OI. XC.-No. 15
ESTABLISHED 1845 .
NEW YORK, APRIL 9, 1904.

Moisture-Proof Tile Storage Bins for Malt.

Air-Cooling Coils.

Turning the Sprouting Grain Mechanically.

Malting Kilns for Drying the Sprouted Grain.

Heating the Air.

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO..
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York
terms to subscribers

the scientific american publications.

ones order, or by bank draft or check.
MUNN $\&$ Co., 661 broadway. New Yo
NEW YORK, SATURDAY, APRIL 9, 1904.
The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. It the photographs are
 wiil receive special att
at regular space rates.

that fire peril again

Once more we have received clear warning of the fire peril which confronts the congested business cent ers of our large cities. This time it was in the Adams Express building, one of several very old and inflam mable structures, that stand on the west side of lower Broadway, just below Trinity Church. The conditions, as far as the buildings were concerned, were ideal for a great conflagration, for they were quite open to the sweep of a prevailing westêly wind which, had it been stronger, might well have carried the fire across Broadway into the great mass of tall buildings in the Wall Street district opposite. The situation would have been decidedly critical under ordinary circumstances, for the fire swept rapidly through the Adams Express building, and was raging fiercely very soon after the blaze started; but what made the fire strongly suggestive of another Baltimore disaster, was the fact that for the first half-hour of the efforts of the Fire Department, although the engines were driving under a full head of steam, they had difficulty in raising even small streams of water to the third and fourth stories of the burning building. In other words, the water supply in the mains was for some reason or other very low, and quite inadequate to keep the fire engines going at full capacity. This was noticeable in the case of the first of the water towers to be started in Broadway; for, although three lines of hose are usually sufficient, in the present case it took six lines to throw a stream of the proper volume. The dangers from fire to which the city is exposed are fully ap preciated by our very efficient Fire Department, and a hint of this was given in the fact that although only one five-story building was immediately involved, the "double nine" call was sent out, and engines hurried to the fire from far up town. The early concentration of such a powerful force at a fire of really mod erate proportions, suggests that the Baltimore disaster has rendered the Fire Department doubly apprehen sive of the ever-present danger of a widespread con flagration; and it is gratifying to learn, as we go to press, that the Board of Estimate has voted an appropriation of $\$ 5,425,400$ for the installation of the high-pressure auxiliary water supply, that was recom mended by the engineers of the Department of Water Supply, Gas, and Electricity.
the blocking of the port arthur entrance. The blocking of the entrance to Port Arthur would have had more significance before the invention of high explosives than it can possibly have to-day. If it is successfully done, it will, of course, greatly simplify the naval situation as far as Japan is concerned-for the present, at least; for it will mean the detention of the Russian fleet within the harbor for a considerable period, leaving the Japanese fleet free to devote its attention to the armored cruiser squadron at Vladivo stock ; the work of the transports in transporting the troops and supplies of the Mikado's army being rendered for the time being perfectly secure.
It is a mistake to suppose, however, that the sinking of a line of merchant ships across the harbor entrance would "bottle up" the Russian fleet for good. 'Modern high explosives, properly placed, would cut the sunken Japanese ships to ribbons, and it would be possible to dredge out and remove the wrecks, piecemeal, until the channel was clear. Of course, these operations would not be allowed to go on undisturbed by the enemy, who would bend every effort by long-range bombardment of the wrecking crews to hinder, if not altogether to prevent, their operations. The bottling up of Port Arthur is without doubt the most important and urgent step that the Japanese can take, for it is absolutely necessary that Makaroff's fleet be captured or destroyed,
or at least rendered inoperative, before the arrival of the relieving force from Europe.
The destruction or capture of this fleet, so long as it remains under the guns of Port Arthur and behind protecting mines, is out of the question; but if the harbor entrance can be sealed, and kept so, Admiral Togo can await the approach of the Baltic fleet with composure. We may look for frequent repetitions of such daring attempts as were recently made to sink heavilyladen merchant steamers across the narrow channel. Not merely does the fate of the Japanese navy ultimately depend upon this successful bottling up, but also the fate of the army of invasion itself. If, during the coming summer, the Baltic and Far Eastern fleets should be able to unite; and, unless the Russian officers and seamen are altogether incapable, Japan would have to face the likelihood of defeat by overwhelming numbers. With Russia in command of the seas, the Japanese army would be cut. off from its base of supplies, and the question of capitulation to the advancing and steadily-growing army of the Czar would ultimately have to be faced. Never was the advantage of the command of the sea so strikingly illustrated as here; and the struggle of Japan to maintain her presens advantage promises to form one of the most fascinating chapters in the history of naval warfare.

DEPARTURE OF the panama canal commission.
The recent sailing of the Panama Canal Commission for the Isthmus on their first visit of inspection, coupled with the announcement from Paris that the suit of the Republic of Colombia against the Panama Canal Company has failed, must bring home to the people of the United States the conviction that the longdeferred construction of the canal across the Isthmus is at last about to commence. The commission, as appointed by the President, consists of Rear Admiral John G. Walker, William Barclay Parsons, Col. F. J. Hecker, C. E. Grumsky, Gen. George S. Davis, Benjamin M. Harrod, and W. H. Burr. | Accompanying the commission were Dr. Col. William C. Gorgas and Dr. Louis La Garde, of the United States army, and Dr. Ross, of the navy, who are to have supervision of the sanitary arrangements on the Isthmus. 1
The decision of the first Civil Tribunal of the Seine against the Republic of Colombia says of the various treaties made by Colombia: "These articles have the manifest purpose of assuring the full exercise of sovereignty over the canal. It results from what is established before this tribunal, that Colombia is not in possession of the territory traversed by the canal. By coming before a French court in order to sustain its rights over the canal, Colombia tacitly admits its inability itself to control the canal. It therefore follows naturally that it has lost sovereignty over the territory traversed by the canal.
"It also appears that this sovereignty is maintained by the new Republic of Panama, which is in actual possession of the authority and power of administration and of police. Under such circumstances it only remains for the Panama Company to accept the actual situation of authority and the facts relative to the territory embraced by the concession. Therefore the action commenced by Colombia is not receivable. ${ }^{\text {. }}$
: It will probably require a fortnight to complete arrangements and pass the title, when the $\$ 40,000,000$, the purchase price, will be paid to the Panama Canal Company, and the $\$ 10,000,000$ to the Panama government.

STEEL ROADS FOR COUNTRY DISTRICTS

At this time of the year, when the frost is coming out of the ground and nearly all the roads in and around our country towns are long lines of mire, one cannot help wondering, when considering the subject of our highways, why the government is not quicker to respond to the appeals for aid in their improvement, and why it does not push the adoption of a system of roads that will last for long periods with but slight expenditure for repairs.
Nearly seven years ago the office of Road Inquiries of the Department of Agriculture conducted experiments with steel rails for use on country roads, and made arrangements with a large steel works for the rolling of suitable rails for this purpose. At that time the 8 -inch rails for a mile of steel roadway, weighing about 100 tons, could be purchased for about $\$ 3,500$, and the price has not increased much since. A sample steel road two miles in length between Valentia and Grao, Spain, had then been in use for five years under exceedingly heavy traffic, and had shown splendid results; yet the United States did not, and has not as yet, profited by this experiment in an ordinarily unprogressive foreign country, and we have to-day no steel roads for commercial purposes save the short section in Murray Street, this city, laid about a year and a half ago. As for the foreign example mentioned, during the time it has been in use, the annual cost of maintaining the roadbed has been $\$ 380$, against $\$ 5,470$ yearly expended to keep the flint stone road which preceded it in repair. The average traffic over
this road is 3,200 vehicles per day. This example of a steel road and its lusting qualities is not the only one abroad, but it is the most noteworthy.
But aside from the permanency of such a road, and the slight expense of keeping it in repair, the greatest adivantage that it offers is the reduction in power required to haul loads over it. Tests have shown that while it requires five times as much power to pull a given load on a loose gravel or dirt road as it does over good macadam, and ten times as much power to pull the same load through loose sand or mud, on steel rails only one-sixth as much power is needed as on macadam. This great reduction in power, and consequent diminishment of wear and tear on draft horses, is all the more valuable in that it is perma nent and lasts throughout all seasons; so that the farmer is not obliged to figure on a greater loss of time and fatigue of his horses at one season of the year than at another. If self-propelled vehicies are considered, these need not be nearly so powerful as they would otnerwise have to be, and they can be oper ated with great economy. The importance of a specia track for self-propelled vehicles was recognized in the early days of the locomotive. . Such a track was built and improved until the steel railway track of to-day was finally developed. Now that the self-propelled vehicle has again come on the scene in the form of the automobile, it has drawn attention to the needs of good roads for all vehicular traffic, since the increase in power needed to pull a machine through the mire can no longer be "whipped out of the horse," but must be drawn from a large reserve, and, in the case of the electric automobile, can be accurately measured on every machine. Thus, when it is brought directly to one's notice, and the total mileage of the machine is greatly reduced because of it, the owner sees his expense account rapidly rising, and demands a better highway. This demand is soon to be fulfilled by private corporations, which have recognized it, and have devised systems of steel roads that can be built at no greater cost than a macadam road, and maintained at far less expense. It is to be hoped that the supervis ors of roads in the various States will investigate.the steel road more thoroughly, and that trial sections may be built for the purpose of comparison with the best macadam roads.

CAST-IRON COLUMNS IN THE DARLINGTON HOTEL

 COLLAPSE.Commenting editorially on the Darlington Hotel disaster, a day or two after it happened, we said: "Long before the falling of the building, it was suspected that a considerable amount of 'jerry' work was being done on the bastard steel structures which are being run up continually in this city. We use the term 'bastard' advisedly; for a structure that extends ten stories in height and depends for its rigidity upon the lugs and flanges of miserable little rectangu lar cast-iron columns, has no rightful claim to the reputation for strength and security that goes with he term 'steel construction.'
In the intervening month since these words were written, the testimony presented before the coroner's jury has abundantly substantiated their truth. A large number of possible causes for the collapse were suggested, such as faulty foundations, excessive loading of the top floor, framework being out of plumb, changes in plans (although apparently only minor), improper jacking up of the lower framework while replacing a defective cast-iron column; failure of a cast column about the fourth floor, and others. Probably several of these causes co-operated to start or intensify the ruin, but ono prominent fact was referred to again and again, both on the stand and the street, namely, the improper use of cast-iron columns in a structure of this character. This point was not included in the jury report, perhaps because the criminal features of their work demanded first attention, or because of a natural but mistaken reluctance to antagonize local foundry interests. We say mistaken reluctance, for the most far-sighted iron founders agree on the futility of endeavoring to force the use of a material into lines for which it is unsuited.
Good cast iron is strong when subjected to compression, but against tension or bending strains it is notoriously weak, and its reliability is further decreased on account of hidden internal defects. The practical impossibility of securing sound castings from even the most reputable foundries is borne out in the Darlington disaster, where the experts of both the Building Department and the District Attorney found that the "fairly good" cast-iron columns used possessed flanges from one-third to 40 per cent defective. As a result of these latent defects, tensile weakness, internal cooling strains, and the danger of water freezing inside and bursting their hollow shells, the use of cast-iron columns should be limited to simple cases of direct compression where there are icw complicating elements.
The skeleton frame of a building is subject to two kinds of strain, namely, direct compression from the weight of the structure and contents, and a bending
tendency due to wind, which in high buildings with narrow base is considerable. In low buildings, where there is no other consideration but direct compression, sound cast-iron columns form a suitable ma terial; but in lofty structures even this direct stress is complicated by the tendency of all loaded columns to buckle sidewise when their length is excessive, and this must be resisted by lateral bracing for which cast iron is not adapted; moreover when there is added the bending due to the overturning efforts of the wind, there arise conditions of design and detail to which cast columns are entirely inadequate.
There are many architects and engineers in New York who can safely be intrusted with the safety of public, laboring, and property interests in the design of such structures; but for the much larger body of the less experienced the building. code should be carefully amended and enforced. Demand has been made for superintendents with five years' experience, and for a sufficient staff of competent inspectors empowered for a sufficient staff of competent inspectors empowered
to enforce the code; but the Darlingion disaster strongly teaches that all obscurity should be eliminated from the code itself, and specifically that the use of cast-iron columns be absolutely limited to wall: bearing buildings, and to those less than seventy-five feet in height.

THE STEAM TURBINE AND ITS FIELD IN MARINE

 WORK.The steam turbine continues to develop with improvements in economy, a lessening in weight, and more ease in manipulation. That it has a future useful and brilliant can no longer be doubted. At the same time, there is no immediate likelihood of reciprocating engines being displaced on steamships in general and relegated to the dump as relics and bygone devices.
A brief résumé of the peculiar advantages of the turbine, in distinction from the reciprocating engine, viewed from a practical standpoint, may be seen in the following:

For the same power delivered at the shaft, it is considerably lighter than the reciprocating engine. This relative weight is, however, liable to be a very misleading factor, since the weight of quite similar installations of reciprocating engines differs very widely. The weight of the turbine engine alone (Curtis) on the yacht "Revolution" is $83 / 4$ pounds per equivalent I. H. yacht "Revolution" is $83 / 4$ pounds per equivalent I. H.
P., while the weight of United States torpedo-boat engines alone is about $111 / 2$ pounds per I. H. P. As the torpedo-boat engines are built especially light and the "Revolution's" turbine was not, the probable advantage of the turbine, when developed, will be greater.

In the turbine, there are no other than the shaft bearings, and hence the cost of lubrication almost disappears. Roughly, in marine work one gallon of oil is used per ton of coal; and as a gallon of oil will cost about one-tenth the price of a ton of coal, it can be seen that there are presented very favorable conditions for materially reducing running expenses.

Fewer attendants are required, and thus the wages bill of the engine-room-force can be greatly reduced, since the oilers for main engines can be dispensed with.
The space required will not differ very materially from what is necessary for the reciprocating engines, but less height and less length are needed, so the turbine does have some advantage here, and in special cases very material ones. However, for large, moderatespeed merchant vessels, the slight decrease in space will not be of very great importance. Little noise and no vibration are produced by the turbine engine. There is little likelihood of breakdown, and the turbines can run for very long periods without any necessity for adjustment of parts, since the tangled mass of joints and bearings that, in a reciprocating engine, may get loose, are absent. To secure good efficiency, the turbine must have a high peripheral speed. This can be obtained by a high number of revolutions or by an increase in diameter of the turbine disks or drum. To secure economical results, there must be a very good vacuum. When running at reduced speeds, the turbine decreases very materially in economy.

From the above, some idea of the peculiar sphere of the marine turbine may be gleaned. The favorable conditions are: 1. Continuous running at full power. 2. Where a high number of revolutions is not objectionable. 3. Where there is a desire to avoid vibrations. 4. Where saving of weight and space is of great importance. 5. Where economy in running expenses is important. Where a reducțion in the number of attendants is greatly desired. It may be observed that not every type of craft presents conditions favorable to the use of the peculiar advantages of the turbine.
It would not seem to be suitable for tugs, ferryboats, or passenger steamers making short trips and frequent stops, because these are constantly stopping and starting, and do not run continually for any length of time. Moreover, for towing, a comparatively low number of revolutions is desirable. It is, likewise, not peculiarly suitable for large, slow freighters, on account of the desirability of having a low number of revolutions for
propellers, and the characteristics of less weight and no vibration are here not of very great vaiue. It is not peculiarly suitable for moderate-speed men-of-war, because they do not, as a rule, run full power for any length of time, and it is also here not desirable to have a high number of revolutions for propellers.

The types that the turbine would be suitable for are: Fast passenger steamers, making long trips at full speed. Here economy, less weight, no vibration, and reduction in attendants are greatly desired, and a higher number of revolutions for the propellers is more advisable. In fast scouting cruisers and torpedo boats the desideratum is a maximum speed on the least weight, with no special desire for economy at low weight, with no special desire for economy at low
speeds. In this case, anything that will reduce weight and the number of attendants will bring very potent advantages.

types of turbines.

