase in temperature; against which are the loss of lubrication of the cylinder walls by the condensing of wet steam and the cost of superheating, unless it is done by waste pro
ducts of combustion after they leave the beiler ducts of combustion after they leave the boiler
2. Can superheated steam be used in any engine or is a compound or expansion engin may be applied to any engine, but is most ef-
fective in compeund engines. 3 . Please t• explain the expression, "the engine consumed 7.2 kg . steam per K. W. hour." (This ex-
pression was used in a German article.) A. The expression means 15.84 pounds of steam per 1.34 horse-power or 11.84 pounds of steam
per horse-power hour. 4. Are steam turbines of about 60 horse-pewer manufactured in this especially Which seems to be more economical sine or turbine, for electric lighting? A. Steam turbines are favorably considered for electric lighting on account of their high speed. 5. If ductor why are larger wires not made hollow
cImat to that of the respective size of wire?
Is the above common rule only correct for
static electricity and not for currents? Why? static electricity and not for currents: Why?
A. Electric tube wires are more expensive than A. Electric tube wires are more expensive than
solid wire. Ribbon wire is n t suitable or eas
ily manageable in the wiring of electric plants. Th manageable in the wiring of electric plants.
This form of wire is the same for static and
(9427) B. J. B. says: Please inform we through the columns of your valuable
paper concerning "The white Horse of the paper concerning "The white Horse of the
Chalk "liffs of England" and Ollige a diligent but unsuccessful searcher. A. The "White Hor a horse which may be seen near Ashdown in Berkshire, on the cliff which rises above the
valley. The legend ascribes it to Alfred the valley. The legend ascribes it to Alfred the
Great, whe overcame the Danes in the valley below, and had the horse cut in memory of
his victory. The white horse was the common emblem of the Saxons. IYis.s image is fre uently alluded to in the opening pages (9428) J. N. H. says: 1. Of what is ewer gas composed? A. Sewer gas is comosed of the gases of fermentation and foul -dors which are conveyed in the moisture-
saturated air, all holding the serms of disease that are constantly poured inte the sewers.
See Scientiric American Supplement 1037 on "Analysis of Sewage Water," and No. 418 on the "Dangers of Sewer Gas," ten cents
each, mailed. 2. Why will plumber's wining each, malled. . Why will plumber's wiping pure pis lead? The former is composed of forty parts tin to sixty parts lead and there-
fore melts at considerably lower temperature. fore melts at considerably lower temperature.
A. Pluaber's solder is fluid at a greatly less temperature than lead and the heat lost is in bodies cool faster than cooler ones.
(9429) J. W. V. asks: A very long and carrow strip of country near here has lately nado. Not only were the few houses in its
path demolished, but large trees in comparatively deep and narrow valleys were uprooted parts of barb wire fences taken out of the
ground and the wire inextricably tangled, and, it is said, even rocks weighing several hundred pounds and lying flat on the ground we
me a brief explanation, in your paper, of how
such results are accomplished? Is there any -undation for the current belief that a "vacuwhich assists in center of the whirlwind I cannot see how a vacuum anything like complete or sudden enough to cause the air con-
tained in houses to burst the walls outward tained in houses to burst the walls outward by its expansion, as is said to be the case,
could be formed. A. The tornade is a violent, could be formed. A. The tornado is a violent,
whirling storm, usually moving with considerable velocity over the country. It may be but rush of air in the center of the storm sometmes reduces the pressure of the air by as
much as a fourth of the normal pressure. This reduction would be 533 pounds per square foot. This amount of pressure is sufficient to move stones and almost any other objects with
great violence. Such a diminution of pressure great violence. Such a diminution of pressure
will burst a house outward, as is often done, ward motion of the air in the center of up storms has carried objects up int the air and point from which they started. Thus a piec of tin roofing has been carried 17 miles, and where it was when the tornade struck it. It
is pretty certain that the wind in a tornade attains a velocity much more than a 100 miles
(9430) R. M. C. asks: Will you please inform me through your "Notes and Queries"
how to make a simple device for varying the how to make a simple device for varying the
