

Copyright, 1904, by Munn \& Co

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO.,
Editors and Proprietors

Published Weekly at

No. 361 Broadway, New York

TERMS TO SUBSCRIBERS

THE SCIENTIELC MERICAN Publications.

NEW YORK, SATURDAY, APRIL 2, 1904.
The Editor is always glad to receive for examination illustrated articles on subjects or timely interest. If the photographs are will receive special attention. Accepted articles will be paid fo

THE BLINDNESS OF THE SUBMARINE

The loss of the British submarine, that was recently truck by a merchant steamer, and sent to the bottom with its hapless crew of eleven officers and men, proves once more, in a very dramatic way, that the most seri ous fault of the submarine in its present stage of de velopment is that it is blind. In saying this we refer to submarines as a whole, and do not wish to be under stood as saying that in the great activity which is now being shown in the development of this most interest ng craft, there may not be some one type that is able to maneuver under water with its eyes open most of the time; indeed, there is reason to believe that in this country the "Lake" submarine, which was recently indorsed so strongly by a United States army board, is provided with an improved form of "periscope" that is greatly superior to anything of the kind that has been used up to the present at least in these waters
The British submarine disaster happened to one of the new and larger vessels of the Holland type, which have recently been constructed by the Admiral ty. It was lying submerged off the Nab lightship, awaiting the approach of a battleship, when it was run down by a South African liner. Inasmuch as the accident happened at a time when a special lookout was being kept, it is natural to conclude that the failure of the submarine to detect the approach of the liner was due to the limited range of her periscope We are not aware what means of vision is being used by the British submarines; but if it is the same as that with which we are familiar in this country, the field included by the glass is limited to a narrow angle of vision ahead. It can readily be understood that if the instrument was of this type, and was being directed steadily toward the approaching battleship, the merchant steamer might have run down the submarine from astern, the crew of the submerged boat having no warning of the impending disaster until they were struck and rolled over by the big ship.
An improved type of periscope, recently described in the Scientific American Supplement, contains five separate lenses, four of which look to the four quarters of the compass, and convey a reduced image, sufficient for observation all around the horizon, to the navigator in the submarine, while the fifth lens looks ahead and presents the image in its true size, without distortion. So far, so good-provided the weather be clear and the water calm; but the troubles of blindness begin to overtake all submarines when the winds freshen and the sea rises. Then, with the pitching of the boat, which, even when submerged, must be more or less affected by the waves, the periscope tube begins to rock with a reversed pendulum motion, and the field of vision caught by the lenses varies from sky to water and from water to sky, while the salt spray blown against the glass begins further to destroy the sight of the little submerged fighting ship. It will be a brave step in the right direction when someone discovers a means of automatically maintaining the line of sight of the periscope lens in the level position.
The recent disaster will necessarily, for a time at least, shake the public faith in the submarine; but that it will seriously hinder its development, we do not believe. It was only a few days before this acci dent, during another series of submarine maneuvers in which a fleet of British battleships was attacked, that decision was given in favor of the submarine; some of the battleships being ruled as torpedoed and put out of action. Moreover, the crowded condition of the field of operations when the boat was lost, the maneuvers being carried out in one of the most busy maritime thoroughfares, would never occur in war time, except on the rare occasion of a general melée at the close of a hard-fought naval engagement.

HIGH-EXPLOSIVE PROJECTILES

The frequent reports from the Far East to the effect that many of the shells thrown into Port Arthur fail to burst, naturally renders the question of our own projectiles one of great interest.
At the time when maximite was undergoing tests by the Ordnance Board of the United States Army, just prior to the purchase of the secret of its manufacture and its adoption by the government as a bursting charge for projectiles, as full particulars as were permitted to be published concerning this explosive appeared in the Scientific American. Since that time its extensive employment has afforded ample opportunities for further studying and verifying its valuable qualities.

The explosive is melted in steam-jacketed kettles, and shells are filled with it by the simple process of pouring. On cooling, it forms a very hard and dense mass, firmly adhering to the walls of the projectile, which renders it. incapable of shifting when the projectile is discharged from the gun, or by the impact when the projectile strikes armor-plate.
It is about fifty per cent stronger than is ordinary dynamite, and its density is about 1.66 , being a little more than once and a half as heavy as water. It is practically incapable of being cxploded by any form of shock, and upon ignition it will simply burn like pitch. Experiments have demonstrated that projectiles filled with it can be fired through armor-plate as thick as the projectile itself will stand to pass through, without danger of exploding the maximite from shock, thus allowing the fuze to detonate the high explosive within the vessel itself.
A fuze for high explosives requires a detonator or exploder, usually consisting of fulminate of mercury, or some other fulminating compound. Ordinary dynamite requires only several grains to effect its complete aetonation, but the new explosive is so insensitive that from 300 to 350 grains of the most powerful fulminate are required. When thus detonated, the projectile is broken into a very large number of fragments. A twelve-inch projectile weighing half a ton was broken into probably ten thousand fragments in one of the experiments at Sandy Hook. Seven thousand of these fragments were actually recovered and counted.

It has been a difficult task to provide a fuze which will carry a sufficiently large detonator and still be safely discharged from the gun, without danger of going off prematurely and setting off the high explosive, wrecking the gun and killing the gunners.

Lyddite, the high explosive used by the British government during the Boer war, was simply picric acid melted and cast into the projectiles. While cast picric acid is sufficiently insensitive to enable shells filled with it to be fired from guns with safety, it can only be fired through moderately thin plate without exploding from the shock. Nevertheless, in the Boer war very large percentage of the Lyddite shells did not explode at all, while many more only partially exploded, as evidenced by the green character of the smoke, and the fact that the captured Boers were frequently found to be stained a brilliant canary color. This was owing to the fact that the British government had no fuze by which picric acid could be ex ploded with any degree of certainty. Many of the shells thrown by the Japanese in the recent bombardment of Port Arthur failed to explode from the same cause.
The difficulty in exploding fused picric acid has led many of the Continental powers to use picric acid in granular form compressed into the projectile, although its density is much less. Still, much less fulminate is required to explode picric acid in powder or granular form than when it is cast solid, and an efficient fuze is not so difficult to provide. But while it is impossible to penetrate armor-plate of any considerable thiclness, even with cast picric acid, picric acid in granular form will stand even less shock, and cannot be considered an efficient explosive for armor-piercing projectiles.
Furthermore, it is obvious that when a high-explosive projectile penetrates a warship and expiodes inside, if the projectile contains a larger quantity of the same explosive, a higher shattering and wrecking effect will be produced upon the surrounding structure of the vessel, owing to the larger volume of gases produced. Consequently, it is even for this reas n n alone desirable to penetrate a war vessel with the maximum weight of explosive in the projectile, other things being equal.
The Austrian government has recently adopted a mixture of powdered aluminium and nitrate of ammonia as a bursting charge for projectiles. This explosive is termed ammonal. It is said to be exceed ingly powerful, and to have produced most satisfactory results, as far as explosive energy is concerned. It is also claimed that it is quite insensitive to shock, and can be safely fired from guns. But it is not clear that it can be fired through armor-plate with much success. To explode ammonal, it seems to be only necessary to ignite it, as in the case of black powder. The very fact that ammonal can be exploded by mere ignition
renders it dangerous as a bursting charge for project iles, for the reason that the least flaw in the projectile or fuze would allow the chamber gases of the gun to enter the chamber of the projectile and cause an explosion, blowing up the gun and killing the gunners. The same is true with powdered picric acid, only to a slightly less extent than with ammonal. It is further more obvious that the detonator or igniting means of a high explosive should not be located within the high explosive while in the gun. In other words, the fuze should be so constructed that the detonator should not be within a detonative distance or firing distance of the high explosive until after the projectile has left the gun and has struck the target.
For the detonation of our own and other insensitive high explosives used in projectiles, Mr. Maxim has recently developed a fuze which experiments have shown to be capable of carrying any desired quantity of fulminate compound, in such a way that it is impossible for the high explosive to be either ignited or set off, even should the detonator be exploded prematurely.
The explosive used by our own army is indeed so insensitive, that should a shell from the guns of an enemy enter and explode in a ship's magazine filled with projectiles fully charged with it, all armed with the fuze and ready to fire, no explosion of the shells would be produced. Furthermore, should a projectile contain a flaw, and the fire from the gunpowder charge enter the shell space, no explosion would be produced in the gun, nor would there be any if the projectile should break up in the gun. A small portion of it would be burned by the powder gases, but with no disastrous results.
The fuze above mentioned is also so constructed that when an armor-piercing projectile strikes the plate, there, is just delay action enough to allow the shell to pass clear through the plate, when the fuze acts to explode it immediately behind the plate. If, however, a projectile be fired through very thin plate, or even the hull of a torpedo boat, or should the projectile strike a glancing blow, it will always explode within ten feet.
The position which the United States occupies to-day with respect to foreign powers in the art of throwing high-explosive projectiles from guns and in the pene tration of heavy armor-plate with the same, is about as follows: This government can penetrate with its high-explosive projectiles any plate as thick as the projectile itself will stand to go through, and it is pro vided with a fuze to explode the shell exactly where desired. In the bombardment of towns and fortifications, our shells would never fail to explode with the very highest results.
As near as can be learned, the best that has been attained abroad is to fire high explosives through plates about half as thick as are successfully penetrated by us, while no foreign government is provided with a fuze that can be depended upon to detonate a high explosive which can be successfully used in armorpiercing projectiles.

DISPERSION AND WAVE LENGTH OF N-RAYS.

In a paper recently read before the French Academy of Sciences, Prof. Blondlot records his experiments on the dispersion of N-rays, in connection with which the wave lengths of these rays were measured. The method used is quite similar to the one employed in connection with light rays, aluminium prisms being used, as these do not exhibit the property of storing up the rays. The radiations produced by a Nernst lamp, after traversing a window closed with an aluminium foil, would strike on their way a board of pine wood 2 centimeters in thickness, another aluminium foil, and two sheets of black paper, so that any other radiation could be expected to be eliminated By means of a slit made in moist pasteboard, a well lefined bundle of N -rays was eventually separated, striking an aluminium prism, the one face of which was perpendicular to the direction of the ravs. Now the author states that from the opposite face of the prism different bundles of N -rays will issue, having undergone a horizontal dispersion; and the presence and deviation of these rays are ascertained by shifting a slit filled with phosphorescent calcium sulphide, according to the well-known Descartes method. The indices of refraction of the rays thus separated are 1.04 , $1.19,1.29,1.36,1.40,1.48,1.68,1.85$ respectively. These results were checked by measurements made with an aluminium lens.
In order next to determine the wave lengths concerned, the author caused the bundle of rays to strike another screen of moist pasieboard, containing a narrow slit so as to isolate a very narrow portion of the bundle. To the movable alidade of a goniometer, an aluminium sheet was attached so that its plane was perpendicular to the alidade. This metal sheet contained a slit only 1.15 millimeters in width, provided with phosphorescent calcium sulphide. By turning the alidade, the direction of the bundle of rays may be accurately marked. Now, when placing a grating in front of the slit of the second moist pasteboard, and exploring the issuing bundle by turning the alidade
to which the phosphorescent sulphide is fixed, the presence of a system of diffraction bands quite similar to those observed with light rays is stated, but these bands are much closer together and have approxi mately the same reciprocal distance. Hence it may be inferred already that N-rays have much shorter wave lengths than light rays. As the angular distance of the single bands is rather small, the wave ength may be determined after the reflection method with a scale and a telescope, a mirror being stuck to the alidade. Furthermore, the author ascertains the distance of two symmetrical bands of a higher order, so as to determine from these elements, accord ing to a well-known formula, the wave length of the ray in issue. The values thus found by Blondlot are

0.00815				1.04
0.0099	"	"	"	1.19
0.0117	"	"	"	1.4
0.0146	"	"	"	1.68
0.0176	"	"	"	1.85

From the above results, which, moreover, were checked by further experiments according to the method of the Newton rings, it is seen that the wave lengths of N -rays are much smaller than those of ligh rays, in opposition to the original opinion of the autho and of other experimenters.

THE HEAVENS IN APRIL.

henry nor

It is a dull part of the heavens that is presented o our view in the evenings of this month. The Milky Way, near which so many of the brightest stars lie is in its least conspicuous position, close to the hori zon, while the relatively barren regions near the galac tic pole are high up near the zenith.
If we turn our faces westward at about 9 o'clock in the evenings of the middle of the month, we shal see Taurus, Orion, and Canis Major just șetting. Above them, and in the Milky Way, lie Canis Minor, Gemini and Auriga, with Perseus to the right, and Cassiopeia farther still, close to the northern horizon, and almost under the pole. Along the meridian the only promi nent constellations are Ursa Major, which is right overhead, and Leo, south of the zenith. Both these constellations bear some resemblance to the object for which they are named-which is more than most of the others do.
It is not hard to make out the Great Bear. The handle of the Dipper forms her tail, its bowl is in her body, and some fainter stars to the westward mark her head, while her paws are represented by three pairs of stars which lie about 15 deg . apart in a straight line midway between the dipper bowl and the "sickle" in Leo. With the aid of some smaller stars, it is easy to make out a very fine likeness.
As for Leo, the curve of the sickle marks the head and mane of a couchant lion, while the three conspicuous stars some distance to the left are in his hindquarters, and the bright Regulus is in its traditional position at the lion's heart.
Below Leo is a very dull region, occupied by the long line of Hydra. On the left is Virgo, with the first-magnitude star Spica, and a curving line of five third-magnitude stars between this and Leo. Below it is the little quadrilateral of Corvus
In the northeastern sky we come again to a bright er region. Arcturus, which lies northeast of Spica is much the brightest star in this part of the sky. The fairly bright stars north of him also belong to Boötes. Below them is the small semicircle of Corona Bo realis, whose regularity, rather than its brightness, makes it a fairly conspicuous constellation. Below this again, and to the left, is Hercules, beyond which we finally come to Lyra, just rising in the northeast Draco and Ursa Minor, on the right of the pole, and Cepheus below them, complete the list of the promi nent constellations.

the planets.

Mercury is evening star throughout April, and is very favorably placed during the last half of the month. He reaches his greatest elongation on the 21 st, at which time he is in Taurus, a few degrees west of the Pleiades, 20 deg. distant from the sun, and 10 deg. north of him. He does not set till after 8 o'clock, and, as he is very bright, he should be seen without difficulty. He should surpass in brightness all the fixed stars, except perhaps Sirius.
Venus is morning star in Pisces, but is not very conspicuous, since she is south of the sun, and rises not more than an hour before him.
She is 150 million miles from the earth, and only about one-quarter as bright as she is at her best.
Mars is evening star, but is now so near the sun that he is practically invisible. On the 1st he sets about an hour after the sun, but only half an hour after him on the 30 th. He is in conjunction with Mercury on the 8th, but both planets are too deeply involved in the twilight to be well seen.
Jupiter is morning star, but is not visible till the latter part of the month, when he gets far enough
away from the sun. On the 22 d he is in conjunction
with Venus. The two planets are only half a degree apart, and they will be well worth looking at.
Saturn is morning star in Capricornus, rising about 4 A. M. Uranus is in Sagittarius, and comes to the meridian at 4 A . M. on the 20th. Neptune is in Gemini, and is visible only in the early evening. The moon.
Last quarter occurs at $1 \mathrm{P} . \mathrm{M}$. on the 7 th, new moon at 5 P . M. on the 15 th, first quarter at midnight on the 22 d , and full moon at 5 P . M. on the 29 th . The moon is nearest us on the 26th, and farthest away on the 10 th.
She is in conjunction with Uranus on the 6th, Saturn on the 10 th, Venus on the 13 th,. Jupiter on the 14 th, Mars on the 16th, Mercury on the 17th, and Neptune on the 20th. None of these conjunctions is close.
It is not often that results of astronomical value can be obtained from the work of a schoolboys' drawing class; but this is a fair description of the outcome of certain "experiments as to the actuality of the 'canals' of Mars," that have recently been made by Messrs. Evans and Maunder at Greenwich.

It is well known that there has long been a controversy on this subject. Some observers see the surface of Mars covered with a network of fine straight dark lines, while others, equally keen-sighted in other cases, can see only diffuse shadings. There is no doubt whatever that the observers of the "canals" have drawn the planet just as they saw it, but there is a good deal of doubt whether, if we could see Mars at, say, the moon's distance, we would find that the actual markings were linear and straight.

It is in the solution of this problem that the Greenwich schoolboys have furnished valuable material. These boys (averaging about thirteen years old), who knew nothing of the telescopic appearance of Mars, were told to draw all that they saw on a circular disk that was placed before them.
These disks (different upon different, days) were placed at such a distance from the boys that their apparent size was like that of Mars as seen with an ordinary telescope. The principal markings on them were copied from actual drawings of Mars, and represented the prominent dark areas of its surface. In addition to these, some disiss had "canais" drawn on them, while others had black dots inserted in the light areas, and in others still irregular river-like lines and lines of faint dots took the place of the rectilinear markings.

In the majority of cases, the boys drew straight lines in place of the irregular lines and lines of dots, producing drawings which exactly resemble those of the canals of Mars made by telescopic observers. A number of them also had a tendency to draw "canals" connecting two black dots, or one dot and an indentation on the edge of the light region, when no line at all really existed on the drawing.
On the other hand, when the boys had to copy a drawing showing straight "canals," they almost all drew them very much as they existed.
The conclusion to which Messrs. Evans and Maunder have come may be stated as follows:

If we have an irregular or broken line, and look at it from such a distance that we can hardly see it at ali, it is much easier to be sure that there is a line there than that the line is crooked or broken. Consequently, a perfectly unprejudiced observer may see and draw such an object as a straight line.
This is just what the schoolboys did, as they were seated at such a distance from their copy that the fainter markings were barely visible. On the other hand, since real straight lines are much easier to see under the same conditions than irregular ones, a figure really consisting of straight lines is likely to be seen and drawn so by all observers.
But this is not the case with the faint markings on Mars. It is therefore probable that they are not really straight lines, but are irregular, consisting of a multitude of fine details much too small to be seen sepa rately, and that they appear straight and continuous only because they are so hard to see at all

Cambridge Observatory, England.

HIGH-SPEED STEAM RAILWAY SERVICE.

As an indirect consequence of the Marienfelde-Zossen high-speed electrical railway trials, experiments are being made on a number of German railway lines with a view to investigating the working conditions of a steam railway service with increased speeds. On the Cassel-Hanover line, for instance, the trains tested are made up of gigantic high-speed locomotives and solidly connected six-axle cars, warranting a mean speed as high as 130 kilometers (81 miles) per hour. This speed would enable the journey between Berlin and Hamburg to be completed in about two hours, and it is safe to state that one such train in either direction would be quite sufficient for the present traffic. In the case of these experiments giving satisfactory results, it is thought probable that next summer some specially suitable lines will be arranged for a similar increased speed service, the more so as the Berlin.