The two types of turbines proposed for marine work in this country are the modified Parsons, built by the Westinghouse Company, and the Curtis turbine, being now largely built by the General Electric Company. The chief distinguishing point of difference between these two types is that in the Parsons turbine the expansion of steam takes place while passing through the turbine vanes. The casing in this type is under pressure, while in the Curtis turbine the expansion takes place in nozzles, and the casing in this case is not under pressure above that of the expanded steam. Owing to these differences, the Parsons turbine is long and the casing has to be designed heavy to stand the pressure of the steam. The Curtis turbine is much shorter, and the casing can be made lighter.
Some of the principal points that a successful marine turbine should possess may be stated as follows: It must be easily reversible. This can now be successfully accomplished in both of the above types by providing a set of backing vanes on which steam may be caused to act by opening the reverse valve and by closing the one admitting steam to the go-ahead side.
It should be as light as possible, and for this reason it would seem that the expansion, and hence heavy pressure, should be confined to the nozzles (which are small) so that the casing may be made light. Supposing we have an absolute pressure of 250 pounds and a vacuum of 26 inches. The total expansion possible is 125 times. If this is divided into three stages, there will be an expansion of five times in each stage. Expanding 250 pounds five times gives 50 pounds absolute, and again.five times, 2 pounds absolute or 26 inches vacuum. If the expansion takes place in the nozzle, the first part of the casing has to stand 35 pounds per square inch, while the remainder of the casing may be under a vacuum. In this way, the necessity for a great weight in the casing is obviated.
The expansion should be complete in each turbine engine, and not divided into H. P. and L. P. on different shafts. Each engine should be entirely independent.
The number of revolutions should be reduced suffi-
ciently to keep speed of ciently to keep speed of rotation of propellers below a point where any great loss due to cavitation is likely to result.
The number of parts should be reduced, and hence the mounting of turbines on a single drum, as in the Westinghouse Parsons type, would have advantages over the separate disks employed in the Curtis and Rateau.
Extreme fineness of adjustment should not be absolutely necessary, as it cannot be expected that there will be specially fine appliances or expert personnel on every vessel. Where the expansion takes place between the vanes, clearance must be very little, and bad adjustment is likely to result in considerable loss. On the other hand, when the expansion takes place in a nozzle and the steam acts by impact, clearance will not be such a great source of loss.
A high vacuum is important. The economy will depend on the number of times the steam is expanded. Supposing there is a pressure of 200 pounds absolute and a vacuum of 26 inches or 2 pounds pressure absolute. Then there are 100 expansions. Supposing vacuum drops to 24 inches or 3 pounds; the expansion is here only $662-3$ times. If vacuum is increased to 28 inches or 1 pound, there are 200 expansions. Taking variations in pressure, suppose pressure is lowered 50 pounds, so that we have 150 pounds and 26 inches vacuum; the number of times the steam can expand is 75. It can thus be observed that a drop of 2 inches in the vacuum makes more difference in the relative economy than a drop of 50 pounds in the steam pressure This is an important point to always have in mind.
It may then be stated as a broad principle that the economical efficiency of the turbine will depend directly on the efficiency of the condenser and air pump, and that for practical results even more attention must be paid to the efficient design of air pump and condenser than to the details of the turbines themselves. It may also be observed that turbines should be more efficient where there is cold injection water, and that if turbines are installed in torpedo boats, a good separate air pump must be supplied.

Superheate Steam.-Another great field that the turbine may develop, and to which it peculiarly adapts itself, is the use of superheated steam. In the reciprocating engine, superheated steam is quite objectionable, owing to the difficulty presented by internal friction and the great wear caused to cylinders and valve liners. With turbines these difficulties are entirely absent, and the advantages of superheated stcam can be made use of to the limit of its development. The turbine thus presents at the start the possibility of greater economy than the reciprocating engine.
Objection to Oil.-As the turbine does not use any oil for internal lubrication, the difficulties due to the use of cylinder oil getting into boilers will be greatly lessened, but as various auxiliaries and pumps will be driven in the same way as heretofore, this trouble will not be entirely eradicated.
Possible Gain in Weight.-Although the turbine engine may be considerably lighter than the reciprocating engine, the gain in less weight of machinery will not be very great. The weight of main engines is only a part, and not the major part, of the weight of the machinery installation. The boilers roughly weigh half, and the auxiliaries in engine rooms on men-ofwar weigh more than the main engines. The main engines with crank shafts on recently completed battleships weigh from seventeen to twenty per cent of total machinery weights, so that should there be a reduction of fifty per cent in the weight of main. engines by the use of turbines, there would only be a reduction of less than ten per cent in the total weight. But as there may be an increase in condenser weights and weight of air pump, the probable figure will not be much more than five per cent. It can thus be seen that for men-of-war no overwhelming reduction of weight is likely to result. In merchant vessels, the main engines are so much larger a percentage of the total weight, that here there will be a greater percentage of weight saved.
The apparent points of advantage that will probably bring the turbine into use are: 1 . Reduction in cost of production for same power, when the manufacture has developed sufficiently. 2. Reduction in running expenses produced by less attendants and almost non-use of oil, and reduction in repairs and overhaul. It may be a question whether this decrease in running expenses will counterbalance a probable increase in steam consumption under the conditions imposed on board ship; namely, low revolutions and variable output. This, of course, can only be told by actual trial. The data at present available on this point are not much more than guesswork. It is these practical points in the matter of the expense account that will determine the adoption of the turbine for general work in the merchant marine. In the navy there are a number of other matters that should be considered.

SCIENCE NOTES.

In the Royal Society Proceedings there is described a comparison of plants grown under normal conditions with similar plants grown in an atmosphere containing about $31 / 2$ times the normal amount of carbon dioxide. The investigators, Dr. Farmer and S. E. Chandler, state that under abnormal conditions the internodes remained shorter and the surface growth of the leaves is arrested earlier. The number of stomata per unit area of leaf is much greater, but, owing to the reduced size of the epidermal cells, the proportion of stomata to epidermal cells is not altered; the guard cells of the stomata are not, however, reduced in size. The anatomical structure of the stem varies very slightly, in some cases the wood vessels are fewer in number, and this is probably correlated with the diminution in size of the leaves, although disturbance of the general metabolic processes is also quite a possible explanation.

According to Dr. Graham, of Beirut, another disease is to be set down against the mosquito, namely, dengue fever, variously called African fever, break-bone fever, giraffe fever, dandy fever, etc. The disease is an acute eruptive fever, rarely fatal, but leaving various disagreeable sequelæ-paralysis, insomnia, marked mental and physical prostration, etc. It occurs in hot climates and in the Southern States; during the last fifty years several serious epidemics have occurred. Dr. Graham found that he could regularly produce an attack of dengue in a non-immune by submitting the latter to the attack of mosquitoes which had fed on sufferers from the disease. In one experiment he carried dengueinfected mosquitoes to a mountain town 3,000 feet in altitude, where there were no mosquitoes and no dengue. One of the natives was shut up in the room with the mosquitoes, and on the fourth day came down with a sharp attack of dengue, and a second presented the typical symptoms on the fifth day. The mosquitoes were immediately destroyed, and no further cases occurred. Dr. Graham also claims to have discovered the germ which causes dengue in both human blood and the stomach of the mosquito. It resembles some forms of the malarial parasite.

AUTOMATIC ORE LOADER.

The accompanying illustrations of an automatic ore oader present an interesting case of the substitu tion of automatic machinery for hand labor. They epresent a movable automatic loader, which is used at the furnaces of the Illinois Steel Company at South Chicago, Ill. It is shown backed up to the great ore dump that ranges parallel with the blast furnaces, where it is engaged in loading the iron wheelbarrows in which the furnace charge is wheeled to the charging buggies at the foot of the ele vators. The machine, which is built by the Park Manufacturing Company, of Chicago consists of an endless chain of metal scoops which are mounted on a stout metal table the table itself being mounted pivotally on a truck, to enable it to adjust itself to the pitch of the ground and the height to which the material is to be elevated in loading The chain of scoops, which is driven by an electric motor, passes around sprockets ar ranged at the opposite ends of the machine By means of chains, sprockets, and suitable clutches, the electric motor also serves to propel the loader, moving it to any desired point of the yard. This particular type of machine has been tested successfully in the handling of limestone, coal, and salt, and it has shown a considerable saving of time and money in loading over hand labor with a shovel. The .capacity of the machine is 90 cubic feet per minute of loose material.
The control of the loader is arranged so that the operator can handle the machine conveniently from the right-hand side of it as shown in the illustration. Conveniently to hand there is a main clutch, 1 , for op erating the scoops or "flights," while ad jacent to that is a lever, 2, for throwing in the propelling clutches. At the front end of the machine is a screw, 3, for adjusting the height of the forward edge of the ma chine. No. 4 is a steering lever, used whe transferring the loader from one place to another. There is a cam arrangement upon the driving wheel, by which, when the front wheel is turned, a clutch on the inside whee is withdrawn, making the outside wheel a driver and rendering it possible to turn the machine end for end in its own length. Th loader can also be mounted on a truck provided with flange wheels, and used in mines or in tunnel work in which respect it shows to good advantage. If it is desired, a secondary conveyer is provided, which serves to elevate the material to a height of 10 feet or more for discharging into railway cars or wagons, the 10 horse-power of the machine being found sufficient to enable the loader to haul its own secondary conveyer with it. The average capacity of the machine illus trated is 90 cubic feet per minute of loose material.
The method of operation of the loader is clearly shown in the engravings. The. front edge of the table is lowered until it rests upon the ground, and it is thrust forward against the bottom of the pile of ma terial. As the arms sweep around, each gathers a certain amount of the material, carries it into and up the carrying channel, until it reaches the upper end of the machine, when it is delivered, as shown, into the desired receptacle. As the arms travel at a rate of 60 to 80 feet per minute, and the carrying channel is 18 inches wide by 16 inches deep near the inner wall of the channel, there is an act ual carrying capacity of $11 / 2$ cubi feet for every foot of travel of the chain; or say, from 80 to 100 cubic feet per minute.

Novel Method for Entrapping Submarine Boats

During the recent naval maneuv ers of the British Channel squad ron off Portsmouth, a novel method of entrapping and disabling subma rine boats was attempted, and th efforts were crowned with complet success. The submarine boats were attached to the squadron acting as defending vessels, and their object was to frustrate onslaughts and put out of action the attacking battle ships.
The larger armorclads of the at tacking vessels kept well out to sea and confined their efforts to firing upon the forts from long range The torpedo boats and other simila lighter craft, however, rushed to the attack. While this movement wa in progress, and the undivided at tention of the defending force at tracted entirely thereto, the battle

. scru for raising and lown
AUTOMATIC ORE LOADER. FRONT VIEW.
Moreover, submarines travel only from ten to twenty feet below the surface

Each picket boat was equipped with some fine nets of specially fine hard steel. When expanded, they stretched to 70 feet or 100 feet in length, and were fairly broad. Along one side of each net a hawser was threaded. One end of this hawser was attached to a compensating drum on one picket boat, and the other end was fixed to a similar arrangement on a second picket boat. The net thus rigged at once sank down like a thin wall into the water.

Owing to the fine, delicate construction of these nets, they can be dragged through the water like a fisherman's sieve by the picket boats at a pace far in excess of that of a submerged traveling submarine. This curious process of fishing, or trawling, for submarines was eminently successful. Officers on the picket boats attached to one of the nets saw a periscope mov ing on the surface of the water. They immediately

1. Mann clutch. 2. Lever for propelling clutches. 5. Starting box for motor. 6. Circuit breaker

AUTOMATIC ORE LOADER. REAR VIEW,
maneuvered their boats so that the steel net was stretched across the submarine's path. The submerged boat continued its progress, unsuspectingly. In a few minutes the officers in the picket boats at either end of the hawser felt a straining, which told them that they had stopped the career of the submarine. Imme diately the boats altered course, so as to completely envelop the unfortunate underwater craft in the net. The maneuver was crowned with absolute success The submerged craft was completely caught To accentuate further the predicament of the sailors in the submarine, the hawser carried away the periscope, so that the navigators of the submerged craft were deprived of their sole means of seeing what was happening on the surface, and consequently the crew could do nothing but await developments. By some means or other the picket boats contrived to raise the submarine to the surface, and its capture was completed
The success of this experiment opens new possibilities of frustrating the attacks of submarines, if not capturing them. It was conclusively demonstrated on this occasion that once a submarine is enveloped in the meshes of such a net-it must be very fine and strong-it is impossible to escape, and the boat is as helpless as a fish under similar circumstances. The destruction of the periscope, too, as this instance proved, completes the helplessness of the submerged boat. If the submarine cannot be raised or forced to the surface and then captured, the picket or other boats have simply to stand by and await until the need of a fresh supply of air forces the vessel to rise, when its capture can be effected.

The submarine and the searchlight
In Narragansett Bay on the evening of November 11, there was an elaborate test to determine the usefulness of submarine boats in naval warfare, the purpose being to see if they were less visible at night than surface boats, if they could be navigated successfully and safely in the dark, and if the playing upon them of numerous searchlights hampered the making of observations from their conning towers.
The test partook of the nature of a sham battle, in which Fort Adams and the torpedo station, with strong searchlights and large parties of army and navy officers acting as observers, and the tug "Peoria," anchored west of the torpedo station and using a powerful searchlight, were opposed to the submarine boats "Moccasin," "Adder," and. "Plunger" and the surface boats "McKee" and "Morris," as well as "Torpedo Boat No. 1."
Of the six craft afloat, the "Adder" alone lived through the battle, and she succeeded in eluding all the watchers and getting into a position so close to the tug "Peoria" that she easily could have annihilated her. It was, in fact, a clean-cut victory for the "Adder," which was in command of Lieut. Frank L. Pinney. The watchers at Fort Adams picked up with some little difficulty the submarine boats "Moccasin" and "Plunger," and they searched in vain for the "Adder."
It was learned that the navigation of submarine boats in the dark was practicable, and that the playing upon them of powerful searchlights did not much hamper their officers in running them or making observations from their conning towers fairly well. When the light was not playing upon the boats, very good vision could be obtained from the submarines. It was proved that the submarines were less visible in the dark than the surface boats.

Rotary converters operated sixphase will give from 35 to 45 per cent greater output than when operated three-phase, according to an article by Mr. A. S. M. Allister in the American Electrician. Hence economy dictates three-phase transmission, with transformation to sixphase at the converters. The simplest method is to use three transformers, the primaries being either star or delta connected and the secondaries star connected. A delta connection on the low-tension side, as well as on the high-tension side, has, however, the advantage that the breakdown of one transformer does not render the plant useless, as the two remaining transformers take the load of the missing one.

PULLING STRENGTH OF MEN AND ANIMALS.

There have been comparatively few authentic test made of the actual pulling power of draft animals and, therefore, the trials recently carried out by Barnum \& Bailey's circus at Madison Square Garden were of sufficient interest to attract quite a large gathering of qualified observers. The heavy dynamometer shown in our engravings was used. This instrument, which has a maximum capacity of 100 tons, was manufactured some years ago for the Merritt \& Chapman Wrecking Company, passing later into the possession of the circus company. For the purpose of these pulling experiments it was sent to the makers, where it was over hauled and tested, to make sure that the results of the draft trials would be thoroughly reliable. The machine is of the hydraulic type, with a piston having 25 square inches of surface. The cylinder is filled with glycerine and it is provided with a pressure gage which will be noticed in our engrav ing, attached at the top of the cylinder. One end of the dynamometer was secured to heavy stakes driven into the floor, and at the other end, between the hauling ropes and the dynamometer, was interposed a pair of powerful springs with about 2 feet of maximum compression. The object of the springs was to allow the draft ani

The Hydraulic Dynamometer With Which the Tests Were Made.
is the commonly accepted average, we find that the men with fifty on the rope did almost as well in pro portion to their weight as the horses. This can be explained by the fact, that understanding the conditions, they gave a longer and steadier pull, and were not dis couraged by the fact that the load did not move. The elephant, a seasoned veteran, that has done a great deal of hauling and pushing of cars and wagons for the cir us, did his best work when hitched up by a couple of $13 / 4$-inch ropes to the dynamometer, with the spring in erposed. His weight is 12,000 pounds and he pulled 8,750 pounds. This, although it looks like a splendid result as an effort of a single animal, still ranks lowest of any in the table when tested on a basis of pull per pound of weight, the result being only 729 pound as against 1.172 pounds for the horse.
Another of our photographs shows the method by which the pushing strength of the elephants was tested. Two of them, known as "Babe" and "Albert," the latter weighing 10,000 pounds, pushing together raised the pressure gage to 6,500 pounds It was quite a surprise to the manage ment to find that the elephants could pull so much more than they could push, for it has been customary to utilize the strength of the elephants by making them

Two Elephants Ready for Pushing Test. Amount Recorded, 6,500 Pounds.

These Two 1,600-Pound Horses Registered a Pull of 3,750 Pounds

Elephant, Weighing 12,000 Pounds, About to Make a Pull of 8,750 Pounds.

One Hundred Men Making a Pull of $\mathbf{1 2 , 0 0 0}$ Pounds.

PULLING STRENGTH OF MEN AND ANIMALS.
mals to apply their strength gradually and give them a certain amount of movement in the act of pulling.
There is a curious psychological (if we may use the term) reason for the use of this spring. Without it, if the animal is pulling direct on the dynamometer, as soon as he bears on the collar or breast strap, he is pulled up and realizes that the load is immovable This discourages him, and after the first jerk he is apt to relax his efforts. With the spring interposed, how ever, he feels a certain amount of give to the load and is able to make a slight forward movement. En couraged by this, he will throw himself more heavily nto the pull than when no spring is used. The effect was further increased by using a long instead of a
was obtained by a team of horses of 1,600 pounds weight, which pulled 1,875 pounds per horse, or 1.172 pounds per pound of their own weight. It will be noticed that the result was much better than that obtained when six horses were coupled up; although the six horses were individually heavier. This is explained by the fact that there was difficulty in getting the six horses to pull together. The men showed up well, the results with fifty men on the rope being very much better than when a hundred tailed on. This was to be expected, the hundred men being so close together that there was no opportunity to get a good footing, or to get a pull in line with the rope. Assuming an average weight of 150 pounds per man, which
push instead of pull the wagons. "Babe", when push. ing alone, showed a result of 4,500 pounds. The puch was registered by fastening a rope from the wagon to the dynamometer, padding the rear end of the wagon, and putting the elephants in the position shown in our ngraving. As an instance of the actual work of which the beasts are capable, it may be mentioned that "Babe" when in the railroad switching yards can easily push three loaded freight cars.

