

Displacement, 7,800 tons. Speed, 21 knots. Coal, 1,100 tons. Armor (Krupp): Belt, 8 in. to 4 in .; Deck, 2 in .; Gun positions, 7 in. to $61 / 3 \mathrm{in}$. Guns: Two 8 -in.; eight 6 -in.; twenty 3 -in.; seven smaller guns. Torpedo tubes: 2 submerged.
ARMORED CRUISER "BAYAN." DATE, 1900. NOW IN THE PACIFIC FLEET

Displacement, 13,000 tons. Speed, 18 knois. Coal, 1,250 tons. Armor (Krupp): Complete waterline belt. 10 mn . to $41 / 2 \mathrm{in}$.; Complete belt above this, 8 ft . deep, 6 in. to $21 / 2 \mathrm{in}$.; Protective deck. 4 in . on slopes; Gun deck, $2 \mathrm{in} . ;$ Main turrets, 11 in .; 6 -in. gun turrets, 7 in.; Ammunition hoists, 10 in . and 5 in . Guns : Four 12.4 -in.; Twelve 6 -in.; Twenty 3 -in.; Twenty-eight small guns. Torpedo
tubes: 2 under and 2 above water.

THE FINEST BATTLESHIP IN THE RUSSIAN NAVY, "CZAREVITCH." BUILT 1901. SUNK AT PORT ARTHUR.-[See page 157.]

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.
 Editors and Proprietors

No. 361 Broadway. New York

oney order. or by bank draft or check.
MUNN $\&$ Co.. 361 Broadway. New Y
NEW YORK, SATURDAY, FEBRUARY 20, 1904.
The Editor is always glad io receive for examiuation illustrat.
articles on subjects ot timely interest.
 witir receive spe cual atte
at regular space rates.

the man behind the gun

The crushing blow delivered by the Japanese at Port Arthur against the Russian fleet affords another proof of the fact that, after we have made a most careul comparison of the fleets of the two contending na tions, it is impossible to say whether this one or that possesses the most efficient navy, until we know something about the quality of the officers and the crews. On paper, as we have shown in the present and the preceding issue of this journal, the Russian and Japanese fleets in the Pacific were approximately equal the two extra battleships possessed by Russia fairly oif setting the superiority of Japan in armored and proected cruisers. At the close of our article we suggested that the question of supremacy might depend entirely upon the personnel; and in the short interval of a ew days that question has been decided in a most emphatic manner. The ships attacked by the Japanese fleet in Port Arthur were among the very finest afloat, one of them, the "Czarevitch," being provided with internal bulkheads of armor plate, designed to limit the destruction of a torpedo, while at and above the water line she carried two complete belts, one above the other, where the ordinary battleship carries only one Moreover, in arming the Russian warships, particular attention has been paid to the repelling of torpedo-boat attack, and all of the ships carry an exceptionally nu merous battery of 6 and 12 -pounder rapid-fire guns. Yet, in spite of unusual offensive and defensive protection, the Russian ships apparently fell easy victims to the torpedo at the very first attack. The fault lies certainly not in the ships, and just as certainly it must lie with the officers and crew. It is evident that the Japanese, mmediately upon the rupture of diplomatic relations, moved swiftly upon a well-considered plan. They knew the location of every Russian ship, and they were quick to seize the tempting opportunity offered by the assembly in the outer harbor of Port Arthur of the very flower of the Russian navy. The comparative ease with which torpedo boats secured their victims proves either that the Russians were extremely careless and neglected the most ordinary precautions, or that the effectiveness of torpedo-boat warfare has been greatly underrated.
n the first two or three days of the war the Japanese have crippled the Russian Pacific fleet by the destruction or disablement of eleven Russian warships, aggregating about 72,000 tons displacement, or over fifty per cent more than was put out of action by the United States ships in the whole Spanish war. What makes the loss so overwhelmingly disastrous for Russia is that these eleven are the very pick of her fleet. The "Czarevitch" is the latest and finest of the Russian battleships, the model upon which all her later vessels have been laid down; the "Retvizan," built by the Cramps, was considered also to be one of the best war ships afloat, while the "Poltava" is a battleship of about the size and effectiveness of our own "Iowa. Next in importance are four splendid cruisers, among the very fastest in the world, the "Variag," "Pallada," "Askold," and "Diana," vessels of 6,500 tons, 23 knots speed or over, with a heavy modern armament. Then there is the cruiser "Boyarin," a crack vessel of $221 / 2$ knots speed, just out of her builders' hands, and the knots speed, just out of her builders hands, and the
"Novik," of 3,000 tons, which has the distinction of "Novik," of 3,000 tons, which has the distinction of
being the fastest cruiser in the world, her speed being being the fastest cruiser in the world, her speed being
26 knots an hour. In addition to these are the two 26 knots an hour. In addition to these are the two gun-boats "Korietz" and "Mandju," Of these vessels,
the sister ships "Variag" and "Pallada" are sunk, the one by gun fire, the other by torpedo and for the present at least may be stricken off the list. The other véssels have been struck below the waterline by gun fire, and with the very limited repair facilities at Port Arthur, it will be months before they are again on the active list. The balance of naval power has passed to Japan, and her superiority appears to grow steadily as the days pass by. Having the command of the sea, she can pour the whole of her troops into Corea; for the fear of invasion being now removed, the troops that were necessary tor home defense are iiberated for service
on the mainland. It is trivial to talk of sending out the Baltic fleet, for the ships are generally old and of doubtful value, and they would undoubtedly be inter cepted and sunk by the Japanese before they reached the scene of hostilities. The Black Sea fleet is shut up by treaty obligations. With her navy crippled and blockaded, Russia must now depend upon her land orces to retrieve her reputation. Port Arthur will be cut off and besieged, and the war will probably be a repetition on a large scale of the siege and relief of Ladysmith, South Africa. The ultimate issue will in this case, as in that, depend upon the staying power of the besieging and relieving forces.

WINTER INSECTS

The first chill days of autumn send a thrill al hrough the barren woods and fields. Foliage begin that magic change of color which glorifies the land cape of our American autumns; tender; sensitiv plants of garden and fields shrink and shrivel up be fore the chilling blast, and tens of thousands of insects cease their hum and grow sluggish and voiceless. Wild animals and reptiles lift up their heads in mute appeal to the lingering rays of a still warm sun, but retreat o their homes in holes and burrows as night fall around. A mystic silence creeps over the country, and a period of rest for all nature follows. It is harvest time for man, and he garners his grain and fruits, re lenishing his storehouses with food to last anothe peason.
It is the final end for great multitudes of insects, which live but a summer, and then pass into the eternal silence of death. To them the few months of warm weather have been a lifetime-the beginning and end il 2.11 existence. The days and weeks have been year and decades to them-the completion of the cycle of youth, maturity, and old age. They have lived their allotted time-performed their work-and died. But they have perpetuated their species in the eggs and cocoons which they have securely buried in plants and trees, where neither frost nor ice can injure them. They may yield up their individual life; but their race con tinues forever.
F'or others the end of summer merely portends the beginning of that strange period of rest which we term hibernation. Life"s activities and functions are merely suspended. Sleep-long, deep, dreamless sleep-broods over the earth, and beneath the crackling frost and ice, beneath the shroud of white snow and frozen earth, the dumb creatures of the woods and fields are slumbering. Occasionally a warm day of mid-winter penetrates to their hidden homes, and they move restlessly.
If the naturalist knows the secrets of nature, it is not difficult to find studies of animal and insect life in the woods and fields these cold days. Every tree and plant is the home of some creature, and beneath every sod and trunk there is reposing some hibernating insect or four-footed beast. Nature's signs are invisible to the uninitiated, but to those who know, they are scattered around plentifully, suggesting experiences that will amply justify the inconvenience of a day's trip to the woods. But one can find all the signs of a teeming population without stirring beyond the orchard of the country home or park of the city. Tens of thousands of hibernating creatures and embryonic insects are comfortably passing their winter in the trees and plants which adorn our city parks. An acre of trees may contain a population greater than that of all the registered voters of New York or Boston.
Eggs there are everywhere-eggs which have been so carefully deposited and hidden that the severest storms and cold waves of winter are unable to touch or injure. Those which are sensitive to frost and rain are buried at the bottom of deep holes in the trees, which were drilled with such care and labor by parent insects before the frost of autumn sounded their own doom. Tiny rolls of sawdust may mark the opening of one of these drilled holes, or a slight mound of sticky substance which the mother drew over the opening. An inch or two deep in the bark and wood of the tree the eggs snugly rest until the warmth of spring hatches them. The varnish-like substance which covers the entrance sheds the snow and rain so that no moisture can penetrate to the winter home of the future insect host.
The anxious orchardist goes forth in autumn and winter to find the eggs of the insects, and in trees and vines he uncovers their hiding place. A long wire thrust down the hole exterminates eggs or hiding grub. Experienced in his work, the hunter examines the bark of a tree, and uncovers the roots of the trunk. Somewhere the trail of some sleeping grub attracts his atten tion, and he cuts and digs away until the hibernating creature is found. Twigs of small trees and plants yield their full quota of insect eggs. These belong to the non-perishable order-the hardened creatures which have no fear of frost or snow. With fire disdain of the cold the clusters of eggs are merely glued to bark, stones, and twigs. They are prcof against wind, storm, rain, and cold. Only man can destroy them, with his
mplements of destruction which never fail to reac their homes. The clusters of eggs are swept and craped from their supports and thrown into the fire While cold and rain will not injure these eggs and ocoons, the alternate action of frost and a warm sun may accomplish the dreaded results. Exposed to the un's wintry rays, the cocoons and clusters of insec eggs on twigs and bark soon become more sensitive to the elements. Life is actually started therein. Death may thus follow. But the wise mothers have provided against any such contingency, and with an instinct that is marvelous every cluster of eggs is placed on the shady side of limb or tree so that the rays of the sun can never reach them. Some are placed on the north side of buildings where they are amply protected, and a few are half buried under leaves and dried grasses. Wherever located they are protected from the direct rays of the sun so that no harm can come from prema ture hatching.
Many insects lay their eggs in the ground, burying them just beneath the surface of the soil where they are frozen solid until spring. The site selected for such hatching grounds is always in the shade, away from any sunny exposure. Beneath stones and boards, under leaves and mold, they breed, choosing their site with a fine knowledge of all future dangers. Close to them are comfortably curled up in small bundles hibernatins bugs, beetles, and worms. Some of these have crawled far down below the frost line, where they remain im passive in their slumber at an absolutely uniform tem perature, and they are not disturbed until the April sun has penetrated down to their home. Then they awaken from their winter sleep, and crawl up to sunlight and life again to pass through another cycle of their ex istence.

Most of the earth-worms and destructive grubs pen etrate to a distance of a foot or more beneath the sur face of the earth, and to reach them the soil must be plowed or thrown up with a spade. Only a little work is needed to expose scores of different varieties of bugs and worms to view, while the mere lifting of a board on the shady side of a building will reveal many others which have not crawled in the earth for protection.

FORCING PLANTS BY FIRE

A curious phenomenon connected with the forcing of flowers under somewhat exceptional circumstances was observed not long ago by M. J. Jolly

On the second of September last, a large fire broke out in the village of Chaussée-sur-Marne, between .Châlons and Vitry-le-François, and destroyed a large part of the village. The fire, urged by the wind, spread as far as it was possible, and consumed the last houses on the side toward the country. It also attacked the neighboring trees forming part of a large pear and apple orchard, and reduced the two first rows entirely to ashes. The three following rows, protected by the first, and the distance, remained standing, although considerably damaged and badly scorched. The injury done to the sixth row was naturally not so great. A goodly number of branches, nevertheless, were scorched and unable to resist the heat, while the remainder subsequently exhibited a peculiar phenomenon viz., a second flowering. This began at the end of September, and in October all the branches of the trees except those that had been scorched were covered with blossoms, as in the month of May, the ones most heavily laden with flowers being those that had been most exposed to the action of heat. That is not all. In another direction the fire had ceased in the vicinity of some lilac bushes, and these, as well as some plum trees, flowered anew, the lilacs in particular being covered with blossoms

It is to be remarked that the conflagration lasted but four hours at the most, and there is therefore nothing here that resembles an ordinary forcing. All the species that blossomed are those whose buds for the following year are formed in the month of August. Now the facts gathered by M. Jolly, an eye witness, seem to show that it is possible for a momentary but strong action of heat to produce a second flowering. Does this exert a local influence, a certain desiccation of the organs of the trees? It is possible; and we have seen that a previous desiccation is necessary for forcing, just as it is, according to Geard, for the parthenogenetic development of certain eggs. At all events, the fact might and ought to serve as a starting point for experiments from which might be derived practical hints for the forcing of fruits and flowers. With early varieties, it might be possible to obtain two crops, the regular one in the spring and a supplementary one in the fall, provided strong heat were employed, although for a short time, as soon as the buds are formed. This would be more economical than the present methods, since the heat necessary for the development of the flowers and fruit would be furnished, not by coal, but by Dame Nature. Some horticulturist or amateur would do well to make the experiment.

NEW KIND OF RAYS EMITTED FROM THE BRAIN AND NERVE CENTERS.
In continuing his researches upon the rays which are given off from living organisms, and especially the human body, M. Aug. Charpentier brings out some remarkable facts. He seems to have proved that the brain and nerve centers not only give off N-rays, but also a new form of radiation which is peculiar to them. The N-rays will pass through an aluminium screen, while the new rays will not. In a paper read before the Académie des Sciences he mentions his new researches.
The emission of the N-rays by living organisms is not confined to the human body. Different animals, such as the rabbit and frog, will produce them, and no doubt the inferior animals as well. Here, as before, it is the muscles and nerves which form the principal source, and the emission of rays is stronger as these are in a state of greater activity. The frog, in spite of its small size, is a good subject, and shows that the effect is not due to an increase of temperature. This can also be proved for warm-blooded animals by heating the phosphorescent test-screen to 40 degrees C. or more (when it becomes more luminous) and its phosphorescence increases as before when placed near the muscles, nerves or nervous centers, even in a state of rest, and the effect is still stronger when these are in a state of activity. The rays act upon all forms of phosphorescence. The N-rays from the sun were found to increase the brightness of the glow-worm. M. Charpentier finds that phosphorescent bacteria have their brilliancy increased when placed near the heart, muscles, and nervous centers, in about the same way as sulphide of calcium.
Seeing that solids under pressure generally emit the N -rays, the latter were sought for in the tendons dur ing the muscular contraction, but no effect was found. On the contrary, the bony portions which were compressed by the tendons showed a decided action. The tendons have but few nerves, while the preceding points are abundantly supplied with nerve terminals, whose compression explains the effect. It is observed whose compression explains the effect. It is observed
that even a slight compression of a nerve considerably that even a slight compression of a nerve considerably
increases its power of augmenting the brightness of the increases its power of augmenting the brightness of the
screen, but after a time the effect dies away. It is screen, but after a time the effect dies away. It is
found that it is the nerve centers of the body which have the strongest action in emitting the N-rays. The path of the spinal cord can be traced by the proofscreen. At the upper part the effect is stronger. When the arms are contracted, a corresponding increase is seen in this part of the spinal cord, and if only one arm is contracted the effect is noticed on one side alone, due to the increased activity of this part.
To explore the rays, M. Charpentier uses straight tubes of lead, from 2 to 4 inches long, one end being placed against the body and the other containing a small disk of cork or cardboard covered with the phosphorescent sulphide. Large screens cannot be used, as each part is influenced by the others and the whole gives a uniform brightness when the rays fall upon it.* One of the most interesting experiments is made upon the brain, by localizing the different centers of its surface. For instance, the so-called psycho-motor zones of the brain surface should, according to these experiments, show a local emission of N -rays during their special activity. This was found true for some of the best-defined zones. Among the latter is the zone which was found by Broca to be the center for articulate speech. Its projection upon the skull has been deterspeech. Its projection upon the skull has been deter-
mined with a certain precision by recognized rules. mined with a certain precision by recognized rules.
M . Charpentier found that when the subject spoke with a loud voice, or even in less degree, the proof-screen showed a greater activity in this region. He has reason to believe that even the action of thought, attention, and other mental effort gives rise to an increased emission of the N -rays from the brain, and is now mak ing observations on this point. The same effect was found in the case of other centers allotted to the act of writing, movements of the upper members, etc. The conclusion is that a nervous center increases its emission of N-rays when in a state of activity. These rays are transmitted by divergence according to optical laws. They are refracted more or less by different media and are manifested by an increase of brightness in the proof-screen, which is variable according to the intensity of the emission and the distance.

In a second note, M. Charpentier brings out the interesting point that the rays given out by living organisms differ from the N-rays discovered by M. Blondlot in certain points, and he thinks they are formed of

[^0]N-rays and another new form of radiation. This is especially true of the rays from the nerve centers or nerves, whose striking characteristic is that they are partially cut off by an aluminium screen. A sheet $1-50 \mathrm{th}$ of an inch is sufficient to cut down considerably the rays emitted by a point of the brain. The portion of the rays which passes through the screen is no longer cut off by new screens of the same metal, even an inch thick. This latter part therefore consists of N -rays proper. On the contrary, the rays from the heart, diaphragm, and different muscles are scarcely modified by the aluminium screen. This forms a characteristic distinction between the muscular and the nerve radiations. Other differences also separate the two. The effect from the nerves is strongly increased by compression; that of the muscles is much less so. A third characteristic of the nerve radiation is that it gives a much stronger effect over the other tissues upon a phosphorescent screen which has been heated to 40 or 45 deg. C These facts show the predominant and special role of the radiation coming from the nerve tissues. It is the nerve radiation which shows the greatest differences from the recognized N-rays.

