

This gun recoils below the circular horizontal shield, and is loaded in that position, rising above the shield to fire. Ten-Inch Canet Coast Defense Gun on Disappearing Carriage at the Proving Grounds.

The gun is permanently exposed, the carriage and gun detachment being sheltered below the parapet.
Ten-Inch Canet Coast Defense Gun Mounted en Barbette on Proving Grounds.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845
MUNN \& CO.

Editors and Proprietors

Published Weekly at
 No. 361 Broadway, New York

TERMS TO SUBSCRIBERS

 the scientific american publications.

increasing railroad fatalities

The latest accident report of the Interstate Commerce Commission opens with a statement of the number of killed and wounded on the railroads of the United States during the last quarter of 1903 , which, in its bald and succinct enumeration of losses, reads not unlike a statement of killed and wounded sent from one of the battlefields of the Far East. There is one striking point of difference, however, and tha is that the casualties, although the record covers only three months, far exceed in magnitude the total number of killed and wounded since the opening of the Russo-Japanese war. (We give the opening sentence of the report in the exact words in which it de scribes what is at once a supreme national tragedy and an abiding national disgrace: "The number of persons killed in train accidents during the months of October, November, and December, 1903, as shown in reports made by the railroad companies to the Interstate Commerce Commission, under the 'Accident Law' of March 3, 1901, was 446, and of injured, 3,178. Accidents of other kinds, including those sustained by employes while at work, and by passengers in getting on and off the cars, etc., bring the total number of casualties up to 14,485 , or 1,166 killed and 13,319 injured."
We have not the figures for the total number killed and wounded thus far in the eastern war; but we think it is pretty safe to say that the grand total will fall considerably short of 14,485; and, mark you, these statistics cover but ninety days, which is about three weeks' less time than the present duration of the war
This record for the last quarter of 1903 has certain features which render it distressingly memorable. It includes the worst passenger train accident, judged by the number of fatalities, that has occurred in this country for fifteen years, and it records also six ter rible accidents which caused among them 106 deaths and 196 injuries, in consequence of which the present Bulletin contains the greatest number of fatalities of any published since the Interstate Commerce Commission began to gather these statistics. Indeed, the mission began to gather these statistics. Indeed, the
number killed in this three months is more than three number killed in this three months is more than three
times the average number killed during the nine pretimes the average number killed during the nine pre-
ceding quarters. Only four other train accidents have occurred in this country which have caused as many deaths as that which took place last year in Pennsylvania, when 65 people were killed. One of these occurred in 1888 at Mud Run, Pa., when 66 people lost their lives; another was the disaster at Chatsworth, Ill., in lives; another was the disaster at Chatsworth, M1., in 1887, when 85 were killed; then in 1876, there were 80
deaths by the collapse of a bridge at Ashtabula, Ohio; deaths by the collapse of a briage at Ashtabula, Ohio;
the other accident exceeding the recent disaster in the the other accident exceeding the recent disaster in the
number of killed was that at Camp Hill, Pa., in 1856, number of killed was that at Camp Hill, Pa., in 1856,
when there were 66 fatalities. Although the large increase in fatalities during the period now under review was caused by a few extremely disastrous accidents, the huge total for the quarter of nearly 15,000 casualties represents an enormous number of collisions and derailments, 1,832 of. the former and 1,179 of the latter, making a total of 3,011 accidents in a single quarter of the year.
The report gives some details regarding the most fatal of the accidents, and the quarter in which the blame is to be placed. From this it appears that the derailment that occurred on the Pennsylvania Railroad, with 65 fatalities, happened to a passenger train which, when running at 45 miles an hour, struck some heavy timbers which had broken loose from a lumber car and were projecting over the adjoining track. The cause of the accident is reported as "carelessness on the part of employes of the lumber yard in not selecting stakes of good quality and size to make the load secure, and failure of the car inspectors to detect this defect." Another collision, resulting in the death of 32 passengers, was blamed to "negligence on the part of the men in charge of both the trains involved."
ing in the station, and an express was due. The rear flag man waited until he had assisted the passengers to alight before he went back to give warning, and then had only gone back 200 feet before the express was upon him. The engineer of the express could have seen the local train's red lights on the last car at a point 2,800 feet to the rear. Another collision, in which 18 were killed, was due to the fact that, in a heavy storm of wind and snow, a signal light had been extinguished. Here the blame was on the engineer of the colliding train for not coming to a stop to learn why the light was not burning. In two other collisions involving the loss respectively of 17 and 16 people, the first was caused by failure of the brakeman to flag the following train, and the other by the conductor and following train, and the other by the conductor and
engineer of a passenger train disregarding the rule engineer of a passenger train disregarding the rule
to run through a yard with speed under control, with to run through a yard with speed under control, with
the result that the train collided with a switching engine. And so the record runs, the collisions being due almost invariably to neglect or carelessness on the part of the employes. This would seem to indicate that the fault is to be charged to the human element more than to the materials of modern railroading. Or in other words, if we would seek for the explanation of the enormous excess of accidents in this country over those of European systems, we must look for the explanation more in the temperament of the people than in the character of the roadbed, rolling stock, and regulations.

the japanese disaster at port arthur.

The destruction of a 15,000 -ton battleship is an irre parable loss, no matter how rich and powerful be the nation that suffers. Not merely does it mean the abso lute loss of property valued at from six to seven million dollars, but it leaves a gap in the defenses of the nation which, for the time being, and indeed for many years to come, must remain unclosed. Particularly is this true of that gallant little fleet of half a dozen battleships to which the initial successes of the Japanese forces are due, and without which not a man or a gun could have been landed upon the Asiatic main. We say this advisedly; and we commend the statement to the serious consideration of that happily limited section of Congress, which would have us believe that the day of the battleship has passed, and the era of the torpedo boat and fast cruiser has opened. A fleet without battleships would be in the position of an army without a base; particularly where the operations are of an aggressive character, and carried out hundreds of of an aggressive character, and carried
miles from a friendly port or dockyard.
When the war opened, Russia, with her fleet of seven battleships, and a numerous complement of armored and protected cruisers and destroyers, backed by the seemingly impregnable naval bases of Port Arthur and Vladivostock-to say nothing of the formidable fleet that was nearing completion in European watersseemed to hold a practically secure position. The hope of Japan lay in its fleet of six battleships. With re markable audacity and skill she planted this squadron in front of Port Arthur, where it formed a floating base for the operation of cruisers and torpedo boats, which latter, by a swift dash at the opening of the war, so far crippled the enemy as to give Japan the command of the sea. One immediate result of the Russian reverses was the determination to dispatch the Baltic squadron for the relief of Port Arthur; and from the moment that this was determined upon, it became doubly imperative upon the Japanese admirals to maintain the blockade of Port Arthur and hold the whole Russian fleet with the least possible amount of risk to their battleship squadron, already too small for the gigantic tasks that confronted it during the coming months, and possibly years, of the war. It has been a matter of surprise that Admiral Togo should have conducted his victorious operations with so little loss in ships and men; particularly in view of the fact that Port Arthur is known to contain a numerous torpedo-boat fleet, and that the mining of the waters has been carried out with a recklessness that promised to be as dangerous to friend as to foe. At last the inevitable has happened, and one of the finest of Togo's battleships, the "Hatsuse," has been sunk by one or more of the floating mines with which the waters of the Liao-tung peninsula are strewn. So suddenly did this great ship go down that only 300 out of her crew of 750 were saved. On the same day and within a few hours of this disaster the Japanese cruiser "Kasuga," in a deep fog off Port Arthur, rammed the cruiser "Yoshino," the latter sinking so rapidly that only 90 out of her crew of 300 men were saved. The loss of the cruiser is unfortunate, but it is insignificant compared with the loss of such a magnificent ship as the "Hatsuse," which shared with the "Mikasa" the distinction of being one of the largest battleships afloat in any navy.
The "Yoshino" was a protected cruiser of 4,150 tons displacement and 15,000 horse-power, built in England in 1892. Her speed was 23 knots, and she mounted four 6 -inch guns, eight 4.7 -inch guns, and twenty-two 3 pounders. Her armored deck was $41 / 2$ inches thick, and she carried five torpedo tubes.

The "Hatsuse," built at Elswick in 1899, carried four 12 -inch, fourteen 6 -inch, and twenty 3 -inch guns, and was fitted with four submerged torpedo tubes. She was protected by a belt of Harvey nickel-steel, 9 inches thick amidships and 4 inches at the ends, and her deck was 4 inches thick on the slopes. Her 12 -inch guns were protected by 14 inches of armor on the barbettes and 10 inches on the hoods. The battery of 6 inch guns was carried in casemates protected by 6 inches of armor She was practically a sister ship to the "Shikishima." With a maximum supply of 1,500 tons of coal and a trial speed of over 19 knots, the "Hatsuse" was about as fine a sample of modern battleship construction as could be found.
The effect of this double loss will be to revive the spirits of the Port. Arthur garrison and fleet, and instill new life into the project of sending the European fleet to the Far East. This, if the Black Sea ships be included, may easily consist of eight first-class battleships, and these with the three that are supposed to be still intact at Port Arthur, would give a preponderance, supposing Port Arthur can hold out for another few months, that must be giving the Japanese government most anxious concern.

RUSSIAN NAVAL GUNS
 by fred t. jane.