Rotterdam was visited last year by 7,652 vessels, measuring $7,626,263$ tons, against 6,855 ships and $6,600,549$ tons in the year 1902, being an increase of 797 ships and $1,025,714$ tons,

Meteorit-A New Aluminium Alloy.
Mr. Walter Rubel, a German civil engineer, has been carrying on a series of promising experiments with a metal of his invention which is nothing more or less han an alloy of aluminium and phosphorus. The new metal (called "meteorit") is no mechanical mixture of aluminium and phosphorus, but a chemical compound No disintegration can therefore take place in melting or casting. According to the quantity of phosphorus used, meteorit can be made in various grades of hardness. Later tests proved that the material is •very dense and highly polishable. For scraping, the metal is in no way inferior to white, or to red metal Meteorit is well adapted to planers and shapers. No smearing is noticeable. This is a special feature of meteorit, as all other known alloys of aluminium are likely to smear the shaper. The cutting velocity is very high, which, for economical reasons, is to-day of importance in machine construction.
Meteorit has the same low specific. gravity as aluminium, viz., 2.6 to 2.8 , which is of great importance in branches of industry where the material is em ployed in large quantities, especially in motor-car construction.
The new metal is well adapted to machine construc tion, as has been amply demonstrated by the tests made in the technical institutes at Charlottenburg Munich, and Duisburg. The following are the results of comparative tests between meteorit, magnalium (an alloy of aluminium), and pure aluminium, made and officially attested by the Royal Mining School at Duis burg. Tests made with rods on May 13, 1901. Diam eter 20 millimeters. Tensile strength:

Cast meteorit 5,010 kilogrammes 43 per cent Magnalium3,150 kilogrammes 11.7 per cent Aluminium2, 720 kilogrammes $\quad 7 \times$ per cent
Further tests made with regard to the various other requirements have given the following results:

Rolled material.	Cast material.
Ductile strength . . 23 kg .	16 kg .
Tension9.5 per cent	6 per cent
Pressing resistance per square millimeter \qquad	58.5 kg .
Gravity	31 kg .
Bending resistance.	27.3 kg .
Contraction	43.84 kg .

The metal is acid-proof and non-corrosive in the resence of acetic acid.
Meteorit is, furthermore, in no way affected by the temperature, and is, therefore, specially adapted for many objects intended for outdoor use. Its durability in sea water, combined with its lightness, makes it an ideal material for shipbuilding. It must be stated that, wherever rolling material is used, meteorit is said to possess unsurpassed features of its own, and sheets have been made from 3 mm . (.118 inch) to 0.06 mm . (. 002 inch) in thickness, of first-class quality, very hard as well as soft, the latter being intended for further manufacturing into tubes and for cutting and stamping. The German arms and ammunition factories in Karlsruhe, as well as the Swiss and Russian governments, are now making cartridge shells of meteorit.
Meteorit can be soldered and galvanized (nickel, silver, or copper) as easily as other metals, and therefore it can be given any coloring that may be desired. This has up to now not been possible with aluminium.

Information Concerning the Mexican Cotton-Boll

The United States Department of Agriculture has just issued Farmers’ Bulletin No. 189, "Information Concerning the Mexican Cotton-Boll Weevil." It was prepared by W. D. Hunter, special agent in charge of cotton-boll weevil investigations, division of entomology.
The work of the division of entomology for several years has demonstrated that there is not even a remote probability that the boll weevil will ever be absolutely exterminated. Although the very large yields of cotton of former years may perhaps no longer be possible, it is nevertheless entirely feasible to produce cotton at a margin of profit that will compare favorably with that involved in the production of most of the staple crops of the United States by what have become known generally as cultural methods. These methods consist of modifications of the system of cotton raising made necessary by the weevil. They were originally suggested by a careful study of the life history and habits of the pest, and naturally any improvement that may eventually be made will be the result of the continuation of that study. They have been tested successfully on a large scale by the division of entomology, as well as by many planters, during two very unfavorable seasons. These methods are in brief as follows: First. Plant early. Second. Cultivate the fields thoroughly. Third. Plant the rows as far apart as experience with the land indicates is feasible, and thin out the plants in the rows thoroughly. Fourth. Destroy, by plowing up, windrowing, and
burning, all the cotton stalks in the fields as soon as the weevils become so numerous that practically all the squares and bolls are being punctured. Of greatest advantage is the reducing for the next year of the number of the weevils by the destruction of the plants in the fall. The advantage thus gained is followed by bending every effort toward procuring an early crop the following season. Fifth. While fertilizers are not now used to any considerable extent in cotton producing in Texas, there is no doubt that they should be; not that the land is poor, but that crops may be procured earlier so as to avoid a considerable degree of injury by the weevil, which is more destructive to later crops.
The bulletin contains a description of the weevil, the territory affected, and the plan of the investigations by the division of entomology, and gives some of the results of the field work and an experiment showing the damage resulting from favorable hibernating quarters.

The bulletin concludes with an account of the legal restrictions concerning the shipment of infested cotton seed and a warning to cotton planters against the inflation of prices of the seed of certain varieties, and the attempts of unscrupulous persons to dispose of common seed from various localities as that of early maturing varieties.

NEW ELECTROLYTIC PHENOMENON

A rather curious phenomenon has been discovered by Julius Bing, a German scientist, during some experiments in electrolysis. A vessel contains an aluminium and a lead plate (see diagram) plunged in an electrolyte of tartaric acid. The positive pole of a battery is connected to the aluminium plate and the negative to the lead. The aluminium electrode is connected to one side of a condenser, whose other side has a wire dipping into the liquid. The wire is terminated in a point, which is approached perpendicularly to the plate. It is found that a discharge is produced between the point and the plate, which the author considers due to the capacity of polarization of the aluminium. The energy brought into play by the introduction of the

condenser is so great that when the point touches the plate, it becomes soldered at once. Therefore he uses a carbon point instead. The heating of the liquid is quite appreciable. The arrangement seems to act as a current interrupter, and the discharge seems to be of an oscillatory character, as the interruptions are accompanied by a high-pitched sound. The frequency of the discharges varies when capacities of different value are inserted. On putting in self-induction, the rate of the discharges is lessened and may be even stopped. The phenomenon is well observed with 150 to 200 volts and a capacity of 15 microfarads, and the interruptions are then regular. At the anode plate is seen a bluish light which disappears at the moment of discharge, but it reappears, on the contrary, when the charge is increased progressively.

Telegraphing Pictures and Handwriting.
In an address recently delivered at the Berlin Urania, Prof. Cerebotani presented a telegraphic apparatus for transmitting any kind of handwriting, drawing, etc. The fundamental principle is identical with the principle employed for instance by Elisha Gray, the novel feature being a highly sensitive system of electromagnets. In the case of the drawing pencil of the transmitter being moved upward in an oblique direction, the line obtained in the receiving apparatus of previously-invented systems is a broken one. In Cerebotani's system, the electromagnets are so sensitive as to produce nearly straight lines, even in the case of their being excited by extremely small currents. The telegraphic transmission of pictures and handwriting, as obtained by means of his apparatus, is therefore much clearer and truer than in the case of any previous apparatus. Some samples produced by Cerebotani were transmitted on the telegraph lines from Munich to Augsburg, from Milan to Turin, and finally from Berlin to Munich. A picture transmitted
some weeks ago from Berlin to Munich over a distance of 403 mtles is said to be the finest specimen of tele graphic transmission ever obtained in this direction.

Engineering Notes

A 32 -ton iron girder, the seventh of a number which are being used in the construction of a large department store in New York city, attracted no little attention as t was hauled through the streets on a truck 150 feet long. To drag the girder from its dock, twenty-one horses were required. The animals had to stop every few blocks for a rest. Every time that a new start was made, two powerful jacks were brought into use to move the heavy mass.
In the course of the James Watt dinner recently celebrated in Glasgow, the Lord Provost, Sir John Ure Primrose, Bart., described a new method for the raising of steam-a process that not only alters the existing plans of steam raising, but also solves the problem of the smoke nuisance in great industrial centers. The Lord Provost, who is a big manufacturer, had attached to one of the marine type of boilers at his works a furnace that appears to settle the smoke difficulty, introducing at the same time conditions under which, at a given rapidity of combustion, the maximum efficiency in steam is obtained from the fuel used. It is claimed for the patent that it is particularly suited for marine work. It can be used with cheaper and dirtier coal than is employed by the existing systems, so that shipmasters, when in foreign ports, would be in a position to effect the saving that would come from the purchase of local coal. Less boiler-room space is required, and the boiler-room weights are reduced by about onehalf. Fuel can be taken either solid or liquid. Air and fuel are fed together, and combustion is effected under ideal conditions, no unconsumed gases escaping from the furnace, and no smoke or carbonic acid gas coming from the funnels.
It is almost the general impression that the late Sir Henry Bessemer was knighted in recognition of the steel process which bears his name, but such was not the case. The honor was bestowed in 1878, when he was sixty-six years old, as a tardy reward for a service rendered the British government about the time of his attaining his majority. The history of this, as told by James Dredge, is that at the time when, in his early years, Bessemer came into contact with some of the officials of Somerset House, the seat of the Inland Revenue Department, it was notorious that frauds on the government were perpetrated to an alarming extent by the repeated use of stamps affixed to deeds. It was estimated that an annual loss of $£ 100,000$ was sustained from this cause, and to devise a means for entirely putting a stop to this occupied Bessemer's attention. It is almost superfluous to say that he arrived at a solution by the simplest means, that of perforating the government stamps with dates. Now that this evident method has found a hundred uses throughout the civilized world to safeguard stamps 'or checks, and to divide postage stamps, being among the most common, it is a little difficult to realize the importance of this invention. To Bessemer it meant, in anticipation, vast things-assured fame, a retaining fee of $£ 600$ a year as a government official, and a great advance on the road to fortune. In reality, however, it meant nothing, for though the invention was at once adopted, the official promises were soon forgotten.Cassier's Magazine.

The experiments described in a paper by Mr. Strahl (see Zeitschrift des Ver. Deut. Ing. No. 2) were made on behalf of the Breslau Royal Railway Department, wo high-speed train locomotives being fitted with Pielock superheaters, and compared with two similar locomotives without superheater as to their consumption of water and coal. The main results arrived at may be summarized as follows: The temperature of the steam on issuing from the superheater being 260 deg., the saving as to water vaporized was about 16 per cent, and as to the consumption of coal; 12 per cent, whereas the steam saving proved equal to about 10 per cent for a mean steam tamperature of 230 deg . in the dome. The consumption of steam in the different locomotives compared, proved the same for equal outputs. The weights of water vaporized are inversely as the specific volumes of the different kinds of steam, being directly proportional to the specific weight. The saving in steam obtained corresponded with the increase in the specific volume of the steam due to superheating. The saving in steam, being dependent only on the superheat, must be the same both in compound and twin locomotives for equal superheat, the comparison being relative to quite similar locomotives. Slide valves could be used up to the highest temperatures attained (272 deg. C.) provided sufficient. oil was supplied to the sliding surfaces by means of lubricating presses. In order to fully tutilize the advantage inherent in superheating for a higher efficiency of the locomotive, the cylinders should be increased proportionally to the higher consumption heat (coal) of the locomotive (in the case of equal outputs) without superheaters, as against locomotives with superheaters.

(Taxixexpandente.

dvantages of Salt Water Mains.

To the Editor of the Scientific American:
Let me call to your attention another possible use for salt water in case it is introduced into this city for fire protection.
Salt water, as is well known, freezes at a much lower temperature than fresh water, and could be used in winter to flush the streets and carry away slush and snow. Fresh water has been used for this purpose, but is limited in its usefulness to mild days, for when the temperature is below freezing, it rapidly forms into ice.
New York, March 31, 1904.
A Letter from Dr. Herty on the Gathering of
To the Editor of the Scientific American:
My attention has been called to a communication in your' issue of February 6, entitled "About the New Method of Gathering Turpentine."
The experiments of your correspondent, Mr. George W. Colin, in the use of detachable boxes, are historically interesting. His assumption, however, of the impracticability of any plan because of the failure of his experiments, scarcely needs comment other than a statement of the fact that at the present time there are at least three million cups in use by turpentine operators, and that this number would easily have been eight million, had the potteries been able to supply the actual demand in time for the present season.
Your correspondent quotes from an article in your issue of January 2 the statement, "New Method of Gathering Turpentine Invented by Dr. Charles H. Herty, and by him given to the public."
I am unwilling to receive credit for generosity which does not properly belong to me, and consequently feel that I should further add that the new system of cup and gutters devised by me has been patented, as it was devised by me before entering the service of the Bureau of Forestry; but the bureau, while recognizing my personal right to the patent, deems it improper for me to receive any royalty on the patent so long as I am officially connected with the bureau.

Charles H. Herty.
Jacksonville, Fla., March 9, 1904.

The Latitudes of Greater New York.

The Greater New York extends through 14 minutes and about 45 seconds of latitude and 28 minutes and about 30 seconds of longitude. The extreme southwestern cape of Staten Island, which is the most southerly point of the city, lies almost exactly 40 degrees, 30 minutes, and 15 seconds north of the equator. The junction of the city line with the Hudson River on the edge of Yonkers, which is the most northerly point of the city, lies almost exactly 40 degrees, 54 minutes, and 55 seconds north of the equator. The western edge of Staten Island marks the most westerly point of the city. It is as nearly as may be 74 degrees, 15 minutes, and 30 seconds west from Greenwich, while the extremity of City Island, which is the most easterly point of the city, lies almost exactly 73 degrees and 47 minutes west from Greenwich.
The difference in latitude between the extremes of the city, taken with the difference in elevation and the presence of the sea in the southern part, makes an appreciable difference in climate. There is decidedly more snow and a somewhat lower average winter temperature on the edge of Yonkers than at the southwestern extremity of Staten Island. While the highest point of the city is the ridge near the center of Staten Island, where the elevation at several points exceeds 400 feet above sea level, the general elevation in the upper portion of the city is considerably greater than that of the parts south of Central Park. The highest point on the island of Manhattan is on the wooded ridge overlooking the Hudson at a point nearly due west of Washington Bridge, where the elevation is nearly 260 feet above sea level. A little further north the island reaches a height varying from 180 to 240 feet. The vegetation on this elevated ridge shows the influence of the height above sea level. It suggests the vegetation of the Palisades. The elevations of the Bronx reach 180 and 200 feet in Van Cortlandt Park and in parts immediately southwest of the park. The highest elevation in Bronx Park is just short of 150 feet, and of Pelham Bay Park, about 120 feet.
The coolest summer climate of the city is probably the central ridge of Staten Island, where, in the region which is intended for part of the proposed Richmond County park system, the greatest height is 413 feet above sea level. With a stiff sea breeze blowing, these heights are deliciously cool in midsummer. The valleys of the Borough of the Bronx are extremely hot in summer, though the heights are cooler than the built-up portion of the city down town. The narrow strip along the Hudson at the base of the high ridge
of the island is one of the hottest parts of the city on summer afternoons, when the sun strikes from the west against the slope of the ridge and is reflected from the burnished mirror of the river.
The lower part of Manhattan and the boroughs of Brooklyn, Queens, and Richmond have rather more rain than the Borough of the Bronx. It snows occasionally in the upper part of the Bronx when only rain falls in the lower part of the city, and snow lies often for days and sometimes for weeis upon elevated parts of the Bronx after it has utterly disappeared from the parts of the city immediately bordering upon the harbor.-N. Y. Times.

METHOD OF TIMING PHOTOGRAPHIC SHUTTERS.

One of the simplest and most practical methods for determining the speed of a photographic shutter is that which has been lately devised by M. L. Pelleport, a French photographer. A nail is driven in the wall at C, and from this hangs a pendulum formed of a ball on the end of a string, which should swing freely near the wail. The arc, $A B$, is traced, with C as a center, by holding a piece of chalk against the cord, and the limits of the arc, A and B, are clearly defined by a short mark. The camera is focused upon the arc, $A B$, so as to have as large an image as possible, excluding the point, C. The pendulum is drawn to one end of the arc and then allowed to swing, the shutter being opened at the same moment. The photograph appears somewhat as in the second diagram, showing the arc, $a b$, and a grayish band, wxyz, the image of the successive positions occupied by the pendulum during the time the shutter is open. A straight line $a^{\prime} b^{\prime}$, is drawn, having the same length as the arc, $a b$, and upon it is erected a half-circle, which is divided

PHOTOGRAPHIC SHUTTER.
into a certain number of parts, say 100 . On the base line lay off the distances, $a^{\prime} m^{\prime}=a m$ and $a^{\prime} n^{\prime}=a n$, and erect the perpendiculars, $m^{\prime} m^{\prime \prime}$ and $n^{\prime} n^{\prime \prime}$. The number of divisions in the arc, $m^{\prime \prime} n^{\prime \prime}$, compared with the whole number on the semi-circumference, shows what fraction of the length of the pendulum's oscillation the shutter has remained open. To find the time, it is only necessary to know the time of oscillation, which is deduced from the length of the pendulum. For convenience, a second's pendulum may be used. The method, depending upon the physical formula,
$\sqrt{\frac{\mathrm{e}}{\mathrm{g}}}$ is only strictly correct for infinitely smal oscillations, but gives a close enough approximation for ordinary use.

The international cup race for motor boats, to be held on July 30, will be participated in by representatives of the United States, England, and France. America has two entries. England and France have more than the allotted three, and will hold elimination trials. S. F. Edge has two launches under way for the English trials. They will be made of bronze. One is forty feet in length and will be equipped with a 120 -horse-power engine. The other is thirty-five feet in length with proportionate horse-power. Another Englength with proportionate horse-power. Another Eng-
lish entry is that of Lord Howard de Walden, a wealthy peer and enthusiastic automobilist. France has entered a boat of 150 horse-power of the Gardiner-Serpollet type. Steam will be the motive power of this. The displacement will be twice that of the other boats. On this account the powerful craft may not stand much show. Another French entry is that of G. Peter, a builder of motor boats, regarding which no particulars are given.