EXtensive submarine construction programme FOR GREAT BRITAIN

Among the An anxiety to equip the respective navies with a large force of submarine vessels. When this naval fighting unit was at first conceived, it was regarded with skepticism by many of the powers, notably Great Britain, Germany, and Russia. But its rapid development in both France and this country, wherein the efficiency of the craft was demonstrated, has been such that there is a strong disposition among the more conservative nations to make up leeway, so as to redüce to a considerable extent the heavy lead that has been gained by France. Great Britain was the first to follow the lead of the two countries named. It did not try to design a new type of submarine reasel but availed itself of the Holland boat, which had at that time even become a pronounced success.
This vessel was utilized as a basis of operations, and when one or two boats of this type had been built, native inventors and naval designers set to work to incorporate their own improvements and developments. Many such contrivances and devices have thus been secured, but in the main the vessels are Holland boats.
The English Admiralty has been conducting several severe experiments with the submarines so far constructed and highly satisfying results have been achieved. At first the construction of the submarines was only carried out in a tentative manner, but now the Admiralty has decided upon an extensive scheme.

The description of vessel decided upon is a submersible torpedo boat rather than a genuine submarine. When first devised it was intended to act merely as a weapon of defense. Now, however, its offensive cápabilities are well established and the principal object is to design a vessel that can travel for a long distance on the surface at a fast speed, and capable of diving instantly below the surface when the necessity arrives.
The new vessels for the British navy are to be of 200 tons displacement. Experiments have shown, at least so far as the British Admiralty is concerned, that these vessels should have as great a radius as possible, and this result cannot be obtained with a less displacement than 200 tons. Yet this displacement is oily half of what the two new vessels to be laid down by the French government are to be. Each of these boats is to displace 400 tons and will be twice as large as the "Gustave Zédé," which is the largest submarine y et constructed.
The projected submersible torpedo boats approach in displacement the older types of torpedo-boat destroyers in the British navy. Their most marked feature, however, will be their ability to dive from the surface to a submerged position in the short space of about six seconds. While submerged they will be propelled by light but powerful electric motors.
The capabilities of these new vessels may be summed up as follows: (1) Traveling on the surface, sufficient fuel being carried to run the gasoline engine 50 hours and propel the vessel 400 miles at a speed of 8 knots, and, in the larger and later type, for a greater distance; (2) Awash, the boat being almost completely out of view, but the large armored conning tower rising above the surface and serving as a lookout for the officer of the watch; (3) Entirely submerged, the vessels being of sufficient strength to permit them to sink to a depth of 100 feet if necessary.
Great Britain at the present moment has eight submarines at Portsmouth, which are serving as a training school for submarine navigation and management. Eleven other craft are almost completed and will be dispatched to Portsmouth to receive the full complement of officers and men. The exact number of sub-
marines which it is now intended to construct is being maintained a secret at present, but it is anticipated that by the end of the present year Great Britain, owing to the more rapid means of naval construction, will be able to compare favorably numerically with France. The French navy this year will have thirty submarines in commission, while in the course of a few weeks Great Britain will possess nineteen boats of this type.

SCIENCE NOTES

Sven Hedin has furnished additional evidence of the Sven Hedin has furnished additional evidence of the
Chinese invention of paper. On his recent journeys he found Chinese paper that dates back to the second half of the third century after Christ. This lay buried in the sand of the Gobi desert, near the former northern shore of the Lop Nor sea, where, in the ruins of a city and in the remnants of one of the oldest houses, he discovered a goodly iot of manuscripts, many of paper, covered with Chinese script, preserved for some paper, covered with Chinese script, preserved for some
1,650 years. The date is Dr. Himly's conclusion. According to Chinese sources, paper was manufactured as early as the second millennium before the Christian era. The character of the Gobi desert find makes it probable that the making of paper out of vegetable fibers was already an old art in the third Christian century.

The Bulletin des Sciences Pharm. says that the numerous assays which have been made of coffee ber ries, etc., have shown them to contain on the average about 1 per cent of caffeine, but the determinations recently made by Bertrand are interesting as showing the percentage in the berries of the plant when cultivated in different countries, and also the percentage in the berries of other species than Coffea arabica. In the former case percentages varying from 0.69 to 1.60 were found. Of species other than C. arabica, C. canephora was found to be the richest in alkaloid, the berries yielding 1.97 per cent, while those of C. humblotiana were remarkable by reason of their containing a bitter principle, cafamarin, but no caffeine at all. The berries of C. mauritiana contained only 0.07 per cent, and therefore these two species may be regarded as yielding berries practically free from catfeine. This fact is of some importance, as there is a demand for a beverage that shall have the agreeable aromatic taste of coffee, but be devoid of the stimulating effect due to the presence of caffeine.

The utilization of what formerly were considered waste products and the resurrection of materials from a used-up state to a new condition of serviceableness have in recent times been developed to such a degree of completeness that we are scarcely prepared to admit that anything is ever irrecoverably lost. In this respect we believe in the conservation of materials just as we have long been taught to believe in the law of conservation of energy. F'rom a purely practical point of view, however, some things certainly may be so completely lost to further use that their loss may well be considered absolute, and one of these is the metal lost in the wear of railway rolling stock brasses. For the speculator in copper values, the promoter of a copper "corner," to use the broker's cant, the copper which has gone into railway brasses need have no terrors. It is not likely ever to available again in full measure. It is dissipated so completely, in part at least, that its practical recovery is not likely to receive much serious consideration. From the best available deductions on the subject it appears that' five per cent of the annual copper production of the world disappears in this way every year.-Cassier's Magazine.
Signatures are being secured by the Records of the Past Exploration Society, to a petition which they will present to Congress this winter providing for the protection of historic and prehistoric ruins of this country. Briefly stated, the petition contains the following articles: (1) That Congress pass a law prohibiting exportation of prehistoric objects from the United States; (2) that so much of all lands belonging to the United States as will assure the protection of its archæological monuments, ruins, etc., be withdrawn from settlement; (3) that all antiquities found on these lands be declared to belong to the government and the people of the United States; (4) that their removal from said lands, except on written authority of some legally constituted person or body, be prohibited; (5) that to injure or deface any of these archæological monuments, ruins, etc., or to take away any of these objects from government lands, be declared a misdemeanor, punishable by fine and imprisonment, unless done in pursuance of written authority from some legally designated person or body; and (6) that said authorities may grant such permission only to national, state, municipal, or legally in. corporated museums of the United States, and that said objects be deposited in some legally designated depository, not to be removed therefrom unless in conformity to the law.

MAGNETIC BRAKE FOR SMALL ELECTRIC MOTORS.

ane scientific american.
When a metal disk is revolved between the two poles of a powerful magnet, there are developed on it intense currents that have the effect of interfering with the motion. The greater the velocity of the disk the more intense are the currents and the stronger the reaction. If, therefore, such a disk be fixed upon the shaft of a motor, and be so arranged as to run between the poles of an electro-magnet, the currents that develop therein will counteract the motion of the motor; and, since the reaction increases with the velocity, the motor will meet with a greater resistance in proportion to its increase in speed. It will therefore be subjected to braking and releasing automatically, and always with the power that is proper to its velocity. Experiment has shown that, in small motors, this kind of braking is more efficacious and convenient than mechanical braking.
The Siemens \& Halske establishment, of Berlin, not long ago devised two types of such a brake, which are represented in the accompanying figures. In the smaller model (Fig. 1) a horseshoe magnet is so arranged that the axis of rotation of the disk corresponds to the geometrical axis of the motor. The closing of the magnetic lines of force is effected by an arc that is connected with the magnet by a brass ring. The distance between the magnet and the arc may be modified at will.
The electro-magnet is excited by two coils which are secured thereto and the extremities of the winding of which enter two mercury cups, whence fixed connections extend to terminals Owing to this arrangement, the mobility of the magnet is in nowise interfered with by stationary supply con ductors.
The horizontal magnet frame has on one end a graduated copper tube on which is a movable weight. On the other end a threaded bolt carries a counterpoise for establishing the equilıbrium.
Between the magnet and the arc already mentioned revolves a copper disk mounted on the shaft of the motor. This disk is secured to the hub by steel spokes. The heat that develops in the disk is consequently not transmitted to the shaft of the motor. The hub is secured to the shaft by means of an arrangement which makes it possible to employ the same disk for motors whose shafts have different diameters. This fastening arrangement consists of a sleeve in three parts, which, by means of a hexagonal nut, is secured to the conical hub, and, in this manner, to the shaft of the motor.

In order to limit the movement of the magnet frame and to determine the zero position, an upright carry ing two stops and an indicating pointer is placed at the extremity of the copper tube or beam, which is pointed at its end as shown. The rod and the bearing for the brake are mounted on a common base plate. In the large model (Fig. 2) the electro-magnet is movable upon the beam, so as to permit of compensating for the action of terrestrial magnet ism. Such an arrangement was not deemed necessary for the small model, because the influence of terrestria magnetism is of no conse quence.
The important point in mounting is that the axis of oscillation of the electromagnet shall coincide very exactly with the prolonga tion of the geometrical axis of the motor. After the brake has been mounted, the movable weight is placed at the zero point of the beam and the counterpoise is regulated until the beam is directly opposite the index. After the magnet has been set in action, the beam is brought back to the zero position in consequence of the action of terrestrial mag netism. The error that re sults is of no consequence sults is of no consequenc in the small model, and i corrected in the large one by the arrangement just described.
In Fig. 2 the counterpoise of the brake, placed in a north-south position, points

Fig. 1.-Shadow of a Brooch Cast by Sirius. Fig. 2.-Shadow of a Spring Cast by Venus. PHOTOGRAPHY OF STAR SHADOWS.
model, and also the various weights, counterpoises, and tools for the mounting of the apparatus.

If, after the starting of the motor, the magnets be excited, currents will be produced in the disk that will tend to cause the magnet to revolve around its axis. The beam by that very fact will leave its position of equilibrium, and, if the movable weight be displaced the equilibrium will be re-established. The work of the motor can then be calculated according to the following formula:

$$
L=\frac{2 \pi \cdot b \cdot n Q}{60.75}=\mathrm{H} . \mathrm{P} .
$$

in which Q is the movable weight in kilogrammes, b the displacement of the latter starting from the zero point, and n the number of revolutions of the motor
per minute. The value $\frac{2 \pi Q}{60.75}$ is constant, and may be displaced by c. Then $\stackrel{60.75}{L}=C, n, b$. In order to simplify the calculation, the movable weight, Q, is so selected that C shall be a whole number.

The applications of these brakes have given excellent results, and it is to be anticipated that all those who employ small electric motors will find it to their

Fig. 1.- small model magnetic brake.

Fig. 2.-MAGNETIC BRAKE FOR SMALL MOTORS (LARGE MODEL).
advantage to make use of them. The arrangement described, in fact, serves not only for the determination of the power of a motor, but also, and especially, for the regulating of the velocity of it.

PHOTOGRAPHY OF STAR SHADOWS.

In the majority of scientific questions, the least fact is, as well known, capable of giving rise to interesting researches and offering material for important philosophical deductions.

The study of the shadow projected by the stars is a case in point. It would appear so much the less interesting, at first sight, in that we do not usually think that there are any stars except the sun or moon that project a shadow. Now, a more minute examination of the subject shows that such is not the case and that, although few stars produce a visible shadow, there is nevertheless a large number of which the shadow can be photographed. The very interesting researches that have just been made by M. E. Touchet, assistant secretary of the Astronomical Society of France, prove this. There is, in the first place, reason for examining the most brilliant stars and planets, and, among others, the planet Venus, the Shepherd's Star. Venus, in fact, is, with the sun, the moon, and Jupiter, the only star that projects an appreciable visible shadow, and, in astronomical treatises and reviews, we may find numerous references to observations of this phenomenon. M. Camille Flammarion, in his magnificent work entitled "The Lands of the Heavens" expresses himself upon this subject as follows: "The light of Venus is so powerful that it occasionally produces a shadow. I noticed this fact unexpectedly one evening and without having in any wise previously thought of it. Returning from a trip to Italy, in the spring of 1873, I stopped at Vintinille, through which the train from Italy passed at about nine o'clock at night. It was on the 23d of March. Led by a guide through the dark city, I perceived that three shadows were following to our left along a garden wall near which we were walking. Very much surprised at such a shadow produced without moonshine and without reflections, I spoke of it to my two companions, who recognized it as well as I. It was very strongly and sharply defined. The sky was studded with brilliant stars; but, to our right, there was only Venus as a star of the first magnitude and so exceedingly brilliant that its light appeared alone more brilliant than all the others of the firmament combined.
"The wall was of a dirty, almost grayish-white. Had it been white, our shadows would have been still more marked.
"During the following weeks, at Nice, I renewed the experiment upon paper. The shadow of my fingers, of a lead pencil, or of any object whatever was depicted upon this with the greatest sharpness. Since then, I have often remarked the same phenomenon, which is one that anybody can easily observe, especially if his attention has been previously called to

Sir J. Herschel, in his "Outlines of Astronomy," describes the phenomenon as follows: "Under favorable circumstances, Venus projects quite a strong shadow. This should be received upon a white ground. The open window in a room with white walls is the best ar rangement. In such a situation I have observed not only the shadow, but the diffraction fringes that border its contour."
We now come to M. Touchet's experiments. Upon an ordinary astronomical telescope, not mounted equatorially, M. Touchet arranged a light camera from which the objective had been removed. In the place of this he put an object that presented details fine enough to give an idea of

Wreckage of a Cast-Iron-Front Building.

Note the Complete Leveling and Disintegration of the Buildings.

un the Edge of the Burned District, Showing the City Hall Tower Intact

View Showing al End of Street a Burnt-Out Steel buiding Standing After the Fire

Ruins of Hurst \& CC.'s Store Where the Fire Started.

State Militia Keeping the Fire Lines
the sharpness of the shadow. This latter was pro jected at the back of the camera upon a sensitized plate. Finally, in order to obtain the greatest sharpness possible, M. Touchet provided his telescope with ts strongest eyepiece, in which there was a hair-cross Then, everything being ready, he opened the frame pointed at Venus and uncovered the aperture. He annulled the effect of the diurnal motion by constantly following the planet with his hand and holding it by the hair-cross. In the only experiment that M Touchet tried, the time of exposure was is minutes, and the exposure was made between 6 h .6 m . and 6 h 21 m . in the morning. The object that cast a shadow was an incandescent lamp support with a spiral spring the image was rather weak, and required a strong in tensification, but M. Touchet thinks that the weak ness was due not to that of the light, but to the poor quality of the plate employed. Finally, the distance between the object and the plate was 21 centimeters. An attentive examination of the negative shows that the shadow is bordered with a very light zone and then with a second and darker one, and finally that the ground is uniform. These are the diffraction fringes observed by Herschel, and of which he speaks in his "Outlines of Astronomy."
Apropos of this, M. Touchet advises those who wish to see the shadow and the diffraction fringes perfectly to direct toward Venus a long blackened box closed by a plate of ground glass and provided with an objective in front. The shadow of the object will be observed to form upon the ground glass very sharply.
The details of the fringes will be seen better still by making use of a lamp and moistening the ground glass with water or applying to it some fatty material, such as petroleum, oil, or glycerine
For better showing the curious fringes that border the shadow, we give in Fig. 2 an enlargement of the original negative. The smallest details have been registered, and we observe the curious superposition of the fringes at the point of rossing.
We may ask what action the diffused light of the sky has had upon the plate. In mak ing use of a long box this is eliminated al most completely; but, upon the whole, such action is extremely feeble. Toward the end of the experiment above described the dawn was already very sensible. Now, upon the plate, we find, so to speak, no action of the sky. The part of the plate that was under the clips serving to hold it (a part that did not undergo the action of the light) is almost of the same intensity as the depths of the sky.
This first experiment made with the light of Venus having encouraged M. Touchet to take similar photographs of other stars, he tried an experiment with Sirius, the most brilliant of all the stars, and, one fine evening, succeeded in obtaining a photograph of an object exposed to the light of this planet (Fig. 1). The apparatus employed consisted of an ordinary camera of which the objective was replaced by a cardboard tube provided at each extremity with a small pin that cast its shadow upon the sensitized plate. The distance of the pin from the plate was 60 centimeters. The whole was arranged upon an equatorial mounting, and a telescope with a hair-cros permitted of following Sirius during the exposure which lasted one hour and five minutes. The image which was quite feeble, was intensified. In conse quence of the great length of the tubes, the plate received the diffused light of the sky only just in the direction of the tube, and for so small a portion of the sky the diffused light did not act in a sensible manner

As may be seen in Fig. 1, the photographed shadow is quite sharp, and round it are seen the diffraction fringes. These same fringes are produced every time that an object is lighted by a luminous point. It was thus that M. Touchet was enabled to obtain a photograph by the light of the Eiffel tower. The negative of this, which we do not reproduce here, shows at the back of the objects illuminated a dozen brilliant fringes bordering the geometrical shadow
M. Touchet's experiment made with the light of Sirius is very important from the viewpoint of the philosophical conclusions that may be deduced there from. The parallax of this star is actually fixed at 0.37 sec., that is to say, that from Sirius the great axis of the terrestrial orbit subtends 0.37 sec . Upon calculating the corresponding distance, we find that the abyss that separates Sirius from our sun is about 83 trillion kilometers.
The light, in order to make this journey, which to us is immense, takes nine years. The luminous wave that in 1903 furnished the image of the small pin, had thus traveled since 1894 at the enormous velocity of a hundred thousand kilometers a second, but they still preserved sufficient energy to act upon the bromide of silver of the sensitized plates. Our mind remain astounded in thinking of the feebleness of such lumin
ous impression acting uifon our chemical substances as compared with the immensity of the distance and with the splendor of this brilliant star, one of the most beautiful jewels in the southern heavens.