speed of a small battery motor, one that runs on three or four cells of battery (or advise me where I can find this information)? A. The
simplest method of regulating the current from a primary battery is to raise or lower the plates of the battry by some mechanical de int action according as you desire less or
more current. You can in this way secure the amount of current necessary for running a motor at various speeds. A form of battery for this purpose is described in our Supple
MENT No. 792, which we will send for ten MENT No. 792, which we will send
cents. Should you desire, however,
struct a rheostat or current regulator with wire in the usual form, you will find descrip
tions which will aid you, accompanied by dia grams, in our Supplement Nos. 865 and 985 price 10 cents each. Of course you will re
quire only a small apparatus for three or four cells of battery, and would better use rathe a large wire, perhaps No. 16 iren wire. We
think, however, the first methed which we (9431) F. H. asks: 1. What are the hemicals used for the purification of afr after it has been breathed? I have seen the statement several times that there are such chem icals, and I would like to know what they are.
A. To secure pure air, pass the air through cean cotton to remove dust; then through sulhen thrid to remove ammonia and moisture hydrate to remove carbon diexide; then sulphur compounds, and lastly, through cal-
ast traces of mosisture and other impurities. -xygen, nitrogen, and argon. 2. What is the difference between static and dynamic elec-
tricity? A says that they are the same, and tricity? A says that they are the same, and
B says that they are different. A claims that if the secondary of an induction coil gives
static electricity, that they are the same. He static electricity, that they are the same. He
asks the question: "Can a Wimshurst machine be used to light lamps, or drive motors?" "If it can," he says, "static and dynamic ricity are the same, but if it cannot, then an induction coil does not give static electricity, as a transformer is nothing but an induction coil." A. Static electricity is. electricity in the condition of a charge upon a body. The word static means without motion. The charge oynamic electricity is electricity in motion in bynamic electricity is electricity in motion in
the condition of an electric current. The distinction is radical and not dependent upen the apparatus by which the condition is produced A Wimshurst machine when in operation but not producing a spark is in a static condition; current and is dynamic. It is of enormously high petential and low amperage, and is momentary in duration. It will not light a lamp,
because of these conditions. An incandescent because of these conditions. An incandescent
lamp, 16 candle power, requires considerable current at a low voltage and continuing for candescence. Nor will an induction coil light such a lamp, and for the same reasons. An in-
duction coil arranged to transform a current duction coil arranged to transform a current
at the proper voltage and amperage will light a lamp, but is not then in a static condition is sending current, which is dynamic. When a dynam• is running but $n \bullet$ current is being
drawn from it, the potential is there as a static charge, and the machine would charge a condenser. The circuit is then in a static condition. Turn on lamps or a motor and current flows. The machine has become dynamic.
It is a dynam now, as its name implies; it is sending current through its circuit. A's arguments are sometimes right and sometimes wrong. He does not seem to keep in mind the
meaning of the terms he is using meaning of the terms he is using. 3. We have an alternating current here for lighting,
of 220 volts. I can short-circuit this through an ordinary quart fruit jar, filled with water, and with two lead plates, about one inch wide by five long, in it. Can I get a spark with an out a condenser, as I can using batteries with a condenser? A. When you put the poles of
the alternating current inte a jar of water as described you have a water rheostat, which which shall fow for any purpese. It is quite commonly in use for this purpose. You can in
this way run an induction coil for any desired length of spark. Such coil does not require condenser. 4. How many amperes can No
$20 \mathrm{~B} . \& \mathrm{~S}$. magnet wire carry without becoming perceptibly heated? A. At an allowanc of 400 circular mils per ampere, N•. $20 \mathrm{~B} . \& \mathrm{~S}$ wire of copper can safely carry $21 / 2$ amperes.
This will raise its temperature of course above that of the air. Any current will raise the is given for wires under No. 18, since the Fir lighting and power circuits, and carryin capacity has n significance except in relation t• lights and dynamos and motors.