Russian guns-the more modern ones, at any rate which are practically Schneider-Canets-have, like the Belleville boiler and several other products of French genius, the reputation of being "very complicated." This is the verdict usually passed upon them by those whose technical acquaintance with artillery is confined to other types. Like the Belleville, their "complications" upon closer acquaintance turn out to be the result of practical experience, and they are complicated only because novel. Actually, Russian guns are simple enough to work, and the only thing about them puzzling to those of other nationalities is the duplication of safety devices specially provided for sailors whose general average of intelligence is below that of the men of most other nations. In this thing alone do the newer Obuchoff models differ from the French Schneider-Canet pieces on which they are modeled.
The result is some slowing of fire, because before the gun can be discharged, at least two, and occasionally three, safety devices have to be loosed. This is essentially a drawback, regarding the guns as guns, but by no means so when the Russian bluejacket is taken into account. One man is usually detailed to release these safety devices; if he fails, the gun cannot be fired, as there is no contact. All chance of firing with the breech improperly closed is, therefore, avoided by human instead of automatic mechanism. As a Russian sailor is normally liable to be somewhat er ratic, there is no question of the advantages secured.
The standard guns in the Russian fleet are as follows:
The 12 -inch of 40 calibers; weight, 59 tons; muzzle velocity, 2,500 foot-seconds; muzzle energy, 32,000 foot-tons. This piece has a nominal penetration of $151 / 2$ inches Krupp cemented at 3,000 yards with capped A. P. shell, the same as that of the United States Mark III. 10 -inch, built for the "Washington" class. It is mounted in the "Retvizan" and "Czarevitch." For the "Borodino" class, a 64 -ton 12 -inch has been designed, but it is doubtful whether it exists as yet. It has the same velocity (service), but fires a 1,200 -pound projectile instead of a 732 -pound one, and it has a correspondingly increased energy. The nominal velocity is 3,000 foot-seconds.
The "Poltava" class, the "Sissoi Veliky," and all other battleships carrying 12 -inch guns, down to and including the "Sinope," carry a 35 -caliber, 12 -inch gun. Its weight is 56 tons, its initial velocity 1,942 footseconds (service), energy 19,200 foot-tons, shell 732 pounds. It is, of course, an old-type gun. Its penetration is for a 12 -inch gun very small. The velocity is poor, and the piece is considerably inferior to the Japanese 12 -inch gun. The rate of fire of this piece is slow.
A more powerful piece and a better gun is the 10 inch of 45 calibers, carried by the "Peresviet" class and the "Apraksin" and "Rostislav." Its ballistics are inferior to those of the United States 10 -inch Mark III., but it is superior to the "Iowa's" gun, being able to penetrate 13 -inch Krupp armor at 3,000 yards. As a gun, it is the finest heavy piece in the Russian seryice, and its rate of fire and accuracy are both good. It was seriously contemplated a few years since to have this piece only, its results being so superior to those of the 12 -inch 35 -caliber gun. It weighs 38 tons, and has a velocity of 2,500 foot-seconds at the muzzle. It keeps up the velocity well; but the exact weight of the projectile is not known. It is somewhere about 500 pounds. Velocities of, or over, 3,000 foot-seconds have been accredited to it; but these are merely trial results. Its defect is that the penetration is poor at long ranges, where the velocity drops, and the relatively light projectile tells against it.
The "Gromoboi" and "Bayan" carry a 45 -caliber rapid-fire 8 -inch gun. Its mechanism is somewhat
ardy, and the rate of fire only about once a minute but the gun is excellently constructed, and has very fine ballistics. It weighs 20 tons, fires a 250 -pound projectile, and has velocities up to 3,000 foot-seconds, though the service velocity is lower than this. Its serv ice penetration is about 8 to 9 inches of Krupp armor at 3,000 yards. The new 7 -inch is the United States gun it most nearly resembles in power; but its energy is better on account of the heavier projectile.
The 6 -inch rapid-fire is of 45 calibers, and fires shell of both 111 and 88 pounds weight. The service veloc ity is 2,460 foot-seconds, and the weight of the gun about 7 tons. It is nominally equal to 6 inches of Krupp armor at 3,000 yards. Its rate of fire is moder ate. In the latest ships it is mounted in a completely circular shield inside the casemate. The "Czarevitch" carries this gun on a twin mounting, as do the "Pol tava" class. This mounting has given very satisfactory results as such mountings go. They always leave something to be desired. The 4.7 -inch is a piece of 45 calibers about on a par with corresponding pieces in other navies.
All these guns have the Schneider-Canet breech mechanism, which is not equal to the Welin for rapid ity, though less liable to derangement. A Russian in novation is a carrier below the breech block, so that when the latter is opened, its weight is not thrown on the hinges. The mounting details and riffing follow the Canet system.
Most Russian ships have electric hoists. Their guns all use nitro-cellulose smokeless powder. The projec tiles are capped armor-piercing shell, and common shell. No solid shot is used, as the Russians claim to find their capped armor-piercing shell equally pene trative. High explosives are not yet introduced. Fuses are the weak point in Russian gunnery.
Newspaper reports have made the aiming very bad; but enough account was not taken of the range at Port Arthur. There are some very good shots in the Rus sian fleet, and the average gunnery officer is efficient. He is able, and often acts as captain of a gun, a do other officers. Where the Russian fleet came to grief was in the fact that gunnery was totally neg lected by Admiral Stark, who devoted his time to battle evolutions of the parade ground type
In conclusion, mention may be made of a few other guns in the Russian service. A 9 -inch piece exists in some small coast defenders and armored gunboats. It is an obsolete gun, of which little is known and still less is worth knowing. There is also an old 8 -inch in the "Rossia" and "Rurik." It is 35 calibers long, and its highest velocity is 1,922 foot-seconds. Its penetration is poor and its firing slow-it is less penetrative, in fire, than modern 6 -inch guns.

THE MOTHER OF EXHIBITIONS.

In the centuries before the nineteenth, the nearest approach to an international exhibition appears to have been the Frankfort fairs of the sixteenth century Henry Estienne, the scholar, describes this institution as "the epitome of all the markets of the world." But it is from an event within the memory of many persons now living that the fairs at Philadelphia, Chicago, Buf falo, and St. Louis trace their genealogy. The mother of all such displays was the exhibition held in London in 1851. This was itself an outgrowth of a series of exhibitions of art manufactures held by the Society of Arts, at the suggestion of its secretary, Mr. F. Whishaw from 1847 to 1849 . These consisted merely of a collection of articles made in the British Isles; and the Prince Consort, who was president of this society, im proved on the experiment by making the bolder pro posal that there should be brought together an exhibition representing the skill of the whole of the civilized world. It is surely one of the curiosities of history that such democratic institutions as these exhibitions are considered to be should have owed their impulse not to any popular movement whatever, but to a suggestion that came from Buckingham Palace, and that needed all the weight of royal influence to overcome the ob stacle of popular indifference and opposition.
On June 30, 1849, the matter was laid before a meeting of the Society of Arts called by the Prince Consort at the palace. On October 17 of the same year, the leading bankers and merchants in the city of London were consulted. On January 3, 1850, there was taken the important step of the appointment of a royal com mission to be responsible for managing the venture. Its members were Henry Cole (afterward secretary of the Science and Art Department), C. W. Dilke (father of the present baronet), Robert Stephenson, and Digby Wyatt. One of its secretaries was Stafford Northcote distinguished later as a cabinet minister and Conserva tive leader in the House of Commons. Northcote's exertions in connection with this project did much to bring on the physical weakness which afterward lessened his effectiveness as a statesman. The exhibition also owed much to Lyon Playfair, the scientist, whose biography shows that at one time his tact prevented the whole undertaking from coming to grief. Play fair's special skill was in organization and in the ap-
lication of scientific discovery to industrial improve ment-talents which found special opportunities of exercise in this connection.
The scheme was fully launched on March 21, 1850, at a Guildhall banquet to which the Lord Mayor in vited the chief officers of state, the foreign ambassa dors, and the mayors of the provincial towns. The principal speaker was the Prince Consort himself, who sked their co-operation in the attempt "to give th world a true test, a living picture, of the point of in dustrial development at which the whole of mankind has arrived, and a new starting point from which all nations will be able to direct their further exertions." The reception of the proposal at this dinner was grati fying, but to obtain the active assistance of those whom the guests represented was a wearisome task. The forces of old-fashioned Toryism in Parliament and the press, deliberately set themselves to ruin the whole thing. The most violent opponent in the House of Commons was a certain Col. Sibthorp, who espe cially feared the demoralization of the national char acter that would ensue from the visit to England of a large number of persons from the Continent. "Take care of your wives and daughters; take care of your property and your lives," was the warning he passion ately and sincerely addressed to his fellow countrymen The Times was dead against the plan, and Punch did its best to turn it into ridicule. In one of Leech's cartoons the Prince Consort was represented as "The Industrious Boy," holding out a cap on which was in scribed, "Please remember the exposition."
As the various details of the scheme developed, its opponents attacked them in turn. There was, for in stance, the question of the site. The government first offered the area included in Somerset House, but thi was obviously much too small for anything on the scale projected. The Prince suggested Hyde Park. An outcry arose against the spoiling of one of the most delightful spots in the metropolis. A petition sent to the House of Lords against the use of the park received the support of Lord Brougham, and a resolution to the same effect was introduced into the Lower House also. In a letter of the Prince's to Stockmar, dated June 28, 1850, he says: "The exhibition is now attacked furi ously by the Times, and the House of Commons is going to drive us out of the park. There is immense excitement on the subject. If we are driven out of the park, the work is done for. Never was anything so foolish." In a letter to the Duchess of Kent, dated July 4, there is a similar reference, from which it appears that the opposition party were urging that if such a nuisance must take place, a site should be found for it in the Isle of Dogs-a dismal swampy region further down the river, occupied to-day by the West India and Millwall docks. Happily, on the same date as the second of these letters, the Parliamentary opponents of the Hyde Park site were defeated in a division, and that difficulty was overcome.
Then came the problem of finance. In view of the strength of the antagonism to the scheme, the Prince wisely forbore making any attempt to secure an appropriation from Parliament, and trusted entirely to the public spirit of his supporters. Mr. Samuel Peto, with his partners in the well-known banking firm which bore his name, led the way on July 12, 1850, by the offer of $\$ 250,000$ to a guarantee fund. Ultimately the actual subscriptions toward the cost of the exhibition amounted to $\$ 375,000$, and the guarantee fund to $\$ 1,000,000$. The undertaking was so entirely experimental that there was no knowing whether the whol of this sum would not be required to meet the cost.
Both site and money having been obtained, the way seemed clear for the prosecution of the work. But just at this point the commission was confronted by one of the most puzzling situations in the history of the movement. In what kind of structure should the exhibits be housed? Out of two hundred and thirty-three plans submitted, not one appeared satisfactory. Each of them contemplated the erection of a huge brick build ing, which would have justified all the protests that had been made against the defacement of the park. At the last moment light came, not from a professional architect, but from a pardener. Joseph Paxton, whose solution of this problem made him famous, was the son of a Bedfordshire farmer. In his youth he drifted from place to place in pursuit of his occupation as gardener. In 1826, at the age of 25 , he was on the point of emigration to this country, as his earnings were only eighteen shillings (four and a half dollars) a week; but he happened to attract the attention of the Duke of Devonshire, who made him superintendent of the gardens at Chatsworth. Later he was promoted to be responsible for the woods and forests on the estate also. In 1840 he completed the erection of the Chats worth Conservatory, the largest of the kind hitherto constructed. One day, while waiting for his train at a railway station, and reflecting upon the difficulty of the exhibition commissioners, he was suddenly struck by the idea that an adaptation of the conservatory system would get them out of their impasse. Sitting at the table of the waiting room, he hurriedly sketched on a piece of blotting paper a rough outline of a build.
ing, and within nine days completed a set of plans which were immediately accepted. The essential fea ture of his scheme was that the structure should be not of brick, but of glass and iron, with the exception of course, of the flooring and joists
Paxton's plans were accepted on July 16, 1850. The actual building operations commenced on September 26. The contractors were Messrs. Fox and Henderson to whom it was agreed to pay $\$ 399,000$, or $\$ 750,000$ if the building was retained as a permanency. The exhibition structure, which covered eighteen acres, wa in the form of a parallelogram 1,851 feet (correspond ing to the number of the year) by 408 , with a projec tion on the north 936 feet long. Col. Sibthorp's kindly prayer that lightning or a hailstorm might destroy the building while in course of construction was not answered. By New Year's Day it was complete, and was handed over to the commissioners.
What especially impressed the imagination of those who inspected the building was the sight of giant elms, former ornaments of the park, which rose toward the roof without any more obstruction than if the space on which they stood were still uncovered. On February 12,1851 , the building was opened to exhibitors for the reception of their goods.
Even when this stage had been reached, the mal contents had not all been converted. From a letter of the Prince Consort's as late as April 15, it appears that there were predictions that foreign revolutionists would use the opportunity to upset the monarchy and estab lish a republic, and that the confluence of so great a multitude would cause an outbreak of plague. The apprehension was as great in some circles on the Con tinent as in England. Mr. Sidney Lee, in his biography of Queen Victoria, notes that the wish of the Queen and her husband that all national rulers or their repre sentatives should be their guests on this occasion, had to meet the fear of many foreign sovereigns lest the assembly of several crowned heads in one place should be an incitement to the attempts of conspirators. It was with great difficulty that the Prince of Prussia was persuaded to accept an invitation to be present with his son. The Prussian minister in London wrote howe that a number of madmen had already assembled, and intended to work irretrievable disaster by interrupting the succession to the Prussian throne. Lord Granville suggested to the diplomatic colony in London that on the opening day they should present an address to the Queen in recognition of the fact that the object of the exhibition was not purely British, but international, but they declined to do so

The opening ceremony on May 1, 1851, was naturally awaited with the greatest anxiety by the promoters of an undertaking which had been regarded with so much doubt in some quarters and open animosity in others. It was a brilliant success. One of the most interesting descriptions of the event may be read in the "Letters of Dean Stanley." He speaks of what happened immediately the public were admitted as "one of the most ridiculous scenes I ever saw." Nobody stayed to look at a single exhibit, but everyone made his way, first at a trot and then at a full gallop, to the transept, where the Queen was presently to appear and declare the exhibition opened. As the crowd entered from several doors on each side of the building, this throng converging at racing speed upon the center must indeed have provided a comical spectacle to those who were not in too great a hurry to look around them. The opening ceremony itself was dignified and impressive. In all the assembly the persons to whom the success or failure of the exhibition meant most were the Prince Consort, by whose initiative it had been undertaken and who had staked upon it his influence in the country; and the Queen herself, so closely affected as she always was by everything that concerned the welfare or honor of her husband. It is little wonder that Stanley describes her as flushed with a kind of excitement he had never witnessed on any other human countenance. Never before, too, says Stanley, had he seen her look so thoroughly regal. Still possessing a youthful capacity for a quick response to outside impressions -for she was then only in her thirty-second year-she spoke of it afterward as the proudest and happiest day of her life. No disaster or even disturbance marred the celebration. There were 25,000 persons in the build ing at one time, and 700,000 lined the route of the royal procession between the exhibition and Buckingham Palace, yet there was not one accident or police case.
The tide of public opinion had now turned. In the reaction, forecasts of revolution and disorder were succeeded by the most extravagant forecasts of millennial peace, which would directly result from the friendly meeting of citizens of many nations. How was it possible that those who had thus learned to associate in the gentle rivalry of invention and industrial skill could ever again draw the sword against one another? The Crimean war, three years afterward, was the answer to these imaginations, to say nothing of later conflicts which have embroiled in deadly struggles almost every leading power represented at
(Continued on page 423.)