Electrical Notes.

An experiment performed by Dr. A. Ludwig has demonstrated the possibility of melting carbon and maintaining it in the liquid condition. The heating was effected under great pressure in the electric furnace, and a curious phenomenon noticed at 1,500 atmospheres was that after a brief failure of the arc, the current refused to pass even when the voltage was much increased. It is supposed that as the carbon passed into the liquid and transparent state, it as. sumed a rare allotropic form, becoming a non-conductor. The test was too brief for a study of this condition, but was made to include a sudden cooling of the molten carbon by a flooding with water of the interior of the pressure vessel. Though minute diamonds were recognized in the gray powder thus obtained, the result was not wholly satisfactory.
Shortly after the Paris disaster, a commission was appointed for taking such precautions as would be likely to increase the safety of service on the Berlin underground railway. These precautions have now for the greater part been carried out. The lighting circuit of the tunnel has been enlarged by additional independent wires, enabling, in the case of one half of the lamps being injured, the second half to go on burning. The ticket boxes on the underground railway stations are so designed as to be readily pushed aside. The number of fire hydrants has been increased, and each car has been fitted with a sand box. There are bucket fire extinguishers in each car, as well as in the tunnel at distances apart of 328 feet. Each station has been connected to the fire brigade alarm line. The emergency lamps in the cars are prevented from any contact with the curtains, the latter being, moreover, of a heavy, impregnated, wool stuff. Each motorman's stand is provided with short-circuiting devices which may be operated from within the car, and made to cut the current off the line.

Cost of water-power development depends, in large measure, on the location of the electric station that is to be operated. The form of such a station, its cost, and the type of generating apparatus to be employed are also much influenced by the site selected for it. This site may be exactly at, or far removed from, the point where water that is to pass through the wheels is diverted from its natural course. A unique example of a location of the former kind is to be found near Burlington, Vt., where the electric station is itself a dam, being built entirely across the natural bed of one arm of the Winooski River at a point where an island near its center divides the stream into two parts. The river at this point has cut, its way down through solid rock, leaving perpendicular walls on either side. Up from the ledge that forms the bed of the stream, and into the rocky walls, the power station, about 110 feet long, is built. The up-stream wall of this station is built after the fashion of a dam, and is reinforced by the down-stream wall, and the water flows directly through the power station by way of the wheels. A construction of this sort is all that could well be attained in the way of economy, there being neither canal nor long penstocks, and only one wall of a power house apart from the dam. On the other hand, the location of a station directly across the bed of a river in this way makes it impossible to protect the machinery if the up-stream wall, which acts as the dam, should ever give way. The peculiar natural conditions favorable to the construction just considered are seldom found.-A. D. Adams in Cassier's Magazine.

The Current Supplement.

The current Supplement, No. 1475, opens with an instructive article by Mr. Randolph I. Geare, describing the Smithsonian exhibits for the St. Louis Exposition. It is the purpose of the Editor to publish in the SUpplement what may well be considered a manual of radium technology, to run through three numbers. The first installment of the paper appears in the current Supplement. Mr. Harlan I. Smith discusses in an interesting way the methods of collecting anthropological material. "A Chat About Spoons" is the title of an article that gives many a curious bit of information. Of interest to electricians are articles on the electrolytic refining of lead, the first electric trunk railroad in Great Britain, and the magneto-elastic detector. Mr. H. M. Riseley writes on "Electricity and Mule Power on Canals."

It is said that the Pullman Palace Car Company is about to introduce a sleeper which, from a sanitary standpoint, will be a considerable improvement over that hitherto used on the railroads of the country. The new standard is severely plain and is devoid of all scroll and grill work. The upholstery of the car has been reduced materially and all the angles possible have been taken from the car. Imported mohair has been adopted as a standard curtain and the entire design of the decoration and furnishing is planned with a view to minimizing the work of cleaning the car and preventing the lodgment of germs.

malting and brewing CONDUCTED ON SCIENTIFIC PRINCIPLES.-I. MALTING.
E art of brewing is one of great antiquity. It has been decided by Egyptologists that the ancient Egyptians were familiar with the process of manu facture of a species of beer but it is to the Germans that we must look for the greatest developers and exponents of this industry, which has attained vast proportions in this country. It is a fact that most of the brewing plants in America are now owned by Germans. In the construction, maintenance, and operation of a brewery the services of an architect, a mechanical engineer, a chemist, and a man of great expert knowledge called the "brew-master" are required. The work of the first two is occasional, but that of the two latter is perpetual, as the uniform ity and the healthfulness of the product depend to a large extent upon their expert knowledge
There is hardly an industry that is based on more scientific principles than that of brewing, where man utilizes natural products, and transforms them by means of chemical reactions into a beverage which con serves the natural nutritive qualities of the raw ma terials. In brief, beer is a product made from extracts of malted barley and of hops, which are boiled together, the resulting liquid being fermented and after ward carbonated.
It is our intention to describe the process of manufacture of beer as carried on in one of the largest and most scientifically conducted breweries in the world, and it is our aim to call special attention to the various points which deal with the purity of the beverage, as they are most interesting from a scientific point

Steeping and Aerating the Grain.
supply is obtained from the city mains. There are ten or eleven artesian wells in various parts of the plant, which furnish water for cleansing, condensing, etc.; some of them are 2,000 feet deep. For washing yeast the water is sterilized by steam, cooled, and afterward aerated with germ-proof air. To prevent any possibility of infection, all the air which comes in contact with the wort or the beer itself is filtered by passing through three sterilized cotton filters of enormous size, each having a capacity of 4,000 cubic feet a minute. The air is piped all through the brewery for use where it comes in contact with the wort, the beer, or the yeast.
The necessity for chemical and bacteriolog. ical cleanliness will be understood when it is considered that the malt wort is highly nutritious, and affords an excellent culture ground for bacteria, for the nutritious substances which make beer of value for human consumption are seized upon with the same avidity by these minute organisms.

Malting is the process of changing the character of various constituents of the barley, so that it is made suitable for brewing. The principal constituent of barley is starch in the form of small granules of microscopic size. These starch particles are surrounded by a tight cellulosic hull. The starch should be resolved in the brewing process into malt sugar (maltose) and dextrine. This transformation can only take place if these hard walls are softened and the starch made accessible; this is what is done by the malting process.

A recent fire at the Pabst plant occasioned the necessity of building a new malt house, and an expert was commissioned to visit the leading malt houses of Europe, with the result that the best foreign practice has been embodied in the new malt house, which is ten stories high and is built on the pneumatic, or Saladin system. The old plan was to lay the steeped barley on large cement floors, where it was manipulated manually by shoveling. This is still the prevailing system in most malt houses, and the drawb a ck s are obvious. There was in the old system no regularity in turning, aerating, cooling, etc., and it was necessary for the men to walk around in the wet grain, with heavy boots. The temperature of the malt was also dependent on the outside weather conditions, but in the pneumatic system you make your own weather with re-
of view, especially when the enormous quantity of raw materials consumed and the beer produced are considered.
As we have already said, malted barley and hops are the basis of beer. More than $1,500,000$ bushels of barley are consumed annually in the Pabst Brewery at Milwaukee. The barley comes from Wisconsin, Minnesota, Iowa, Dakota, and Montana, the latter State producing the best quality of grain. The cost varies from 60 to 75 cents a bushel, so that this is a very considerable item of expense. About $1,000,000$ pounds of hops are also used, and come from California, Oregon, Washington, and New York States, from Bavaria and Bohemia. The domestic hops cost about 32 cents a pound, while the imported cost from 70 to 80 cents a pound.
The hops are stored in a special building, which has a storage capacity of $1,000,000$ pounds. The temperature is kept at the freezing point by cold storage; this saves the volatile constituent \mathfrak{z}, and retains the flavor of the hop. The barley is stored in elevators when it arrives, and it is taken through grading machines, where all impurities, such as sand, chaff, broken kernels, wheat, oats, etc., are removed and the grain is dusted. In order not to impair the quality of the grain during the time of storing, the barley is given frequent air baths by aerating and spouting; this prevents a spontaneous heating, and serves to cool and keep the grain in such a healthy condition that all danger of deterioration is eliminated. The grains should be also uniform in size, as this will insure a uniform germination during the malting process. We have now dealt briefly with two of the raw materials which enter into the composition of beer. There is one other which is also highly important-this is water. For malting and brewing, Lake Michigan water is particularly adapted, on account of its softness. The
gard to temperature and humidity; in summer you cool the air, in winter you heat it. All of the windows are triple, to avoid the entrance of untreated air of an improper temperature and humidity, and even the entrances to the rooms are air-locked.
The barley is conveyed mechanically into large en-

A Portion of an Air Filter, Showing Water Spray.
ameled steel steeping tanks, each containing 650 bush els. Water is added, and the steeping process occupies from fifty to sixty hours. During this period the kernel is gradually absorbing moisture; air is admitted from below in a finely-divided stream, for a two-fold purpose. The barley is washed, cleaned, and at the same time absorbs oxygen from the air, thus promoting the subsequent growth in the malting process.
The barley might be said to breathe while in storage, and we might almost say that the water asphyxiates the grains, but this aeration really maintains and enhances the normal functions of the grain for the malting process. After the steeping is completed, the grain is run down to compartments on the germinating floors. These compartments are 100 feet long, 11 feet wide, and 5 feet deep. The walls are lined with cement, and the floor is constructed of perforated metal, giving access to an air passage underneath the compartment. The steeped barley is laid to a depth of two feet on this perforated floor, and then allowed to sprout. This operation is accompanied by the evolution of heat, which must be regulated within narrow bounds; 60 deg. F. is the upper limit, and 48 deg. F. is the lower limit. Thermometers are used to ascertain the temperature. In order that the air may be kept normal at all times, it is introduced to the germinating floors through an attemperating room of enormous size. In this chamber are vertical zinc plates, 150 feet long and 9 feet high, and there are fourteeen series of such plates. They are perforated, to allow the air to pass through them. In front of each series there are a hundred sprays, which finely divide the water, which is thrown against the perforated plates and flows down the whole series, thereby

Bottom of Steeping Tanks, Showing Conveyors for the Wet Grain.
MALTING AND BREWING CONDUCTED ON SCIENTIFIC PRINCIPLES.-I. MALTING.
washing the air in its tortuous passage through the filter, removing all dirt and floating organisms. Radiators at the air inlet serve to furnish heat if required, and a refrigerating room at the other end of the attemperator serves to reduce the temperature when necessary. Two large suction-fans throwing 2,000 cubic feet a minute draw the tempered and purified air through large flues to the various germinating floors, and it is only to this air that the barley is exposed.
Now, if the heat of the steeping grain reaches the danger limit, a valve underneath the perforated floor
large perforated metal floors, through which heated air is drawn by large exhaust fans. The kiln consists of four floors, and the green malt is introduced on the top floor, and gradually descends from floor to floor by gravity, the dumping taking place by the operation of shutters, which constitute the floors and which can be manipulated from outside. As the grain drops from floor to floor, the heat becomes greater and greater, until the barley can be compared to a baked loaf of bread. It is as tender as a cracker, and it has a pleasant aroma. The drying takes about forty-eight hours. To insure the specific character of

RUSSIA'S LAST HOPE ON THE SEA

Things are in a pretty bad way with the Russian fleet in the Far East. About as bad, indeed, as they could possibly be. Unless the genius of Makaroff can devise some brilliant strategy that will render the still formidable remnant of the Czar's ships effective, it does not take the eye of an expert to foresee the inevitable catastrophe. As the result of the inexplicable carelessness or lack of forethought of Alexieff, the opening of the war found the armored fleet of Russia divided by about a thousand miles, th armored cruisers being at Vladivostock and the battleships at

Looking aft from a Warshlp Coaling from a Collier Towed ástern.

Elevating Truck Loading Bags on the Deck, Ready for Holsting to Masthead.

Cableway winches.

The "Retvizan" While on Her Way to the Far East Coaling from a Collier Which She is Towing Astern. coaling warships at sea.
is opened, and the air is drawn through the grain by means of the exhaust fans, an equitable temperature thus being maintained. The grain is turned from time to time by a mechanical turner, which. while turning the grain, travels back and forth the length of the compartments. This serves to bring to the surface a new stratum of grain. The sprouting process occupies eight days, and at the end of this time the grains have ceased to be encysted by the hard walls, and the starch can be attacked in the mashing tubs in the brew house. The operation of malting is completed by drying the sprouted barley in kilns, which are
the malt for various beers, the kilning is conducted in two stages. The malt is then cleansed, and the sprouts removed by shaking in machines, and is stored in dust and moisture proof bins, where it is held in reserve for use in the brew house.
In a subsequent article we will treat the process of brewing. \qquad
Germany's pavilion at the World's Fair is under roof. The building is a replica of the castle at Charlottenburg. The plans were revised by Emperor William.

Port Arthur. The strength of the battleship division was reduced, as we all know, by the Japanese night attack until it was hopelessly inferior to the blockading fleet. For either the Port Arthur or Vladivostock fleet to come out and engage the enemy, would be nothing better than a forlorn hope-so greatly are they now overmatched. At the same time, the mining of the harbors makes it out of the question for the Japanese to enter. For the present the plan of the naval campaign, as far as Japan is concerned, is to maintain the blockade of the two ports so closely, that neither squadron can emerge without being forced to
give battle, and at the same time endeavor by a long range bombardment to destroy the fortifications and, if possible, shell the ships as they lie in the harbor.
Notwithstanding the many reports as to the havoc wrought by Japanese heavy guns on Port Arthur's fortifications, we doubt if any serious injury has been done. The modern method of mounting coast defense guns en barbette, or on disappearing carriages behind massive concrete protection, renders the chance of massive concrete protection, renders the chance of
dismounting guns exceedingly remote. The shelter for the gun detachments also is such that fatalities should be very rare; and unless the Russians have been remiss in laying in stores of ammunition and food, Port Arthur's forts should be able to withstand these bombardments for many months. What the chances would be of taking the place by combined sea and land attack is another question, which can only be answered by those who are fully conversant with the conditions. All things considered, it is probable that both at Port Arthur and Vladivostock, the effective remnants of the Russian armored fleet, consisting of probably five battleships and four armored cruisers, can remain in comparative safety under the protection of the forts comparative safety under the protection of the forts
and the submarine mines for many months to come. At Port Arthur the ships will, of course, be exposed to the chance of being hit by the plunging fire of longrange bombardment; but such individual hits will be more a matter of "luck than good shooting," and in spite of reports to the contrary, we are inclined to think that they are extremely rare.
Evidently, then, if any relief is to come to Russia in her naval campaign, it must come from without. In other words, the only hope of saving her Far Eastern fleet is for Russia to dispatch a second fleet to the rescue, which, by its approach, will raise the blockade, release the fleet now contained in Port Arthur, and reverse the situation by obliging the Japanese admiral to fight against a fleet numerically more powerful than his own.
That Russia will bend every nerve to save the naval situation is morally certain; for the loss of her fleet in the Pacific would have a far wider significance than the disastrous effect it would have upon the Eastern campaign. It would mean the absolute extinction of the very flower of her navy, including seven of the best of her battleships, all of her modern armored cruisers, eight protected cruisers, including the best and latest of that type in her navy, and a fleet of thirty or more destroyers and torpedo boats, the loss representing a total value of not far short of $\$ 100$,representing a total value of not far short of $\$ 100,-$
000,000 . Now, it is a fact that these vessels represent the very cream of her navy; and it is no exaggeration to say that by such a disaster, the Russian navy would be reduced, temporarily at least, to second rate. Moreover, because of the slowness of warship construction and its great cost, coupled with the long lead that would be thus secured by rival nations, it is probable that Russia would never again regain her former position. Henceforth, her interests in Europe would demand that new accessions to her navy be retained in European waters. Thus would her dreams of naval supremacy in the Far East be dispelled for many a decade to come, if not, in view of Japan's ascendancy, for good. With these considerations in mind, it will be understood that by the Russian official mind in St. Petersburg and, indeed, by all farseeing and intelligent Russians, it is realized that some supreme effort must be made to rescue the beleaguered fleets, and avert the impending disaster.
Is there any such relief in sight? There is; and it is to be found in the five very effective and powerful warships known as the "Borodino" class, some of which must be by this time in commission and others nearing completion in the Baltic yards. If these five ships can be commissioned and dispatched to Port Arthur during the present summer, picking up the battleship "Osliabia" in the Mediterranean, it is possible that they might reach Port Arthur by the early fall in time to raise the siege.
The excellent qualities of this fleet, both for defense and offense, coupled with the fact that the vessels are of the latest design and are exactly identical, would render it, with the help of the "Osliabia," practically a match for the fleet of six battleships of Admiral Togo, which latter would by the autumn surely be feeling the stress of an unbroken war service of eight or nine months' duration.
Let us look once more at the character of these vessels. On a displacement of 13,566 tons they are designed to mount a main armament of either four 12.4inch or of four 12 -inch guns. The former is a new piece of great pówer, which these vessels are to carry if it is ready for them. These guns will be mounted in 11-inch-armor turrets. The intermediate battery consists of twelve 45 -caliber, 6 -inch guns, carried in 6 -inch-armor turrets, while the secondary battery is made up of twenty 3 -inch rapid-firers of the extraordinary length of 60 calibers, with corresponding increase in range and flatness of trajectory; twenty 3 pounders and eight 1-pounders. They carry two broadside submerged torpedo tubes and two above-water tubes, one in the bow, another in the stern, each pro-
tected by Krupp armor. The defensive qualities are finer, we think, than those of any ship afloat. They consist of a 9 -inch belt tapered to 4 inches and $21 / 2$ inches at the ends; a secondary belt of 6 -inch armor above the main belt, extending like the main belt entirely around the ship, and two protective decks, the lower one at the level of the top of the main armor belt, and an upper armored deck 2 inches in thickness at the level of the top of the upper armor belt. The space between these two decks is filled amidships entirely with coal. Furthermore, as a protection against waterline armor-piercing shell fire, and against torpedo attack below the waterline, a vertical wall or bulkhead of 4 -inch armor extends longitudinally from the bow to the stern, at a distance of about 6 feet inboard from the sides of the ship. Add to this that the bases of the gun turrets, and the armored tubes leading up to the same, are armored with from 10 inches to 5 inches of Krupp steel, and it will be seen why the total amount of armor worked into a vessel of the moderate displacement of 13,566 tons reaches the high total of 4,000 tons. Of the five ships, the "Borodino," "Orel," and "Imperator Alexander III." were launched in 1901, and are undoubtedly completed by this time. The "Slava" and "Suvaroff" were launched in 1903, and twelve months ago were announced as to be completed in the present year. It is probable that in view of the coming E'astern complications, work has been rushed on these vessels, and that everything is working in the Baltic yards at high pressure to complete them. It is quite within reason to suppose that they will be ready, as announced in St. Petersburg, by the summer.
But even with the ships completed, there still remain the two serious questions of manning and coal-

an interesting balancing feat.