Zossen trials have shown existing permanent ways (provided they be fitted with heavy rails) to be fully suitable for a similar service. Even in the case of the introduction of electric high-speed railways being postponed for economical reasons, a material improvement in the German high-speed railway service may therefore be anticipated, as far as lines with specially dense traffic are concerned.

SCIENCE NOTES.

J. D. Kobus has made some experiments for the purpose of determining whether it is possible to improve sugar-canes by vegetative propagation of \cdot se iected plants, and whether there is any correlation between the amount of sugar present and the power of resisting the sereh disease. The results obtained from experiments extending over a period of several years, and involving very numerous analyses, promise to be very valuable to sugar planters. It is shown that for any given variety of the sugar-cane, when grown under uniform conditions, the heavier the plant the greater is the proportion of sugar formed. Also that by taking cuttings from canes which contain a ıarge amount of sugar, the plants so obtained contınue to show this increase. Further, it was found that as the proportion of sugar was increased by selection according to the total weight of the plants, so does the power of resistance to the sereh disease also become greater.
Edouard Meyer finds that the vegetable organism, as well as the animal, gives off N-rays in varying quantities, as may be made evident by the feebly fluorescent screen. The most marked indications are given by the green parts, such as stems and especially leaves, but the emanations are feebly detectable from the flower. Roots, bulbs, and etiolated parts also give off the rays; but the greatest radiant activity appears at the point where the vegetable protoplasm is in its most active state, or is in process of evolution. Thus with two tubes of cress sown on moist wool, one in active germination, the other only recently sown, the evidence of radiant energy was much more marked in the former, and was even obtained from the bottom of the tube, where the radicles had penetrated the wool in the course of their growth. On treating tissues in active growth with the vapor of chloroform so as to slacken their vital functions, the N-ray indications were correspondingly lessened.-Comp. Rend

Prof. H. du Bois and H. Rubens eleven years ago investigated the polarization of non-diffracted infrared rays through narrow wire gratings, with a view to obtaining simpler conditions than in the case of visible short-wave rays. In fact, in the infra-red region of the spectrum, there is much less dependency on the molecular own vibrations of the substance, which so influences the behavior of the visible spectrum that a confirmation of the electro-magnetical theory meets with the highest difficulties. Now, in a recent paper read before the German Physical Society, Berlin, the experimenters extend their researches to much higher wave lengths, using the so-called residual rays (Reststrahlen) from fluorspar (mean wave length 25.5μ) and from rock salt (mean wave length 51.2μ), the mantle of an Auer burner serving as the illuminant. After being polarized through a reflection on glass or quartz plates under the angle of polarization, the rays were reflected from four fluoride or five rock-salt surfaces, whence concave mirror concentrated them on a thermic battery. From the results of these experiments, it is inferred that the transmissibility of rays will augment for increasing wave lengths. The increase of the unpolarized rays is particularly remarkable, being fairly well in accord with the theoretical value

It will be remembered that some little time ago, Messrs. Siedentopf and Zsigmondy showed that by using a very intense source of light it was possible under suitable conditions to recognize in the microscope bodies much below the real limit of visibility. The bodies appear merely as diffraction disks, and it is impossible to examine their actual structure. In a communication to the Société Française de Physique, MM. Cotton and Mouton describe an application of the same principle to the study of liquids. The liquid to be examined rests on a sheet of glass, and is covered by a very thin cover strip of mica. The whole rests on a block of glass, up through which sunlight is directed, the angle of incidence being such that the light undergoes total reflection from the underside of the cover strip. When examined in this way, even the emulsion used by Mr. Lippmann in his system of color photography shows a multitude of shining points. Similarly an emulsion of Chinese ink examined in the same way shows, in addition to the larger particles, a number of similar points, and the same points also appear in colloidal solutions. Further, a culture of the pleuro-pneumonia microbe, which examined in the ordinary way showed only a sort of indistinct granulation, exhibited, when observed as described above, a large number of these shining corpuscles.

the perspectartigraph-a novel drawing

 INSTRUMENT.The instrument illustrated in the accompanying pictures is an exceedingly ingenious one. It was invented with the idea of making it possible to draw in perspective mechanically, with little or no previous instruction. The inventor's idea has been well worked out and brought to a practical conclusion, as experiments with his instrument in the office of the Scientific American have demonstrated. The appar

A NEAR VIEW OF THE INSTRUMENT.
atus is the invention of Mr . Otto Eichenberger, of Geneva, Switzerland, who is at present in this country introducing it. It will be found useful to anyone who wishes to draw accurately in perspective landscapes, buildings, or objects of any sort.
The apparatus consists of a folding box which opens and forms a table for the paper. The two sides of the box are made extensible, and they carry near their upper end a transverse rod mounted so as to turn easily. A telescope provided with an eye-piece at one end and two hairs crossing at right angles at the other, is mounted on two vertical pivots in the center of a ring which forms part of this rod, and is located near one end of it.
The telescope is connected to another frame, which is pivotally suspended from a pin attached to the transverse rod at right angles to the ring that supports the telescope, and this frame carries at its lower end a pencil-holder, the pencil of which is capable of sliding up or down in it, so that the point of the pencil is always in contact with the paper, as the holder assumes different angles while following the movement of the telescope. If the telescope is moved back and forth in a horizontal plane, for example, it will, since it is connected with the pencil-holder through a uni-versally-jointed rod, cause the latter to describe an arc in a vertical plane and its pencil to draw a straight line across the paper below the transverse rod and in the vertical plane with it. A vertical movement of the telescope will cause a line to be drawn at right angles to the one just mentioned. The movement of the telescope in any direction is thus obtained by the combination of its vertical and

A VIEW OF GENEVA, DRAWN WITH THE PERSPECTARTIGRAPH.
meable bottom, the amalgam will rise to the surface, where it may readily be removed; if the bath contains different metals, the density of the current will de termine the metal deposited. The amalgam to be ob tained by this way may accordingly be electrolytically end of the telescope, as the angle described by the pencil-holder and the telescope is the same As a resuit of this, the apparatus makes a true perspective drawing. The telescope is a long-range one, magnifying ten times. It has a short-focus lens and one for long or medium distance work. The size of the drawing depends on the distance of the instrument from the object, as well as on the size of the latter. An object placed 45 centimeters (17.71 inches) away from the axis of suspension of the telescope will be reproduced in its natural size, since this axis is also 45 centimeters above the drawing board. The perspectartigraph instrument illustrated is capable of including within its field an angle of 45 degrees, and of making a drawing 17.71 inches long by 18.89 inches high. A complete circular panorama 141.73 inches long can be made by swinging the instrument on its tripod, and dividing the entire horizon into eight sections.

The operation of the instrument is extremely simple and very readily learned. The draftsman holds the pencil in his hand and moves it over the paper in such a way as to make the intersection of the hair lines in the telescope follow the outline of the object to be copied. With practice, very neat work can be done with the instrument, as the panorama of the Alps and the view of Geneva made with it bear witness. The instrument can be made use of by architects for readily making a perspective view of a house from the plan and elevation drawings of the same; and its inventor believes it will have a wide field of usefulness for teaching children how to draw in perspective, and aiding artists in obtaining true perspective in all their works. He is at present designing a simplified form of his instrument for these purposes.

Obtaining Metal Powders by an Electrolytical Method.

Prof. A. Zamboni (Elettricità, No. 4, 1903) has succeeded in obtaining aluminium, sodium, potassium, etc., amalgams, decomposable in water. His method is based on the fact that. when electrolyzing a solution of metallic compounds by means of a mercury cathode, the corresponding amalgam is obtained; this process may be applied even to such metals as are commonly regarded as inamalgamable, such as, for instance, platinum and iron. The amalgams thus obtained are spongy substances, filled with mercury particles, and have specific weights between those of mercury and the corresponding metal. If the cathodic vessel has a per-
purified, not only from inamalgamable bodies, but as well from any different metals. By compressing in linen bags the amalgam thus economically obtained, nearly pure mercury will be obtained, the amalgam undergoing a partial decomposition, when a readily pulverized substance will remain, made up of amalgam and metallic powders. If this mass be distilled at a temperature below the melting point of the amalgam, the mercury is found to separate from the metal (especially in the case of iron and related metals), whereas the latter remains in a spongy, friable state, being capable of reduction, when pounded to extremely fine powder. When choosing for this distillation convenient atmospheres, different metallic compounds will be obtained. If, for instance, iron amalgam be distilled in a reducing medium, pyrophoric iron will be obtained, susceptible of being converted into common iron by a convenient treatment. Oxidizing atmospheres will give some so far unknown iron oxides and protoxides.
The above process was found in the course of an investiga tion of the Edison accumulator; it was originally intended to afford a ready means of preparing ferric oxide.

During the month of Febru ary 54,758 packages of exhibits were received at the World's Fair grounds. More than six hundred exhibitors are now on the grounds installing their exhibits.

PANORAMA OF THE ALPS AS SEEN FROM MOUNT RIGHI. DRAWN WITH THE PERSPECTARTIGRAPH LAST SUMMER.

JAPANESE SWORDMAKING.-II.

by G. h. tilden.
In no country of the world, perhaps, has the sword played so great a part in the history of the people or been regarded with such reverence as in Japan. Nowhere also, I venture to say, has the "white arm" reached such a pitch of excellence in quality, shape, and efficiency, as in the Em pire of the Sun.
While living in Japan I took lessons in fencing and the study of the Japanese sword was suggested to me by a Japanese friend of mine, Mr. Okakura, director of the schoo of Fine Arts at Uyeno, Tokyo. I adopted the suggestion, had a forge erected on my place in Tokyo, and engaged the services of Mr. Sakurai Masatsugu, professor of swordmaking at the Fine Art School, as in structor.
The forge was a square, one-roomed edifice about 18 feet on a side. On one side of the room was the bellows, and directly in front of the nozzle of the bellows was scooped a trough in the earth, which served to contain charcoal and constituted the fur nace in which the steel was heated. The anvil was a block of iron about $5 \times 16 \times 20$ inches in size let into the earth, and the top of it having been hardened. Upon the wall at this side of the room were hung a kake mono representing Kaneyama-hiko-no-kami the patron god of swordmakers, and another bearing in Chinese characters the name of Amaterasu sumara-o-kami, the Goddess of the Sun, the chief oddess of the Shinto cult. Around what corresponded to the cornice in a European room was looped a straw rope from which were suspended at intervals wisps of straw and the zigzag-shaped pieces of white paper peculiar to Shinto and known as gohei. These are supposed to act as charms which keep off evil demons and spirits. No woman or female child is ever al lowed to set foot within the building constituting the forge, for women are supposed to be attended and followed by troops of demons, whose presence would be detrimental to the quality of the words manufactured.
The chief instruments used in making words are two large sledge hammers weighing 12 pounds each and a smaller one weighing 2 pounds, which is used by the chief swordsmith. Before work at the forge is begun, prayers are offered up to Kaneyama-hiko-no-kami, the patron god of swordsmiths. Prayer finished, the work begins. The metal used in swordmaking is Japanese steel, and I was told that it was made by melting iron ore in a charcoal furnace and dropping it into cold water. The carbon derived from the charcoal causes the formation of steel. It comes in lumps which average about $1 / 2$ pounds apiece, and about 15 of them are required to make a sword blade weighing when finished, without sheath or mountings, from $1 \frac{1}{2}$ to 2 pounds.
The charcoal used in the furnace of the forge is made of pine wood and is softer than the charcoal used in cooking.
Analysis shows the composition of Japanese steel used for wordmaking to be unusually free from foreign matter, excelling in this respect even the best Swedish steel.
One of the original lumps of steel is heated to a very high degree of temperature and beaten out into a flat slab measuring about $6 \times 4 \times 1-3$ inches. This slab when red-hot s plunged into cold water which treatment renders it brittle. It is then broken up into twenty or thirty small pieces. Each of these bits of teel is then inspected. If it edge of iracture is dense, gran ular, and homogeneous in structure and of a dull gray color, the steel is regarded as good. Tf, on the other hand, the edge of fracture is cracked, glistening and of uneven color, the bit of steel is condemned and rejected. It is this reten tion of good and elimination o bad steel which is the reason that so much steel is necessary for making a good sword.
After a sufficient number of these small pieces of steel of
cake the small, bits of steel together and keeps them in position.
This is seized with the tongs, heated up to a very high degree of temperature, removed from the furnace, sprinkled with straw ashes and beaten with sledge hammers, until the small bits of steel are united with each other and with the slab upon which they rest, into one mass. The reason for putting on the straw ashes is to prevent the sparks and incandescent particles of steel from flying about too freely while the steel is pounded. The ultimate result of all this pounding is an ingot of steel from four to six inches in length by about one and a half in width and three-fourths of an inch thick.

This is then, while red hot, creased with a hatchet in the middle, at right angles to its long axis, bent over and the two halves then beaten together until they unite and form one solid mass, borax being used as a flux, if necessary. This cutting, doubling over, and pounding is repeated many times, from twenty to thirty perhaps.

Three such ingots are taken and welded together and to a bar of old iron, which serves as a handle. This is then taken in hand by the chief swordsmith, who with his small hammer, and aided by his assistants, gradually beats this mass of steel into the shape of a sword blade. This is a process requiring great manual dexterity acquired

Offering Prayer to the_Sword God Before Beginning to Forge the Sword.

Forging One of the Ingots From Which the Sword is Made JAPANESE SWORDMAKING

mer. The slab of steel is then rendered brittle and broken along these creases, forming a rectangular slab of steel some $21 / 2$ or 3 inches wide. This piece is then taken and upon it are piled up as closely together as possible a number of the small fractured bits of steel. When enough of these have been piled up to make a heap about 2 or 3 inches high, the whole is sprinkled first with straw ashes and then a mixture of earth and water is poured over it. This serves to
nly by long practice, and the result is wonderfully accurate, when one considers that nothing is used but hammer and anvil. When the finishing touches are being put upon the blade the work is done entirely by the chief swordsmith, who employs nothing but the small hammer. This hammer is repeatedly dipped into cold water while the fashioning of the sword is going on. The use of water serves to cleanse the sur face of the steel of dirt and also causes a thin layer of oxidized or burned steel to scale off, thus insuring a thoroughly clean surface to the sword when beaten into shape.
The sword is then completely fashioned by the use of files and an instrument resembling a carpenter's drawing knife The next process, that of hardening, is peculiar to the Japanese sword and is looked upon as the most important part of its manufacture, while the person who does the hardening is regarded as the maker of the sword, it being his name which is inscribed upon the hilt. His spirit, his character, his individuality, are supposed to enter into the blade which he hardens and the blade is good or bad accordingly.
The blade is covered all over, with the exception of the hilt, to the thickness of about $1 / 8$ inch, with a rather thick paste, made by mixing with water a certain kind of fireclay.
The edge and point of the sword are then scraped clean and recovered with a much thinner layer of clay containing proportionally more water than the clay which has been already put on. All open ings into the forge are closed so as to exclude the light, for darkness is necessary in order to determine the proper temperature of the blade to be hardened. Two extra nozzles are fitted on to the bellows in order to in sure a wider and more equable distribution of the outcoming blast of air. Prayer having Deen offered up, the chief smith takes the clay-covered blade, pushes it gently into the furnace and moves it slowly to and fro in the blazing charcoal until the whole blade is uniformly heated from end to end, no one part being hotter than another. The test which determines the proper degree of temperature is when the whole blade attains that degree of redness which is seen when one looks at the bright unclouded sky (not the sun) with the eyelids closed. With a shout of exultation, the red blade is then quickly plunged into the water, of a temperature of 100 deg., and is kept moving to and fro therein, in the direction of its long axis, until all sizzling ceases. The sword now goes into the hands
of the professional polisher and sharpener of swords, which is a separate branch of work.
The blade leaves his hands a resplendent, beautiful, and deadly weapon, with an edge of incomparable hardness and keenness and a strength of structure unequaled in other swords. The Japanese sword is not flexible or elastic. The extent to which it may be bent and afterward spring back into its original posttion is very slight, and if bent beyond this point it stays bent.
I had a Japanese blade about seventy years old, and of not particularly good quality, broken up and analyzed as to its chemical composition and anatomical structure, together with a lump of Japanese steel. The following is the result of the examination:

	Original Lump of Steel.	Hardened Edge of Sword.	Inside of Sword.
Combined carbon (by color) Manganese \qquad	1.20 p. c. none	0.60 p.c. none	$\begin{aligned} & 0.60 \text { p. c. } \\ & \text { none } \end{aligned}$
Phosphorus	. 0.017 p. c.	0.007 p. c.	0.011 p. c.
Sulphur.	. 0.009	0.003 "	0.003
Silicon	. 0.03	0.12	0.12

The above results point to a metal of great purity in its unusual freedom from sulphur and phosphorus. Such metal would be neither "red short" nor "cold short" and must of necessity be very tough. "Red shortness" is a tendency to crack or crumble while being forged or rolled while heated to redness. "Cold shortness," on the other hand, is the property of being brittle when cold.
When the sword is finished, the kakemono reprecenting the god chosen is suspended upon the wall and in front of this is placed the sword to be consecrated, together with offerings of sake, rice, and sweetmeats. Prayers are offered up to the god and then the neighborhood is invited to the festival. Everyone has a good time and the sword must be left in the presence of the god all night and not removed until the next morning, in order that his influence may enter into the blade and sanctify it.

THE BATTLESHIP "MIKASA" IN ACTION.