TRANSPORTER BRIDGE ACROSS THE MANCHESTER SHIP CANAL.

The latest transporter bridge is now nearing completion across the Manchester ship canal in Fngland, connecting Widnes and Runcorn on opposite banks of the river Mersey.
The structure when finishe will be the largest of its type, as it will have a clear span of 1,000 feet In design it is exactly the same as an ordinary stiff ened suspension bridge, except that the approaches to the bridge are at a low level, and both vehicular and pedestrian traffic will be carricd across the rive in a car suspended from the bridge. The utilization of low-lcvel approaches dispenses with the erection of costly high-lcvel approaches, which arc necessary to sive admittance to the suspension bridges of the gencral type
The idea of a transporter ferry bridge originated from Mr. Charles Smith, of Hartlepool (England) who sugzested the censtruction of such a structur across the Kiver Tees at Middesborough over thirty years ago, but his suggestion never saw fruition
The Runcorn and Widnes bridge, although similar in the main principles to that at Bizerta, is widely dissimilar in its general construction. The $1,000-$ foot span gives adequatc clearance over both the river and the Manchester ship canal. The bridge is approached from both banks by an almost flat roadway at a suitable level, built between stone and concrete retaining walls risht up to the water's edge. From this point over the foreshore to the base of the towers, the approach is carried upon steel elliptical girders resting upon cast-iron col umns, supporting a corrusated stecl fooring upon which is laid wood paving on a concretc bed. This section of the roadway is 35 feet wide between parapets with sidewalks of fcet wide on either side.
The towers which carry the cafles and the siliffenin Nircers arc con otructed throushout of stecl, and rise t.o a height of 190 feet. above high - water mark. There are four tow ses in all, two at. either end anm each tower is firmly bolt ed 1.0 four cast iron eylinders rach of 9 feet d i ameter These caisson are firmly bolt (ad to a solid iork founda fien.

Wach tower -onsists of fon legs, feet 10 inches wide at th hase, taperins to a width of 2 feet 3 inches at the top tirme top sirongly brac edtogether with strons horizontal and aiagonal bra ing. At the base of each tower the less are 30 feet apart. narrow ing to 6 feet 9 inches at the
top landins, which is 10 feet 6 inches wide. Wach pair of towers is 70 feet apart, and braced together with strong horizontal and diagonal frames. The saddles, on steel rollers, for carrying steel cables, are fixed a the top of each tower. The rollers are adapted for taling ul the variations in the length of the cabie clue lo the loads and climatic conditions.
There are two main steel cables. Fach consists of nineteen steel ropes bound together. a rope being composed of 127 wircs of $0 . f(6$ inch diameter, so that each cable is built of 2.413 wires. The total diameter of the cable is about 12 inchess. The two cables repre. sent a weight of 243 tons, and the wire is capable of withstanding a tensile strain of at tons per sume inch. The interstices that are left between the wire of the ropes arc fille during the process of manufact
ure with a bituminous compound. The ropes are laid in parallel, and when made up into the cable, the whole mass is covered with a layer of the same com pound, and the whole is then incased in two layers of strong sail cloth saturated with bitumen.
The anchorages of the cable backstays are in the solid rock about 30 feet deep, with screw adjustments fixed between the anchorages and the backstays

There are two longitudinal stiffening girders sus pended from the main cables, 18 feet deep, and placed 35 feet apart horizontally. The underside of the girder will be 82 feet above the high watcr of the river below thus leaving plenty of clearance for the passage of the largest vessels underneath. In the center they will be hinged so as to minimize the stress arising from the deflection from temperature, the girders rising and fall ing as much as 2 feet 9 inches for a range of tempera ture of 60 deg. F. on cach side of an average tempera ture of 60 deg. F. In order to allow for the longi tudinal expansion and contraction, a unique arrange

The Towers in Course of Construction, The Top of a Tower. General View of Transporter Bridge Towers on Both Banks.
completely under his control. Reverse and forward gearing are to be provided, so that the car can be driven in either direction as desired at a moment's notice, or if the exigencies so demand it, the engineer can stop the car very quickly by means of the brakes. The time occupicd in crossing from one side of the river to the other will be about $2 \frac{1}{4}$ minutes, which is equiva lent to a traveling speed of about $4441 / 2$ feet. per minute. Including time for unloading and loading, it is antici pated that nine or ten trips per hour will be made.
The car is to be propelled by electric traction. The rails upon which the trolley is to run are fixed upon the lower flange of the stiftering girders. The trolley is 77 feet in length, and is carried upon 32 wheels, 16 on each side. It is to be propelled by two electric motors cach developing 35 brake horse-power. This is more power than will be necessary for actually driving the car; but the high power has been adopted to enable any sudden emergency, such as a strong head wind against a heavy load, to be coned with, and fur thermore to effect economy in working. The motors are attached to a kind of bogie arrangement in the trolley, so that in event of large curvature of the bot tom boom of the stiffening girders, arising either from temperature or load, the driving wheels will still be ahie to secure a firm grip upon the track metals. Auto matic and hand brakes are provided, and it will be possible to bring the car to a slandstill, even when traveling at full speed, within its own length.
The engineers for the work are Messrs. John J. Webster, M. I. C. F., of London, and John T. Wood, M. I. C. E., of Liverpool, 10 whom we are indebted for the accompanying illustrations. The total cost of the structure will approximate $\$ 650.008$, which is about onc-third of what a high-level suspension bridge woudd have cost.

A series of experiments have been conducted at St. Petersburg be fore a number of the courl officials with a new cuirass in vented by an Italian namerd Giorgiano, which it is claimed is im penetralile to revolver lua lets, and re sists steel on slaughts, such as arc inflicted by a sword or layonct. The breastplate is made of soft clastic: materi al, is about a centimeter in 1.h i ckncss and weighs four pounds. The experiment. inclinded the discharge of shots at eight planks, cach an inch thic: k, and praced one on top of the other. The shots pene trated cuery plank Then a sheet. of stee. two inches in thickness. was pierced by the shots. Bul lets ware lired from a long. range heavy Russian caval bUILDING OF AN ENGLISH TRANSPORTER BRIDGE. ment has been adopted. The girders are fixed to verti cal rockers, which furthermore carry the overhang of the girders when the car is in the dock at the fowers. The transporter car or ferry comprises a platform 55 feet in length by 24 feet beam, suspended by steel wire ropes from the trolley above. The ropes are so hung that they prevent either side or end oscillation of the car. The latter will be of sufficient dimensions 1.0 accommodate at one time four large two-horse wagons and 300 passengers. For the convenience of the latter, and to aftord protection from the weather, there is a glazet shelter, with folding doors at either end and sides. On the top of the car will be placed the engineer's cabin. containing controlling levers and switchboard, so that he will have a complete uninter. rupted view of the course, and the car at all times
ry revolver of the Nirwan type and a heavy Λ merican patiern revolver, respectivcly, but in cach case the shots that were fired at the breastplate failed to perictrate or even dent the inner surface of the cuirass remaining embedded. Even explosive bullets did not damage the breastplate. Experiments were also made with a steel bayonet. a Circassian dagger, and a sword of Damascus steel. The bayonet and the bagger broke without cutting the breastplate, while the saber simply made a dent on the outside of the fabric.

South Africa condributes about 95 per cent of the world's supply of diamonds, the trade being thas controlled by the De Beers Consolidaterl mincs. which, in the year ending .lune 30,1903 , recovered $2,475,802$ carats, valued at $£ 5,241,173(\$ 25,507,042)$.
a bad case of warped railroad track.
The most extreme case of distortion of railroad track, due to changes of temperature, that ever came to our notice, is that which is shown in the accompanying illustration. It occurred on April 27, shortly after noon, at a point about three miles northeast of Waterloo, Iowa, on the Chicago \& Great Western Railway, and it required no small amount of work on the part of the section gang to get the track back into such shape that the noon passenger train, which was stopped by the accident, was able to proceed. The track, which was laid about two years ago, is at this point practically level, and the ties are laid in gravel and sand. Apparently there had been no very sudden change in temperature, the government readings giving 62 as the maximum temperature at Dubuque, Davenport, and Des Moines. The probable explanation is that there may have been a creeping of the track during the recent very cold weather, which caused a local closing up of the joints until the rail ends were in close contact; and that with the return of warm weather, the expansion of the rails caused the track to give way laterally at the spot where the resistance was least. It will probably be found that the resistance of the ballast to lateral displacement was considerably less on the stretch of track where the distortion took place, than for a considerable distance on either side of it. Railroad men are accustomed to distortions of the track due to temperature changes; but we think that the most experienced veteran will look upon this picture with no small amount of wonderment.

THE CYCLOGRAPH

The apparatus called a cyclograph, recent ly devised by Mr. Ferguson, is designed for the same purpose as the pedograph of the same inventor, that is to say, for automatically making a topographical record of the ground traversed during a journey. The new apparatus differs from its predecessor in that it is designed for the bicyclist, while the pedograph was designed for the pedestrian. It consists essentially of a flat box arranged horizontally upon the handle bar of the bicycle and containing a sheet of drawing paper, which, owing to the meridians that are traced upon it, may be kept constantly in position in the direction of the road according to the indications of a compass mounted upon the top of the box. As a result of the motion of the bicycle, the paper always moves backward in the direction of the longitudinal axis of the bicycle, and a small inked wheel rubbing over the paper inscribes a line upon it. If the bicyclist makes an angle upon the ground, he turns the paper (guiding himself by the indications of the compass) at an equal angle in the opposite direction. This is always done around a point situated beneath the marking wheel as a center. The paper immediately continues its motion backward as before. As a result there is marked upon the paper a line which exactly indicates the trip made. The motive power for actuating the cyclograph is obtained from a very simple eccentric arrangement fix ed to the front wheel. A disk of thin steel, with an interior eccentric circle, is placed in the vicinity of in the vicinity of the spokes of the wheel
in such a way that it can revolve freely with the wheel without striking the fork. Upon the periphery of this disk slides a shoe forming part of a lever which is se a lever which is secured, in such a way that it can oscillate, to a small bracket projecting forward from the axis of the wheel outside of the fork. This arrange-

Fig. 1.-THE CYCLOGRAPH ON A BICYCLCE.

bad case of warped railroad track
zontal lever, A, is capable of oscillating around the vertical shaft of the driving wheel, B, and striking alternately the posts, C and D. Of these latter, the first is stationary, and the second movable upon a graduated scale to which it may be secured by means

Fig. 3.-details of the mechanism of the cyclograph.