ing on the long journey. to the Far East. The first would probably be accomplished by drafting the most experienced officers and men from the vessels of the Baltic and Black Sea fleets; and for giving them the necessary familiarity with the new ships, reliance would have to be placed upon the incessant drill in gun practice and maneuvers, which the fleet would undergo on the long journey to the seat of war. The problem of coaling is not so difficult a one as is popularly supposed. The successful introduction of the apparatus for coaling at sea, which is shown in the accompanying illustrations, in the Russian navy, has made it possible for an active fleet to carry its coaling stations with it, and coal up while under way at any time that it pleases, except, of course, in the heaviest weather. That this is contemplatcd by the Russian Admiralty is proved by a very significant dispatch which appeared recently in the daily press, to the effect that five vessels of the volunteer fleet (transport ships) have received orders to proceed to the Baltic, where they will be put in condition to serve as colliers for the Baltic squadron, which is to sail for the Far East in June. It is noteworthy that the number of vessels coincides with that of the five vessels now building. Now the latest and largest of the vessels of this volunteer fleet are of from 9,000 to nearly 12,000 tons displacement, with speeds of 19 to 20 knots an hour. By making the necessary structural alterations, these ships would be able to load up with 25,000 to 30,000 tons of coal, and with their good speed they would easily be able to keep up with the fleet of new battleships (all of which can do 18 knots) at a cruising speed of, say, as high as 15 knots an hour. The fleet would be fitted with the apparatus for coaling ships
of war at sea, which is shown in the accompanying illustrations, which represent the Russian battleship "Retvizan" when she was taking coal while under way. The method of operation, briefly stated, is as follows: The collier is towed astern of the battleship, and an overhead cable is stretched from the after mast of the battleship to the foremast of the collier, on which is a traveler provided with hooks to which the buckets of coal are attached. Arrangements are provided for taking up the slack of the cable or paying out, as the distance between the ships varies in the seaway. The full buckets are hauled from the collier, and the empty buckets returned in the same manner as the ordinary overhead cable conveyer is operated in excavation work, as seen recently on the Rapid Transit Subway in this city. As much as 35 to 40 tons of coal per hour has been delivered from a collier to a battleship in a moderate sea and a heavy gale of wind, the battleship meanwhile towing the collier at speeds varying from 8 to 11 knots an hour.
It would also be possible to adopt the method used in taking out the monitor "Monadnock" to Manila, when the monitor, with fires banked, was towed the whole distance by the collier, thus avoiding the trouble of coaling at sea.
The Baltic fleet, conveying its own coaling stations with it, should easily make the passage to the Far East at an average speed of 15 knots an hour; for. our own "Oregon," a 16-knot vessel, made the trip around Cape Horn at about 14 knots an hour, and the new Baltic ships, as we have said, are 18 -knot vessels. If the fleet is able to get away, as announced, in June, it should reach the Far East by August. If, on the arrival of the fleet, Port Arthur and Vladivostock are still holding out, the naval war will take on an interest, for which it will be scarcely possible to find a parallel in naval history. Will Admiral Togo, realizing that the approaching fleet is more powerful than the one which he has been blockading these many months, gather his eight armored cruisers before Port Arthur, and go with his battleships and destroyers to meet the Baltic fleet; or will he dispatch his torpedo fleet, bidding his captains risk everything in a desperate night attack in the open? Or will Makaroff make the first move by a determined dash from Port Arthur, to effect a junction with the relieving force? Should a junction be made, Russia would have eleven battleships against Japan's six.
It is evident that, as far as Russia is concerned, the fate of Russia's navy depends upon the ability of Makaroff to hold Port Arthur for the next few months. Should it fail and the blockaded battleships be destroyed, there would be nothing left for the Baltic fleet but a prompt return to European waters; for without the naval bases of Port Arthur and Vladivostock to fall back upon, it would be merely a question of time before this fleet would be run down and overpowered by the victorious enemy.

an interesting balancing feat.

An interesting feat in equilibration is performed by William Sprengel, a Western cowboy. Upon a spiral tower with a runway 160 feet in length and 16 inches wide he ascends and descends, standing upon a large wooden ball. This ball he rolls with his feet, keeping it in the center of the runway. The runway is veneered wood and perfectly flat. The greatest incline is $41 / 2$ feet in 20 . The ball is 28 inches in diameter and weighs 80 pounds. In ascending, Mr. diameter and weighs 80 pounds. In ascending, Mr.
Sprengel is said to be pulling 150 to 160 pounds, and in coming down is holding back from 75 to 80 pounds. After reaching the top of the tower, before descending, he rolls the ball out and back upon a perfectly flat imitation cable 50 feet in length. At all times his eyes are kept steadily upon the ball. Ten minutes are required to make the entire trip up the tower, out on the cable, and back to the ground. The feat has also been performed in Europe and in Cuba by Achille Philion, the originator of the act and the owner of the paraphernalia. Sprengel is his successor, and has been doing the act about a year.-W. Frank McClure.

The Problem of Columbus.

H. W. Chapman in Phil. Mag. determines completely the motion of an egg-shaped body (symmetrical about an axis and with a hemispherical end) on a perfectly rough horizontal plane. The results show: (1) That the axis of an egg-shaped body would not rise toward the vertical unless, when its axis is horizontal, it receives not only a spin about the vertical, but also a rolling motion round its axis; (2) that even when so spun, it is very improbable that its axis would rise to the vertical. The rising observed in the case of smooth wooden eggs is connected with the phenomenon of limiting friction, and a rough cement egg rose only with difficulty, and usually remained oscillating between two cones, as required by the theory for a perfectly rough egg.

A canal is to be cut between Lake Onega and the White Sea at the estimater cost of 12 million rubles.

Watent
 Patent Department

IMPROVED HOSE-NOZZLE.

In the accompanying illustration we show an im proved form of hose-nozzle invented by Mr. Charles L. Sankey, of Engine Company 7, Yonkers, N. Y. This hose-nozzle is so constructed that the plug of the valve will be operated by a cam lever arranged to bring the waterway or passage opening in the plug in registry with the water passage in the body of the nozzle, and to admit the waterway of the plug to be automatically carried out of such registry. The cam lever is also so arranged that it will remain in either position in

IMPROVED HOSE-NOZZLE.
which it is placed until purposely moved, enabling the nozzle to be set for the free delivery of the water for an indefinite period of time without attention, or the supply of water to the tip of the nozzle to be conveniently and instantly shut off when desired. As shown in our illustration, the tip and the neck of the nozzle are threaded into opposite sides of the spherical body portion. The body of the nozzle is vertically traversed by a chamber in which the valve plug is adapted to slide. A coil spring bearing against a washer on the bottom of the plug serves to hold the plug normally in its lowest position. At its upper end the plug is slotted to receive a cam, which is also seated in a groove in the top of the body of the nozzle. The cam is held in place by a pin passing through a slot therein, and driven into the members of the bifurcated portion of the plug. The valve is operated by means of a handle, which projects from the cam When it is desired to open the valve, the handle is turned to a horizontal position, and the plug is forced to rise by the pin acting in the cam slot, which brings the opening in the plug into registry with the bore in the body of the nozzle. Whenever it is desired to cut off the flow through the nozzle, it is simply necessary to throw the handle upward, when the spring will force the plug down to the position illustrated.

IMPROVED CALIPERS

A patent has recently been granted to Mr. William AcDonald, of Garfield, N. J., for an improvement in calipers which affords many advantages over the crude instruments now generally in use. The im proved calipers can be used while the work in the lathe is running, without danger of altering the size set on the calipers, thus saving the time of stopping and starting the lathe, as would be necessary with other types of calipers. When set to the size wanted

IMPROVED CALIPERS.
the calipers may be made to indicate how much larger the piece is than desired without the size already set being changed. As illustrated herewith, one of the caliper arms is formed of two members, A and B, which are pivoted together near their upper ends. A lever C is pivoted to the lower end of arm A and also at its lower end to member B, while at its upper end it carries a flat spring E which presses against an ear on member A, thereby holding the member B in the normal position indicated in Fig. 1. When in this position the member B presses against the stop ormed on the inner edge of the member A a pointer lever D is also pivoted to the member A in such position that it will be engaged by the upper end of the lever C. Whenever the member B is moved out of normal, as shown in Fig. 2, this pointer indicates on a scale the amount of this movement, and, due to the compound leverage, a movement at the caliper points will be multiplied about eight times on the scale thus virtually supplying the calipers with a micrometer attachment. In use .the points of the calipers are brought slightly closer together than the measure desired and the thumb screw on the main joint is screwed up as tightly as possible. Then, with the pointer moved into engagement with the lever C, the points are passed over the object which it is desired to measure. This will move the pointer slightly to the left and the adjustable scale is then set, bringing one of the marks on the scale in line with the index point. Now, in passing the points of the calipers over the work in the lathe, the index hand will show just how much larger the work is than desired by moving past the mark on the adjustable scale, or if the object is smaller than desired the index pointer, which had previously been set into engagement with the lever C, would not reach the mark set on the scale. In this way one can measure anything larger or smaller than the work desired and to a much finer degree of accuracy than with calipers now in use.

A Novel Life-Saving Boat.

James Mitchell, Sr., of Arrow River, Manitoba, Canada, is the inventor of a novel life-saving boat, which has more than once been made the subject of a note in this journal. Mr. Mitchell sends us two certificates, issued by the Naval Assistant's office at Halifax, in which some interesting tests made with the lifeboat are described. In November, 1902, a lifeboat was built according to Mr. Mitchell's plans, which was made the subject of rigorous tests. She carried about 1,200 pounds of ballast in addition to five men on the thwarts; in the bottom of the boat. She was parbuckled over, and righted very quickly and satisfactorily. A boat, similar to this, was ordered by the Dominion government for the fishery protection cruiser "Acadia." She was tested without any ballast whatever, with only three men on board, who held on to the thwarts. When parbuckled over, she righted at once. The Naval Assistant gave it as lis opinion that the Mitchell lifeboat was thoroughly self-righting without ballast. Admiral Rivet, of the French flagship "Tage," made a test on July 28, 1903, on which occasion the boat was launched from a wharf 14 feet 6 inches above the tide level. The boat took the water end-on with a crew in her, was immersed about one-third of her length, and then floated on an even keel.

WINDMILL WITH REVERSING attachment.

We illustrate herewith a new type of windmill, which is so arranged that its direction of rotation may be reversed whenever desired. The shaft of the windwheel lies transversely across the path of the wind, and it carries a drum on which radial blades are arranged like the blades of a paddle-wheel. A shield which is placed to windward of the wheel serves to cover either the lower or upper half of the wheel, according to its position. This shield is supported by two ropes, each of which is secured at one end to the top of the shield, and at the other end to the bottom of the shield. The ropes pass over pulleys at the top and bottom of the shield frame, and also over two pulleys keyed to a shaft which lies directly under the windwheel. Loosely mounted on this shaft is a sleeve, to which rotary movement is imparted from the windwheel by means of belt and pulley connection therewith. This sleeve carries at one end a cone, which forms one member of the friction clutch, the other or cup member being secured to the pulley shaft. Now with the shield in the lower position, the wind will strike the upper blades of the windwheel and, if it is desired to shift the position of the shield, a cord is pulled which, through the medium of a forked lever as illustrated, throws the friction cone into engagement with the cup, thereby imparting rotary move ment to the pulley shaft and drawing the shield to its upper position, when the wind will strike only the lower half of the wheel, thus reversing the direction of its rotation. Now, when next the cord is pulled the pulley shaft will rotate in the opposite direction, drawing the shield to its lowest position. In opera tion, the instant the shield reaches the desired posi
tion, the operating cord is released, whereupon a spring, acting on the forked lever, will throw the clutch members out of engagement. At the same time an other cord is pulled, which is connected to a brake band that encircles the cup member of the clutch This serves to instantly stop the rotation of the pulley shaft. Mr. William A. Butler, of 927 Market Street, San Frarcisco, Cal., is the inventor of this windmi'l.

CONVENIENT ATTACHMENT FOR BIRD CAGES
A recent invention provides a very convenient means of removing the paper in the bottom of a bird cage and replacing it with a new strip. The arrangement

CONVENIENT ATTACHMENT FOR BIRD CAGES.
is such that if desired the paper may be changed without removing the cage from its suspending hook. As shown in the accompanying illustration, the bird cage is provided with two downwardly-extending hangers, which also serve as legs for the support of the cage when it is placed on a table or the like. These hangers have inwardly-extending slots that terminate in depressions which form bearings for the spindles of a paper-roll holder. The paper from this roll extends over one edge of the cage and thence along the bottom of the cage to the opposite edge. At the point where the paper enters the cage a hopper is secured in which fine gravel is stored. When it is desired to change the paper in the cage the soiled strip is drawn out and torn off on the edge of the cage bottom, which is sharpened at this point. The fresh length of paper which is thus brought into the cage is covered with a thin layer of gravel which is fed out of a slot in the bottom of the hopper. Thus, by a single and very simple operation, the cage is cleaned and refitted with resh paper and gravel. The hopper for gravel is held in place merely by two hooks, and can therefcre be removed when desired. The paper holder also can be readily removed, owing to the slots which connect with the bearings. This affords a quick method of replacing the roll with a new one when the paper is exhausted. Mr. Joseph A. Quelch, of 331 Manhattan Avenue, Brooklyn, New York, is the inventor of this improved bird cage.

WINDMILL WITH REVERSING ATTACHMENT.

ODDITIES IN INVENTIONS.

Fastening Device for Overshoes.-Unless one's over shoes fit very snugly it is often quite difficult to keep them on the shoes when walking over muddy roads. As the same person often wears shoes which vary greatly in shape, it is sometimes impossible to find a single pair of rubbers which will fit them all snugly The simple little clip which is shown in the accompany-

FASTENING DEVICE FOR OVERSHOES.
ing illustration should therefore be found very useful to many people. It consists of a metal strip provided with a tongue which fits into a pocket formed at the heel of the rubber on the inner surface. The upper edge of this clip presses against the back of the overshoe while a second or locking tongue fits into the crease formed between the heel and the upper of the shoe, thus securely fastening the overshoe in place. When it is desired to remove the overshoe it is simply necessary to apply pressure against the heel, which serves to flex the locking tongue out of engagement with the crease.
Trolley Wheel.-New forms of trolley wheel are constantly being patented, showing that the trolley problem has not yet been satisfactorily solved. One of the latest forms is shown herewith. In this con-

struction it will be observed that the trolley wheel is covered by two shields which are independently rotatable on the trolley shaft. These shields are formed with hooked members which overhang the trolley wire and prevent it from slipping off the trolley wheel. The shield pieces are normally held in the position illustrated by two coil springs on the shaft. If, under extraordinary conditions, the wire should leave the trolley, in replacing the wire the shields would move apart against these springs under the pressure of the wire bearing against the curved edges of the hooks.
Bicycle with Rowing Attachment.-Rowing enthusiasts will find in the bicycle illustrated herewith a very excellent and delightful. means of exercising their muscles at times when rowing is unseasonable. The saddle of this bicycle is mounted on trucks which

BICYCLE WITH ROWING ATTACHMENT.
are adapted to run on two horizontal bars of the bicycle frame. The bicycle is driven by a reciprocating movement of the handle bar in a manner simulating that of rowing. A cord connects this handle bar with the rear bicycle wheel which is rotated by the common pawl and spring mechanism. The handle lever is fulcrumed at its lower end in a universal joint. On twisting the handle bar in one or the other direction the front forks are, by means of cord and pulley connection, turned in the corresponding direction, thus affording a means for steering the wheel. Two footrests are provided on the front forks and are so arranged that by pressing down the toes a brake will be set on the rear wheel.
Fireman's Suit.-The type of fire which is most dreaded by firemen is that in which volumes of stifling smoke and noxious gases are emitted. .To enable firemen to successfully cope with fires of this kind a Colorado inventor has designed a type of garment resembling a diving suit which we illustrate herewith. This garment is composed of gas-tight material which hangs from the helmet and is strapped about the man's waist. The garment is formed with sleeves which are tightly secured at the wrists to prevent entrance of

SUIT FOR FIREMEN.
smoke or gases. The air within the garment is kept pure by means of proper chemicals stored in a box on the man's back. A glass-covered opening is placed directly in front of the fireman's eyes, and light is furnished by an electric lamp secured to the outside of the garment. This arrangement enables a fireman to work with impunity in places where otherwise it would be impossible for him to remain on account of the gases and smoke.
Electrical Instrument for Cautery.-We show herewith a simple form of electric switch which will

ELECTRIC INSTRUMENT FOR CAUTERY.
facilitate the use of electricity for cauterizing purposes, particularly in the nostrils, mouth, and throat. This instrument is arranged somewhat in the form of a revolver, so that it can be conveniently held in the hand. The current may be turned on or off at will by pressing the trigger. From our illustration it will be observed that the trigger forms one arm of a bell crank whose other arm, when the trigger is operated, serves to press a contact spring into engagement with the contact plate, thereby closing the circuit to one of the cauterizing wires, the other being normally connected to the battery. The cauterizing wires are held in binding posts and can be readily removed and replaced by wires of different shape and size when desired. The construction and shape of the instrument is such that it will not interfere with the operator's view when performing the cauterizing operation.