THE GREAT BALTIMORE FIRE

The disastrous fire which raged for over a day and a half in the heart of the business section of Balti more on Sunday and Monday, February 7 and 8, will rank as one of the greatest conflagrations in the his tory of this country. It was comparable indeed in its extent and the vast destruction that it entailed, with such fires as those of Chicago and Boston, a considerable portion of a square mile of the most valuable section of the city being wiped out of existence, with a loss that is conservatively estimated at $\$ 125$, 00,000 .
If some destroying genius with a grudge against this historic and prosperous city had planned to strike it a crushing blow, it could scarcely have selected the place or time to better effect. At a little before 11 o'clock on Sunday morning, when the doomed business section of the city was practically deserted and a fresh gale of wind was sweeping through the street and circling around the towering office buildings, a fierce fire started on what might be termed the windward edge of the financial and wholesale district, and o wing to a heavy explosion, which apparently scat tered and opened a way for the fire, the conflagration spread so rapidly that it was soon entirely beyond the powers of the Baltimore Fire Department to stay its progress. Growing swiftly in size and intensity as it wept forward through the doomed city, the mass of flame and falling embers no sooner touched a building -old and timbered or modern and fire-proofed, it ma ered not-than the structure burst into furious flame and added its fuel to that of the score of burning blocks

Shaded Blocks Show District Burnt Over

THE BALTIMORE FIRE

behind it. Every device known to the modern art of fire fighting-an art that has been developed to a higher extent in this country than anywhere else in the world-was tried in the endeavor to stay ruin. Dynamite was freely used in the endeavor to cut an open lane across the path of the conflagration; but even this heroic measure, which has so often proved available as a last recourse in great city fires, was fruitless in the presence of the strong wind that was blowing. Masses of burning material were picked up and flung over the gap, starting fresh fires far to the leeward of the blocks of burning buildings.
When it was realized that the local fire department was inaüquate to deal with the situation, help wa asked and quickly granted from the nearest cities Special trains were made up, consisting of flat cars or the fire engines and passenger coaches for the crews, and these were rushed on special schedules to the aid of the doomed city. Philadelphia sent seven or eight engines, and even from New York, nearly 200 miles away a similar number of engines was dispatched by special train. There is no doubt that the arrival of this timely help, which included, in addition to the detachments above named, fire engines from Washington, Harrisburg, Newark, and several other cities, served to save the city from a destruction of its business section that might have been practically complete. As it is, Baltimore has suffered a loss, the equivalent of which, relatively, would be the wiping out of the Wall Street district in New York, or what is known as "The City," the great financial center of London itself.
The magnitude of the disaster can best be under stood by reference to the accompanying map, showing the districts burned. The fire started two minutes before 11 o'clock, and at a time when the wind was blowing from the southwest, in the store of Hurst \&

Co., which was located at the corner of Liberty and German Streets: Aided by the strons wind, the fire swept at great speed toward the northeast, wiping out one great establishment after another until it reached Lexington Street, when suddenly the wind swung around through half the compass, and blew strongly from the northeast, carrying the destruction through to St. Paul Street, until every building within an area of about a dozen city blocks had been completely burned out or leveled to the ground. Then came an other shift of the wind to northwest, a change which meant much to the city of Baltimore; for the fire was now driven in the direction of the water front and what is known as Jones Falls. The fire was borne forward so resistlessly, that within twenty-four hours after the conflagration started, the whole of the are shown in our map had been so thoroughly burned out that there was absolutely nothing of a combustible nature left either standing or fallen. On the arrival of the fire departments from outside cities, they were at once sent down to the neighborhood of Jones Falls, where the most determined struggle was made to stay the further progress of the disaster. The effort was so far successful, that shortly after noon it was an nounced that the danger was passed and the fire ab solutely under control; not, however, until something like fifty city blocks had been devastated.

The appearance of the burnt city as witnessed by a member of our staff beggars description. The finan cial district was made up of buildings that varied greatly in age, size, and character of construction. Baltimore during the past few years has been undergoing that gradual reconstruction which is character istic of any modern American city. In a single stree there might be seen buildings that were representa tive of construction in almost every decade of the past century, one or two richly historical buildings being among those that were burned. The structures that were not of modern fireproof construction varied from the old two or three story characteristic Baltimore house, built fifty to one hundred years ago, to the brick and-stone and cast-iron structure, with its facing of ornamental cast-iron columns and pilasters, of the latter half of the century, to the most modern steel and masonry office building of fifteen stories or more in height One would naturally expect that in an assortment of buildings varying so greatly in their construction and their supposed fire proof qualities, there would have been shown varying degrees of ability to resist the fierce heat of the fire; but it needed but one look at the weird desolation to realize that the flames made a clean sweep of every thing. In the first place, practically every building that was not of steel skeleton construction was level with the ground, the only evidence of its existence being a mass of bricks that showed signs of having passed through the most intense heat, and occa sionally an angle of wall that stood swaying to the wind. Occasionally, rising sheer into the heavens from amid the piles of wreckage, was seen through the mass of smoke the giant form of a so-called fireproof building, whose only title to the claim lay in the fact that it alone was left standing, warped and slightly twisted, and with everything burnt entirely out of it from base ment to cornice except the steel skeleton, the encas ing terra cotta, broken floors and what remained of the of the build ings themselves is concerned, it is evident that, when put to the supreme test, modern systems of fireproof construction will enable a burnt building to stand where others will fall; but whether the steel skeleton that is thus preserved retains enough of its original strength to form the basis upon which the building may be reclothed and refurnished and given a new lease of lif $\tilde{\approx}$, can only be determined after careful inspection.

This much, at least, has been proved to a demonstration: that so far from these massive structures form ing, as it was hoped they would, a fire screen to pre vent the onward sweep of a conflagration of this char acter, they took fire apparently with as much rapidity as the other buildings, and when once alight, burned like a gigantic torch, which threw abroad, high up in midair largic torch, which threw abroad, high up in scattered far and wide over the surrounding buildings As far as could be seen, most of the burned fireproof buildings were not provided with any steel shutters, or were only partially so provided. Had there been shutters on every window, there is a possibility that the entrance of the fire would have been prevented On the other hand, it is well known that when such shutters are exposed to the full fury of the flames of a burning building that is adjacent, they will often curl up so badly that the ignition of the interior window frames and sashes is inevitable

The great lesson of the fire is that, under the contingency of a large and fierce fire, coupled with a gale
of wind, there is a probability that a huge area of any city lying to leeward of such a fire will be burned beyond all possibility of salvation by the fire department. The ease with which the fire ate up the splendid fireproof structures in Baltimore renders it prob able that, if a great conflagration should occur in this city, say, at the Battery, with a heavy southerly wind to spread it, not even the massive wall of office build ings in a district like that of Wall Street could stay its progress.

A Hadium Banquet.

The Technology Club of New York city recently held a radium banquet, in which the health of the Massa a radium banquet, in which the health of the Massa-
chusetts Institute of Technology, of the alumni of chusetts Institute of Technology, of the alumni of
which the association is composed, was drunk in "liquid sunshine."
The lights were turned out, and Lester D. Gardner began the radium display.
Mr. Gardner showed a diamond which glowed when excited by the presence of a bit of radium. He showed kunzite, excited under the same conditions, and then held up a tiny tube, of which he said:
"I hold in my hand a minute portion of pure rad um; it is difficult for you who are a few feet awa from me to see the small particles in the glass. There are, in this tube, twenty-five milligrammes of radium bromide with an activity one million times as strong as uraṇium.
"One gramme of this radium would cost $\$ 15,000$ and one pound would cost approximately, $\$ 8,000,000$. In the world, all of this radium in existence could be placed on a twenty-five cent piece, and therefore we have before us the rarest specimen of mineral on the earth. With this I intend to excite into luminescence diamonds, willimite and esculin."
Mr. Gardner then produced a dancing skeleton and other objects which had been coated with phosphorus paint, which, he said jocularly, had been impregnated with an infinitestimal quantity of radium to make its radiance permanent. Said Mr. Gardner:
"I now call your attention to radium paint, so called. This is merely a new form of our old friend luminous paint. It has been found that radium exceeds it in luminosity, and when radium can be manufactured in commercial quantities there is no doubt that a pro duction properly called radium paint can be made.
"Many questions have been asked as to the good of radium paint. A friend of mine who owns an automo bile says it will solve his difficulty, as people will run a mile when they see his radium-painted automobile dart down country lanes.'
Last of all came the "Liquid Sunshine Cocktail."| A tiny tube of radium had been placed in water in a tiny cocktail glass. A magnesium wire was burned in a corner of the darkened room and in each glass there glowed a brilliant blue fluorescence.
The toast to alma mater was then drunk from the glasses standing.

The Current Supplement.

Frank C. Perkins opens the current Suplement, No. 1468, with an illustrated article on Asiatic Locomo tives constructed in Germany. Among the many interesting papers recently presented before the American Association for the Advancement of Science was one on Scientific Investigation and Progress. The paper is published in full. In view of the proposed highspeed tests with electric locomotives to be carried out by the New York Central Railroad, an article on the experimental road of the General Electric Company by whom the locomotives are to be built, should be of interest. "A Resumé of Recent Progress in the Study of Radium and Radioactivity" is the title of an article which well summarizes recent achievements in this in teresting field. Dr. Nordenskjöld describes the results of the Swedish Antarctic Expedition of which he had command. The famous Boscoreale frescoes, now part of the collection of the Metropolitan Museum of Art, are described and reproduced.

```
A New Radio-active Substance.
```

It is said that Prof. Markwald has discovered in pitchblende minute quantities of a new radio-active in pitchblende minute quantities of a new radio-active
substance associated with tellurium. He has named the substance, on account of its association, "radiotellurium." It seems to be even more difficult to extract than radium, on account of its much smaller quantity.

Some experiments were recently carried out between Liége and Brussels to show the distances in which trains of different weights and traveling at different speeds can be pulled up. The engine was a fourcoupled, with 6 -foot 6 -inch driving whee!s. The trials were made on a falling gradient of 1 in 250 . With a train weighing 140 tons, traveling at a speed of 77.1 miles an hour, the distance with the quick-acting brake was 959 yards; a train weighing 213 tons, traveling at 73.3 miles an hour, took 756 yards; and a train weighing 216 tons, and traveling at 69.6 miles an hour, was pulled up in 769 yards.

An interesting novelty in electrical construction is a waterproof motor which has been recently installed in the basement of the store of Marshall Field \& Co. in Chicago. This motor is made waterproof for the reason that it is used for driving fire pumps and it is essential that its operation should not be interfered with by water. The equipment consists of a 100 horsepower motor geared to a duplex pump operating at 60 revolutions per minute and connected to the at 60 revolutions per minute and connected to the
sprinkler system which extends to all parts of the sprinkler system which extends to all parts of the
building. In these pipes the water is maintained at a building. In these pipes the water is maintained at a
pressure of 100 pounds. The pump is under automatic pressure of 100 pounds. The pump is under automatic
control, so that when the pressure gets below the desired point, the mechanism is set in motion until the one hundred pound point is again reached. The windings are maintained at a safe temperature by the use of a ventilating fan which draws the air in at one side of the motor through a pipe screwed to the casing and discharges it through another at the opposite side. The electrical conductors are led through a similar pipe. The result of this construction is that a stream of water may be played on the motor or it may be entirely submerged without interfering with its operation in the least.
Because of the importance of the electrical transpor tation interests it has been decided to give this indus try some considerable attention at the Louisiana Pur chase Exposition, and accordingly an advisory commission has been appointed on electrical railway tests. The personnel of the commission is as follows: J. G. White, of J. G. White \& Co., New York city; H. H. Vreeland, president of the Interurban Street Railway Company, New York city; W. J. Wilgus, vice-president of the New York Central \& Hudson River Railroad; George McCulloch, president of the Union Traction Company, of Indiana, and J. G. McGraw, president of the McGraw Publishing Company, of New York city Mr. White will act as chairman of the commission. A 1,400 -foot stretch of double track has been laid for the purpose of the tests just north of the Transportation Building and will be equipped for the most complete tests which can be devised. The tests will not take the form of a competition to any great extent, but will be rather for the accumulation of valuable data. The tracks referred to will be connected with the intramural railroad which makes a circuit of the grounds.

More than 150 private and municipal stations have commenced operations in the United States during each year since 1888, and in each of nine years since that date more than 200 have been installed, the greatest number, 277, being reported for the year 1898. As subsequently explained, the term "station" may include two or more electric plants, and as the date of installation of the station only is given, the figures do not indicate the total number of separate plants installed, several having come subsequently under one management. Each state and territory contains a number of central electric stations operated under private ownership, and all, with the exception of three territories, and the District of Columbia, Nevada, and Wyoming, report one or more municipal stations. Illinois contains the greatest number of stations operated under private ownership and Ohio the greatest number under municipal control: The greatest proportion of central electric stations is found in the North Central States. In 1890 these States contained 43.1 per cent of all the electric stations in the United States, and in 1902 the proportion had increased to 47.1 per cent. The greatest percentage of increase in the number of stations is shown for the South Central States, where 79 stations had been installed up to 1890. The number increased to 404 in 1902, or 411.4 per cent.
The suggestions made by Sir Oliver Lodge at the Physical Society as to the possibility of dissipating fog by discharge of electricity into the air have attracted much attention. Experiments proving how a smokefilled chamber could be cleared by the discharge were shown by Sir Oliver Lodge twenty years ago, and have been repeated by many lecturers since then, but no installation on a large scale was established. In reply to a correspondent who has asked whether street arc lamps could be utilized for the purpose, Sir Oliver Lodge says: "Your suggestion seems a practical one, and it would be a very good thing if something of that kind could be done. The difficulty is the insulation. If that could be guaranteed, the matter would be comparatively easy; but the potential is extremely highsay 100,000 volts. The quantity is next to nothing, and very little power is sufficient if only one could avoid leakage. I can tell you the kind of insulators that we employed for the single mast that I used in Liver pool, but it is a very different thing to try to distribute it over a number of street lamps. It is a matter very well worth consideration, however, and I am glad to find that your attention is called to the matter. In the Liverpool experiment I was using a potential higher than 100,000 volts; one could take sparks 4 inches long. But a good deal smaller voltage would do :
there are walls or other earthed surfaces in the neighborhood. For a lofty isolated mast the potential must be higher in order to secure adequate discharge.'

Engimeering Notes.

The health authorities of the District of Columbia have been making some investigations into the subject of smoke consumption, and a number of inventors and others interested in mechanism of this character were disappointed because there had been no official trials of devices for this purpose. A petition signed by 0 . G. Staples and others was sent to Health Officer Woodward, demanding such trials, and this was denied, and then the matter was appealed to Commissioner Macfarland, who immediately indorsed the action of the Health Officer. The inventors, it is said, had hoped to get some sort of an indorsement of their devices. Mr. Woodward, in denying the petition, said in part: "The prevention of smoke depends upon the application of certain principles governing combustion, which are more or less thoroughly understood. The application of these principles involves three factors: First, the device in which the combustion is to take place, in cluding the accessories thereto; second, the materials to be burned; and third, the method and conditions under which the device and the materials referred to above are manipulated. That which may be the best device in one place may not be the best in another, the prevention of smoke at any particular establishment being a problem depending on the application of general principles. Under the circumstances, such a test as desired by the petitioners would be of little or no value, and was therefore denied.'

A process of making stone from sand has been devised by L. P. Ford, formerly attorney-general of the Transvaal and now a resident of London. Reference is made to the invention in a recent issue of African Trade, which is published in London in the interest of the products of the Dark Continent. It reads in part as follows: Silicate-of-lime stone is made of silica and lime, subjected to heat and pressure, whereby a silica-of-lime stone is formed as a matrix. Mr. Ford's patent is not a concrete, but a chemical combination which has the appearance of a fine-grained sandstone and can be carved easily and cheaply, with as good results as natural stone. It has all the advantages of natural stone and in addition its crushing strength is superior to Portland stone, and it has other points which commend it highly to the building trade. Stanger \& Blount, the well-known analysts, say: "Its regularity of fracture indicates great uniformity of texture and strength." It resisted frost and corrosive atmospheres. Those in the business are thoroughly satisfied with its carving qualities, which they say are as good as those of the best natural building stones. It is suitable for use in salt as well as in fresh water, and it hardens with time. In the development of building estates where sand and chalk deposits are more numerous than either natural building stone or brick clays, the silicate-of-lime stone has decided advantages. Bricks, tiles, and paving stones can be made by the process, which is extremely simple. Demonstrations have been made from sand in the various industr:al centers. In Johannesburg, Durban, and other parts of Africa, where natural stone and brick earths are rare, the silicate-of-lime stone will be invaluable.