NEW BOOKS, ETC

Roof Franing Made Easy. By Owen B Maginnis, Architect. New York: Industrial Publication Company
1903 . 8vo.; pp. 150 . Price, $\$ 1$. The fact that this small handbook has reached its second edition is sufficient evidence
that it has been found most valuable by archithat it has been found most valuable by arch
tects and builders. The author treats very explicitly of the construction of all sorts The book is theroushly practical in character and is well illustrated by nearly one hundred cuts.
Practical Laws and Data on tife Condensation of Steani in Covered and Bare Pipes. To Which is Added a Experiments on the Transmission of Heat Through Insulating Materials. By Charles P. Paulding, M.E. New
York: \quad D. Van Nostrand Company, York: D. Van Nostrand Compa
1904. 8vo.; pp. 102. Price, $\$ 2$. The object of this monograph is to give to -ss of heat from steam pipes and hoilers corred with any of the standard non-conductin which attention is here called was worked out by the French physicist Péclet in 1850,
but, in the absence of translations of Pécet's but, in the absence of translations of Peclet's
pamphlet, his deductions seem to have been pamphlet, his deductions seem to have been
generally overlooked in this country. The principles involved are se general that the loss nany practical applications. To those who have to deal in any way with the problems of old storage and refrigeration, the information and the formulas given in this volume will be especially useful.
The Loconotive Sinply Explained. By Charles S. Lake. London: Percival
Marshall \& Co., 1903. 16mo.; pp. 72. Price, 25 cents.
This handbook forms No. 17 of the "Model
Engineer" series, and it was written to describe
in a popular way many of the main features in a popular way many of the main features
of modern English locomotives, which are not
familar to the ordinary layman. It is ill familiar to the ordinary layman. It is illus.
trated with some twenty-five cuts, among which trated with some twenty-five cuts, among which Vade Mecum Guide. A Popular Guide to Mineral Collections. With a Chap ter on the Development of Mineral
ogy. By L. P. Gratacap, A.M. New York: The Broadway Press, 1904. 12 mo. pp. 178.
This is of a convenient size to slip into the
verage coat pocket, making it an handy and useful reference book for the fially quenter of collections The writer the fre the order followed by Dana in the fifth edition the discussion with an :ndex of minerals alpha betically arranged, so that any required de scription may be readily found. There are a number of full-page plates of crystals from
notable American collections, and numerous notable American collections, and numerous
figures illustrative of the methods of classificaion.
Twentieth Century Hand-Book for En
Gineers and Electricians. With
$\underset{\text { Questions and Answers. By C. F. }}{\text { Swingle, M.E. }}$
by Henry C. Horstmann and Victor H. Tousley. Chicago: Frederick Drake \& Co., 1904. 12mo.; pp.
300 illustrations. Price, $\$ 2.50$. The "Twentieth Century Hand-Book," phrased in simple language and lavishly illus tion in increasing his practical knowledge and extending his usefulness. There are chapters
of practical instruction in the care and management of steam engines and boilers. Problems and calculations in hydraulics are worked use of algebra, and simple arithmetical rules r'articular attention has been paid to indicator work, and to evaporation tests. The electrical chapters deal with the principles, construction and operation of dynamos, motors, lamps, stor-
age batteries, etc. There are tables that will, age batteries, etc. There are tables that will, in many instances, do away with the necessity
of figuring. In a word, the papers give, thorof figuring. In a word, the papers give, thor-
oughly, and yet in as simple a manner as pos sible, just that knowledge of electricity which of. The volume is bound in full leather, pocketbook style, the back cover being extended
to form a protecting flap with snap fastening. Mineral Tables for the Determination
OF MINERALS BY THEIR PHYSICAL
of Minerals by Their Physical
Properties. By Arthur S. Eakle,
Ph.D. New York: John Wiley \&
Properties.
By Arthur S. Eakle,
Ph.D. New York: John Wiley \&
Sons, 1904. $8 \mathrm{vo} . ; \mathrm{pp}$.$73 . \quad Price,$ $\$ 1.25$.
This book of tables was compiled in order to
aid students in the natural method of identi fying minerals, namely, by noting their peculiarities of color, luster, hardness, specific
gravity, and the like. The tables include all gravity, and the like. The tables include all local prominence, which are generally consid to streak and color whil under each color the arrangement is according tabies and those of Welsbach is that in the present book luster is regarded as an unimportant division. Various mineralogical works will be found quite complete and valuable. Points for Buyers an Users of Tool