We have so recently described the military features (guns, armor, speed, etc.) of the "Mikasa," the largest and most effective battleship in the Japanese navy, that it will be sufficient here merely to reiterate briefly the principal characteristics of the ship, and then pass on to give some idea of what takes place when she is leading thr battleship line in a hot fleet engagement.
There are no fanciful ideas or untried novelties about Japan's greatest warship. She is simply an embodiment of the very latest improvements in guns, armor, and ship construction. Her one unique distinction is that she is, just now, the largest battleship in commission in the world. Her leading particulars are: Length over all, 436 feet; beam, 76 feet; draft, $271 / 4$ feet; and displacement on this draft, 15,200 tons. Her battery of twenty-five Belleville water-tube boilers and two sets of triple-expansion engines have driven her for six hours, with an average indicated horsepower of 12,236 , at a speed of 17.3 knots, the coal consumption of this speed being only 1.53 pounds of coal per horse-power per hour-an economy which has only been exceeded by a warship in one single instance. When using forced draft she indicated 16,400 horsepower, and maintained a mean speed of 18.6 knots per hour. At the water-line she is protected by a belt of Krupp steel varying from 9 inches amidships to 4 inches in thickness at the ends. Above the main belt amidships a side wall of armor 6 inches in thickness is carried up through the height of two decks to the main deck. Behind this protection are mounted, on the gun deck, ten 6 -inch, 40 -caliber guns, five on each broadside; on the main deck above, two forward and two aft, are four 6 -inch guns in 6 -inch armored casemates. Forward and aft are a pair of 12 -inch, 40caliber guns protected by 10 -inch hoods or shields and by 14 -inch barbettes. There is also a battery of twenty 3 -inch guns, six 3 -pounders, and six $21 / 2$-pounders. 3 -inch guns, six 3 -pounders, and $\operatorname{six} 21 / 2$-pounders.
Below the water, two near the bow and two toward Below the water, two near the bow and two toward
the stern, in the wake of the 12 -inch gun barbettes, are four submerged torpedo tubes. Altogether, the weight of armor worked into this great ship is 4,600 tons. The machinery weighs 1,335 tons; she carries a maximum coal supply of 1,500 tons, and is manned by a complement of 730 officers and men.
The very spirited picture shown on our front page represents the "Mikasa" leading the Japanese fleet of battleships and armored cruisers in column into battle. She has started the forced draft, and is forging ahead at a speed, say, of $171 / 2$ knots an hour, in order to secure some advantageous position for herself and her consorts, where the fleet may bring its guns to bear with the best effect upon the enemy. The Russian fleet may be formed also in column, and possibly the same tactics are being pursued by each side, namely, that of concentrating the fire of the fleet as far as possible upon the leading ship of the enemy, with the idea of disabling his ships one by one. Hence the "Mikasa" is the target for a perfect hail of projectiles, great and small.

Now, when stripped for a fight, the modern battle ship will present a different appearance from that to which civilians are accustomed in time of peace. Everything that can be removed will be taken down and stowed as far as possible below decks. The hand railings, stanchions, etc., will either be sent ashore, or laid down flush with the deck, leaving the latter to form a glacis over which the great 12 -inch guns may sweep and deliver their fire without obstruction. The boats, which would simply afford food for fire, or splinters for the wounding of the crew, will, at the or splinters for the wounding of the crew, will, at the
approach of a battle, be lowered, tied together, and temporarily set adrift to be picked up after the fight is over-if possible. "Seamen's dunnage," that is, chests, lockers, and what-not, are cleared away; either stowed below decks or pitched overboard. The furniture of the officers' cabins, which might provide food for a conflagration, is similarly dealt with; and as a gladiator is stripped to the skin, so the ship is stripped, as far as possi'le, to the naked steel. This, by the way, is not so big a task as once it was, for naval constructors have learned to cut out every bit of wood or inflammable material that can possibly be dispensed with, and steel decks, or fireproofed wood, are the order of the day.

At the moment depicted in our drawing Admiral Togo will be standing out in the open on the after bridge, where he can obtain an unobstructed view of the whole field of battle, and with him will be the flag lieutenant, who will transmit by means of signals the instructions of the Admiral to the various vessels. Upon the fore bridge will be the captain of the ship (unless, indeed, he prefers the shelter of the conning tower), who is responsible for the fighting of the "Mikasa," just as the admiral is responsible for the whole fleet. With him are the navigating officer and at times the executive officer. The captain, by means of various telephones, speaking tubes, etc., gives instruction to the officers and chiefs from one end to the other of the great floating war machine. Within the conning tower, or in the pilot house, with his hands on a small, steam steering wheel, is the quartermaster, who keeps the vessel on its course.

A most difficult and complicated task is the control of a battleship in the climax of a great sea fight. To the engine room by means of the telegraph or telephone must be sent the instructions "stand by," "go ahead," "half speed," "reverse," etc., while to every gun station must be sent the correct instructions as to the particular ship which is to be attacked, and as to what part of the enemy's ship, if the range is short, each gunner is to aim at.
They must also be told from time to time what kind of ammunition to use, whether armor-piercing or common shell, etc. Hence it can be understood that at close range, when the storm of projectiles renders the bridge untenable, and the ship must be fought from behind armor protection, there is no more serious blow that can be delivered at a ship than a well-aimed heavy projectile, striking and wrecking the conning tower. It requires a cool head, steady nerves, and some quick thinking to handle a great modern fighting machine like the "Mikasa," especially if the enemy has got her range, and is raining a stream of lighter projectiles and an occasional 12 -inch shell upon the ship. Not only is there the incessant din of the discharge of the ship's own guns, but what is infinitely more distracting, there is the clash and jar of the impact of striking projectiles of the enemy, to say nothing of the poisonous fumes from the high-explosive shells. It is this hammering, indeed, that forms the most distracting din in battle, for it is second only in its bewildering and stunning effect, to the death-dealing burst of a shell that has gone through a ship's plating or thick armor.
Far different from the pandemonium going on above decks is the comparative quiet and steady routine of work below the water-line. Thus, in the case of the great 12 -inch guns which are shown so conspicuously in our drawing, the men whose duty it is to keep these guns supplied with ammunition do their work from thirty to forty feet below the gun and several feet below the water-line. Immediately under the pro-
tective deck, and vertically beneath the center of the turret, is a square chamber known as the handling room, into which open by doorways various compartments, in which are stored separately in racks ranged ments, in which are stored separately in racks ranged
against the walls of the room bags of powder and the massive projectiles. Suspended overhead are steel tracks with little traveling trolleys and sling chains, by which the powder and shell is picked up from the racks, wheeled out into the center of the handling room, and placed in ammunition cages, that are attached to elevators, by which the ammunition is hoisted to the breech of the big guns. By the time it reaches the guns, the breech plug has been swung open, and a powerful rammer thrusts first the shell and then the powder charge, which is done up in several bags, into
the powder chamber. The breech is then swung to and closed; the gun meanwhile is ranged and sighted on the enemy, and instantaneously with the command to fire, an 850 -pound shell is hurled at a speed of half a mile a second against the enemy.' In the meantime
the ammunition cages descend to the handling room where they are immediately loaded for another journey to the turret. Similarly from other decks lower down in the magazine compartment of the ship, the 6 -inch and 3 -inch and small rapid-fire gun ammunition is sent up the various ammunition hoists to be distributed to the different gun stations.
Down on the platform of the vessel, 25 feet below the water-line, the stokers feed coal to the furnaces, and go about their routine duties exactly as though the vessel were on her ordinary cruising duties in time of peace, the signs of battle that reach them being the muffled booming of their own guns, or the sharper rattle and crash of the enemy's shell as they pierce and burst from 25 to 60 or 70 feet above; unless, in deed, the rapid-fire guns are playing havoc with the smokestacks, tearing great rents in them, or even blowing parts of them bodily overboard, in which case steam pressures will begin to fall, and the anxieties of the engineer-in-chief will begin to multiply. In the engine room there will be noticed the same steady following out of routine, except that there will be that extra alertness that is visible in any engine room, say, for instance, when the ship is laboring in heavy weather, and special watch is being kept upon the throttle valves and governors. In one particular however, the engineer will be especially watchful; that is in seeing that his bilge pumps are in perfect order, ready for the call which may come at any moment for driving them to their full capacity, in case the ship is hulled at the water-line, or torpedoed. Men will be found stationed at water-tight doors, or rather such of them as are not already closed, and must, perhaps, be kept open until the last emergency demands that they be shut.
It is popularly supposed that the men below decks run the more serious risk, because of their liability to be engulfed and carried down with the ship in some sudden catastrophe. Such, however, in a vessel of the size of the "Mikasa" is not the case. Even if she were struck by a torpedo, which is the most mortal blow that a warship can suffer, the chances are that not more than one compartment would be flooded. The men who happen to be in this compartment would, of course, be caught in the sudden inrush of water, a liability that is increased by the danger of their being knocked into insensibility, or bewildered by the terrific shock accompanying the blowing in of the side of the ship when the torpedo strikes her. Outside of this, so large is the "Mikasa," that it is questionable whether a single torpedo would suffice to sink her. The great reserve of buoyancy in a 15,000 -ton ship, coupled with the large capacity of her pumps, would give her, unless, indeed, one of the bulkheads was involved in the explosion, a good fighting chance to limp home to the nearest port in Japan for drydocking.
It is a curious fact that in spite of the great activity of the Japanese fleet, it being continually under fire there has been received no authentic account of injuries to the Mikado's ships. This, we take it, is a tribute to the efficiency of Japanese censorship, more than any evidence that her vessels have not received, as we!l as given, many hard blows; but for such information we shall probably have to await the termination of the war, when there will be a vast amount of valuable technical data to be distributed by the various naval attachés and qualified war correspondents.

New Railway up Vesuvius.

Messrs. Thomas Cook \& Son have just constructed a new electric railway up Vesuvius from Pugliano, the northern quarter of Resina, to the terminus of the old funicular railway, which was made up the cone to the crater twenty-three years ago. This new line is nearly four and three-quarter miles long. Except for a section in the middle, it is laid with a ruling gradient of one in $121 / 2$, and the cars run by adhesion. In the middle portion the gradient rises to one in four, an incline as great as that of the Righi line, and in consequence it has been necessary to use a rack-rail, the Strub system having been selected, as on the Jungfrau railway. On this rack-rail section the cars are pushed up by a four-wheel locomotive provided with two 80 -horse-power motors, and fitted with an elaborate system of ordinary and emergency brakes. On the other sections the cars, which seat 24 passengers and can accommodate six more on the platforms, are propelled by their own motors, the current being supplied through overhead trolleys, as is also the case for the rack-line locomotives. The generating station stands at the foot of Monte Cateroni, close to the point where the rack-rail section begins. Pugliano is already connected with Naples by electric tramway, with the exception of a short length which has still to be finished, and the old funicular line up the cone has been reconstructed and equipped for electrical working; hence it will soon be possible to travel by electricity all the way from Naples to within 250 yards of the crater, a good deal more quickly and comfortably than is permitted by the present means of transport.

(taxxepprontante.

The Double-Deck Car.

To the Editor of the Scientific American
In your issue of this date, in an article on "A Double Deck Car for Rapid Transit," page 228 , you say that such a car "is practically unknown in this country.' Double-deck cars have been in use on the electric roads of San Diego, Cal., for a number of years past. I saw them in use there in December, 1902, and am informed by friends that they were in use there some time be fore that date. They were different from the car de scribed in your article, the upper deck being inclosed only with curtains, the seats running crosswise and being reached by outside stairways.

Northfield, Minn., March 19, 1904.

Javanese Casting.

To the Editor of the Scientific American:
In the Scientific American of December 19, 1903 under the title "An Odd Casting," I read the sentence: "No molder who has examined it has been able to solve the riddle of Mr. Galvin's discovery in the line of castings."
Probably you never heard of the methods employed by the Javanese in casting. They make their model of wax, place it in a box, and then fill the box with molding sand. After drying, holes are made in the sand clump, which is then placed on a fire. The wax melts and flows through the holes, leaving a correct copy of the model in the sand. After this explanation, I think, the casting of Mr. Galvin can no longer be considered an unsolved riddle.
B. F. Loust.

$$
\text { Souerabaja, Java, February 9, } 1904 .
$$

Warships Compared.

To the Editor of the Scientific American
In one of your late editions of the Scientific Ambrican I noted with interest your comparison of the British cruiser "Drake," battleship "King E'dward VII.," and the American cruiser "Tennessee" and bat tleship "Connecticut." The fact that you take our very latest designed ships and compare them with ships that the Eng'ish have greatly improved on, is not doing justice to the British. For instance, the "Drake" (and her sister ships) has been completed a great many months now, and the new armored cruisers of the "Duke of Edinburgh" class are smaller but much more powerful than the "Drake" class. Furthermore, the "Duke of Edinburgh" class will be finished long before our "California" class are ready, to say nothing of the "Tennessee" and "Washington."
The improved "King Edward VII." class of British battleships, with their four 12 -inch, eight 9.2 -inch, and six 6 -inch guns, would have been the proper ships to compare with our "Connecticut." They too will be finished long before our ships. English ships are noted for carrying light armaments; but suppose you compare the "Duke of Edinburgh" and "California," the "Connecticut" with the improved "King Edward VII." class, which, by the way, will have been finished a long time when the "Connecticut" is put in commission. I understand that the "Drake" and her sisters have made 24 knots speed, which looks to me as if their 6,000 to 8,000 extra horse-power engines did them some good.
Treat Avenue, San Francisco, Cal.

The Boll Weevil.

To the Editor of the Scientific American:
Owing to the fact that the boll weevil is becoming a menace to the cotton raisers of the South, it behooves those interested to take active measures to eradicate this pest which bids fair to devastate the cotton fields of the South. Now I have been informed by competent authorities who have used the remedy that the boll weevil, the pest of the cotton plantation, can be positively eradicated by planting cow-peas broadcast over the lands where they existed last year.
It is stated that they cannot live where the peas are grown, and if such is the case, and as the remedy is so cheap, every cotton planter should provide himself at once, because it is worth trying, and in addition there is no better fertilizer in the world than cow-peas. I suggest you publish this in the interest of the cotton planters, as I believe you will be doing them a great service
E. D. Foster.
[Mr. L. O. Howard, Chief of the Division of Entomology of the United States Department of Agriculture, to whom the above letter was referred, writes the Editor that it is true that the cotton-boll weevil will not breed in cow-peas. Therefore, in land planted one year in cotton and the next year in cow-peas, if examined the second year, the boll weevil will not be found. If cotton is grown in an adjoining field, the weevil will be found in its usual numbers. The cowpeas exert no deterrent effect against the cotton. They are probably not as valuable for rotation purposes as other crops.-ED.]

The London Electrical Engineer says that the system of wireless telegraphy which is the joint invention of Sir Oliver Lodge and Dr. Alexander Muirhead, has been the.subject of some exhaustive experiments by the War Office during the past six months. The results obtained are said to have fully satisfied the government experts, who have declared the system to be a reliable method of signaling without lines. The Indian government, who have made independent tests of the system, have, we understand, decided on an installation being made for establishing communication between Port Blair, in Andaman Islands, and the Diamond Island, at the mouth of the Irawaddy, a distance of 300 miles, the apparatus for which will shortly be sent out.

Mr. Hospitalier has published in a recent issue of L'Industrie Electrique an account of a'series of tests which he has made with the Edison nickel-iron storage battery, and which wrre carried out in conjunction with other tests made by the Central Laboratory of Electricity in Paris. In his experiments Mr. Hospitalier made a series of twenty-one charges and discharges partly under so severe conditions that a lead cell would have been put out of service, while the Edison cell was not hurt. From his tests and those of others the author concludes that the Edison battery can be used with charge and discharge rates which would be excessive for the lead cell, while the Edison battery is not hurt, nor does it lose any considerable amount of capacity. From curves, given by the author, it appears that the ampere-hour capacity was about $175,162,160,155$ for discharges at $30,60,90,120$ amperes respectively. The difference between the mean voltage at the terminals for discharges at 30 and 120 amperes was less than 0.2 volt. The durability of a storage battery is indicated by the total energy given by the battery during its life per kilogramme of its weight. The best lead cell-i.e., the Fulmen cell-tested in the accumulator tests of the French Automobile Club in 1899 gave 1.5 kilowatt-hours per kilogramme. The tests of the Edison battery have shown that it has a capacity at least twice as great. The disadvantages of the Edison cell are its higher price and the fact that its useful voltage is about 1.1, against 1.9 for the lead cell. This means more cells, more connections, etc. The efficiency of the lead cells in the Automobile Club tests, for the low charge and discharge rates used, was between 70 and 75 per cent. The efficiency of the Edison battery, when charged at 60 amperes and discharged at varying rates, was 50 per cent. The author states, however, that this supe riority of the lead cell is only apparent, since a fair comparison would require equal rates of charge and discharge. The volume of the Edison cell per normal watt is smaller than that of the lead cell; the volume per watt-hour, however, is greater. The author concludes that the Edison accumulator represents an important and incontestable advance for electric automobile purposes.
There have been introduced within the last year or so two or three systems of single-phase railway working, which have attained a measure of success in the experimental field sufficient to give strong ground for belief that the single-phase method will mark a new era in electric railway operations before very long. Those we call to mind at the moment are known as the Finzi and the Arnold systems respectively, and the latter, we believe, is being installed as an experiment on an extensive scale on one of the American roads. As to its performance under practical operations it is as yet too early to speak, but many eulogistic accounts of the Arnold system have appeared in the pages of the American technical press. Yet another single-phase system, about which excellent reports are at hand, is the invention of Messrs. Winter and Eichberg. This system has been taken up by the Union ElectricitätsGesellschaft, and has been operated experimentally on the Continent. The principal trials have been made on the line between Johannesthal and Spindlersfeld. It is a part of the Prussian State Railways, $21 / 2$ miles long, and a car equipped on the Winter-Eichberg principle has been in regular operation on it since August last. Of the total weight of this car of 52 tons, the electrical equipment accounts for six tons. There are two motors mounted on the same truck, each of 120 horse-power, and the car can be controlled from either end. A small transformer on the car supplies current for driving the braking air-pump, for the controllers, and for lighting. The voltage on the line is 6,000 volts, with a frequency of 25 cycles. The Winter-Eichberg motor, in common with all recent variable-speed alternatingcurrent motors, is of the commutator type. It possesses two windings, the primary and the secondary, the latter being joined to a commutator, and supplied with current at low E.M.F. by means of brushes connected to the low-potential side of a variable-ratio transformer. In practical operation the line voltage of suitable value for transformation is impressed directly upon the primary windings, while a low E.M.F., suitable for commutator operation, is derived by trans-
formation for the secondary circuit. Messrs. Winter and Eichberg have recently taken out a patent for various improvements in details of construction, and we hope that some reliable information will be forthcoming before very long with regard to the practical operation of the system.

Engineering Notes.