Fig. 2.-THE FERGUSON CYCLOGRAPH.
of a thumb screw, E. In an inoperative position, the lever is held against C^{\prime} by the spring, F^{\prime}, which has sufficient strength to keep taut the wire, W, that runs to the eccentric. If a pull be given the wire, the lever will be moved until it strikes the post, D. The excess of power still exerted by the eccentric at this moment is absorbed by the spring, G. In this way, the lever is always limited to the amplitude of oscillation allowed by the adjustable post, and which ranges from zero to maximum, according to where the post is set. Upon each side of its fulcrum point the lever is provided with vertical flanges, H, which leave between them and the rim of the wheel, B, two oblique spaces in which the disks, K, are inserted in such a manner that they have a slight play. If the lever, A, moves toward C, the disks will slide with an imperceptible friction along the rim of B, in such a way that the rubbing spring, L, can only just maintain the wheel, B, in position. When the lever moves in the opposite direction, the small disks, K, become jammed between flanges, H, and the wheel, and thus turn it. The reason for this is that when the lever moves in one direction the disks, by rubbing against the wheel, are pushed into the widest space between the flange, H, and the wheel's periphery, while when the lever moves in the opposite direction they become jammed in the narrowing space between H and the wheel rim, thus moving the latter, as stated above. The result is that the various positions in which the post, 1 , is placed, will determine the amount of movement given the wheel at every revolution of the bicycle wheel, since each turn oí this wheel produces an oscillation of the lever. The wheel, B, has a double-threaded worm, M, upon the upper end of its shaft, and this drives the small gear, N. The teeth of this gear project above the cover plate, O, through a slot in the latter. The paper is placed upon the plate, O, between the gear, N and the inking wheel, P.
If, as a consequence of the oscillations of the lever, Δ, the gear wheel, N, begins to move, it will carry the paper along with it. The inking wheel will revolve and draw a line upon the upper surface of the paper, while the teeth of the gear wheel will leave their marks upon the lower surface. These marks will be spaced one millimeter apart. As every oscillation of the lever corresponds to one revolution of the wheel of the bicycle, and consequently to about 2.15 meters (7 feet) of the road, one millimeter upon the paper therefore represents as many times 2.15 meters upon the road as it has required oscillations of the lever, A, to cause the wheel B, and the worm, M, to make only a revolution. The latter is doublethreaded and moves gear, N, one tooth for every half revolution that it makes. The scale may therefore bc established at will for any value from one ten-millionth up to $1 / \infty$.
In order to prevent displacement of the paper, the apparatus is completed by the arrangement $U T A^{\prime} V$, which serves at the same time to turn the paper at a certain angle. U is a rod provided with a grip, by means of which the arrangement is actuated; T is the prolongation of the rod; A^{\prime} a milled wheel mounted upon a spring that plays the part of a flexible shaft; and V is an other roller, which presses the paper against A^{\prime} which projects through a slot in the plate O If the route is north south, the paper will be moved regularly backward; but if the road turns, the bi cyclist turns the paper at the same angle by means of the arrangement just described and as in dicated by his com pass.
In order to do away with the incon veniences inherent in
its use, the compass is construated so as to assure its needle a magnetic moment as great as possible, and a moment of inertia as small as possible. For this purpose, the compass is arranged as shown in Fig. 4. Two steel needles are fixed to a small piece of wood through which passes the vertical axis. Two small springs, a, serve to regulate the equilibrium. The two points of the axis move in agate bearings. The bottom and cover of the compass are of glass so as to permit the rider to see through it the meridians pre viously inscribed upon the paper and to keep them parallel with the needle. This manipulation is effected by means of the arrangement $U T S R$ (Fig. 3) already described. The com pass is placed about 10 inches above the box in order to protect it against the magnetic ef fects of the rolling machine.
In order to avoid vibrations, the compass is mounted upon a rectangular frame of strong copper wire (Figs. 1 and 2) fixed by a hinge to the cover of the box, upon which it can be turned down. The compass is capable of revolving upon this frame, and it is held by two independent rods parallel with the surface of the box. The vibrations are thus subdivided and absorbed by eight movable and elastic parts.
In the experiments that were made with the apparatus, the results were such that it was scarcely possible to distinguish the lines thus obtained from those found upon an official map. So before the apparatus was put upon the market, a sample was ordered by the In telligence Branch of the English government with a view to utilizing it in China, the topography of which country has been but slightly studied, although the country is provided with good roads. In all countries of this kind, the Ferguson cyclograph. will certainly be of great value.

FACSIMILE OF DR. JOSEPH PRIESTLEY'S INVOICE ON COMING TO AMERICA IN 1794.
 by george f. rudnz, ph.d.

These valuable documents were recovered from a mass of old papers, many tons in weight, containing thousands of signatures of men noted in local and na tional history, that was sold for waste paper in connection with the coming removal of the New York Custom House to its new site near the Battery. Their value was suspected, and the New York Scenic and Historic Preservation Society made many efforts to prevent their disposal in such a manner, but with out avail.

Dr. Joseph Priestley, whose name is forever associated with the discovery of oxygen, was born near Leeds, England, in 1733. His great discovery was foreshadowed in a paper on the properties of the "different kinds of air," published in the Philosophical Transactions of the Royal Society in 1773. It received the Copley medal, as a communication of great importance, but its full significance was by no means understood. The next year, 1774 , is usually given as the date of the actual discovery of oxygen gas, which he termed "vital air," or "dephlogis ticated air," but never appreciated its real character. This was recognized and determined some fifteen years later by Lavoisier; but Priestley himself remained all his life a believer in the old theory of "phlogiston."
Dr. Priestley was a dissenting minister, but developed a growing tendency toward Socinian views in theology and liberal doctrines in politics. He was always much interested also in philosophical and scientific studies. After holding several positions, as pastor of churches, tutor in Warrington Academy, and scientific librarian to the Earl of Shelburne, he took charge of a church in Birmingham. When
the great agitation connected with the French revolution came on, he was suspected of sympathizing with it, on account of the advanced liberalism of his general views. Public excitement ran very high on that subject; and in 1791, on the occasion of a celebration at Birmingham of the storming of the Bastile, although Dr. Priestley was away, his house was attacked and burned by a mob, and his library and apparatus destroyed. After three years spent at Hack-

JOSEPH PRIESTLEY'S CUSTOMS EṄTRY, 1794.

deputy collector of the port, declaring that "the articles contained in the several packages designated in this entry are truly intended for the sole use of myself and family, and are not directly or indirectly import ed or intended for sale."
The list, it will be seen, is a pretty extensive one, comprising the furnishings of a large home as well as a laboratory. It is as follows: Eleven casks, fifty-six cases, seven crates, six bedsteads, one chest, one bundle of matting, six dozen of boards, two hogsheads, one clock case, one bale, one box, six trunks, one portmanteau, containing books, wearing apparel, philosophical, chemical, and electrical apparatus, household furniture, three boxes, two hampers, two beds and bedding. [Signed.] Joseph Priestley.

The remaining ten years of his life were passed at Northumberland, Penn., with his sons and family, and were occupied chiefly in his favorite scientific studies. He died in February, 1804, at the age of seventy-one. In 1874 the chemists of America celebrated the hundredth anniversary of his discovery of oxygen, by a notable gathering at Northumberland, Penn., under the name of the Centennial of Chemistry. Dr. Priestley's descendants are still living there, and greatly

Dr. Priestley to a friend in England, in which he says that if he had known how cheaply and comfortably he could have lived in France, he would never have come to America. This letter was published, along with a number of others from and relating to Priestley, by Dr H. Carrington Bolton in a volume a few years since.

The Electric organ of the Torpedo Fish.
In a paper recently read before the Berlin Academy of Sciences, J. Bernstein and A. Tschermak in vestigate the thermic phenomena shown by the electric organ of the torpedo or electric ray. Such physiological researches as have so far been made in this direction were intended merely to ascertain the intensity, direction, and duration of the electric shocks. It is safe to say that the electric discharges operative here have been found to consist of individual, shortlasting impulses, which always follow the same direction. The elements constituting the batteries of which the organ is made up, will assume a negative potential on the side where the nerve fiber enters the organ. As regards, however, the causes to which are due tre potential differences produced in these elements, the investigations made up to this day were not able to afford any likely explication. Now, according to the recent thermo-dynamic theories of galvanic batteries, exothermic batteries (being heated during operation) should be distinguished from endothermic batteries, which, in the course of working, will undergo a cooling effect. Whereas, the E. M. F. of the former class of batteries is lowered with increasing temperatures, that of the latter class is found to increase. The authors made the following experiments for the most part in the Naples Zoological station. In order to determine the variations of temperature undergone by the electric organ of the fishes, they used Constantan batteries, consisting of ten to twenty elements, made up of plates or wires of iron and of this alloy (Constantan is an alloy of copper and of nickel containing 50 per cent of each), which were dipped in the dissected organ, or else introduced between the two organs of the same fish, while being in connection with an extremely sensitive Rubens galvanometer. The organ was stimulated from the nerve by means of currents from an induction coil, acting in most cases for one second. As it was impossible to evaluate the electric energy of the discharge by means of the electrodynamometer electric method, the authors determined the amount of heat evolved in the external circuit by means of an air thermometer analogous to the Riess thermometer. From these exper1ments, the remarkable result is inferred that the variations of temperature undergone by the stimulated organ are so small as to be inappreciable. The electric organ, accordingly, shows a thermic behavior essentially different from that of muscles. It cannot therefore be analogous to a battery working exothermically with a considerable evolution of chemical heat. It rather seems likely to constitute an endothermic battery, and, more especially, a concentration battery. With respect to the thermic behavior, it resembles a nervous tissue rather than a muscular tissue. These researches are further confirmed by experiments made with a view of finding the temperature coefficient of the power of the shocks.

Both of the two. schemes for an electric high-speed railway between Berlin and Hamburg, lately presented to the Prussian railway department, provide for an electric central station to be installed in Wittenberg, the main station between Berlin and Hamburg. It is anticipated that the journey between the two cities, which at present requires upward of three hours with the
revere his memory. Much of his old furniture and apparatus are preserved, the latter very interesting, not only historically, but as showing the simple, and, in many cases, home-made instruments with which a great student and observer did great and pioneer work in chemical research.
In the Kunz collection of scientific portraits and relics of eminent men of science, now in the Field Columbian Museum at Chicago, there is a letter from fastest trains, will eventually be made in one and one half hours only. As a matter of course, a new roadhalf hours only. As a matter of course, a new road-
bed will be necessary, but the cost of this reconstruction does not seem to be prohibitory. The fact that a third track has been found necessary (which in the case of the electric high-speed railway being installed could evidently be dispensed with) is illustrative of the dense traffic existing between the two largest German cities.

THE MOTHER OF EXHIBITIONS.

Continued from page 419)

this festival of amity. In all parts of England itself the exhibition aroused intense enthusiasm as long as it remained open. One reads, for example, of an old Cornish woman who hao trudged on foot three hundred miles from her native county to see the wonderful palace of glass. The feeling of London showed itself at a ball given in the Guildhall, when the passage of the Queen and the Prince Consort through the city was made the occasion of the most jubilant demonstra tions of loyalty, even on the return journey, though it was as late as one o'clock in the morning.
On October 15 the Prince Consort declared the exhibition closed, and the awards were published. The fair had been divided into four great departmentsraw materials, machinery, manufactures, and fine arts-and these were subdivided into thirty classes. One-half the space had been allotted to England and the colonies, and one-half to foreign countries. There were 17,000 exhibitors, of whom 2,918 received prize medals and 170 council medals. The estimated value of the articles exhibited, exclusive of the Kohinoor diamond, was $\$ 8,909,645$. During the 144 days during which the exhibition was open, there was a total of $6,170,000$ visitors. The largest number entering in one day was 109:760 (on October 8), and the largest number present at one time was 93,000 (at 2 o'clock on October 7). Haydn's "Dictionary of Dates" is responsible for the statement that the latter is the largest number of persons recorded in history to have ever been present at one time in one room, though larger crowds have assembled simultaneously in the various buildings of other exhibitions and in the open air.
Long before the final accounts came to be made up, it was evident that there would be no tax upon the guarantors. The amount paid for admission was $\$ 2,525,535$. After all expenses had been met, this left a surplus of $\$ 1,066,525$. There was much discussion as 'o what should be done with it, for such a result was so unexpected that no provision had been made for it in the original scheme. Some advocated that it should be spent upon a winter garden; but others, notably the Prince Consort, thought it would be an anti-climax to connect with a mere place of amusement the memory of an exhibition which had been a landmark in the history of industrial art. The wiser counsel prevailed, and the money went to form the nucleus of what was afterward known as the South Kensington Museum, an institution which has been not only a permanent collection of valuable exhibits, but a center of artistic and scientific education throughout the British Isles.
And what was to happen to the actual building? Some who had at first vehemently opposed the desecration of Hyde Park by any such monstrosity, were now eager that it should remain forever where it was. This plan, however, was not generally thought to be expedient. On December 1 the building was surrendered to the contractors, who sold the materials for $\$ 350,000$ to a company which proceeded to re-erect it on the top of a hill in the suburb of Sydenham. The services of Paxton, who had received the well-deserved distinction of knighthood, were brought again into requisition, but this time the work was carried out in more leisurely fashion, for it was not until June 10, 1854, that the transplanted building was opened on its new site. From that time until the present the "Crystal Palace," as it came.to be called, has been well known to every Londoner and every visitor from the country. It has been especially noted for its musical festivals, and has many times recalled the memories of its original function by affording a home for exhibitions, generally of some special scope, as bicycle shows, chrysanthemum shows, etc. A notable occasion was a service held on the fast day for the Indian Mutiny, when Mr. Spurgeon preached to a con gregation of 23,000 people.
In cost, size, and number of visitors the exhibition of 1851, though spoken of at the time as "the Great Exhibition," appears small in comparison with such an enterprise as the St. Louis Fair. But no successes of later undertakings in the :- me line can rob the promoters of the Hyde Park project of the distinction that belongs to the pioneer. On the other hand, the very expansion of the international exhibition movement is itself the greatest possible tribute to the wisdom and courage of those who made the strange idea familiar. And, as Mr. Justin McCarthy has put it in his account of the event in the "History of Our Own Times," although later exhibitions have been far superior, "the impression which the Hyde Park Exhibition made upon the ordinary mind was like that of the boy's first visit to the play-an impression never to be equaled, no matter by what far superior charm of spectacle it may in after years again and again be followed."