Brief Notes Concerning Patents.

Thadd, eus A. Neeley, of Muncie, Ind., the inventor of the roller skate, expired on December 4 at his home, in the 60 th year of his age. He was for many years engaged in the manufacture of the roller skates.
Albert A. Honey, a resident of Chicago, Ill., and the inventor of the underground trolley system bearing his name, died from a stroke of paralysis at the Chicago Union Hospital early in December. He was an old-time telegrapher and was one of the first three operators employed by the Associated Press in that city. He was afterward employed by the Union Pacific and the Northern Pacific roads. Up to a few months before his death he was the president of the Magnetic Equipment Company, but was compelled to resign on account of ill-health.

A hinged trolley harp, the object of which is to facilitate the removal and replacement of the trolley wheel of electric cars, has been invented by Thomas Kelch, the master mechanic of the South Covington \& Cincinnati Street Railway Company, and is regularly used on the cars of that company. By removing the cotter at the side, one arm of the hinge may be opened and the wheel slipped from its bearings and another put in its place. The work of changing a wheel can be done in one-fifth the time required with the ordinary harp. It is adapted for use with almost any kind of wheel and there is no space for the wire to get between the harp and the wheel. A copper spring carries the current from the wheel to the pole.
The solar salt industry, which at one time was a great business in Onondaga County, N. Y., has been almost wiped out by the competition from the West, but there are still in operation in New York a few plants where salt is obtained by the solar process In this industry it is necessary frequently to manipulate the covers of the vats wherein the brine is in the course of evaporation, and as the vats are quite numerous, the services of many man are required for this work. Judge William G. Cady, of Syracuse, has recently invented a method of operating these covers by horse power, so that one animal and a boy can move 160 covers in six minutes. This represents the work of ten men. It is estimated that this device represents a saving of ninety per cent in the labor employed around one of these establishments. It is said that it will be the means of reviving the old industry in this part of the country.
A Manchester printer has devised a machine of wide value to the printing trade. This comprises a cheap, reliable, automatic system for feeding the paper to letterpress printing, lithographic, ruling, and other machines. Hitherto this work has had to be accompished by hand labor, but by this machine the services of the unskilled hand-feeder are dispensed with altogether. This automatic feeder will do in ten days the same amount of work that takes twelve days to do by hand. The invention is of the most simple construction, having no delicate or complicated working parts to get out of order. It can be adapted to every kind of press, ruling machine, and folding machine, and will feed any size and quality of paper, one sheet at a time, and no more. Should it, however, owing to bad paper, chance to take two sheets or, on the other hand, fail to take a sheet at all, both the feeder and press would instantly stop dead together. It can be put into gear and out of gear in a second, enabling the press to which it is attached to be used for handfed runs when required and is unfailingly accurate in its register.

A short time ago the work of demolition of the great Burden water wheel at Troy, N. Y., was commenced, but the action aroused such a great amount of opposition that the work was stopped, and an effort is being made to have the wheel restored and allowed to stand to the memory of Henry Burden, who was its designer and builder, and whose iron mill it operated for many years. The wheel is said to be the largest construction of the kind ever erectea and therefore it has a double interest. The wheel is sixty feet in diameter and twenty feet wide. It has thirty-six huge buckets. The journals of the great wheel are $161 / 2$ inches in diameter and 18 inches long and it has 264 spokes, each $11 / 2$ inches in diameter. The wheel was first put into operation in 1849 and ran almost continuously until 1895, when the works were abandoned. Making two and a half turns per minute, this wheel ran the entire plant, which consisted of one rotary squeezer and muckbar train, five 9 -inch trains for rolling horseshoe and rivet iron, five or six rivet or spike machines, about thirty punching machines, machine shop, roll lathes, shears, and other machinery called for about a rolling mill. At this plant Henry Burden invented and improved a number of processes. The most important and the one for which he is chiefly known is the horse-shoe-making machine, which was one of the greatest inventions of the time. Burden also invented the rotary squeezer, which is in use in all mills where iron is made by the puddling process.

RECENTLY PATENTED INVENTIONS.

Heating.
SMoke-consuming furnace.-J. b. Harris, Nashville, Tenn. The invention relates to smoke-consuming furnaces such as
shown and described in the prior Letters Patent granted to Mr. Harris. The object of this invention is to provide a furnace arranged to in-
sure a complete combustion of the fuel in the sure a complete combustion of the fuel in the
fire-box and combustion-chamber by the intro-fire-box and combustion-chamber oy the intro-
duction of heated air into the front top portion of the fire-box and into the combustion-chamber at the bridge-wall.

Machines and Mechanical Devices. Centrifugal machine.-J. h. Ostrander, Ticonderoga, N. Y. This machine is designed for use in sulfite, pulp, paper, and
chemical fiber mills. The invention relates to improvements in centrifugals particularly for separating liquor from pulp, an object being to provide a centrifugal of simple con-
struction and by means of which the work may struction and by means of which
be quickly and thoroughly done.
bending-machine.-W. Vanderlinden, Lansing, Ill. The intention in this case is
to provide a hand-machine for bending iron rods or bars to form eyes or angles of any
degree in a very simple and effective manner, degree in a very simple and effective manner,
the machine being durable in construction, easily adjusted for different work, and adapted for hand use on an anvil or other support. MACHINE FOR STAMPING
L. Conway, Louisville, Ky. In this patent L. L. Conway, Louisville, Ky. In this patent
the improvement relates to an apparatus for stamping a name or device on soap simul-
taneously or practically simultaneously with the operation of cutting the soap into cakes or bars. The soap may be stamped at any
desired interval on the same table and by practically the same apparatus that cuts the soap into bars.
hat-shaping machine.-M. A. Cuming, New York, N. Y. In the present instance the
invention relates to improvements in machines for shaping or forming hats of felt, straw, or other fabric, the object claimed by the inventor being the provision of a machine by
means of which bell-crown hats may be rapidmeans of which bell-crown
GUIDE FOR SEWING-MACHINE HEM-MERS.-H. Blaskopf, New York, N. Y. Mr. means for guiding and simultaneously curling means for guiding and simultaneously curling mer or feller so that after the fabric is once inserted into the machine the services of an
attendant are not required, the device being to this extent automatic.
MACHINE FOR REPAIRING DRILLS. J. J. Brossoit, Granite, Mont. Briefly stated this invention comprises means for cutting and
shaping the bit of the drill so as to repair any shaping the bit of the drill so as to repair any
break therein and to sharpen the dulled cutting edges. By means of the apparatus in the drill accurately and quickly by machinepower, and thus a decided advantage hand-work is attained.

of Interest to Farmers.

CORN-CUTTERR.-T. J. Love, Lincoln, IIl. adapted to aim is to provide a construction of corn and provided with means for cutting the corn, for holding it as cut, and constructed to admit the adjustment of the cutting devices
out of position for use when it is desired to pass by the shock of corn without cutting the gallas-hill, by which is meant the four hills
not cut, but are tied together to set the shock not cut,
cotton-chopper. - C. H. walters, Springfield, Mo. In this case the object is to provide a machine that can be driven along a and which will have one or more rotary choppers that are rotated from the wheels of the machine and which will effectually sever the
plants along the row or rows at or below the plants along the row or rows at or below the
surface of the ground either at regular intervals in the rows, leaving the desired number of plants standing, or remove the plant

Railways and Their Accessories.
Rail.-L. Steinberger, New York, N. Y. ments in rails, and more particularly to third rails employed for the purpose of distributing electric currents to moving vehicles of vari-
cus kinds. It relates to several distinct means, and more particularly to certain features whereby the rail is made free to move o its sup
Track Structure. - L. Sthinberger, New York, N. Y. This structure is particu-
larly adaptcd for use for distributing electric larly adaptcd for use for distributing electric
current in the capacity of a so-called "third current in the capacity of a so-called "third
rail." The more special object is to produce a rocker to bc applied upon a rail-section, so as to allow the section to rock in a lateral
direction and to reduce to a minimum the bearing surface upon the rail rests, lessening
the friction of the rail on its supports, and the friction of the rail on its supports, and
in consequence providing a means for the easy movement of the rail longitudinally and transversely during expansion and contraction of
the rails.

Steam Engineering.
STRAINER.-F. G. Brown, Sheffield, Ala. ide a strainer, more especialiy designed for use on vertical water-feed pipes for locomotives and other machines and devices and arranged to properly strain the water or other liquid flowing through the feed-pipe allow of readily cleaning the strainer of ac umulated trash or other impurities. The in described in a former application for Lhe and Patent of the United States, by this inventor

of General Interest.

FOLDABLE CONVEYER.-J. H. Tornex, Buffalo, N. Y. This conveyer is designed to
expedite the handling of freight and reduce expedite the handling of freight and reduce
the manual labor of handling; to enable the argo of a vessel to be loaded or unloaded in transporting freight hrough thus saving minimize the liability of damage to the freight particularly frail packages; to compensate for the draft of the vessel during loading and unaratus in compact relation to a warehouse when not in service
DRILL-CHUCK.-E. R. Smith, Oneida, N.
This invention relates to chucks in which
pair of jaws are mounted to slide toward pair of jaws are mounted to slide toward
r from each other on the operator turning or from each other on the operator turning
screw-rod having a right and left hand thread a screw-rod having a right and left hand thread
in mesh with the jaws. The object is to proin mesh with the jaws. The object is to pro-
vide a chuck having a supplementary device for engaging the gripping-jaws to insure an on the drill or other tool to be held in the onuck.
Gas-engine cooler.-C. e. Shambaugh, Mr. Shambaugh's inven-
ion relates to gas-engine coolers, definitely stated, improved means whereby increased radiation of heat is effected. The
construction comprises radially-disposed plates construction comprises radially-disposed plates
ceated in longitudinally-arranged grooves in the cylinder, the said plates being grooved engthwise thereof on opposite sides, the ribs etween the grooves having series of transv
projections formed by struck-up portions.
bottle-seal.-A. R. Robertson, Pass Christian, Miss. To prevent tampering with the contents of a bottle, the device emboan, with the neck which is adapted to receive a cork and formed with two annular beads on its outer surface, of a frangible cap, and a corrugated locking-spring adapted to lie between the beads on the neck and within the cap, so as to contact, thus holding the cap in place. Once seated, the cap can
only be removed by breaking it away, and it is purposed forming the cap with an annular weakened portion to facilitate its fracture.
MANUFACTURING ORE BRICKS.-J. oemiger, 25 Aachenerstrasse, Cologne, Ger any. The process in this invention comprises ing purposes from sandy ores or ore-dust, residues, tunnel-dust, burnt iron and copper pyrite residues and from similar material which consists in mixing materials which ar to be submitted to the process in a dry condition with lime, magnesia, and borax and intimately mixing the resultant mass with dilute crude sulfuric acid, then pressing and molding the mixture and drying the resultant bricks.
A smelting-brick consisting of ore material, ime, magnesia, borax, and diluted sulfuric manuractur or dexin
MANUFACTURE OF DEXTRIN.-G. ReyAUD, 5 Rue Salneuve, Paris, France. Mr. luting the material to be treated in twice its weight of water and in heating the resultant mass under pressure in a digester at a tem perature of 160 deg. to 220 deg. centigrade for an hour and a half. In this heat the
cellulose and the amylaceous matters of the peat treated become converted into dextrin or achroodextrin, which is capable of advan-
tageously replacing ordinary dextrin in its tageously replacing ordinary dextrin in its
industrial applications by reason of its lower industria
density.
binder.-J. Montgomery, Fort Worth, Texas. One of the principal objects of the will securely bind and retain device numer will securely bind and retain a number of
loose leaves, the structure of such a binder enabling it to be readily attached to and removed from the packet of leaves. It apper-
tains particularly to a temporary binder for order-books, cash-books, diaries, etc., capable of being rolled or folded and carried in the
alevator.-D. E. Condon, San Francisco, Cal. The invention relates to spiral elevators as shown and described in the former Letters Patent granted to Mr. Condon. The object is to provide an elevator for use in all classes crowds of people (and freight, etc.) have to be carried to, from, and between floors in the be carried to, from, and between floors in the
safest and most expeditious manner, the elevator being arranged for continuous travel of the cars from one floor to another, and
enabling the passengers to readily leave or enabling the passengers
enter cars at any floor.
BEARING FOR ELEVATOR-CARRIAGE rollers.-J. barrett, New York, N. Y. The object in view in this instance is to provide a construction which minimizes friction on
the engaging surfaces, thus preventing bending and cutting of parts. A further object is
to so construct the parts as to produce a
strong and light structure, owing to the fact that it is not necessary to cut away the stiles of the elevator-carriage to any material ex-
tent in order to mount the rollers thereon. Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention, and date of this paper
Business and Personal WUants.
 wil ind inquiries for certain classes of articles
numbered in consecutive order. If you manu.
facture these goods write us at once and we wil
send you the name and address of the party desir-
ing the information. Iu every case it is neces. send you the name and address of the party desir
ing the information. In everry case itis neces.
sary to give the number of the inquiry.

Marine Iron Works. Chicago. Catalogue free
Inquiry No. 534 6.- For firms having for sale
crankshat laihes for machining small crankshafts
from 2 feet 8 inches throw

Inquiry No. 5347.-For parties making thin cor
discs about 2it inches in diameter tobe paced in th
tops of screw top cansto make the topliquid tight. 1
C. S." Metal Polish. Indianapolis. Samples free.
nquiry No. 5348. - For primary closed circuit
batteries.
Sawmill machinery and outfts manu
Lane Mfg. Co.. Box 13, Montpelier, Vt.
Inquiry No. 5349 -FFor a heavy
with governor to run a ight machine.
American inventions negotiated in Europe. Wenze Inquiry No. 5350.-For makers of forges drill drilling machines, rubber valyes. pulleys, Fairbank
scales, garden hooks and forks, etc. The owner of a valuable invention desires to dispose
part interest to a practical man. Address Sanford part interest to a practical man. Address Sanford
Weeks. Patchogue, L. I. Inquiry No. 53.51.-For makers of advertising
novelties in large quantities. Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broad way York. Free on application
Inquiry No. N3.
1000-light capacity.
Fine machine work of all kinds. Electrical instru ments a specialty. Models built to order. Page Ma
chine Co., 812 Greenwich Street, New York.
Inquiry No. 5353.-For a naphtha or gasoline
launch, to hold 10 to 12 persons.
The largest manufacturer in the world of merry-go-
rounds, shooting galleries and hand organs. For prices and terms write to C. W. Parker, Abilene, Kan
Inquiry No. 5354. - For makers of n nils for drainage and irrigation purposes.
We manufacture anything in metal. Patented arti Metal Novelty Works, 43 Canal Street, Chicago.
Inquiry No. 535.5. -For makers of machinery for
a milk sterilizing plant.
The celebrated "Hortsog-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating, Ma
chine Company. Foot of East $138 t \mathrm{th}$ Street, New York. Inquiry No. 5356.-For
with 6 keys, also $\begin{aligned} & \text { with } \\ & 12 \text { keys. }\end{aligned}$
Manufacturers of patent articles, dies, metal stamp-
ing, screw machine work, hardware specialties, machinery and tools. Quadriga Manufacturing Company,
Inquiry No. 5357 .-For
ties doing such job work.

WORTH INVESTIGATING.

for

. A. C., 1009 New York Life Building, Chicago.

Inquiry No. 5358.-For makers of furniture, such
as iron bedsteads, chairs, rockers, tables, etc.
"The Household Sewing Machine Co., Providence,
R. T., is prepared to take on contracts for the manufac
ture of high grade mechanical apparatus, requiring
accurate workmanship, in either machine shop, cabinet
work. or foundry lines. Expert mechanics, designers
urnished on application.'
Tnquiry No. 5359.-For makers of composition
billiard and pool balls.
Inquiry No. 5360.--For parties engaged in raising
Inquiry No. 5361.-For makers of small papier
machéarticles.
In quiry No. 536.
small gas balloon, capable of lifting about second-hand
Inquiry No. 5363.-For makers of fans, buzz fans
operated by water power.
Inquiry No. 5364.-For
ches (gasoline) 17 or 20 feet.
Inquiry No. 5365.-For makers of tin toys.
Inquiry No. 5366.-For makers of advertising
novelties of every descintition, of cellupoid, enamelled
iron, stampedtin, founded brass name plates, etc
Inquiry No. 536\%.-For makers of or dealers in
siphon pumps.
Inquiry No. 5368.-For a small family ice ma-
chine which makes 100 pounds of ice.
Inquiry No. $5369 .-$ For small castings for boat
engines and motors, of 2 to 5 h . pa.
Inquiry No. 5370.-For makers of metal and cloth
button machinery.
Inquiry No.
Inquiry No. 53\%2.-For an outfit of archery
court.
Inquiry No. 537 3.-
suitable for canvassing.
Inquiry No. 5374.-For manufact
Inquiry No. 5395.-For manufacturers of pneu-
matic goods.
ins.
Inquiry No. 5376.-For makers of gas engine cast-
ing.
Inquiry No. 537\%.-For makers of headless steel
Inquiry No. 537\%.-For makers of headless steel
Int pins.
every description.
Inquiry No. 5879.- For the maker of a machne
or producing quartered figures on plain oak lumber.
Inquiry No. 5380.-For makers of gasoline or hot

HINTS TO CORRESPONDENTS

 cientific American Supplements referred to may be
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of
price.
Minerals sent for examination should be distinctly

$\begin{array}{c}\text { Minerals sent for examination should be distinctly } \\ \text { marked or labeled. }\end{array}$

(9353) A. T. J. says: 1. We say: "The man is $u p$ in a tree." "The boy is down
n a well." Does this not mean to say (and s it not really positively correct), "The man is outwardly, in a tree"? "The boy is inwardly, in a well"? I mean there are no such terms terms to express away from the earth's center
and toward it. Am I correct? If "up" and and toward it. Am I correct? If "up" and
"down" are correct, then to one on the equator down" are correct, then to one on the equator
at noon the sun would be directly "up" "above; and there is no such thing, likewise, as "above") and then at midnight the sun
would be "down" ("lelow;" and there is no would be "down" "below "" and there is no
such thing, likewise, as "below"); and this nd around the sun each 24 hours, or therebouts. A. The words "up", and "down" refer strictly to the horizon about us, and to nothing else. Up is along a line drawn through the ace of the earth to which the matter refers. Up and down as you use the words referring to a tree and a well are used correctly. The
sun at noon, to a person on the equator, is sun at noon, to a person on the equator, is
directly up from the surface of the earth above the head of a man standing at that point, and t midnight the sun is directly down beneath the man's feet. We see nothing wrong in this use of words, nor is the use of them necessary, since other words can be used to express the
fact. 2. Is there any proof that the earth travfact. 2. Is there any proof that the earth trav-
els around the sun as a man would walk around els around the sun as a man would walk around
a tree, or that it passes around the sun as a ider "loops-the-loop"? Is not the sun simply away" from the earth, or the two "separated," earth revolves around the sun in a year; that it occupies every point on the plane of its
, $\begin{aligned} & \text { in } \\ & \text { 3. Can this and similar }\end{aligned}$ that time. roblems be worked out by any rule? Given section of a circle, say 13 feet from point to point along the curved line, and the curvature such that a straight line from point to point the diameter of the circle if completed. A. We o not have at hand the solution of the problem oncerning the chord and arc of a circle which you request. It can no douper to devote space to mathematical problems, unless they present some unusual features or are novel. 4. What roof have we that the reason the seas are
alty is the emptying of streams into the oceans and seas from inland and no outlet, and not hat there are vast salt mines whose uppermost (or outermost surfaces as washed by
the seas' and oceans' bottoms supply the saltiness? A. The proof that the salt of the ocean ame from the land is briefly that the land water which have of salt, and that outlet are salt. There may be beds of salt under the ocean as you suggest, but it is not necessary to suppose them an be accounted for without this supposition, nd if not necessary why make it a part of should be made than are necessary in any argushould
ment.
(9354) P. S. asks: Will you kindly inform me whether a fish when put into a tub of water will increase the weight of the water
as much as the fish weighs or not, and if not, what fraction of the weight of the fish will it ncrease the weight of the water? A. If a fish water runs over, the weight of the whole is
increased as much as the weight of the fish. The water takes the weight of the fish and carries it. The water rests on the bottom of郎 tub, and the weight of the fish is thus transon which the tub may rest. If the tub is brimfull of water, and water overflows as the fish is put in, the weight is not changed by putting
the fish into the water. The fish weighs the same as the water it displaces, as may be seen
by the fish lying at rest in the water at any depth.
(9355) E. S. L. asks: Why does ice occupy more space than the same amount of
water? What is the explanation of globular lightning? Why is the internal resistance of several cells diminished by joining them in parallel? Why is not the E.M.F. increased?
A. It is not known why water expands in
freezing. There are very few substances which
do so. Cast iron and type metal are two other do so. Cast iron and type metal are two others
which have the same peculiarity, and which are very important to man. The cause of
globular lightning is not understood. globular lightning is not understood. The re
sistance of batteries is diminished by connect ing them in parallel, because by this mode of connection the battery is reduced to a single cell of size equal to all the cells combined The current generated by each set of plates
is sent out directly into the line, and joins the current of the other plates without passing from cell to cell. The E.M.F. is that of one
cell, because there is but one cell. The recell, because there is but one cell. The re-
sistance is that of one cell with plates as large sistance is that of one cell with plates as large
as all the plates combined. The larger the as all the plates combined. The larg
plates, the less the resistance of a cell.
(9356) W. L. G. writes: 1. Will you kindly answer the following question through
the columns of your valuable paper? Does the the columns of your valuable paper? Does the
weight of the atmosphere make any difference weight of the atmosphere make any difference
in the advantage to be derived from a condenser applied to a steam engine? In othe at the sea level, where the air pressure is about 15 pounds, than it is on a mountain, where the pressure is only 10 pounds? The question does different locations, but simply the advantage to be derived from a condenser. A. The ef
ficiency of a condenser is independent of at ficiency of a condenser is independent of at
mospheric conditions, and depends only on the quantity and temperature of the condensing the same efficiency in a 10 -pound atmosphere give 75 pounds boiler pressure as it would in a 15 -pound atmosphere at 80 pounds boiler pres sure? A. The terminal pressure in a steam engine cylinder is not influenced by differences in atmospheric pressure. Hence the efficiency of the engine depends upon the form of the indicator card alone, save the matter of engine friction, for the actual horse-power. The boiler efficiency may vary slightly with the atmospheric pressure, as water boils under 10 pounds
absolute gage pressure, at 193 deg. Fahr. Hence absolute gage pressure, at 193 deg . Fahr. Hence cated by the ordinary gage, and may thus contribute to the apparent engine efficiency.
(9357) F. A. E. asks: 1. Will common wrought-iron pipe. $21 / 2$ inches in diameter be suitable for a gas or kerosene engine cylinder
if machined to suit? I mean, will it stand the if machined to suit? I mean, will it stand the
pressure at the moment of combustion for a small power engine, and if not would steel smabin power engine, and if not would stee
tubing (drawn) be suitable? A. The iron pipe tubing (drawn) be suitable? A. The iron pipe
if extra strong grade will make a fair motor cylinder, but is not as good as steel tubing. It should be extra strong to allow for boring out, and amply strong for the explosive pressure. 2. Could you give me a formula for making five pounds of good bookbinder's paste that will keep for an indefinite time, say about
one month? A. A good paste to keep may be one month? A. A good paste to keep may be cent good thin glue, hot, and then add 15 drops of carbolic acid. 3. Would a steam drops of carbolic acia. 3 . Would a steam enough to be portable on two wheels? I think ny using a flash boiler and a rour-cyliner acting, with about 2 inches or $21 / 2$ inches stroke. A. We do not think a steam motor
bicycle practicable. There are too many bicycle practicable. There are too man
things to look after and keep your balance things to look after and keep your balanc
yet there are possibilities in that line. yet there are possibilities in that line. A
steam motor bicycle somewhat similar to your idea for one has already been made and is in use in France. A description of
(9358) H. S. P. asks: Will you kindly give a satisfactory explanation of the wellknown fact that sumple a for ing green timber, steam injected into a firebox to increase combustion, or the pouring of Water on a great conflagration such as the or understand that the amount of water present increases the intensity of the fire. It has been explained that water containing the elemin of comben and decomposed unite to produce the hottest flame known. This would be trying to burn the products of combustion and there would be no increase of heat. Others say that the oxygen of the water unites with the carbon to form bustible with air or oxygen. But in this case the products of combustion are carbon dioxide and water and there is just as much water in
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}+\mathrm{H}_{2}$.
$\mathrm{CO}+\mathrm{H}_{2}+2 \mathrm{O}$ (air) $=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ize and decompose the water than is given off when its elements combine.
As steam will not begin to decompose under a temperature of $1,000 \mathrm{deg}$. C., is it not a question whether any amount of water will actually decompose under such heat as in an ordinary fire-box, or a conflagration? If such was the
case, the aid to combustion, by water, would be of a mechanical nature rather than a chemical. What mechanical aid could it possibly give? It seems that small amounts of water would only lower the temperature of the flame by subtracting the heat necessary
to vaporize the water. A. We are aware that there is a popular impression that water sprayed into a fire increases the combustion;
but we have our doubts as to the correctness of the belief. The doubt you express whether

Good Roads Problem Solved

ESSENTIAL TO THE INDUSTRIAL

WELFARE OF EVERY COMMUNITY

85\%.
It is said, by excellent authority, that fully 85% of the wear and tear on a stone or macadam road is caused by the feet of heavy steel-shod horses.

This illustration is taken from the report of Hon. Henry I Budd, Commissioner of Public Roads, Stat New Jersey, 1902, and shows that there is six times more resistance or traction on a stone or macadam road than on a steel track. Reduce this resistance by adopting the steel track method of road constructio and the horses can then go smooth-shod or even barefoot without injury to the roadbed or themselves less wear and tear on team, wagon and harness. Greater sped and drath capacriage prachill cycle, made the essence of pleasure.

THE STEEL TRACK HIGHWAY

NO WOOD, NO BOLTS, NO BURRS, 5 METAL PIECES, INTERLOCKING AND INDESTRUCTIBLE

UNITED STATES DEPARTMENT OF AGRICULTURE, Office of Public Road inquiries,

Mr. THOMAS H. GIBBON,
Chief Engineer, Steel Highway Track Construction Co.
a long absence in the Northwest, and have looked through your thesis on steel hy return to the office, after with much interest. For cheapness, simplicity and durability, I have never seen its equal, and have no

The Steel Track Highway can be placed upon any road at a less cost per mile, upon a twenty-year guarantee, than the best macadam roadbed. A number of companies are forming to lay Steel Track Highways in each State, and an unusual opportunity is thereby open for progressive parties to secure State rights.

FULL DETAILS AND ESTIMATES ON APPLICATION.

Steel Highway Track Construction Company OF AMERICA

NEW YORK OFFICE 114=118 Liberty Street 4 -inch brick of an irrigation ditch through a typhoid bacilli. If not reliable for arresting typhoid bacilli. If such are suspected, the
water should be boiled after filtering. 2. Two soldiers, using rifles with elevated sights, solders, using rifes with elevated sights,
shoot at a target across a river, say 500 yards distant. A stands at the water's edge, while B stands on a bluff 200 feet higher, but the same distance from target. Should both adjust their gun sights for the same range? A. The
rifle fired from the higher elevation should rifle fired from the higher elevation should
have a slightly lower rear sight than the rifle have a slightly lower rear sight than the rifle firing horizontally. The force of gravity is zontal one; varying as the cosine of the angle from the horizontal range.
(9360) W. J. writes: Will you kindly advise through the columns of the Scientific american what are the reasons given to prove that perpetual motion or any mechanism to are mechanics motion is an impossibility? are mechanch a machine weientists satisfied that most potent of the practical reasons as to why perpetual motion in a mechanical sense cannot be obtained, is derived from the fact that during the past three hundred years the genius of the mechanical world has been directed more or less to the solution of this problem, with many hundred failures and not a single success. Theoretically there is no
reason that motion of a body can be sustained reason that motion of a body can be sustained
without the total elimination of friction and without the total elimination of friction and any condition, beyond the power originally contributed to start it in motion. The origin of the perpetual motion idea dates back to the awn of mechanical invention, when in the ignorance and misconception of true mechanial principles, mechanical experimenters, like the alchemists, imbibed the idea of getting something from nothing. Out of these feeble had a gradual development in the facts have of mechanical and chemical science petual motion and the transmutation of metals are just where they started, three centuries since. Theories are floating conceptions that are only realized by facts, which are truthful and stubborn things.
(9361) H. V. L. writes: Will you kindly answer the following questions through the columns of your paper? 1. In internal combustion motors, what is the ratio of the combustion? A. The vixture before and after
col an explosive mixture of gasoline vapor and air is somewhat less after explosion than the original The union of the hydrogen in the vapor and the union of the hydrogen in the vapor and which with the great heat of explosion is largely contributive to the pressure in explosive motors. When the exploded gases cool to normal temperature, the water vapor condenses and so lessens the initial volume. 2. About what is the temperature of the burnt gases at atmospheric pressure? A. The temperature of the exhaust gases at atmospheric the condition of the primary charge and the explosive temperature; probably 300 deg. F . is an average temperature. 3. What compression is necessary for jump-spark ignition? A Jump-spark ignition takes place at all compressive pressures, but is more positive with the higher compressions. 4. Will the gases ignite at a lower compression from a hot tube or wire? A. Hot-tube ignition requires compression sufficient to force the charge to the not part of the tube, generally from 30 charge at any pressure 5 Can you give a formula for computing the safe bearing load formula for computing the safe bearing load
of hardened steel balls as used in the caps of ball bearing jacks? A. An approximate
safe load for hard steel balls is 20,000 pounds divided by the area of rolling contact in parts of a square inch.
(9362) G. G. G. asks: Please tell us in "Query" column of Scientific American whether the primary purpose of a lightning rod is to prevent a building's being struck
by allowing the induced charge to escape from by allowing the induced charge to escape from
its point, or to quickly ground the current its point, or to quickly ground the current
after it has reached the house. While several rods might materially lessen the attrac tion in the manner above stated, would they be at all adequate to conduct a heavy bolt a lightning rod is to act as a conductor for electricity, if the building is struck by light ning. The authorities are not disposed a present to consider that the action of a rod in discharging induced electricity into the air and thus preventing a stroke in the build ng is important. Too many rods would (9363) E. M. F. writes: I would be in much pleased if you would answer me
in your "Notes and Queries" column of the in your "Notes and Queries" column of the
sharpest blades are very quickly dulled in
cutting cork? A. The elastic nature of cork cutting cork? A. The elastic nature of cork
makes it necessary to draw cut in cutting cork, which is not usual in cutting wood. The draw cut tends to dull the edge of sharp kind of material.

NEW BOOKS ETC.

Gas and Oil Engine Mianagement. By M. Powis Bale, M. I. Mech. E., A. M.1.C.E. New York: J. B. Lippin
cott Company. 1903. Pp. 110. Price cott Co
$\$ 1.50$.
The author of this handbook has previously users, which have been very successful; and what counts for more, he has bad fifteen years' experience with gas engines. The handbook the care and operation of stationary gas and the care and operation of stationary gas and giving the calorific
ordinarily employed.
L'Industria Frigorifera. By Pasquale Ulivi. Milan: Ulrico Hoepli. 1904 18 mo . Pp
This small volume describes in detail the artificial ice for refrigerating purposes. The iquefaction of air and various gases is also treated quite thoroughly, and the different processes are described. The book also contains sixteen tables of value bearing on the ubject treated.
Easy Lessons in Architecture. By Thomas Mitchell. New York: The
Industrial Publication Company. 1904. 12 mo . Pp. 92. Numerous illustrations. Price 50 cents.
This little volume is intended to give rudimentary instruction in architecture to all in-
terested in studying that most fascinating art. Each chapter consists of a number of a Each chapter consists of a number of ques-
tions and answers on some particular style or branch of architecture from the earliest
times down to the present. The arrangement of the text in classified questions and answers puts it in very concise form, and makes the member. The present, or second, edition has been especially arranged for American readers. It will be found most useful to all who wish to know something
Mary of Magdala. An Historical and
Romantic Drama in Five Acts. The
Heyse. The Translation freely adapted and written in English Verse by William Winter. New York: The Macmillan Company. 1903.
We shall not quarrel with Mr. Winter for
having done Heyse's religious drama into English blank verse. His rendering undoubtedly gains in dignity thereby. But we do seriously object to his having presented us with an expurgated version, when no expurgation was necessary. Winter's Mary is not Heyse's Mary. The German dramatist painted a strong
picture of a woman exultantly sinful at first, picture of a woman exultantly sinful at first, translator robs her of every trait of wicked ness, and allows her to weep through four acts, with nothing to weep for. Confessedly ig-
norant of any knowledge of German, Mr. Winter presumptuously proclaims Heyse's text devoid of poetical or spiritual merit. Those who with Heyse's splendid prose than is Mr. Winter, and who have not based their views on a "rough, literal translation," will find the o matic contrasts, than Mr. Winter would have

s believe.

Publications of the Mississippi Histori-
cal Society. Edited by Franklin L.
Miss.: The Mississippi Historical So-
ciety. 1903. 8vo. Pp. 531.
ber of papers dealing with different phases of State history, and will certainly prove of interest to the historian and to residents of the
State of Mississippi. There is an excellent chapter on the Mississippi floods by Dr. John Progress of Navigation and Commerce on the Progress of Navisation and Lakes from 1700 to 1846 ,"
Luftverunreinigung und Ventilation.
trie und Gewerbe. Von Dr. Josef
Rambousek. With 48 illustrations
and a table. Vienna and Leipzig:
Hartleben. 1904. 8vo. Pp. 260 .
Hartleben. 1904. 8vo. Pp. 260.
discussion of ventilation principles, presenting
a theory of ventilation and something of the
technology of ventilation. In this particular
discussed are the exhalations of the human
body. For this reason the earlier divisions of ventilation of dwellings, schools, churches theatres, and tle like. The second division, on the other hand, is devoted to a treatment of factories impregn industrial buidngs, dust. It is here that the author has given striking ev dence of original investigation, for which rea able portion of this treatise.

 Heavy Overloads are Carried Safely

SCHIEREN BELTING

 CHAS. A. SCHIEREN \& CO.
 CNANT STEAMSHOVELS Toledo 4 ohio,U.SA The VulcanIronWorks CO .

REOQFING APPLY IT YOURSEL

 WALLACE SUPPLY COMPANY
 $\$ 3,000$.
PACKARD MOTOR CAR Cu., Dept. 5 , Detroit. Mich.
 GHUGKS

PERFECT - PUMP - POWER

BER ROTARY PUMP inimey are meenanical

Die Praxis und Betriebskontrolle der Schwefelsaeure-Fabrikation. Fuer
den Chemiker, Meister, Kammerfuehden Chemiker, Meister, Kammerfueh-
rer, etc. Von Dr. S. Meirzinski. With rer, etc. Von Dr. S. Meirzinski. With
19 illustrations. Vienna and Leipzig: A. Hartleben

This work may
axt-book on the manufacture cored a practical Under the heading "Chemical Control of Manufacture only such processes are discussed
which are actually in use in laboratories These processes are so thoroughly and clearly described that even the unpracticed chemist may follow the steps described.
Eivaporating, Condensing, and Cooling
apparatus. By E. Hausbrand. Translated by A. C. Wright, M.A., B.Sc London: Scott, Greenwood \& Co. pany. 1903. 8vo. Pp. 400. Price $\$ 5$ net.
It would be difficult to find a subject where ing to evaporating and condensing apparatus and the author has done a signal service to mechanical engineering in the production of the present book, which is an excellent one. fact that the first German edition was exhausted in a very short time. The whole
treatment of the subject is most scholarly. We regret that lack of space prevents our pub lishing at least an abstract of contents.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issuedfor the Week Ending March 29, 1904.

Instructive Scientific Papers

ON TIMELY TOPICS
Price 10 Cents each by mail
HOME MADE DYNAMOS $\begin{gathered}\text { SCIENTIFIC } \\ \text { AMERICAN SUPLEMENTS } \\ 16 i \\ \text { and } \\ \mathbf{6 0 0} \text { con- }\end{gathered}$ PLATING DYNAMOS: ${ }^{\text {Solientific Ame- }}$ scribe their construction so clearly that any

DYNAMO AND MOTOR COMBINED.
AMBRICAN SUPPLEMENTS 844 and 865.
Sill
Sill
ELECTRICAL MOTORS. Their ConStucflements 759, 761,767,641.
THE MAKING OF A DRY BATTERY 1387, 1383. Invaluable for experimental ELECTRICAL FURNACES are íully deMENTS 1182, 1107, 1374, 1375, 1419,
MISCELLANEOUS PAPERS ON SCLENTIFIC AMERICAN, SUPLLEMENTS, 1082,
1083, 1084, 1085, 1086, 1015, 1016,
1057.
Price 10 Cents each, by mail Order through your newsdealer or from MUNN \& COMPANY

The PREMO
as a Film Camera
By means of a Premo Film Pack Adapter,
which is is tust the size of an ordinary plate,
 for 12 film negatives instead of 2 on glass and you
the same.
${ }^{314 \times 44} 14$ Premo Film Pack Adapter
4×5 Premo Film Pack Adapter
Premo
Premos have every advantage of both plate and
ROCHESTER
Ask your dealer or write ne for bookstet
With Your Film in Focus.,

\section*{We
 Solicit Contracts
 And can compete in QUALITY and PRICE on work for which the varied machinery of our numerous factories is suited.
 POPE
 Manufacturing Company
 21 Park Row New York City
 Marine Motors

WONDER Acetylene Burner

EASTERN GRANITE ROOFING CO.
Irving Building
New York
THE CINCINNATI UPRIGHT DRILLS

Co

 }

$$
\begin{aligned}
& \text { Elect } \\
& \begin{array}{l}
\text { Elect } \\
\text { Elect }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Enine cylinder, Hinrichs \& Barker. } \\
& \text { Engine wheel traction, A. Harcold. } \\
& \text { Engines, electrical igniting metanis } \\
& \text { exno }
\end{aligned}
$$

THE EXCELLENT

A Southern Home
$\substack{\text { In a country free from excessive beat } \\ \text { and cold haeathnulu and prosprous. } \\ \text { NDS at LOW PRICES }}$ LANDS at LOW PRICES
 M. V. RICHAARDS, Land and Industrial Agen
southern Railway and Mobile $\&$ Ohio Railroad.

STEN
4
BRODERICK \&BASCOM ROPE CD.

CRESTMOBILE $\$ 800$

ELECTRIC SEWING MACHINE MO tails contained int this article wimerous inlustrations of de
 IFII AMERICAN SUPPLEMENT, No. 1210 . Price
cents by mail, from this onfice and from all newsdeale

Patents, Trade Marks, COPYRIGMTS, etc. Address MUNN \& GOsy of Patens Ay of Pa

Good Operators Say that they can do more and
better work with less effort on the

Remington

 than on any other writing machine.Remington Typewriter Compan ${ }_{32}$ Broadway, New Yor

Lamp support for convertible signai lat.
terns, electric, L. H. W. Kerber...

La $\mathrm{L} e$ Le Le

 Loom weft replenishing mechanism, weav
ing, R. Starkie...
 Lubricating device, B. F. F.
Lubricator, G. S. Shneider.
Lubricator, H.
Ludendorff. Lumber feeding machine, C. E. Cleveland
Mail bag for railway service, P. Le Neind...
Manifolding device, J. H. Petroskey......

Mo Mo Mo Mo
 Mo Mot Mot Mot Mot

\qquad

INTERESTED IN BUILDING?

Palmer's Hollow Concrete Building Block

Machines use
We Sell Machines
Not Blocks
Blocks
From These Machines
 re nol-conductors of hat pasil

 Hollow space aforad facilities for
 Excusive territory for manuaction. secured by prompt
harmon s. Palmer, hollow concrete building block co WASHINGTON, D. C.

W. TOEPFER \& SONS,

 MILWAUKEE, WIS

Toepfer's Patent Automatic Dumping Kiln Floor.
After years of careful study, by men interested in the Malting and Brewing business, the art of malting has been brought to a point where the grain is steeped, grown and dried by machinery requiring bat a small amount of skilled labor.

The first mechanical malt turner with the to-and-fro motion, shaft supplied with shovels, was invented and patented in 1871, by Wenzel Toepfer, late senior member of the firm of \mathbf{W}. Toepfer \& Sons, Milwaukee, Wis., but being too complicated and expensive for the times it was never brought into actual use in the Unil

Great efforts were made to perform the turning of the malt on the kiln floors by means of machinery, however, many experiments in this direction have been made in malt kilns by Mr. Toepfer, to whom the honor is due of having, after many years of expensive experiments, perfected his mechanical malt kiln. That such an apparatus as this has proven to be a blessing, especially to the health of the workingman, is hardly necessary to explain, for everyone with a practical knowledge of mating knows what clouds of dust, besides breathing the sulphur and other poisonous gases of the kiln fire. Moreover, under such conditions, it could not be expected to produce a malt of uniform mellow quality, without flinty and glassy kernels.

The malt house in which the first successful dumping kiln floors were installed was the Pabst Brewing Co. They are still in use after twenty-two years of continual work. Over a half milion
States and foreign countries.

Recently, the Dumping Kiln Floor has been improved in several ways by Peter G. Toepfer, sole proprietor of W. Toepfer \& Sons, Milwaukee, Wis., U. S. A.

Undeniable Excellence Marks every point in the design，con－
struction and
PEERLESS Dircet TOURING CARS

 cure seldom fails． Do you want these

\section*{| s． |
| :---: | :---: |}

a.

$$
5
$$ $\$ 3,700$ to $\$ 6,000$

 PEERLESS MOTOR CAR CO Cleveland，Ohio

INVESTORS

Finsen Light Cure in America

 the American branch of the Finsen Light Cure we have the only com－ plete high power Finsen apparatus in this country．The picture shows one of our four large Finsen lamps in the actual work of curing disease；operated by physicians and assistants trained under Dr．Finsen in Copenhagen．With the same apparatus and methods we are obtaining the same wonderful results secured in the parent institute．

We all know that there is life，health，strength，in the sunshine．Dr．Finsen has reduced this principle to a scientific，practical working basis．His method of cure is Nature＇s own way ；painless，drugless ；just the application in concen－ trated form of the healing rays of light－the actinic or Finsen rays－－to the affected tissues．Disease germs wither and die ；results are positive and permanent．

The light treatment is not a cure－all；not a quick－acting treatment；but it is sure in many diseases regarded as incurable．Lupus（Consumption of the Skin），Eczema，Epithelioma（Skin Cancer），Goitre，Acre，Psoriasis，Con－ sumption（Pulmonary Tuberculosis in its early stages）；with these the light

We will send free，an eighty page book describing the Finsen Light Treat－ ment and showing photographs of many cured ones to whom we refer by per－ mission ：also a copy of the official report endorsing the light cure filed at W ash－ ington by Honorable R．R．Frazier，United States Consul at Copenhagen．－

Finsen Light Institute of America Suite D 78 State Street Chicago
\mathbf{r}

A
 1

 \section*{}
 \section*{}
Tacker，A．Warner．．．．．．．．．．．．
Talking
mand S．Beauregard
Talking m．N．Dennison，multispeed devic brake for，W．W．Nombined regulator and
Tank，J．W．Wallace．Dennison．．．．．．．．．．．．．
 Telephone cabinet，W．B．Altick．\ldots.
Telephone call atachment，J．J．Nye．．．．．．．
Telephone selective system，McKinsey

 Tempering and coloring apparatus，E．Cciam
bers
 Threshing and separating machine
Sanders

n＇s，J．J．S．．．．．．．．．
Tire armor，venicie．M．Miiler．
Tire，vehicle，w ．H．Sewell \ldots ．
 Tool with rubber，G．E．Ling．

Transformer，L．M．Sehmidt．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Trilley
head，electiric，cherry \＆clive．．．．
Truck，car，F．G．Koehler．．．．．．．．．．．．． Truck，hand，E．J．Bryan． Trube coating mastening device，J．J．E．Lee．．．．．

RINTING TAUGHT FREE

Ask any of them regarding its merits．They will tell
you it saves hundreds of dollars every year．More of you it saves hundreds of dollars every year，More of
them are in actual use than of all other cleaners com． bined．Will send one for free trial．
$\underset{\text { W19 Washington St．}}{\text { SIERCE }}$ CO．\quad Buffalo，N．Y $\xrightarrow{\text { prict s．2io }} \rightarrow P$ Warwick Motor ans むます SPECIAL MACHINERY Dies，Tools，Modelels
 （ $\begin{gathered}\text { INDUCTION COILS，} 8 \text { volts，will } \\ \text { give } 8 \text {－inch sparks，} \$ 35.00 \text { ．} \\ \text { All coils guaranteed }\end{gathered}$

N．O．NELSON \＆COMPANY $\frac{\text { N．O．NELSON \＆COMPANY }}{\text { 171 Randolph St．，Chicago }}$ － 755,956 755,767
755,756
756,141
755
 던 덩
 13621 ALCOHOL GAS STOVE

The Only Scientific Soap in the World

Hetanatulof Reauty
 toilet goaps send so cents for a box of three caakes,
postmaid, and be convincea. All leading dealers and
 _-
A.W.FABER

Manufactory Established 1761 Lead pencils, colored pencils, slate RUBBER GOODS, RULERS, ARTISTS' COLORS.
78 Reade Street, New York, N. Y. GRAND PRIZE, Highest Award, PARIS, 1900.
R - Perfection inBurners
 SEE THE CURVED TUBE! $\begin{gathered}\text { Removable } \\ \text { Adjustable }\end{gathered}$ Tube and Pan a boon to Dentists.
The construction insures econom,
Tronger heat- Fla me Control.

Owners of Gasoiine Engines
Automobiies, Launches, Etc ${ }^{\text {Tha }}$ Auto $=$ Sparker

 Motsinger Device Mfg. Co.,
 Till seal has to part-the Losk bad breatabe

 ICACO, ILL.

Typewriting machine tabulating mechanism,

 Weel
$\begin{aligned} & \text { Whi } \\ & \text { Whi } \\ & \text { Whi } \\ & \text { Win }\end{aligned}$

Wrench, See Pipe Wrench.
Wrench, Granger \& Hilzinger

DESIGNS.

TRADE MARKS

Ale, hop, Whea tley \& Bates.

 $\underset{\substack{\text { Tea, } \\ \text { Yeterinary } \\ \text { Fisk }}}{\substack{\text { and }}}$

> LABELS.

Beech Nut Packing , Co................. "Beech Nut Sliced Beef, "English May, Flower Lotion," for toilet preparation, Mae Mfy. Co......... "Exquisitos Cigarros," for ciyars, Central "Flor Fithograph Cigars,;" for cigars, Central "Flor Fingrap Cigarros,;" for cigars, Centrai ath's Telulah Headache Capsules,", for headache capsules, Kamps $\&$ Sacksted- "Newton," for, cigars, J. A. Posada. "Puros Cigar," for cigars, Central Litho"Red Rose," "Red Rose,", for tea, i. White............ "Schuster's Malt and How Tonic,", for mait "Uric-Arthrin,", for medicine, Uric-Arthrin

PRINTS

 $\overline{\text { A printed copy of the specification and drawing }}$

 York.
Canadian patents may now be obtatned hy the in-
ventors for any ot the inventions named in the fore-

Special low rates dia the nickel

Export Trade

How to Secure and How to Hold It Valuable hints on how to secure Export Trade sent gratis on request. Address
EXPORT EXPERT, New york CFMAGHINSS Corliss Engines, Brewers
MODELS \& EXPERIMENTAL WORK. SPEOIAL MACHINERY Tools and Dies Model

CHEMICAL EXAMINATIONS OFAALS

WANTED

Agency for Practical Counting Machine REIINGTON TYPEWRITER OFFICE Gothenbura, sweden
$\overline{\text { Are You interested in Patenrs, Model or Expprimental }}$
WHAT WOT Out Wekile DOntitited
WOW WE DO IT

 Magical Apparatus. Experimental \& Model Work

ELECTRICITY HOW MO MAFEE, A Dyna-

 MATCM MACMINERY*
 manager or teach any purchaser the busin

the winton motor carriage co., Cleveland, u.S.A.
Orient Buckboard
 We
With
Two Speed
Price, $\$ 425$
4H. P .
Weight, 500 lbs

The little machine that has in one year gained a reputation bounded only by the limits of the earth. WALTHAM MANUFACTURING CO.

The average American road is litle adapted for the
use of automobilise, but by reason of its peculiar buck-
 end to-dav for catalogue.

CRUDE ASBESTOS
DIRECT FROM MINES PREPARED
ASBESTOS FIBRE
R. H_{1}, MARTIN, ASBESTOS FIBRE OFFICE, ST.PAUL BUILDING for Manufacturers use 220 B’way, New York.

WONDER of the AGE

 byron jackson machine works, - . SAN francisco, cal.

ACCURATE
RELIABLE DURABLE

Compressed Air House Cleaning duStless method

Presead Air. A. revolution in haue lean.

general compressed air HOUSE CLEANING COMPANY ${ }^{3}$ 3933 OLIVE STREET, ST. LOUIS, MO.

Industrial Sites

FREE SITES—FREE TAXES FREE SWITCHING

Don't Use a Brush
Any surface that needs whitewash or shingle stain, may be quickly covered with a smooth, even coat, by using Patton's
Aereo-Painter
A useful invention that economizes time and saves labor.
Works by compressed air. It is siraple, portable and

Takes no more enaint than a brush and does the work with
one-fifth the labor. Reachesany part of a building with
out the aid of ladder or scaffold.
Write for Free descriptive circular.
PITTSBURGH PLATE GLASS co.
PATTON PAINT COMPANY
227 LAKE ST., MILWAUKEE, WISCONSIN

Butcher's
Boston Polish
is the best finish made for FLOORS, interior Wood-
work and Furniture. work and Furniture
 nish, It Isnot soft and deface, like shellac or var
nectick tike beeswax transparent, preserving tike natural color and fectiv transparent, preserving the natural color and
beaut of that onot ithout doubt the most eoon-
omical and satisfactory Poutsh known for HARD wool Floors. For sale by dealers in paints, har
 THE BUTCHER POLISH CO.
356 Atlantic Avenue
Bostong S56 Atlantic Avenue
OUR NO. 3 REVIVER is a superior finish fo

The culmination of progressive enterprise $\underset{\substack{\text { Wepartern } \\ \text { Chartment, }}}{\substack{\text { hicago }}}$ Two-Speed Gear, $\begin{gathered}\text { Eastern } \\ \text { Department, }\end{gathered}$ cyunless bicyors POPE maxazive