To the Pittsburg Steel Company, of Pittsburg, with rod and wire mills at Monessen, Pa., belongs the distinction of having made a record for rolling rods that will probably stand for some time to come. On the day turn on January 14 this plant turned out 716,500 pounds of No. 3 rods, and the night turn following turned out 613,000 pounds, or a total of $1,329,000$ pounds for both turns. The best previous record for rod rolling was made at the Rankin Works of the American Steel and Wire Company, and amounted to 605,440 pounds on one turn. When it is known that the rod mill of the Pittsburg Steel Company has been in operation only a little more than a year, having rolled the first rods on December 3, 1902 the above record is all the more remarkable. We may state that the output of rods made on the first day this plant was started was a record breaker, and the mill has been making splendid records right along.
The cost of water power development in France, according to Prof. Janet, varies from $\$ 21.40$ per horsepower to $\$ 150$ per horse-power, depending on the head to be dealt with, the lowest expenditure being upon fall of 140 meters in Haute-Savoie, the horse-power being calculated at the turbine shaft. At Geneva, for the first group of turbines erected, of 840 horse-power, and for the river works then completed, the capital cost amounted to $\$ 300$ per effective horse-power. The groups of turbines subsequently erected cost but $\$ 95$ per horse-power, and the completed works would cost but $\$ 135$ per horse-power. At the chlorate works at Valorbe, the capital expenditure upon the development of 3,000 horse-power amounted to only $\$ 19.45$ per horse-power. At Niagara, the rates charged to ordinary consumers by the Cataract Power and Conduit Company varied from 2 cents per unit for 1,000 units per month or less to 0.64 cent per unit for 80,000 to 200,000 units per month. The cost of energy for power purposes from water power stations in France and Switzerland varied from 2.1 cents per unit for small powers to 1.24 cents per unit for large powers.
A new process of manufacturing petroleum briquettes has been invented by M. Maestracchi, so Mr. Oliver J. D. Hughes, the United States consul-general at Coburg, reports. The process is a simple one, consisting of mixing petroleum with three other chemicals in the following proportions: Petroleum, 1 liter; soft soap, 150 grains; resin, 150 grains; caustic soda lye wash, 300 grains. This mixture is then heated and well shaken, after which it is allowed to solidify. This operation occupies about 40 minutes. Care has to be observed to prevent the liquid running over, and this is achieved by pouring a small quantity of soda into the vessel and shaking it well until solidification is completed. The mixture is then run into briquette molds of the requisite size, and these are then submitted to heat in a stove for ten or fifteen minutes. The briquettes are then set aside to cool, which occupies an hour or two, and then they are ready for use. If it is desired to make the briquettes more solid, this can be accomplished by the addition of sawdust or sand to the mixture. Experiments have demonstrated that these briquettes yield three times as much heat as ordinary coal; they are lighter in bulk and easier to carry; and what is more important, after consumption, there is no ash or other residue.
The new turbine-propelled torpedo-boat destroyer "Eden," built for the British navy, recently completed her official trials. The "Eden" is one of the latest $251 / 2$-knot type of torpedo-boat destroyers, and is fitted with Parsons turbines instead of reciprocating engines. Her dimensions are: Length, 220 feet; breadth, 22 feet 6 inches; depth, 13 feet 9 inches. On the official four hours' full-speed trial with over 125 tons load on board, the vessel easily attained the speed of 26.099 knots for the first hour and 26.229 for the last three hours, the guaranteed speed being $25 \frac{1}{2}$ knots. The result of a previous four hours' full-speed coal-consumption trial was within the amount stipulated in the contract. The main propelling machinery consists of three turbines, one high-pressure and two low-pressure, each driving separate shafts, with two propellers on each shaft. Inside the exhaust casing of each of the low-pressure turbines, a reversing turbine is fitted. In view of the great variation in the horse-power required in modern war vessels, two additional cruising turbines are permanently coupled to the shafts of the main low-pressure turbines. When working at reduced power, the steam from the boilers passes through the cruising turbines in series, and thence to the main turbines. By this means a high ratio of expansion of the steam at all power speeds is obtained, and the loss by throttling of the steam is overcome.

THE ABRUZZI POLAR EXPEDITION.-II.*
As the "Polar Star," which had been abandoned after it had been seized by the ice, was the only means by which the expedition could return home the following year, every effort was made to save her. Water had first to be pumped out of the ship to enable the leak to be found, and this had to be mended, as well as a leak on the other side. Then it was necessary tc keep the ship dry and protect her engines, so that they might remain under water during the winter without being injured. The pump which had been brought to serve in the production of hydrogen gas was put into action. The work of salvage was carried on with great difficulty, and was finally successfully accomp-

Sleeping Bag Accommodating Three or Four Persons
passed on the ice packs showed certain defects in the preparation, and the expedition returned, to be resumed on the morning of March 10 . Then followed a long, dreary wait for those who remained by the ship, and after being separated for 104 days Capt. Cagni returned, having broken the polar record. Excellent advice is given in the book as to the proper equipment of polar expeditions.
The ship was finally freed with the aid of gun-cotton and gun-powder mines, and on August 16 the "Polar Star" steamed away to Cape Flora, and reached Trömso September 5, and telegrams were sent to His Majesty King of Sweden and Norway and His Majesty King Victor Emmanuel III., announcing that 80 deg. 34 min .

A White Dolphin.

A Sledge 11 Feet Long.

A "Kayak" 11 Feet 7 Inches Long.
lished. When the ship was again floated, she never regained her original shape. In being docked on her return, it was found that the shaft of the propeller had been bent one inch.
While under canvas the members of the expedition followed the same order of the day as when on shipboard, and life was most monotonous. The tents were
*A review of "On the Polar Star' in the Arctic Sea"; by his Ropa Tirhness Luigi Amedeo of Savoy Mighness Luigi Amedeo of Savoy,
Mead \& Co. 1903. Two volumes.

The Ship After the Storm
tails are given of the rations, the kayaks, sledges, tents, stoves, etc. As the Duke became an invalid, the expedition was turned over to Capt. Cagni.
The departure toward the pole occurred on the morning of February 21. The first three days which were

The " Polar Star" After the Ice Pressure. THE ABRUZZI POLAR EXPEDITION.-II.

The Silk Tent with Canvas Bottom.
North latitude had been reached. So ends one of the most interesting polar expeditions on record.

The death was announced in the middle of January of Ferdinand Ritter von Mannlicher, the inventor of the rifle which bears his name. He was fifty-six years of age. His rifle was adopted by the Austrian government in 1886, and subsequently by Holland and Roumania. The weapon is superior for long-distance markmanship.

The Door of the Tent After a Storm.

The remains of the northeastern part of the Forum present considerable interest, especially after the recent excavations which Commendatore Boni is making, and much light is being thrown upon the plan of the Forum, thus settling some of the discussions which have arisen upon the subject. Our present engraving shows some of the main points of interest in that part of the Forum which lies to the west of the Arch of Septimius Severus. In the foreground are the remains of the Basilica Fulvia, one of the constructions of the early period, which was modified considerably in after times. In the rear of the Temple of Antoninus and Faustina, one of the landmarks of the Forum. The Sacra Via, the main avenue of the Forum, whose exact position has been so much disputed, has been found according to the recent excavations to lie along the northern side. It passes in front of the two last-named structures and lies underneath the level ground seen on the right of the engraving central part built of tufa blocks and part of the portico is now standing) the censor, M. Fulvius Nobilior, founded this edifice in the year 179 B . C. and gave it his own name. Later on, M. Aemilius Lepidus, during his consulate in 78 B. C., restored the building considerably, and ornamented it with bucklers cestors. A reproduction of the basilica restored and ornamented in this way now exists upon a medal of the time of Lepidus. It is probable, however, that he did not finish the work upon the building, for only 25 years later we see that Lucius Aemilius Paullus took up the work and received 1,600 talents from Cæsar for this purpose. From this time on, the edifice took the name of Basilica Paulli. It was badly damaged in the fire of the year 740 of Rome and the work of restoring it was carried out by Augustus and some of the members of the Aemilia family The splendid Phrygian columns (pavon azzetto) which Valentinian and Theodosius gave to the Basilica of St Paul in 386 A. D. came from the building which Augustus restored.

In the fifth cen-
tury, the Basilica Aemilia no longer existed. On its site had been constructed a portico, which was probably commenced under Petronius Maximus, prefect of Rome, and completed by Theodoric. To the edifice which they erected belongs the pavement formed of small blocks of marble of different colors, representing geometric forms. The columns of red granite with their pedestals and capitals of white marble (three of which can here be seen) were taken from different edifices and were adapted to the main structure as best might be. The ancient basilica contributed to this building with the old walls constructed of large tufa blocks (some of which still remain, as will be observed), also with a dozen columns adapted to the portico. This colonnade was of considerable length, nearly 200 feet long, and ran along the Sacra Via.
To the ancient structure also belongs the pavement f African marble, and two fragments of an architrave on which traces can still be seen of an inscription showing the reconstruction of the building by Aemilius Paullus, also fragments of a frieze ornamented with bucranes and large pateræ. The place which was occupied by this long portico or colonnade can be easily distinguished on the present site, and also some of the marble slabs which formed the pavement still remain. Some sections of the large marble columns are still left.
At the farther corner of the structure, next the Temple of Artoninus and Faustina, were discovered not long ago tne remains of a monumental inscription

excavations in the roman forum.

As regards the Basilica Fulvia (of which only the upon which were engraved the portraits of his an-
in honor of Lucius Cæsar, the adopted son of Augustus The colossal fragments on which the inscription is cut have been left in the place where they were found. They no doubt keep the exact position which they took when the old edifice tell in ruins or was over thrown during the Middle Ages. It is impossible to say to what monument this colossal inscription belonged Perhaps Augustus, when reconstructing the Basilica Aemilia, added a portico to which he gave the name of his two nephews Lucius and Caius Cæsar.
Until the recent excavations were made, archæologists were not sure as to the exact direction of the Sacra Via, the main avenue passing through the Forum which was the scene of so many events in the history of the capital. It was formerly supposed that it passed through the middle of the Forum, but the excavations which Commendatore Boni recently made have proved that it ran along the northern side, tracing a line which started from the Arch of Septimius Severus and passed in front of the Basilica Aemilia and the adjoin ing Temple of Antoninus and Faustina, therefore skirt ing the colonnade whose remains are visible in the engraving. The actual pavement of the ancient avenue lies, however, far below the level of the present ground. At the corner of the Basilica of Constantine (lying farther back of the Temple) a considerable portion of the old pavement has been discovered. It is formed of large polygonal slabs of basaltic lava. The pavement which has been uncovered so far lies about 8 feet below the ground level and is in a good

THE NORTHEASTERN CORNER OF THE ROMAN FOROM
state of preservation, with the blocks well joined to gether.

Chemical studies

The Agricultural Department's experiments with food preservatives involve the examination of 5,500 samples. A study of the changes in the composition of apples under its methods of cold storage has been continued in collaboration with the Pomologist. A study of olive oil and its adulterations has been completed. About 1,500 analyses were made in the insecticide and agricultural water laboratory. These in cluded toxicological examinations to determine wheth er bees were killed by poisons used in spraying. In the laboratory work on sugar done for the Treasury Department the number of analyses reported was 1,744 . In the Bureau Laboratory over 1,000 analyses were made, 807 of which were reported to the Dairy Division of the Bureau of Animal Industry. The dif ficulty of distinguishing between butter produced by feeding cotton seed or cotton-seed meal and that to which foreign fats have been added will be the occasion of special study during the coming year

At the forthcoming St. Louis Exhibition the United States Steel Company will make an exhibit tha will cover two acres of floor space. It will be the first exhibit of so wide a scope ever attempted, and will cover every branch of the industry.

A Balloon School for Military Students.
Great Britain is trying hard, after the terrible lessons of the South African war, to set her house in order-at any rate, as regards her army. The country is, however, greatly handicapped in being so small and so thickly populated, rendering it a matter of immense difficulty to get suitable grounds for military maneuvers on a large scale. Aldershot has become altogether too small, owing to the extended range of the modern small-bore riffe; and even Salisbury Plain abuts on many large towns. At Aldershot is established one of the most extensive military balloon factories and chools, among the fighting forces of Europe. It is presided over by a lieutenant-colonel, under whose supervision the balloons are constructed and filled. He also has in charge a kind of military balloon 'academy," in which young officers are taught to take important observations from great heights, as well as the making of maps and taking of photographs from both free and captive balloons.
A visit to the Aldershot military balloon factory is most interesting. One commences with the workrooms, in which the girls are sewing together sections of gold-beaters' skin, or great sheets of the finest Chinese silk. The skin is best, however, as being impervious and less likely to let the gas escape. Next come the rope and cordage rooms; the making of the cars or baskets; the chemical department, in which the hydrogen gas is prepared; and lastly the great pit in which the filled balloons are kept on field-days.

Each military balloon carries from two to five officers, each of them a trained observer, mapmaker, or photographer. The balloons are fre. quently taken out either collapsed altogether, or only half filled, and wagons go with them containing stacks of cylinders of gas. When the battleground is reached, the tubes are laid on and each balloon fully inflated, and the telephone fixed which is to connect the officers in the car with the tent of the General Staff below. Then all is ready for the ascent. From the foregoing it will be seen that the most common form of military balloon is the one held captive by means of steel wires; and the whole concern, at a height of from 1,000 to 3,000 feet, can be towed along by horses, all the while being kept in close communication with the Headquarters Staff, who are kept constantly advised as to the movements of the enemy and his general dispositions.

A course of military ballooning is now quite the thing in European armies; and it is an interesting fact that a large number of Japanese staff officers have been instructed by Col. Templer's disciples, who volunteered to go out and teach them years ago. In fact, there is no branch of modern military science (or naval science either for that matter) in which the Japanese do not excel.

The Current Supplement.

The Boro Budur temple of Java is the subject of the opening article of the current Supplement, No. 1474. Mr. Charles H. Stevenson discusses the subject of seal and walrus oils. An elaborate article on the Hudson River tunnel, with illustrations clearly explaining the nature of the work and the difficulties to be overcome, forms not the least interesting feature of the issue. "The Construction of Steel Cars" is the subject of a paper recently read before the Institution of Civil Engineers in London. The paper is absiracted in the Supplement. Of astronomical interest is an excellent article on giant and miniature suns. The paper on Korean head-dresses in the National Museum begun in the last number is concluded.

accident to the battleship "illinois."

The battleship "Illinois" is now at the navy yard, Erooklyn, repairing the damages sustained during a collision in which, but for the presence of mind of her captain, Royal B. Bradford, she might have shared the fate of the British battleship "Victoria," which now lies at the bottom of the Mediterranean Sea. The "Illinois" is one of three identical ships, the other two being the "Alabama" and "Wisconsin." She is a firstclass battleship, built at Newport News, commenced in 1897, launched in 1898, and commissioned September, 1901. On a displacement of 11,565 tons, when indicating her full horse-power, she has a speed of 17.4 knots. Her armament consists of four 13 -inch guns in the main battery, fourteen 6 -inch rap-id-fire guns in the intermediate battery, and a secondary battery of sixteen 6 -pounders, six 1 -pounders, four Colts, and two 3 -inch field guns. She also has four abovewater torpedo tubes. Her belt armor, of Harvey steel, varies at the water-line from $133 / 4$ inches amidships to about 4 inches at the bow. She is protected with 14 inches of Harvey steel on the turrets and 15 inches on the barbettes.
At the time of the accident, the North Atlantic fleet was engaged in maneuvers off the south coast of Cuba. The fleet of battleships consisting of the "Kearsarge," "Maine," "Massachusetts," "Alabama," "Missouri," and "Illinois," was moving in line abreast heading east by north. They were ranged from port to starboard in the order named. The "Missouri," experiencing some trouble with her steering gear, had dropped somewhat back of the line, and was coming up in the endeavor to regain her position abreast of the other ships. About this time the signal was flown to change the course through four points to northeast by north, and the maneuver was being executed when the steering gear of the "Missouri" again was disabled, and she began to sheer over to starboard, converging on the "Illinois," which, with the rest of the line, was steaming at a cruising speed of about 10 knots an hour. The "Illinois," in accordance with the signals, had ported her helm; but the speed at which the "Missouri" was traveling made it evident that a collision was impending, and it looked for a moment as though she would ram the "lllinois" fair in the broadside. A c cording. ly, Capt. Bradford threw his helm hard over to starboard, in the endeavor to swing his stern away to starboard, clear of the oncoming bow of the "Missouri." The maneuver undoubtedly saved the ship, although it was too late by a fraction of a second to carry the ships quite clear of each other. The "Missouri" struck a quartering blow, neither of the ships having much way on at the time. The ram evidently entered between two blades of the propeller and rode up on the upper cast-steel strut of the port propeller shaft, which, of course, snapped under the strain. It broke in two places: near the boss, and also at the point where it enters the hull. The strut extends through the hull and within the interior of the ship until it meets the underside of the protective deck. Unfortunately, the break was a diagonal one, and when the

battleship "illinois" in drydock; showing broken strut, bent propeller blades, and the hole (temporarily plugged) through side of ship.

The collision took place about 20 miles from Guantanamo, Cuba, for which point the vessel was immediately headed. Here temporary repairs were executed by some very clever work on the part of one of the ship's divers, who placed felt-covered planking over the hole, and by means of bolt-hooks which caught on the inner edge of the ship's plating, the diver was able to screw the planking up to a fairly snug fit. The hole was so irregular, however, that wooden wedges had to be driven in by the diver, and a patent shot-hole plug inserted, before the hole could be even roughly closed. It was still considered necessary, before the ship could take the long journey to New York, to make further provision against leakage; and at the ingenious suggestion of the ship's carpenter's mate, use was made of some firebrick which happenerl to be on board and some cement and sand, to make a close sealing up of the rent. The accompanying sketch will show very clearly the way in which this was accomplished. The diagonal riveted member, shown in the illustra tion, is the inboard portion of the broken strut, and around this was built up a bulkhead of stout wooden planking, completely inclosing the fracture. The brick was then built up around the hole, as shown, and cement forced in for the purpose of filling the interstices and, as
the next compartment forward was immediately closed, however, and when it was discovered that the compartment was filling but slowiy, this second door was opened, and by wading waist-high in water, the crew were able to reach and close the inner door. The water was then pumped out of the forward compartment, leaving only the tiller room compartment to become flooded, the effect being to settle the stern of the "Illinois" about two feet deeper in the water.
ar as possible, sealing up the hole. Above the horizontal bulkhead a further layer of material was laid and the whole of this masonry work (for such it really was) was held in place by means of timber shores abutting against the protective deck above and against a longitudinal angle iron on the floor of the compartment. These repairs completed, the pumps were set going, and with her disabled propeller and shaft slung in heavy chains, as shown in our photographs, and under her starboard engine, the "Illinois" made the long trip of 1,300 miles from Guantanamo to New York without any mishap.

Action of Radium on
 Bacteria.

Continuing the experiments of one of us on the action of radium bromide on piants, we have experimented on various bacteria. We find that, in the case of Bacillus pyocyaneus, B. typhosus, B prodigiosus, and B. anthracis in agar culture medium the β radiations from radium bromide exercise a marked inhibitory action on growth. Exposure for four days at a distance of 4.5 mm . to 5 mgr . of radium bromide does not appear sufficient to kill the bacteria, but is adequate to arrest their growth, and to maintain a patch on an agar plate, inoculated with any of these organisms, sterile. A broth tube, however, inoculated from this patch has in most cases developed the organisms, showing that while the growth is inhibited in the patch, all the organisms there are not killed.-Henry H. Dixon and J. T. Wigham in Nature.

According to the Agricultural Department's inventory of farm animals for January 1,1903 , the value of horses was over a billion dollars and of mules, nearly 200 mil lion dollars. The value of cattle of all kinds consider ably exceeded 1,300 million, of sheep, 168 million, and of hogs, 365 million dollars.

raising ostriches in the united states.

The Dark Continent has always had a monopoly of the ostrich business, but the United States threatens to become a rival in this industry, and may take away the laurels from Cape Colony, which has been one of the great centers for breeding these birds. The story of their introduction into this country by Mr. Edwin Cawston, of California, is familiar to the readers of the Scientific American.
The success of Mr. Cawston's work has resulted in two other ostrich farms being established-one near Jacksonville, Fla., and another in Arizona. In con nection with the Florida farm is a racetrack, where several ostriches have been broken to harness and have paced a mile in $2: 30 . \mathrm{Mr}$. H. J. Campbell, the superintendent, has from 200 to 250 adult birds under his care. As each weighs from 200 to 450 pounds, and their heads are from six to eight feet above the ground when the neck is fully stretched, an idea of the size of the flock can be gained. They average much larger than the birds shown with menageries, as they have plenty of space to run about in and stretch their legs, so to speak. Their bill of fare is not expensive. When but two or three days old, the chicks display their appetite for such delicacies as gravel and bits of bone, which is really the first "nourishment" they take Two or three days later they will eat bran, grass, cabbage leaves, etc., upon which they grow rapidly. In fact, a healthy ostrich will increase its size at the rate of a foot a month for the first few months, and be large enough to kick a man over by the time it is a year old. Many accounts have been writ ten of the fierceness of the African ostrich, but most of the statements are exaggerated. During the laying season the males become quite ferocious, and one must be very careful in approaching a nest, as he may get a kick which will not only knock him senseless, but possibly wound him badly, as each bird has upon its feet claws which will cut like a knife. A curious fact is that if a person stoops over when attacked by one of the large birds, he may save himself from the kick, as it cannot exert any force below a height of three feet, owing to the peculiar manner in which the legs are jointed. The keepers at the Jacksonville farm take with them small dogs, which will drive the largest ostriches anywhere about the pen. The birds realize that they cannot harm the dogs with their feet, and fear them more than a man. Ostriches are very much like other birds in hatching and rearing their young. Shortly after pairing off, the two birds will begin to build a nest, or rather to dig one out of the ground. The male bird rests his breastbone on the ground, and kicks the sand out behind him. When one side is sufficiently deep, he turns around and operates in a like manner, until a
sitting on the eggs from about four o'clock in the afternoon until nine o'clock the following morning. It may be understood with what skill this is performed when it is remembered that 250 to 400 pounds of ostrich are bearing down upon fourteen eggs. At about nine o'clock in the morning the hen takes his place. The male ostrich, however, with remarkable intelligence, relieves the female for an hour in the middle of the day, while she goes in search of necessary nourishment. A pair will follow this schedule with regularity for forty days, when the chicks can be heard in the shells.
A fair-sized egg weighs about four pounds, or as

Holding a Brooding Ostrich from the Nest with a Forked Stick While the Eggs are Being Examined.
much as two dozen hen's eggs. The size of the chick as it emerges from the shell is wonderful. It does not seem as if it could be half as large as it really is. This is due to the fact that the down and feathers, which cover it before it sees daylight, spread out when it leaves the shell, and nearly double it in size.
When a year old, the plumage of the ostrich is usually large enough and fine enough to begin plucking, which is one of the most difficult and dangerous operations of ostriculture. A few of them are driven into a small corral, when one by one they are pushed into a small angular inclosure, and a long, narrow bag is placed over the head, with a hole in the end to breathe through. Then one man holds the bird, while breathe through. Then one man holds the bird, while
the operator skillfully clips and pulls at the feathers that are ripe. Blinded the bird becomes very tame, but care is exercised by the men to avoid the kicks that necessarily are included by the creature in this per-
mand a higher price. Before coming into the hands of the milliner and dressmaker, however, the giossy covering of the bird must be subjected to several pro cesses. The plumes are tied on strings about four feet long, singly or in bunches of two or three, ac cording to their size. Then they are scoured, cleaned in soapsuds, and rinsed frequently, when they are ready for the dyer. After dyeing comes more rinsing in clean water containing starch. Then the feathers are beaten on a smooth board until they are free from all particles of starch. After this they go to the workroom, where skilled operators "finish" them, and here again they are graded. This grading is even more important than the first, and years of practice and observation are required to render the operator thoroughly competent. They then go to the sewing department. E'ach "feather" used in the trade consists of several sewn skillfully together, three, four, or five feathers, end to end, according to the value and thickness desired. After being sewn, the feathers are steamed, in order to allow the fibers to assume their natural position, and are sent to the curler, who gives them that graceful shape, both in fibers and stem, so much desired. From the curler they pass to the buncher, who combs them and gives them whatever style is demanded at the time for sale in the open market.

Electric Traction.

Dr. Reichel, whose very graphic account of the famous run from Berlin to Zossen of 130.4 miles per hour the readers of this journal will doubtless remember, has given some rather intcresting cost comparisons between steam and electricity from the German standpoint.
A steam train consisting of a locomotive and five cars weighs 330,000 kilogrammes, contains 168 seats and uses 1,400 horsepower at full speed; the electric train consisting of one motor car and four trailers weighs 260 , 000 kilogrammes, has 180 seats and uses 1,000 horsepower. The initial cost of both trains is practically the same, being about 400,000 marks ($\$ 100,000$). The operating cost for simply moving the train is 51 pfennigs ($121 / 2$ cents) for 100 seat-kilometers, operating with steam, and $491 / 2$ pfennigs ($111 / 2$ cents) using electricity. Applying a calculation to the 150 -kilometer, or 94 -mile line, between Berlin and Leipzig, we get the following conclusions: On this line an 18 -hour service is furnished and 36 trains a day run every hour in both directions, so that if 40 per cent of the seats are occupied (the trailers are put on when necessary) about 2,500 passengers are accommodated. Figuring the fare per kilometer as 6 pfennigs ($11 / 2$ cents), which is the present second-class fare, this would give a daily in come of 22,500 marks ($\$ 5,650$). The operating expenses, considering transportation only, are about 5,000

Copyright 1898 by Graham.

Plucking Ostrich Feathers.

ostriculture in the united states.

round hole about four feet in diameter and one foot deep is the result of his exertions. Occasionally he intimates to the female that help is required, and they take turns. The hen forthwith begins to lay an egg every other day, until twelve or fifteen are located side by side in this hole in the ground; then they scatter a little sand over the tops of the eggs, to protect them from the fierce rays of the sun. This habit has doubtless led to the supposition given as a fact in many natural histories, that the eggs of the ostrich are hatched by the sun, unaided by the bird.

As soon as the full number of eggs are laid, the couple share the labor of hatching, the male bird
formance. When a feather root' is hurt, injury is done that can never be remedied, for when a "socket" is pulled out, a feather can never grow again. The short feathers are pulled out without any apparent pain to the creature, as they are ripe and would fall off in the course of nature if not extricated by the skilled operator. The heavy wing feathers are cut off with heavy scissors, the stumps being left in the skin. These stumps are ripe for extraction about three months after a plucking takes place.
Strange to say, the feathers secured from the California and Florida birds are of a better quality than those imported from South Africa, and actually com-
marks daily $(\$ 1,250)$. Adding to this the other operating expenses, particularly for employes, maintenance of way, stations, management, etc., 7,600 marks daily, this would make the daily operating expense 12,600 marks. This leaves 9,900 marks for interest on the original capital, which in one year would be $3,600,000$ marks, which would give 4 per cent interest on 90 , marks, which would give 4 per cent interest on 90 ,-
000,000 marks. The cost per kilometer would, in this case, be about 600,000 marks.

What is said to be the largest loom in the world has been built in Germany for weaving artists' painting cloth. It is capable of weaving feltings 48 feet wide.

Legal Notes.

The Art of Cross-Examination.*-If the practising lawyer expects to find Mr. Wellman's book a manual of the cross-examiner's art, he is likely to be disappointed. If the man unversed in law expects to find in this book some account of the law expects to find in this book some account of the
methods that trial lawyers adopt in worming out of methods that trial lawyers adopt in worming out of
r \in sistant witnesses the truth which they have sworn to tell, and very often refuse to tell, he will be more than gratified. In a word, whatever may have been Mr. Wellman's intention in preparing this book, it will be read with most interest by men who are not Jawyers.
Mr. Wellman's long experience as a resourceful cross-examiner has singularly fitted him for the task of presenting a clear analysis of the methods which every good trial lawyer consciously or unconsciously adopts. Contrary to many cross-questioners, MLr. Wellman does not believe, as a general rule of procedWellman does not believe, as a general rule of proced-
ure, in bullying every witness into telling the truth. ure, in bullying every witness into telling the truth.
Sometimes it is necessary; and even then it may not attain the desired end. Mr. Wellman states that the late Benjamin F. Butler was one of the few men who employed the method of roaring at a witness successfully. One example of what is politely termed his "vigorous" method of cross-questioning was afforded when, on one occasion, he began savagely to examine when, on one occasion, he began savagely to examine
a distinguished Harvard professor. The presiding judge, struck by the indignities to which the witness was being subjected, reminded Butler that the man in the box was a Harvard professor. "I know it, your Honor," replied Butler; "we hanged one of them the other day." In striking contrast to Butler was Rufus Choate, of whom it was said that "he never aroused opposition on the part of the witness by attacking opposition on the part of the witness by attacking
him, but disarmed him by the quiet and courteous manner in which he pursued his examination." In Mr. Wellman's opinion the good advocate should be a good actor. The play of the facial muscles, a look in the eyes, perhaps a smile, may often do more to convince a jury than actual words. Perfect self-possession is one secret of a skillful advocate's success in court. Damaging admissions by his own witness should never disconcert him. An excellent example of the effect of manner rather than of words upon a jury is quoted by Mr. Wellman from O'Brien's "Life of Lord Russell." Once when cross-examining a witness of the name of Sampson, who was sued for libel as editor of the Referee, Russell asked the witness a question which he did not answer. "Did you hear my question?" said Russell in a low voice. "I did," said Sampson. "Did you understand it?" asked Russell in a still lower voice. "I did," answered Sampson. "Then," said Russell, raising his voice to its highest pitch, and looking as if he would spring from his piace and grip the witness by the throat, "why have you not answered it? Tell the jury why you have you not answered it? Tell the jury why you have not answered it." A thrill of exciternent ran through
the courtroom. Sampson was overwhelmed; and he never pulled himself together again.
As to the matter of cross-examination, which forms the topic of an entire chapter, all that can be said is summed up in David Graham's jesting remark: "A lawyer should never ask the witness on cross-examination a question unless in the first place he knows what the answer would be, or in the second place, he doesn't care.'
The task of exposing a witness who is not telling the truth, by the wiles of cross-examination, to make him convict himself out of his own mouth, requires more than ordinary adroitness. The difficulty lies in the fact that it is so hard to sift the true from the untrue. Even the habitual liar sometimes tells the truth. It is in his exposition of the method of detecting perjury that Mr. Wellman has given us one of the most valuable discussions of his book. The man who is able to repeat his story over and over again, using almost the identical words in each narration, says Mr. Wellman, is always open to suspicion. If he is suddenly stopped in the middle of his story, and made to start again at the very beginning, he is almost sure to betray the fact that he is reciting a carefullyprepared tale. Having no fäcts to associate with the wording of the story, he can recall it to mind only as a whole, and not in detachments. By distracting his thoughts to incidents not forming a part of his narrative, and then by returning to those considerations about which he has been first questioned, he is sure to be trapped. He cannot invent answers as fast as a lawyer can invent questions. It is the "instinct for the weak point" that here assists the questioner. Sometimes the lawyer confines himself to one or two salient points, on which he feels confident that he can make the witness contradict himself. An excellent
*The Art of Cross-Examination. By Francis L. Wellman, of the New
York Bar. With the cross-examination of important witnesses in some celebrated cases. New York. The Macmillan Company. 1903. Small 8vo. Pp. 283.
example of this method may be found in the oft-repeated story of Abraham Lincoln's convincing a jury that the witness could not have seen his client commit the murder for which he was charged, by the light of the moon, for the reason that there was no moon at the time the murder was said to have been committed.

The sharpest battle of wits in the courtroom is to be found when the cross-questioner meets the expert. It has become a matter of common observation that not only can honest opinions of different experts be obtained upon opposite sides of the same question, but also that dishonest opinions may be obtained upon different sides of the same question. It is dangerous for a cross-examiner to attempt to cope with a specialist in his own field of inquiry. And yet it is often done with some success. During the famous Carlyle Harris case, in which Mr. Wellman himself played no small part, the prosecution won its case largely upon the information which it had gathered in a thorough examination of six thousand reported cases of morphine poisoning. The distinguishing symptom of the case was symmetrical contraction of the pupils of the eyes. There was no doubt that Mrs. Harris, for whose murder Carlyle Harris was on trial, had taken capsules containing harmless doses of quinine and morphia. The theory of the prosecution was that Harris, who had reasons for wishing his wife out of the way, had emptied one of the capsules and filled it with morphine, thus causing her death. On the trial an expert testified that symmetrical contraction of the pupils was not a certain symptom of morphine poisoning, and that his belief was grounded on a case recorded by a Prof. Taylor. When this point was reached, the cross-examining counsel asked: "Well, sir, did you investigate that case far enough to discover that Prof. Taylor's patient had one glass eye?"

By far the most interesting chapter in Mr. Wellman's book is that which he entitles "Some Famous Cross-Examiners and Their Methods." . It is filled with many a striking example of the methods of Russell, Choate, Butler, and Mason. Undoubtedly the most dramatic piece of cross-examination that Mr. Wellman has recorded is that of Piggott by Sir Charles Russeli before the Parnell Commission. So overwhelming was it, that two days later Piggott fled to Paris. He later admitted that he had perjured himself, and committed suicide.
Mr. Wellman's book as a whole may be considered a most excellent presentation of both the merits and abuses of cross-examination as it is conducted in criminal trials. Without having written in any sense of the word a textbook, he has given us an admirable work on a subject with which only the trial lawyer is intimately familiar, and yet which is of interest to every man.

Historical Sketch of Patent Practice.-Mr. F. T. Wentworth contributes an instructive, article to the American Machinist in which he gives an historical outline of our law of patents. The granting of letters patent was not altogether the prerogative of the King, for the first legislation in England on this subject, in about the year 1623, was for the purpose of defining the right of royalty in the granting of monopolies and confining letters patent to inventions, thus settling a disputed point as to the King's right to grant such, and preventing the continuance of that flagrant abuse of the executive power which had led to the granting of business monopolies covering all forms of trade during the reign of Elizabeth. These grants were extremely obnoxious to those engaged in all branches of industry, inasmuch as they were generally to court favorites who had no facilities for utilizing the same except by trading in the franchises so acquired.
When the United States gained their independence, the mantle of sovereignty did not fall upon the President, but upon each of the several States, where in the major part it remains to the present day.
The several States were, therefore, each vested with the right under the law existing at the time of the adoption of the Constitution to grant patents for inventions, and there are several known instances where a State actually did grant patent rights. Whatever power the United States government has in patent, as in all other matters, is traceable directly to some Constitutional provision and was not the result of any precedent set. by sovereignty abroad, but of patent laws passed by Congress in accordance with powers vested in it by the Constitution.
The first United States patent law was passed in 1790 and provided that the secretary of state, the secretary of war and the attorney-general, or any two of them, might grant letters patent for an invention if they deemed it sufficiently useful and important. The application papers were addressed to the three officials named above, but it was expressly provided that the letters patent themselves should be attested by the President, examined by the attorney-general, recorded by the secretary of state, and sealed with the seal of the United States.
'This practice was changed by the patent act of 1793 by vesting in the secretary of state alone the power of passing upon applications for patents, the practice in other respects remaining unchanged.
Under both these laws the granting of the patent was not compulsory, the said laws merely vesting in the secretary of state the power to grant letters patent if he considered the subject matter of an application sufficiently useful and important. There was, probably, no examination made as to novelty under either of these laws, but as the filing of a model or specimen was compulsory, it is apparent that an examination as to utility or operativeness was always had. The examination of the attorney-general was, as in most countries to-day, merely as to the form of the papers It was under this law of 1793 that the "old patent" of the article was granted, and, to be valid, that patent must have contained the attestation of the President and have been countersigned by the secretary of state and also by the attorney-general to evidence that it had been duly recorded and was in proper legal form. The granting of patents was a function attached to the department of state and so continued until 1870 , when by the statute of that year the patent office was attached to the department of the interior, which had been founded in the interim, to wit, in 1849. There has been at different times agitation tending toward the formation of a separate governmental department for carrying on this work, but it is probable that the patent office will continue to be under the supervision of some one of the other departments.
The practice of granting patents without compulsory examination as to novelty continued until 1836 , which year saw not only the destruction of the patent office building and its entire contents by fire, but the destruction by legislation of the old practice and the en tire reorganization of the patent office upon the exist ing lines. This patent act of 1836 was really the beginning of the present patent system. But 10,000 patents had been granted in the half century preceding its adoption, and since, the number has been nearly 750,000 .
This act of 1836 not only provided for the examination of all applications in relation to the known art, but created the office of commissioner of patents. We find the patent office report of 1835 signed "Henry L. Ellsworth, Superintendent," and that of 1836, "Henry L. Ellsworth, Commissioner of Patents," the first report so signed. Patents from July 4, 1836, to July 8, 1870, were not signed by the President, but by the secretary of state and countersigned by the commissioner of patents. Thereafter and until within the past few months, each patent was signed by the secretary of the interior and countersigned by the commissioner of patents. At present, however, a patent is signed by the commissioner of patents only.
The first patent issued after the law of 1836 took effect was to John Ruggles, of Thomaston, Maine, on July 13, 1836, a patent which does not seem to have attained any prominence in patent lore beyond having been so issued. It is probable that this patent was granted under the old system, as patent No. 1 (the present numbering of patents dates from 1836 only) was granted to the same party under date of July 28, 1836. The invention of this patent was a "locomotive steam engine for inclines and declines," and seems to have been of no greater prominence in the history of patents than the earlier patent referred to.
The date of the advent of the patent attorney is not positively ascertainabie. It is more than likely, however, that he was always present, if only in an advisory capacity. It is worthy of comment that it is generally recognized, both within and without the patent office, that the patent attorney of to-day who does his work conscientiously is the factor which enables the immense volume of business transacted in the patent office each year to be carried on expeditiously, and that the value of many patents is attributable largely to his knowledge of the requirements of patent office practice and of the manner of treating each application to meet such requirements, a knowledge attained only by experience and which embraces every stage of a patent application from its preparation to its final allowance. Although he acquires a considerable fund of theoretical knowledge pertaining to the arts, his business is more particularly to see that the application is filed and sent to issue couched in terms which clearly distinguish the invention for which the patent is sought.
The patent office each year receives from 35,000 to 40,000 patent applications and issues from 25,000 to 30,000 patents. Of the applications on which patents are not granted, some are found upon examination to be for well-known structures, others are duplicates of applications by other inventors, still others are abandoned and the remainder fail to issue because the device is not of sufficient merit over the known art to be patentable. The number of applications seems to increase each year, and the delay in disposing of them in the patent office is due to the failure to develop the capacity of the office in proportion to the increased volume of business.

RECENTLY PATENTED INVENTIONS.

Electrical Devices

ELECTRIC STOP-MOTION FOR WARPING machines.-J. Cocker and C. Denn, Phila delphia, Pa . The object of this invention is
to provide an improved electric stop-motion to provide an improved electric stop-motion
for warping-machines arranged to form a permanent fixture of warping-machine and adapted to stop the motion in case a yarn or thread to stop the motion in case a yarn or thread perfect goods.
ELECTRIC-RAILWAY PLOW. - J. H. Akers, Washington, D. C. This plow can be inserted into or withdrawn from the slot of
the underground conduit at any point along the underground conduit at any point along
the slot, for examination and repairs without having to wait until the car is run over pit. It provides for the movement of the car
forward or backward and is adapted to pass wer breaks in the conductor-rails at crossings be conveniently and safely lifted into or taken out of the slot at the same time preserving its freedom of movement for turning curves.

Heating.

AIR-HEATER.-J. Waterhouse, New York, The invention relates to improvements in machines for heating or reheating com-
pressed air to be used in drying material in machines, as shown in two prior patents granted Mr. Waterhouse-although the inven-
tion is not confined to the devices tion is not confined to the devices shown in
the patents, the object being to provide a the patents, the object being to provide a
heater of simple construction, in which heat heater of simple construction, in which heat perature for the material under treatment.

Machines and Mechanical Devices. TRIMMING-MACHINE.-N. M. SchuSter, Kirksville, Mo. The aim of this inventor is
to provide a machine more especially designed to provide a machine more especially designe ranged to insure an accurate trimming of the roll at a high velocity and to allow of adjust roll at a high velocity and to allow of adjust-
ing the roll according to the width of the
margin and while the machine is in operamarg.
Speaking figure.-G. W. Spencer and A. Lynde, Atlantic City, N. J. In this patent
the invention has reference to acoustics; and its object is to provide a new and improved speaking figure arranged to emit articulate and lips to closely imitate a human being. The record-cylinders are provided with sub-FELT-SPREADER.-J. H. Ostrander, Ti ention ing any web of wool, cotton, or paper, and is especially adapted for paper-pulp and papermachine felts, an object being to provide a spreader that may be readily attached to a machine and which will spread the paper-carrying felt. A further object is to make the de
vice adjustable, whereby it is possible to pre vice adjustable, whereby it is possible to pre-
vent the felt or paper sheet from creasing or vent the" felt or paper sheet from creasing or
wrinkling while traveling over the spreader. APPARATUS FOR TREATING YARN.-H. Livdinberg, West Hoboken, N. J. In carry-
ing out this invention the object in view is the provision of a machine upon which the yarn to be treated is placed and held under tension while it is rotating and while subjected to a
bath of suitable chemical and subsequently to a cleansing-bath. A vat or tank is provided designed to contain solutions in which
the yarn is to be immersed, such the yarn is to be immersed, such tank being rotatally movable and vertically ad
relative to the yarn-carrying devices.
HOISTING DEVICE FOR LIVE STOCK. L. W. Johnson, Jerome Junction, Arizona
Ter. Mr. Johnson,s invention relates to hoisting devices or mechanism. The improvements are intended more especially for use in loading cars with live stock. A movable gangway of special construction is employed for
enabling the stock to pass thereonto which may rest on the ground or other surface of the pen from which stock may be taken, and in connection with said gangway hoisting devices are employed for elevating the gangway, to-
gether with a load of stock, to a convenient height to enable the latter to pass into the
MACHINE FOR TRIMMING AND APPLY ing Shade goods.-E. O. Engberg, Salt Lake City, Utah. This invention relates to a shades may be slit at its edges to produce the proper width and severed into the necessary lengths, the machine simultaneously creasing the stock, so as to facilitate the application to the lower edge thereof of the usual slat,
and the machine, further, having means for and the machine, further, having means for same during the operation of the machine wherely automatically to wind the shade on the roller.

Of Interest to Farmers

COTTON-CHOPPER.-T. J. Lowry, Mount airy, N. C. The invention relates to improve
ments in cotton choppers and cultivating devices. In the present instance Mr. Lowry contemplates the provision of a machine or a
device of the class described in which the chopdevice of the class described in which the chopping mechanism may be raised and lowered to put the same into and out of operation at the
will of the operator. The mechanism may be held or retained by the operator in any desired position of adjustment.

COMBINED HEADER AND STACKER.-J h. Kindsvater, Manhattan, Kan. The im ng and stacking the grain. The machine quipped with means for adjusting the cutter pparatus and for throwing it into and out of gear, with power devices for bodily elevatof the receiver or barge by the movement tilting the raised barge for guiding during tilting, and for braking the descent of the barge unloaded and with a horizontal conveyer, which is shiftable relatively to the
barge, so that it may be moved out of the way previous to elevation of the barge.
HOISTING MECHANISM FOR STACKERS. -J. H. Kindsvater, Ellis, Kan. The subjectatter of this application constitutes in part division of a prior application filed by Mr Kindsvater. The present improvements are diected to a means for slidably guiding the uping the same when raise to have a tilting movement to discharge the load, to means for hoisting the loaded barge by the movement of the machine, and to devices whereby the hoisting mechanism and barge may be conrolled by a single operation.
TOPPER AND STRIPPER FOR CANE-harvesters.-G. D. Luce, New Orleans, La. The present invention refers to improve-
ments in topping and stripping mechanism deents in topping and stripping mechanism de igned to be used in connection with a sugar ane harvester, an object being to provide which the cane may be quickly means stripped of leaves and the stalk conveyed to a cart or wagon.

Pertaining to Vehicles.
DEVICE FOR PREVENTING SHAFT-MOTION IN VEHICLES.-W. N. Cleveland, Dover, Ky . In the present case the invention
relates more particularly to devices used on relates more particularly to devices used on
vehicles for preventing shaft motion due to the vertical movement of the horse. Further, it relates to means whereby the seat of the vehicle may be inclined at slightly different angles, relatively to the vehicle-body, for the purpose of compensating grades over which
the vehicle travels, thereby maintaining the the vehicle travels, the
seat substantially level.

Railways and Their Accessories

RAILWAY-SWITCH.-T. E. Gummerson, estone, Col. The usual construction of frog is done away with in this instance and in its stead a swinging rail is used. The object of
the improvement is to do away with the usual frog and to produce a simple switch, one that can readily be installed, removed, or re paired and that is sure in its operation and
not affected by sleet, snow, mud, or dust. The device is a safety appliance, as there will be no danger of a person getting a foot caught, as is
frogs.

Steam Engineering

heating and condensing feed PUMP.-W. Tate, Greensboro, N. C. The invention resides in a peculiar attachment to heating means, the pumps being adapted for arawing the water from a supply thereof and orcing it, after passage through the heating means, into a steam-boiler or a storage-tank, com which it may be conveyed and used acuse. The invention is specially adapted for use with double-acting pumps, though it may be modified, adapting it to be used with singleacting pumps.
exhaust-nozzle.-W. S. Clarkson, Livngston, Mont. The prime object of Mr. Clarkson's invention is to keep the exhaust from each side of the engine independent, so that
the exhaust from one engine will not tend to create back pressure on the other engine and to cause the exhaust-steam to be equally dising about an even and uniform draft bring CNin C. ENGINE.-C. F. Chandier, Orange, N. J. n this patent the invention has reference to engines in which the motive agent acts simul-
taneously on two pistons to cause the same to advance toward and to recede from each other. The object of the improvement is the provision of an engine arranged to utilize
the motive agent to the fullest advantage. ROD-PACKING.-N. H AIPDectr Colum us, Ga. The inventor provides packing-blocks in pairs, fitted slidably together, and a cage having radial mortises in which the blocks perate, the cage being fitted within a retaining band and the latter, with the cage in place, for retaining the packing devices aving means and means for holding them at the other side the latter means being provided with openings for passage of steam between a retaining-band and the casing, the band having openings opposite radial mortises in a carrier, so steam
may force the packing-blocks against the rod.

Of General Interest

Barrel-TAP.-H. Fesenfeld, Hoquiam, Wash. In this patent the improvement relates on beer apparatus having gas or air pressure
in the barrel for forcing the liquid from the barrel through the supply-pipe to a dispensing-
faucet at a bar or other place.
to provide a tap arranged to permit convenien injury of the tap into the bung-hole without waste of the liquid.
WEATHER-STRIP.-H. Eagon, New Cometstown, Ohio. This weather-strip is of that type known as "hinge-acting;" and the inven tion consists of the construction and arrange ment of parts automatically operating upon ing whereby rain, wind, dust, and cold air as ma as may be
Gr door-sill.
fastening device for drill-bits OR THE LIKE.-C. P. Brintzinghoffer are intended more especially for use in se for, it being known that in operations of bor ing oil and similar wells difficulty and los of time are occasioned by the loosening of the drills on their stems or else by disconnection
and loss of the same within the well. One of and loss of the same within the well. One of
the principal objects of this invention is t the principal objects of
Ventilator.-F. J. Prochasia, Park River, N. D. The purpose in the present case
is to provide a ventilator adapted for use in connection with buildings; and which when opened will afford a direct draft and which when closed will be wind, snow, rain, and dust proof, and further to so construct the ven-
tilator that the body or ventilating tube will tilator that the body or ventilating tube will
be unobstructed and so that the ingress of be unobstructed and so that the ingress of
flies or other insects to the tube will be pre vented
LINE-CHALKING DEVICE.-F. M. Thomp Son, East Liverpool, Ohio. Mr. Thompson
provides a simple device by which to chalk provides a simple including the casing having a body chalk, means of controlling communication between the said chamber and reel-chamber and neans for controlling the outlet for the line from the chalking-chamber, as well as
means for preventing clogging of the chalk within the chambrr. It may be carried in th GARMENT-SUPPORTER
GARMENT-SUPPORTER.-L. E. Schoch, Chicago, Ill. The object of the improvement
is to provide a supporter, more especially designed as a suspender or as a hose-supporte ment of the parts on the wearer bending the body, to give the utmost comfort to the wearer and to reduce the strain on the webbing and other parts to a minimum.
BOLTING-SIEVE CLEANER. shultz, Portland, Ore. In this patent the invention has for its object the provision of a novel simple traveler-block of peculiar form adapted to be moved freely in all directions dinary jar of the working eloth by the or prevent the reticulations of the fabric from becoming clogged and rendered defective in

COMBINATION BRIDGE AND TAIL PIECE-E Reach, Jersey City, N J This application is a division of a former applicato mandolins, guicars, zithers, violins, and other like stringed instruments, and its ob ject is to provide a bridge and tailpiece ar ranged for attachment to the belly of the instrument and to allow the interchange of
bridges of a high or low character, according to the requ* ements of the instrument.
BIrd-CAGE.-J. A. Quelch, New York, N in The purpose in this instance is to provide whereby the paper-covering for the cage-bottom may be conveniently and quickly changed or enewed, and another purpose is to provide a novel means for distributing gravel on
BUCNI is drawn through the cage.
Be CKle.-A. AdDIngTon, Cedarville, Cal. use in in of the Mexican type, to effect adjustable con nection between the latigo and cinch and also between the reata-strap and latigo; and the purpose is to construct a simple buckle and erated to effect the adjustment of the main the strap atigo, for example-and which when the strap is adjusted therein will als
the strap firmly in adjusted position.
TOOL FOR PYROGRAPHIC WORK.-Z. N. Tyssowska, Chicago, Ill. In a previous
patent the inventor described a combination tool adapted to be used as a burner and a scorcher at the same time, the scorcher por as a chimge in adaition to its own function, as a chimney for the burner portion, and the
burner portion, in addition to its own function, serving as a heater for the jet of gases
delivered by the scorcher portion. ent application shows a nozzle device as separate article of manufacture applicable to any ordinary pyrographic point or tool and by
which many advantages may be easily obtained.
PUzZle.-L. Van Putten, Holland, Mich. The object in this case is to provide a puzzle relating to games and toys which is simple,
cheap to manufacture, and provided with recheap to manufacture, and provided with re-
voluble picture-blocks to be brought in such relative position to each other by the operator that the
pictures.
SLOPE-STAKE ATTACHMENT FOR EN
sels, Kan. The device is attached to the axis
of the transit-telescope having a level undereath and provided with a graduated vertica arc or circle and clamp and tangent screws applied in the usual way. The objects are to ffect the setting of slope-stakes of embankment, and cuts in railroad or other work without the use of the Wye level and without any calculations and with much greater sp
than can be made by ordinary methods.

Note.-Copies of any of these patents will be urnished by Munn \& Co. for ten cents each. lease state the name of the patertee, title of the invention, and date of this pape

Business and Personal 《Uants.
READ THIS COLUNN CAREFULUY-You
vill fin in inuires for certain classes or artices
 send you the name and address of the party desir-
ing thenformation. Finevery ase it is neeces-
sary to give the number of the inquiry.

.
Inquiry Na. 531 . $\mathbf{~ - ~ F o r ~ m a k e r s ~ o f ~ c o i l ~ h e a t e r s ~}$
or hot water heating in houses.
Incuiry No. $\mathbf{5 3 1 \%}$. - For makers of small registers
"L. S." Metal Polish. Indianapolis. Samples free.
Handle \& Spoke Mchy. Ober Mfg. Co.. 10 Bell St.,
Inquiry No. 5319.-For dealers in electric blue
printing machines.
For Sale. -14×16 reversible propellers for yachts. Inquiry No. 5320.-For dealers in rubber stamp-

Sawmill machinery and outfits manufactured by the Inquiry
motor fans. A capitalist would finance a meritorious patent. Ad-
dress L. W. Thomson, 421 Olive Street. St. Louis. Inquiry No. 5322.-For manufacturers of hand
elgarette makers. Send for new and complete catalogue of Scientific Sew York. Free on application

Inquiry No. 5383.-For m. quettes of shavings or sawdust.

Fine machine work of all kinds. Electrical instruments a specialty. Models built to order. Page Ma-
lnquiry No. 5324.-For hand power machinery
for making soap. The largest manufacturer in the world of merry-go-
rounds, shooting galleries and hand organs. For prices fnquiry No. 5325.- - For makers of iron moulds The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating Ma" Tnquiry No. $\mathbf{W 3 2 6}$. - For the the manufacturers of the Manufacturers of patent articles, dies. metal stampery and toois. Quadriga Manufacturing Company. 18 South Canal Street, Chicago.
Inquiry No. 53:27.-For a machine for making fer-
ilizer bags.
In buying or selling patents money may be saved nd time gained by writing Chas. A. Scott, 705 Granite building, Rochenter, New York
Inquiry
ating oils.
"The Household Sewing Machine Co.. Providence,
R. I., is prepared to take on contracts for the manufact. ., o prepared to take on contracts for the manufac-
ure of high grade mechanical apparatus. requiring ccurate workmanship, in either machine shop, cabinet ork. or foundry lines. Expert mechanics, designers
and tool makers. Facilities unexcelled. Estimates furnished on application.'
Inquiry No. 5329.-For makers of advertising
novelties.
Inquiry No. 5330.
facture of fishing nets.
Inquiry No. 53:31.-For parties engaged in mold-
ingor vulcanizin rubber into different designs, so that
when finished it is fiexible.
Thquiry No. 5332.-For makers of highway truss
bridges.
Inquiry No. 5333.-For dealers in magical goods.
Inquiry No. 5334.
ating Ramie fiber.
Inquiry No. 5335.- For gasoline engine for pump-
ing capacity of village water works.
Inquiry No. $\mathbf{5 3 3 6}$.- For makers of salt crushers
or mills to crush and grind rock salt very finely.
Inquiry No. 533 - - For a machine for packing
cigarettes in packages (not boxes).
Inquiry No. 5338.-For a machine for turning
pins for cross-arms of telegraph poles.
Inquiry No. 5339.-For machinery for renvat-
ing. breaking and picking feathers; also for mattress Inquiry No. 53440-For makers of all sorts of
novelties, of different materials, wood, paper, leather,
Inquiry No. 5341. - For metal novelties suitable
for the stationery trade.
Inquiry No. 5342.-For a machine for cleaning
bocks in a library, in the nature of a dust pump.
Inquiry No. 5343.-For makers of incubator sup.
plies. also of woden pumps.
Inquiry No. 5344.-For makers of machines for
bundling wood.

 References. to former articles or answers should give
date of paper and page or number of question.
 though
letter
his turn
on

adadersses
the same.

 Books
pric
pren
Nin
$\underbrace{\text { mat }}_{\substack{\text { pinerase. sent for examination should be distinctly } \\ \text { marked or labeled. }}}$
(9335) H. B. says: We are a constant reader of your valuable paper, and we would
like to know some process for tinning small cast-iron and malleablo-irion castings. We have
used the following without success: We used for a bath muriatic acid cut down with zinc and added one-third water, but it did not
seem to take. After we melted the tin on the furnace, we placed the castings in, without
the desired effect. A. You will obtain better the desired effect. A. You will obtain better
results by first cleaning the castings thoroughly in a bath of muriatic acid 2 parts, water dirt in hot water. Then dip for a few minutes in the saturated solution of chloride of zinc
and water as you describe, with sal ammoniac dissolved in the solution to saturation. Sprinkle
a little sal ammoniac on the melted tin, and clear the surface before dipping the castings.
(9336) A. B. writes: One pound of dry wood requires about six pounds of air for
combustion. Now if one pound of wood is combustion. Now if one pound of wood is
placed a few inches into the ground and left for decas, a slow combustion takes place, and
the same amount of oxygen is reguired. How the same amount of oxygen is required. How
is the oxygen supplied? By the air through the pores of the ground, or by other sources,
and in what proportion? Of course the wood is getting wet and dry alternately, and is ex-
posed to the chemical action of the surrounding soil. A. Air penetrates the ground to
the depth of the subwater surface and thus aerates our well water. It flows into and out of the surface of the ground with every
change of the barometric pressure, and thus supports animal and vegetable life beneath the surface of the earth. By contact with the
moisture in the earth, air is absorbed by the water and its constituents separated, and by
contact the oxygen unites with the carbon and contact the oxygen unites with the carbon and
other constituents of wood and other vegetable matter by slow combustion, while the nitrogen is absorbed by the living vegetation in de-
veloping growth. It was long since found by Bunsen that a decomposition of both air and water took place in a small degree in aerated
water ; the air of which, when freed from water by heat, was found to have oxygen in excess, while the water contained ammonia
from the union of the nitrogen of the air and the hydrogen of the water. Thus the con-
stituents of both air and water in the form stituents of both air and water in the form
of moisture, by chemical change of their eleof matter by slow combustion, and to sustain vegetable life by adding the constituents necessary to its growth.
(9337) C. W. W. writes: 1. Owing to Iong-continued cold weather, many water pipes
have frozen. These are iron pipes $11 / 4$ to have frozen. These are iron pipes $11 / 4$ to 2
inches in diameter and buried four feet or over.
Could you sive Could you give me the name of some inexpensive chemical or other means of thawing these
pipes? A. The most approved method of thawing water pipes under-ground now is by the
electric current. See Scientiric American No. 12, Vol. 90, March 19, 1904, on "Thawing Out Water Pipes", (10 cents mailed). Otherwise a small pipe inserted into the house end of the
service pipe with steam pressure has done good There are the service pipe has so straigh 2. What per cent of the energy in fuel (soft and hard coal, crude oil or gas) the most approved steam engines. A. About
20 per cent of the energy of the fuel is now
utilized for power in the steam engine. 3. Can utilized for power in the steam engine. 3. Ca
you give a formula for a cement suitable to mend rubber boots, coats, or gloves by attaching a piece of the same material over the break or
tear? A. Use rubber cement for mending rub-
ber? ber goods.
rubber trade.
(9338) P. J. T. says: In a certain electric lighting and heating plant three ordinary
tubular boilers with outside firing are used tubular boilers with outside firing are used
The grates cannot be shaken, neither is a The grates cannot be shaken, netther is
poker ever used to stir up the fire. When it
must be cleaned the live portion is pusi must be cleaned, the live portion is pushed to out. The live fire is spread evenly over the
grates, and covered with a thin layer of nut coal. This soon makes a nice clean fire-to
look at-for a short time; but when necessary other thin layers are thrown on, no poking or
shaking being done, until a dayer

3 inches or 4 inches thick has formed on the
grates. This is the continual practice. I hold grates. This is the continual practice. I hold
the opinion that in this way 10 or 15 per cent of the value of the coal is wasted, in
unconsumed gas going up the chimney, more nnconsumed gas going up the chimney, more
than would be with intelligent and efficient hand firing, where the light in the ashpit would A. If all the coal is burned by the metho described, and the cleaning of the fire is done at the noon hour, we can see no objection to the
method of firing, and the actual loss must be found in the The slicing of the fire at stated times during the day is also a good practice when properly
done, so as to pass the ashes through a close done, so as to pass the ashes through a close
grate without wasting coal. Much depends pon the strengtin of the chimmey drat as should be no more waste of unconsumed gases by the chimney in either method of firing with
nut or buckwheat anthracite coal. With bituninous coal both methods above described are efective.
(9339) W. A. B. asks: 1. Does the swing of a lathe mean the diameter or the adius of the largest piece of work which can
be turned in that lathe? A. The swing of lathe is the diameter of the largest piece that can be turned. 2. In using an ordinary three-
fall tackle, is there anything gained by having the double block on the moving load, or is the direct pull on the free end equalized by the
falls? A. In a three-fall tackle, composed of two and a three sheave block, the two-sheave block should be on the moving load, with the
end of the rope in the eye of the block, when with the downward pull the power will be one to five. By reversing the blocks and pulling in the direction of the moving load, using all the sheaves, the power will be one to six ; but in hoisting a load with the three-sheave block used with a down pull, and the power will be one to four. 3. What causes the flash of light
when a metal scoop is thrust into ordinary hen a metal scoop is thrust into ordinary
granulated sugar which has become hard from dampness? A. The flash is probably electric, aused by the sudden separation of the crystal will there be a deadlock? Shaft No. 1 has a 6-inch gear meshing into a 3 -inch gear on haft No. 2, and also a 3 -inch gear meshing
nto a 6 -inch gear on shaft No. 2. A. There will be a deadlock unless one of the gears runs
(9340) R. H. G. asks: Am I asking oo great a favor in asking you to give me,
hrough the Notes and Queries column, a list of the elements and compounds occurring in sea water, and their percentages? A. $\begin{gathered}\text { Ocean } \\ \text { water is not of definite composition. } \\ \text { Tarr's }\end{gathered}$ water is not of definite composition. Tarr's
Physical Geography places the percentage of Physical Geography places the percentage of
pure water in the ocean at between 96 and 97 , the remainder being divided between several There is an appreciable amount of magnesium chloride, carbonate of lime, several sulphates, and minute quantities of other substances. Probably some compound of every known ele re also atmospheric gases dissolved in the water. The range of solid constituents in vari-
ous oceans is from 3.3 to 3.7 per cent. If nore definite numbers were given, they would simply
men.
(9341) L. M. H. says: Will you kindly explain the following described phenomenon
through the Scientific American for the beneit of several persons interested? There is a large slough about eighteen miles south of Los Angeles, Cal., and about thirty miles from the nearest mountains, and eight miles from San
Pedro Bay. Its bottom is perhaps thirty feet above high tide and ten feet below the surface goes entirely dry, and deep cracks open in the
hottom : but in the autumn just before the rains commence, the water begins to rise, and at first may be seen far down in the cracks, deep all over the bottom of the slough. The in the season, but may vary a month or time in the season, but may vary a month or two
in different years. Yet it always puts in its appearance a week or two before the rains commence in and is regarded by the people mat vicinity as a never-failing sign of rain. o the cause of the action of the water in the slough you describe. It would seem as if the heat of summer were enough to account for
the drying up of the bottom, and perhaps the cooling of the autumn in advance of the rains would account for the appearance of the water in the bottom earlier than the rains. Evapora-
tion in summer is more rapid than the inflow of water at the bottom of the slough. As the evaporation decreases in autumn the water be-
ins to accumulate, since the evaporation is less than influx.
(9342) C. M. K. asks: Will you please Sive directions under Notes and Queries for pro-
ducing cold artificially in a small way for the purpose of testing a thermometer? A. To test the freezing point of a thermometer, pack it pounded ice, keeping the tube as far as the
freezing mark in the ice. For temperatures lower than this you may make a mixture of 8 chloric acid. A temperature of about zero
(9343) A. S. asks: Is decarbonized Steel capable of being highly magnetized? Can
you give formula for calculating velocity of steam at different pressures? Also what should be the piston-pressure (as compared with
boiler pressure) for best results? Will steam at 100 pounds pressure and working at 50 pounds piston-pressure flow as fast with 50
pounds pressure, doing no work? A. Decarpounds pressure, doing no work
bonized steel is capable of bein
in the same way as wrought iron. The formul for the blow of steam into the atmosphere 3.6 $\sqrt{\bar{h}}=$ velocity in feet per second; h is the height in feet of a column of steam of
uniform density at any given pressure due to the evaporation of one cubic foot of water. For 100 pounds absolute pressure the propor-
tion is as follows: $62.5: 100:: 270: 432$ and $432 \times 144=62208$ feet. Then $3.6 \sqrt{62208}$ through an orifice at 100 pounds absolute pressure. Steam doing work behind a piston or
otherwise cannot flow as fast as when flowing otherwise cannot flow
into the atmosphere.
(9344) A. F. G.: Queries to receive attention must be accompanied by the names
and addresses of correspondents. You will find formulas for household ammonia in our SUPplements 108, 1208, 1411, and 1430 . rice, 10 cents each.
(9345) J. F. W. asks \ddagger Will you please nswer the following through queries column from an electric light dynamo? Would ground circuit line be affected more than metallic circuit? How can it be prevented?
A. The buzzing in a receiver of a telephone whose line passes near the wire from an elec tric light dynamo is due to the waves of the duce a current in the telephone, and make the hich the dynamo curre rent machine. The remedy is a metallic circuit with the two wires twisted around each other at frequent intervals. A line with a
return cannot be cured of the dificiculty.
(9346) J. W. N. asks: What is the highest degree of temperature that water may or fat? A. Water cannot be heated above 212 deg. Fahr. at the sea level when the barometer
boils and becomes steam. Above the level of the sea the boiling point is lower, and when the barometer falls, the water boils at a lower
temperature. We should not suppose grease temperature. We should not suppose grease would simply rise in temperature till it turns black by overbeating It has then decompose into carbon and other constituents.
(9347) R. C. says: I write to ask you a fev questions with regard to an X -ray into make. Put 250 feet No. 18 on primary. About 5 pounds of No. 32 on secondary. Seciron core solid. Result, $1 / 2$-inch spark; could primary battery, 150 Umere $\begin{aligned} & \text { Unere } \\ & \text { pours each }\end{aligned}$ What is the trouble? I think the thing should give 4 -inch spark anyhow. A. The first error
in winding your coil is the use of too much in winding your coil is the use of too much
wire in the primary. Two layers of wire are enough. You have nearly 2 ohms in the coil when a small fraction of an ohm is better. for a coil of this size. The iron core should
be made of soft iron wire: No. 18 at the lar be made of soft iron wire; No. 18 at the larg
est. The secondary should be of No. 36 wire Y̌ou should get Norrie's "Induction Coils,"
and study it. We sell it for $\$ 1$. You do not mention a condenser at all.
(9348) A. P. writes: The Scientific American some time ago decided that an or-
dinary telephone current is an alternating current. Kindly tell us what a direct current is. By your decision every current in exis.
tence is alternating. A. The transmitters now tence is alternating. A. The transmitters now
in general use contain carbon, either in granuand form or in older one mind the varying conductivity of carbon under pres sure. A current of electricity flowing through the transmitter is thus made to vary in in-
tensity by the action of the voice. This cur rent is a fluctuating direct current. Its circuit tion coil. So far as we know, this is never called the telephonic current. The induced clorren iver the line to the distant receiver. This
flows over crrent is alternating, and is what is ordinarily It is to this that we referred in the note to which exception is taken. We can quote no
higher authority than Miller's "American Telephone Practice," in which he says: "It
should be remembered that the current in the should be remembered that the current in the
primary circuit is an undulating one, and is primary circuit is an undulating one, and is
always in the same direction. The current in the secondary, however, is alternating in character, changing its direction completely with
every large fluctuation in the primary current. This latter feature is also productive of better results than would be the case were
the current in the line wire of an undulatory character." We wo not see how any other view can be taken. An induction coil always
gives an alternating current, when the current in the primary is varied in intensity to a con-
siderable degree and the secondary circuit is
a closed one. It is true that the old form of telephone used an undulatory current on
the line, but these are entirely out of use he line, but these are entirely out of use,
unless between houses or rooms in houses where an up-to-date
cannot be afforded.
(9349) H. J. L. asks: 1. What amount of moisture does air gather by its being passed ir caused to bubble up through water? A when bubbled up through water depends upon the temperature of both air and water. The mount of water required to saturate each cubic foot of air at 62 deg. Fahr. is $61 / 4$ grains. Ordinary dry air, so called, is about 50 per
cent of saturation, and contains $31 / 8$ grains of moisture, and if it leaves the water satuated, it will have absorbed $31 / 8$ grains per cubic foot of air. This may be increased to
four grains at 70 deg. and $51 / 4$ grains at 80 deg. Fahr. 2. Can the dust be removed from air y passing the air through sieves (thin cloth) partially by passing slowly through a dry muslin or two thicknesses of cheese cloth, and
totally removed if the cloth strainers are wet y sprinkling with cloth strainers are wet ir, upon mixing with dry warm air, cause iny moisture to form? A. So-called dry air tains natural conder is never dry, but saturation, so that it depends entirely upon he relative temperatures and proportions of duce visible vapor. 4. If ordinary outside midwinter air is brought in contact with warm dry air, will any perceptible amount of mois-
ture be formed? A. The same conditions as ture be formed. A. The same conditions as
above stated apply to the admission of cold winter air into warm rooms, as cloud or vapor condensation will entirely
relative saturation of the air.
(9350) J. N. says: I would esteem it great favor if you would kindly let me
now at your convenience, through the Notes know at your convenience, through the Notes
and Query column, how to obtain a green finish on brass goods, resembling verdigris. I think the color is named verde antique. A. For
verde antique on brass, wet the articles with dilute acetic acid for a short time, and alteruntil the desired color is obtained or by an ther method, dip in a solution 1 part permuriate of iron in 2 pints of water until the desired color is obtained. Washing, drying,
and brushing or burnishing complete the (9351) H. M. asks: 1. What would the candle power of an incandescent lamp be
at 50 volts and $11 / 2$ amperes? A. An incandescent lamp will give one candle for from $21 / 2$ to 4 watts. Fifty volts and $11 / 2$ amperes are 75 watts. The lamp may then give between
20 and 50 candles; perhaps 32 candles would e a good result. 2. Can you tell me the reason spark through 50 feet of wire will not impart he least shock to a person when holding the wires, and a hand power dynamo capable of giving a powerful shock will not make the least spark, and will not give a shock to a
person through 3 feet of copper wire. Is it ue to the difference in E. M. F. of the batteries and magneto? A. The spark and the shock are due to the self-induction of breaking the
circuit of the battery or dynamo. It would equire several hundred cells of battery to give wires leading from it If there were cells nough, the voltage of the direct current would send enough current through a man to give a shock. Let the man take the wires in his
ands, while connected to the battery: that is, while the currected to the battery, that and pull the circuit open between his hands, nid he will get a shock from the self-induction. The same is true of the dynamo. Any voltage
up to 110 can give but a feeble shock by ouching the poles; but if while holding the ires the circuit is broken between the hands, of the current produced on breaking the circuit is much greater than the electromotive
force of the current while flowing steadily. . Is it known at what voltage an electric current will give a powerful shock to an or-
dinary man? A. The resistance of the human dinary man? A. The resistance of the human
body is in the neighborhood of 5,000 ohms, as an average. Men differ greatly in this repect. The voltage necessary to force current same degree. What will give one man a severe shock will not seriously affect another. Then, oo, the shock of the alternating current is
worse than that of the direct current. A trolrent has killed persons, we understand. This is 500 volts direct
(9352) A Reader asks: Please inform me through your paper, if possible, where
can get some light on the subject of the can get some light on the subject one the which I refer has a name which I remember as the "Mallet" mono-rail. It was discussed one of the scientific papers, the date of
which I do not remember. So far as I recollect which I do not remember. So far as I recollect, country. Any light that you can throw on country. Any light that you can throw on a number of persons interested. A. Queries and address. The mono-rail system is that with a single rail. It has been illustrated and described in Sciantific American Nos. 33,
$141.420 .476,513.584,640,911,991,992$,
$1014,1109,1125,1422 ; 10$ cents each, mailed.

NEW BOOKS, ETC.

Les Moteurs ì Essence Pour AutomoBILEs. By L. Marchis, Professor of
Physics in the University of Bord eaux. Paris: Published by Vve.
Ch. Dunod. $1904 . \quad 8 \mathrm{vo}$. Pp. 470,231 cuts. Price $\$ 3.30$.
This book is based on lectures given by the author at the University of Bordeaux, be fore audiences composed chiefly of engineers;
but the work is not too technical for the but the work is not too technical for the
average automobilist, and contains mucl that is useful to him. An introduction give
the early history of the automobile the early history of the automobile, and con
tains tables of speeds made in long-distance racing from the beginning of this sport. The
ratane racing from the beginning of this sport. The
first chapter treats of the various forms o first chapter treats of the various forms of
hydrocarbon explosion motors used on auto mobiles, and of the means employed for studying them and measuring their power. Othe
chapters are devoted to methods of cooling mechanically-operated and automatic inlet valves, governing, ignition systems, carburet ers, mumers, and methods of properiy balan ing motors, with tne mechanical principles in
volved
One of the contains rules of construction and operation to be followed in order to avoid fires. This mation, especially for all interested in the theories met with in automobile construction Die Kitte und Klebenittel. Ausfuehr liche Anleitung zur Darstellung aller fuer Glas Porzellan Metalle, Leder Eisen, Stein, Holz, Wasserleitungs-un
Dampfroehren. Von Sigmund Leh-
ner. Sixth revised edition. Vienna
16 mo . Pp. 136 . Price $\$ 1.00$
We have already reviewed the earlier editions of this work on adhesives, at some length,
for which reason it is hardly, necessary to enter into a second discussion. It should be observed, however, that some portions of the work have been considerably amplified, notably the
chapters on gas and water piping. There is hardly a single industry which does not employ an adhesive of some form in its processes. In this book will be found formulas and methods of applying cements, and the like, for glass,
iron, porcelain, stone, wood, leather, and al most every material used in common life
Iron, Steel, and Other Alloys. By Henry in Columbia University in Me Cilurgy New York. Boston. Sauseur Whiting 1903. Pp. xviii, 457. 8vo Price $\$ 5.00$.
Alloys are most important in the arts, and we always welcome any addition to the litera work deals with cooling curves, freezing point curves, the constitution of binary alloys which form no definite chemical compound, variations in electrical conductivity and other properties
of series of alloys, the metallography of iron and steel, the heat treatment of steel and cast ron, the phase rule, progress in the manufac the blast fund steel between iscical ras fur naces. The book is a most helpful one to all no hesitation in recommending it to our read ers.

Vol. I. Electrical, Magnetic, and Electrostatic Circuits. By Harris J Ryan, M.E., Henry H. Norris, M.E. and George L. Hoxie, M.M.E., Ph.D New York: John Wiley \& Sons 1903. 8vo. Pp. 258. Price $\$ 2.50$ The form of the material in this volume
is the result of several years of experience is the result of several years of experience
in its use as a text for the instruction of classes in Cornell University. The book has been designed as a distinctly engineering text, matics It is a book which will be found o great value to those who have mastered a fair amount of mathematics. It is illustrated by 134 figures, and is admirably printed.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending March 22, 1904.
\qquad
 Acid, manne macturing hydrotluoric, Advertising device, \mathbf{J}. 754,978
755,232
7535
7

 Amalgamator and concentrator, K. Lanius
Animal leader, H. O. Seifert, A .
Antifriction end thrust device, S. S. Eve

 Bags, etc., frame for, F. Viano........
Baking apparatus, C. T. T. Fiygare.
Balance, spring, S. R._Munson

Mutual Rubber shares are selling above par right now and they are selling fast. The number sold in the last month has been so great that the present series of shares is bound to be exhausted so quickly that only those who act now can participat in this great opportunity at the present price. Many readers of this magazine intend to join this new and immensely profitable evelopment in the world's progress, but unfortunately for them, they have not yet acted. In justice to these dilatory ones, however, and in order to protect them as fully as possible, the management has set aside a block of stock which will be reserved especially for the readers of Scientific American.