The largest producer of sulphur is Sicily; its deposits occur in Miocene limestone, with unaltered beds of gypsum below, and it exported in 1903475,508 tons, of which nearly one-third was for the United States.

an electrically-operated clock.

It is the usual practice in clocks driven or wound by electricity to arrange the pendulum to make the electric contact at regular intervals; but heretofore great difficulty has been found in keeping the contact points bright and clean, owing to excessive sparking on breaking the circuit. The clock which we illustrate herewith is so designed as to entirely overcome this defect, and, furthermore, is so constructed as to reduce friction of the parts to a minimum-a prime requisite in all electric clocks. As a result of embodying these two features in this movement, but little current is required to operate it, two small dry cells being amply sufficient to keep the clock running for three years without renewal. The improved electric clock comprises an electro-magnet, between the poles of which

POSITIVE CONTACT FOR ELECTRIC CLOCK.
an armature is pivoted to swing. A pawl attached to this armature engages a ratchet wheel connected with the gear train of the clock, and a spiral spring attached to the armature near one end serves to draw it slowly out of line with the magnet poles, thus operating the clock movement. The latter may be regulated either by a balance wheel or a pendulum escapement, as desired. Electric contact is made at the end of every six minutes, the current serving to energize the magnet and draw the armature back to horizontal position against the tension of the spiral spring. The contact is made by means of a very efficient arrangement which is shown in our detail view. One terminal, E, which is shown in our detail view. One terminal, E, plate, F, secured to the armature. The other terminal, plate, F, secured to the armature. The other terminal,
D, consists of a pin which is secured to a swinging D, consists of a pin which is secured to a swinging
arm, A. Fastened to this arm, but insulated there from, is a flat spring provided at its free end with a

CLOCK WOUND EVERY SIX MINUTES BY ELECTRICITY.
head or cam, B, adapted to engage a pin, C, on the plate, F. The ends of the cam, B, are beveled, as illustrated, so that when the armature moves away from the poles, the cam will ride over the pin, C, lifting the contact pin, D, out of engagement with the segment, E. When the pin, C, passes the inner end of the cam, the pin, D, will drop onto the segment, B, completing the circuit through the magnet coils and causing the armature to swing back, and the cam then riding under the pin, C, will press the terminal, D, down agains the segment, E, insuring a perfect contact. During the fraction of a second which is taken up by the armature in swinging to horizontal position, the clock movement is actuated by a second spring, not shown in our illustration, which is put under tension by the movement of the armature. The striking mechanism of
the clock is actuated by another apring which is wound up by the movement of the clock hands. The form of the main spring, that which acts on the armature, is quite novel in construction. Due to its spiral form it does not lose its elasticity as rapidly as the usual type of clock spring, particularly since its extension is very slight compared to its length. By means of a thumb-screw adjustment at its lower end, its tension may be very accurately regulated. Mr. Max Moeller, of 73 Palmaille, Altona, Elbe, Germany, owns the patents on this improved electric clock.

The Scientific American in the Schools.
It is pleasing to know that the Scientific American is widely read in schools. We have recently been favored with a circular issued by the Superintendent of the Whitinsville, Mass., schools, which says: "A friend of the schools has been gratified at finding the names of so many pupils on the honor roll for the past year. He most thoroughly believes that one of the best lessons to be learned in the schools is that of punctuality and regularity; after the habit of honesty and truthfulness in word and deed, and earnestness and thoroughness in doing, no habit of greater value can be formed in youth than that of fulfilling our duty at the appointed time. In recognition of your faithful attention to this duty of regular attendance, a year's subscription to your choice of one of the periodicals named on the inclosed card will be sent you if you will mark, sign, and return the card." One of these circulars was sent to every pupil on the honor roll. It is gratifying to note that ten of the pupils selected the Scientific American in place of papers which deal with lighter subjects. The Scientific American should find its way into every schoolroom.

The Current Supplement.

Two striking pictures with a brief article on the Craig-Goch Dam, Birmingham, England, open the current Supplement, No. 1482. Rear Admiral John Lowe presents a solution of the problem of the screw pro peller which will doubtless be of interest to naval engineers. "Oil from Livers of the Cod and Related Species" is the title of a treatise by Charles H. StevSpecies" is the title of a treatise by Charles H. Stev-
enson, whose articles on the fish industry of this enson, whose articles on the fish industry of this
country will doubtless be remembered by readers of the Supplement. The English correspondent of the Scientific American describes in a very exhaustive manner the method by which the Duddell oscillograph records alternating-current wave-forms. The recent architectural discoveries at Pompeii are made the subject of an interesting account. To those who are not familiar with the fine instincts of animals, an article entitled "How Animals Detect Poison" will give a vast amount of information. Dr. R. V. Wagner describes an X-ray tube with adjustable focus. The usual engineering notes, electrical notes and trade suggestions from United States consuls are also to be found in the Supplement.

Engineering Notes.

Another step in the direction of technical education has been made in the city of Dresden in the establish ment of a school for locomotive driver apprentices. The initiative was taken by the Locomotive Drivers' Association of Saxony, which succeeded in interesting the members of the Dresden city council in the scheme, as well as the directors of the technical school and the administration of the Royal State Railroads. The purpose of the new school, which is managed in connection with the Dresden Technical School, is to better equip men who are to become locomotive drivers. The school is for apprentices between 25 and 30 years of age who are employed in the Dresden car shops. Among the subjects taught are German, arithmetic, graphics, and the mechanism of locomotives. For the present the course has been fixed for one year. The lectures and class-room work will be held on three evenings during the week and on Sunday mornings.
An important alteration has been made in the armament of the six armored cruisers of the improved County class, now in course of construction for the British Admiralty. Heavier guns than those originally designed are to be supplied, the alteration represeriting an increased outlay of $\$ 1,000,000$ for the six vessels. The original armament for each of these vessels comprised fourteen 6 -inch guns; but when Mr. Watts succeeded to the office of Chief Constructor of the Navy, two 7.5 -inch guns were substituted for four of the 6 -inch guns. In this last revision four more of the .6 -inch guns are to be dispensed with, and in their place two 7.5 -inch weapons are to be installed. Thus four 7.5 -inch and six 6 -inch guns will be carried. The 7.5 -inch guns will be mounted as follows: One placed forward in a turret, and another aft. The other two will be in casemates, firing ahead or on the broadside. Thus three 7.5 -inch weapons will fire ahead, and as many on the broadside. By this change the battery will be considerably strengthened and improved, for the 7.5 -inch gun fires a 200 -pound shell, as against the 6 -inch gun's 100-pound shell, and will perforate a much greater thickness of armor.

THE CASTING OF THE WILLIAMSBURG BBIDGE ENTAB LATURES-A NOTABLE TECHNICAL ACHIEVEMENT. The thousands of foot passengers who, in the nea future, will walk beneath the great entablatures of the Williamsburg Bridge on which the history of that structure is briefly emblazoned in letters of bronze will probably never realize that, like the bridge itself,
the great plates represent a technical achievement that is without a parallel in this world. No new process was employed in casting these expansive sheets of bronze; and still they are noteworthy for the fact that never before have plates of such great area and comparative thinness been successfully cast in one piece. For the details that we are enabled to present
of the making of the entablatures we are indebted to Mr. S. U. Barr, of the William H. Jackson Company, at whose New York foundry, 229-239 W. 28th Street, the work was carried out
When it is considered that each of the two tablets has a total length of 52 feet 7 inches, a width of 4 feet 3 inches, and a weight of three tons, and the great

One of the Bronze Castings After the Sand Had Been Cleaned from the Surface.

The Casting as it Appeared When Lifted from the Sand Mold.

Workmen Cleaning Up and Finishing the Surfaces of the Letters.

Closing the Mold Before Casting, the casting of the williamsburg bridge entablatures.

The Molten Bronze Metal Flowing from the Cupola.

The Ordinary Bronze Furnace for Melting Bronze in Crucibles.
rapidity with which molten metal cools when poured over a large surface in a thin layer, some idea of the difficulty that was presented may be gleaned. The entire tablets are made up in three pieces with center and two end sections. The center sections are now cast and are 22 feet by 4 feet 3 inches. Since the total thickness of each tablet was to be only $3 / 8$ of an inch, the nice problem of making a wooden pattern that could be readily handled without warping was presented for solution. Special kiln-dried wood was employed. The letters forming the inscription, varying in height from 3 to 9 inches, were fashioned separately and glued in place. The extent of surface was such that the pattern was made in three sections.
of an inch thick. The metal as it ran into the mold seemed bound to chill as it came into contact with the cold sand before it had spread over the entire surface to be covered, and to leave holes and other imperfections in the casting. It was therefore necessary to devise some means of running the metal into the mold so that it would fill every part, before there was time for it to chill. The desired end was attained by pouring the metal into the flask simultaneously at seven different holes, so that it first filled a trough which surrounded the entire mold and from which the metal ran into the mold through 125 connecting passages or "gates" as they are called. Twelve hundred pounds of metal were poured into the trough from a ladle, held

12,000 pounds, was effected by means of the crane which had been previously used in pouring the 1,200 pounds of bronze already mentioned.
The preparation of these castings, the largest of their kind in the world, may well be considered a praiseworthy metallurgical achievement, of which the makers are justly proud; and the tablets themselves, a fitting tribute to the men whose energy gave us the new bridge.

THE JAPANESE ARMY AND ITS GUNS

The effective strength of the Japanese army has doubled during the period between the war with China and the present one with Russia. According to the

In the Trenches.

"Repel Cavalry."

Infantry at Drill

Hauling Baggage to the Troop Trains

Third Regiment, Imperial Guards.

JAPANESE ARMY VIEWS.

in position by a powerful crane, and the remaining 1,800 pounds from crucibles, each manipulated by five men. The ladle with its 1,200 pounds of molten metal and the smaller crucibles in the hands of the men were tipped simultaneously. The trough and the gates leading from it to the mold served their purpose admirably So ample was the provision for conducting the bronze to every part of the mold, that when the flask was re moved and the sand broken away, a casting was found that was perfect in every respect. In order to lead away the gases impounded in the mold, numerous ducts had been made in the sand. From these the vapors poured in dense clouds for minutes after the metal had been cast.

The task of handling and turning a flask 25 feet long, 5 feet 7 inches wide, and 1 foot thick, weighing

Infantry Heavy Marching Order.