Steel. By George W. Alling, M.E
New York:
pany, 1903. $\quad \begin{aligned} & \text { David Williams Com- }\end{aligned}$ This book was primarily written for the benefit of those who have not a technical edu-
cation. It is designed chiefly for the use the mechanic and tool maker; and while it of carbon and chemical construction of steel are concerned, it should help the mechanic to avoid many of the difficulties found by every tool maker, who has to make numerous kinds
of tools from the many varying sorts of steel of tools from the many varying sorts of steel
which he obtains from the steel makers. Chapters on defects in steel, how produced, and how formity of steel; preparing steel for hardening, and hardening and hardening appliances, are among the most valuable in the book. Some tools add to the value of the book, while number of useful tables are containe in an appendix.
Elements of Inorganic Chemistry. By Harry C. Jones. New York: The
Macmillan Macmillan Compan
343 . Price, $\$ 1.25$.
This book, which is considered as an ele mentary textbook, treats the science of chemiistry in an up-to-date manner, and while the
older generalizations have been thoroughly discussed, those generaiizations which have been
more recently made are incorporated in the text. Thus, while the atom is still used as the smallest indivisible particle of matter, the ion which is a later conception of an atom as carrying an electrical charge, is also thoroughly
discussed. Another generalization which is treated is that concerning the law of Faraday as the basis of chemical valence. The physical properties of substances are treated more fully than in earlier textbooks, and are de-
scribed in every instance after the chemical scribed in every instance after the chemical
properties. The experiments on each substance properties. The experiments on each substance
are placed at the end of the chapter describing
said substance, and are followed by the problems to be solved. Such portions of the
author's "Principles of Inorganic Chemistry" as were considered adapted to the beginner are alse contained in this book, which will be found an admirable te
beginners in chemistry.

Laboratory Guide to Qualitative Chemist Nartin, Ph.D., Analytical

 \& Sons, 1903. 12 mo .; pp. 41. Price, 60 cents.Believing that the use of the blowpipe which has long been recognized as an indis
pensable apparatus in the study of mineralogy has been largely restricted to that science, an been used to a very limited extent in other branches of analysis because there has been no manual on the subject treating of its use with this small in general, the author has prepared by students of qualitative analysis, and as by students of qualitative analysis, and as
work of reference by practising chemists. systematic course of analysis for a long list in these pages.
Monern Microscopy. By M. I. Cross and Martin J. Cole. Chicago: W. T 76 cuts. Price, $\$ 1.50$.
This handbook is designed to give to the microscope and accessories, and to direct him as to the proper way of using them. The book, which has reached its third edition, is in three parts. The first part, by Mr. Cross, treats of
the microscope and accessory apparatus, and the microscope and accessory apparatus, and
gives instructions for their use; the second gives instructions for their use; the second
part, by Mr. Cole, treats of microscopic objects, and tells how to prepare and mount them; while the third part, which is the new part of this edition, and which was specially prepared by Mr. G. West, of the Botanical Laboratory at Edinburgh, is on the choice and use of microtomes, or machines for cutting microscopic sections. All three parts are clearly and
concisely written, and the book as a whole forms a complete handbook for the tyro microscopist.
Testing of Electro-Magnetic Machinery and Other Arparatus. By Ber-
nard Victor Swenson, E.E., M.E., of the University of Wisconsin, and
Budd Frankenfield, E.E., of the Nernst Lamp Company. New York: pp. 420. Price, $\$ 3$.
are intended for use as a college textbook and as a work of reference for engineers. The magnetic machinery and apparatus, and it is magnetic machinery and apparatus, and it is
almost exclusively confined to dynamo-electric machinery. It has been the aim of the authors
to impart a thoroughly practical knowledge of dynamo machinery and apparatus to the student, and the book can be used as a textook for a practical dynamo laboratory course. For this reason the numerous experiments
which the book describes are divided into (1) a review of the theory; (2) to the particular xperimental method involved; and (3) to practical applications of the particular subect. Questions which bear directly on the subject are asked at the end of many of the xperiments, with the object of stimulating ndependent thought and observation. These
uestions bear upon important, though less evident, relations of the phenomena involved. ences to other works on the subject
The Layout of Corliss Valve Gears. By Sanford A. Moss, M.S., Ph.D. New
York: D. Van Nostrand Company
1903. 24mo.; pp. 108. Price, 50 cents.
This small volume, which is a reprint from he American Machinist, with revisions and aditions, treats of the Corliss valve gear from theoretical point of view. The "single ecentric" motion is treated from a rational of the theoretical principles underlying the kinematic design or "layout," Explicit instructions are given for making a layout on the drawing board.. These instructions are so simple that a layout can be made by anyone at all familiar with the common slide The book is theoretical in character, the kinematic features rather than the constructi
features of the valve gear being described.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
July 5, 1904
ANDEACH BEARING THAT DATE

compressor, Diedr	
lins	
	Cre
	Cut
${ }_{\text {ter }}^{\text {ter }}$,	Cutter head
well ${ }_{\text {well }}$	
	Cyycle, mo
Axle box dust suari, T. H. . Syminito.:	
sbaft	
	Dis
5 press band tying mechanis	Display ${ }^{\text {ap }}$
er's	
	Dis
	Dsplay rac
Bedstead, foldins, M. Benz	Distilling
titereain	
cle sled runner attachment,	-
Binder,	
${ }_{\text {Binder, }}^{\text {Binder }}$	
dis, cord	${ }_{\text {Pry }}$
	Flectric eircuit controlling ap
${ }_{\text {Book, }}$	Ele
Bootle	Eastwood
	Electric switeb, J. F.
ttle' stop	Electrical
Bottle washins	Eleetrical $\begin{gathered}\text { metz } \\ \text { mis } \\ \text { a }\end{gathered}$
	Eleectrical hie
	Electricity
	俍
cke tons	
ussh handle, H: A. Aayden 7 \%4,124	${ }_{\text {Ele rator }}^{\text {H. }} \mathrm{F}$ ele
	${ }_{\text {EleV }}$
${ }^{5}$	${ }^{\text {Emm }}$
	Engine,
	Envelo
	Eranatins
	Era orat
Pollen \& Barr Barr	$\underset{\text { Excarations, }}{\text { from, }}$ W. ${ }^{\text {aparatas }}$ Newman
Can. See Displ	misie
pulng	
	${ }_{\text {Exxracto }}^{\text {Extracts }}$
Car	Extract Eveglas Relas
Car Hopkises, means for	Ey
Car coupling	
	${ }_{\text {Fast }}$
	Fast
r, dump, Hart \& Meissner.	
Car, dumping, M. Boyle	Feed tro
Car	Fence,
${ }_{\text {cor }}^{\text {car }}$ Car	Finee por
Car, matic railma,	
Car, railway freight, J. G. Stolle	${ }_{\text {Fire }} \begin{aligned} & \text { Fire } \\ & \text { Fire ese } \\ & \text { cese }\end{aligned}$
	${ }_{\text {Fire }}$
Car step, automatic. $J_{\text {d }}$ L. Hines....... 764,467	Firea
${ }_{\text {Car }}^{\text {Car rentil }}$	
	$\left.\right\|_{\text {Fissin }} ^{\text {Fishin }}$
dis, madhine for repeating	${ }^{\text {Flass }}$
	Flexit
Carriage top	$\stackrel{\text { Flow }}{\text { Flow }}$
Carto, secte	${ }_{\text {Froldid }}$
${ }_{\text {Cash }}$	
	${ }^{\text {Fenunn }}$
	Fur or hair
der or cementitious mater	Fuses,
,	
	Game or
other	${ }_{\text {Gas }}^{\text {Gas }}$ bet
m, mid	Gas sen
un, E.	Gas, masi
	Gas presurer resulat
Citar maker's machine, E. Cigarette machine, continuous	$\underset{\substack{\text { Gas ser } \\ \text { Bro }}}{ }$
	Gas washer, O. N. Guid
	cesto
thes, drim	
toch	
$\begin{aligned} & \text { kh, stop, sto. } \\ & \text { fee roast roat } \end{aligned}$	ss meltins furnace,
fine controilied operating machine, D .	Grain in drying appa
	Grain treating apparatus, seed, A. M. Hald-
	Grapple Grate a
	Gri
	Grinins mili, A. H .
ass	Grinding or polishins machi
Computint resisiter,	
tor, C . H . Mublema	