So much reinforced concrete is being used in the construction of buildings of all kinds at present that the subject is being given considerable attention and study by engineers. Blocks of this material when tested to destruction under uniform loading have invariably failed by shear at the ends, the lines of rupture corresponding closely to the lines of principal compressive stress for such a beam. This, then, revealed the weak point of such blocks, and in order to overcome this a new system of reinforcement has been devised by Julius Kahn, a consulting engineer of Detroit, Mich. The novelty in Mr. Kahn's system is that the stirrups are inclined to the vertical and preferably bent to a curvature to approximate the line of the principal stress and are connected rigidly to the main horizontal reinforcing bar. Some tests made recently of this character of reinforcement are of wide interest. A concrete beam with a span of twenty-six feet between supports was loaded with pig iron. At 49,000 pounds no deflection whatever could be detected. When the weight had reached 93,000 pounds, the deflection was five-eighths of an inch. At 110000 pounds the beam failed at the center, pulling the steel in two at this point. There was not the slightest evidence or weakening of any kind at any other point, which would seem to.indicate that the shear had been properly provided for. A company has been formed in Detroit to exploit this new system and several contracts have been already entered into, one of which is for the erection of an army barracks at Washington, D. C., and another is for a cement warehouse at Marlboro, Mich. Estimates are being prepared for a new building for the government at the naval academy at Annapolis, Md., a structure which will entail an expenditure of between two and three million dollars.

 Corpedo Tulles 66 above water.

Armored Cruiser "Rurik." Date, 1892. Pacific Fleet.

Protected Cruiser "Pallada." Date, 1899. Disabled by Japanese

Displacement, 12,670 tons. Speed, 18 knots. Coal, 2,000 tons. Armor (Krupp): belt, Guns: four 10-inch; deck, 23 inches; side. 5 inches; thrrets. 10 inches; casemates, 5 inches merged, 4 above water.

 inches; deck, 3 inches; side, 5 inches; turrets, 12 inches and 10 in.
six 6 -inch; 38 smaller guns. Torpedo 'Tubes, 6 above water.

Battleship "Sissoi Veliky." Date, 1894

 deck, a mehes: casemates, 6 inches. Guns: four 8.4-inc

Armored Cruiser "Gromoboi." Date, 1899. Pacific Fleet.

 Protected Cruiser "Askold." Date, 1900. Disabled by Japanese.

 and two below water.
Protected Cruiser "Variag." Built 1899 at Philadelphia Sunk by Japanese.
THE RUSSIAN NAVY

THE RUSSIAN NAVY.

It is difficult to calculate at any given time the exact fighting strength of the Russian navy, and this for the reason that access to her dockyards is forbidden, and considerable efforts are made to preserve secrecy as to the exact condition of the ships that are under construction.
Speaking first of battieships, we find that the latest addition authorized by the government is a class of half a dozen new ships, of which the following are the leading particulars: Displacement about 16,000 tons; speed, 18 knots; armor, a continuous belt, tapering from 11 inches amidships to 6 inches at the ends; a 4 -inch protective deck; 6 -inch side armor above the belt; with a second armored deck 2 inches thick forming the gun-deck; and 11 inches of armor on the main turrets. The armament consists of four 12 -inch guns in two turrets, twelve 8 -inch guns in six turrets, and twenty 3 -inch guns, with two submerged and three above-water torpedo tubes. These dimensions, however, are tentative, and may have been considerably modified. It is probable that but little has been done upon these ships as yet. Next we have the "Borodino" class of six ships, of which one, and possibly two, are completed, and the others well advanced.

Armored Cruiser "Bayan." Pacific Fleet.
Displacement, 7,800 tons. Speed, 21 knots.
mediate battery of 6 -inch 45 -caliber guns is disposed as follows: E'ight of them are mounted in four turrets protected by 6 -inch armor and located two forward of the superstructure, flanking the forward 12.4 -inch guns, and a little abaft of the same, and two in turrets aft flanking the after 12.4 -inch guns. These four turrets have the same command of probably 36 feet as the forward 12.4 -inch guns. Amidships on either beam is a pair of 6 -inch guns mounted in turrets protected by 6 inches of armor. The twenty 3 -inch guns are mounted four in the bow, four in the stern, and six on either broadside. These vessels carry two submerged broadside torpedo tubes and two above-water, one in the bow and the other in the stern. An interesting feature of these vessels is that an endeavor is made to localize the effect of a blow from the torpedo. This is done by running two vertical longitudinal bulkheads of 4 -inch armor throughout the whole length of the ship at a distance of 9 or 10 feet inboard from the ship's sides. The protection to the vitals is particularly complete, consisting of a belt tapering from 9 inches to 4 inches, a protective deck 4 inches thick on the slopes, and a second protected deck 2 inches in thickness at the level of the gun-deck. A similar ship to the "Borodino" class is the "Czarevitch," built at La Seyne, France, in

Battleship " Czarevitch."
Displacement, 13,000 tons. Speed, 18 knots.

Battleship " Pobieda." Class of Three Ships. Includes " Peresviet" and "0sliabia." Displacement, 12,670 tons. Speed, 18 knots.

Armored Cruiser "Rossia."
Displacement, 13,500 tons. Speed, 20 knots.
THE RUSSIAN NAVY.

1901, and sunk at Port Arthur. Her displacement is 13,000 tons, and she evidently was so satisfactory to the Russian naval authorities that they took her as a model for the two later classes of battleships above described. She has a continuous belt varying from 10 inches amidships to $21 / 2$ inches at the ends. Above this belt is a second complete belt of armor, which extends as high as the gun-deck, and tapers from 6 inches amidships to $21 / 2$ inches at the ends. At the top of this belt is the gun-deck, which is formed of 2 inches of steel. The number of guns and the quality of their protection is similar to that of the "Borodino" class, and the distribution of the turrets is about the same. The 12.4 -inch guns forward and aft are carried n turrets armed with 11 inches of steel; the twelve 6 -inch guns are carried in six turrets protected by 7 inches of steel; while the bases of the turrets are pro tected by 10 inches of steel in the case of the 12 -inch guns, and by 5 inches in the case of the 6 -inch guns There are also two longitudinal bulkheads of $11 / 2$-inch steel extending in the wake of the magazines and engine rooms, and located about 9 feet from the side of the vessel. It will thus be seen that the amount of armor carried by this vessel is exceptional, her protection being more complete than that of any ship afloat. The longitudinal bulkheads were supposed to render her torpedo-proof, and it is probable that it was the existence of these bulkheads that served to keep the "Czarevitch" afloat at Port Arthur until she could be brought into harbor and beached. Another peculiar feature in these ships is the heavy concentration of fire forward and aft, which consists of two 2.4 -inch guns and eight 6 -inch. The loss of the "Czarevitch" removes the finest and most modern of the Russian battleships from the theater of war, probably for many months, if not permanently.
The next two battleships in point of importance are the "Tavritcheski" and the "Retvizan," the latter built at Philadelphia in 1900, and torpedoed in the first twenty-four hours of the war at Port Arthur. The "Tavitcheski" is of 12,500 tons displacement and 18 knots speed. She is protected by a partial belt, which is 9 inches thick amidships, and by a curved protective deck, which is 4 inches over the vitals and tapers to 3 inches at the ends. Above this belt the side armor is 6 inches in thickness up to the level of the main-deck, and then 5 inches to the level of the spardeck. The armament consists of four 12 -inch guns car ried in turrets of 12 -inch Krupp armor, and sixteen 6 inch guns, of which twelve are carried on the main-deck within a broadside battery, protected by 5 inches of armor, and four are carried in broadside on the spar deck behind casemates pro tected by 5 inches of armor There are also fourteen 3 inch guns and twenty small er guns. There is one sub merged torpedo tube at the bow below the ram two sub merged torpedo tubes on either broadside near the bow, besides two above water torpedo tubes. This ship is arranged to burn oil, with facilities for a rapid change to coal fuel, if de sired. The "Retvizan," built by Cramps in 1900, is of 12,700 tons, and carries four 12-inch guns protected by 10 -inch armor turrets, twelve 6 -inch, protected by 5 -inch armor, eight of them being carried in a centra battery on the gun-deck, fou of them in casemates on the main-deck There are als wenty 3 -inch guns mounte n the main-deck in broad ide and twenty-six smalle uns. The vessel has tw submerged and four above water torpedo tubes. She has a partial belt which varies from 9 inches to 7 inches in thickness and a -inch protective deck. This ne vessel made 18.8 knot n her trial, and can carr maximum coal supply o 2,000 tons. Like the "Czare vitch," she is now the vic tim of the Japanese torpe loes, and has been beached n the mud inside the har bor of Port Arthur.
The "Poltava" class of hree battleships, built in 894-1895, forms part of th leet at Port Arthur. The "Poltava" herself was an-

russian fleet at commencement of the war.					SHIPS DISABLED IN FIRST 24 HOURS OF WAR.			
	$\begin{gathered} \text { Number } \\ \text { Nhips. } \\ \text { Ships. } \end{gathered}$	Average speed in knots.	Average displace- ment in tons.	$\begin{aligned} & \text { Displace- } \\ & \text { ment } \\ & \text { in tons. } \end{aligned}$	$\begin{array}{\|l} \text { Number } \\ \text { Nhips. } \\ \text { Ships. } \end{array}$	$\begin{gathered} \text { Average } \\ \text { speed in } \\ \text { knots. } \end{gathered}$	$\begin{aligned} & \text { Average } \\ & \text { displace- } \\ & \text { mint } \\ & \text { in tons. } \end{aligned}$	$\begin{aligned} & \text { Displace- } \\ & \text { ment } \\ & \text { in tons. } \end{aligned}$
Battleships, 10 years old or less Battleships, 10 to 20 years old or less \qquad	${ }_{7}^{13}$	17.3 16.0	11,790 9,933	$\begin{array}{r} 153,276 \\ 69,600 \end{array}$	3	18	12,233	36,700
Totals.	20	\ldots	222,876	\ldots	\ldots	\ldots	\ldots
Coast Defense Vessels...	3	16.0	4,129	12,387	\ldots	\cdots	\ldots	\ldots
	${ }_{2}^{3}$	19.6 20.0	11,999	35,817 15,800	:...	\cdots	\ldots
Totals....	5	-..	\ldots	51,617	\ldots	\ldots	\ldots	\ldots
' Protected Cruisers, $4,0 \times 0$ to $7,0^{\prime} 0$ tons Protected Cruisers, 2,000 to 4,000 tons...........................	${ }_{6}^{11}$	${ }_{23.4}^{20.2}$	6,352 3,250	69,880 $19,5\llcorner 0$	${ }_{2}^{4}$	${ }_{22}^{24.2}$	6,500 3,100	26,050 6,200
Totals..........................	17	\ldots	89,380	\ldots	. .	\ldots	\ldots
Small Cruisers and Gunboats.	13	18.5	846	11,000	2	11	1,500	3,000
Grand Totals	58	\ldots	\ldots	387,260	11	\ldots		r1,900
Destroyers	50	27.5	300	15,000	\ldots	\ldots		
Torpedo Boats, 1st Class Torpedo Boats, 2nd Class	54	$\stackrel{24}{21}$	${ }_{85}^{120}$	6,480 1,020	\cdots	…	\cdots	
Totals..	116	\ldots	\ldots	22,:00	\ldots		\ldots
Obsolete Torpedo Boats	100	\ldots	\ldots	\ldots		\ldots	\ldots

other of the victims of the great sea fight, being crippled by a hole below the waterline. The other two ships, the "Petropavlovsk" and the "Sevastopol," are similar vessels of 11,000 tons and 17 knots speed, protected by a partial belt of 15 -inch Harvey armor a 31%-inch protective deck, with 9 -inch transverse bulk heads at the ends of the armor belt. Above the belt, for the height of one deck, the side armor is 4 inches in thickness. The armament consists of four 12 -inch guns carried in 10 -inch-armor turrets with 6 -inch armor bases, eight 6 -inch guns carried in 6 -inch armor tur rets with 5 -inch armor bases, these turrets being ar ranged two on each broadside, so that four of them can fire dead ahead and four dead astern. There are also four 6 -inch guns, two on each broadside on the

main-deck between the turrets and protected by 5 -inch armor casemates. There are also sixteen 3 -pounders and twenty smaller guns. Each vessel carries six above-water torpedo tubes.

The battleship "Tri-Sviatitelia" of 12,500 tons and 18 knots speed, built in 1893, is a low-freeboard vessel with a partial belt of 16 -inch Creusot armor and a 3 -inch deck, and is of considerably less value than the preceding ships. There are four 12 -inch guns carried in two 16 -inch armor turrets mounted on 16 -inch armor redoubts. There are eight 6 -inch guns mounted behind a 5 -inch armor broadside battery on the main deck and four 4.7 -inch guns mounted on the spar-deck. The vessel can carry 1,000 tons of coal, and was de signed for a speed of 18 knots. The "Rostislav" built in 1897, of 9,000 tons and 18 knots speed, and the "Sissoi Veliky," of the same tonnage and 16 knots speed, are practically sister ships, with partial belts. They mount their main armament of four 12 -inch guns in two turrets. The "Rostislav" car ries her intermediate battery of 6 -inch guns in four 6 -inch armor turrets, two on each broadside; the sister ship carries her six 6 -inch guns in a central battery protected by 5 -inch armor Each vessel has six abovewater torpedo tubes. The waterline belt of the "Rostislav" is of 15 -inch Harvey armor, and that of the sister ship of 16 -inch Creusot armor.
Three of the finest battleships in the Russian navy are the sister ships "Pobieda," "Peresviet", and "Osli abia," of 12,670 tons and 18 knots speed. They are ships of extremely high freeboard, a good thing for the guns, but a very bad thing for the ship herself, considered as a target for the enemy. They have Harvey belts of 9 to 4 -inch armor, with a belt of 5 -inch armor extending amidships above the main belt. They carry four 10 -inch guns in 10 -inch armor turrets, ten 6 -inch guns in 5 -inch armor case mates, and one 6 -inch gun firing through the bow on the main-deck. There are also twenty 3 -inch and twenty-six smaller guns, two submerged torpedo tubes and four tubes above water. These three vessels are in the Pacific, and escaped in-
jury as far as known in the recent fighting. Of less important battleships on the European station, there are the "Navarin," of 10,000 tons and 16 knots speed, and the "Apostoloff," 8,500 tons and $161 / 2$ knots speed, whose main armament consists of four 12 -inch guns in turrets and, in the case of the "Navarin," eight 6 -inch guns in broadside, and in the case of the sister 6 -inch guns in broadside, and in the case of the sister
ship four 6 -inch guns mounted in broadside. These ship four 6 -inch guns mounted in broadside. These
vessels have partial belts of compound armor. Of course, they are now relegated purely to duties of coast defense. Then there are the three vessels of the "Sinop" class, of 10,500 tons displacement and $161 / 2$ knots speed. They have 16 -inch belts, and a 12 -inch central redoubt, within which are six 12 -inch guns, protected by the redoubts and by hoods of 2 -inch armor. These vessels also carry seven 6 -inch guns on the main-deck. The "Nikolai I." and "Alexander II." are old battleships of 9,800 tons and $151 / 2$ knots speed, protected with 14 -inch compound armur belts and carrying two 12 -inch guns in a turret forward and four 9 -inch and eight 6 -inch in a battery on the gun-deck.
The Russian navy also includes three fairly modern coast defense vessels built in 1895 , of 4,126 tons and 14 knots speed. They carry some of them three and some of them four 9 -inch guns in turrets, and four 6 -inch guns in the central battery. They have a partial 10 -inch belt, and a 3 -inch armored deck.
The Russian navy includes four large modern armored cruisers. The "Gromoboi," built in 1899, is of 12,367 tons and 20 knots speed, with a bunker capacity of 2,500 tons of coal, and provision for liquid fuel. The vessel has a partial 6 -inch belt, a 2 -inch deck, and 6 inches of armor on the casemates. She carries four 8.4 -inch guns, sixteen 6 -inch, twenty 3 -inch, and twenty-four smaller guns, besides two submerged and two above-water torpedo tubes. She is practically an improved "Rossia," and the description of the "Gromoboi" will apply to the "Rossia," with the difference that the armor belt is 10 to 5 inches in thickness, and that she carries six above-water torpedo tubes. The "Rurik," of 10,950 tons and 18.8 knots speed, has a partial 10 to 5 -inch belt and carries four 8 -inch, sixteen 5.5 -inch, six 4.7 -inch, twenty-two smaller guns, and six above-water torpedo tubes. Although much smaller than the other vessels, the "Bayan," built at La Seyne in 1900, is the best designed of the armored cruisers. She is of 7,800 tons and 21 knots speed, has an 8 to 4 -inch belt, 2 -inch deck, and carries two 8 -inch guns in 7 -inch armored turrets, eight 6 -inch guns in $61 / 2$-inch armor casemates, twenty 3 -inch and seven smaller guns, besides two submerged torpedo tubes. There is also the "Nakhimoff," built in 1885, and rebuilt in 1899, which carries a 10 -inch partial compound armor belt and mounts eight 6 -inch, ten 4.7 -inch, and several smaller guns.
Coming now to the protected cruisers, we have a class of six splendid vessels of about 6,500 tons displacement and speeds that vary from 20 to 24 knots. They have about the same armor and armament; and a description of the "Variag," which was built at Philadelphia and destroyed in the recent sea fight off Chemulpo, will answer for the class.
The "Variag" is, or rather was, of 6,500 tons displacement, 24.6 knots speed, and was protect ed by a 3 -inch deck and by gun shields 6 inche or less in thickness. She carried twelve 6 -inch twelve 3 -inch, and six smaller guns, besides wo submerged and two two submerge two above - water torped ubes. The other vessel of this class are the "Bogatyr," built at Stet tin; the "Askold," a five funneled boat built by Krupp; the "Pallada" and "Diana," both crippled at Port Arthur; and pled at Port Arthur; and the "Aurora." Of the four other large protected
cruisers, it is sufficient cruisers, it is sufficient
to say that, because of to say that, because o way comparable to the foregoing ships. The

$21 / 4$ H. P. COLUMBIA MOTOR BICYCLE,

5 H. P. TWIN.CYLINDER CURTIS ROADSTER

guns. They are of slow speed and doubtful utility against modern ships. The "Svietlana," built at Havre in 1896, is a serviceable 3,900 -ton ship of 20 knots speed, with a 2 -inch deck, mounting six 6 -inch, twelve 3 pounders, and four above-water torpedo tubes. The "Novik," the fastest protected cruiser in the world, now disabled at Port Arthur, and the "Almaz" are 3,000 -ton protected cruisers of 26 knots speed, carrying six 4.7 -inch guns and eleven smaller guns. They have a 2 -inch deck, and are provided with five torpeavtubes, all located above the water line. Lastly, we
have the three vessels of the "Boyarin" class, of 3,200 tons displacement and $221 / 2$ knots speed, protected by a 2 -inch deck and carrying six 4.7 -inch guns, eight smaller guns, and five above-water torpedo tubes. The "Boyarin" is another of the ships that was disabled at Port Arthur.