The melting and mixing of the great quantity of metal required in the casting operation $w=s$ no easy matter. The novel plan was adopted of first melting the copper and other metals in crucibles in the usual charcoal furnace, and of casting these metals, after having been mingled in the correct proportions, in ingots. These bronze ingots, some time before the act ual casting was undertaken, were charged into a cupola of the type used in iron and steel foundries. Thus the bronze was melted in one charge, with a more intense heat than would otherwise have been attainable, and with the result that it was more fluid.
The preparation of the mold to insure successful cast ing was another question that presented not a little difficulty. It seemed almost a hopeless task to attemp the casting of a plate 100 square feet in area and $3 / 8$
present law, all male subjects between the ages of seventeen and forty are liable to service either in the army or the navy. The army, which has been organ ized by German officers, is divided into the active, or standing army, the reserve, the landwehr. depot, and the landstrum. The period of service in the active army is three years, and it is levied from able-bodied youths twenty years' of age. After service in the act ive army a term of four years and four months is required in the reserve. The landwehr is made up of those who have completed their term in the standing army, and in this branch of the servise they are required to serve five years. The depot is divided into two classes-the first depot, composed of those who have not served in the active army and the term being. seven years and four months, and the second
depot, composed of those who have nui been enlisted for the first depot. The landstrum is also made up of for the first depot. The landstrum is also made up of
two divisions, the first comprising those who have finished their term in the landwehr or the first depot, and the second all those who are not engaged in other service. The latest statistics of the Japanese army obtainable were given out in December, 1900, and placed the total active army at 8,046 officers and 158,214 men, and a grand total, including the various reserves, of 11,611 officers and 457,480 men. The active army was composed of the imperial guard comprising 14,110 officers and men, the twelve divisions comprising a total of 128,955 , the Taiwan, Formosa, garrison comprising a total of 16,387, the gendarmerie com prising a total of 2,624 , and the students and others comprising 1,978 . There were 204,109 officers and men in the reserve, 98,722 in the landwehr, 51,966 in the first depot, and 109,581 in the second depot Each of the 12 divisions of the army and the im perial guard as well comprises 2 brigades of in fantry in 2 regiments of 3 battalions of 4 com panies; 1 regiment of cavalry of 5 squadrons; 1 regiment of artillery formed of 2 campaign groups and 1 mountain group of 3 batteries of 6 guns; battalion of pioneers of 3 companies; and 1 train battalion of 2 companies. There are besides, as troops not se, arated into divisions, 1 railway battalion and 1 battalion of telegraphers.
The number of artillery regiments is 13 , each comprising 9 batteries- 3 of them campaign and 2 mountain. The battery has an effective strength of 5 officers, 10 non-commissioned officers, 112 men , and 60 horses (37 for the mountain battery, 30 of which are draft animals). There is no heavy army field artillery. The officers of all classes are recruited at the special military school; those of the artillery after ward passing through the school of applied artillery and engineering. Before entering the special military school, the candidates admitted do a year's service in a regiment as simple soldiers; then they pursue the school course for two years and afterward spend six months in the regiment before being made officers.
The artillery establishments are: (1) The two pow der mills of Itabaska (3.5 miles from Tokio) and Iwahaua in the province of Kozanke (72 miles to the north of Tokio) ; (2) the arsenal of Tokio, which comprises a manufactory of arms, a cartridge works, a repair shop, and a pyrotechnic laboratory; (3) the arsenal of Osaka, which comprises a gun foundry, a manufactory of gun carriages, a projectile foundry, and a pyrotechnic laboratory; (4) the arsenal of Taipe in the island of Formosa, to the west of Kilanny; and (5) the gun foundry of Kouse.
In Japan, the artillery is considered as the select branch of the service.
Coast Defense Guns.-It is probable that in the near future the Japanese will be independent of foreign makers in the provision of large guns for coast defense, just as they expect, with the increase of their naval gun-making establishments, to be eventually able to supply their new warships entirely with pieces of home manufacture
The earlier coast-defense guns were made largely by the celebrated Schneider-Canet Company at Creusot, France. We present on the front page views of two types of guns for fortifications made at the French establishment for Japan. The one shown in the upper cut is a 10 -inch gun upon a disappearing carriage and intended to be mounted in the manner shown by the accompanying line cut. The gun and mount are normally contained in a circular excavation. The gun is carried upon the upper ends of a pair of arms, which hold the gun trunnions. The lower ends of the arms are pivoted to a rotating carriage. The breech of the gun is supported by another pair of arms, and the mechanism is such that the gun can be lowered out of sight below the parapet for loading, the gun and crew during the operation being out of sight of the enemy, and sheltered from shell fragments by a horizontal circular overhead shield. The gun rises to battery through this shield, and recoils, on firing, back and down through a slot in the shield for reloading. The gun weighs 21% tons, the mount $611-3$ tons, and the projectile 475 pounds. The initial velocity is 1,900 feet per second.
Of late years, however, the Japanese have abandoned the disappearing gun in favor of guns mounted "en barbette," the gun appearing permanently above the parapet. One of their guns of this type, built like the others at Creusot, is shown in the lower front-page engraving. It is carried on a gravity-return barbette carriage. The gun, by its trunnions, rests in the bearings of a massive cast slide, each half of which carries half a dozen steel rollers on which the gun moves in its recoil up the inclined paths of the lower rotating carriage. The usual recoil checks are provided and the gun returns to battery by its own gravity aided by the action of coil springs. The whole gun carriage is carried upon a circle of steel
rollers, and the gun is elevated and traversed to right or left by the crank arms operated as shown in the engraving. The Japanese fortifications are armed with this type of heavy gun in various sizes.
Field Guns.-The present period of the transformation of the artillery finds Japan in possession of a 3inch hardened bronze gun manufactured at the Osaka arsenal. This gun is provided with a screw fermature and ordinary pointing devices. It throws an 8.8 -pound belted copper shell with an initial velocity of 1,380 feet. It is drawn by small horses of the pony type,

EMPLACEMENT OF A 10-INCH JAPANESE DISAPPEARING COAST

 DEFENSE GUNthe rations of which consist of 11 pounds of hay and 9 quarts of barley.
The mountain gun is of the same caliber and throws the same projectile with the same initial velocity.
Awake to the progress of Europe, Japan has submitted the question of the rapid-fire gun to deep study; and although she has, indeed, made an appeal to European industry for aid in this matter, she has rather preferred to rely upon her own resources and has adopted a gun devised by Col. Arisaka. Although the full particulars of this gun are not definitely known, it is fairly certain that it possesses in full those elements of rapid fire that distinguish the latest rapidfire artillery of European nations. That it is a most effective piece is proved by the crushing fire which it delivered against the Russian entrenchments at the battle of the Yalu, when the enemy were so thoroughiy shaken up that they could not withstand the subsequent infantry attack.

Machine Guns.-Japan, in 1902, organized two batteries of machine guns and assigned them to the two first divisions. One of them is provided with 6 Maxim guns and the other with 6 Gatlings. Experience will decide as to the selection to be made between these two systems. Each battery comprises 3 officers and 52 men. The instruction as to the use of the guns makes it incumbent upon the division commander, in

CAPT. DOENVIG'S LIFE-SAVING GLOBE.

time of war, to assign a section to each of the brigades of infantry and to the regiment of infantry of his division.

The iron industry of Alabama is represented at the World's Fair by a colossal iron statue of Vulcan, fifty feet high and weighing 150,000 pounds. It was made in Birmingham, to portray the importance of that city as a manufacturing point. The base of the statue is made of coal and coke. This cast-iron Vulcan occupies a place in the Palace of Mines and Metallurgy.

CAPT. DOENVIG'S LIFE-SAVING GLOBE.
It is now about a year ago since the first trials were made with Capt. Doenvig's new invention, the lifesaving globe. These were all preliminary, however, and it is the practical tests, now just finished, that beyond all doubt have established the reputation of the new invention.
These recent trials were conducted on the coast of Jutland in very stormy weather, under the supervision of Norwegian naval officers and other maritime authorities. Two life-saving globes were used for the experiment. They were both set out from the Norwegian man-of-war "Heimdal." The first one had no human beings on board, but sand ballast corresponding to the weight of sixteen men. It was launched without trouble, and made a successful landing.
This fact ascertained by signals from shore to the "Heimdal," the second globe was set out. On board this one were Capt. Doenvig, Marine Lieutenant Engelstad, and three sailors. This also cleared away from the ships in good shape, and a few minutes after its being dropped into the sea, one of the trapdoors was opened, the men crawled out, swinging the Norwegian flag, set up sails, and sheered through the breakers toward land. It made a successful trip, and half an hour later it landed. At the time it was blowing hard from northeast, and the sea broke on four feet of water. The globe landed about fifty yards from the mainland. The men got out and waded ashore. By experts it was considered that an ordinary lifeboat would have been of no use under the circumstances.
The globe is made of sheet iron $5-16$ inch thick at the bottom, $3-16$ inch at the sides, and $1 / 8$ inch at the top. It is 8 feet in diameter and $61 / 2$ feet high, and has a double bottom. It draws $21 / 2$ feet of water when loaded. The globe may be entered through three water-tight trapdoors. Under the deck, which is located about one foot below the waterline, are placed four galvanized-iron tanks, with capacity for holding 150 gallons of fresh water. Along the sides runs a low seat or bench, and the space underneath the same is filled with canned goods. In the center of the inner room is a funnel, that can be shoved up, thus letting fresh air into the globe
There are three small windows in the top, for the double purpose of letting in light and providing openings through which rockets can be sent up. The globe has a movable keel, which can be let down from the inside, and also a rudder that may be applied in the same manner. Some small oars are also kept inside. A cork belt runs around the globe on the outside, on which the men can stand and row. There is also an anchor with 100 feet of steel rope attached, and a set of small sails, the funnel serving as mast.
There is no need for launching the globe; when the ship sinks, it will simply float. Its weight is about two tons, or the same as that of a large ordinary lifeboat. It cost about $\$ 500$, and has accommodation for twenty men. It requires less deck space than an ordinary lifeboat.

An interesting statement bearing on the future of great cities was embodied in an address recently made by Prof. H. B. Smith, of the Worcester Polytechnic Institute, speaking of electrical transmission of power. He said that in San Francisco a few years ago the cost of electric current for power and light was 15 cents for one horse-power per hour, while to-day the published price is almost exactly one-seventh of this amount, and it is possible to deliver at the factory on the coast, from the melting snows and glaciers of the Rockies, power for the machinery at a smaller cost than that at which it is possible to produce that power by steam, even though the fuel were to be delivered at the factory boiler without cost to the power producer. It has been estimated that the quantity of carbonic acid annually exhaled by the population of New York city is about 450,000 tons, and that this amount is less than three per cent of that produced by the fuel combustion of that city; so we may expect that, with the remova: of this great source of contamination of the atmosphere, even the air of our greater cities will be practically as pure as that of the country.
The chief use for acetylene in Canada is as an illuminant in dwellings. On the river St. Lawrence the buoys are lighted with acetylene gas, the gas being compressed into the buoys under ten or more atmospheres. The gas passes from the reservoir to the burner through a reducing regulator. The buoys are sufficiently large to supply gas to the burner for from three to six months without recharging. The buoys can be recharged without being removed from their positions, a steamer with a specially-constructed generating apparatus and a pump for compressing the gas being employed for this purpose.

