

Copyright, 1904, by Munn \& Co
 BATTLESHIP "PETROPAVLOVSK," BLOWN UP AT PORT ARTHUR, WITH THE LOSS OF ADMIRAL MAKAROFF AND 750 OFFICERS AND MEN.-[See Page 327.]

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO.

Editors and Proprietors
Published Weekly at
No. 361 Broadway. New York

terms to subserlbers

the scientific american publications.

Remit by postal or express mcney order, or by bank draft or check.
MUNN \& Co., 661 Broadway. New Yor
NEW YORK, SATURDAY, APRIL 23, 1904.
The Editor is al ways glad 10 receive for examination illustrated
Thicles on subjects or timely interest. If the photo
 s.arpe, the articies short, and the tacts authentic, the contributions
wiil reeeive speia ate
ait regular space ratention. Accepted artucles will be paid for

THE BATTLESHIP "MISSOURI" DISASTER.

The awful calamity that befell the battleship "Missouri" on Wednesday, April 13, when she was engaged in target practice off the port of Pensacola, is the latest of a series of similar accidents which have occurred within the past few years on our own and foreign warships. Some eighteen months ago, while the Russian battleship "Sissoi Veliky" was firing her forward pair of 12 -inch guns, there was a terrific explosion, which killed every man in the turret, and completely wrecked the interior of the same. The massive top of the turret was blown bodily into the air, and half of it, falling backward upon the deck, killed twenty-eight men that were standing there in a group. About six months later there was an explosion during target practice in one of the turrets of the 12 -inch guns of the British battleship "Mars," which resulted in gréat loss of life. Then followed the fatal explosion in one of the 8 -inch gun turrets of our own battleship "Massachusetts." In each case it was impossible to determine definitely what was the cause of the explosịon, the various boards of inquiry being able merely to suggest various conditions which might have rendered the explosion possible. In the present case, because of the fact that every officer and man that was in the turret of the "Missouri" was killed, it is likely that the disaster will have to be written down as one of the unexplained mysteries of which there are so many to be recorded in the history of the use of explosives both on sea and land. The least that we can say for the unfortunate dead is that at the present writing there is not the faintest shred of evidence that these noble fellows were doing aught but discharging their duties with that intelligent care and conscientious fidelity which have won for our navy its high reputation throughout the civilized world. Such accidents as these are a part of the perpetual risks which are taken by those who serve their country on the high seasrisks that are by no means confined to the hour of battle, but are present and are always seriously contemplated by officers and men when ammunition rooms are opened, guns are cast loose, and the terrific weapons of modern warfare are put to the test.
Most earnestly do we deplore the unseemly and offi cious haste with which such a large section of the press seem ready to rush into an ill-timed and most ungenerous suggestion of carelessness and incompetence, almost before the victims have breathed their last breath in obedience to the call of duty. Whether on the Russian "Sissoi Veliky," the British "Mars," or the American "Missouri," the victims of these shocking disasters are as fully entitled to the honors of naval heroism as if they had died in the fiercest climax of a great sea fight.
The board of inquiry, when it comes to investigate. will carefully sift out what scanty evidence is forthcoming, and if there be any blame, we may be assured it will be rightly placed. But just now it looks as though the only criticism that could be made is that the accident may have happened through the rapidity of the firing. If this is the case, it will simply mean that our gallant sailors have died because they were striving for that very proficiency in the handling of their guns, which it has been the effort of our own and their guns, which it has been the effort of our ow
foreign navies to promote to the highest degree.
The accident happened to a modern 12 -inch 40 -calfber gun of the latest pattern built for our navy These guns are probably the most effective 12 -inch guns in existence to-day, having a greater energy per weight of gun than any 12 -inch pieces at present in use in any navy. It should be distinctly understood that the accident is in no way attributable to the gun itself. the accident is in no way attributable to the gu
Briefly stated, what happened was as follows:
The left-hand gun, which had already been fired several times during the target practice, was bing loaded, and the projectile had been rammed homs, together
with two of the four 90 -pound bags of powder which go to make up a 360 -pound charge. The projectile, therefore, was in place, two bags or 180 pounds of powder were rammed up snugly against the base of the shell, and two other bags were in line with the breech of the gun and about to be rammed home, when the first half of the charge that was in place suddenly ignited (nobody knows nor probably will ever know why or how) and the gases, rushing out of the breech, isnited the 180 pounds of powder still remaining in the charging tray. This, of course, produced an enormous mass of flame and heat, and probably portions of the burning powder fell through the well, which opens through the floor of the turret, down to the handling room below. On the floor of the handling room were four charges, or about one and a quarter tons, of pow der, which was immediately ignited, and added its awful volume of flame to that of the burning mass above. There is a mournful consolation in the certain ty that in the suffocating fumes and fearful heat of that conflagration the death of the twenty-nine officers and men must have been practically instantaneous.
Among the many explanations of the disaster, it has been suggested that there may have been what is known as a "back blast." That is, that when the breech was opened, a certain amount of unburned gases, remaining in the gun after the previous dis charge, were blown back through the breech, and meet ing with the oxygen of the air, ignited. The "back blast" is not an uncommon occurrence during the firing of big guns, especially if the wind is blowing toward the muzzle of the gun; but the flame produced is instantaneous and not very fierce, the officers being able to stand within a foot or two of the flash without suffering any harm. It is difficult, however, to under stand how this could have caused the ignition of the charge; for when the breech is opened the ammunition carriage is, of necessity, some distance below the breech of the gun, being at the time on its way up from the handling room below, so that if there was any back blast, it must have happened several seconds before the powder was hoisted to the breech of the gun, and in that interval of time the gases remaining in the gun would probably have cooled down below the ignition point, and the danger would be passed. Furthermore, the shell had been rammed home into place at the forward end of the powder chamber, and its copper rifling band was practically sealing up the bore. That there was any burning fragment of the "canvas" bags, in which the powder of the previous round was held, remaining in the gun, is extremely unlikely, for the reason that the so-called "canvas" is made of pure wool, to insure its immediate combustion when the charge is fired, and the fierce white heat of the gases in the powder chamber at the instant of explosion is such that every frag. ment of the bag is instantly consumed. Furthermore, the breech box, powder chamber, and bore of the gun are drenched with a powerful spray of water between each round. From the above considerations it will be seen how difficult it is to connect the explosion of the smokeless powder with the ignition of left-over gases or burning fragments from the previous round. As we have said, the disaster is at present a profound mystery. It is very doubtful if the forthcoming inves tigation can do much to solve it.

THE ADVANTAGES AND DRAWBACKS OF TURBINES FOR OCEAN STEAMERS.

Further particulars of great interest that have come to hand regarding the report of the turbine commission will, in some respects, cause considerable surprise. In the first place, it was found that, contrary to the generally accepted belief that there would be a considerable economy of weight in the turbine as compared with the reciprocating engines, the use of turbine machinery to develop the 70,000 horse-power required for the new Cunarders will mean a saving of only 300 tons over the weight that would be required if reciprocating engines were used. This statement is rendered the more significant when we learn that the commission advised the steamship company not to rely upon this saving by adding 300 tons to the cargo or other accommodations, but rather to hold it in reserve to be incorporated in the motive power, if need be, as the designs of the turbine machinery are worked out. The commission admit that the most important disadvantage of the turbine is the lack of economy at low speeds; but they consider that, as the new ships will always run at a uniform speed of $241 / 2$ knots, this consideration doc: not enter into the problem. They state that because of the high sustained speed, the turbines may be depended upon to realize their best economy, and the coal and steam consumption will be superior to that of reciprocating engines. At the same time, it is surprising to learn that, although the tests made on land between reciprocating and turbine engines when both were engaged in driving electrical generators showed a marked superiority in economy for the turbine, especially where superheated steam was used, the tests made in the English Channel between a turbinepropelled vessel and one driven by reciprocating engines showed a superior economy of
only two per cent in favor of the turbine. Marked economy, however, is predicted for the large turbines because of the great reduction of the staff in the engine room, and of the small amount of lubricating oil used, and the absence of this oil in the exhaust steam.
The arrangement of the power on four shafts will provide two steam units, each with one high and one low pressure turbine; and should there be any breakdown of one shaft, turbine, or propeller, it would be possible to continue under the three remaining shafts. But for the reason that the turbine can carry a much greater overload than the reciprocating engine, it will be possible to reduce this twenty-five per cent of lost power so very materially that the speed would probably not fall more than a mile or a mile and a half per hour below the normal speed; that is to say, one of the new turbine boats would be capable, if she fractured a shaft, of proceeding on her voyage at a speed of from 23 to $231 / 2$ mots an hour. Here alone is a great gain in efficiency which, in itself, we think is sufficient to guarantee the very radical step which is about to be taken.

EXPERIMENTS MADE AT THE LABORATORY IN THE CATACOMBS ; EFFECT OF DARKNESS UPON ANIMALS,

 ETC.M. Armand Viré gives an account of some experiments which have been carried on at the biological laboratory of the Catacombs. The laboratory was installed in 1.896 for the purpose of observing the influence of light and darkness upon different animais. It has two distinct parts, one of which is underground and is located in that part of the Catacombs lying under the Jardin des Plantes, while the second part consists of an aquarium building in the Zoological Gardens. In the first portion the experiments are carried out upon animals which are constantly kept in the dark. On the contrary, it is the subterranean animals which are observed in the second part, and they are exposed to daylight in order to study the modifications which may be thus brought about.

Regarding the normal animals which are kept in the dark, these are especially the Crustaceæ, Batrachians, and different varieties of fish. The crustaceans (Gammarus fluviatiiis) showed the following phenomena: The gray pigment disappears by patches which increase in size until the entire disappearance of the color. The eye remains normal at first, but after a year it becomes slightly modified in the forepart, although upon dissection no change is remarked in the retina or the optic nerves. On the contrary, the organs of smell, touch, and taste show a marked hypertrophy at the end of a few months. Their length increases gradually until the organs have their dimensions tripled. The observations seem to show that the organs which are now useless, such as the eye, tend to subsist for a considerable time, and this explains in a certain degree the presence of these residual organs in a number of animals, and which could not be accounted for except by this conservative action of the organism. The parts which now become more useful, such as the hearing, touch, and smell, owing to the disuse of the eye, take at once a development which accords with their increased functions.
In the case of the fish a singular phenomenon was observed. After remaining for five years in the dark, the eye of an eel increased in size until it became double its usual volume. This fact would appear to be in contradiction to the preceding, if it is not remarked that the optical nervous system is somewhat reduced, showing thus that the hypertrophy of the external organ will no doubt give place later on to an atrophy. This fact has been observed as far back as 1831 by Eudes Deslongchamps, upon an eel which was taken from the bottom of a well. Another fact remarked in connection with the fish is a reduction of the length in the dark. In the case of twelve gold cyprins (Carassius auratus), six were placed in the Catacombs and six in the light. The food was the same for the two portions. After two years the specimens kept in the dark changed their color to a pinkish white. Their length became only one-half that of the second lot, which retained their fine red tint.
The subterranean animals which were kept in the light in order to observe the modifications which might occur were mainly crustaceans (Niphargus Plateaui, obtained from the Catacombs and elsewhere; Vireia, burgunda and V. berica, from the Italian caves), and batrachians (Proteus anguinus, from Austrian caves). The crustaceans lack the eye and optical nervous system, that is, all the organs which are capable of receiving luminous impressions. The latter specimens have the eye atrophied and covered by the general tegument. Nevertheless, all the specimens are sensitive to light and show by very distinct reactions that light is disagreeable to them. This is probably not a direct perception of the light, but a sensation of a chemical order which is transmitted from the pigment cells to the brain by the general nervous system. In fact, after several months experiment, the Proteus commences to assume a color; at first this is light and diffused, then it becomes darker, ending in a violet black
coloration with occasionally a series of small yellow patches, except under the head and body, which remain white. With the crustaceans the action is much slowe and as yet only slight black patches have appeared on the skin. It is expected to make a series of experiments upon mammals in the underground laboratory as soon as a good system of ventilation is installed in order to supply the necessary fresh air.

THE CAVES AND DENE-HOLES AT CHISELHURST.

Chiselhurst, the little Kentish town eleven miles out of London, is very proud of itself just now. And with good reason. Its long-despised chalk pits, of which no body took any account except when from time to time somebody fell down them, now turn out to be ancien British cave-dwellings which can vie in extent with the Breton subterranean dwellings in La Vendée of which Victor Hugo makes mention in his great novel "Quatre Vingt-Treize." The last summer was the first year that they have been recognized for what they really are, and therefore they have not as yet been fully ex plored. But enough has already been done to give the visitor a good idea of the haunts of the ancient Brit ish troglodyte, and to show that these caves are among the most marvelous triumphs of early engineering.
From the Chiselhurst station to the caves is only few minutes' walk, but even in that short time I passed over historic ground; for close to the caves is double rampart some twenty feet deep, the sole re mains of the old covered way which led into the Brit sh camp, portions of which are still to be seen. Just beyond is a hill crowned with woodland which forms the extreme outskirt of the mighty Anderida Weald In this hill lies the entrance to the caves. As I stood or a moment peering into the inky darkness, my guide switched on the electric light. Fancy electric light being installed in these old caves! It was hopelessly incongruous. But the effect was splendid. I looked down a long gallery some 150 feet long, 12 feet high and 15 feet wide, the chalk walls of which took the green and pink tints of the light in a way which would have been impossible in a cavern of rock. The whole scene reminded me of a representation of Aladdin's cave at a Drury Lane pantomime, but there were no stalagmites and stalactites, which are indispensable to the stage cavern. The walls of this first part are oughly hewn with the pickaxe in a very different fashion to the walls of the Temple itself, which we afterward visited. We came almost immediately upon the first of the many dene-holes. These dene-holes are shafts, about 3 feet 6 inches in width, coming straight through the thanet sand into the chalk, and were made by the ancient Britons during the Keltic or Iron Age. The shafts serve a two-fold purpose. The Britons not only shot their grain down them, but in times of danger swarmed down them themselves either by means of steps cut in the sides or by a notched pole. At the bottom of each dene-hole were six or eight compartments, in which the people lived till the danger had passed away. An attack on these refuges must have been futile. For as only one man could possibly descend at a time he must have fallen an easy victim to the Britons awaiting him at the bottom. Or, again, o try and smoke out the refugees must have been equally futile, since the British wasps need only have given a few blows with their picks upon the soft walls to make an entrance into the next set of chambers, with which the ground is literally honeycombed. But to-day these sets of chambers are not the self contained flats that they used to be, for when the Romans captured Kent they cut passages intersecting these chambers in the hopes of thus destroying the power of the Druids. The dene-holes too are almost all blocked up and built over, but I was shown one ap which I looked to see the sunlight 85 feet away in a villa garden. It was like looking up a huge factory chimney.
By this time we had left behind the electric light and depended only upon a single hand-lamp. We had now come to the Druids' treasure-chamber, the size of which can be clearly traced upon the ceiling. But though the chamber has been broken down, the pass age leading from it toward the Temple is still perfect And a tiny, little zig-zag passage it is, only wide enough to admit one man at a time and not high nough to allow a fair-sized man to stand upright On both turns it is guarded by a chamber large enough to allow the sentinel to swing an axe. The seat, too on which the sentry sat and waited for "something to turn up" still remains, and I seized the opportunity to sit down and make a few hasty notes. The passage was once still more secure, the entrance being a hole at ground level, so that the sentinel had merely to bring his axe down on the head of the would-be Bill Sykes as he crawled along on his belly
Just a little way beyond the end of this passage my guide suddenly stopped and turned his lamp upon a cranny in the roof. "Look up there," he said in an awe inspired tone; "there are the petrified remains of an ichthyosaurus who was caught here when the sea re
ceded from this part of the land." One great dark leg is all you see, the body of the creature being imbedded in the chalk. My guide now showed signs of giving me some statistics "pitched in the key of emotion" based upon the fact that the sea takes 100 years to form an inch of chalk, but providentially we had now come to the well supplying the place. The present depth of the well is 53 feet. I lit a piece of paper and dropped it down. As it fluttered down I could see how carefully the sides had been "flinted-in," if I may coin the expression, while the steadiness of its flame testified to the purity of the air
We were now in the very Temple itself, built in the Druidical sign of the circle. The walls here are exquisitely made, and still bear the marks of the triangular iron pickaxes with which they were fashioned over 2,000 years ago. The floors, too, are much harder in this part than elsewhere. Apparently a cement was made of burnt flints and chalk and the floors were then flooded. There are six altars still surviving, which seem to be arranged in pairs. The first and the last are single altars, two are double altars, and two have priest-chambers attached to them. These priest-chambers also are beautifully made and are semi-circular in shape. In one the natural understratum of the chalk has been washed by iron pyrites which has given the roof a lovely color rather like that of a copper-beech. It is a significant fact that these altars follow the sun, being almost exactly orientated; which certainly seems to indicate solar worship as the religion of the ancient Britons. The altars themselves bear no traces of any ornamentation. It has been conjectured that they were used for human sacrifice. The caves beyond the Temple, which were our furthest point (though my guide told me that he had explored another five miles), are, curiously enough, built in the rough sign of a cross. Whether this is accidental or not is unknown. The nave, as it were, has innumerable dwelling rooms and passages opening off it. This part in fact is a regular labyrinth and may have been designedly made so. The part of the Minotaur was played by my guide's pet dog, which had missed him and came tearing out of the darkness after us in a very eerie fashion. An interesting point about these dwelling rooms is that they are never placed exactly opposite to one another, so that the inmates of one could not have overlooked their neigh bors across the way. Another remarkable thing is the extraordinary acoustics of the place; the whisper ing gallery of St. Paul's is not in it. And so back again through the Temple, and the treasure-room passage, and the first great gallery, out into the bright sunshine. For me to attempt to criticise the various theories which have been put forward about the place, would be out of place here. I have contented mysel with jotting down the history as told me by the guide. One thing may be confidently predicted: we do not as yet know anything like as much about these caves as we shall after further exploration. And experts are now hard at work upon them.

NEW PROCESS OF MANUFACTURING OZONE.

For the past few years the great importance of ozone for hygienic and industrial purposes has been more and more recognized. The general use of this potentiated form of oxygen was, however, restricted on account of the expensive method of its manufacture. The English engineer Elworth is now said to have found a process for manufacturing ozone that is much simpler than those used heretofore and that permits of a larger production.
Ozone is by him produced in an apparatus into which atmospheric air is forced by means of an air pump. An electric alternating current of 3 amperes at 130 volts, transformed to a potential of 1,100 volts, is then introduced. Through electric discharge in the apparatus, ozone is engendered. The air introduced into the apparatus is forced through an ingenious sys tem of pipes; and, having become highly ozonized, escapes with great velocity through a pipe which con ducts it $a d$ libitum to the places and the objects in tended to be treated with ozone.
The firm of Koelle \& Held, of Stuttgart, has for some time past made interesting experiments with these apparatus, which are still continued. It has been proven so far that a much larger quantity of ozone is obtained than by previous methods. The apparatu works very quietly and without any interruption.

It is evident that such an increase of production means a cheapening of the price of ozone and, there fore, a more extended use. The apparatus takes up but little room and can be used wherever the necessary alternating electric current of sufficient power is available, either through tric establishments
Ozone, on account of its great oxidizing power, is well adapted for supplying oxygen to closed rooms, such as theaters, hospitals, manufacturing shops, etc., for purifying drinking water, for the purification of sewage, bleaching of leather, treating oils, etc.
If the new apparatus fulfills expectations, it may re-
sult in new possibilities for public hygiene, as also for many industries.

SCIENCE NOTES.

Mr. F. V. Coville, in the National Geographic Magazine, gives an interesting account of how the Indians of the desert obtain drinking water from the barrel cactus. It was among the desert hills west of Torres Mexico. The Indian cut the top from a plant about five feet high, and, with a blunt stake of palo verde pounded to a pulp the upper six or eight inches of white flesh in the standing trunk. From this, handful by handful, he squeezed the water into the bowl he had made in the top of the trunk, throwing the discarded pulp on the ground. By this process he secured two or three quarts of clear water, slightly salty and slightly bitter to the taste, but of far better quality than some of the water a desert traveler is occa sionally compelled to use. The Indian, dipping this water up in his hands, drank it with evident pleasure and said that his people were accustomed not only to secure their drinking water in this way in times of extreme drought, but that they used it also to mix their meal preparatory to cooking it into bread.
Uranium is one of the rare metals for which there is a limited demand. The present world's consumption amounts annually to about 300 tons of uranium ore, yielding from 3 to 13 per cent of the metal. For sev eral years Colorado has supplied the United States output, nearly all of which goes to Europe. France, England, and Germany are the principal markets. Uranium is a hard, very heavy (9.184) moderately malleable metal; it resembles nickel and iron, and has the color of nickel. At ordinary temperatures it is not affected by air or water; at red-heat, however, the surface xidizes. The chief ore of uranium is the oxide, called pitchblende or uranium. It occurs also as the phosphate and arsenate. The ores are found in Gilpin and ther counties of Colorado; in Cornwall, England; and in Saxony, Germany. Buyers of the ore generally pay from $\$ 15$ to $\$ 20$ per unit, according to the percentage of uranium contained. Until recently uranium salts were used chiefly as a pigment in painting on porcelain, in photography, and as a coloring ingredient in lass manufacture. It is now being used experimentally in the manufacture of alloys of iron and of aluminium. Uranium increases the hardness and elasticity of steel, also the hardness of aluminium, but this use has not yet become sufficiently important to cause an increased demand for the metal.-Engineering and Mining Journal.
The trustees of the Carnegie Institution, founded at the city of Washington by the munificence of the wellknown philanthropist, Andrew Carnegie, at their anual meeting in December, 1903, took the necessary steps to establish what is now to be known as the "Department of International Research in Terrestrial Magnetism." An allotment of $\$ 20,000$ was made, with the expectation that, if the proposed work should be successfully organized, a similar sum would be granted annually for the period requisite to carry out the plan submitted by the writer and published in Year Book No. 2 of the Carnegie Institution. It is proposed to set aside $\$ 10,000$ for office expenses (reduction, discussion, tc., of existing observational data) and $\$ 10,000$ for observational and experimental work; a portion of the latter sum may be reserved annually and allowed to accumulate for some large undertaking. The general aim of the work is "to investigate such problems of orld-wide interest as relate to the magnetic and electric condition of the earth and its atmosphere, not specifically the subject of inquiry of any one country, but of international concern and benefit." The prime purpose, therefore, of this department is not to supplant any existing organization, but rather to supplement, in the most effective manner possible, the work now being done, and to enter only upon such investigaions as lie beyond the power and scope of the countries and persons actively interested in terrestrial magnetism and atmospheric electricity.

THE CURRENT SUPPLEMENT.

Mr. Emile Guarini opens the current Supplement, No. 1477, with an account of the Berlin telephone exchange. The excellent article by M. Danne, preparator to M. and Mme. Curie, on radium, is concluded. His series of articles may well be considered the most exhaustive discussion of radium and radio-activity that has thus far appeared. Another article that should at tract some attention is Dr. Erlwein's discussion of the purification of potable water by means of ozone.
Mr. Frank C. Perkins begins an article on the devel. opment of the electric mining locomotive. "The Hos pitalier Ondograph" is the title of an article which describes a new instrument for graphically recording current and potential variation of alternating currents. Mr. Hiram Percy Maxim furnishes some data, that are certainly startling, on the cost of operating automobiles for commercial purposes. Mr. Israel C. Russell's paper on "Recent Volcanoes of Southwestern Idaho and Southeastern Oregon" is concluded.

DRIVING A TEST PILE FOR THE HUDSON RIVER TUNNEL.
The Pennsylvania Railroad tunnel beneath the Hudson River will be driven through a stratum of silt whose consistency is so uncertain as to necessitate making special provision to support the tunnel and prevent any displacement, either in a vertical or lateral direction. The problem has been carefully studied by the chief engineer of the tunnel, Mr. Charles M. Jacobs, who decided to treat the tunnel as a trestle bridge, driving cast-iron piles, at a trestle bridge, driving cast-iron piles, at
15 -foot intervals, to the rock underlying the bed of the river, and supporting the track system upon them, the shell of the tunnel serving as a protecting envelope for the trains.

The piles are to be hollow, 27 inches in outside diameter with $11 / 2$ inches thickness of shell, and they will be made in 7 -foot sections. At the foot the piles will be provided with one turn of a wide screw of 12 -inch pitch, whose outside diameter will be about 5 feet. They will be screwed down through a hole in the base of the tunnel shell, a fresh length being bolted on, as each length is screwed down, until the underlying rock is reached.
With a view to testing the proposed method of driving the piles, and the bearing power of the piles themselves, a test pile was driven in a caisson sunk at the outer end of the Erie Railroad dock "C" in Weehawken, at a point 102 feet south of the center line of the proposed tunnel.
In order to screw the pile down, a hydraulic screwing machine was constructed, as shown on the accompanying line drawing. It consisted of two cylinders attached to a frame and furcylinders attached to a frame and fur-
nished with differential plungers, $111 / 2$ nished with differential plungers, $111 / 2$
and 10 inches diameter by 18 inches and 10 inches diameter by 18 inches
stroke. The cylinders were tested to 1,500 pounds water pressure per square inch. The frame was pivoted on a center casting to which a ratchet wheel was keyed; the center casting was bolted to the top of the pile when the machine was in operation. The thrust of the plungers was transmitted by means of connecting rods to pawls, which engaged the teeth of the ratchet wheel, and was guided by the rim of the latter. The screwing machine had ten strokes per revolution of pile.
It was anticipated the weight of the
pile might not be sufficient to force the pile down the full pitch of the screw blade, and a hydraulic jack was built for this purpoze. It consisted of a cylinder with a simple plunger, 18 inches diameter by 25 inches stroke. The reaction from this plunger was taken up by weights (pig iron, etc.) was taken up by weights (pig iron, etc.)
on two platforms, which were suspended on two platforms, which were suspended
from cross-beams attached to the plunger of the vertical jack. The whole arrangement is shown on the various cuts.
The point of the screw pile was first bolted to eight sections and lowered in the caisson, and afterward seven more sections were added, making fifteen in all before the screw pile came to rest at El. 193.47. The total weight of the pile was now 63,353 pounds.
The screwing machine was then started, and for each turn the pile was driven from a maximum of 1.2 feet to a minimum of 0.21 foot. At the thirty-sixth turn, when the dead load, including the weight of the pile, was 96,140 pounds, the penetration for one turn of the pile was 0.8 foot. The load was then gradually increased until under a load of 383,330 pounds under the operation of the hydraulic jack, the penetration for one revolution was 0.75 foot; and at the fortieth turn it decreased to 0.21 foot. The total penetration for forty revolutions was 35 feet.
The fortieth revolution was not completed, the pile refusing to revolve under a turning moment of 439,800 foot-pounds. The screwing operation was now stopped and arrangements made for the dead-load test.
The actual time occupied (exclusive of all other work, such as placing of fresh sections, etc.) in screwing down 34 feet 10 1-32 inches in thirty-eight and threequarter turns was 9 hours 5 minutes $=14$ minutes per turn, with an average penetration of 10 25-32 inches per turn, and about two-fifths of this time was occupied

View of Top of Pile, Showing the Hydraulic Screwing Machine.

20,000 pounds added thereafter the pile apparently subsided about 0.025 inch, but this was compression in the pile itself, which now measured 148 feet between the screw point and the micrometer attachment. The 500,000 pounds was kept on for about one and a half months, when the load was increased to 600,000 pounds for another month and a half without subsiding. The test was now discontinued and the pile removed. A series of drop tests was previously made on the pile with the point closed under Test No. 2, as follows: A hammer, 3,750 pounds, with a fall of 1 foot, was applied in 132 series of 250 drops each, while the dead load at the same time was increased from $\cdot 200,000$ to 330,000 pounds. Altogether, 33,000 blows were applied at a rate averaging thirty blows per minute.

Arificial Fuels.

Everybody who has spent any time on the continent of E'urope has noticed the economy practised by Europeans in the consumption of coal and marveled that the results should be so satisfactory. To be sure, the lofty, tombstone-like porcelain stove of the Germans has a chilly look at first, and the cooler atmosphere of German houses may give one a homesick longing for the furnace-heated rooms of America, but gradually the open-minded stranger comes to look with approval on the European arrangements for keeping warm, and to wonder why his own people have not perceived the beauty, the cleanliness, the economy, and satisfactory results that some patent fuels have to recommend them. That many a Yankee has turned the matter over in his busy brain is attested by a chapter on artificial fuels in Edward W. Parker's report on "The Production of Coal in 1902," which is about to be published by the United States Geological Survey as an extract from the annual volume of Mineral Resources.
Prior to 1902 , about 400 patents had been issued in the United States on artificial fuels, but up to the close of 1901 none had proved a commercial success. Mr. Parker gives a list of United States patents granted since January 1, 1902. It remains to be seen whether any of them will be successfully developed. The list includes thirty-seven patents, but contains no mention of fuels made from petroleum
the pile itself, was gradually increased from 400,000 pounds to 500,000 pounds by increments of 20,000 pounds. During the first five days of the dead-load test the pile subsided about $1 / 4$ inch, and for every or petroleum residue unless used in connection with coal, lignite, or peat. Neither does it include any compounds that have for their object the increase of fuel efficiency unless they are used in the manufacture of the fuel itself. Three patents were used on briquetting machinery.
The steady advance in the price of coal -no less than 40 per cent-which has taken place since 1898 has stimulated experiments looking to the invention of artificial fuels. Results obtained in foreign countries from the use of lignite and peat in briquetted form should encourage producers in the United States to try similar methods of manufacture. Small sizes of anthracite coal formerly wasted are indeed recovered now by washeries from the old culm banks and utilized. A large amount of coal lost in the form of dust or finely pulverized material might also be put into convenient shape for domestic consumption and slack now wasted at many of the bituminous mines in the United States might be used to advantage if compressed into briquettes. There are many indications that the time is not far distant when these neglected fuel resources will all be utilized.

In the report for the year 1902 on the railways in the Straits Settlements it is pointed out that in Perak an addition of 30 miles 3 chains was made to the open line during the year, bringing up the total mileage open for traffic to 274 miles 40 chains. These established through communication between Penang and Taiping, thence the line is open to Bukit Gantang, where there is a break for $71 / 2$ mileswhich will be completed this year-communication being resumed at Padang Rengas via Kuala Kangsar to Ipoh and Bidor. The total mileage of open line from Penang to Bidor is 146 miles.

NEW ELECTRIC CHRONOMETER FOR TIMING AUTOMOBILES.

by the paris correspondent of the scientific american.
The Mors Company, of Paris, has lately brought out an ingenious electric chronometer apparatus which is intended to replace the ordinary method of timing races by the stop-watch. It is especially designed for automobile records, where the need of an accurate method has been felt for some time past. The device consists essentially of two instruments, one of which is placed at the start and the other the finish nish, with a single wire running between them. The instrument at the receiving station unrolls a band of paper
like that of a telegraph apparatus. When the start takes place a current is sent through the line, thus causing a needle point to be brought momentarily against the paper and to make a dot. When the automobile comes to the finish, a second dot is made, and the time of the run is deduced from the length of the paper which has been unrolled. The apparatus, which was designed by M. Pottier, is illustrated in our engravings. In Fig. 1 is seen the complete outfit. On the left is the apparatus at the starting end, which consists mainly of the device for making the contact. This is accomplished by means of a wire stretched across the course in a suitable manner and attached to a contact device for sending a current through the line. When the front wheels of the car pass over the wire, it is stretched and operates the contact, registering the moment of the start in the receiver. At the other end of the course is a similar wire which registers the exact moment of the finish. The receiving apparatus is seen on the right. The horizontal box of this apparatus, 'seen in Fig. 1, acts as a table and is similar to that of the apparatus at the start. Both contain a call bell and telephone outfit for signaling between the stations. The chronometer apparatus is contained in a portable case which is placed upon the horizontal box.

The details of the chronometer are shown in Fig. 2, which shows the receiving apparatus in the vertical box. A clockwork mechanism draws a band of paper from the drum on the right by means of a set of rollers. The paper passes through a slot in the cubical brass piece. The band can be punctured from below by a needle which is mounted on a lever. The lever is operated by the solenoid, A (Fig. 2), and is controlled by a spring and a pair of thumb screws above the solenoid. A chronometer contained in the box sends current impulses through the solenoid, A, at intervals of $1-5$ th second, and the needle point thus punctures the paper from below. When the band unrolls normally the space between the dots is about a quarter of an inch, which represents the time of 1-5th second. The passage of the car is registered by the upper solenoid, F. It contains a core which is held up by a spring. On the lower end of the core is a long needle which passes through a hole in the cubical piece and comes just over the band. When current is sent through the solenoid, F, the needle makes a puncture in the paper, which registers the time of the start. The paper continues to unroll while the car is being timed, and the time of the finish is registered by a second puncture. The exact time from start to finish is obtained by counting the number of spaces and fractions which have been un-

Flg. 1.-A NEW ALUMINIUM WELDING machine.
rolled between the two punctures. The position of the dots representing the start and finish can be easily estimated to within 1-20th of a space, and as each space represents 1-5th second, the time can be accurately registered to within 1-100th of a second. Be-

Fig. 2.-The Registering Part of the Mors Timing Apparatus.
which is held below by the fixed piece, F, and above at the second point, E. The other end of the wire is held in the sliding piece, D, which is adjusted by a thumb screw. To find the exact position of the dot, n (representing the start or finish), with refer-
ence to the h ronometer dots, m and o, which include the space equal to 1-5th of a second, the plate, A, is slid until the upper edge of the band coincides with division No. 20 on thevertical scale. The paper is also shifted so that the point, o, comes under the right-hand wire, which is at right angles with the scale divisions. The left-hand wire is then brought over the point, m, by shifting the slide by the slide by thumb screw.
sides all this, the band forms a perinanent record of the time. Although the unrolling of the band is not absolutely uniform, the spaces between the dots are practically alike, and the error due to this cause is negligible. M. Pottier has devised an ingenious ap-

Fig. 3.-Diagram Showing Method of Reading to Hundredths of a Second the Time Registered.
paratus for measuring the exact position of the dots showing the start and finish. It consists of a brass plate, A (Fig. $\cdot 3$), which slides in a second plate, B. The latter holds the paper band in a fixed position by the clamps, C. Over the band passes a fine wire, $W W^{\prime}$,

This adjustment is necessary, seeing that the distances, $m o$, are not always exactly equal. The plate, A, is now slid so as to bring the wire, W, over the point, n. If the place where this occurs is at division 14, as shown, the point, n, is $14-20$ ths away from o, according to the well-known proportional method. This ingenious and compact device gives a rapid reading of the time between the two punctures, and is one of the essential features in making such a system practical. The Mors apparatus can be also operated by contacts made by hand at the start and finish. In the competitive tests of automatic chronometer apparatus, which were held on the road near Paris, the present device carried off the first honors, as it was considered the best for practical use.

A NEW ENGLISH ALUMINIUM WELDING MACHINE.

by frank c. pfrkins.

A number of machines have been designed in recent years for welding aluminium, which have given only partial success. Among the more important welding apparatus for aluminium should be mentioned the machines of Dick, Schmidt, Heraeus, and Emme. Schmidt designed apparatus for welding aluminium plates, and Jones for welding aluminium tubes, the plate welding being accomplished by an electric arc.

The new welding machine, as well as the new process for welding aluminium designed by the English engineer and electro-chemist, Mr. Sherard CowperColes, is shown in the accompanying illustration, Fig. 1 , and described below.
By means of this machine, no solder or flux is required, and the hammering of the joint when in the semi-fluid state is not necessary. It is stated that this process is particularly suitable for wire rods, tubes, and other sections which are drawn or rolled. The aluminium materials to be welded, after being faced off square, are placed in the machine shown in the illustration, Fig. 1, which is fitted with clamping screws capable of moving horizontally on suitable guides.

The machine consists essentially of a double-deck framework with a reservoir, F, located under the upper platform. This tank or reservoir supplies water under pressure for quenching the welds instantaneously by turning a handle attached to the screen, A. Turning this handle allows the water to run from the tank and be projected on to the welded joint. The pressure in the reservoir is maintained by an air pump, the handle of which is indicated at E. The levers, D, are arranged for controlling the movement of the clamping screws and the aluminium bar, B, which is to be welded. The benzine or gasoline lamp or torch is noted at C, and the flame
from this torch is directed upon the joint of the aluminium bars to be welded at B, a box being provided on the top of the platform for catching any molten metal. The flame from the benzine lamp, C, is projected against the aluminium joint to be welded between the clamps at B, and when the necessary temperature has clamps at B, and when the necessary temperature has
been reached by the rods to be welded, a slight pressure is applied to the levers D, causing them to unite, and the metal is squeezed out in the shape of a ring, as shown in Fig. 2. It is stated by Mr. Cowper-Coles that this ring of metal is largely composed of aluminium oxide, which acts as an insulating and supporting collar, the molten metal being retained within this collar, the molten metal being retained within this
collar. The tank, F, having previously been supplied collar. The tank, F, having previously been supplied
with water, and charged with a considerable air pressure by means of the pump located under the upper platform and operated by handle E, is ready for supplying through A the necessary cooling liquid when the handle controlling the same is moved.
The aluminium bars to be welded, having been placed in the jaws, raised to the proper welding temperature by the flame from the lamp, and pressed together at the proper moment by the levers D, a perfect weld is formed at the joint, and as soon as the weld is made, it is rapidly cooled by turning the handle attached to the screen A, which allows water under pressure to be projected from the reservoir F. The screen, A, is placed in front of the heating flame by the same handle placed in front of the heating flame by the same handle
which turns on the water, and the water pressure is maintained by the hand pump F, which supplies compressed air to the tank. After the rod has been removed from the machine and the collar filed off, it is claimed that the joint is as strong as the rest of the rod.
It is well known that soldered aluminium joints have rot been found satisfactory, as they do not stand á sreat length of time, on account of the galvanic action r:hich takes place between the solder and the aluminium, the former electro-negative to the latter in a voltaic couple. One of the principal difficulties found in the welding of aluminium is that it passes into a mushy or brittle state a few degrees under smelting point, and the solder freezes before flowing properly, it cools so rapidly. The best welding temperature for aluminium, it is claimed, lies just below the point where this pastiness occurs, and this metal has been welded at temperatures varying from 420 deg. C. (788 deg. Fahr.) to 600 deg . C. (1,102 deg. Fahr.), the latter being the temperature proposed by Wiszniewska and Strzelecki for welding aluminium in a non-oxidizing manner, this being accomplished by a heated plate, manner, this being accomplished by a heated plate,
and in contact with a volatile compound with an affinity for aluminium, say flouride or nitrate of aluminium in a powder or solution. Mr. Cowper-Coles states that an oxy-hydrogen flame or gas with or without air blast can be used instead of the benzine lamp. The accompanying illustration, Fig. 3, shows the case or pipe of aluminium oxide, which supports the molten aluminaluminium oxide, which supports the molten alumin-
ium within. This view shows the outer shell of aluminium oxide, which has been pricked with a steel point, allowing some of the molten metal within to flow out. One of the beads of molten aluminium, which is incased in aluminium oxide, is shown in Fig. 4, the drop of metal having been allowed to fall on a metal plate. The broken aluminium oxide casing or shell may be noted by the dark portions: In a recent paper before the Faraday Society in London, on "Some Notes on the Welding of Aluminium," by Sherard Cowper-Cowles, he states that Dick in 1900 devised a machine for welding aluminium by the removal of the oxide mechanically, combined with pressure, while Heraeus, of Hanau in Germany, takes advantage of the fact that aluminium becomes plastic at a certain temperature, and can be kneaded into any shape. He further states that electric welding of aluminium has not been successful commercially, either by electric arc heating or by allowing the joint to be welded to form a resistance to the electric current. Aluminium welds have been made by Anderson by means of an electric arc drawn down by a magnet and a^{*} special tool and flux, while Schmidt uses a carbon-graphite tool and flux, while Schmidt uses a carbon-graphite
or platinum stick through which he passes an electric current. By this process, the flow of current is such that the carbon stick acts as an ande with the metal to be welded as a cathode, the carbon stick being used somewhat as in soldering, it being moved over the portions to be welded, removing the oxide formed, the latter being reduced by the heat of the carbon.
On a test of several of a number of welds, made by the Cowper-Coles aluminium welding machine for tensile strength, the fractures occurred at quite a distance from the weld, showing that the metal was not deteriorated. One of the specimens having a diameter of 0.249 inch and an area of 0.0487 square inch was found to have a reduction of area at the fracture of 7.4 per cent, the extension on four inches being 8 per cent, while the break occurred on none of the twelve specimens tested at the welded portion. The specimen above mentioned had an elastic limit of 11,491 pounds per square inch (5.13 tons), while the maximum stress was found to be 20,249 pounds per square inch (9.04 tons). It is stated that in some cases very.
minute holes were found in the welds, but they were not large enough to affect the strength of the rod which was welded.
Another specimen having a diameter of 0.25 inch, with area of 0.0491 square inch, had a reduction of area at the fracture of 7.7 per cent, the extension on four inches being 9 per cent. The elastic limit was 12,320 pounds per square inch, or 5.5 tons, while the maximum stress was found to be 20,070 pounds per square inch, or 8.96 tons. One of the specimens had an extension of 14 per cent, with a reduction of area at the fracture of 7.7 per cent, the elastic limit in this case being 10,236 pounds per square inch, or 4.57 tons, and the maximum stress 19,152 pounds per square inch, or 8.55 tons per square inch.
Mr. Cowper-Coles states that the Jones process for making aluminium tubes consisted in simultaneously winding a flat strip of the metal in spiral convolutions, welding the abutting edges of the convolutions by the heat generated by the local passage, through the immediate parts to be joined, of a low-tension current of electricity, and pressing the heated edges toward each other with the necessary force.
The subject of welding aluminium is a most interesting one, and is of considerable importance, on ac: count of the extensive way in which this new metal is leing used in the arts.

AN INTERESTING PARADOX.
 by daniel f. comstoce.

Although the chimera of perpetual motion has retreated so far into the distance that scientific men consider themselves absolutely safe in assuming some fallacy in all propositions which involve the creation of energy, yet it sometimes happens that the various components of a system may be so arranged that this fallacy is by no means easy to detect. The common characteristic of such cases is thus rather a psychological than a physical one, for it is in the mind of the observer and not with Dame Nature that complication really exists. really exists.
The followin
The following is a paradox so apparently simple and yet so delusive that it possesses a peculiar interest:

an interesting paradox.

Referring to the figure, W is water and A is air. A wheel made of insulating material is constructed to turn about an axis, O. The wheel has metal balls, N, placed around the periphery, and these are charged negatively, while the fixed metal ball, M, is charged positively. Each ball has a thin layer of insulating material surrounding it, in order that the electricity material not leak into the water.
The fixed charge, M, will now attract all of the movable charges which are above the surface, but will have practically no effect upon those below the surface. This follows immediately from the fact that the dielectric constant of water is nearly eighty times that of air. In other words, air transmits electrostatic force with eighty times the readiness of water. Hence the astonishing conclusion that the wheel will continuously rotate in the direction indicated by the arrow.
The discovery of the fallacy; which is more or less hidden, is left to the insight of the reader.

The Pollok Prize.

Owing to the unsatisfactory results obtained at the two competitions which have been held for the Pollok prize, it was decided that an investigation should be made for the purpose of securing the opinion and advice of the various maritime associations, boards of trade, and chambers of commerce in the leading cities of the world, as to the best means of accomplishing the end in view.

The International Association of Paris undertook this mission, and, after an extensive investigation, submitted a report some few months ago, in which it was recommended that the Pollok prize be transformed into a permanent endowment fund, the interest to be awarded periodically to the inventor or inventors of the best methods or devices for preventing collisions and loss of life at sea. The founders of the Pollok prize decided to accept the recommendations made, and to place the endowment fund in charge of the International Maritime Association, 3 Rue des Mathurins, Paris. The rules and regulations governing future competitions will be published shortly.

Engineering Notes,
Despite severe competition from American and German locomotive builders, the contract for fifteen powerful compound express locomotives, required by the Chilian railways, has been secured by the North British Locomotive Company, of Glasgow.
The British consul at Trieste, in a recent dispatch, reports that a large establishment for the manufacture of Portland cement will be erected near Albona, in Istria. The output is destined entirely for exportation It is said that immense quantities of stone adapted for the manufacture of cement exist in the neighborhood, as well as a coal mine. All are situated close to the port of Rabaz.
At a meeting of the Royal Statistical Society held recently, Mr. Edgar J. Harper read a paper on "Statistics of London Traffic." Mr. Harper showed that there were about 600 miles of railway in greater London, of which 222 miles were in the county itself. It would seem that South London was better equipped with railway facilities than North, especially in proportion to population. The number of stations per square mile was almost the same on both sides of the river, but on the north side each station had to serve a population 10 per cent greater on the average than on the south side. The length of railway per square mile in the south was nearly 30 per cent more than in the north, while the population per mile was 45 per cent less. As many long-distance trains arrived from the south as the north, although the local trains were 20 per cent less.
We are accustomed to think and speak of the enormous and steady progress made in modern industrial machinery. While in general this may be true, in the office building it is only true of the details. We are beginning to put into effect improvements suggested years ago, and have made real progress in the direction of carrying out our plans more quickly, and all things considered, more cheaply; but our plans have not changed substantially, and the limiting conditions are the same. We are still aiming to make our buildings attractive, easy to rearrange to suit tenants, well lighted, with convenient internal communication, polite and efficient service, quick elevators, and as accessible as possible to elevated and underground stations. We supply them with every necessity and many luxuries, and do all in our power to get the maximum return for the money invested. The writer considers it certain that for at least a generation there will be an imperative demand for office buildings, and that the present type, will be practically unchanged in its broad outlines. The improvement made during the past ten years may be briefly stated. There has been a very slight increase in net elevator speeds obtained mainly by improved signaling devices. Automatic heat regulation is practically unchanged, but it is a little gener ally used. Gas has practically been entirely replaced by electricity. The finish of the buildings is a little more luxurious and the exterior a little more expensive. The average height of a building is increased. To-day the highest practicable speed for a way elevator is 450 feet per minute, and for an express 600 feet to 700 feet per minute, depending on the distance traveled. We may, therefore, safely say that the future will see but little improvement, except in details.-Architectural Record.
Cornelius Voet, of Haarlem, Netherlands, has invented a novel coal-saving apparatus which seems promising. The company for the management of the State's Railways in the Kingdom of the Netherlands tested the apparatus at the Central Electric Works in Utrecht during $11 \frac{1}{2}$ successive hours, during which trial a saving of 18.2 per cent was found. The Steam Navigation Service of the Royal Dutch Navy, Section Amsterdam, applied the apparatus to the boiler of a dispatch boat. The inspector declares that the apparatus upon trial gave excellent saving results, and upon further use proved quite satisfactory. On a German steamer of the firm Fried. Krupp at Essen, on twelve voyages from Rctterdam-Bilbao and Santander and back to Rotterdam, the following results were obtained: Without apparatus, 13.13 tons of coal used per 24 hours; with apparatus, 12.01 tons of coal used per 24 hours. The apparatus supplies the furnaces of boilers with the air necessary for combustion and to apparatus therefor. In the ordinary way such supply of air is obtained either by artificial draft or by a blower or blast device. In the case of artificial draft the air is drawn by the chimney through the grate and the fire-tubes, while in cases where blast is used the air is forced through the grate at a pressure in excess of that of the surrounding air. This excess pressure is produced in all known cases by means of a blower or blast device. Mr. Voet's invention relates to an arrangement whereby such excess pressure is produced by the outer air itself, the air being received and pressed by the pressure of the outside air or current into air-collecting heads communicating through pipes with the space under the grate, into which the air rushes with the excess pressure thus accauired.

THE RUSSIAN REVERSE AT PORT ARTHUR.
On April 13, Admiral Togo led his fleet for the sev enth time to the attack of Port Arthur and the Russian fleet that has taken refuge behind its guns. The result was only less disastrous to Russia than the memor able action off Port Arthur on February 9 with which the war was opened, one of her battleships being sunk, either by a mine or torpedo, another battleship more or less crippled by the same agency, and one of her best torpedo-boat destroyers sunk by the combined attack of several Japanese vessels of the same type. This, however, was not the most serious part of the Russian losses; for when the flagship "Petropavlovsk" went down, she carried with her Admiral Makaroff and most of his staff, with nearly the whole of the crew of 750 men.
At the present writing it is difficult to determine exactly what was the nature of the operations that occurred on this memorable day; but after reading the official accounts given out by the governments at St. Petersburg and Tokio, it would seem that some of the Russian cruisers and torpedo-boat destroyers had been out reconnoitering during the previous night, and were intercepted by vessels of the same class of the Japanese fleet. The armored cruiser "Bayan," moreover, was sighted by the British gunboat "Espiegle" early in the morning of Wednesday, making a running fight with several Japanese cruisers, in which she just succeeded in gaining Port Arthur. Because of the hot fire to which she was subjected, and the fact that a dense cloud of steam was seen rolling from the vessel as she neared the harbor, it was judged that she was probably hard hit.
The operations at Port Arthur were opened early in the morning by an attack of the Japanese torpedo boats, probably directed against Admiral Makaroff's fleet, which, we may presume, was in the outer roadstead behind the protection of the mines and under the shelter of the guns of the forts. This was followed by a sortie of the whole Russian fleet, which in all probability made a reconnaissance in force some distance from Port Arthur. What followed is somewhat confusing. The reports given out at St. Petersburg state that Admiral Makaroff proceeded until he came in touch with the whole force of the Japanese, estimated at forty ships; that he immediately fell back to Port Arthur; that during this movement the Russian torpedo destroyer "Bezstrashni" was cut off, surrounded by several Japanese destroyers, and sunk, with a loss of all but five men out of her complement of 55 men; that when the fleet was entering the harbor, the flagship "Petropavlovsk" struck a submarine mine, and that the explosion was so terrific that she heeled over and sank within two minutes after she was struck, carrying down Admiral Makaroff, most of his staff, and over seven hundred of the crew. On the other hand, the correspondent of the London Times, which paper has chartered a steamship for the especial observation of Port Arthur, states that the torpedo boats attacked Port Arthur early Wednesday morning, and that the whole fleet of forty vessels commenced the bombardment of that place at $9: 45$ in the morning. From Rome there came a dispatch to the effect that the Japanese sent a few of their ships to Port Arthur, with instructions to retreat and draw out the Russian fleet in pursuit; that the ruse succeeded, and that Admiral Togo then steamed in, took up position off Port Arthur, and commenced a bombardment; that Admiral Makaroff returning found himself in the presence or an overwhelming force, through which he endeavored co force his way into Port Arthur, and that it was in this attempt that the Russian losses occurred.
We are inclined to think that the account coming from Rome is probably correct, especially as the official statement from Tokio said that the "Petropav lovsk" was torpedoed by the Japanese, and that a de stroyer was also sunk. The Russians further admit that the battleship "Pobieda" was struck by a mine on the starboard side amidships. It was on the same side that the "Petropavlovsk" was struck, and we think it will probably transpire that both battleships were victims of the torpedo, fired either from the Japanese battleships or from their destroyers.
The "Petropavlovsk" is one of three sister ships (of which the other two are the "Poltava" and the "Sevastopol") built in 1894-95. All three vessels were at Port Arthur at the opening of the war. They are of 11,000 tons and $151 / 2$ to $161 / 2$ knots speed under natural d!aft, with a forced-draft speed of 17 knots. They have a partial belt of 15 -inch Harvey armor, a flat $31 / 2$-inch steel deck, 4 inches of armor on the lower deck over the central redoubt, 10 inches of armor on the main turrets, and 6 inches on the smaller turrets. They carry four 35 -caliber 12 -inch guns in two turrets, twelve 45 -caliber 6 -inch guns, eight of them in four turrets, the latter placed one at each corner of the central re doubt, and four between the turrets on the gun deck, two on each broadside. They also carry one 9 -pounder sixteen 3 -pounders, twelve 1-pounders, and eight smaller guns They have six above-water torpedo tubes, two on either broadside, one in the bow and one in the stern. Although they are not up to modern requirements for a
first-class battleship, they are serviceable vessels, and the loss of the "Petropavlovsk" is a most serious blow to the Port Arthur fleet. The other battleship which the Russians acknowledge to have been mined or torpedoed is the "Pobieda," one of three practically identical ships of which the other two are the "Peresviet," now at Port Arthur, and the "Osliabia," which was on her way out to the Far East when the war opened and is now slowly returning through the Mediterranean. The "Pobieda," launched in 1900, is a high-freeboard vessel carrying four 45 -caliber, 10 -inch guns in turrets, eleven 45 -caliber 6 -inch guns in casemates, twenty 3 -inch guns, and twenty-six smaller guns. She also has two submerged and four above-water torpedo tubes. She has a complete belt of armor 9 inches thick amidships, a $23 / 4$ inch deck, 5 inches protection on the lower deck amidships, 10 inches of armor on her main turrets, and 5 inches on the casemates. She is a vessel of 18.5 knots trial speed, and she carries a maximum coal supply of 2,000 tons, besides liquid fuel.
This last disaster will reduce the once formidable Port Arthur fleet to a mere remnant of its former self. In place of seven excellent battleships she now has but three, the "Poltava," "Sevastopol," and "Peresviet," that are effective, if, indeed, the "Poltava" has yet been repaired. In Admiral Makaroff the Russians lose their most popular and probably most accomplished naval officer; a man who achieved notoriety in the Russo-Turkish war, when he opened the eyes of the world to the tremendous destructive powers of torpedo warfare. To him the Russian people owe the fleet of ice-breakers which have done such good work in keeping open the ice-bound Russian harbors. Since his advent to Port Arthur, a more aggressive policy has been followed. This has been highly acceptable to the Russian public; but it is doubtful whether it would not have been wiser to have carefully preserved what was left of the Russian fleet under the shelter of the Port Arthur fortifications, awaiting the arrival of the Baltic fleet during the coming summer. Another sortie, followed by a similar disaster to this last, will place matters in such a fix that it will be questionable if the powerful Baltic fleet on its arrival could turn the tide in. favor of the Russian arms.

The Gordon-Bennett Race.

The e'im'nating trials for the Gordon-Bennett cup race are to be held over the Ardennes circuit route, in order to determine the champions who are to represent France in this event. The machines which are entered for this competition are three Panhard \& Levassor, three De Dietrich, two Turcat-Méry, three GobronBrilliè, three Bayard, three Darracq, three Hotchkiss, three Mors, three Georges-Richard, and three Serpollet. Among the well-known chauffeurs who are to pilot the cars are Henri Farman, Rigally, the Fournier brothers, Salleron, Gabriel, etc. The Darracq and the GeorgesRichard cars are said to be the lightest of the French makes. As concerns the foreign cars, the Mercedes occupies the front rank, and these cars are among the most formidable competitors. At least five of these cars, and perhaps six, are to be entered for the cup race, two or three of them in the German team and three in the Austrian. The new Mercedes cars, of the 90 -horse-power type, are to be equipped with powerful motors of the latest design, having 7 -inch cylinder bore and a 6 -inch stroke. These motors are expected to make an extraordinary speed, and even exceed their performance in last year's races. The drivers designated for two of the German cars are Jenatzy and Baron De Caters, both of whom are Belgians. The Austrian cars will be piloted by Braun, Werner, and the well-known American, Warden.

Dr. Baskerville's Two New Elements

Dr. Baskerville, whose position as professor of chemistry at a prominent Southern university entitles his utterances to every consideration, recently announced that he had discovered what are probably two new elements associated with thorium, both of them radioactive. The two new substances have been christened carolinium and berzelium. Samples of the substances isolated by Prof. Baskerville have been sent to Sir William Crookes, who will doubtless confirm or disaffirm the assertion that they are new elements.
The importance of the discovery, if it should ultimately appear that the two new substances are elements, can hardly be overestimated; for the number of radio-active substances is now increased to about six. Sir William Ramsay is reported as having every confidence in Dr. Baskerville's announcement.

Eighteen automobile attachments were entered in a side-slipping contest which took place on the track at the works of Messrs. Clement Talbot, near Ladbrooke Grove, England. The contest was commenced by an endurance run of 1,000 miles. After the completion of this performance, the track was greased, and the cars driven onto the slippery surface and compelled to make right-angle turns and describe S curves, and also subjected to brake tests. The object of the test was to find some device which would effectually pre-
vent side-slipping, and the preliminary run was for the purpose of determining the serviceability of the device. The amount of power consumed by the device was arrived at by allowing the car to move down hill by gravity with and without the attachment, and the difference of the two stopping points measured care fully. Points were given for ease of attachment and renewal and cost and effectiveness as shown by the tests.

Electrical Notes.

Mr. E. B. Green, superintendent of the Edison Illuminating Electric Company at Altoona, Pa., writes to the Electrical World and Engineer of his successful use of electricity for thawing water pipes. He has thawed 250 feet of 1 -inch iron pipe in 20 minutes, using be tween 18 and 20 kilowatts; for between 30 and 40 feet of $3 / 4$-inch pipe, 5 to 8° minutes and 11 to 15 kilowatts are required. The voltage is reduced to not over 50 and the connection made to the pipe to be thawed and to a hydrant or other connection to the main on the other side of the frozen portion. The work is per formed for customers in less time and with much more cleanliness than it could be done by the plumber. The cost lies chiefly in the carting of the apparatus and labor.
In a recent issue of the Elettricita, we note a report and Preeriment made at Ferrara by Prof. Battelli an Pror. Rigi on the Turchi-Brunè rystem of simul taneous telegraphy and telephony. The working of the apparatus is stated to have been so safe as to place beyond doubt the practicability of the method. After the Bologna telegraph inspector had allowed those present to test the various devices used in connection with the experiments (when the most recent device where the differential coil is replaced by an ordinary line coil aroused special interest by its simplicity and efficiency), telegraphing and telephoning were carried out simultaneously on a large scale, with a view to contradicting the statement that the scheme in question would allow of protecting the telephone receiver only against disturbing currents of very low frequency. In fact, the telephonic conversations were heard with perfect distinctness and strength while current impulses of very high frequency were generated in the same wire by means of a Wheatstone telegraph apparatus. In order next to test the simple means by which the disturbances due to currents traversing the neighboring parallel circuits may be eliminated, the telegraph wire 121 (Venice-Florence) was used for telephoning, while the parallel wire 86 (Venice-Genoa) was in full operation, when excellent results were obtained. The telegraph line could also be connected to a local apparatus representing a telephone subscriber, thus showing the possibility of conversations over telegraph wires in the interurban service. As regards the transmitting capacity of the Brunè-Turchi apparatus, the limiting distances appear to be the same as in the case of ordinary telephones.
With an ever-increasing use of rubber in manufacturing, it is disappointing to have to record a gradual diminution in the supply. Some figures have been published purporting to show the total production of rubber in different parts of the world, and according to these the production in the two years from 1900 to 1902 decreased by some 3,500 tons-that is to say, whereas the total output in 1900 was 57,500 tons, that in 1902 was only 54,000 tons. This decrease is certainly not a large one, but it is important as showing the tendency of the rubber supply to diminish. It is very instructive to examine the figures given for the different countries. Our two main sources of supply are Brazil, Peru, and Bolivia, and East and West Africa and the Congo country. From the first group the total supply in 1900 was 25,000 tons, and from the second 24,000 tons, but whereas in the former case the production has increased, it has appreciably decreased in the case of the latter. Thus, Brazil, Peru, and Bolivia contributed 30,000 tons to the worid's supply in 1902 as against 20,000 tons for East and West Africa and the Congo country. A small supply is now had from the Straits Settlements, but in 1902 the output was only 1,000 tons. In every other case the production shows a decrease. The various states of South America gave 3,500 tons in 1900 and 1,000 tons in 1902, Central America and Mexico gave 2,500 tons and 2,000 tons respectively, Java, Borneo, etc., 1,000 tons in 1900 and nothing in 1902, and similarly the supplies from Madagascar and Mauritius, and India, Burma, and Ceylon have ceased altogether. Thus, of the total supply of 54,000 tons in 1902 as much as 50,000 tons came from Brazil, Peru, and Bolivia, and East and West Africa and the Congo country, which remain the world's chief sources of supply.

The Belgian Commission in Cuba, in a report to the Department of Foreign Affairs in Brussels, says that Cuba is an excellent market for automobiles owing to their constantly increasing use. The most popular type is the voiturette, and the commission recommends a strongly-built car of about 10 horse power, a!le to stand the poor roads, and moderate in price.

THE GREATEST OF PIPE ORGANS

 by helen lukens jones.The world's greatest pipe organ is being built in a western factory for the Convention Hall in Kansas City, Mo. It has been leased by the management of the St. Louis Exposition, and will be temporarily installed in the Festiva Hall on the fair grounds, where its tit nic voice will bestow a musical benedic tion on the opening ceremonies of the reat international exposition
Some of the most renowned organist. in the country have been engaged to play on the mammoth instrument, and acres and acres of automatic music ar being prepared to fill in the interims be tween the performances of the virtuosos At the close of the fair the organ will be permanently established in the Con vention Hall at Kansas City.
This wonderful American instrument is the largest in the world. It has 10,000 pipes, 140 stops, and weiohs 125 tons. It measures 100 by $271 / 2$ feet, and is 40 feet high. Eighty thousand feet of lumber are being used in its construc tion, and it will require ten freight cars to transport the finished instrument to the exposition grounds at St. Louis. It will cost $\$ 67,000$.
The pipe organ in the town hall a Sydney, N. S. W., has heretofore been the champion music producer of the world. It has 128 speaking stops, 9,000 pipes, and covers 1,600 square feet of floor space. The largest organ in America is 'in the Chicago Auditorium. It has 109 speaking stops and 7,124 pipes, is 44 feet long, 25 feet wide, and 34 feet high
During the last five centuries, or practically speaking, ever since broken reeds gave inspiration to the musical inventor, organ building has progressed steadily, until to-day it has culminated in this new pipe organ.
A visit to the immense brick factory where the organ is nearing completion, and a long tramp through the workrooms where great numbers of men are busily employed in fashioning the various parts of the great melody box, is a revelation in musical industry.
The frame of the organ, which is equal in size and appearance to a house of several stories, is made of 3×12 Oregon pine, which is superior in strength and
pillow blocks on each shaft, which are fastened to heavy angle-iron plates. The crankshafts are so arranged from the countershafts that they turn toward each other. By this arrangement the strain of tying the two sets of feeders together on each bellows will

The Huge Console.

In the Pipe Room.
give it a perfect alinement, and there will be no side drawing to interfere with the folds of the feeders.
All regulators throughout the organ have two square feet per speaking stop, so that there will be ample supply of wind under all conditions. The wind power of this organ exceeds that used by any other organ in the world. There are two motors of twelve and one-half horsepower each, and one motor of two horsepower. The batteries have four cells of two volts each. A generator provides a direct current of 10 volts and 40 amp eres, which will supply the storage batteries without charging through the lamps. The motor generator is so arranged that the organ can be played incessantly for six months or more without hitch of any kind. If an ample amount of amperes is supplied and the curreni kept up to 8 volts, but not over $81 / 2$ maximum, the organ can be played continuously, a feat which cannot be accomplished by any other organ in the world.
There are 1,300 magnets in the organ, both key and draw-stop action. The organ contains 115 miles of wire in the cables and magnets, from No. 20 to No. 34 B. \& S. gage. Five automatic swell engines operate the swell folds
There are over 7,000 open circuits in he organ. The coupler contacts clean themselves automatically, so the coupler action never gives any trouble. There are more than 300 pounds of brass od and strip in the organ. There are 1,616 automatic combination knobs, for setting combinations throughout the organ.
The organ is being built under the Fleming electropneumatic system. Mr. W. B. Fleming, the designer and architect of this instrument, has incorporated all of the known musical devices in the organ, besides adding numerous absolutely new creations in the way of sound producers, the products of his own genius.
There are 90 pistons in the organ, 45 on the main console and 45 on the automatic. The placing of this unprecedented number of pistons between the keys, for the purpose of operating the combination action on the manuals, is a notable achievement for the musical world. Another achievement almost as remarkable is the placing of 36 couplers on the main

Inserting the Reeds in the Pipes.

Machine by Which Each of the $\mathbf{1 0 , 0 0 0}$ Pipes is Tuned.
stiffness to any other timber. Other parts of the organ, including the wooden pipes, are made of first quality of sugar pine Poplar is used only for bellows folds and rack boards. The main console is constructed of quarter-sawed white oak finished medium antique, and the outer frame casing of the organ will be of 10,000 fee of the finest quartered oak.
The chests are twelve feet long with large windways and channels. There are five 12×6 bellows for the main and pedal organs, each bellows having three square feeders attached. Four bellows in tiers, one above the other, are operated by four crank-shafts made of heavy steel shafting, with extra large steel cranks of ten-inch throw. There are two crankshafts on either side of the bellows. The two upper ones operate the two upper sets of feeders, while the two lower ones operate the two lower sets of feeders. The feeders are tied together with self-oiling V-plates, so that each crank operates on two feeders of each side. Each crankshaft is made of $115-16$ inch diameter steel shafting, with six

Pedals and Keyboard.
the greatest of pipe organs.
console and 23 on the automatic. The divisions of the great organ are as follows: First Division-13 speaking stops, 793 pipes.
Second Division-13 stops, 1,342 pipes.
Swell First Division-all string tones 11 stops, 1,098 pipes

These string tone stops, containing unimited possibilities for wonderful orchestral effects, are placed in a separate apartment.
This is an entirely new departure in organ building.
Swell Second Division-33 stops, 1,769 pipes.
Choir-15 stops, 1,464 pipes
Solo Organ-16 stops, 1,385 pipes, 2 drums.
Echo Organ-12 stops, 1,170 pipes.
The echo organ is practically an independent section, and will be placed about 300 feet from the main organ. Though it has its own motor and bellows, it will be under the control of the main console.
Pedal Organ-27 speaking stops, 1,012 pipes. The pedal organ will form the

Constructing the Bellows.

Carving Wood for the Case.
basis of every melody. The largest metal pipe in the organ is 37 feet in length and 17 inches in diameter. It is made of No. 24 zinc, and weighs 800 pounds. The largest wooden pipe is thirty-two feet pipe is thirty-two feet
long, and is made of $21 / 2$-inch Oregon pine. Its proportions are so immense that a Shetland pony was placed inside and photographed. From these two great pipes radiate the 9,998 others, each with its own individual voice and size and personality. Some of them are infinitesimal in size, and produce microscopic voices, scarce more than a sigh or a faint chirp.
In the five manuals there are 61 notes. The key action is of the single-contact system. Each contact in the automatic console has a spark arrester.
It has taken several hundred sheepskins to cover the pneumatics for the chests. A number of girls and women were employed in this department.
A somewhat unsual mechanical device is the application of "double touch" to three of the manuals, great, swell, and choir, by which the performer, by giving from the fingers three times the pressure normally required, may produce three sets of notes that materially magnify the wave of melody.

Rare Earths in Oklahoma.
One crumb of comfort the government assayers have for mineral prospectors in the Wichita Mountains district of Oklahoma. The chemists of the United States Geological Survey could find no trace of gold in all the 71 samples from that district that they assayed for the yellow metal. Ten samples were examined for silver, but in only two samples was any indication of silver detected. These showed only 0.14 ounce and 0.92 ounce per ton respectively. In two other samples copper was found, 0.351 per cent in one sample and

Part of the Organ's Framework.

Reed-Actuating Devices.

Shetland Pony in the Largest Pipe ($\mathbf{3 2}$ Feet Long).

10.81 per cent in the other. One sample also showed 3.63 per cent of lead. In these cases, however, the small amount of ore available more than offsets the value. Disappointing as the results of this investiga-
last fall, with the especial purpose of studying the reported occurrence of ores of copper, lead, and precious metals. He collected a large number of samples, which were carefully assayed by Mr. Eugene T. Allen, chemical geologist of the Survey. In view of the absolutely uniform absence of even a trace of gold and only the occasional presence of a small quantity of silver, copper, or lead, Mr. Bain was forced to report that none of the prospects examined showed any ore in the proper sense of the term, and that none of them had any present or probable future value. He added that it was impossible to say whether future prospecting might not reveal other occurrences which do have value. It is believed, however, that the prospects examined were fully representative and had in many cases been developed enough to allow a proper judg ment to be made as to their value. In no case do they offer any encouragement whatever for additional prospecting.
Mr. Bain expects to discuss the matter more in detail in a paper to be included in a bulletin entitled "Contributions to Economic Geology, 1903," which will probably be ready for distribution about May 1. One significant discovery made by Mr. Bain was the occurrence of molybdenite, which would seem to lend some plausibility to the consoling theory that in depriving the Wichita Mountains of the precious metals it could so easily have harbored, Nature made what amends she could and granted them a few rare earths in place of rock-bearing rocks.

The biggest searchlight in the world will be seen at the World's Fair. It was finished in an electric plant at Lowell, Mass. It weighs nearly four tons, is of $5,250,000$ candle-power, and projects a beam of light seven feet in diameter.
tion must be to the people of Oklahoma, some basis for their hope of mineral wealth may be contained in the statement that, although no precious metals were found in the samples examined, discovery was afterward made in one of the samples of the interesting mineral called columbite. It is not known that columbite has any specific value of its own, but its presence is always significant, for it is known to have a fondness for the society of certain minerals that contain rare and valuable earths. Among these is samarskite, the source of thorium, which is in demand for use in the manufacture of mantles for Welsbach lights. Pitchblende, another of these minerals, is the principal source of radium, and shines nowadays with more than usual effulgence in the firmament of mineral substances. It may therefore come to pass that a small quantity of rare earth is worth almost as much to Oklahoma as a large quantity of precious metal. Requests have been made by the survey for other samples from near Roosevelt, the locality whence came the sample containing the columbite.

It was Mr. H. Foster Bain, of the United States Geological Survey, who, at the request of the Secretary of the Interior, made a reconnaissance of the Wichita Mountains

Making Automatic Music.

THE SUBMARINE MINE.

In the many attacks that the Japanese fleet has made on Port Arthur, it may have been observed that the larger vessels have never ventured very close to the harbor entrance. Several causes may be assigned for this, such as the danger of plunging fire from the lofty fortifications, the difficulty of maneuvering in the narrow waterway, and the risk of being sunk by torpedojoat attack. But outside of these dangers there is one which, above all others, will prevent any attempted forcing of the channel by the combined Japanese fleet, and that is the presence of the deadly submarine mine. The moral and material effect of submarine mine attack can scarcely be overestimated. The moral effect is so great, that the mere supposition that a harbor en trance may be mined is usually sufficient to deter the enemy from forcing an entrance; and the ma terial effect of a ship coming in contact with a mine would be eithe its certain destruction, or its dis ablement to such an extent that it would have to be beached at once to save it from sinking.
Broadly speaking, there are three different kinds of submarine mines First, observation mines, which ar fired from the shore when a ship is known to be in range; second, auto matic mines, which are exploded on being struck by a ship, which is the kind with which the Rus sians claim that the "Petropav lovsk" was sunk; third, electric contact mines, which on being struck by a passing vessel give notification to an operator on shore, who fires the mine by the hrow of a switch.
Although submarine mines are built in a variety of forms and with different details of their contact and firing mechanism, the two il lustrations which we herewith pre sent will serve to illustrate the principles upon which they are built and operated. The mine proper consists generally of a large and heavy hemispherical metal case, which is filled with a charge of high explosive, and contains a fuse which may be fired either automatically or at the will of an observer on shore. They are of two types. Where the water is comparatively shallow, and not too great to interfere with the destructive effect of the explosive, the mine is placed on the bottom and is known as a ground mine. In deeper water it is carried in a buoyant vessel, which is anchored to the bottom, and floats at a pre-determined depth below the surface of the water. The observation mine may be fired by one or two observers; if by

GROUND MINE, ELECTRIC-CONTACT BUOY, AND SHUTTER AT FIRING-STATION.
point, b. The armature A is secured by a spring to an insulated point, P, from which a wire passes through the firing fuse in the ground mine to earth. The other end of the armature carries a contact point which, when the buoy is struck, engages with a contact point, b, which is connected to earth through the interposed resistance of a $1,000-\mathrm{ohm}$ resistance coil.
Fig. 2 shows the automatic indicator or shutter, which is placed in the firing station on shore. Two currents are employed: One a continuous current of feeble power from a signaling battery, $S B$; the other and more powerful current from a firing battery, $F B$. The arrangement is as follows: Between two electromagnets, $b b$, is suspended an armature, a, pivoted at its center, p. The lower end of the armature holds one end of a weighted lever, 4. When a current passes through the magnets the armature is rotated, the end of the weighted lever released, and the weight falls, striking a bell and giving notice to the operator. The weighted lever turns on an insulated axis, which is connected to line, L. The insulated axis carries a metallic cross-bar, e. which is normally in contact with the spring, d, which is itself connected through the coils of the elec-tro-magnet with the signaling battery, SB. When the weighted lever, 4, known technically as the "shutter," falls, this spring is disconnected by the rotation of e, and the firing battery, $F B$, is brought into play through the contact of plate, e, with spring f, that is, supposing the plug P is in place. By leaving P normally out of place, the observer can fire the battery at will by inserting the plug.

Now let us follow more closely the operation of blowing up the hostile ship. The instant the vessel strikes the buoy, the suspended ball, B, swings to one side, draws aside the cord, pulls up armature A, into contact with b, and causes the signal-battery current to pass by way of the 1,000 ohm resistance-coil down through the ground fuse to earth. This current is too weak to ignite the fuse. At the same time the armature, a (in the firing station), is attracted to the magnets, b, b, and releases the pivoted shutter, 4, ringing the bell and throwing the signal battery line L into circuit with the line to the firing battery, $F B$. The operator now places the plug, P, in place, and sends the whole force of the main current into the line, and as this has sufficient force to pass the resistance and ignite the fuse, the ground mine is instantly exploded. In the case of

line would cover the spaces left in the adjacent lines, with the result that on whatever course a ship might be steering, she would be certain to strike one or more of the mines before she passed over the field. The ground mine, which, as we have said, is usually a hemispherical metal case, contains several hundred pounds of high explosive, and is held in place on the bed of the river or channel by its own weight, some times assisted by heavy hooks cast upon the outer shell. Anchored to the mine, and floating above it, at a depth below water that is less than the draft of the enemy's vessels, is a hollow buoyant sphere in
it impossible for the small boats of the enemy to attempt to explode the mines before the big battleships and armored cruisers pass over them. The battery is placed rather low down near the water, and above it is a battery of heavy 8 and 10 -inch breech-loading rifles mounted either en barbette or on disappearing mount while above these, carefully masked by shrubbery, is a firing station, which is connected by cables with the mines in the channel. Sometimes, by preference, the firing station is placed in a massive concrete casemate, which is built into the structure of the fortification. The submarine mines would be laid out in a series of parallel lines, and so spaced that the mines in each

CONCRETE RAILWAY BRIDGES.

The increasing use of concrete in construction work of the most varied kinds is well illustrated by the instances given below of building railway bridges of concrete.
It is a curious fact, and characteristic of the recent rush of prosperity in the iron and steel industry, that the largest concrete railroad bridge in the world, herewith illustrated, should owe its existence to that prosperity. This bridge, which is now under construction for the San Pedro, Los Angeles and Salt Lake Railroad Company, carries the tracks across the Santa Ana River, at a point some four miles from Riverside, Cal. As originally planned, the bridge was to have been built of steel; but when it came to placing the contract for the same, it was found that the great rush of work in the various bridge-building establishments of the country had thrown them several months behind their orders. Rather than undergo the serious delay that would result if the bridge were built of steel, the chief engineer of the road determined to go ahead and build the structure at once of concrete, the materials for the manufacture of which were readily available, and the nature of the building material being such that it could be prepared immediately.
The viaduct, which has a total length of 984 feet, consists of ten arches flanked by two massive abutments. Eight of these arches have a clear span of 86 feet, and the two end spans adjoining the abutments are about 35 feet clear span. The piers measure 14 feet by 28 feet in plan, and are built of solid concrete. The arches are semicircular, and the greatest height of the structure above the river bed is about 70 feet. The excavations for foundations were carried down to bed rock, which was found at a depth of from 12 to 30 feet, the excavation being done by means of coffer dams. The estimated weight on each foundation is about 1,050 tons. But little difficulty was experienced in finding satisfactory bearing material, except in the case of the last pier, which, after the work had been carried up to a height of 20 or 30 feet, began to show signs of settlement. The matter was remedied by driving cement grouting into the material below the foundation, the grouting being forced in by means of pumps. After the piers had been carried up to the springing of the arches, the falsework and centering were erected, the outer timber form built up, and the concrete rammed in place. The concrete was prepared in a large mixer located near one of the abutments, from which it was loaded into cars and hauled to the particular part of the work where it was needed. The design of the bridge is simple, and suitable to the char-

Looking Southeast Along the Santa Ana Viaduict.
Illinois Central is replacing all wooden and steel structures, where replacement is necessary, with concrete bridges when conditions permit of so doing. The credit of constructing concrete arches of such length belongs to J. F. Wallace.

Count zeppelin's Experiments.

In a letter addressed to the National Zeitung, Count Zeppelin states that his appeal to the German public had not met with the response he anticipated, but that by the aid of several subscriptions he had succeeded in raising the sum of 16,000 marks $(\$ 4,000)$ for the construction of a new airship. To aid in the new project, the leading German constructors will furnish him with the necessary material at a greatly reduced price. Under these conditions, and seeing that the Minister of War, as well as the King of Wurtemberg, have offered him their support, Count Zeppelin has decided to begin the construction of his new airship After a careful study of the subject since his last trials over Lake Constance, he expects to bring out a eral management. the world over.

This is remarkable from an engineering standpoint, because its arches are the longest of the kind ever constructed. The bridge consists of three 140 -foot spans, the limit hitherto having been about 90 feet. The total length of the bridge is 574 feet 6 inches, and width 34 feet 2 inches. In the construction of the three centers for the elliptical arches, the fan-shaped grillage was supported on three rows of piles. The rise of the arches is 30 feet. About 12,000 cubic yards of concrete were used in the structure, which cost $\$ 75,000$. This is less than the cost of a modern doubletrack steel bridge of the same dimensions. This type marks an era in railroad bridge construction, as the

Mining Ore in the Mesabi District.

 by кibby тномas.In the Special Iron and Steel Number of the Scientific American reference was made to the rich Mesabi iron deposit in Northern Minnesota, as being one of the chief contributory causes of our supremacy in thie iron and steel industry. This range was first opened in 1893 ; since which date it has produced $66,800,898$ tons of iron ore. In 1902 nearly 45 per cent of the total iron output of the Lake Superior district came from the Mesabi range, or 33 per cent of the total iron ore output of the United States, the greatest iron-producing country in the world. In 1903 the Mesabi district produced 53 per cent of the Lake Superior output.

Owing to the shallow na ture of the ore deposit and the soft character of the ores, it has been found possible and economical to mine this Mesabi ore with steam shovels in open cuts, and it is on this range that this method of mining is developed to a remarkable extent. The ore lies in broad basins in the rock, covered with giacial drift from a few feet to 100 or more feet thick. The method of mining most used is to strip off the overburden of gravel and load the ore direct into steam cars with steam shovels for transportation to the lake ports. A steam shovel will load 2,000 cubic yards of gravel in twenty hours, and considerably more ore. A fair output in ore for a steam shovel is 75 cars of 25 tons capacity in ten hours. The cost of "stripping," as the process of removing the gravel is called, is about 40 cents a cubic yard, and most of this work is done by contract. The cost of removing 40 feet of gravel from an acre then would be $\$ 16,000$. The ore can be mined and put on the tracks for less than 5 cents a ton, to which must be added the distributed cost of the shipping and gen-

The work of excavating the ore is carried on in parallel benches, the ore being scooped up directly from the natural bed and loaded into the adjacent train of cars. The rich, loose ore in the richest mines will run over 60 per cent of iron to the ton. Several of these mines shipped last year over a million tons of ore each, and the total shipment of ore reached thirteen and a half millions in 1902 and almost as much in 1903. A number of the Mesabi mines are worked by the underground methods, but it is as an example of steam-shovel mining that the range is known

Carrara Marble

Carrara marble, which is of universal repute, is produced in Italy. The strata from which 319,887 metric

Santa Ana Viaduct at Riverside, California; 984 Feet Long. CONCRETE RAILWAY bRIDGES.
acter of the structure, plain rectangular pilasters running from the piers between each arch to the parapet line, where they are relieved by a series of corbels. It will be seen from our illustration that the concrete construction harmonizes well with the natural characteristics of the country.
Another notable concrete structure is the double-track bridge which the Illinois Central has recently completed over the Big Muddy River, near Carbondale, Ill.
greatly improved airship. According to reports, an immense balloon shed is to be erected near Manzell, on the lake, from which the trials are to be held.

A dispatch has been received from the British viceconsul at Sevastopol, reporting that the Russian government had decided to construct an electric railway between Sevastopol and Yalta, to pass via Balaclava, Bida, Aloupka, and Livadia.
tons were quarried in 1902, partly for export to America, cover an area of 80 square miles, and reach in places the depth of three-quarters of a mile. The mines, some of which were worked by the Romans, are surface workings, at an altitude of 700 to 3,000 feet above sea level.

More than two hundred kinds of rice are shown in Siam's agricultural display at the World's Fair.

A fire escape for tourists and travelers.

The problem of the sky-scraper hotel is a very seri ous one for the traveling public, but it seems to have been solved in a very ingenious manner by an Englishman after a brief, but scared, visit to this country. Lying in his bed at night on some incredibly lofty floor, he read all kinds of uncheerful things about fierce conflagrations that have devastated entire cities. He wondered whether there was no way of sleeping in peace and comfort of mind, even on the twentieth floor, with an infallible fire escape at the foot of his bed, thus rendering him absolutely independent of extraneous assistance.
He went home and devised the ingenious trav-eling-bag escape, shown in the accompanying photographs. This will cost, at any bag and trunk maker's, very little more than an ordinary portmanteau of the same kind; and moreover, the fire escape part of it does not.interfere to any extent with its capacity for holding your dress suit, boots, shirts, or a hundred and one other things requisite for the traveler.
In one small compartment will be found some hundreds of feet of that fine, light rope used by mountaineers in the Swiss Alps, for roping them selves together while crossing glaciers and climbing precipitous ice slopes. There is also a particularly ingenious little brake arrangement, and two pairs of steel snap hooks. That is all, but it certainly enables the possessor of this useful article of baggage to rest easy in his bed in an Ameri can sky-scraper hotel.
Let us suppose that an alarm of fire is given in the dead of night, and the flames cut off every means of communication with the outside. Well, the possessor of this portmanteau fire escape simply slips out of bed, snaps one set of hooks round the bed leg or other substantial piece of furniture, and the other set to the sides of the portmanteau. This last he then throws out of the window, gets into it himself, and then lowers himself just as quickly or as slowly as he pleases by means of the brake. This useful article of baggage has not yet made its appearance in this country, but beyond question it will do so pretty speedily

Carbureted Air Light.

Dr. Hugh Marshall, fellow of the Royal Society of Edinburgh, lecturer on chemistry in the University of Edinburgh, has invented another method of using carbureted air for lighting. It is an improvement upon the form of lamp devised by M. Naum Notkin, of Mos-

THE FIRE ESCAPE IN USE.
cow, in which carbureted air was obtained by employing paper pulp saturated with gasoline to produce the vapor required. In this Notkin "gravity" lamp the carbureted air, being denser than air itself, flowed from a higher to a lower level, instead of ascending like coal gas, and could therefore be poured from one vessel to another, like a liquid. In the Marshall lamp the necessary current of air through the carbureter is not maintained by the effect of gravity, but by means of the draft from the lamp chimney. It is thus possible to have the body of the lamp below the actual burner.

To reduce the manipulation necessary with such a lamp when used in incandescent lighting, Dr. Marshall has invented a form of burner tube, which is sunk axially into the body of the containing vessel, and which enables the user to regulate the mixture of vapor and air to a nicety by simply rotating the tube in one direction or the other. Th: new method of using carbureted air has been applied by Dr. Marshall to various types of lamps-table and portable, hanging, basket, and also in lantern form for outdoor lighting. These show a brilliant incandescent light, without any liquid

THE PORTMANTEAU FIRE ESCAPE

or wicks being used, and are free from smell or smoke. Dr. Marshall claims also that carbureted air can be supplied all over a house without danger or complicated processes, and that the gas can be applied to other purposes than lighting, such as for heating and motive power.-Rufus Fleming, Consul, Edinburgh.

A NOVEL ITALIAN UNICYCLE.

by emile guarini.
The accompanying engraving illustrates a motor unicycle invented by Signore Lilio Negroni and constructed by the Garavaglia establishment of Milan. At the last exposition of automobiles, at Turin, it was one of the greatest attractions. In the motor uiticycle, the motor and the cyclist are mounted within a single wheel. The object of the inventor in ordering the construction of this strange vehicle, which appears to be the first practical application of a theoretical principle, was, according to him, to offer to cyclists the marked advantages, from the viewpoint of convenience, safety, economy, and even esthetics, over the ordinary motorcycles. The Negroni unicycle consists of a laminated steel hoop provided with a pneumatic tire and designed to revolve upon the ground. A circular frame is arranged concentrically within the hoop and carries the motor and the seat for the cyclist. The frame mot, and cyclist together, when the hoop revolves upon the ground, move along over the latter just as does - $\boldsymbol{\eta}$ ordinary motor bicycle. In its rotating motion around the circular frame, the hoop is guided by a system of small wheels distributed and fixed in the periphery of the frame and bearing constantly against the internal surface of the hoop. The mechanical reaction necessary for starting and driving the vehicle is obtained from the weight of the frame, the motor and its parts, and the cyclist. The motor drives through a friction clutch, by means of a chain and sprocket, a gear wheel mounted on the frame, and this gear engages with an internal gear fixed to the hoop. The friction clutch allows of starting the motor independently of the hoop, and of transmitting motion to the latter by de grees and without shock.
The steering of the unicycle is very sensitive. In fact, in order to make it turn to one side it is merely necessary for the operator to displace the center of gravity by swaying his body. Despite this, and in order to make the control of the vehicle still easier, the inventor has provided it with a small handwheel, the turning of which displaces the seat and rider to one side or the other. The brake is provided with an automatic arrangement that pre vents the motor and the cyclist's seat from becoming locked to the external hoop and thus being carried along by the latter in its rotary motion.
Signor Negroni does not conceal the fact that his apparatus is not yet free from defects, although these may be successively eliminated by appropriate modifications of each of the parts of the vehicle. He thinks, too, that after his unicycle has been sufficiently improved, it will possess over ordinary motor bicycles all the advantages mentioned above. However this may be, the trials of it that have so far been made have

A UNICYCLE DRIVEN BY A GASOLINE MOTOR.
wheels are carried for a short distance on the flanges, instead of on the wheel proper. As this carries the wheel slightly above the track, the usual bumping caused by the break in the track is eliminated. This is very desirable, as everyone knows how annoying it is to go bumping over a crossing, and especially over one that has been in use for some time. This improvement is also said to be very valuable because it materially extends the life of a crossing, as shown by experiment. Several railroads are already adopting this device.

Legal Notes.

The Grant and Validity of British Patents for xumtions.*-Very few persons, whose inventive rights are protected under the patent laws of the different countries, realize the many provisions which are necessary to afford them protection in each case, and the special training which it is necessary for the solicitor or lawyer in charge of their interests to have, in order that the actions of the public and the courts may be anticipated, the full protection of the invention be secured, and the patent be sustained during the many possible contests and the litigation which may arise during its term. For a lawyer to familiarize himself with the patent laws of any country requires long and careful study; and when he has not quires long and careful study; and when he has not
brought to his task a special training in the arts or brought to his task a special training in the arts or
an aptitude for this branch of learning, he will find a further difficulty in applying his knowledge to the facts in particular cases as they may arise. Mr. Roberts has the several qualifications which are necessary for the writer of a review of the patent law of Great fritain, and in the book before us he has shown himself fully able to cope with a task, the results of which are now offered to the public.
The work has been treated in a novel way, for there are only one hundred and seventy-eight pages of text in the book, while the principal portion of the work is devoted to abstracts from cases which have been selected by the author. The space given to the text being so limited, it is little more than a very brief digest of the cases which form the body of the book and give to it its value. While a law book should in every case use the language of the decisions in which the law is construed, it aids very much to a review of the law to have together all the matter relating to a certain subject. To be sure, when a question of importance is to be considered, all the cases in which the same facts appear should be reviewed, but that will be impossible in a single volume, the purpose of which is to furnish the general information which is necessary to the avoidance of the many pitfalls which the uninitiated finds ir. his path. Mr. Roberts states that this book was written from the point of view of inventors. It is therefore to be regretted that he did not make it more of a constructive work, instead of confining himself in most of the pages to abstracts of cases, which it is impossible to arrange in any order, because most of the decisions discuss two or more questions. While many inventors will probably refer to the book and use it to advantage, the work will also be found on the shelves of many lawyers' libraries, and patent solicitors, especially those in foreign countries engaged in British patent practice, cannot very well afford to overlook the assistance which is now offered.
In preparing specifications to accompany British applications, the same care is necessary to describe and disclose the invention correctly as is required in the preparation of specifications which are to be filed in the United States Patent Office; but, because of several differences in the British patent laws and practice, many things must be examined which the applicant for a United States patent need not consider with the same care. Under the old law, the British Patent Office does not examine as to the novelty of the invention, though when the amended law goes into effect, an examination will be made of British specifications which were deposited in the matter of applications filed within fifty years next before the filing of the application which is being considered by the officials. It will be seen that under the old law, the British Patent Office offers the applicant no assistance in the limitation of his claims to that to which he is entitled in view of the state of the art, and that even under the practice which will go into effect some time in the future, very little assistance will be rendered to the applicant by the examiners in the Patent Office. It is therefore necessary for the applicant to inform himself at his peril what his invention is, and to limit his claims to what is new, for under the British practice a patent is invalid in which there is one claim to which the patentee is not entitled. This severe rule of law, with the other provisions as to the novelty of an invention, which make it necessary for the applicant to file his patent application before the invention has been publicly used in Great Britain, or has been published in that country, makes it often extremely difficult to confine the claims to the features of the invention which it will be impossible for opponents to attack on the ground of a previous use or publication. Very many British patentees have been unable to obtain recognition of their rights in the courts on this ground alone, though, in the decisions to which Mr. Roberts refers, quite as many patentees have failed in their efforts to protect * The Grant and Validity of British Patents for Inventions. By James Roberts. London : John Murray. New York: E. P. Dutton \& Co.
their inventions, because when the complete specification was being prepared, there was great uncertainty in the mind of the solicitor as to what the inventor desired to protect.

Another line of decisions considers the question of disconformity. Except when a British patent application is filed under the International Convention, it is possible for the applicant to leave with his application a provisional specification in which the invention is generally and fairly described without disclosing the mode of carrying it into practice. When a provisional specification is filed with a patent application, the applicant has nine months in which to file a complete specification in which the nature of the invention is particularly described and ascertained, and the manner in which it is to be performed is stated. Disconformity is the inclusion in the complete specification and claims of that which was not mentioned or that which is not a fair development of that which was mentioned in the provisional specification. When the complete specification is held to "disconform" to the provisional specification, the patent is invalid.
There is much substance in the book, and by a careful review of the selected cases with the notes, which the author from time to time has added, a good working knowledge of the British patent practice can be obtained. In the back of the book will be found the Patent Acts, with the authorized forms and official circulars of information. The volume also contains a very'good index, in which the questions considered in the different decisions are arranged in their proper order.

The Construction of Claims.-A patent was issued to Joseph Boyer on April 16, 1895, for a pneumatic tool, the various features of which are expressed in a large number of claims. Suit was brought by the patentee against the Keller Tool Company for infringement of this patent. The bill was dismissed by the Circuit Court and an appeal taken to the Circuit Court of Appeals (127 Fed. Rep., 130).

The only complaint with which the Appellate Court had to deal was the treatment of those claims covering the means for controlling the supply pressure. Claim 47, as expressive of this group, was held by the Circuit Court to call for a pressure supply duct which extended to the grasping portion of the handle, combined with a throttle valve to control the supply. None of these appeared in the tool manufactured by the defendant, for which reason the charge of infringement was dismissed.
In reversing the decision of the lower court, the Circuit Court of Appeals took occasion to enumerate rhe rules which should be observed in the construction of claims. In this Boyer patent the mechanical elements combined were old; but the combination itself showed patentable invention, especially in view of the utility of the tool and its superiority over those of the prior art.
Much was made in this case of the effect of the proceedings in the Patent Office as disclosed by the file wrapper. The court accepted for the purposes of the case all that could be legitimately claimed for the argument of counsel addressed to the examiner which is there found. The court thought that the claims of a patent are not narrowed by statements made on an argument before the Patent Office to obtain a reconsideration after the application has been rejected, where no changes are made in the claims.
In many specifications a certain part of a mechanical combination is said to consist preferably of the shape approximating that shown in the drawings, but the inventor expressly declares, with regard to his invention generally, that by describing in detail any particular arrangement he does not intend to limit himself beyond the terms of his several claims or the requirements of the prior art. Under these circumstances, the court held that a claim is realized and infringed by any construction of the general character called for which fulfills its terms, notwithstanding the words "substantially as described" at the end.

A Trade-Mark Infringement Suit.-The case of Ohio Baking Company vs. National Biscuit Company (127 Fed. Rep. 117) brings out a typical trade-mark situation and a typical decision. Complainant's "In-er Seal" trade-mark, as known to the public, was printed in white letters on a vivid red background of a peculiar shade, and applied to the ends of cracker and biscuit cartons, in which complainant's goods were packed for sale. Shortly thereafter defendant conceived a trade-mark with the words "Factory Seal" printed on the same-colored labels, which it applied to the ends of similar packages of its biscuits. At the time defendant adopted this trade-mark it knew complainant's crackers were the only ones sold with the red seal on the end of the cartons, and that its trade-marks were liable to deceive careless purchasers. The court held that defendant's trade-mark, when so printed and used, was an infringement on complainant's trade-mark, and should be enjoined.

Brief Notes Concerning Patents.
Rev. Ernest d'Aquila, pastor of the Italian Roman Catholic church of Our Lady of Mount Carmel, New ark, N. J., has been granted a patent on a safety gas burner, which is intended to prevent the asphyxiation of persons who blow out the light either by design or accident.

Dr. Hans Goldschmidt, the German chemist, who has been visiting this country, took occasion during his stay to inspect the furnace invented by Marcus Ruthenberg, of Philadelphia, by which the highest grade of steel is made directly from the ore. This furnace has been erected at the Cowles Aluminium Works, at Lockport, N. Y. A practical demonstration of the furnace was given for the distinguished visitor.
Dr. Von Adelung, the health officer of the city of Oakland, Cal., has invented a new faucet which is being experimented with by the board of education of that city. By the use of this device, the doctor claims it will be impossible to transmit disease germs from one scholar to another. The faucet is much like others, except that it is inverted and does away with the use of the drinking cup.
Ethan R. Cheney recently died at Brookline. He was an inventor of note. For twenty years he was master mechanic at the Norway Iron Works, in Bos ton, and while there invented and patented many valuable pieces of machinery. Four years ago he invented a lathe for the purpose of turning the large granite columns required for the cathedral of St. John the Divine in this city. The columns were 60 feet long and 6 feet in diameter in one piece. The lathe weighed 140 tons and was the largest ever built for turning granite.
An elaborate electrical device, which combines the moving picture machine with the phonograph, so that the words and music of a theatrical or other perform ance can be heard while the movements of the players are reproduced before the eyes, has been invented and is being exploited. The machine is the invention of T. F. Solon, an ex-member of the Wisconsin legislature and ex-Gov. George W. Peck, of the same State, is an active member of the company which is engaged in introducing the apparatus. One of the novel features of the machine is the mode by which a cylinder which has become exhausted is automatically changed for a fresh one.
Anyone who has ever witnessed the operation of fighting a fire must have been impressed with the awful force of the water as it issues from the nozzle of the hose. The services of three and four firemen are often required to hold and direct the stream, and it is a frequent occurrence, at that, for the nozzle to break away from their grasp, and under the influence of the mighty force of water being driven through its interior, be hurled right and left, like a mighty serpent on a rampage, seriously injuring anyone who might be unfortunate enough to get within its reach. The only way which the rearing and tearing monster can again be secured is by stopping the pump, and much time is frequently lost before this can be done. A new nozzle which can be handled as easily as a child is just now being brought to the attention of the fire departments of the country. Its remarkable behavior under the highest pressures is attracting the wonder of the men who thought the old nozzle, which has been in use so long with all its faults, was about as near perfect as it was possible to make it. A trial of the device was made recently in New York, when one of the nozzles was connected with three streams, each $21 / 2$ inches in diameter, with a pressure at the pumps of 160 pounds. The machine was bolted to a plank, and the latter was nailed down with seven tenpenny nails, and this was entirely sufficient to hold the nozzle under all circumstances. One man could easily direct the stream to any desired point, and after it had been placed as desired, the nozzle remained unsupported without the least variance under the pressure of the water. The upper part of the device consists of a nozzle much the same as is in use at present except that it is finished at the base with a ball joint. The ball end is supported by a stand, which divides at the top to receive and support the end of the nozzle proper, and the stream being divided enters the tube of the nozzle from both sides, which comprises the essential feature of the device. One would naturally conclude that the efficiency of the stream would be impaired by its passage through the two channels, but at the lower pressures there was no change whatever as compared with the ordinary nozzle, while at the higher pressures the difference was very slight. There are several types of the apparatus, and the one tried in New York was the one designed for the heaviest work. Those which are made for handling a single stream of ordinary dimensions are supplied with a stand, which is meant to be merely placed on the ground without any fastenings whatever. When it has been thus located, it needs no further attention, except when it is desired to make a change in the direction of the stream occasionally.
recently patented inventions. Electrical Devices.
insula' ior.-J. A. hanson and A. F Lambeigr, Davenport, Wash. This invention type used upon wire fences where it is desirable to employ one or more of the fence-wires, fo the purpose of telephoning, telegraphing, etc
The dielecric may be made of porcelain, clay, china, or other brittle materials, and the staples may be rapidly secured upon the same by any farm laborer.
current-regulator. - E. Dysterud Monterey, Nueva Leon, Mexico. The object of this invention, which relates to automatic cur-rent-regulators, is to produce a neat, simple, and efficient form of regulator which will require a minimum of attention and which is not
liable to get out of order. The instrument liable to get out of order. The instrument
works best where the variations in current strength are comparatively light; but it may be strength are comparatively light; but it may be
ievertheless used to advantage whether the variations are considerable or are abrupt. It also serves to render the potential of the
current being generated substantially constant.

Hardware

nut-Lock.-J. F. Ridman, Goshen, Ind The aim of this invention is the provision of a simple nut-box that may be easily applied and removed, that effectively holds a loose nut, nut against an object, takes up no a vailable room, is perfectly reliable in service, and that ced at low cost.
wire-rope cutter.-M. t. Wolf, wash ington, Pa. Mr. Wolf's invention relates to means employed for drilling deep wells to then
obtain water, gas, or oill The intention is to provide a cutting device that may be conveniently lowered in the well-bore and by it mpact on the drill-holaer be caused to cuth the drill, and thus permit the removal of the
cope.

Machines and Mechanical Devices.

ROLLER-BEARING.-R. F. Bower, Lima Ohio. The object in this improvement is to provide a construction of bearing which will
be useful wherever a journal-bearing is desired and will be especially useful in such bearings as are designed to permit lateral
motion by allowing the shaft or journal to slide motion by allowing the shaft or journal to slide laterally in the bearing. It may be used in car-axte boxes or line shafts, stationary ma
chinery, propeller-shafts, and wherever a jour-nal-bearing is employed.
MAGNIFYING ATTACHMENT FOR SEWKy . This device will facilitate the setting, threading, or adjustment of the needle, etc. most impossible to make adjustments and ex tremely difficult to even thread the needle. The purpose is to overcome these difficultles and permit any one to make the most delicate adjustment of the needle, thread it,
that the sewing is properly executed.
CASH-REGISTER.-J. C. Vah
CaSh-REGISTER.-J. C. Vahjen, New
York, N. Y. Mr. Vahjen's purpose is' to proYork, N. Y. Mr. Vahjen's purpose is to pro
vide a positively-acting construction whereby vide a positively-acting construction whereby
as each lever-key is depressed a corresponding tablet will be displayed and remain so unti another key is operated, each key returntny automatically to normal position on release Also to provide means whereby a key must be
fully depressed at each operation to discharge printed check of amount, which check is cut from a roll of tape and drops from the
machine with a display of the tablet. When machine with a display of the tablet. When
a key is partially depressed it cannot be forced a key is partially depressed it cannot be forced to the limit of its travel. Mr. Vahjen has to a printing mechanism for registers oper ticularly designed to print in duplicate an when desired to operate in conjunction with a knife adapted to cut one of the printing tape or ribbons into checks for delivery from the
machine, while the other printed tape remains concealed within. The purpose is to provid a construction of printing attachment
able to any key-lever-operateu machine.
aUtomatic piano-player.-H. Meyer, New York, N. Y. The object of the invention
is to provide an automatic player for a piano organ, or like key-actuated musical ins'rument arranged to permit convenient varying of the speed of the note-sheet traveling over the tracker-board to actuate the key-strikers with more or less force, to keep the note-sheet in
proper alinement with the tracker-loard, and proper alinement with the tra
to quickly reroll the note-sheet.
SAWING-MACHINE.-E. H. Hoff, Mosinee Wis. The invention relates to improvements in sawing-machines for felling trees, sawing
stumps, or the like, an object being to provide stumps, or the like, an object being to provide a machine of simple construction that may
be easily carried from place to place, that may be operated with comparatively liftle manual exertion, and in which the saw may be a ranged for operation at any desired angle.

Pertaining to Vehicles.

STEAM-SLEIGIF.-J. R. Tibbits, Delmar, N . Y. The invention consists in effective
means wherely the sleigh may be guided. The propelling means and the guiding means are
thrown into and out of engagement with the
now or ice by levers extending up within
reach of a person sitting on the sleigh-seat. The guiding means has the further advantage in being adapted to be used as a brake.

Prime Movers and Their Accessories. relief-valve.-S. O. Brune, Mine Ceninvention is to produce a simple efficient the reliable device adapted to be easily and quickly applied, capable of a quick action when pressure is admitted, so as to minimize leakage of steam, and susceptible of regulation to a
just itself to different steam-pressures. HOT-WATER COOLER.-J. S. SCOTT, rantford, Canada. In the present invention he aim is to provide a new and improved hotater cooler, more especially designed for use connection with the water-jacket of an ex-losive-engine or the like and arranged to in the cylinder cool at an approximately uniform temperature.

of General Interest.

envelop-CLaSp.-a. De Saint Chamas, Chicago, Ill. In carrying out this invention
Mr. Chamas has particularly in view the rovision of a clasp or fastener which will in such manner that the latter may be quickly and rapidly opened by the postal authorities o
 closed and sealed again. The clasp or clip mbodies features of simplicity, durability, ightness, and strength in addition to con enience in use-that is to say, the clasp may
e readily adjusted and removed, while at the same time it will form a safe and reliable osur
COMBINED HYDROMETER AND SYRINGE -R. Van Benthuysen, New York, N. Y. The purpose here is to prevent hydrometer-tubes
from touching the side walls of syringe-barrels and to provide means whereby to prevent roand further the purpose is to so construct the cale section of the hydrometer-tube that it will be polygonal in cross-section, having a
reading upon one face, for example, indicating eading upon one face, for example, indicating
density, upon another face degrees Baume density, upon another face degrees Baumé, required the third face a reading setting fort solution tested to proper density
CAbinet.-W. B. Altick, Lancaster, Pa Briefly stated, the invention comprises a rigid raming furnishing the top, bottom, and bac all of the cabinet and two arc-shaped sec
ions which are arranged to slide between the op and bottom walls, so as to extend outward o meet at their front edges and close the cabinet or so that they may be folded back part from each other, thus opening the cabnet completely. The invention relates to a
cabinet designed so that a person using the abinet designed so that a person using the
telephone will not be annoyed by surrounding telephone will not be annoyed by surrounding
noises or his conversation heard by persons ear.
COMBINED TABLE AND DESK.-J. MCG on, ad desks an biect being to combined table ined•table and deck so arranged that when not in use the desk may be slid into the table, o that the complete device will occupy comaratively little space.
CaN.-C. B. Howell and A. C. De Yoe, ampbell Hall, N. Y. In this case the invenand storage to cans used for the transportation bject of the invention is to provide certain new and useful improvements in cans whereby the ears for the handles of the can are securely fastened in place to prevent the ears from be-hose-supporter.-A. M. Wilson, Chero hee, Iowa. Briefly stated, the object this improvement is to provide a supporter
arranged to give the desired comfort and ease to the wearer, especially when moring the limbs or bending the body, and to prevent undue strain on the hose or the parts of the
upporter. The supporter may be attached th corset without danger of accidental detach ment when the corset and supporter are worn or when the
supporter.
SELF-CLEARING Propeller. he, Southampton, N. Y. This improvemen more especially adapted for use on that class principle may be utilized in propellers adapted or service on other styles of marine vessel elation to the propeller for removing seaweed and other vegetable matter from the lades, thus making the propeller self-clearing and overcoming the lodgment of matter that interferes with the efficiency of the propeller. HAIR-PIN.-Louisa Ousey. Bellevue Villa.
outh Wimbledon. Surrey, England. In this South Wimbledon. Surrey, England. In this patent the invention is in the nature of an imas to enter the hair easily, to glide smoóthly over the scalp wi, out pricking, abrading, or hold the pin in the hair against fallin, out. block and tackle.- J. O. Waiton is in the nature of a rovel block and tackle
of great power in which the blocks may be
conveniently formed by casting and in which the various runs of the rope are sufficientiy separated to avoid rubbing against each other, thereby reducing friction and increasing the ficiency of the
botTle-ClOSURE.-B. Clemens, Moundsvile, W. Va. The present invention refers bar-bottles used in retailing liquid goods. It may be applied, however, to various other pur poses. It comprises, broadly speaking, a body preferably of spring metal, so as to snap ove bottle, a a peculiarly-arranged cover for the spout. writing-tableit.-D. F. Curtin, Butte Mont. In this instance the invention relates strip or supply of paper is held within a cas and drawn out of the case and over the outside thereof which forms a base upon which the
paper rests while being written on; and the paper rests while being written on; and the
object is to provide a tablet combined with a supplementary receptacle for holding pen cils, matches, stamps, et
Note.-Copies of any of these patents will be flease state the name of the patentee, title o the invention, and date of this paper
Business and Personal WJants. Mill dill coldin carfully-You numberd in consecutive order. If of you manu.
facture these goods write us at once and we wili
Send you the name and address of the party desir ng theinformation. lu every case itis neces
sary to give the number of the inquiry.

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 5418.-For manufactur
ubber specialties.
Autos.-Duryea Power Co., Reading, Pa.
Inquiry No. 5419. - For an attachment for emery
wheels orprnad stones. to hold a t tist drill firmly and
at a correct angle to sharpen same.

Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St
Inquiry No. 5421.- For machines to graduate lin-
ear measure in inches and their subdivisions. Sawmill machinery and outfts manufactured by the
Inguiry Vo. 54\%2, - For the manufacturers of the
Patent satety Wrench, which is made in Vermant.
American inventions negotiated in Europe. Wenze Inquiry No. 5423.-For dealers in electro-platers
I want the western agency or right for any good sel ng article; send samples with full particulars. Bern Inquiry v.
achines. Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broadwas New York. Free on application
Inquiry
ing machines.
5425.-For manufacturers of griLdFine machine work of all kinds. Electrical instru
ments a specialty. Models built to order. Page chine Co., 812 Green wich Street, New York. Inquiry No. 5426.-For manufacturers of wire
less telegraph instruments. We manufacture anything in metal. Patented articles, metal. stamping, dies, screw mach. W
Metal Novelty Works, 43 Canal Street, Chicago
Inquiry No. S4,4y.-For manufa
match boxes and similar novelties.
The largest manufacturer in the world of merry-goand terms write to \mathbf{C}. W. Parker, Abilene, Kan.
Inquiry No. S428. - For manufacturers of bras
tramminy for fre apparats, such as seat rails, han
rails, lintern hangers, etc., for hose wagons and tracks The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La vergne Refrigerating Ma Inguiry No. S429. - For mannfacturers of trans-
parent celluluid, in very thin sheets. Manufacturers of patent articles, dies, metal stamp ery and tools. Quadriga Manufacturing Company, 1 South Canal Street, Chicago.
Inquiry No. 5430.-For manufacturers of roller
Wanted by a manufacturer owning his own plant
with both wood and metil-working machinery, side line. some art icle or novelty that will have a ready sale during fall and winter months, located near Bos ton, Mass. Novelty, Box 773, New York
Inquiry No. $\mathbf{5 4 3 1}$.-For an outfit for cutting sten-
cils in brass sheet. "The Household Sewing Machine Co... Providence ture of high grade mech:nical apparatus, requirin,
accurate workmanship, in either machine shor, cabingt work. or foundry lines. Expert mechanics. designet

Patent and Export Cimpany, Christiania. Norway.
Specialty: Sale of patents and patented articles in
Inaniry No. 5433.-Fr monnufact urers of small
circular cardboard boxes a bout $1 / 2$ by in ches Inquiry No.
motives .5434.-For makers of small loco-
Inquiry No. 543.5.- For manufacturers of rubber
toys.

 HINTS TO CORRESPONDENTS.
 $=2=2$ $\pm=2=5$ $=5=5=5$ mem
 $= \pm \pm 5=m$ Scientific American Supplements referred to may be
had at the ofice. Price 10 cents each. Sooks referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctls
marked or
(9369) C. W. B. says: I do not wish to prolong any argument about how the ocean
got its saltness, but in your letter in reply to got its saltness, but in your letter in reply to
my letter in which I suggested that the ocean my letter in which I suggested that the ocean
became salty in primeval time when the water irst settled on the surface of the globe, it
brought down chlorine gas and was the medium for uniting that with sodium in such quantity that the whole ocean became salty, s at present. You say that you will not altogether disagree with my suggestion, but then you add: "The water of the ocean
was once fresh water. It has received salt
位 from the wresh water. LeConte says that salt lakes received their from deposits left by the ocean.
The ocean received its salt from the rocks." Now, if this last statement is true, how did the salt get into the rocks? Salt
is not an original element. There must have been a time when its constituents were separate and independent. All of .the seven geoogical text books that I have before me
claim or assume that all salt deposits or brines are remnants of the ocean evaporated.
The salt in the rocks that you refer to must The salt in the rocks that you refer to must
have been deposited there by water, and that ave been deposited there by water, and that you my impressions as to the origin of the altness of the ocean I could not find any lexander Winchell's "Sketches of Creation." After saying that the deposits of salt found everywhere are dried-up remnants of the
ocean, he says, on page 296: "How the waters of the sea came into possession of heir saltness is a question of primeval chemstry to which allusion has heretofore been tions which took place betwen the fie-born ocks and the atmospheric acids washed forn by the primeval rains, and gathered with the athering together of the waters." In discussing the various chemical unions that probably took place when the primeval waters settled on the globe he says, on page 60 ; "Cardissolve in sea water, would settle to the botom and become limestone; while chloride of common salt-remained in solution, and thus gave its characteristic salinity to the sea." Unless you can find a better authority than this I think you will have to concede that nion of chlorine gas brought down by the primeval rains which constituted the medium or bringing that and sodium together to form alt; and that all the salt in the rocks, soin, mines, or wells was deposited from some evapunderstand that we are thinking of the earth t one time and you at another in reference the genesis of salt water in the ocean. At water or salt either, to exist. When the cooling had proceeded far enough, the var-
ous substances began to combine, and chemous substances began to combine, and chemical action became possible between the sev-
eral elements as their various temperatures f association were reached. Thus water was ormed. We did not suppose that any one and although you assert the original saltness of the ocean, we must think that you cannot intend this declaration to apply to the genesis of the water in the seas. The salt itself
must have been formed at some time when me have been cooled below the temperature f dissociation of sodium and chlorine. We confess we do not know when this was in the pose any one asserting positively regarding his matter must have definite knowledge on his important point. The quotation you make rom Winchell is quite to the point that the water now in the sea was originally fresh. The salt "was the result of the chemical actions which took place between the flreorn rocks and the atmospheric acids washed y the gathering together of the waters." that is sufficient. The salt was formed after the water was formed and gathered in by the
inflowing of the waters into the lower parts of the earth. It does not seem necessary to \boldsymbol{l}
(9370) G. S. T. asks: 1. By what rul would you determine the size boiler to build
to supply a cylinder of a given size? A. The cylinder size is usually made to represent a certain horse-power at some assumed pressure, cut-off, and speed of the piston, and for each
horse-power an allowance of 12 square feet of horse-power an allowance of 12 square feet of
heating surface and a half square foot of grate surface must be provided for in the boiler.
2. What chemical composition is it that when i. What chemical composition is it that when
it comes in contact with water immediately burns and bubbles up like lava on the surface? A. Any dry mixture of an acid and an alkali, as for example tartaric acid and carbonate of water is dropped on the dry mixture. 3. What is the meaning of the word "phase"? I have
several electrical volumes and sets, but one or several electrical volumes and sets, but one or
two of them explain it in such a manner as to make it incomprehensible to a person not ver want to know is the difference between a two and a three-phase machine, and how you tell
the difference? A. Phase is a current impulse which may be multiphase by alternating two, three, or more times in a multipolar gener-
ator of four, six or more poles for each revolution of the armature. The difference may be known by the different direction of the pole winding. See two and three phase system
illustrated in Scientific Anerican Suppie meny Nos. 822, 831, 10 cents each mailed.
(9371) F. A. M. says: We are setting a new steam boiler 60×16 inches, and in bringing up the question of water supply, our local steam engineers all contend that with a erated by supplying the boiler with water from inspirator which will heat the water before entering the boiler, than can be had if we use the local gravity water system, which has sufficient pressure to force the water into the
boiler directly against the steam pressure, but which would be cold as it entered. The writer contends in favor of the gravity system, in
asmuch as the effort of lifting the spring asmuch as the effort of lifting the spring
water will be overcome. Will you please advise us as to the correctness or advisability the gravity system to feed your boiler, if it can be trusted for full pressure at all times, but do not neglect other means of feeding your boiler to guard against accidents. The same
heat power must be used from the boiler heat power must be used from the boiler
whether the water is fed cold or is heated by the injector. If the gravity supply can be
 steam or chimney heat, the greatest economy
may be obtained. If cold-water feed is adopted, the water should enter the boiler above the tubes and be distributed through a perforated pipe for best effect.
(9372) J. P. M. asks: With a heating apparatus for a residence, that seems to buru
either anthracite or bituminous coal with equal either anthracite or bituminous coal with equa
facility, what will be the comparative heat ing value of the two of a verage market qualunits of combustion of the good marketable coals of the United States scarcely varies 1,000 heat units from the mean of 14,000 heat units per pound of the various kinds, as semi-bituminous, bituminous, and the various grades of anthracite. The available heat per of firing and the kind of furnace used In furnaces for heating dwellings, far the larger number are designed for anthracite coal and are not suitable or economical with bitumin ous coal. The excessive waste of smoke fouls the heating surfaces and the heat is lost
through the chimney. In furnaces with underfeed appliances the economy in heating gives bituminous coal an equal quality with an
fhracite; but the care is somewhat greater. thracite ; but the care is somewhat greater.
(9373) E. H. A. writes: I was much much interested in what you had to say about the
reason for water hammer (Query 9329, page 239 of Scientific American for March 19, 1904). We are troubled with musical water
pipes, always in the cold-water pipes. Will you kindly give the cause of it? Can it be stopped permanently? Turning on the cold water and then shutting it off stops it for the
time being. Sometimes it stops for a long time. A. We have little experience with musical water pipes, except from the tremor of loose valves when drawing water, which may be heard all over the house when any bibb is running with a loose valve disk. The noise the steam from the water back is quickly stopped by opening the hot-water bibb and drawing off a quantity of hot water. This
noise is also heard all over the house by the reverberation of the pipe system. Sometimes leakage through the rubber disks of compres sion valves makes a musical sound by the vilocation is easily traced, when a new disk may be inserted. Your plumber should know all about this trouble and its correction.
(9374) S. G. A. asks: Would thank you to inform me in the next issue of your pa
per, whether the buoyant effect of water at the surface is greater in deep water than in shal low; that is, will deep water carry a greate weight in a boat than shallow water will?
A. The buoyant effect of water on a boat is A. The buoyant effect of water on a boat is
the weight of water the boat displaces. It is than at another part. The depth of the water than at another part. The
has no effect on buoyancy.
(9375) J. A. M. says: In rounding a curve on a railroad one rail is longer than the
other; the wheels on a car that are on the ongest rail must travel farther than the wheels on the short rail. As axle and wheel are one iece, both wheels must make the same number revolutions. Please explain how this done. A. It is very evident that with fixed must be done in rounding a curve. The taper
read on the wheels' was designed to help the curve traverse by riding the high side of the read on the outer rail and the low or smaller part of the tread on the inner rail from the entrifugal force of rounding the curve. This but slightly fills the requirement, and slipping of the wheels does the rest. By the centrifugal sure or load is thrown on the outer wheels and the inner ones do most of the slipping forward. By close observation of the rails on curves, it may be plainly seen that the wheels (9376) the rails, as shown by the wear. (9376) M. G. D. writes: In a discus an contended that steam from a boiler at tmospheric pressure in a system of heate tubes, will issue from this heating coil at or above the temperature of the steam in the boiler if the tubes are kept hot enough; in ther words, that high-temperature steam can be obtained without high pressure by an ar-
rangement as above described. The other rangement as above described. The other
party says that under no condition can steam party says that under no condition can stea
be obtained above 212 deg. F. without increas ing the pressure above that of the atmosphere . Steam circulating in heating coils canno out outside heat to counteract radiation; but by expansion to atmospheric pressure in a coil without receiving heat, pressure and temperature will both fall and temperature of the
exhaust will be 212 deg. F. By superheating or adding heat in the coil, any desired temperaure, even far above that of the boiler, may be ure due to ture due to the pressure in the pipe of the
coil. The general principles of the use of uperheated steam are discussed and illustrated in Scientific American Supplement Nos.
1068 and 1069. We think that the articles on 1068 and 1069. We think that the articles on superheated steam in Scientific American No. 408, would also be of interest to you; price 10 cents e
(9377) S. T. Co. writes: We note in recent issue that you advise the use of alcohol to remove ink spots from typewriter
keys. Allow us to state from experience that keys. Allow us to state from experience that
this is not effective, because as celluloid keys his is not effective, because as celluloid keys
are referred to, the alcohol (particularly if re referred to, the alcohol (particulary ir
wood alcohol) will dissolve the celluloid and ruin the appearance of the keys. Javelle water is the best substance to use.

NEW BOOKS, ETC.

The Factory Manager and Accountant. Some Examples of the Latest American Factory Practice. Collected and Arranged by Horace Lucian Arnold.
New York: The Engineering MagaNew York: The Engineering Maga-
zine. 1903. 8vo. Pp. 431. Price $\$ 5$. zine. 1903. 8vo. Pp. 431. Price $\$ 5$.
The author deals with this subject in an dmirable manner, and the forms or blanks which are illustrated would certainly tend to valuable points. The book is made up most valuable points. The book is made up of sev-
eral complete factory systems, both the costing and commercial blanks being accurately reproduced, each one having the actual size in inches given, together with its color and the material on which it is printed. The and apply it in his own practice, and he ma also trace its action and effects in relation to the entire accounting of the factory, and can compare his own practice with that of
other managers, cost-keepers, or accountants. other managers, cost-keepers, or accountants.
It is certainly to the credit of the various companies represented that they It is an exce lent book.
Schutz der Eisenbahnen Gegen SchneeSchubert. With 103 illustrations and an atlas of 38 plates. Leipzig: Wilhelm Engelmann. 1903. 8vo. Pp. 62. Price $\$ 1.25$.

This monograph forms part of Schubert and Fink's "Handbook of Engineering Sciences," in which it appeared as the twelfth chapter under he title "Means for Securing the Safety of Railway Traffic." Beginning with the discus-
sion of snowstorms, the author treats of snowdrifts and their effect upon railways. As a protection against snowdrifts he recommends modifications of the roadbed itself, or in cutting off the wind. A similar treatment is accorded to the subject of snow avalanches. One of the most striking parts of the book is an excellent series of illustrations, which clearly show how their course may be checked by walls, dams, fences, and the like.
Fire and Explosion Risks. By Dr. Von Schwartz. Translated from the Ger-
man edition by Charles T. C. Salter.
pany. 1904. 8vo. Pp. 357. Price
This work forms a complete hendbook for
partment, lawyers, factory inspectors and own-
ers; in fact, anyone interested in fire risks and dangers and their prevention.
The book is divided into eleven parts, which
treat of such subjects as the following: treat of such subjects as the following: Fires proofing; dangers caused by sources of light ous industrial materials, lighting and lighting materials; dangers in various establishments, such as drug stores, breweries, soap and suga works, and the like; and danger from petroleum, oils, ethers, and other liquids, as well
as from metals, oxides, acids, and salts. In completion of the general thoroughness with which the subject is treated, the book conboiling flashing and fusing points of vaious liquids and substances, the working of various tures permissible in the various trades to gether with an explanation of some of the principal processes and their risks, and dangerous substances that are liable to ignite and explode spontaneously, with their reactions
As a reference work for those having to do
with fires and fire risks, the value of this with fires and fire risks,
volume is unquestionable.

Elements of Theoretical Mechanics. By Alexander Ziwet. New York
The Macmillan Company. 1904. 8 vo Pp. 494. Price, $\$ 5$.
This work is a revised edition of "An Ele mentary Treatise on Theoretical Mechanics,' which was published by Prof. Ziwet ten years ago. It contains practically the whole course
in theoretical mechanics as taught at the University of Michigan; but, on account of the capabilities of the usual second-year studical capabilities of the usual second-year student
the subject matter is confined largely to prob lems in one and two dimensions. Thus, al though such problems as the motion of a rigid body around a fixed point had to be omitted rectilinear motion and rotation about fixed axis have been more thoroughly treated than here tofore, and some illustrations of plane motion ase been given. Fundamental subjects, suc as simple and compound harmonic motion, motion under central forces, and the theory oughly. The book is theoretical in character though numerous practical illustrations of the theories discussed are given. It is intended for use chiefly as a textbook, and the author' expressed desire is that it may tend to stimulate the study of theoretical mechanics in engineering schools.
Anthracite Coal Communities. By Pe ter Roberts, PhD. New York: The
Macmillan Company. 1904. 8vo. Pp 387. Price, $\$ 3.50$.

This new work on the anthracite coal fields by Mr. Roberts will be welcomed by all who
are familiar with his previous volume on are familiar with his previous volume on
"The Anthracite Coal Industry," published in 1901. While the facts relative to the economi life of the people of these regions were given in the former work, little or nothing was said
concerning the social and moral life. In the concerning the social and moral life. In the
present volume this is thoroughly dealt with; and the author, besides having a personal ac quaintance with the people haluable testimony given before the Coal Strike Commission a year ago. The home life, different ways of living, the intellectual and religious life, the schools, hard-working people are graphically and in-
hater terestingly portrayed, while some 25 illustra tions from photographs give one a good idea of the
homes.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued for the Week Ending April 12, 1904.

AND EACH BEARING THAT DATE

See noteat end of list about copies of these patents.]

 We Start With The Hide

SCHIEREN
BELTING BELTINE

Gas Engine IGNITER

[^0]

ELECTRICAL MOTORS. - THEIR

SPRING HUB
 A.W.
 LEAD PENCILS, COLORED PENCILS, SLATE
PENCILS, WRITING SLATES, INKS, STATIONERS 78 Reade Street New York N Y Reade Street, New York, N.
GRAND PRIZE, Highest Award, PARIS. 1900.
Patents, Trade Marks,

MARINE ENGINES

ARTESIAN

WIRELESS TELEGRAPHY.-ITS PRO-

 MOST POWERFULL WIRE ROPE MADE BRODERICK\&BASCOM ROPE CO.

Bevel Pinions
 THE NEW PROCESS RAWHIDE CO.

WONDER $\frac{\text { Acetylene Burners }}{\text { Price }}$
 ELECTRIC AUTOMOBILE. - DIREC-

RADIUM RADIO-AND CIVITY

 CREOKEESIAOCIENTIFIC AMERICAN SUP-
THE RADIOACTIVITY OF MATTER.

 $\underset{\substack{\text { TRRACY } \\ \text { MRNT } \\ \text { Sid } \\ \text { St }}}{ }$

 A COMPLETE MANUAPEMRADUM

Si47e, 1477 .

 Price of Scientifo American Supp
$\mathbf{T E N} \mathbf{C E N T S} \mathbf{~ B X ~ M A L L}$
 MUNN \& CO., 361 Broadway, New Vork
MUN Newder

All Children

 Med " Hand Cass, FREE.
MFG.
Anderson, Ind.

ELECTRONS AND THE ELECTRONIC
 Mand ill neessdealess.

 cial purposes. Ask for catalogue.
The CLEVELAND STONE CO.

2d Floor. Wilshire. Cleveland, 0 .

A Southern Home

 LANDS at LOW PRICES $\underset{\substack{\text { For printed } \\ \text { giving full particultars, } \\ \text { circula } \\ \text { write }}}{\text { and }}$ M. V. RICHAR RDS, Land and Industrial
Southern Railway and Mobile \& Ohio Railroad,

 Lock, J. D. Edmonds
Lock, W. E. Metzel
Lock, J. S. Campbell

 Lubricator, W. R. Malcolm
Magnet coil spool. He Gei

electrical, M. C. Rypinski...........
Medical compound diluent, J. M. Schitz
Metal bars into sheet, reducing, T. V. Allis
Metal disk wheels, manufacture of,
 Metalic tie and rail fastener, J. F. Lev.
Meter. See Demand meter.
Mill, system for intimately mixing,

 Musical instrume
Musical instrume
H. Wraitb

 Ore colverizer, impact, J. Thame.
Ore pulver
 Overshow atarm, athment, W. H. Tililon.....
Oxidizing and drying textile materiai,
paratus for, J. W. Fries

 Paper holder, roll, G. W. Webster..... ${ }^{\text {Pap }}$
Paper, etc, machinery for cutting and fol
ing, E. H. Cottrell

\qquad
\qquad

Push rake, O. D. \& D. W. Shir
Quilling machine, G. Adsit
Radiator valve, A. L. Bower.

 Railway danger signal, electric
Rarns
Railway, electric. w.
Railway, electric, D. J. Cable...

 Refrigeration system, C. J. Coleman.
Refrigeration system and apparatus,
Coleman Regulator, E. \because Hone......
Relay, megaplex, R.
R. Reversing mechanism, A. Engear.
Rifle holder for mount.

MARCONI SECURITIES FORTUNE

A small investment in Marconi Securities will make you independent in a few years. A larger investment

A. EDISON

The captain of a steamer, equipped with the Marconi System, was recently asked what he thought of wire-
less telegraphy, to which he replied: "How would you like to be without the telephone?

 means of communication betweenc every contry, every city, every town, every village, house factory,
store, office, and farm, for its cost is within the reachor very,
It will It will be more profitable than shares of the Bell Telephone Company, which were first offered at $\$ 1.00$
and afterwards sold for more than $\$ 1,000$. An investment of $\$ 100$ then has yielded up to the present time
$\$ 2200$, cille $\$ 200,000$. 1 . 1 stock of the English Marconi Company was put out at $\$ 5.00$ per share, and since sold at $\$ 22$ on the
London Stock Exchange, an advance of 340 per cent. The oossibilitipe of the American Company are much Noe enterprise has ever grown like the Marconi. Invented less than six years ago, and put into practical
operation less than three, it has been indorsed by the leading nations of the world, employed by many
Gov ERNMENTS and used in their NAVIES. Indorsed by prominent men and the press of the world
The Revenues of the Company are Constantly Increasing and Its Field of Operation Growing Daily

 MORE THAN 100 OCEAN STEAMERS equipped with the MARCONI SYSTEM
 Thos. A. Edison, Marconl and M. I. Pupin of Columbia College are the Consulting Engineers of the Company NO PREFERRED STOCK, NOgBONDS, EVERY STOCKHOLDER BEING ON AN EQUAL BASIS The present opportunity will never come again, as the price will be advanced shortly.
MA RONI CERTIFICATES may net you from 100 to 1,000 per cent.-better results than any labors of yours SEND to-day for full information-do not delay-as to-morrow may be too late to purchase at present price. Bear in mind that an investment of $\$ 100$ in the English Marconn
340 per cent- the Americancompany offors greater opportunities.
Prospectus and full particulars upon application.

F. P. WARD \& CO., BANKERS
 \qquad
 \qquad
 \qquad

THE SECRET OF Solar Success
is found in the Generator The system used in these Generators is
fully covered by patents and found in no fully covered by patents and found in no
other lamps., It has stood the test of many years. Don't experiment. With a Solar Generator and Solar Generator Lamps you
will avoid all "lamp troubles" on your will avoid all
automobile.
Price of Generators, - - - $\$ 10$ to $\$ 15$ Price of Generators, --- -
Price of Lamps, 6 -in. lens mirror. Price of Lamps, 7 -in. lens mirror, 25 Write for catalogue of full line of gas and
oil automobile, bicycle and boat lamps. BADGER BRASS MFG. CO. Kenosha, Wis.
Eastern Ofice, 11 Warren St

DIVIDEND

PAYING MINING; OI, TIMBER, SMELLEER, AND INDUSTRIAL STOCKS making possible
LARGE INTEREET RAd PROFIT, Iisted and
unlisted, our speciaity. Booklet giving full inunlisted, our speciaity. Booklets giving fuit in
formation mailed free on application.
DOUGLAS, LACEY \& CO. Bankers 2 Brokers, 66 Broadway, New York

A PLEASURE TO OPERATE
Writing Visible Speed Increased lanipulation Elanged
Hanufactured by

EASTERN GRANITE ROOFING CO.
Irving Building Irving Building

A Startling Story Which Will Interest All Who Are Short.
 Inventors, scientists, and physicians have
for years been trying to find some method
whereby the height of an individual could
be increased, and up to the last few years
have met with failure. It remained for a be increased, and up to the last few years
have met with failure. It remained for a
comparatively young man, Mr. R. Leo Minges
by nome to failed to do.
Mr Minges resides in Rochester, Ni, Y.,
and has devoted the best part of his life in nnd has devoted the best part of his life in
studying and experimenting on the Cartil-
qge, and his great efforts have at last been
nrowned with success. A large connpany comnrowned with sucess. A large connpany, com-
oosed of Rochester's leading citizens, has been
formed for the purpose of placing Mr. Minges's
discovery discovery and invention before the public, so
that now it is possible for any lady or gentle-
man who is short to increase his or her height from two to five inches. These results' are
susolutely guaranteed.
Mr. Minges has successfully used his method on himself, and has grown from a short, stunted
boy to a handsome, robust man of 6 feet 1 inch boy to a handsome, robust man of 6 feet inch
in height. Thusands of people living in all
parts of the world are using his methods with oqually as startling results. Let us send you
the absolute proof of the above statements. We
have just issued a beautifully illustrated book which contains information that will surprise you. Ten thousand of these remarkable books
will be given away absolutelv free of charge in order to introduce them. If you fail to re-
ceive a copy you will always regret it. This
great book tells how Mr. Minges made his won-
ferful discovery It tells youl how you can increase your height and build up the entir
system. It contains the pictures and state
ments of any After you receive this book you will thank
'is the longest day you live for thaving placed Remember, a postal carra wipportunity bring it to your
Rery door. all charges prepaid. All correspondence strictly confidential and sent in plain
envelopes. If you wish a free copy of this book

Sore Throat!

To prove the wonderful Hydrozone to all affict
One Trial Bottle Free
to anyone sending me 10 cents to pay postage. Hydrozone is a harmless germicide, which will cure you.

Booklet on treatment of diseases sent fre
old by all druggist
Prof. Charles Marchand Dep't U, 63 Prince St., New York

"Globe"

Marine Engines
Improved. Simple.
Reliable, Economical,
Substantial. Prices
Right. Guaranteed.
Write for Catalogue.
Buit by....
KS Co., Philadelphia, Pa

MAKE HUNDREDS OF DOLLARS THIS YEAR You can do it by freeing your boilers of scale We will
provetnat cou ceing this by loaning you a Dean
Boiler Tube Cleaner for a free trial in one of your

Write for "Economy in the Boiler Room," our free booklet. WM. B. PIERCE CO.

 319 Washington Street, Buffalo, N. Y. M $\begin{gathered}\text { INDUCTION COILS, } 8 \text { volts, will } \\ \text { give 8-inch sparks, } \$ 35.00,\end{gathered}$
N. O. NELSON \& COMPANY 171 Randolph St., Chicago

The Franklin Dynamo 3000 to 4000 revolutions. Sets pef mate-
rial. finished parts, complete machines.
For amateur construction, ver y etficient.
Wria
 amps. Parts $\$ 8.50 . \$ 6.00, \$ 8.50$. Con
plete $\$ 13.50$. Write for circular 9 . Parsell \& Weed, $129-131$ W. 31st St., N. Y MATCM MACMINERY: We manufacture everyturng pertaining o the bus
ness. The Very Latest Process. We will furnish
a manager or teach any surchaser the business.

There and - Back

WHAT A RELIEF
Write us to-day
for information

 of highest prizes for BOTII speed and end wiunace wherever entered.
$\mathbf{\$ 3 , 0 0 0 .}$ Send for illustrated descriptive hiterature and name of nearest agent.
PACKARD MOTOR CAR CW., Dept. 5 , Detrot., Mich
Member Associsition of Licensed Automobile Nanufactures.

Squä
Stain
Stain
Stean
Stea
Stee
Stee

Our Cars and Our Record Do You Know Them?

 CADILLAC AUTOMO
\qquad Diatriono of Michens.
Manufacururers

SIGNATURE SEAL

 Write to-day for Literature.
D. K. HIETT, 185 Dearborn St, CHICAGO, ILL.

The Cincinnati

 Upright Drillse

Machines of the Who use them, thousands of satisfed Customers here and
abroad. We invite eclos. spection and compase in-
Remembe ACCURACY, STRENGTH, CONVENIENGE Each sale means a pleased mer and we always
Expepricate orders. Experimenting and
tring are Costly and
and CINCINNATI MACHINE TOOL CO.

CAMP WASHINGTGN

OLDSMOBILE

"The Best Thing on Wheels"
Our famous Curved Dash Runabout for 1904 is equipped with a 7 H. P. motor, which is
without an equal. Years of record breaking service have established this machine as the
world's standard. world's standard
Full particulars Full particulars regarding our entire line
can be obtained fronl our nearest salesagent or by writing direct to $\mathrm{D} \in \mathrm{pt}$. 2 I OLDS MOTOR WORKS $\underset{\text { Member of the Association of Licensed }}{\text { Detroit, U. S. A. }}$ Member of the Associa

THE PANAMA CANAL IS DESCRIBED
 THE STANDARD FOR NUMBERING

The BATES

quiring numbering or dating -and there are few kinds that don't it is the MOST ACCURATE,MOST SIMPL,E, last a lifetime and always do good work. Even an office it. By a touch of the finger
it can be changed from consecutive numbering to repeat or duplicate. All office sup=
ply houses and dealers sell it. BATESMANUFACTURINGCO. 83 Chambers St., Now York

THE EXCELLENT

[^1]Learn Business System The development within the last ten years of
the BUSIESS SYSTEMATIZER marked a new vocation for brient young men; many are tation who make it a business (not of auditing)
but of systematizing faciories and stores from receipt of goods or raw material to output. Many others who have learned the principles of
Modern Business System are filling lucrative positions in factories or stores. Others are bogin-
ning an independent career in their own town for men so trained greatl| exceeeds the supply.
For full particulars address Dept. B. BOSTON SCHOOL OF BUSINESS SYSTEI 227 Washington St., Boston, Mass.

DESIGNS.
Candlestick, A. Stefinn
Coffee pot, A. Steffin

TRADE MARKS
Baking powder and soda, McCord-Stewart

 Hair grower and restorer, Mount \&

Hammocks, woven, National Hammock Co.
Heaters and parts aceessory thereto, certain
 Hosiery, J. Blood \& Co.
Leather goods, polishes
Beather good
Bros. \&
Liniment for
Liniment for external use, M. Spiegel........
Metas, liguid compound for use in cuttin,
boring, and drawing of, S. Sancroft.
Metals, antifriction and babbitt B H. Sea
Paint, Giiluiy \& Bard

Silk dress ${ }^{\text {pieces }}$ and linings, Bradford

Toy furniture, Rodemann \& Dor
Veterinary remedy, L. D. King.
Whisky, Hiram $\begin{aligned} & \text { Walker } \\ & \text { Yeast, } \\ & \text { Kin. L. Rodney }\end{aligned}$.

LABELS

Apex," for flour, Lexington Roller Mills

 "Electric Cleansing Flux Paste," for tlux
paste, G. L. Leitze
 Flor Fina Cigarros,
Lithograph Co for cigars, Central
 for hats, C. H. Merritt \& Son..........
(Hafmeister Placket," for ladies' clothing,
F. Hofmeister
 Jumbo Brazing Compound,", for brazing

 Meter's The Oriminal Miik Chocolate,', for
milk chocoate, D. Peter... M0,955,
"Polaris Brand,', for caned salmon, R.
D. Hume

PRINTS.
"Ball Bearing Garters,", for garters, C. A. ${ }_{\text {Edgarton }}^{\text {Mfg. }}$ Co. ${ }^{\text {Con }}$

 ness Opportunities Co.
Russian overland Tea.
Zalinoff
Zalinoff
The Romunder "Comort Massenge
passenger cars, H, Ronunder
The Touch of Time, for cold

A printed copy of the specification and drawing any patent in the foregoing list, or any patent
print issued since 1863 , will be furnished from in print issued since 1863 , will be furnished from
this oftice for 10 cents, provided the hame and
number of the patent desired and the date be
given. Address Munn \& Co., 361 Broadway, New given. Address Munn \& Co., 361 Broadway, New
York.
Canadian patents may now be obtained by the in going ${ }^{\text {gist. }}$ For terms and further particulars
address Munn $\&$ Co., 361 Broadway, New York.

Export Trade

How to Secure and How to Hold It Valuable hints on how to secure Expor
rade sent gratis on request. Address XPORT EXPERT Box 793, New York

MODELS $\underset{\text { Inventions developed. Special Machinery }}{\text { \& }}$ SPECIAL MACHINERY Tools and Dies. Model Costilo Machine Works. 60 \& Exxperimental Work CHEMICAL EXAMINATIONS

TYPEWRIIERSAMAS

全 Magical Apparatus. and. Parlor Tricks Catalogue, free.
ARTINKA $\&$ CO., Mfrs. 433 Sixth Ave., New Kork. ELECTRIC WATER HEATER-Boils 1 pint

 Tickets on sale April 22d to May 1st inclusive. Good
eturning until June 30 .hin, 1904.
stop off privileges.
For

Experimental ${ }^{2}$ Model Work

 First Class Lathe and Bench Work, Die Sinking
and Chasing. J. T. WALTE, 275 Water St., New York. WORKING MODELS furnished of your inven
tion. Send drawing and description for estimates.

 MASON'S NEW PAT. WHIP HOISTS save expense and liability incident to Flievators
Adopted by principal storenouses in New York $\&$ Boston Manfd. by VOLNEY W, MASON \& CO., Inc

Orient Buckboard
 mam Price, $\$ 425$ $\underset{\text { Weight, } 500 \mathrm{lbs}}{ }$

The little machine that has in one year gained a reputation bounded only by the limits of the earth. WALTHAM MANUFACTURING CO.

What Is Dais' Tip-Top?

The Felix F. Dues Duplicator Co., Dais Bldg, 111 John St., New York

Stay on the Rim when in use, but can be de-
ached by a novice. Get a catalogue describing it. FISK RUBBER COMPANY Chicopee Falls, Mass.

Coats of Arms

Established for 'TradeMark
stationery Carriage and Λu and s. Etc.
 Revolutionary Lineages.
St. Botolyh Research Bur s. St. Boiolph St., Boston, MAs

 send for Catalogue.

BUCKMOBILE

\qquad

15,081 REMINGTON

 TYPEWRITERSare used for instruction pureposes in the schools of the United States and Canada3,499 MORE THAN ALL
OTHER MAKES OF OTHER MAKES OF
WRITING MACHINES WRITING
COMBINED.

WONDER of the AGE

 byron jackson machine works,

ACCURATE
RELIABLE
DURABLE

Hewongland WATCHES

Perfection in timekeeping quality. combined with beauty of design, must of
necessity create that feeling of satisfaction known to the users of our watches THE NEW ENGLAND WATCH CO., 37 \& 39 Maiden Lane, New York g Snow Hill, London, England

HOROLOGE CAL DEPARTMENT BRADLEY POLY' TECHNIC INSTITUTE PEORIA, ILL LARGEST and BEST
WATCH SCHOOL in AMERICA
 Send for Cato lo of

Eaphe Bic y

The culmination of progressive enterprise $\underset{\substack{\text { Western } \\ \text { Department, }}}{\text { Two-Speed Gear, }} \begin{gathered}\text { Eastern } \\ \text { Department, }\end{gathered}$ dinazaso ill, Coaster Brake Hartorat, con in GHAINEESS BIGGIES ODE MANFAPTUNING

Compressed Air
House Cleaning dUSTLESS METHOD

Carpets, Furniture, Draperies, Tapestries,
Decorations, Ceilings and Walls Cleaned
Disinfected and Reno Disinfected and Renovated. Carpets not
teen up. The dust which is and under
them is collected and removed by Com-

pressed Air. A revolution in house clean ing-quick. sanitary, effective. No more
dismantled rooms. no more dist, no more
worry. Subsidiary companies are now being worry. Subsidiary companies are now being

GENERAL COMPRESSED AIR HOUSE CLEANING COMPANY 3933 OLIVE STREET, ST. LOUIS, MO.

for Manufacturers use OFFICE, ST. PAUL BUILDING

AGENTS WANTED We have completed arrange-
ments for several thousand
dollars worth of space in the
leading poplar magazines
advertising to start at once advertising to start git once
and rum lati 1905 . The
aral public (about 20 million era public (about 20 million
or merit will of the
merits of the the No. 5 Lindsay High Candle Reliable men wanted in Reliable men wanted in every
locality to take care of the
resulting business. resuming base eco.
as ied no ad nowatere
in your locality. for this light ${ }^{\text {By g money }}$ $\left.\begin{array}{l}\text { Little work }\end{array}\right\}$ For hustlers. Write at once for particulars.
Lindsay \& Co, Dept. S, Chic

Anybody can make Good Pictures by the

Kodak
System. Better results than the old way, too.

EASTMAN KODAK co.

[^0]: Carlisle \& Finch Co., 233 E. Clifton Av., Cincinnati, 0

[^1]: Shippers Buyers Superintendents Clerks Managers Foremen