This block is not so large as we wish it were. Indications readers that the allotment will be largely oversubscribed. But this allotment is just as large as we can make it without injustice to others. If you have been procrastinating-if you have been putting it off "until to-morrow," or "until next

SECURE YOUR SHARES AT ONCE

The Mutual Rubber Production Company is divided into only 6,000 shares, each one representing an undivided interest equivalent to an acre in our great commercial rubber orchard. These ,0 land in all the world In Chiapas, Mesice production of production of crude rubber from the uncertain method here provident natives- to the most solid and permanent basis known provident natives to the most solid und per Angent basis known oo modern scientific forestry, and under Anglo-Saxon superision. No ind wath in without making immensely wealthy all those interested in the change The enormous fortunes made the past, by the cor the past, by gathe in the tropical jung pred to the sure and permanent incomes to be derived from ared to the sure

There is nothing speculative about Crude Rubber. It can be gathered every day in the year irrespective of weather or season. at a stable price that has been steadily advancinǵ for many years.

No large cash down payment is required to secure these shares, as they are paid for in small monthly instalments, as the work of development progresses. For $\$ 20$, as the first monthly payment, you can secure five shares. Then you pay $\$ 20$ a month or 11 more months, then $\$ 15$ for 12 months, then $\$ 10$ a month for a limited period, until you have paid $\$ 1,380$, the full price for you will have received dividends amounting to $\$ 1,050$, or $\$ 210$ you will have received dividends amounting to $\$ 1,050$, or $\$ 210$ per share, so that the actual net cost of your shares in this re markably safe and profitable investment will be only $\$ 330$ of your own money, or $\$ 66$ per share. Then, from the maturity period onward, your five shares, or acres, will yield you or you Early dividends are more years than you can possibly live. Early dividends are provided by "tapping to death"' 400 of the 600 trees we originally plant to each acre, and the 200 trees
remaining for permanent yield will produce every year 2 pounds remaining for permanent yield will produce every year 2 pounds of rubber each, at a net profit of at least 60 cents a pound These statistics are vouched for by the Government Reports of the United States and Great Britain-the most reliable sources of information in the world

This means, on your five-share investment, a permanent and certain income of $\$ 1,200$ a year, or $\$ 2,400$ a year on 10 shares, or better still, 25 shares will yield you $\$ 6,000$ a year. Of course, a single share can be secured on the same advantageous basis. Here is the opportunity for people of moderate means to secure an investment in a new and immensely profitable industry, that is already attracting the attention of great capitalists.

Already over 3,000 shares in this Company have been sold, and remember, there are but G,000 shares altogether. The work at the plantation, owing to the even and unchanging climate of the semiotropics, is progressing rap Climat idly. presen present price after those in the present series bemade without further notice.

Every possible safeguard surrounds this investment. The State Street Trust Co. with them the money paid in for shares, and we file with them sworn statements as to the development of the property. This company also acts as Registrar of our stock.
You are fully protected from loss in case of death or in caseof You are fully protected from loss in case of death or in caseof lapse of payments, and
we grant you a suspension of payments for 90 days any time you may wish. Furthermore, we agree to loan you money on your shares.
we can prove to you that five shares in this sofe
We can prove to you that five shares in this safe and permanent investment. paid
for in small monthly instalments, will not only bring you an average return of 25 per cent. on your money during the period of payment z5 per cent. on your money during the period of payment,
but also will then bring you $\mathbf{\$ 1 0 0}$ a month for more than a life time. Send us at once $\$ 20$ as the first monthly payment to secure tive shares $\$ 40$ for 10
shares. $\$ 100$ for 25 shares- $\$ 4$ per share for asmanysharesas you wish to secure. If shares. \$100 for 25 shares- $\$ 4$ per share for as manyshares as you wish to secure. If
you act to-day you will have time to investigate this proposition thoroughly, butyou
have no timeto lose. Our literature explains our plan fully and concisely and proves have no itmeto tose. Our literature explains our plan fully and concisely and proves
every statement. It will be sent to you immediately on request.

Mutual Rubber Production Co. 88 Milk Street, Boston, Mass.

MACHINES FOR ROLLING

SCREW size up to 1' $^{\text {I diameter, } 3^{\prime \prime}}$ Any size up to of mameters.
ong. Four sizes on mend for Catalogue. BLAKE \& JOHNSON,
 Kerosene 0il Engine Nothing but Kerosene Oil to run it
Simple, sate and Emficient. Needs little
aitention is

 International Power Vehicle Co.
 WILIANS
BROS., Ithaca,
W.
In

GAS ENGINE DETAILS.-A VALUA-

Send For It To.Day

 KENT POCKET METERS

$\frac{\text { Atwater }}{\text { Our }}$

WORK SHOPS 8 BARNES' FOOT POWER

ELECTRIC LAUNCH MOTOR. - THE

Better Light-Less Cost

NO LOOP-HOLES

1 V a Columbia／s Zither． A better instrument than a banjo，guitar or mandolin．You can play tunes on it as soon as you get it．It is suita－ ments，songs，dance or sacred music，

COLUMBIA ZITHER

o long，tedious hours of practice We teach you to play it FRREE． Beautifulin appearance，sweetandres s paid，on receipt of price FREE o every music lover，we Music in 3 Days，＂which tells you how to become a clever and
accomplished player in 3 days to 3 weeks．We have published an edition oí 10,000 of these elegant illustrated one at once．PHONOHARP CO．， 144 Liverpool St．，East Boston，Mass．

ELECTRO MOTOR．SIMPLE，HOW TO make－－Br G．M．Hopkins．Description of a small elec－ ing amateurs to nake a motor which might be driven
With advantage by a current derived from abtattery，and
which would have sufficient power to

Lackawanna Motors
 are Simple and Valveless．Easy to
start and easy to operate．
For automobiles and launches．
$\mathbf{3}$ to $\mathbf{2 4} \mathbf{H . P}$ ． Cut shows Lackawanna Reversing
Device attached to our 6 H．P．marine

motor．No reversing gear necessary | LACKAWANNA MOTOR COMPANY |
| :--- |
| 51－61 Letchworth St．$\quad-\quad-\quad$ Buffalo， $\mathrm{N} . \mathrm{Y}$. |

Regular Rug Sizes For Good Acme Flexible Clasp Co．，17th \＆Clark St．，Chicago

| In |
| :--- | :--- |

 Shock－ses
Shorent
Shoe－form

RIDER AGENTS WUNTED

Berkefeld Filter
 berkefeld filter co．， 4 Cedar Street，New York

Marine Motors

，

Reliable＂
Rum or make and break Spark．
Boston Gasoline Engine Co．
S2OO．A MONTH

STEAM HEATERS
 Write for erirualar and prices.
J. A. STOWELL CO.

The Balanced Motor

Patents Cover the Three--Speed Transmission,

 THE HAYNESAPPERSON COO., Kokomio, Ind.

MILLS FOR ALL MATERIALS:

C

From Top to Bottom The Nature Library
\%
is filled with live interest and all the charms of the outdoors.
It forms the only complete American library of the open
air. The value and comprehensiveness of the set is well evidenced by the titles of these

4,000 pages, $101 / 4 \times 73 /$ inches.
300 plates in full colors.
450 half-tone photographs.
$\mathbf{1 , 5 0 0}$ other illustrations and a general introduction by
JOHN BURROUGHS.

Mrs. Helen R. Wells, Aks:
Ohio, says:
"I "I can hard-
ly say enough ly say enoug
in praise o The Nature Library.
The whole family from the grandmother to the
youngest child is delyghted with them. My
boys butterflies and anticipate greatest pleasure in therr the
The older one who is sixteen
will The older one who is sixteen
whey have studies in which
they be the ten-year old will get much from them.
He says: 'Oh, I feel as if we're just rich to have these books.' While the fathe is particularly interested in that book.'

You will
great work.

hat gives some idea an elaborate booklet thoritative character of the books. shows how this library most valuable doubleday PAGE \& CO.
 lind
tontains striking specimens of the wonder-

Tin

 Turbine, steam, F. D. Shepherd
Turbine, steam, J. . . Svans.
Turbines, detachable blade for

 Vehicle positioning apparatus, G. A.
Vehicle runing-gear, Vefries
Vehicle-wheel, Hele-shaw J \& Helliweli
Vehicle-whel Hel

 Vibrator, electric, W. MacMillan....
Wagon-bolster, J. W. Watterson
Wagon stake or standard,
Wagon stake or standard, F. R. A. Mac-
Kannnon
ing, device for unlo...................iond
ing earth, manure, etc., from, W. Wo

Wash apparatus, C. F. V. Flint
Wanhing-machine, L. W. W. Smith
Washing-machine, ©. S.
Watch, stop, S. Petrillo....... Water-closet, \mathbf{W}. Kulow...
Water-gage, L. A. Bertrat
Water-gat

 Well parwerker, oin, smith \& Wright. Wheel, J. G. Ranger, J............
Whel. construction, Wirchman.
Whifletree-coupling J. R. Rring.
Whip holder and

DEAFNESS CURED

A Device That is Scientific, Simple, Direct, and Instantly Restores Hearing in Even The Oldest Person-Comfortable Invisible and Perfect Fitting.

190 Page Book containing a History of the Discovery and many Hundred Signed Testimonials from All Parts of the WorldSENT FREE.
 Geo. H. Wilson, the Inventor. I was deaf from infancy. Eminent doctors, surgeons did me no good. I tried ail the artificial appliances that
claimed to restore hearing, but they failed to benefit me claimed to restore hearing, but they failed to oenefit me
in the least. I Ieven went to the best specialists in the
world, but their efforts were unavailing.
My case was pronounced incurable!
I grew desperate; my deafness tormented me. Da
I was becoming more ot a recluse, avoiding the compa ionship of people because of the annoyance my deafness
and sensitiveness caused me. Finally I began to experiment on myself, and after patient years of study,
labor, and personal expense, \mathbf{I} perfected something that I found took the place of the natural ear drums, that I
called it Wilson's Common Sense Ear Drum, which I now wear day and night with perfect comfort, and do not
even have to remove them when washing. No one can
tell ell I am wearing them, as they do not show, and as they
ive no discomfort whatever, I scarcely know it myself. give no discomfort whatever, I scarcely know it myself.
With these drums I can now hear a whisper. I Ioin in the general conversation and hear everything going on
around me. I can hear a sermon or lecture from any part of a large church or hall. My general health is im. proved because of the great change my Ear Drums have
made in my life. My spirits are bright and cheerful. I made in my life. My spir
am a cured, changed man.
Since my fortunate discovery it is no longer necessary
for any deaf person to carry a trumpet, a tube or any ther such old-fashioned makeshift. My Common Sense
EarDrum is built on the strictest scientific principles contains no metal, wires or strings of any kind, and is
ontirely new and up to date in all respects. It is so smal entirely new and up to date in all respects. It is so small
that no one can see it when in position, yet it collects all the sound waves and focuses them against the drum head, causing you to hear naturally and perfectly. It will
do this even when the natural ear drums are partially or do this even when the natural ear drums are part ially or
entirely destroyed, perforated, scarred, rela a xed, or thick-
ened. It fits any ear from child ened. It fits any ear from childhood to old age, male or
female, and aside from the fact that it does not show, it female, and aside from the fact that it does not show, it
never causes the least irritation, and can be used with
comfort day and night without removal for auy cause. With my device I can cure deafness in any person, no
matter ho aceuired, whether from catarrh, scarlet matter how acquired. whether from catarrh, scarlet
fever, typboid or brain fever, measels, whooping cough
gatherings in the ear, shocks from artillery, or through gatherings in the ear, shocks from artillery, or through
accidents. My invention not only cures, but at once
stops the progress of deafness and all roaring and buzzstops tise progress or deafness and ar roaring and buzz-
ing noises. The greatest aural surgeons in the world
recommend it, as well as physicians of all shools. It
will recommend it, as well as physicians of all schools. It
will do for you what no medicine or medical skill on
earth can do. I want to place my 190 page book on deafness in the
hands of every deaf person in the world. I will glady hands of every dear person in the worla. I will gladiy
send it free to anyone whose name and address i canget.
It describes and illustrates Wilson's Common Sense Ear Drums and contains bona fide letters from numerous
users in the United States, Canada, Mexico, England users in the United States, Canaia, Mexico, England
Soctland, Ireland, Wales, Austraia, New Zealand, Tas-
mania. India, and the remotest islands. 1 have letters rom people in every station of life-ministers, physi-
cians. lawyers, merchants, society ladies, etc.-and tell the truth about the beneefts to be derived from my
wonderful little device. You will find the names of wonderful little device. You will find the names of
people in your own town and state, many whose names
you know, and I am sure that all this will convince you people in your own town and state, many whose names
you know, and $\begin{aligned} & \text { a am sure that all this will convince ou } \\ & \text { that the cure of deafness has at last been solved by } \mathrm{my}\end{aligned}$ invention.
Don't delay; write for the free book to-day and ad
int Don't delay; write for the free book to-day and ad-
dress my frm-The Wisson Ear Drum Co., 1674 Todd
Building, Louisville, Ky., U. S. A.

LIP-KIP
Mancour
2-wwz
-

A Hot Bath

 anywhere-any time-in one minute-for one cent. $\begin{gathered}\text { Send for our valuable and inter- } \\ \text { esting booklet, "The luxury of } \\ \text { a Bath," which tells how }\end{gathered}$
Hot Water

and plenty of it, has been brought within the reach
of everyone, no matter where, at an insignificant
cost, by the
Humphrey Crescent Instantaneous Water Heater Sold by All Plumbers
This heater is used in over 50.000 homes, is hand-
some in appearance and readily and quictly installed.
Hot wate Hot water starts the moment the match is apr,ied
and flowsin unlimited supply. Gas is the fuel and
less of is used than in any other beater. Saves
time and money and is the greatest convenience a ime and money and is the greatest convenience a
huuse can have. Sent 30 DAYS TRIAL.
Humphrey Co., Dept. L, Kalamazoo, Mich.
IT WILL PAY YOU TO KNOW US.

Wry and architecture at reasonable rates. BUFFALO GEAR \& PATCRN WORK, BU, HOW TO MAKE AN ELECTRICAL electric circuits for small furnace work. By N. Monroe

\$8:00 OUTFIT FREE.

Trade Marks,
Designs. quickly ascertain our opinion free whether an invenstrictly confidentiai. Handbook on Patents scientific American

TRADE MARKS.

LABELS.

[^0]

A NEW INVENTION IN PRACTICAL UTILITY A 2oth Century Idea
THE WIZARD "TICK-TACK" NURSERY CLOCK

A Difference in Steel Castings

Export Trade

How to Secure and How to Hold It
 EXPORT EXPERT

 CHEMICAL EXAMINATIONS OFALAL BUILDERS of Special Machinery, Models,

"THE CRYSTA"" Pratave dEvN",

the winton motor carriage co., Cleveland, u.s.a.
Orient Buckboard

witb
Two Speed
Price, $\$ 425$ $\underset{\text { Weight, } 500 \mathrm{lbs}}{\text { 4 P. }}$

The speed of the wind, and the simplicity of a bicycle.
WALTHAM MANUFACTURING CO.

+ CHARTER
(f) Get GAS and GASOLINE

4tationaries, Portables, Hoisters, Pump-
Stater
Ers, Sawing Boat Outits.
Send for Catalogue and Testimonials. State Your Power Needs.
Charter gas engine co., Box 148, STERLING, iLL

RADIUM

THE SPINTHARISCOPE for showing the marvelous properties of radium.
With particle of Radium, post paid,
$\$ 9.00$.

 DUdUS Also 1000 useenul articles, including sates,
 Carbo-Negus

$\mathrm{O}=0=0-0$!
be YOUR own boss
Better than a bank account

 Dept A. Pamphlet mailed free upon request.
Waltham Horological school

STEEL

ITS METALLURGY AND MECHANICAL TREATMENT

BY HARBORD AND HALL In the Metallurgical Series

Edited by
W. ROBERTS-AUSTEN

758 pages, 37 folding plates, 100 micro
sections from photographs, and 270 illustrations in the text, \$9.00 net

Newest-Most Exhaustiveand Comprehensive Treatise J. B. LIPPINCOTT CO. Publishers

Phila.
SHOE BLACKING.-FORMULAS FOR
 What Is Daus' Tip-Top?

The Felix F. Daus Duplicator Con, Dans Bldg, 111 John St, New Yorl
Have Your Own Electric Light Plant
Our electric light outfits are complete in every detail, ready
to set up and use either in Yachts, Summer $\mathbf{H o m e s}$,
 can be used to rurnish power for other purposese as well
They are pratical and so simple that no electrician ris red
quired to run them. For interesting booklet showing all sizes, address ELECTRIC DEPARTMENT RICHARDSON ENGINEERING CO.,Hartford, Ct .

SAVE ONE THIRD

By Buying of the Makers

 Iogue shows a greater asoriment of carrit.
than any dealer can show you. send for it.
THE COLUMBUS

THE COLUMBUS
CARRIAGE AND HARNESS COMPANY, columbus, ohio

JEFFREY
ELEVATING--CONVEYING--POWER $\begin{gathered}\text { For Cataloguesadress } \\ \text { THE }\end{gathered}$ ELENsmission-Screening-.Dredging--Coal cutting
Drilling--Hauling-Washing Machinery.

NEW ENGLAND WATCHES
 Screw Case
Water THisht
and Dust Proo
The New England Watch Co.

 Special Prices on all the Best Tires

 New Biographical Dictionary Nith over 10,000 namesofnoted persons,birth,death,
Edited by W. T. HAR RIS, Ph.D.,LL.D., United States Commissioner of Education. $\begin{array}{ll}\text { New Plates. } & \mathbf{2 3 8 0} \text { Quarto Pages. } \\ \text { Rich Bindings. } & 5000 \text { Illustrations. }\end{array}$

Should be in Every Home, School and Office
 just issued, prpecial Thin Paper Edition
 FREE, "ATest in Pronunciation" G. \& C. MERRIAM CO. Publishers, Springfield. Mase:

MICROSCODPS

Our Microscopes, Microtomes, Laboratory Glassware, Chemical Apparatus, Chemicals, Photo Lenses and Shutters, Field Glasses, Projection Apparatus, Photo-Micro Cameras are used by the leading
Laboratories and Government De. partments Round the World. Catalogs Bausch \& Lomb 0pt. ${ }^{\text {free }}$.

```
New York Chicago Boston Erankfart, Gy
```


THE INTERNAL WORK OF THE

 $\underset{\substack{t o \\ \text { Itapplies } \\ \text { IIritord } \\ 1}}{ }$ \qquad

TYPEWRIIER HEADOUARTERS

[^0]: ## PRINTS,

 \qquad
 \qquad The American Giri,; for candy, c. A. Roach... ${ }_{940}$

 A printed copy of the specification and drawing in print issued since 1866, will be furnished from
 this office for 10 ents, povided the name and
 number of the patent desired and the date be number of he paunt \& Co., 361 Broadway, New
 civen. Address Munn
 York.
 Candian patents may now be