RECENTLY PATENTED INVENTIONS. Machines and Mechanical Devices. HYDRAULIC AIR-COMPRESSOR.-W. G. Cox, New York, N. Y. One purpose of the invention is to provide an economic form of hydraulic air-compressor so constructed that water
may be admitted at either side through what may be termed a "double chamber," one section of which chamber acts as a cushion to the in coming water, thus preventing hammering of the inlet-valve,
to the same end.
CARRIAGE FOR OVERHEAD CABLES.-T alexander, Brookhaven, Miss. In this patent he invention relates particularly to improve iage, whereby improved advantages are ob tained in respect to the strength, durability and operation; also, in relation to means for dogging or locking the carriage to a hauling in means for supporting the load from the car iage; also, in improvements in guides an supports for the hauling-rope on the framework, to which the track-rope is secured and y which it is supported.
elevator.-P. F. Foley, New York, N. Y The invention relates to an improvement in the levator disclosed in a prior patent granted to Mr. Foley. In the apparatus shown in this patent a form of differential sheave and cable nd tension-weight mounted in two separat shafts or vertical guideways. This arrange ment is disadvantageous in that considerable room is occupied in providing the two inde ention is to provide oct of the present in vention is to provide a construction which
allows the sheave-weight and counterweight to move in the same shaft, thus the buldig.
MOLD FOR CONCRETE WALLS.-C. E. numway, Albion, Mich. In this instance the
n :ention relates to improvements in molds for oncrete walls; and the object in view is to provide an improved machine by whir e_{i} a double wall, with an air-space between the adjacent or parallel courses, may be rapidly and eco-
nomically constructed by unskilled labor.
MACHINE FOR PACKING FLOUR INTO barreld OR SACKS.-L. Van Nette, Bradford, Pa. Mr. Van Nette's invention relates to a machine especially designed for use in
flouring-mills to be used for packing flour into barrels or sacks for market by the simple com pression of the flour into these recentacles, thereby avoiding the employment of the auger almost universally used in the present method of packing.
P taining to Vehicles
THILL OR DRAFT-POLE COUPLING.-H TUrner, Koolunga, South Australia, Australia The object in this case is to provide details
of construction for a thill or coupling which in duplicate affords means for detachably con necting a pair of shafts or draft-pole to the thills or pole free to rock in a will hold the thills or pole free to rock in a vertical plane mit a quick detachment and interchange of the thills or the pole connecting with the fron axle without use of tools.
RUNNING-GEAR FOR WAGONS.-J. Grear, Paducah, Ky. This invention is an improveframe of running-gear for wagons and car riages, the objects being increased lightness durability, strength and economy of manufac save the blocks that constitute the bearings and the journals proper, are struck up from sheet or plate metal by means of suitable dies and are thus very cheaply produced.
SUPPORT FOR VEHICLE-TOPS.-B. K. Hendricks, Cain Point, Ill. The objects of Mr. Hendricks' invention are to prevent the
bending and breaking of the bows when the bending and breaking of the bows when the
top is laid down, reduce the bouncing up and top is laid down, reduce the bouncing up and , prmit it to be taken unde low sheds and doors.

Prime Mover

PROPELLING MECHANISM FOR BOATS. B. J. Lavign, New York, N. Y. The purpose
of this invention is to provide an effective propelling mechanism for boats, particularly of that character which is driven by foot or pedal the speed of the mechanism may be increased or diminished as desired, and in an expeditious and convenient manner under the full control of the operator.

of General Interest.

CLAMP FOR HOOPS, BANDS, ETC.-W. P Rrce, Lowell, Ohio. The principal object of Mr. Rice's improvement is to provide a device
which may be quickly and readily applied to a tub, cask, or the like, and may be adjusted to necessity of employing rivets or similar fasten ing means is obviated.
mirror.-L. b. Prahar, New York, N. Y In this case the purpose is to provide a whereby the glass may be held in a contractile rame or a divided frame with means for placing it under tension without danger of the
reflector, no matter how thin the glass, from
being checked or broken while securing it in
position or when the mirror is subjected to any position or when the mirror is subjected to any in handling.
CONSTRUCTION OF FLOORS, PARTI TIONS, OR THE LIKE.-V. Moeslein, Weehawken, N. J. In this patent the object is to provide improvements in the construction of
floors, etc., whereby an exceedingly stron and durable support is produced for holding the plaster and for supporting filling material that may be employed, the floor, etc., being comletely position. BEAD-LOOM.-H. B. Mees, Nadeau, Kan nn carrying out this small loom which will hold the warp-thread apart in such manner that they may be stretched taut and equal distances apart, thereby obviating the possibility of
loosening and spoiling the work.
mail-box.-A. M. Hoes, St. Paul, Neb In this patent the invention has reference t mprovements in mail-boxes for rural service,
the object being to provide a box of this de cription that will be of simple construction nexpensive, having no parts liable to get out order, and so arranged that it may be
asily opened and closed. The box may be made of any suitable metal.
GAS-LIGHT NEGATIVE-PRINTING AT-tachment.-G. W. Harse, New York, N. Y One object the inventor has in view is the provision of a light and cheap device which
may be easily fitted to an ordinary gas-burne eld in a negative and the sensitized pape held in an ordinary printing-frame to th
rays of light. The gas-burners may be with or without incandescent mantles.
inkstand.-G. a. Griggs, Billings, Mont The purpose in this case is to provide an ink supply ink to the pen-nib, the funnel being de pressed at each dipping, and to construct such n inkstand so that it will be reliable in al emperatures and so that the chamber is fully open at the bottom and practically closed a an be quickly and cleanly done and also to o construct it that in use the ink will not verflow
CHECK-PUNCH.-T. K. Davison, JamesChn, N. Y. In this patent the invention has puncturing the value-marks for banking checks, an object of the inventor being to provide device for this purpose that will be simple in
its construction, having no parts liable to get its construction, having no parts liable to ge veniently carried in a person's pocket. BRICK FOR THE CONSTRUCTION OF RCHES.-S. H. Clarke, Cuzco, Minehead signed more particularly for use in situation where the structure of the arch is liable to
disintegration and collapse, the improved brick isintegration and collapse, the improved brick
anditg to avert the risk of collapse, and enditg to avert the risk of collapse, and,
urthermore, enabling an arch to be built and repaired readily and quickly without specially epaired readily and quickly without specially tance in the case for example of the furnace arches of marine boilers using liquid fuel. REFRIGERATOR-CAR. - J. S. BASHAW Gainesville, Fla. In this patent the invention fers to an improvement in refrigerating-car which enables Mr. Bashaw to adapt a car of ordinary construction to use as a refrigerator
this end being attained, generally speaking, by this end being attained, generally speaking, by
providing one or more ice-tanks of peculiar conproviding one or more ice-tanks of peculiar construction which are capable of being placed
in the car through the usual door thereof Means are involved for circulating air through the car.
GLOVE.-W. Lefi, Gloversville, N. Y. The ject in this case is to provide improvements gloves having outside seams, and more parortions, at the joint of the thumb and bod well fitting glove is produced and the strain in dent to putting on the glove or when car is more on the leather instead of on one por tion of the seam joining the thumb to the bod portion.
LEDGER-BINDER.-L. E. Schoch, Chicago, IIl. The invention has particular application to devices of the class commonly known as
"loose-leaf" or "perpetual" ledger binders. Pri arily the inventor has in view as an objec the construction of a binder of the class de cribed which may readily receive a large num ber of loose leaves, and which may be locked
securely in such maner that the leaves will be firmly
binder
FOLDABLE BEDStead.-C. P. Brown Springlake, Mich. In this instance the inven ion refers to improvements in foldable bed deads by which the inventor seeks to pro tandard metallic head-section, a similar foot ection, and a standard bed-frame in a way to to use the bed and at the same is not desire several parts to be easily and quickly unfolded or use.
box-lid holder.-C. S. Christianson ticularly to improvements in devices for hold ing lids of cigar-boxes open at any desired angle for displaying goods, the object being to pro
vide a device for this purpose that will b
simple in construction, readily applied, and that
when in position will when in position will occupy very little space.
CORE-DRYING OVEN.-W. J. Breen, Mahwah in-DRYG OVEN.-W. J. Breen, Mahin view is the provision of a construction by which a large number of small or medium-sized "green" cores may be handled without injury or breakage during the operation of placing moving them from the oven.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each the invention, and date of this paper.
business and Personal KUants.

 ing the information. Ineverycase it is neces-
sary to give the number of the inquiry.
in

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 5545. (For manufacturers of sta-
ionary gas engines.
Autos.-Duryea Power Co., Reading, Pa
Inquiry
machinery.
For mining engines. J. S. Mundy, Newark, N. J.
Inquiry No. 5547 . - For makers of electrical
or factories, controlled by one master clock.
"U. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 5548.-For power boiler manufac-
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st
Inquiry No. $5549 .-$ For the makers of Gooblers'
pocket check protector.
Sawmill machinery and outfits manufactured by th Inquiry No. 5550. - For manufacturers of putty
and machines for making the same. For Sale.-Patent on hand portable fire-escape
oyalty, Inventor, 4128 Steele Street, Denver, Colo. Inquiry No. 5551.-For manufacturers of crackerAmerican inventions negotiated in Europe. Wenzel Inquiry No. 5552.-For manufacturers of small
ice-making machinery.
For Sale or Royalty.-Patent. Multi.color job print
ing press. Fintirely new. C. M. Shicley, Columbus, O Inquiry No. 5553 .-For drills for drilling hard Young man desires agency of good article for country neighborhoo
ucket, I I.
Inquiry No. 5554 .- For the address of Mr. Hugh In buying or selling patents money may be save Building, Rochester, New York.
Inquiry No. 5555 . For manufacturers of
and machinery for making lead bends, traps, etc.
Send fornewand complete catalogue of Scientif
Inquiry No. 5556.- For makers of small fans. or
The largest manufacturer in the world of merry-go nd terms write to C. W. Parker. Abilene, Kan.
Inquiry No. $\mathbf{5 5 5 7}$.-For dirt-conveying machiner
The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Ma chine Company. Foot of East 138th Street, New York. Inquiry No. 5558 . - For makers of and dealers in
quarrying machinery and supples. I want the agency or right for any good-sellin
article. Send sample and full particulars. H. H. Rice, Beloit, wis.

Inquiry No. 55.59.- For makers of broom-makin
nad paper bag-making machinery.
Manufacturers of patent articles, dies, metal stampry, screw machine work, hardware speciathes, Canal Street, Chicag
Inquiry No. 5560.-For manufacturers of paper. ction wish to acturer. Address N. LeRoy Tracy, care of Tracy
Inguiry No. $\mathbf{5 5 6 6 1 .}$ - For address of makers
WANTED.-To manufacture on reasonable terms any hing in wood or metal. First-class facilities for manutaring and shipping. Satisfaction guaranteed. Sen uring Co., Wayland, N. Y
Inquiry No. $5562 .-$ For makers of working mode
team engines.
Inquiry No. 5563.-For makers of wood fiber ma
dines.
Inquiry No. 5564.-For a small stationary air
engine.
Inquiry No. 5565.-For the manufacturer or in
ventor of the automatic coin-operating, type-setting
and stamping machine
Inquiry No. 5566.-For the
the Armat Moving Picture Co.

Inautr

Indiry N..Es50.-For maters of acocrition.

Nand
Inuury No. 5573. -For a neater to turnath heal

aints to correspondent

 feranes to former artilese or answers stoold give

 Books referred to promplys supplied on reecipt of
Mineratal sent for examinatlon should be distlinetly Minerals sent for examination should be distinctly
marked or labeled.
(9398) J. W. S. says: Kindly inform me through the notes and query column of the SCIENTIFIC AMERICAN whether there is any
known chemical or agency known to science that will dissolve or destroy air; that is, whether there is any chemical or other agency known that, being placed in an air-tight cask, will dissolve or destroy the air contained
therein, and if so, what are the therein, and if so, what are they? A. We
do not know any chemical which will destroy air and thus produce a vacuum in an air-tight cask. This is what we understand your quesoxygen of the air slowly in any air-tight place, and thus produce a partial vacuum. But the nitrogen and carbon dioxid which are always present in the air cannot be disposed of in this manner, nor indeed is there any way
known to chemists by which the nitrogen can known to chemists by which the nit.
be transformed directly into a solid.
(9399) C. A. R. writes: Will you please explain, through your question column
of the Scientific American, the action and theory of a reactive coil, such as is used in Thompson's electric hoop welding? A. The
common name of reactive coils is choking coils, a name which more clearly indicates heir functions. These coils act as rheostats in direct-current circuits, to restrain the fiow of current. This they do by their self-induction. A clear presentation of this subject may
be found in Sheldon's "Alternating Current Machines," which we send for $\$ 2.50$
(9400) C. E. B. says: I have a very andsome old mahogany table that has been arnished, and would like to know how to put a high polish on it, as you see on new tables is polished wood, not varnished wood. A. To roduce a wood polish, you must remove the ace by a thorough rubbing with a cloth pad and turpentine; then rub to a bright finish with thin shellac varnish, applying but little at a time on the pad.