In addition Russia also possesses thirteen small cruisers and gunboats that range from 1,500 to 534 tons in displacement, two of the best of which have already been accounted for by the Japanese in the early days of the war. The torpedo-boat fleet consists of fifty destroyers, fifty-four first-class and twelve secondclass torpedo boats, all of modern and first-class con struction.

ECLAIR'S SOMERSAULT MONOCYCLE COURSE.

MR. ECLAIR IN HIS WHEEL

WO NEW MOTOR RICYCLES.
One of our cuts shows a motor bicycle with an air-cooled V -shaped motor of 5 horse power, which made the fastest time at the recent Florida Race Meet. The machine is made by the G. H. Curtis Manufacturing Company, Hammondsport, N. Y., and it is intended for use as a powerful roadster for use on all kinds of American roads. Its weight complete is but 165 pounds, and it has gasoline and oil tanks of sufficient ca pacity for traveling 150 miles. The double-cylinder, V-shaped motor is placed in a 23 -inch frame, and transmits its power directly to the rear wheel by means of a 2 -inch flat belt made of two ply Russian rawhide. A wooden pulley is used on the rear wheel, and a leather-covered pulley on the motor. The motor itself weighs but 60 pounds, has a 3 -inch bore and stroke and develops 5 horse power at 2,000 R. P. M., thus making the bicycle one of the most powerful mo tor cycles ever built for use as a regular road machine. The crank shaft runs on roller bearings in hardened and ground steel bushings. The two cylinders add greatly to the flexibility of the motor, and make it possible to obtain a wide variation in speed. With the regular gear of 4 to 1 , the machine will climb any hill where the road is of fairly good surface, and will travel at the rate of 45 miles per hour on the level. With the racing gear of $21 / 2$ to 1 , it made a mile in 59 1-5 seconds and 10 miles in 8:45 2-5 on the Ormond-Daytona Beach The switch and spark advance are controlled by turning the left grip, while the exhaust valves can be raised by a small lever on the frame. The batteries and spark coils are placed across the upper part of the frame, the gasoline tank behind the seat. The carbureter is seen between the two cylinders of the motor. The company also builds a single-cylinder 120 -pound, $21 / 2$-horsepower machine. The two sizes of machines are respectively fitted with $21 / 2$ and 2 -inch detachable tires, and have a 62 and 58 -inch wheel base. The new Columbia motor bicycle, built by the Pope Manufacturing Company, of Hartford, Conn., has a chain drive through a speed-reducing countershaft to the rear wheel. The sprocket of the former, on which runs the chain from the motor, is fitted with two coiled springs, which transmit the power, yet absorb the shocks of the explosions. The motor has a $23 / 4$ inch bore and a $31 / 4$-inch stroke. High compression is used in it, and, at a speed of $2,500 \mathrm{R}$. P. M., it will drive the bicycle 35 miles an hour. All the Columbia machines are run up a hill of 25 per cent grade, which they must climb at a 15 -mile-an-hour rate as a final test. The arrangement of parts is readily seen in the cut. The batteries are in a case above the lower tube of the frame; the muffler is just below this tube; the spark coil is on the upright post; and the tank is over the rear wheel. The machine is controlled entirely by the lever of the plunger b rake. Pushing this down speeds up the motor, and pulling it up slows it down and applies the brake. The inlet valve stem and spring is exposed. Both inlet and exhaust valves can be readily removed

SOMERDAULLT MONOCYCLE

 COURSEIn the present era of "weak nerves,". the per formance of "looping the loop," in which a cyclist traverses a vertically placed loop, has quickly staled, and has now beeit
relegated to the rear and supplanted by a still more sensational piece of daring, a modification of the former, but requiring even greater courage and fearlessness.
The inventor or originator of this new kind of "loopng the loop," Mr. Eclair, also whirls through a looped course beginning 14 meters above the ground, forming a loop about 8 meters high and broad, and ending on the ground. The construction used by Mr. Eclair for training is shown in our illustration. The intrepid performer will shortly exhibit his marvelous feat at one of the Berlin circuses. The somersault monocycle course, as it is called by the originator, is not traversed by Mr. Eclair with a bicycle, but with a large iron ring, in which he stands upright, as shown in our picture. The iron wheel has a diameter of 2 meters, a width of 40 centimeters, and weighs 5 hundredweight. Mr. Eclair starts with this wheel from the point of departure, 14 meters high, and is thus whirled through the course. When the heavy wheel has spun down the incline, it strikes with terrific force a door closing the loop below, which flies open, and is thus impelled on through the door by the powerful force or momentum it has attained in its downward course. Upon its second arrival below, the iron wheel pushes open another door at the o.ther extremity of the ring or loop, and then rolls out, the daring ride ending in a net.
As the course, which has a total length of 60 meters, is covered by the wheel in 8 seconds, and the performer has to turn in it 14 times like the spokes of a wagon wheel, we may be sure that the blood of the reckless rider is well shaken up. As a matter of fact Mr. Eclair began training by having himself shut up in a drum, which he had turned around, first slowly, then faster and faster. Notwithstanding this precaution, many little veins in Mr. Eclair's eyes have burst.Translated from Für Alle Welt.

Details of the Allan Turbine-propelled Atlantic

tav engur corme
The construction of the turbine-propelled Atlantic liner the "Victorian," is now well advanced, in the shipbuilding yard of Messrs. Workman, Clark \& Co. Limited, of Belfast, Ireland, and she will be launched in the course of the next two or three months.
The vessel will have three propellers. The turbine engines have been designed with a special regard to the important question of reversing. They are to be constructed at the Belfast works of Messrs. Workman, Clark \& Co., Limited, instead of at the Parsons works. Special care is being taken that the workmanship shall be of the highest class, the boiler power ample, and the pumps, valves, condensers, and other allied parts specially adapted to their work.
The "Victorian" will have accommodation for 1,500 passengers. She will be divided by bulkheads into eleven compartments, and these, together with the subdivisions of the double bottom, allow her to have twenty distinct water-tight spaces. She is built to the highest class of the British Corporation Registry of Shipping, and the strength of the hull has been greatly augmented over their requirements in order to meet the heavy weather of the North Atlantic.
Owing to the smaller size of the turbines, as com pared with the ordinary reciprocating machinery, and consequently the less space occupied by the same, the freight space available is, notwithstanding the large complement of passengers, ample for the stowage of upward of 8,000 tons of deadweight cargo, and the facilities for its rapid handling and discharge are of the most up-to-date and efficient nature. Four large derricks are arranged on each mast, the lifting capacity of each being up to seven tons. These, together with two crane-post derricks, make ten in all, for the working of which ten double cylinder steam winches are supplied. Special attention has been given to the arrangement of the cargo holds, and the ordinary round pillar supports for the decks have been largely discarded in favor of special girders and supports, which leaves the holds freer for the reception, stowage, and discharge of freight. Insulated chambers for the carriage of fruit and dairy produce from Canada are provided in conjunction with refrigerating plant. The vessel has also sufficient coal bunker accommodations for the double journey, with an extra allowance for several days in the event of any unforeseen delay, thus obviating all fear of a shortage of fuel.

Wages of Farm Labor in the United state

Within the memory of living men the standards of wages at the time current have been unsettled throughout the country on at least three memorable occas:ons. The discovery of gold in California in 1849, as a sequel to the war with Mexico, brought a revolution in prices. The civil war, 1861-65, withdrew millions of men from ordinary pursuits and left labor systems to be replaced under rates inflated by a disturbed currency. The war with Spain, 1898, with its temporary diversion of labor and its territorial expansion, has been too recent for its effect to be fully measured. Besides
these influences, the coincident developments of steam and electricity, as applied to manufactures and transportation, have so diversified and intensified and specialized all forms of labor that farm labor is no longer a distinctive term. Agricultural labor can no longer be discussed intelligently without special treatment of the peculiar forms into which it has become separ ated by conditions of soil, climate, and distance from dense bodies of population. All this emphasizes the im perative need of education and training for the work of the modern farm, whether in the field with grain stock, cotton, fruit, dairy and garden product, or in the house.

Contespuntente.

A Laboratory Blowpipe. r of the Scientific American

To the Editor of the Scientific American

In your issue of last week you describe a "laboratory blowpipe" for gasoline, which I think, from my experience with gasoline, would be a highly dangerous apparatus. In it the air is pumped into a gasoline tank which it enters at the bottom and bubbles up through the gasoline, thereby becoming charged with gas (vapor) which is then led through a pipe from the top of the tank, and ignited at the open end, after a further admixture of air near the exit (which air may not be required) in order to produce the blue flame. Now, this apparatus will work all right as long as the resulting vapor from the tank, or in the tank, is sufficiently overcharged; but if the vapor falls to the point where air is. present to form the explosive mixture what will prevent its firing back to the tank, and exploding the same? I have handled numerous gasoline pressure lamps, stoves, blowpipes, and run a gasoline engine, but could not be induced to work with the rig described in your paper last week. Perhaps your readers would be interested with a little experiment I tried on my $11 / 2$-horsepower gasoline engine. I removed the carbonating valve, and built a tank similar to your generator described, running the inlet pipe from my engine to top of tank, and plugging top of tank with a gine to top of tank, and plugging top of tank with a
seated valve, through which a $1 / 4$-inch gas pipe extended seated valve, through which a $1 / 4$-inch gas pipe extended
nearly to the bottom of gasoline, and putting a small air cock on engine inlet pipe to supply air for forming the proper mixture. Now I find in practice that while air is usually needed to form the explosive mixture, sometimes the mixture is of the right quality as it comes from the tank; and the air cock must be kept closed, which means that there is an explosive mixture in the tank. Now, in addition to the engine inlet valve, I have an additional check valve midway between engine and tank, so that if engine inlet failed to seat, the other valve would prevent firing back to tank, and in addition, my tank is made of 7 -inch iron pipe, strong enough to withstand the pressure if a back fire happened. I might add that I have used the rig about six months, and it gives better results than the carbonating valve.

In conclusion, would state that I might lay a claim to being the youngest old subscriber of your excellent paper. I am thirty-five, and have read your paper about twenty-eight years. My father subscribed when I was a child, and when he finally gave it up, I continued to buy your paper up to the present, and would as soon do without my dinner on Saturday as miss it
Toronto, January 18, 1904.
A. C. L.

Protection Against Fire in Theaters.

To the Editor of the Scientific American:
I read with interest the articles on "The Theater Fire and Its Prevention in Germany," by Carl Lautenschlaeger, in your issue of January 23, 1904. In two respects, I think the apparatus therein mentioned has been very decidedly improved upon:

1. The recommendation of a sprinkling apparatus operated or controlled by valves, which in turn are worked by hand, is utterly out of date. If there was a scenery fire on the stage, it might easily be that no fireman could reach the valves. The automatic sprinkler, which will release and spray water whenever and wherever the temperature rises above a fixed limit (usually 155 deg. F.) is incomparably better.
2. The writer remarks: "It is essential that when a fire does occur, the gases be allowed to float upward in a strong draft. At the Prinz Regent Theater, previously referred to, this end is attained by huge ventilators, located at the very top of the stage, over the gridiron. They are controlled by manila ropes operated by the firemen from the stage floor. Even if they should not be lowered by the firemen, they would drop of their own accord upon the burning of the ropes.'
An arrangement of an automatic character very much superior to that above described is being installed in a local theater. It consists essentially in a large skylight, the top of which is closed by doors, which would swing open from the leverage of weights placed at right angles to their surface, unless held down by a rope. The rope is fastened on a ceiling joist below on, a hook, and between this hook and skylight doors is a fusible link, which will part when the
temperature exceeds 155 degrees, thus causing the doors of the skylight to swing open, allowing the flames and gases to escape without getting into the auditorium.

If the stage is so broad as to render it desirable, the rope can be swung from pulleys to both sides of the stage, and fusible links inserted at several points, so that if there is a fire anywhere on the stage, it will at once release the doors.
Although the scenery employed in a theater is nec essarily combustible, it will not make a fire lasting any great length of time, and if the heat is sucked out of the building by a strong draft created in the manner described, it is confidently believed that an audience might sit still in their seats, and be in no more danger than when sitting before an open-grate fire, to which the stage and proscenium arch would bear a strong likeness.
Many of the theaters use ventilators over the stage, but in order to protect the house from the severe downward draft, these are usually kept closed with some kind of cloth, or even in a more substantial manner. The danger is therefore that these would be found unavailable in case of fire; and even under the most favorable circumstances, the draft which they afford would be much inferior to a great direct draft created by a space open to the sky.
The fusible link operates almost instantaneously, and can absolutely be depended upon, whereas the burning of the manila rope as described by Herr Lautenschlaeger necessarily occupies some considerable time, every second of which is of enormous value.
One of the minor advantages of this arrangement is that by detaching the rope from the hook, it can be ascertained with very little trouble whether the doors are working freely on the hinges, and are therefore in good condition for the purpose designed.
Too much importance cannot be given to making all these appliances automatic, instead of depending upon the class of help which must necessarily be employed for such purposes.
C. S. Asiley.

Toledo, O., January 30, 1904
[The automatic sprinkler which is set into operation by the melting of a fusible alloy, serves a useful purpose, and is in use in Germany as well as the United States for the protection of cellars, passageways, etc. The sprinkler described by Director Lautenschlaeger is intended to deluge the entire stage from the gridiron to the cellar, a distance which might easily be 125 feet. Now, supposing a fire started at the level of the stage, the heat would not be intense enough, for a few moments, to melt the plugs, and the result is that the fire gains great headway. Sprinklers of the type mentioned by our correspondent do not permit of as thorough inspection as the other type of sprinkler in use in Germany. To insure safety, all the cloths, whether let down to the stage, or supported above the proscenium arch, must be thoroughly wet. The sprinkler valves can be operated from the stage, the gridiron, and from the director's box in front of the curtain. The ventilators referred to by Director Lautenschlaeger can be operated from the stage and from in front of the curtain. The burning of the sustaining ropes is only an added precaution, comparable to our correspondent's fusible plugs. Automatic appliances in conjunction with regular inspections, and the presence of trained firemen who can operate the machinery instantaneously, would tend to make a serious theater fire a rarity. There is a vast field for invention in the theatrical line.-Ed.]

Iron and Steel Industry of Belgium

To the Editor of the Sclevtifio American:
Your valuable publication comes at regular intervals and forms a highly interesting part of the reading files of this consulate. Your issue on iron and steel has been much read by the shippers having invoices legalized at this office, inasmuch as Liege is a manufacturing city of much importance, and has within its environs many steel and iron works. They are shipping their products of steel and iron throughout the world, and have established a pretty fair market in the United States for steel rails and structural bridge iron. Their principal markets, however, are in Europe and Central and South America. Liege, as you know, is also noted for its manufacture of guns and gun barrels. It i $;$; a manufacturing city as important as any in Europe of its size.
Should you desire any information whatever con cerning the manufactures here, or should any of your readers desire information from my consular district, it will afford me pleasure to be of service. My ambition is to open a market here for American goods of all kinds; and if I can in any measure compass that commercial union, I will be more than repaid for any service rendered in connection therewith. Requests for information are welcome at this office, and I comply with the same as speedily as possible and to the best of my ability

James C. McNally,
United States Consul.
Liege, Belgium, December 26, 1903.

COMBINED PACK AND RIDING SADDLE

The accompanying illustration shows an improved form of saddle which should be found very useful for prospecting purposes or for use in the army or for pack transportation of any kind. It combines all the advantages of a riding saddle with those of a pack

COMBINED PACK AND RIDING SADDLE.

saddle, and the combination also affords other ad vantages not heretofore obtainable. The saddle con sists of two opposing pads, preferably made of wood, which are spaced apart and placed at the customary angle to each o.ther. The pads are held in position by means of two horns, the forward horn being practically the pommel of the saddle and the rear horn the cantle These horns may each be made from one piece of round iron rod bent to the form shown in the illus tration. The ends of these rods are flattened and fit against the pads, to which they are secured by screws.
Among the advantages urged for the improved saddle it may be stated that its superiority as an army saddle far outweighs its use as an ordinary pack sad dle, as it is especially adapted for carrying the dead and wounded off the field, permitting the horse to be ridden back and enabling one man to do more of this work than at least four men on foot. The improved saddle is also well adapted for carrying light arms and ammunition to and from and on the field and light artillery through the mountains and on and off the field. A decided advantage is obtained by the use of the loop-knob for a horn, as it is easily grasped and held when mounting a fractious or bucking horse, and is particularly safe and advantageous where men mount upon the run and when horses are springing to their feet, having thrown themselves to dismount the rider.
The inventor of this combined pack and riding sad dle is Mr. John T. Morgan, of Boise, Idaho.

LAND ANCHOR

A recent invention provides an improved device adapted to secure to the ground a guy-rope, brace, or any similar form of supporting wire, and will be found particularly useful by telephone and telegraph linemen in place of the old style "dead man." The anchor comprises a central or main stem which, at the lower end, is enlarged, and is somewhat diamond shaped, with the free end tapering to a point, to facilitate driving the anchor into the ground. Two arms which are pivoted side by side to this head are each formed at the pivotal end with one edge round, con centric with the pivot, and the other left square. When

IMPROVED LAND ANCHOR.
the device is driven into the ground, these arms fold upward against the main stem and offer no obstruc tion, as they simply follow the hole made by the dia mond-shaped head, the lower part of which is formed with an offset, which is in alignment with the pivotal portions of the arms. When the stem is drawn upward by the guy rope, the free ends of the arms will catch in the sides of the hole and diverge until they lie at right angles with the stem, when they are effectively prevented from swinging further by the squared edge of one arm engaging the corre ponding edge of the other Shoul ither arm tend to swing downward before the other arm, it will be brought to rest in substantially the transverse position by engagemen with the offset on the stem until the other arm is brought to the trans verse position, and the squared shoulders are thus brought into engage ment with each other. Heretofore in anchors of this type the strain has been made to come on an ad jacent part of the support; but it will be seen that in this invention the strain on the arms is almost entirely taken by the supporting pivots, and not by the offset portion of the head The pivot pins can be made of tough material such as steel, while the main stem can be made of cheaper material, such as wrought iron, that is best adapted to resist strain of the arms. The inventor of this land anchor is Mr. William G. Beach, care of James J. Hayes, Vicksburg, Miss.

SPRING DRAFT ATTACHMENT.

The value of a spring tension in a draft attachment has long been recognized as relieving the jar or jerk of the pulling strain on the horses' shoulders, and enabling the team to steadily strain with the load in starting, as well as to avoid damaging strains on the harness and vehicle. As long ago as July, 1880, a patent was issued covering an invention of this char

acter. The invention comprises a bowed spring formed with eyelets or keepers at its ends, through which the trace was passed, so that the trace would lie upon the convex side of the bowed spring, and when the draft tension was applied to the trace, the trace would in straightening out flatten the bow spring, and thus maintain a tension in the draft attachment. Mr. George W. King, of 1325 Thirty-second Street, N. W., Washington, D. C., who invented this device, has just secured a patent on an improvement of the previous invention, which should bring the device into more general use. The improved attachment is so arranged that it will fit any size of trace, whereas the old attachment could not receive a trace that was wider than the eyelets, and a narrow trace would not occupy a middle position on the spring. Furthermore, it was difficult to thread a stiff trace through the eyelets, while in the improved form the attachment can be slipped into place without any trouble. The improved spring draft attachment, as clearly shown in the illustration, comprises two pieces of spring wire coiled about each other at the center, and formed at the ends with inwardly-projecting hooks. The device is applied laterally to the trace. The two arms at each end are sprung apart, and their hooked ends snapped over the edges of the trace. Owing to the spring pressure, these hooks will snugly fit over any width of trace and, moreover, the operation of applying the device to the trace, it will be readily seen, is very simple.

A NOVEL THIRD-RAIL PROTECTOR.
Winter time always brings with it a certain amount of difficulty for the third-rail railroad. Sleet, snow, and ice are only too apt to insulate the live rail so completely, that the contact shoes cannot perform their proper function of taking up the current. In summer time this difficulty naturally disappears. On the other hand, danger to human life is ever present.

No matter how cautious the track walker may be, there is always the possibility of grave danger with a naked live rail in close proximity to the track. In New York city the elevated railroad officials have sought to overcome the obstacles occasioned by the formation of ice and snow by the employment of scrapers, which make a wintry night hideous with their noise. For the protection of human life, abso-

NOVEL THIRD-RAIL PROTECTOR

Iutely no means whatever have as yet been adopted. To provide a guard for a third-rail, a guard which will protect the rail from sleet and snow, and which will likewise obviate danger to human life, is the purpose of an invention for which a patent has been granted to Mr. Jacob Martin, of 313 East 85th Street, New York city.
At the opposite sides of the rail are placed vertical guards which extend the full length of the rail and which are higher than the rail. To one of the railguards a supplemental guard or protector is secured which is composed of flexible material, such as canvas, canvas and rubber, or any other suitable material. The supplemental guard or protector is wide enough to cover the rail completely as well as the side guards, and whenever there is a curve in the track or wherever the rail is curved, the supplemental guard or protector is composed of sections, the guard or protector being divided transversely to form the section. One end of each of these separate sections is placed beneath the corresponding end of the next section. With the truck, a plow is connected which consists of a sheet of metal bent to represent one end of an a sheet of metal bent to represent one end of an
ellipse. An opening is provided through which the contact shoe arms pass. The free end of the plow is bent downwardly at an abrupt angle, and the sides thereof are curved backwardly, and the end passes under the free edge of the flexible guard or protector. The free edge of the supplemental guard or protector is provided with a longitudinal strip of flexible metal, which is intended to give strength to the free edge of the flexible guard and to resist the friction and wear occasioned by the plow as it moves along.
Secured to the track near one end of the axles is an arm, having a foot-piece, which passes over the free edge of the supplemental guard or protector and serves to force it back into position after the shoe and plow have passed. This arm, however, is not essential.

As the car moves along the track the nose of the plow passes under the free edge of the flexible guard and raises it, and the shoe moves o.ver the surface of the rail. As the car proceeds the free edge of the supplemental guard or protector drops into position and the rail is securely covered thereby at all times.

THE DISK TYPE OF WATER METER

The design of a successful water meter is no simple task. The primary requisite, of course, is accuracy. 'At the same time this should not detract from the

the disk type of water meter.
simplicity, durability, and low cost of construction, or the initial outlay for installation and subsequent expenses for repairs of the meter would overbaiance the benefits which they would otherwise bring to the water supply company. The disk type of water meter has been found to fulfill these exactions more nearly than any other. This meter involves a mechanical motion which is very interesting. The principle was first applied to steam engines, and is said to have been invented in 1830. The invention was taken up by a number of persons, notably Bishop, an Englishman, who brought it more nearly to its present form. Although this mechanical movement is so old, we venture to say that few of our readers are familiar with it. The latest development of the invention is illustrated in section in the accompanying engraving. In this meter the water passes through a screened inlet at the left, enters the disk chamber through a port not shown in the illustration, and passing through this chamber flows out of the port shown at the right. In its passage through the chamber the water imparts to the disk a peculiar movement about its center, which may be described as a gyratory movement, with the exception that the disk does not rotate on its axis. The disk, it will be observed, is slightly dished, and at its center a ball is formed which finds bearings in the top and bottom walls of the disk chamber. The side walls of the chamber are curved so as to fit closely, but without friction, against the periphery of the disk throughout its entire cycle. The top and bottom walls are also so arranged as to provide a snug fit along the rest and trough respectively of the circular waves which the disk is constrained to describe. A vertical radial septum, formed at one side of the chamber, fits into a slit cut in the disk. This septum will be seen at the right, just back of the outlet port in our illustration, and serves to prevent the disk from rotating. It also separates the exhaust or outlet port from the inlet port, which opens into the chamber just behind the septum. A spindle projecting upward through a circular opening in the top wall of the cylinder, bears at its upper end against a conical block This tips the disk to one side, so that its under surface at that side will come in contact with the bottom plate of the chamber, while the upper face on the opposit side will come in contact with the upper wall of the chamber. Now, by studying the illustration, it will be observed that the disk, no matter what its position, will at one point or another cut off the free passage between the inlet and outlet ports. With the disk in the position illustrated, water pours into the disk chamber against the under face of the disk, and as the water sweeps around the circular chamber in its course to the outlet port it exerts a forwardly-moving ifting or wedging force on the disk. The disk canno be tipped to vertical position of its axis because of the conical control block against which the spindle bears Therefore, it is constrained to follow the gyratory movement described above That is the upper end of the spindle describes a circle about the block while the upper and lower faces of the disk roll respectively along the top and bottom walls of the chamber. As the disk rolls around under the pressure of the water, it ine of contact with the upper wall will pass the inlet port, whereupon water is admitted to the upper face of the disk, exerting a downward pressure thereon at points diametrically opposed to the upward pressure on the under surface of the disk and causing a continuous gyratory movement of the disk. The revolutions of the disk's spindle are communicated to the counter at the top of the meter through suitable stepdown gearing. It will be observed that this form of mechanical movement is an ideal one for water meters, owing to its accuracy, and the simplicity of construc tion which it allows. The disk is made of hard rubber which has about the same specific gravity as water and since the ball is exposed to the inlet pressure of the water through the openings in the top and bottom bearing sockets, a perfect water balance is secured reducing wear to a minimum

ODDITIES IN INVENTIONS

Traveling Lawn Sprinkler.-In order to distribute water more generally over the entire lawn, a Minne sota inventor has devised a lawn sprinkler which is actuated by the pressure of the water to travel slowly over the lawn in any predetermined direction. The lawn sprinkler is mounted on wheels. The garden hose is coupled to a vertical pipe on the sprinkler. At the top of the pipe is a revoluble head provided with hol low radial arms formed with discharge nozzles at their ends set at an angle with the arms. Back pres sure of the water on the arms in flowing out of the discharge nozzles tends to rotate the head in the usual manner. Pins on this head engage the teeth of a star wheel, which by means of suitable gearing communi cates the motion to a reel at the front of the sprinkler. One end of the wire is fastened to this reel, and the other end is secured to a stake driven into the lawn at any desired point. As the reel rotates, this wire is coiled up, drawing the sprinkler forward. When the
end of the wire is reached, a projecting plate on the prinkler strikes the stake to which the wire is se cured, and the plate is thus forced back. This motion is utilized to lift a small pinion out of mesh with the

RAVELING LAWN SPRINKLER.

earing mechanism, thus stopping the rotation of th eel. By varying the number of pins in the revoluble head of the sprinkler, its rate of travel over the lawn may be controlled
An Improved Awning.-The present slow and cum bersome manner of handling awnings has suggested to a Californian the need of an improved construction The arrangement which he has devised is illustrated herewith, and may be described as follows: The awn ng frame comprises two bars, which project from openings in the wall of the building, where guides ar provided to receive them. The projecting ends of the bars are connected by a cross bar, and stretched from this to a shaft or roller mounted above the door or indow which is to be screened, is the fabric of the awning. The awning may be rolled up by means of

an improved awning.

a crank lying within easy reach of the operator, and connected by suitable gearing with the roller. Each side bar of the awning frame is formed with a rack on its lower edge, and these racks are adapted to mesh with pinions on the roller, so that when the crank is werated, the bars are fed back in the openings in the wall, causing the awning to be evenly rolled up on the roller. The additional brace for the side bars, which is shown in our illustration, is not ordinarily neces sary, but will be found useful under certain circumstances.
Shaving Mug.-A Yankee inventor has devised a shaving mug, which is provided with a simple means for holding the cake of shaving soap normally out of contact with the water, but in such manner that it may readily be dipped into the water when desired.

The cake of soap rests on a perforated plate, which is supported by coiled springs extending upward from the bottom of the mug. The side wall of the mug extends somewhat below the bottom, and fits snugly into a pan, thereby forming a closed chamber. Two ports
in the bottom of the shaving mug open into the cham ber, but are normally closed by valve plates controlled by a rod extending outward through the wall of the cup. The valves are opened when it is desired to clean the mug, fresh water being poured in at the top until the parts are thoroughly clean. In use, when it is desired to dampen or wet the soap, it may be forced downward into the water by pressure of the lather brush and, of course, upon releasing this pressure, the coil springs will move the soap upward out of the water.
Detachable Sleigh-Runner.-In territories where the winter season brings only occasional snows it will be found very useful to have on hand a set of detachable sleigh-runners which can readily be applied to the wheels of a wagon, thus converting it tempor-

DETACHABLE SLEIGH RUNNER.
arily into a sleigh. Such an attachment we show here with. It will be observed that the runner can be applied in an instant. The wheel is drawn up onto the runner and seated in a hollow therein. The runner is provided with hinged braces which are swung up against the wheel and secured by bolts passing through eyes formed in the ends of the braces. The bolts pass over spokes of the wheels and thus rigidly secure the wheel to the runner. Key-bolts are used instead of the usual threaded bolts. By this arrangement a driver can in a very short space of time convert his wagon into a sleigh without requiring any tools other than a hammer or bar with which to drive the keys in place.

Bridle Bit.-The accompanying illustration shows a bridle bit which may be used on such animals as have tender mouths or the reverse, and it affords means for the control of the animal in case it becomes fractious, which, however, will ordinarily serve to guide an animal without hurting the mouth. The improved bit really consists of two bits so connected that by a gentle pull on the lines the horse may be guided as usual, but when necessary hard pulling upon the bit will bring into service the check bit, which will put a severe strain on the animal's mouth and arrest the attempt to run away before injury is done to the ani-

mal or driver. A very advantageous feature of the improved bit consists in the safety afforded in case of the accidental breakage of the jointed driving-bit, as the check-bit will remain in the mouth of the animal and enable the driver to control the animal, which otherwise would be released from control if the two separate bits, both connected with the driving-lines, were not employed. The inventor of this combination driving and check bit is Mr. William T. Temple, of Trenton, N. J.

A single telegraph company has long enjoyed the monopoly of making the connections between the fire stations of the great English metropolis, and their demand made recently for a proposed connection of this character was regarded as exorbitant by the city officials, who circumvented the telegraph company by installing the Marconi system between the two points. This was done as an experiment, and was soon found to be so satisfactory that it will be extended, and it is proposed now to install instruments on some of the apparatus, so that the fire department officials on the fire grounds may be in direct and constant communication with those at headquarters.
recently patented inventions.
apparatus for special Purposes. poria, Kan. This apparatus is adapted for use poria, Kan. This apparatus is adapted for use
with any machine in which a blast is produced capable of carrying over the fine gold and foreign substances with which it is mechanically mixed. The material thus carried is received into the distributing chamber, whence it descends into conductors permeable to air, and
which permit escape of the air proper, while which permit escape of the ail proper, while
detaining gold and foreign sulsstances, which detaining goney both convey into a separator and grader having compartments and pockets in which tinal concentration is effected, the
graded according to quality and value. CoMpINED GOLD SEPARE COMBINED GOLD SEPARATOR AND Kan. Free gold is ordinarily found associated with heavy black sand or sand and iron, the greater portion of the gold being in the form of thin light scales. In treating such material by means of the ordinary processes or machines
much of the flour or float gold is lost, whereas meyer's machine, it being carried off by meyer's machine, it being carried off by a
strong air-current, while heavier particles of gold are received upon and saved by amal-gamating-plates.

Electrical Device

ELECTRIC BLANKET.-F. K. Singer, Wheeling, W. Va. Mr. Singer's invention re-
fers to that class of blankets, towels, pads, etc., which have incorporated in their texture extended circuit-wires disposed in more or less tortuous paths and which are designed to re-
ceive a current of electricity to produce, by resistance of the wire, heating effects or to produce electro-inductive effects and to be applied to the body for therapeutic use in disease. PRINTING-TELEGRAPH RECEIVER.D. White, 50 Clanricarde Gardens, London, England. The objects of this invention are to provide a receiver of the same general character as described in a former patent granted
to this inventor, but so contrived that as compared with that other the range of characers is doubled without increasing the amount of the step-by-step movement, so that the same
amount of step-by-step movement, which in amount of step-by-step movement, which in characters ("letters") is in this utilized to give that same range of characters of one
class ("letters") and also a range of characters of another class ("figures"). Means are pro vided for printing from either class continu-
ously and for shifting from either to the other.

Engineering Improvements.

MIXER FOR GASOLENE-ENGINES.-J. M ohanson, Cambridge, Mass. In this case the an relates to improvements for gasolene of means by one object in view is the provisio zed and ultimately mixed with air to is atomcombustible mixture adapted to produce an cylinde
VALVE-GEAR FOR EXPLOSIVE-ENGINES, Johanson, Cambridge, Mass. The means by which the valve may be allowed to open outward as contradistinguished from in ward against the cylinder-pressure and which means, while permitting this outward move ment, will nevertheless hold the valve seated
with absolute firmness during the expansive period of the cycle. An object is to avoid backash on the gearing of the cam-shaft and to revent the operation of the valve from mate rially loading the shaft and connected parts. TUNNEL CONSTRUCTION.-J. L. Holmes, Butte, Mont. In this patent the invention has of tunnels across rivers or the like, an object being to provide a novel tunnel construction y means of which the work of laying a subried on to completion.
rotary valve.-R. Gillette, Littlealls, Minn. The invention relates to rotar feeds of saw mills and analogous devices. An mportant feature is that live steam when fed through the live-steam ports is made to enter the revoluble plug by distinct and independent routes. Where ports are in communication with each other by a saddle-shaped channel, a is sometimes the case, the walls of the casing
are liable to spring and bind upon the plug owing to excessive pressure of steam. Valve seam through balancod except be differen sides of the plug.

Household Utilities.

TELESCOPIC COUCH-BED.-W. Thomp son, New York, N. Y. The bed is a composite
structure and practically consists of two smaller beds, one of which may be telescoped into the other, so that the two form a com-
posite bed which when extended is nearly posite bed which when extended double the width of the smaller cupy practically only the space so as to oc cupy practically only the space of a single
small bed. The members may be readily dismantled and made into separate couches.
SUPPORT OR HOLDER FOR NURSING-BOTTLES.-J. D. White, Philadelphia, Pa which will afford a simple, convenient, and
reliable support for a nursing-bottle that may or connected with the body of a baby-coach
or other stable support or be engaged with movable pedestal that is of sufficient weight
to maintain the holder and bottle at any deto maintain the holder and bottle
sired point for feeding an infant. ExTENSIO feeding an infant
EXTEENSION-TABLE-T. C. Thompson, Haley, Tenn. In carrying out the present in vention Mr. Thompson has in view so conof few parts ald will have extremely simple means for adding to the area of the table-topsupporting frame for the reception of supplemental leaves. The frame which supports the table top is so constructed that the placing of a leg at
is obviated.

Machines and Mechanical Devices.

MOTOR-OPERATED HAND-TOOL-A. W. ofarke, New York, N. Y. The principal feature
of the invention lies in the provision of motor-fluid reservoir forming part of the tool, so that when the reservoir is charged the mo-
tor may be driven by the fluid in the reservoir for a certain length of time, depending upon the reservoir capacity, without any connection with a reservoir separate from the tool. It is particularly useful in dental work.
vending-machine.-W. Forsythe, Tama, Iowa. An object in view in this case is the pencils and objects of a similar nature, the mechanism being normally and securely locked
and adapted when released by the deposit of coin to be easily operated by an exposed part so as to discharge a pencil or its equivalent.
It can only be actuated by the deposit of a coin or can only be actuated by the deposit
of the proper weight and size
mechanical movement. - J. Tagla frris, New York, N. Y. The intenion in this cially designed for converting rotary motion into rectilinear reciprocating motion, or vice versa, and in such a manner that dead-center positions are avoided, a greater movement is
produced in a smaller space, a uniform speed iven to the members, and the power tran to fullest advantage.
meciianical movement.-a lindsay and J. Meinert, Davenport, Iowa. In carryparticularly in view as an object the provision of a mechanism designed for imparting powe to the dasher-shaft of churns and to washing machines and the like. It may be used to im part rotary reciprocating movement to a verti-
al shaft, the power being taken from a rotat al shaft, the power being taken from a rotat g approximately horizontal shaft.
FLESHING AND SIIAVING MACHINE.. Schroeder, New York, N. Y. This invenuch relates to fleshing and shaving machines such as shown and described in a former Let ject in the present instance is to provide a ob hine very effective in quickly and accurately emoving the surplus flesh from the under sid of raw furs or for paring or shaving the unde side of dressed furs or skins to reduce the same a
ROTARY PLEASURE-TOWER.-W. R. a tates the carriages moving up and down the nclined parallel guideways travel a vertical siral course, permitting passengers to view wings will travel a horizontal spiral course The lookout house at the top of the tower ro tates with the tower, allowing a fine view with out change of position to passengers. There are four elevating-carriages, one each side of the tower, and while two ascend two will
descend. They hold two or more persons descend. They hold two or more persons.
Three upright posts at each corner may be used Three upright posts at each corner may be use
if found strong enough for the height of towe nd braces further, the iron used in upright post angles.

Of Interest to Farmers.
HARROW OR CULTIVATOR TOOTH.-J. . Cooper, Nashville, Tenn. The aim of this struction which adapts the tooth for con venient attachment upon a frame-beam of arrow or the frame of a cultivator and pre vents the tooth from moving in any direction, but permits it to be readily detached, a furthe
im being to provide the improved feature for a double-pointed tooth, so as to allow the tooth to be reversed in position and substitute sharp end of the tooth for one worn out. BAND-CUTTER AND FEEDER FOR Crookston, Minn. The purpose of the invention is to provide a simple construction o
band-cutter which will positively separate th bands of all bundles presented to the cutters and, further to provide shakers acting in con junction with the bundle-carrier which will thoroughly shake the bundles and spread the
straw before delivered to the cylinder and traw before delivered to the cylinder and

Pertaining to Vehicles
MOTOR-WHEEL FOR VEHICLES.-J. W. Walters, New York, N. Y. The object of the present invention is to supply certain improve-
ments in motor-wheels for vehicles whereby the operating mechanism is greatly simplified to insure a quick handling of the vehicle by
motor, as well as when propelling and steering
the vehicle. The invention relates to motor wheels described in t
granted Mr. Walters.
vehicle-brake.-J. Ferrel, Dec'd, J. Reynolds, administrator, Zanesville, Ohio In some of its features this invention is
specially adapted for use on spring-vehicles, specially adapted for use on spring-vehicles, one of its objects being to hold the brake-
shoes in invariable radial distance shoes in invariable radial distances from the they co-operate irrespective of the position the body of the vehicle may occupy in relation to the axles by reason of the yielding of the springs due to variations in load, to jolts,
etc.

Railways and Their Accessories.

Pipe-Joint.-D. P. Fahrney, G. A. NewThis invention relates to improvements in joints for air or steam pipes of car-brake
systems or other train-pipes, an object being to provide a joint of simple construction for connecting pipes between cars, doing away with the usual hose-couplings and overcoming the couplings. As to leakage, the joint is absolutely air or steam tight.
FUSEE.-E. Kern, Stuttgart, Kan. In this atent the invention refers to an improvement extend vertically the whole length of the fusee, the object being to prevent the fusee from breaking when thrown from a moving train for the purpose of sticking in the ties o
roadbed. The object is attained by means o the three wires attached to and made a pa the fuse
RAILWAY-SWITCH.-W. L. Williams, Jeffersonville, Ga. In this instance the in
vention has reference to improvements in way-switches, Mr. Williams having for his ob ject the provision of a switch mechanism of simple and durable construction having no parts in any way liable to get out of order
and that may be operated from a moving train.
Car-buffer.-G. F. Starbuck, Waltham, Mass. In carrying out this improvement the objects, first, the decrease in wear ; second prevention of change of form due to wear, and ance of unnecessary stresses due to avin proper forms of the rubbing-surfaces. It has or use application to a buffer-attachmen for use be
of trains.

Miscellaneous.

IDENTIFICATION-CARD.-B. L. Beh rendt, New York, N. Y. The invention perautograph of the owner for identifying pur ooses ; and its object is to provide an iden uthorities, bankers, and others to immediately and correctly identify the holder of the car and
card.
COAT.-C. Austern, New York, N. Y. The principal object here is to provide a coat the rom a bolt of cloth material the front edge of the garment being formed integral with the main body of the coat, thus obviating the necessity of cutting additional strips and sewng them to the coat, and also possessing
the advantage that such integral front edges will not offer a chance for dust or the like to accumulate in the garment by ripping o stitches.
METHOD OF ELEVATING LIQUIDS FROM WELLS.-T F Moran, DeYoung, Pa, an .J. Moser, Kane, Pa. The improvement of
these inventors relates to the elevating of liquids from deep wells, and especially to such as are used in the oil regions. In certain
oil fields where the wells have been drilledsay fifteen years-many become exhausted of their gas pressure, and the liquid has not the eadily elevated. The method involved in thei present application constitutes a remedy for
the shallowness of the liquid in the wells re erred to in order that the liquid may be read ly raised by air.
Lifting-Jack.-L. O. Lander, Lisabuela, Wash. One of the principal objects in the
present invention is to provide means for over coming disadvantages found to exist in jacks of this kind, and also to provide a jack simple and which is inexpensive to manufacture has a capacity of long and continued service The improvement has reference more especially to the type of lifting jacks of which the one shown and described in a former Letters Patent granted to Mr. Lander is an example
LOGGING DEVICE.-G. Moore, Monroe Wash. The object of the invention is to pro vide a new and improved logging device more especially designed for running logs down steen skid-road under perfect control of the operator and without danger of injur
No velocity.
Note.-Copies of any of these patents will be
Please state the name of the pateritee, title cf
the iavention, and date of this paper.

Business and Persotal WJants.
WeAD THIS COLUMN CARERULLYY,-You
 send you the name and address of the party desir-
ing the information. Tuevery case it is neces-
sary to give the number of the inquiry. of the inquiry.
MUN \& co.

Marine Iron works. Chtcago. Catalogue free.
IInquiry No. 5117 .-For catalogues and quota-
tions on all sorts of agricultural machinery.
Inquivy No. 5118.-For manufacturers of gaso-
UTos.-Duryea Power Co., Reading, Pa.
Inquiry No. 5119.-For manufacturers of steam
toys and noveities.
Juquiry No. 5120 .-For dealers, in
new and second-hand machine shop tools.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St
Inquiry No. 5121.-For makers of clock time re-
cordels.
Sawmill machinery and outfits manufactured by the
Inquiry No. 5122.-For machines for grinding
American inventions negotiated in Europe, Felix Inquiiry No. 51:23.-For nib and steel pen-making Inquiry
machines. No. 51:3.-For nib and steel pen-making Non-retillable bottle. Simple. practical and non-refill-
able. Address R. T. McKenzie. Spring Hill, Miss. Inquiry No. 51:4. -Fir a dynamo and engine
conmpeter ar a small plant, for furnishing current tor
private residence. Gear cutting of every description accurately done.
The Garvin Machine Co., 149 Varick. cor. Spring Sts., N.Y. Inquiry No. 5125.-For manufacturers of corn Edmonds-Metzel Mfg. Co.. Chicago. Contract manu Inquiry No. 5126.-For manufacturers of fire ex
Empire Brass Works. 106 E. 129th Street, New York. .. have exceptional facilities for manufacuring any
 The largest manufacturer in the world of merry-go-
rounds, shooting galleries and hand organs. For prices runds, shooting galleries and hand organs. For price Inquiry No. 512s.-For dealers in loom supplies, The celebrated "Hornsby-Akroyd" Patent Safety On
Engine i built by the De La Vergne Refrigerating M Engine i built by the De La Vergne Refrigerating Ma
aine Company. Foot of East 138th Street, New York Inquiry No. 51s9.- For dealers in shoddy mill.
excelsior machine, wire mattress machine and mattress
wire
Manufacturers of patent articles, dies, metal stamp ery and toois. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
Inguiry No. 5130.-For manufacturers of tin
shingles.
Non-union millwright, competent to do drafting, lay witut work and installing machnery. wishes position
with parties about to build. Country job preferre

Inquiry No. 5131,-For machinery or complete
ustallations for producing iron from the ore. Wanted-Revolutionary Documents, Autograph Let
ters, Journals. Prints, Washington Portraits, Earl merican Illustrated Magazines, Early Patents signed yresidents of the United States. Valentine
Manuals of the early 40 's. Correspondence solicited address C. A. M., Box 773 . New York.
Inquiry No. $\mathbf{5 1 3 2}$.-For manufacturers of all Wanted.-Manufacturers to negotiate for manu
facturing King's Steel Wire Spring Draft Tug. Se lustration and description in this number of the . w. Wic american.
Inquiry No. 5133 -Tor makers of steel hooks and An estate, holding a controlling interest in a corpora的 manufacturing patent devices for use in th to enable it to adjust estate matters. An excellent opportunnty for any one who can take an active p ?rt in
the management of the company. Not over $\$ 15,000$ ecessary. Full part

Inguiry No. 5134 .- Frr makers of sheet metal
novelties. also rule made of celluloid, aluminium or
other suitable material. Inquiry No. 5135 . For lace and net-making ma-
king nachines for making torchon insertions, crochet
laces and mosquito nettivg.
 Inquiry No. 5137.-For manufacturers of concav
ing machines. Inquiry No. 5138.-For catalogues and prices of Inquiry No. 5139-For makers of hot air engines
for running light machinery. Inquiry No. \$140.- For a small dynamo that can
be ittached to faucet and vive current enough for a
ank that holds about 21 gallons. Inguir r No. 5141 . For machinery for making
paper plates, buter dishes, oyster pails, etc. Tnquiry No. 514: 52-For manufacturers of stove Inquiry No. 5143.-For Spanish and English cata ogues of furniture.
Inquiry N. 5144 .- For makers of cabinet boxes
fancy hardwoods, size about $6 \times 6 \times 9$ inches, by the Inquiry No. 5145.-For printers, or knowledge of
how to print views or pictures on fancy wooden boxes. Inquiry
No. 5146 . -For catalogues of auctioneer

Inquiry No. 5148.-For

 Inuiry No. 5149.-For addresses of pipe organbuiliders. .rran pree makers and makers of organ ac-
tion, tracker, pneumatic bellows, etc. Inquirr No. 5150. For Cana
of power transmitting machinery. Inquirv V. 51.51.-Tor makers of Raxter lampe, Inquiry No. $5152 .-$ For castings for a motor
acle.

hints to correspondents. Names and Address must accompany all letters or
no atcontion will be paid thereto. This is for
orr juf orr information and not for publication.
References to former articles or answers should give
dinte of

some answers require not a little research, and,
thoug we readeadvo to epply to all either by
letter or in this department, each must take Buyers wishing to purchase any article not adver-
tised in our oulumse winl be furnisided with
addresses of houses manufacturing or carrying the same.
Special Written
rather thormation on than maters of peral interest canal
cannot be expected Without remeineration.
Scientific Americn Supplements referred to may be
had at once oltice. Price 10 cents each. had at thil ottice. Price 10 cents each.
Books referred to promptly supplied on receipt of
prie.
Mineras.s.ant for examination should be distinctly
marked or la leelect.
(9316) A. F. S. writes: I am a constant reader of your valuable paper, but to my the philosophy of cloud electricity. I believe the matter is a problem in most minds, and deserves aftention. For example, why is it that
lightning is rarely'seen in the winter, and only crasionaly in the summer? How is the energy olservation. Witnessing some approaching they of the clouds and their formation. If the atter appeared as a great dense blanket, though very threatening to the eye, and great gusts
of wind preceding it, there was no violent effect either as lightning or rain. When these clouds or if the storm appeared broken up, often
 did not move uniformly ; when the confusion was slight, there was chain lightning and no rain ; when it was greater, great bolts shot into the earth, often followed by torrents of rain, probably due to the sudden cohesion of the water particles. Clouds, I should infer, are al
ways electrified by wind friction, but their hormal potential is continueus but low, so lon as they move uniformly; when different diisions pass each other magnetic induction estallished, and great intensification of their Charge results. I believe that cloud electricity is unlike that of our glass disk generator. the lungs, and is identical with italers and ecause its magnetism alone influences the living body. I wish to hear from others as to this aso how can a thunder-bolt splinter a woode tion a half inch into the hard dry ground The spark has no weight, but it takes many uns to duplicate such a feat. A. Your not oncerning the ecctrifcation of the clouds and the action of lightning has points of interest, etic induction in these phenomen: nor that Ientical. The mechanical force of living being ar y all considered to be due to the rending and heating of the air and its rushing back into the mace from which the passage of the electric ischarge has driven it out. These actions are is electrical.
(9317) S. T. C. says: I desire to now what amount (if any) of water may be arried off by dry air if some was forced int ng pipesi some distance from through conduct Gaturated air at 72 deo. Fahr contain 0.012 pound of water per cubic foot, and by usin rdinary dry air of 50 per cent moisture, 1000 cubic feet of air will absorb and carry off 0.6 air and water is ralsed to 100 deg., abont $1^{1 / 4}$ pounds of water may be evaporated per 1,000 f the water to 125 deg., $31 / 2$ pounds of wate ay be evaporated per 1,000 cubic feet of air.
(9318) L. H. asks: I have a 3 -horse ower vehicle gasoline engine with electric igcells and !)-inch p!ain spark coil. The ignition has never been satisfactory, and has given me o end of troure, and as I cannot get satis ngine, I want to get an expert's answer to re made questions. I think the electrode would be the best arrangement to supply a spark to this igniter? How could my battery as described alove be improved to give best psilis? What kind of a spark coil would give , Conideing that I nly a part of the time 1 run my engine stands idle for days, but when I do want to un it, it is important that it should go good, would not an improved auto-sparker be nool thing for my engine? How much of the ngines power would the auto-sparker require . 1 da he poultes in electric power forat
n proper condition. The system is largely in
use and giving satisfaction. The other system with a jump spark is so different that it will equire much change, such as a new plug, an same battery, or by a small dynamo. We ad inning at the battery. See that the batter cleaned and given a fresh charge, and tes nect the coil and test it in the wires, then con should give a brighter spark. Then take out the plug and thoroughly clean every part ; take that might cause a short circuit. Connect the plug with the battery and coil, and test the sark, it should be in good order. Reconnect to the engine, and give it a final test trial. The contact points of the electrodes should be of they may be of steel, and should be dressed smooth and slightly rounded for perfect contact
 not stated in detail, is due to short circuit
the current at the spark end of the plug by deposit of carbon on the intervening surface b ween the electrodes. Frequent cleaning weeded in this as well as other sparking plugs. The auto-sparker, or jump spark sy stem of gnition, is much in use and is very satisfactory is very small, probably not one-elghth of a

NEW B00Ks, ETC

Simple Methods for Testing Painters

B.Sc. London: Scott, Greenwood \&

Co. New York: D. Van Nostrand \& $\$ 2.50$.
The materials employed in painting peculiarly liable to sophistication, and it not uncommon to find one substance entirely eplaced by another of lower value. This book designed to enable the painter and dealer o test and value the materials they buy, and the manufacturer and dealer the samples sabmitted to them, in the simplest manner, bot tion.
The Handymax's Book of Tools, Ma Terials, and Processes Employed Woolworking. Edited by Paul M
Hasluck. London: M. D. Cassell \& Co Ltd. 8vo 760 pages, 2545 illus trations. Price $\$ 4$
The author is a well-known amateur me hanic who has added very largely to the that the present volume is by far the most exbaustive book on the subject hitherto produced, and an examination of it would seem to confirm this view. While some of our tool here ractice do not render this book of little valu the delight the reader. It irtually a cyclopedia of practical handicraft in wood.
History of American Steam Navigation By John H. Morrison. New York W. F. Sametz \& Co. 1903. Ins. 8vo Pp. 630 Price $\$ 4$
It is surprising that we should have passe ffort was made to write the history of Amerian steam navigation; for although it is true that our present rank as a maritime nation is altogether incommensurate with our enormou tribution to the development of steam naviga ion has been a most renerous one. The task of writing this history has been undertaken on a very complete scale; and the 630 page of this book cover the subject so completely, hat one feels satisfied on laying it down that here is no fact of any importance connecte with the subject with which the book ha chapter on the experimental stage, in whic he early development of steamship navigation s traced, from the attempts of John Fitch, of Connecticut, to the establishment of th teamship on a practical business basis. Then follows a most fascinating chapter on naviation on the Hudson River. Cuts of the most amous "fliers" for the past fifty years are Iven, ogether wrth a descs of the ves els and their best passages. It is surprisin he "Francis Skiddy" made the trip from New York to Hudson, 116% miles, at a speed per hour of 23.04 miles. In this connection, re fence should be made to a chapter at the en urdity of many claims for high speed hown. The author in testing these record ooked up the logs of the various vessels, and hat the best passages of certain ships wer nany miles below the average speed with which they had been popularly credited. The ook is divided into chapters on the development of navigation on western rivere and the arious well-known lines on the Sound anc Isewhere. Under the head of "Ocean Steam hips" a fitting tribute is paid to the effort
of the United states to establish and main-
tain the famous Collins Line. The other chap-

INDEX OF INVENTIONS

or which Letters Patent of the

 United States were Issued for the Week Ending February 9, 1904see note at end of list about copies of these patents
Abdominal supporter, M. Hazelbaker...... 751,641
751,897

 matic device for setting, vance \& Lana Altiscope or the like, L. Y. Spear
Amalgamator, H , Hall
Ancmometer,

 Brinde
Bit.
Ble $\substack{\text { Reo } \\ \text { geom } \\ \text { gotit }}$

等
and

Cam or eccentexc, ap, car body

and

$$
\begin{aligned}
& \text { railuy, J. } \\
& \text { ravisolson } \\
& \text { Dovidso.... } \\
& \text { Oostay } \\
& \text { explosios }
\end{aligned}
$$

\qquad

Electric swith, wright \& white..........
Finctricel distrintian snap, M. Gustem, J. S. Peck

 751,887
$751,9+4$
751,146
7

Framing or othe purposes, stock for, H. Killion
Fuel wick block and producing same, artiticial,

751,518
751,676

751,468 7511.69 751,720

Don't Drink Dirty Water

TYPEWRIIER HEADOUARIERS

Valuable Scientificic Papers
ON TIMELY TOPICS
Price 10 cents each, by mail
RADIUM AND THE RADIO-ACTIVE Scientific account has been pub or ched thater
that contanind in ScIENTIFIC AMERICAN
in
 ELECTRONS AND THE ELECTRO-

THE PANAMA CAN
the engineering standpoint in
AMERICAN SUPPLEMENT 1359
WIRELESS TELEGRAPHY, $\begin{gathered}\text { and Present Condition are weli } \\ \text { discussegress in } \\ \text { In }\end{gathered}$
SCIENTIFIC AMERICAN SUPPLEMENTS 1425,
1426, 1427. 1386. 1388, 1389, 1383,
$\mathbf{1 3 8 1 , 1 3 2 7 , 1 3 2 8 , 1 3 2 9 , 1 4 3 1 .}$
HOW TO CONSTRUCT AN EFFI-
APPARATUS AT SMALL COST is
told in SCIENTIFIC AMERICAN SUPPLEMENT
136
SUBMARINE NAVIGATION.
in SCIENTIFIC AMFRICA
1414, 1415, 1222, 1223.
SELENIUM, AND ITS REMARKABLE The paper is illustrated by numerous en-
gravings.
THE INTERNAL WORK OF THE ing discussion by the leading authority on
Aerodynomics, of a subject of value to all
interested in airships, Sccifntir
SUPPLEMENT: 946 and 947 .
LANGLEY'S AERODROME.
CAN SUPPLEMENTS 1404 and 1405.
STEAM TURBINES. Their Constructinn, SCIENTIIC AMERICAN SUPPLEMENTS 1306 .
$1307,1308.1422 .1400,1447,1370$
1372 . The articles have ali been prepared
1372. The articles have all bee
by experts in steam engineering.

PORTLAND CEMENT MAKING is de-
scrited in excellent articles contained in ScIENTIFIC
$\mathbf{1 4 6 5 , 1 4 6 6 .}$
AERIAL NAVIGATION. Theoretical and Practical Discussions. Pirtuires and Descrip-
tions of actualy-buit dirigible balloons and
aero AMERICAN SIPPERENTS, $1161,1149,1150$,
$1151,1404,1405,1413,145$.

Price 10 cents each, by mail MUNN Q COMPANY

The average American road is little adapied for the
use of automobiles, but by reaaon of its neculiar buck-
board construction thli roads are alike to the Buckmo
 nearest agent or we will be pleased to sell you direct.
send to-dav for catalogue.
BUCKMOBILE CO. - - Utica, N. Y. BUCKMOBILE CO.

Make YOUR OWN GAS

shouna investigate the
B. F. BARNES MACHINE TOOLS before placing orders. The Tool here
illustrated is our 20 inch Drill, and we
have many other sizes to make a very

NO LOOP-HOLES

PROF. NIELS R. FINSEN, the eminent scientist who has just been awarded the Nobel prize of $\$ 50,000$ for the most notable discovery in medicine, is the founder of the famous Finsen Light Cure, conducted by the Danish Government at Copenhagen.
I This treatment is the only method known for the positive and permanent cure of Lupus (Consumption of the skin), Eczema, Epithelioma (Skin Cancer), and other forras of so-called incurable blood and skin diseases.
II In the American Branch of the Finsen Light Institute, at Chicago, we have installed the only Finsen apparatus in this country. It was secured direct from Dr. Finsen, and is being successfully operated by physicians trained under his personal direction in the parent institute.
II It is, therefore, no longer necessary to cross the Atlantic to obtain permanent relief from the terribly disfiguring diseases which the Finsen Light alone can cure.
-I Our free 80 page illustrated book explains all about this wonderful cure and gives photographs, names and addresses of sick ones who were restored to perfect health by means of it. Do you want this book ?

THE FINSEN LIGHT INSTITUTE OF AMERICA
Suite D, 78 State Street, Chicago

SAVE ONE THIRD

By Buying of the Makers We are actual manufacturers-not a commission house.
We can and do save our customers one third on retai) prices
by selling direct to user and cutting out all dealers'
 dealer can show you. Send for
CARRIAGE AND HARNESS COMPANY,

 Tobacco puller, plug, J. Goldsmit.
Tobaco truck, J. Ardner.
Tool, combination, E. Grundeen

 Trolley road crossing
Trolley wheel, J. E.
Trousers, D. Lyons.

ing on, G. Musso, $\%$............
Typewriting machine,
Typewriting machine shift key m. E. H. Wadewitz \ldots.

Urinal, D. Craist..... Valve, J. W. Nethery

Valve gearing, o. W. Youn.......
Valve, high pressure, Jon. Taner
Valve, motorman's, F. B. Corey.

Vehicle coupling, C. H. Semm...
Vehicle, fulding, C. . . Fanning.
Vericle lyggage carrier, F. Simon

Violin bow resin distributer, J. W. Wi...... manc. ${ }^{\text {manizer }}$
Wagon, coaster, F. V. Ea
Watcon, dumpin, J. Bulloc
Watch barrel, M,
Watch barrel, M. Blum....
Water elevating apparatus,
Water elevating apparatus, H. L. Frost....
Water elevator, windass, Jones $\&$ Callaw
Water motor, J. Hofmann.
 Well swivel wrench, oil,
Wheel. See Fifth wheel.

Revisublished tenth edition GAS, GASOLINE AND OIL ENGINFS
By GARDNER D. HISCOX, M. E.
113 Pages. 312 Ilustrationss and Diagrams, Handsomely
Bound in Uloth. Large octavo. Ever y user of a aqas ence ese needs this book
nstructive and rimple,
 motive power, its economy and ease of manasement
Also chaptery on horseless vehiccles, electric hishing
marine propulision etc

 Explosive Enectrics; Gas, Perroleum Products, and

JUST PUBLISHED. SECOND EDITION gas engine construction
the Actual Building of a Gas Engine. B Actual Building of a Gas Eng
By HENRY v. A. PARSELI and ARTCHUR J, WEED. Twenty-five Chapters. $\begin{gathered}\text { Large } \\ \text { trated and Bound. } \\ \text { 8vo } \\ 304 \\ \text { Bages. }\end{gathered}$ Price, $\$ 2.50$.
 orration of gat engmes are clearly and simpis de
 Etep, slowing in detail the making of a Ga,
Eagise come directions for making the patterns; thi

 engine.
the sizesioned working drawings give clearly The entire engine, with the exception of the fily
Whees, is desisined to be made on a simple eight-inch
lathe, with slide rest.
 Every illustration in this book is new and
origina, having been made expressly 1 ivy this
work.

Compressed Air

Its Prodion Use, and Aplications

 By GARDNER D. HISCOX, M.E. Author of "Mechanical Movements, Powers, A complete treatise on compressed air, giving the
physical and overative eroperties from a avacuum to its

 ube transm ission, retrigeration and cold rooms. The neia, including forty tables of the physical properties
of air, its compression expansin and volumes required
for various kinds of work, anio a list of patents on comThe tables inclucled cover most of the relations of our conditions from a acuum to its highest pressure and
power for work; its flnal liquefaction and the phenomena of extreme cold.
The tables are full explained and the formulas given
and worked out The thermodynamic formuias for air compression and expansion are given in a rrecise form
with ful explanations and examples, so that any one with fuil explanations and examples, so that any one
can solve the problemsin in arompression, transmision,
expansion and the power required in atmospheric work.

[^1]
(1)

What Is Daus Tip-Top?

 CONKLIN'S WRITING DESK BOOK

 GEO. W. OGILVIE \& CO., 179b Monroe St., Chicago. III.

SALT LAKE IN WINTER.

Tn the vallee of the Jordan which
raversess an new promised land. sits

 NEW YORK CENTRAL LINES,
and their connection

 ELECTRO MOTOR. SIMPLE, HOW TO mic - motor devised and constructed with a view to assilist-

 Androw Carnobie Tham as AsA Edison

PERFORATED METALS FOR ALL USES. MADEAS REQUREED HARRINGTON\&KING PERFORATING ©.CCHísicaigisi:

A Handy Book To Have

YourTelephone

The Franklin Dynamo

X-RAY MACHINE
of sufficient power to penetrate 6 -inch oak $\$ 25.00$.
 N. O. NELSON CO., 171 Rand, Chicago

Export Trade

How to Secure and How to Hold It
Valuable hints on how to secure Export EXPORT EXPERT

SLOT AND VENDING MACHINES

WORK WELL TELEPHONSE Beaton

 DRYING MACHINES. | s E. Worral. |
| :---: |
| Hanniol |
| Mut. |

 AUTOMOBILE Parstive Me are pepand to manu
 MODEL AND EXPERIMENTAL WORK.
 BUILDERS of Special Machininery, inoded

今II Cbe (JJorld's Fighting Sbips

(NAVAL ENCYCLOPEDIA AND YEAR BOOK) By FRED T. JANE, Author of the Naval War Game (K
414 PAGES. OVER 3,000 ILLUSTRATIONS. OBLONG QUARTO. CLOTH. PRICE, \$5.00, POST FREE. PART I.-THE NAVIES OF THE WORLD: the Great Powers in Order of Strength; the Coast PART II.-ARTICLES ON NAVAL PROGRESS DURING THE LAST TWELVE MONTHS. With a PART III.-VIEWS AND OPINIONS ON NAVAL QUESTIONS. With a special article by Colonel V. U. Cuniberti, Chief Constructor of the Royal Italian Navy.
PART IV.-SIGNALS AND SILHOUETTES (arranged in the same orticle by colone CONTA

CONTAINS :-The length, beam, draught, horse power, speed. coal supply, number and size of guns,
thickness and disposition of armor of every warsbip in the world. CONTAINS:-Tables of the size, weight, velocity, energy, penetration, etc., of every gun of every navy
CONTAINS :-A series of chapters by noted Admirals, Naval Constructors and other experts of various
navies, on vita.
questions of the day in naval construction, tactics, and strategy. CONTAINS : :- emparative table thy the author of the strength of the navies of the world-the most
scientific atempt yet made to classify the world's warships and navies as to actual fight-
ing strength.

MUNN \& CO., Publishers, 361 Broadway, New York.

Temple-Clasps

If YOU Value your eyes

ALL ARTTMMETICAL
 oiper cent ot time and entire
iy reieeves mental and tue

Gas Engine $\operatorname{Han}_{\text {Hat }}$ IGNITER
 arise send for circulur. STIMULATION without IRRITATION

 Glaswerte chenical Apparatuse , heme

 reusis Round the Yorrat Cathos tree.
BAUSCH \& LOMB OPT.CO. ROCHESTER,N.Y.

MAFIC LANTERNE

BIT

Have Your Own Electric Light Plant
 can be used to firnish, porer for other purpases as isell

ELECTRIC DEPARTMENT RICHARDSON ENGINEERING CO.,Harfford, C_{t}

Squabs Pay | Heal |
| :---: |
| Hens |

Model of 1904. Wrth TWO SPEED. Price \$425. WALTHAM MFG. CO., Waltham, Mass.

ois

SPINTHARISCOPE

The APPLE ${ }^{\prime}$ Saves batery troubles, attached
to any aas engine. Governor,
torana and Drin Batteries, Spark
Sorise and Timing Devices.
The Dayton EElectrical Mfg co. Dy
98

A BRAKELESS BICYCLE is like A RUDDERLESS SHIP	o Ollontow
The first and only reliable coaster brake ever ade. Hundreds of thousands in successfu operation. They are absolutely dependable and wear well. Write to-day for free catalogue.	$\mathrm{T}_{\text {Trade-Mark }}$
ECLIPSE MANUFACTURING	., Elmira, N. Y.

Especial Quality in Steel Castings. "EEABOARD" strek castings

 SEABOARD STEEL CASTING CO., Chester, Pa.

You Can't Afford to Use Whitewash STAY-THERE PAINT IS CHEAP:R

THE Hook-hardie co.
11-27 Hook Building. Hudson, Mich.

EASIER TO ROW

 ABSOLUTELY SAFE Writeto-day for free

 catalogue

Telescopes

 are absolutery gearanteed GUNOLACH-MANHADTITAN OPTIT Co..

 Anone sendina a setct hnd deecrimition may quane sendiph a ase echand feeceription mas , Scientific American
 MUNN \& CO ${ }^{361}$ broaway, NewYork

NEW ENGLAND WATCHES The JOCKEY

Eight Size Watah. Niikell Silver,

The New England Watch Co.

[^0]: *It may be of interest to give some practical indications as to the *It may be of interest to give some practical indications as to the
 method of observing these radiations. A quantity of sulphide of calcium method of observing these radiatons. A quantity of sulphide of calcium
 (phosphorescent) is spread upon a piece of black cardboard and fixed by
 collodion so as to form a thin layer ; the spot should be at least 0.8 inch in collodion so as to form a thin layer; the spot should be at least 0.8 inch in
 diameter. It is then solarized mcderately. The screen is observed in a diameter. It is then solarized moderately. The screen is observed in a
 dim light, darkening the room according to the brightress of the surface, dim light, darkening the room according to the brightress of the surface.
 The screen should be observed by indirect vision without looking at it too The screen should be observed by indirect vision without looking at it too
 strongly. It must be remembered that the variations of brightuess are strongly. It must be remembered that the variations of brightuess are
 produced gradually, with an inertia which depends upon the thickness of layer. The proper precautions should be taken for eliminating outside

[^1]: cye Full descriztive circulars of above books will be mailed
 free upon applicat ion.