Foot and Power and Turet nathers. rlant
 TAKE THE NYCKELIMATEROAD FOR

ThE EUREKA CLIP

 SIMPLICITY combined HIGH POWER and DURABILITY

EveryMechanic Should Own It.

 , yoxtowner.

Carlisle \& Finch Co., 233 E. Clifton Av., Cincinnati, o

MARINE ENGINES

A Free Trial Bottle of Hydrozone

$$
\begin{aligned}
& \text { P }
\end{aligned}
$$

sent on receipt of ioc. to pay postage. Positively relieves and cures Oak or Ivy Poisoning, Sunburn, Prickly Heat, Hives, and immediately takes the sting out of Mosquito Bites. A marvelous remedy for burns, and will positively prevent blood poisoning from cuts or abrasions. Sold by leading druggists. Nono gen uine without my signature. Prof. Chaongranctac Dept. U, 63 Prince St., Now York monials of ivonderful'cnres.

Kerosene 0il Engine
Simple, Sate and tricient. Needs little
attention is lisess likely to get lout of
irymr and is che liker ancengine marufactured run than any
al and Easily Operated.
International Pown
arren's Natural Asphalt Sand Surfaced
ROOFING

ARTESIAN

The Apple automatic

\qquad 2
 Will send full intormation and new illustrated catal 05
OL

Sulforgorapliol

Send for Free Catalogue No. 16 B.
The L. S. Starrett Co., Athol, Mass., U. S. A.

Valuable Books

REVISED and ENJARGED EDITION
The Scientific American

twenty third edition EXPERIMENTAL SCIENCE.

Practical Pointers For Patentees

THE SALE OF PATENTS
An Elucidatiun of the Best Methods Employed by the
Most successful liventorsin Handing Their Inventions 144 Pages. A. CRESEE, M. E. E.

Home Mechanics for Amateurs

MEEMANCS	
+	Amateres
-cmex tame	
	4096
	domme

week, and ad success in one
Special Edi-
tion of 4,000 copies has been

APPLETON'S
Cyclopecilia of Applied Mechanics

留菛

Wre stretcher, C. Adkins ${ }^{\text {Wrand }}$.
Wranpers, preparing, A. Shediock

A.W.FABER

MARSHALL FIELD \& CO. the great dry goods firm of
Chicago bought SIXTY UnChicago, bought SIXTY Unago, and has used them ever
since. They have justordered ONE HUNDRED AND THIRTY Underwood Typewriters "Enough by test.

The Smith Premier Typewriter Co. Factory, Syracuse, N. Y.

 Er,

Noid bet RIDOFUM"
 Senu for descriptivecercular,
or, beter stinl 25 cents for
sample rap pospaid.
eral terms to agents. BENNETT PAPER BOX COMPANY
46 Harrison Avenue, Springfield, Mass.

Young Men

of proved business qualities with a little capital will find proper
encouragement to locate factories along the lines of the NirRFOLK AND WESTERN RAILWAY.
References must be furnished.
References must be furnished.
PACL SCIERER
Arricultural and Ind instral Ayt., N. $\& x$
PHENS Trade Mark
Designs. Angone sending a sketch and deveription may
quickil ascertain our pinion free whether an nions strictiy pronabdeatial. Hande. Communcheasent free. Gidest agency for securing patents.
Patents tanen through MuN \& Co. receive
Special Notice, without charge, in the

Scientific American

MUNN \& CO ${ }^{3611}$ Braadway, Newīori

$$
=:=\overline{=}==
$$

TRADE MARKS.
Bath fittings, certain named, Silver \&
Belts, electric, M. A. Me Aushblin
Blood purifying tea, M. Sullivan
 Boots and Shos,
Citars, E . Abe
Cleaning comp

$\underbrace{2}$

"'Bo

1 and
 number of the matent desired and the date be
piven. Address Munn \& Co., ${ }^{361}$ Broadwas, New
York. Canadian patents may now be obtained by the in-
ventors for any of the inventions named in the for.
joing going list. For terms and further particurare
oddress Muns \& Co., 361 Broadway, New York.

$$
\begin{aligned}
& \text { 'D } \\
& \text { "id }
\end{aligned}
$$

CHEMICAL EXAMINATTIONS OFALL,

metal Patterns for sman eanings.

MASON'S NEW PAT. WHIP HOIST

Print
$\mathrm{E}^{2}=$ MATCM MACMINERY,

ExDerimental \& Model Work

The Four-Track News

An Illustrated Magazine of Travel and Education .an men
Its scope and character are indicated by the following titles of articles that have appeared in recent issues,
all profusely inlustrated:

WINTON (2)

Absolute air governor, cuurarued tires, indestructible
 the winton motor carriage co., cleveland, o., u.s.a.

WONDER of the AGE

 byron jackson machine works,

WIRELESS TELEGRAPHY. -ITS PRO-

 HOROLOGICAL DEPARTMENT

Japstick
Build lour On i Boat

Ball-bearing, Unit System.
Link Construction
4H.P. or 150 H.P. all the same tows.
end for bulletin No. 16 .
COATES CLIPPER MANUFACTURING COMPANY - WORCESTER, MASS'
your work. to systematize

Push Yourself Ahead

Jadvance you as you cease to backward. Keep at the head of the procession.

COMPANY - WORCESTER, MASS your work; make it easier save time, money and brain work for your employer. We
teach you how to drive your work. Our course by mail will be individual instruction. Learn a practical system to fit your own needs. Write today, telling us what position you
hold and what your aim is.

BOSTON SCHOOL OF BUSINESS SYSTEM 227 Washington St., Boston, Mass., Dept. M.

Historic Boston Souvenir Knives

ACCURATE RELIABLE DURABLE Kewerngaud WATCHES
We know that our watches will do what we expect of them, therefore, it is easy to unquestionTHE NEW ENGLAND WATCH CO., $37 \Omega, 19$ Maiden Lane, New York

A Practical (ar for American Roads.

Three Speeds and Reverse, Sliding Transmission. Inter-
locking Devices Throughout. Bevel Gear Drive $\mathbf{2}$ cylinder upright motor, $\mathbf{1 8 - 2 0}$ Horse Power.
Prices \$2,300 to \$4,000. Aluminum Bodies. Canopy
Descriptive Catalo rue sent upon requenest. ROYALMOTORCARCO.,

CRUDE ASBESTOS
PREPARED R, H, MARTIN ASBESTOS FIBRE OFFICE, ST.PAUL BUILDING Ix

Photo Lenses
and Shutters of every
kind for all purposes Professional, Amateur, Process. Sold Round the World on all Busch \& Lamb Opt. Co. 2
 "LIGHTWEIGHT"

THE CRANE PULLER

 CRANE \& RICHARDSON,

- ITMETIILUBRICATES