NEW BOOKS, ETC

D'Gorman's Motor Pocket Book. By Mervyn O'Gorman, M.I.E.E., Assoc.M I.M.E. New York: E. P. Dutton \&
Co., 1904. 12 mo ; pp. 387. Price, $\$ 3$. This little volume is a practical pocket andbook for the automobilist. It is arrange in the form of a dictionary of automobile terms rench and the words being given in Engles hree languages of words used in first aid to the injured, in regard to time, clothes, drinks, nd other subjects of importance to the tourist here are numerous other tables of value giv ferent sized wheels make in mile miles per hour corresponding to times by secnds from one to three minutes, equivalen
temperatures in Fahrenheit, Reaumur, and temperatures in Fahrenheit, Reaumur, and
Centigrade, the specific gravities corresponding entigrade, the specific gravities correspondin
to the degrees on the Baume scale, etc. The to the degrees' on the Baume scale, etc. The
book also contains full instructions upon tak ing an automobile into France for touring pur poses. There is a great deal of practical in ormation within its pages, and much of this
oformation is made very clear by nearly 500 inform
cuts.
Machives and Tools Employed in The
Working of Sheet Metals. By R. B
Hodgson, A.M.I.M.E. Manchester,
England: Technical Publishing Com-
pany, Ltd., 1903. 12mo.; pp. 311.
pany, Ltd
The scarcity of literature upon presses and ess tools will cause this book to be welcome y all sheet metal workers, as in its pages will arious kinds of presses and tools used in this industry, as well as of the methods of operation of the same. The 281 illustrations in the book nclude pictures of typical power presses, the said pictures being supplemented with accurate descriptions. Calculations and definitions of
sufficient number have been interspersed hroughout the text in such a way as to allow any practical mechanic to grasp the points under consideration with the least possible cad-
culation.

STIMULATION without IRRITATION

KEROSENE

Four Essential Features of the Encyclopedia Americana
 Institutions, progress and achievements. gives such up-to-date information on practical subjects or covers the ground so thoroughly,
From the most abstruse scientificquestions down to matters we meet in our daily reading the treatment may be relied upon as arthentic and accurate.
he FACTS ARE ATTRACTVELY PRESENTED. Every volume is a live, readable book
Noter not a dull, prosy tome. Not a reerence work merely, trit sixten massive books furl d subjects. LARGEST STAFF OF EMINENT WRITERS AND CONTRIBUTORS EVER
ENGGAGED UPON A SIIILAR WORK. The pens of more than a thousand distinguished ditors, specialists and experts represent the highest type of modern scholarship, an

WE ARE MAKING A SPECIAL PRICE TO ADVANCE SUBSCRIBERS gurated a special price plan for those who order in advance of final publication. Already there
are advance orders aggregating over a million dollars-an advance sale truly unparalleled in are history of book-making.
The time is short in which to take advantage of this special offer. 'The price will be postal card to-day to COMPILING DEPARTMENT

STEAM HEATERS For Ilanufac
turing and Made with finished surface in various size Write for circular and prices.
J. A. STOWELL CO.
 Lowest Rates and many unusual privileges. Special
Si.00 rate on certain dates.

[^0]

Lackawanna Motors are Simple and Valveless. Easy to
start and easy to operate.
For automobiles and launches. Cut shows 3 to 244 Hf .P. Cut shows Lackawanna Reversing
Device attached to our 6 H. P. marine
motor. No reversing gear necessary 1-61 Letchworth St. - - Buffalo, N.
B. FELBARNESM SCREW

Valuable Books HomeMechanics for Amateurs

The Progress of Invention In the Nineteenth Century

MAGIC sinane ilusions sand scentitic Diver

MECHANICAL MOVEMENTS
Powers, Devices \& Appliances. by gardiner d. hiscox, m. E.

 (FF Full deseriritive circulars of above books will be mailed MUNN \& CO $\boldsymbol{C H}_{3}$ Publishers, $\quad 361$ Broadway, New York

 Weage, A. A. Erich.

759,995 780,50 759,87 559,95 5

759,90

CAUTION

Gasolene Automobiles.

In view of their license agreement they and their agents will not sell, keep on hand or in any manner
dispose of or deal in directly or indirectly any unlicensed new or second-hand gasolene vuhicles, infringing
soid Selden
saia selaen pater.
Electric Vehicle Co.
Winton Motor Carriage Co.
Packard Motor Car Co. Packard Motor Car C
Olds Motor Works Olds Motor Works
Knox Automobile Co. The Haynes-Apperson Co. The Autocar Co. The George N. Pierce Co.
Apperson Bros. Automobile
Locomobile Co. of America Locomobile Co. of Amer
Smith \& Mabley, Inc.
Central Automobine
Alexander Fischer

ManUFacturers: The Peerless Motor Car Co.
$\begin{aligned} & \text { Standard Motor Construction Co. }\end{aligned} \quad \begin{aligned} & \text { Northern Manufacturing Co. } \\ & \text { Pope-R }\end{aligned}$. Waltham Manufacturing Co. Jope Motor Car Co. ${ }^{\text {Stenens Arms } \& \text { Tool } \mathbf{C o} \text {. }}$ H. H. Franklin Mfg. Co Smith \& Mabley. Inc.
The Commercial Moit The Commercial Motor co
Berg Automobile Co.
Cadillac Automobile Co. IMPORTERS: Hollander \& Tangeman Standard Automobile Co E. B. Gallaher

Pope-Robinson Co. The Kirk Manufacturing Co Elmore Manufacturing Co.
E. R. Thomas Motor Co. Buffalo Gasolene Motor The F. B. Stearns Co,
Pope Manufacturing
\mathbf{C} Pope Manufacturing Co.
Sandusky Automobile Co. Sandusky Automorie co.
Crest Manufacturing $\mathbf{C o}$

Auto Import Co. Auto import Co.
F. A. LaRoche Co.
Sidney B. Bowman Auto'bile Co
e enforced against infringers. Manufacturers, Importers, Dealers and Agents, also Users of unlicensed
machits

ASSOCIATION OF LICENSED AUTOMOBILE MANUFACTURERS

House Values Paint Values

PATTON'S SUN-PROOF PAINTS
are gararanteed tor tive years

Summer Tour \& Hotel Book
 $\xrightarrow{\text { Designs, }}$ Anyone sending a sketch and description may
quickly ascertain our opininn free
invention is probably patentab an
inte. Communica-
 Scientific American
 MUNN \& CO, ${ }^{361}$ Braaxwa, NewYork
bOSTON AND MAINE RAILROAD
$\begin{aligned} & \text { This pamphlet consists of ninety-six pages, beauti- } \\ & \text { fully illustrated, describing briefly the many sum }\end{aligned}$
mer resorts in New England and giving fares to
each, as well as a carefully prepared list of hotels
and boarding houses, with their rates. This bookle
$\begin{aligned} & \text { will be MAILED, FREE, together with a catalogue of } \\ & \text { the twenty-one other publications of this Company, } \\ & \text { each one of which describes minutely some par-- }\end{aligned}$
ticular part of this
Great Vacation Section of the United States
passenger dept., bosto $\&$ maine r. r.
boston, Mass.
$\begin{gathered}\text { Published by the } \\ \text { BOSTON AND IIAINE RAILROAD }\end{gathered}$

DESIGNS.

$$
\begin{aligned}
& \text { Branch office } 625 \mathrm{~F} \text { st. Washington, D.c. } \\
& \hline \hline
\end{aligned}
$$

of printed copy of the specifcation and drawing

 $\underset{\substack{\text { given. } \\ \text { York. } \\ \text { Tana }}}{\substack{\text { can }}}$

Export Trade

How to Secure and How to Hold It Valuable hints on how to secure Export
Trade sent gratis on request. Address Trade sent gratis on request. Address
EXPORT EXPERT

\qquad
 CHEMICAL EXAMINATIONS OFAL

\qquad
 ELECTRICITY HOW TO MALEE. A Dyna-

TYPEWRIIER HEADQUARIERS

A Difference in

Steel Castings

 DRYING MACHINES, $\frac{\mathrm{s} \text { g. . Worrenil }}{\text { Hannion, }}$ Mo.
 MODEL AND EXPERIMENTAL WORK.
 AUTOMOBILE Parts. pur hine of antomo

 "THE CRYSTAL" Pat"GE GEvi"

 PATTERNS S Praunting and Experimenta work

 $\frac{\text { Pow Pr Company, Genesee, N. r. }}{\text { Manufac }}$ HARDWARE SPECIALTIES Contract Manufacturers and
will market articles of merit ORIMER MFG. Co., 153 S. Jefferson St, Chicago, III.
\qquad
To choose time is to save time To choose the

ELGIN WATCH

 as your timekeeper is to save your reputation for punctuality.Every Elgin Watch is fully guaranteed. All jewelers have Elgin Watches. Timemakers and Timekeepers, an illustrated history of the watch, sent free upon request to elgin national Watch co., elgin, ill.

Winton is King! 1 Warpath cone

Absolute air governor, guaranteed tires, inde-
stu title crankshaft, mechanically correct
tran swiss
 the winton motor carriage co., Cleveland, o., u.S.A
Orient Buckboard The little machine that has in one year gained a
reputation bounded only by the limits of the earth.
Write for catalogue.
WALTHAM MANUFACTURING CO. Waltham, Mass. DARRACQ Nan

Favorite of two continents. Powers
records for speed and endurance than arty other make Prompt deliver
cate parts always on hand.
AMERICAN DARRACQ AUTOMOBILE CO. 147 West 3Sth St., New York Greatest Air Chamber
FISK DETACHABLE 1
 Easiest Manipulation

MICOOSCODPS

Our Microscopes, Microtomes, Laboratory Glassware, Chemical Apparatus, Lenses and Shutters, Field Glasses, Projection Apparatus, Photo-Micro Cameras are used by the leading Laboratories and Government Departments Round the World. Catalogs
Busch É Limb Opt. Co.
,

A Practical (ar for American Roads. Three speeds and Reverse, Sliding Transmission, Inter
locking Devices Throughout. Bevel Gear Drive
Direct in Top Speed. ${ }_{4}^{2}$ cylinder upright motor, ${ }_{42}^{18-20}$ Horse Power. Prices \$2,300 to \$4,000. Aluminum Bodies. Canopy 'Top or Limousene 'ry
Descriptive Catalogue sent upon request. ROYAL MOTOR CAR CO.

Radium

 The Spinthariscope, improved, very brilliant

RECORDING INSTRUMENTS. RECORDING INSTRUMENTS.
pessirre Gauges, Vacuum Gauges. Volt
peters, Amperemeters, Wattmeters, an

 SILVER MEDAL PARIS EXPOSITion.
"When a man's sick, Surely insured herd be
When a man's well,
Rarely insured is he.'
This adaptation of an old saw tells the whole story of the average man who puts off having his life insured.
We have a little booklet "The How and the Why," which tells of the ease of being insured by mail. PENN MUTUAL LIFE INS. CO. PHILADELPHIA

ACCURATE RELIABLE DURABLE

Kewringland

WATCHES

 THE NEW ENGLAND WATCH CO., 37 ® 39 Maiden Lane, New York \% snow Hill. London, England

SAVE ONE THIRD

By Buying of the Makers

 than any dealer can show you. send for tit
CARRIAGE AND HARNESS COMPANY,
COLUMBUS, OHIO

A brake is "THE JEWEL" OF BICYCLE MECHANISM
 morrow brahe

AMERICAN JUMP SPARK IGNITION OUTFITS Marine
SEE CATALOGUE \mathbf{W}.

[^1]
[^0]: MR. MANUFACTURER Do you care whether your dividends come
 from saving in the manutacturing or in the op-
 erating? lf not, we might put you next to a few, kinks in
 the matter of soaving coal. Think you'd be in-
 terested. Write for our booklet. 453 Main Street, PARKS CO.

 ## ritoor catationte

 A Handy Book To Have
 Mongmery α co.s Toll Calalogue

[^1]:

