

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO..
Editors and Proprietors

oney order, or by bank draft or check.
MUNN $\boldsymbol{\&}$ CO., 361 Broadway. New York.
NEW YORK, SATURDAY, OCTOBER 31, 1903.

a transatlantic clip per service.
A lover of the sea has been prompted to write to the daily press, suggesting, in all seriousness, that it would be a profitable and popular move on the part of our leading steamship companies if they were to add to their fleet one or two passenger sailing ships, with a view to affording those passengers who take the transatlantic trip purely for health and pleasure, an ppportunity to spend more days upon the ocean than they can enjoy in a trip between America and Europe on a fast, modern steamship. At the first blush, the suggestion that we should return to the leisurely speed of the clipper sailing ship, seems almost preposterous; and yet on second thought, when we bear in mind the wonderful growth of the yachting spirit, as shown by the vast fleet of sailing yachts and steam yachts that covers our waters in the summer season, the idea is by no means visionary; and, indeed, if put into effect to a limited extent, it would probably prove to be a very successful venture. To a large and ever-growing percentage of European travelers, the sea voyage is one of the greatest inducements to make the trip. With all our vaunted advance in speed and comfort, there is a question whether we have not sacrificed many of those very features of a sea voyage which tend to give rest to mind and body. The great demand for space for engines, boilers, and coal bunkers has made it necessary to cut down the stateroom accommodation to absurdly narrow limits-so narrow that not the most elaborate furnishings and finish can disguise the fact that the average stateroom is not disguise the fact that the average stateroom is not
much more than a stuffy little box in which one is much more than a stuffy little box in which one is pensation for many travelers is to be found in the short duration of the passage, and for those to whom time is an object, either for business engagements or to escape the inevitable miseries of seasickness, the cramped quarters are regarded as part of the price cramped quarters are regarded as part of the price
which must be paid for high speed. If a clipper saîling ship, however, were designed especially for transatlantic summer travel, it would be possible, in the absence of any provision for steam power or cargo, to give up practically the whole ship to passenger accommodation, and individual staterooms could easily be made double the size of those usually found on the modern liner. There would be a comple ea absence of vibration, and of smoke and cinders, and a general steadiness of motion which only those who sail the seas under canvas can properly appreciate. If the ship were built with modern speed lines, it should be able under favorable circumstances to make the eastward passage in from twelve to fifteen days. The westward passage in from twelve to fifteen days.
passage would, of course, take longer; but as the travelers on such a vesisel would be taking the trip largely for the sake of 'the sea voyage, a three or four weeks' journey would be looked upon rather with favor than with regret. Such a vessel would be fitted with every luxury that is to be found on the modern liner, and the absence of engine-room skylights and smokestack openings, would render it possible to provide magnificent promenades extending the full length of the vessel and almost entirely free from obstruction. The experiment is surely worth a trial on the part of one of the more wealthy companies; for it would be somewhat in line. with that most successful venture of the German companies, in building steam yachts of slow speed exclusively for yachting cruises of many weeks' or months' duration.
wind resibtance in hioh-bpede train service. - Just now the most interesting development of electric traction is its invasion of a field which was supposed to belong exclusively to the steam locomotive-that of long-distance interurban service. The success that has already been achieved in such service on the lines already built is naturally leading electrical engineers to consider the possibility of maintaining a regu:
lar long-distance service at speeds equal to those of the steam railway. Before such a competition can be successfully carried out, however, there are certain important elements of the problem, other than those of a strictly financial and commercial character, that must be fully recognized; and, perhaps, the most important of these is the question of wind resistance at high speeds, say of 40 miles an hour and upward. In a series of trials carried out two or three years ago on the Buffalo $\&$ Lockport electric line of the International Railway Company, it was proved that at the higher speeds it requires much more power per ton to drive a single car than it does per ton to drive a train of cars. Thus, it was found that whereas a train made up of several cars required a consumption of 47 watt-hours per ton per mile for a sustained speed of 75 miles per hour, if one of these cars were detached and run over the same track under the same conditions at the same speed of 75 miles per hour, the consumption of energy rose to 137 watt-hours per ton per mile. That is to say, at the given speed a single car requires 2.9 times the expenditure of energy per ton that is necessary for the same car if it forms one of a train of several identical cars. Now, assuming that the track, the weather conditions, and the speed were the same for the single car as for the several-car train, the engineers who made the tests were justified in their conclusion that the increased power necessary in the case of the single car was due almost entirely to air resistance. In other words, the work done by the car running alone and by the same car running in the middle or at the tail end of a train of cars was the difference, to borrow from bicycle parlance, between the work done at a given speed by a rider unpaced and by the same rider when he is behind the shelter of a pacing machine. That this view of the case is correct, is further borne out by the fact that the coupling of only two identical cars for a run at 75 miles an hour, showed that only 92 watt-hours per ton per mile were necessary, as against the 137 watt-hours required by a single car. This fact presents us with another parallel to bicycle conditions; for all of us who have ridden a tandem are well aware that, where two riders may be unable to make much headway against a strong gale of wind when they are riding separate wheels, they can make good speed if they couple up for united effort on a tandem. As a matter of fact, on level roads and a well-made track, by far the most serious element of resistance will be found to be the inertia of the air, and the higher the speed, the greater will be this resistance. The front face of a moving car has to open a path for the vehicle, and set the surrounding envelope of air through which it passes more or less in motion in its own direction. The car immediately behind it has no such head resistance to encounter, and is simply affected by the sliding friction ("skin friction" it would be called in considering the case of a sailing vessel), and, of course, the surplus power of the car is thus available to assist the leading car in overcoming the head resistance. Consequently, it follows that the longer the train, supposing the cars to be similar in weight, form, and power, the greater is the power available against head resistance and the less the expenditure of energy per car necessary to maintain a given rate of speed.
This fact will, of course, exercise a powerful influence in determining the character of future high-speed, long-distance electric service; and, where each car is a separate self-propelled unit, its tendency, because of the economies secured, will be to induce the companies to operate trains made up of several cars at long intervals, rather than run. individual cars at more frequent intervals. The latter system would be the ideal one for the convenience of the public; but the cost, because of the larger amount of power that would be necessary, would probably render it impossible for the electric companies to compete successfully with the steam railroads. It must be understood that these considerations apply only to high-speed service; for up to speeds of 30 miles the.difference in power required per ton per mile in running cars singly and in trains is so inconsiderable as to present no serious objection from the standpoint of economy to tho operation of single-car service.
Another question to which proper attention has never yet been given, whether in steam railroad or electric railroad service, is that of the superelevation of the outside rail on curves. It is true that of late years engineers of maintenance of way on steam railroads have been showing a more intelligent. appreciation of the necessity for superelevation; and on certain eastern roads where a high-speed service is to be maintained over a track with heavy curvatures, superelevation has been carried as high as 8 inches, with the very best results in safety and comfort of operation. Eight inches of elevation, however, is not by any means the maximum possible, and there is no physical reason why a train should not be run at 60 miles an hour around a 10 -degree curve, provided the outer rail were elevated to the point at which the pull of gravity toward the inside rail balanced the centrifugal pull toward the
outside rail. The trouble on steam railroads is that it sometimes happens that a slow passenger or freight train may, through the exigencies of traffic, be obliged to run at a low speed over the highly superelevated express tracks, and in, such a case the component of gravity might be so far in excess of the centrifugai force that loaded freight cars with a high center of gravity would be in danger of capsizing to the inside of the track-and this has actually happened on some eastern roads. But on the high-speed electric road of the future, it will be absolutely necessary to take special precaution in the way of fencing in the tracks, and enforcing a very rigid observance of the block signal system; and these precautions will have to be arranged so that no train will have to slow up or stop upon any of the sharper curves. With the certainty that the electric train will be running at its maximum speed on such curves, it will be possible to give extreme superelevation; and by laying out the curves on what is known as the spira'l system, where the curve commences with a one-degree curve and runs up by gradu al increments to a maximum of 10,15 , or 20 degrees, as the case may be, it will be possible to maintain a 75-mile service with safety on the necessarily tortuous location on which many electric lines will have to be built.

PREHISTORIC DRAW INGS OF ANIMALS, ETC., IN THE

 CAVE OF ALTAMIRA, SPAIN.Messrs. Emile Cartailhac and H. Breuil recently presented a paper to the Académié des Sciences relating to the discoveries which have been made in the cave of Altamira in the province of Santander. This cave was remarked in 1880 by M. Santuola as containing numerous debris of habitation and industry of the stone age, with paintings or drawings in red and black which represented various animals with great originality. At that time these cave drawings were the only ones which had been discovered, but in the last few years the discovery of several caves of the same kind in France has shown that the ornamentation of caverns by line drawings and paintings at an epoch as ancient as the quaternary is a question which should be carefully studied, and each new find will throw fresh light on the subject.
For this purpose Messrs. Cartailhac and Breuil made a trip to Spain and examined the cave very carefully during a month or more. The region is formed of cretaceous limestone and its aspect shows a considerable underground water circulation. In many places the cave has fallen in, especially in the front part which is thus opened for a length of 800 feet. A series of narrow galleries branch off from the main cave. One of these is 150 feet long. The traces of prehistoric habitation are numerous, especially near the mouth of the cave. Here are to be seen most of the frescoes and drawings, which at first are almost all on the roof of the cave, and extend clear to the back. Their distribution is unequal and somewhat remark able. Numerous small characters or signs drawn in black, and formed of points and lines, are to be seen only in the farther galleries and distributed without any order or appreciable significance. Five complicated figures drawn in black are observed side by side in the end of the last gallery. They have a certain analogy with the geometric decoration which is seen on the long Australian shields, made up of lines in a var ied design. Numerous animal drawings are observed in all parts of the cave. Some of these are in black, generally of small size, 20 or 30 inches high, and are often indicated by a simple outline. Others are drawn in red dotted lines or in a broad line and are better executed, especially in the front cave.
Some of the most remarkable drawings are found superposed upon the former series and are conse quently more recent; the latter are of larger size and have the appearance of frescoes. The exactness of the proportions and the correctness of the outline leaves but little to be desired. This perfection in the drawing is seconded by a good technique and the utilization of all the tints and effects which can result from a mixture or juxtaposition of red and black. The out fine of the animal has been generally traced beforehand by a series of light scratched lines, in which the drawing of the feet, the eyes, nostrils, and horns is most noticeable. These large drawings, from 4 to 8 feet high, are distributed over a ceiling 140 feet long by 35 feet wide. Often the natural relief of the stone and its projections, which are sometimes large, has determined the choice of the place and the character of the drawing, so that the whole or a part of the
animal has the appearance of a colored relief. The animal has the appearance of a colored relief. The animals are represented standing, running, or lying down, and their attitudes are correct as well as singular. Among the fresco drawings are noticed the Bo vidæ, with the bison in the majority, also the wild boar, horse, deer, and others. In the line drawings the deer's head is the most numerous, also the wild boar, and a very fine deer's head with the horns well drawn. On the ceiling around the animal drawings are noticed a great number of curious red characters,
and these seem to have a certain significance. Other
signs which are drawn in scratched lines, form a second class. These seem to indicate huts or dwellings made of branches of trees. More than 20 of these are seen in the first chamber. Near them are some silhouettes of the human figure of a primitive design and rather vaguely sketched, but they are remarkable for certain details which will form an interesting study for comparative ethnography. The gesture of the arms seems to indicate that of a suppliant.
As concerns the drawings, there is evidently a connection between those which are observed in the Altamira cave and those of the six caves which have been already discovered in France. The technical processes are about the same, and the same idea predominates in all, but the Altamira drawings are far superior in all respects. The fauna which is represented here does not show, like those of the Gironde, Dordogne, and Gard caves, different extinct species such as the mam moth, nor is the reindeer to be seen. But the same is to be noted in the case of the intermediate cave of Marsoulas. The species peculiar to the cold period of the quaternary, while proceeding in a southerly direction, do not descend as far south as the latitude of Altamira.
M. Salomon Reinach makes the interesting observation that the animals which are represented in these cave drawings are all herbivoræ, and there are no car nivoræ among them. These animals are, therefore, of the class sought for by the cave dwellers, who were hunters and fishers. The fact that these were the only ones to be drawn seems to show that the object of the primitive artists was to exercise a magic attraction upon these animals. The natives of central Australia also have the habit of drawing figures of animals on the rock or the ground, with the idea of increasing the breeding of such animals, and the carnivoræ are excluded from these drawings, as this would bring bad luck. The drawings observed in the caves of the Reindeer epoch seem to have an analogous character. They were not drawn in the leisure hours of the hunter simply for his amusement, but were talismans by drawing which he expected to have an increased game supply. During this vary ancient phase of human evolution, religion (in the modern sense) did not as yet exist, but magic played an important part and was associated with all forms of human activity. M. Reinach adds that according to a letter from Prof. Frazer, of Cambridge, certain facts which were brought from Australia by Messrs. Spencer and Gillen, and which are as yet unpublished, serve to confirm this opinion.
the ganz system of electifc canal hadlage.
With the Ganz system of electric haulage, a monorail track is used, and this largely accounts for the low first cost of construction, while the lightness of the locomotive used in proportion to its output, occasioned by peculiar construction, undoubtedly has much to do with the excellent showing as to working cost per tonkilometer. The Ganz tow locomotive was designed by kilometer. The Ganz tow locomotive was designed by
Engineer Fabre, and two inclined pairs of axles are Engineer Fabre, and two inclined pairs of axles are
provided, instead of the ordinary horizontal axles usually employed with two vertical wheels.
In the construction of this locomotive there is an inclined wheel on every axle, and each pair of wheels embraces the rail head. Since there is only a single rail, another lateral wheel is provided to brace and steady the locomotive, this wheel operating upon the ground or towpath. By the inclined wheel arrange ment, the rope pull is utilized to increase the adhesion, and it is also claimed by the engineers favoring this system, that the adhesion is still more increased by the wedging action upon the inclined axles, due to the weight of the tow locomotive.
The locomotive was designed for a three-phase current, the motor operating with current of a frequency of 50 periods per second; and on account of the high speed of the motor and the low speed of the locomotive, spur reduction gearing was employed. It is stated that at 15 periods per second, this reduction gearing would not be necessary, and the motor shaft could be direct connected to the worm gear driving shaft. Mr. Szasz gives the following as the fundamental qualities of this locomotive:

1. With the use of one rail, a very high coefficient of adhesion, and consequently a very light-weight locomotive. 2. The utilization of the tow rope for the increase of adhesion of the locomotive. 3. Proportional increase of the stability, of the locomotive according to the effort put forth. Continuing, he gives the folto the effort put forth. Continuing, he give
lowing data in reference to this locomotive:
"It rests upon one rail only, which differs little in shape from the ordinary Vignoles rail. The two oblique pairs of wheels embrace the lateral and top parts of the rail head, a little room being left on the top. The weight of the locomotive rests upon the four oblique axles, being carried on one side by a spring. The motor shaft is disposed horizontally, the motor being built into the locomotive frame. Each of the four axles is driven by the worm gearing by means of two endless screw shafts, which are operated from the motor by a spur gear. The lateral broad
supporting wheel serves the purpose of bracing the locomotive and thereby insuring equilibrium. This wheel is fixed on the side facing the canal, as the inclined towrope tends to tip the locomotive in this direction. If the locomotive represented a rigid system, the force of reaction on the rails causing the adhesion could only be as great as the weight of the locomotive itself, apart from that small part of the weight taken up by the wheel. As the adhesion is to be increased by the wedging action of the weight, it has been necessary to provide for a certain mobility in those parts by which the weight of the locomotive is taken up and transmitted to the rails. For this purpose the locomotive weight can be shifted on the axles. The bearings of only two axles are rigidly built together with the motor, these two axles being on the same locomotive side. The axles on the other side are able to turn round the endless screw shaft, and the locomotive weight rests on this side, by means of springs on the axle. In this way the relative position of the axles and the motor can be shifted in axial direction, and besides the axles of the one side can move around the shaft. This mobility of the axles enables the welght to develop the wedging action."
The Ganz locomotive for towing in the electric system of canal haulage has a controller, a rheostat, main switch, and plug contact for manipulating the threephase motor. The current is directed to the motor through a fiexible cable and trolley contacts, the rail being used as the third conductor. The overhead line consists of two copper wires .314 inch diameter, and the pressure used is 500 volts. The two contact wires are located 11.8. inches apart, and are placed 19.6 feet from the ground. The two conductors are supported on wooden poles placed about 100 feet apart.

" HOME MECHANICS FOR AMATEURS."

Doubtless many readers of the Scientific American, and all readers of "Experimental Science," will be gratified to learn that the late George M. Hopkins left a posthumous work, to which special interest always attaches. It is not always, however, that a work of this character possesses equal merit with.one entirely completed before the death of the author. As a rule, such work has not had the advantage of the final perusal and correction by the author. Such has not, however, been the case in the present instance, for "Home Mechanics for Amateurs" was completed before the author's death. The present volume contains much matter which has never before appeared in print, and some articles which have already been published in the Scientific American. The work will furnish abundant food for thought for the amateur, and will give him suggestions whereby he may pass many pleasant hours in his workshop. Mr. Hopkins was an expert mechanic, and one of his chief pleasures was to make experiments at his home in his well-equipped workshop and laboratory. The work described in the present volume is nearly all the result of experiments made by him during such idle hours. It was the intent of the author to make the present work as suggestive as possible. No complicated aparatus is required in carrying out the experiments described. Anyone with ordinary mechanical ingenuity, having a lathe and a few tools, can make most of the articles and try the experiments illustrated and described in the 370 pages of the book. It deals with Woodworking, How to Make Household Ornaments, Metal Work, Model Engines and Boilers, Home-made Meteorological Instruments, How to Make Telescopes and Microscopes, Batteries, Electric Lights, a New Electrical Cabinet, Electric Motors and Dynamos of Various Kinds, an Electric Furnace, a Recording Telegraph for Amateurs, and How to Make a Telephone. The book Amateurs, and How to Make a Telephone. The book
is profusely illustrated with 326 illustrations. It is is profusely illustrated with 326 illustrations. It is
hoped that "Home Mechanics for Amateurs" will prove helpful to as many thousands as has "Experimental Science."

THE CURRENT SUPPLEMENT.

The current Supplement, No. 1452, contains the usual variety of instructive articles. Mr. Frank C. Perkins presents an illustrated account of the use of electricity on Alpine railways. The use of the Parsons steam turbine in steamships is a probability that is discussed at length. A simple method of finding the capacity and horse power of pumps is outlined. The Eisemann and Bosch systems of electric ignition The Eisemann and Bosch systems of electric ignition
are described and clearly illustrated. Mr. Alfred are described and clearly illustrated. Mr. Alfred
Hands, in an excellent paper, enumerates some safeguards against lightning. Prof. Robert H. Thurston concludes his thoughtful paper on the "Functions of Technical Science in Education for Business and the Professions." J. M. Macfarlane has much to the point to say on the relation of science to common life. The Demeny contour indicator is described and illustrated. An article on the self-electrification of radium will doubtless be received with interest. How a lectureroom thermometer cian be made is told in a very instructive article. The usual trade, oleotrical, and onglneering notes are also published.

SCIENCE NOTES.
It has been stated by an eminent authority that the cyanide process "has done more than all other recent processes combined for cheapening the production of various metals, increasing the gold supply of the world, and advancing the standard of our progress and civilization."
The first recorded attempts to apply cyanide to ore treatment were by an inventor named Simpson, of Newark, N. J., who patented a process in 1885, followed by a process patented by Jules Rae, of Syracuse, N. Y., in 1887. The first really successful cyanide process applied on a large scale was that introduced by the McArthur-Forrest patent of the same year.

Curator Lucas of the National Museum, who went to Newfoundland a couple of months ago to obtain a plaster cast of a whale, has succeeded in his task. The cast is said to be the largest in the world, and when completed will be shipped to the museum Later it will be duplicated and a replica sent to the St. Louis Exposition. It is seventy-nine feet long.
Definite words are necessary, says Engineering Record, for the expression of definite ideas. Hence scientific terms have to be employed. A term has one definite meaning which does not change with time: The rush of affairs drifts words from their original meanings, as ships drag their anchors in a gale, but terms sheltered from common use hold to their moorings forever. The word let, for example, has drifted in two hundred years from meaning hinder until now it means permit; but the term bisect has remained unaltered in significance for centuries.
Since the American occupation of Cuba, yellow fe ver is gradually being eradicated. This remarkable sanitary change is due partly to the explosion of the old superstitious beliefs by the army surgeons and partly to a systematic extermination of the mosquito. Dissipating the common notion that yellow fever is a deadly filth disease, highly contagious, our army experts showed that yellow fever could be spread, and was actually spread, by the mosquito. Attempts at the extermination of the mosquito in Cuba have borne such fruitful results that it can hardly be questioned that in time the leading Cuban cities will be as free from yellow fever as our Southern ports.
The recent announcement of a mosquito destroyer is commented upon in Popular Science Monthly in no very uncertain terms. It is pointed out that the original paper published in Bulletin 13 of the Public Health and Marine Hospital Service hardly justifies the newspaper claims which were made for it. Dr. Stiles, the author of the investigation, simply discovered a new parasite of the mosquito, several of which were already known, and pointed out that these organisms might be of value in holding in check the mosquito plague. There are many technical difficulties in the way of a practical utilization of these "destroyers," and there was in the original article no intimation that the Public Health Service is breeding the germs in order to infect mosquitoes.
Charles E. Bessey of the University of Nebraska writes to Science of a cedar which he claims to be over one thousand years old, as follows: "In the Garden of the Gods, near Pike's Peak, Colorado, there are many large specimens of the brown cedar, Juniperus monosperma (Engelm.), Sargent, and in a recent visit to that place it occurred to the writer that these trees must be very old. On the 13th of August he was fortunate enough to find the stump of a recently-cut tree, on which it was easy to distinguish the annual growth-rings. These were counted for a section of the trunk, care being taken to select a portion in which the rings were of average thickness, and on this basis the number for the whole stump was cal culated. In this way it was found that this particular tree was between eight hundred and one thousand years old. In other words, this tree was a seedling some time between the years 900 and 1100 A. D."
W. S. Hendrixson has studied the behavior of finely divided silver toward substances that readily give up oxygen such as chromic, chloric, bromic, iodic, and permanganic acids. In all the experiments silver was precipitated from an alkaline solution of silver oxide by formalin and afterward carefully purified. Both chloric and iodiojacids are capable aloné of oxidizing large quantities of finely-divided silvert Both acids react quantitatively upon silver, with the result that a molecule of the acid is completely reduced, and six atoms of silver are oxidized, one of which forms a halide, and five form silver chlorate or iodate. Bromic acid reacts in a similar manner. Dilute sulphuric acid alone is incapable of dissolving finely-divided silver, and the seeming solvent action is due to the oxygen of the air, oxygen dissolved in the acid, or to that derived from some external source. In the near future an attempt will be made by the author to as certain whether. by excluding extraneous oxygen, the actual oxidizing power of a bichromate solution may not be very accurately determined with silver.

anOther "Largest Locomotivel"

It was not so very long ago that the engineering world was interested to learn that a locomotive had been built that exceeded 100 tons in weight, and the engine was very properly regarded as a monster of its kind. Since then the power and weight of engines have increased by leaps and bounds until to-day we can present our readers with a view of a locomotive whose total weight when in working order is not far from 150 tons, or, to be exact, 287,340 pounds. The new locomotive was built at the Baldwin Locomotive Works as the first of an order for seventy locomotives for the Atchison, Topeka \& Santa Fe Railway. These engines are of the tandem compound type, in which the high-pressure and low pressure pistons are carried on a common piston rod, the high-pressure cylinders being placed forward of the low-pressure. The former are 19 inches in diameter, the low-pressure 32 inches in diameter, and the common stroke is 32 inches. There are 391 tubes, $21 / 4$ inches in diameter by 20 feet long, in the boiler, which alone give a heating surface of 4,586 square feet. Adding the 210 square feet of heating surface in the firebox, we get a total heating surface of 4,796 square feet for the whole boiler.
The working pressure is 225 pounds to the square inch, and as the weight on the 57 -inch drivers, of which there are five pairs, is 234,580 pounds, we find that the tractive effort is 58,645 pounds The engine is carried on a forward pony truck, ten coupled drivers, and a pair of trailing wheels beneath the firebox, making fourteen wheels in all. The boiler is 6 feet $63 / 4$ inches in diameter, and is built of sheets $7 / 8$ and $15-16$ of an ineh in thickness. The firebox, which is built of steel, is 108 inches long, 78 inches wide, and $801 / 4$ inches deep at the front, and $781 / 4$ inches deep at the back. The total wheel base of the engine is 35 feet 11 inches, while the rigid wheel base is 19 feet 9 inches. The total wheel base for the whole engine and tender is 66 feet. The tank has a capacity of 8,500 gallons and the total weight of this huge engine, with its tender, is 225 tons. An interesting feature is the method by which the high-pressure cylinders are attached to the engine. They are held entirely by the front heads of the low-pressure cylin ders, to which they are bolted, and a common piston valve, carried above the low and high pressure cylinders, does duty for both, the cylinders thus getting rid of the necessity for two pairs of eccentrics and valve gear.
Large as this engine is, it will be rivaled by another engine, which is being built by the American Locomo tive Company for the Baltimore \& Ohio Railroad. The weight of this engine will be about 2,000 pounds less than that of the Baldwin locomotive. Its peculiarity
however, lies not so much in the weight as in the novel system upon which it has been built (the Mallet articulated system), which has been used for many years with great success in France and Switzerland. The locomotive has practically two engines. The forward engine, which consists of two low-pressure cylinders, is carried on a separate truck, arranged to move radially
tion curve, with reference to any given period of time. For instance, the lunar, solar, or sidereal day can each be taken as a period with reference to which tidal records shall be summed for the purpose of analysis. The solar day is, of course, the period to be associated with several meteorological phenomena, such as the diurnal variation of the barometer, thermometer, wind velocities, etc.; also with the diurnal variation of the magnetic needle. The period being a day, or some fraction of a day, the 24 hourly sums form a complete cycle of values.
The machine consists essentially of 24 adding machines suitably mounted in a substantial frame. The individual machines are connected by jointed parallelogrammic frames or lazy-tong arrangements, which insure their parallelism and equable distribution over a length representing a given period. But to secure as great accuracy as possible, each machine, when in use, is clamped to fixed scales by means of thumbnuts, its exact position having been previously computed. The addition in each case is performed by means of a rack and a pair of wheels, the lower wheel having 200 teeth and the upper 199. The difference in their readings indicates the number of complete revolutions made by the lower wheel; the direct reading of the lower wheel shows the number of teeth in excess of multiples of 200 . The mechanism by which all racks are raised and lowered can be seen in the figures.
The "record," consisting of sheets of Manila, Bristol, or cardboard cut along the observation curve, rests upon a series of 24 grooved bars, through which slide indexes moving with the racks. The "record" is held in place by the weight of a series of bars, which are tilted up and down by aid of a treadle. The 24 racks are simultaneously drawn to their initial position by means of a straight edge mounted upon two comparatively heavy racks, which are driven by. gears in the manner shown in the figures. The crank to which the necessary power is imparted is also shown. In the ma chine as constructed the racks and indexes can move forward and back over a range of 13.3 inches.

The dimensions of the main below the boiler, and is held in place by a massive frame are 35 by 40 inches, inside measure. The dis vertica? hinge located just in front of the high-pressure cylinders, which are placed about the center of the boiler. Each engine is coupled to six driving wheels, which carry the whole weight of the locomotive.

A MACHINE FOR facilitating the analysis of CURVES REPRESENTING PERIODIC PHENOMENA. by r. A. BARRIS

The purpose of an analyzer like the one shown in the accompanying, figures is to sum up into 24 partial sums the ordinates of a continuous record, or observa-

Scientific American

TERMINATION OF THE NEW YORK-PITTBBURG AUTOMOBILE ENDURANCE TEST.
The 800 -mile test of American-built automobiles, referred to in our issue of the 17 th instant, was completed October 15. Of the 34 machines which started the first day, 20 succeeded in reaching Pittsburg on the date mentioned, and the following day 5 more concluded the run, thus making a total of $731 / 2$ per cent of the contestants who finally succeeded in getting their cars through. In view of the extremely bad weather en-
record and insert the record of another day. So proceed until the entire record has been passed through. It requires but a fraction of a minute to perform all of these operations upon a properly prepared day's record.
Forty-eight partial sums can be obtained by passing the record through twice, and 72 by passing it through three times.
In order to derive the full benefit from this mechani cal treatment of the records, it is obvious that the in struments used in procuring the observation curves should trace the same upon tolerably strong boards, and not upon paper. Each sheet can then be cut in two along the curve; one portion of the sheet can be put away as an original record, and the other portion used upon the analyzer.
The advahtage of this treatment depends largely upon the number of sum mations required for analysis. In the discussion of tidal observations, the number of periods used is about 20 , and the saving of labor through mechanical

The Automobiles Stored in the Official Garage at Pittsburg.
ng their low speeds. The White steam tonneau, which acted as a pilot car, left Pine Hill at 6 A . M. for the purpose of scattering confetti along the route at all cross-roads, forks, or other places where the contestants were liable to miss the road. Being the leading car, it had a hard time, as the roads were soft from rain all the night before. The machine, however, overcame the adverse conditions, and reached Unadilla, 62 miles distant, in 7 hours. After its passengers had had dinner, they again started onward through the fast deepening mire, and finally arrived at Binghamton, 44 miles beyond, a little before 5 P. M. A Pierce "Arrow" machine, also acting as a pilot car, arrived just before the White.
The first of the contestants to reach the noon stop, Unadilla, were the Stearns gasoline and the White steam tonneaus, neither of which had stopped throughout the morning's run. The third car, a double-cylinder Toledo tonneau, arrived at $1: 54$, and was followed at $2: 18$ by its mate, a fourcylinder car. The fifth to arrive was Oldsmobile No.

Two Fredonia Machines Encountering the Flood Near Binghamton, N. Y.

A Franklin Machine Burning in the Rain.

termination of the new york-pittsburg adtomobile endurance test.

additions should be much greater in this case than in the case of meteorological discussions.

The report from the American consul at Tientsin describes the Chinese plow as very small and with but one handle and the mold-board having but a few inches of surface. It simply scratches the surface of the soil, and is frequently drawn by men, and women. The Chinese have no conception of deep plowing, and it would be contrary to their traditional agricultural training to turn the valuable surface soil underneath.
countered on the second and third days of the run, it is remarkable that such a large percentage succeeded in finishing. The very heavy rain storm which swept over New. York city and a great part of New York State on October 8 and 9, and which was so heavy as to cause a precipitation of 10 inches, first came upon the automobilists about 10 A . M. during the second day of their journey, the second stage of which extended from Pine Hill to Binghamton; and the rain soon turned the roads into rivers of mud and water, through which the cars plowed as best they could, the majority of them doing so with considerable difficulty only by us-

40, which also got in second at the night control at Binghamton. During the morning's run a Columbia touring car slid down a 7 -foot embankment. A Toledo machine and a pair of horses, by their united efforts, pulled the car back on the road. The Phelps threecylinder tonneau came to grief after covering about 30 miles of the day's run, due to the stripping of the driving pinion of the planetary gears used to produce the low speed; and the St. Lonis single-cylinder tonneau sheared off a $11 / 8$-inch gear shaft while climbing a hill near Delhi. Its operator pluckily went to work and made a new shaft, which, with the facilities
afiorded in a country town, was by no means an easy
ob; and, after a day's delay, the machine was under way again, keeping the road till it eventually finished at Pittsburg. This repair was one of the most note vorthy made during the run. About 20 miles from Pine Hill, in the vicinity of a place with the sug gestive name of Andes, the automobiles experienced their first real hill-climbing test. Here between two and three miles of 6 to 8 and 8 to 15 per cent hills were encountered. Climbing these hills on the low gear at a speed of one to five miles an hour was tedious work, and here, as in many other places, the advantage of a three-speed gear became evident. The large percent age of low-speed work was especially wearing on the air-cooled motor machines having no mechanical cooling apparatus, while the Knox machines with fancooled (and, in this case, mud-and-water cooled) motors suffered especially from water and mud short-cir cuiting their spark plugs, which, though on top of the horizontal cylinders, were not, as they well might have been, waterproof. On account of these troubles, the three Knox machines did not reach Delhi, 35 miles from the start, till 2 P. M. They left there, preceded by a Franklin, two hours later; and, after 5 miles of hill climbing up 10,12 , and 15 . per cent grades, the occupants of car 24 noticed smoke rising over the hillside where the road, curving, descended. A minute later they came upon the sight to be seen in the lower right-hand picture on the preceding page. The fiames of the burning machine rose at first much higher in the air than the photograph shows, and made a great display in the dull light of the rainy afternoon. While all present were trying to extinguish the fiames by splashing water from the ditch upon the burning wood, a rather faint explosion caused all to instinctively jump aside for the moment, until the discovery was made that a tire had been burned through and burst. As soon as the gasoline had been consumed, the burn ing wood was extinguished, and the machine was subsequently towed back to Delhi. The fire was one of those rare ones that sometimes occur on gasoline cars when the fuel tanks, carbureters, or piping are ar ranged over or near the muffier. Should a gasoline leak develop, the vapor or liquid is liable to come in contact with the burning exhaust gases. One of the surviving Franklin cars received its baptism of water jusit after leaving Bath. It.broke through a bridge and was completely submerged, but its operator man aged to get it hauled out again and to resume the journey.
The Knox tonneau and runabout spent the second night at Franklin, 17 miles from Delhi, to which place the former returned after experiencing a stuck trans mission three miles beyond, and before reaching which the runabout stopped for the night with a bad rear tire. The Knox surrey returned to Delhi with a broken radius rod. It made an early start the next morning and reached Unadilla in time to see the tonneau start from there the next noon. This machine and the runabout arrived at Binghamton the evening of the third day, just 24 hours behind time. The fourth day these two cars made only the 63 miles to Elmira, as they were detained by deep ponds over the road in two places. The machines were towed through one, and pushed up a rocky road on the side of a very steep hill in order to get around two others. Two Franklin machines caught up with them at this place, and all four cars entered Elmira together in a pouring rain, as usual, that evening. The Franklin cars were run all night and the following day (Sunday, the fifth day). They reached Buffalo Sunday night, and started for Erie the next morning with the rest of the contestants. Two Oldsmobiles reached Buffalo at 9:25 P. M. Sun day at the same time as one of the Franklins. The Oldsmobile Company was the only firm building ma chines of the runabout type, all of whose machines were on hand to start the morning of the third day at Binghamton. Considering what they had gone through, this certainly speaks well for these ligh machines and the perseverance of their operators.
Including thes White pilot car and a private Whit machine driven by Mr. Augustus Post, five White ton neaus completed the trying second day's run through the mud and rain. The White, cars were the only steam machines in the run, and they entirely demonstrated their endurance and reliability.
The repairs made in Buffalo on the cars that rested there over Sunday were, in most instances, slight. A Columbia touring car skidded against the curb and broke its rear axle Saturday when a few blocks from the control. A new one was obtained from Hartford and put in place. One of the Franklin machines is said to have had a rear axle replaced also. The Toledo cars required new driving chains, on account of the excessive wear because of the mud.
Fifteen machines left Buffalo for Erie, Pa., the morning of the sixth day (Monday), and all arrived there safely shortly after noon. The Locomobile touring car, driven by its designer, Mr. A. L. Riker, who was accompanied by his wife, reached Erie at midnight. Mr. Riker had the misfortune to break his reverse gear about 12 miles east of Bath at 2 A . M.

Saturday. He succeeded in obtaining new gears after a wait of 36 hours, and, although he lost two days, he succeeded in catching up with the run Monday night. The new reverse pinion of his machine broke just as he was backing out of the garage to start Tuesday morning, but he was able to remove the broken pinion and finish the run without further mishap, though minus a reverse. The Knox runabout and tonneau cars reached Bath Sunday afternoon. The latter replaced a broken radius rod at that town. It also ran out of cylinder oil, and, no supply being available, the operator was obliged to purchase and use, the following day, a poor grade of oil, which caused the pistons to bind and the cylinders to overheat, after which the machine worked poorly the rest of the trip, even though the proper cylinder oil was soon afterward obtained. These two cars reached Buffalo at 5:30 and 7:30 P. M. Monday, the tonneau breaking a second radins rod a few miles out. They were sent on the same night and arrived in Erie early Tuesday morning. The runabout's gasoline gave out 10 miles east of Erie, and the operator procured some kerosene and ran on that to the city. Bad luck still pursued the tonneau, as a roller bearing in the front wheel gave out at Painesville, 30 miles east of Cleveland, which put the machine behind again an entire day, while the runabout kept with the run. The Knox surrey caught up with the tonneau at Cleveland, and, although the two machines left there a day behind the other contestants, they finally reached Pittsburg only 4 hours after the control was declared closed, which was at $6 \mathrm{~A} . \mathrm{M}$. on Friday, the 16th instant, and the tenth day out. The way in which the double opposed cylinder surrey helped the similar tonneau car on some of the worst hills, thus relieving the mechanics from over-exertion, can be seen in one of the photographs, while another picture shows the latter car and its occupants after the all-night run to Erie. Decidedly the worst night run, however, was that experienced the last night, from Youngstown to Pittsburg. There were very steep clayey hills, made extremely slippery by thunder showers, and upon which it was next to impossible for the wheels to grip or a person to obtain a foothold. Both machines made a perilous descent down a steep, winding, and slippery hill into Beaver Falls, Pa., at 3. A. M., which thoroughly demonstrated the efficiency of lever steering aided by a good steering check and an equal distribution of weight, in preventing dangerous skidding. These two 2,500 -pound machines completed the run without any tire trouble.
Among the last cars to reach Pittsburg were the two Fredonia machines, a tonneau and a runabout. A fair idea of what the cars that fell behind the second day of the run were obliged to encounter may be had from the photograph showing these two machines being towed through water, well over the hubs of the wheels, covering the road along a river bank. In an experience of this kind near Binghamton; the calcium carbide in a can in the tool box of the Knox surrey was attacked by the water so suddenly that the resulting heat ignited the acetylene gas generated, and the driver was badly burned when opening the tool box and throwing out the can of carbide. The machine in this instance, while being towed, ran off the road, and was submerged so that only the tops of the seats were above water. It was finally pulled out by a crovd of onlookers. New batteries and spark coil were obtained, and the car was run five miles on the railroad, across three bridges, in order to get around the pond.

The automobiles, upon their arrival in Pittsburg, were all placed in a garage, where a thorough examination was made of their condition. The report of the committee will not be out till November, but from the information at present attainable it appears that the nine machines which fulfilled all the requirements are, in their order of merit, as follows: No. 10. Two-cylinder Toledo touring car. No. 15. Pierce Stanhope fitted with single-cylinder De Dion motor. No. 6. White steam tonneau. No. 14. Pierce "Arrow" tonneau, fitted with two-cylinder De Dion motor. No. 5. White tonneau. No. 18. Single-cylinder Rambler runabout. No. 16. Single-cylinder Packard car that crossed the continent. No. 2. Four-cylinder Columbia touring car. No. 35. Double-cylinder Stearns touring car.

No such severe endurance test will in all probability ever be held again, and it is an encouraging outlook that so many of the standard American machines have been so thoroughly tried under the most unusual conditions, and even then have not been found wanting.

Death or Gordon McKay

Gordon McKay died October 19, 1903, at his home at Newport, R. I. His inventions had a most marked influence upon the boot and shoe industry of the world. They closed the doors of the cobbler; but they supported large American factories. Mr. McKay peddled the stock of his first corporation from door to door. From the payment of the very first dividend the stockholders considered themselves wealthy men.

Everyone who made American-made shoes paid tribute to Mr. McKay in the form of royalties.

Unconsidered Facts in the Art of Flying. In spite of the universal interest felt in the art of flying, and the number of articles that have been written upon the subject, the public, and it may be said most of the workers in this line, have neglected some of the most important facts connected with the art. There are several ideas prevalent and generally ac cepted as facts that have retarded invention and have infiuenced engineers to work in wrong directions. First of these is, that the power required is enor mous. The second is, that artificial flight has not yet been accomplished, and the third is, a general wrong idea of the essentials in construction.
Flying, from the figures available, may be considered the easiest of all methods of progression, calling for less horse power than any other. As a proof of this, take for example the case of the storks, which, in their annual migrations, make a fiight between Buda-Pesth, in Hungary, and Lahore, in India. This, in an air line, is perhaps 2,300 or 2,400 miles, and the distance is accomplished in about twenty-four hours without a rest. A horse driven in a sulky a hundred miles in a long summer day is not far from the limit of endurance. Six hundred miles in a week is near the limit of man in heel and toe walking. One thousand two hundred miles is approaching the record of the "go as you please gait." Among wild animals, 100 miles is about as much as can be found in the records for twen-ty-four hours, but the bird weighing anywhere perhaps up to twenty pounds, makes the 2,500 miles in twentyfour hours with ease and certainty twice in a year. If the weight is put at ten pounds, this equals 25 ton miles. On the best and most level railroad, and with carriages operating with the least friction, a ten-pound animal would find it difficult to haul 25 tons one mile in twenty-four hours. These birds fly at great heights, undoubtedly to reduce the resistance of the air. There are many other examples that might be given of Iong distances covered 'by heavy birds, showing the small amount of power required in flight. The immense speed of many of our birds when in ordinary flight is another proof of the small amount of power required.
The figures commonly accepted for the horse-power needed for mechanical fight, per pound of weight supported, are absurd when applied to birds. Taking the most liberal of them, we find that a 13 -pound goose must exert a small fraction over one horse power when on the wing. Other figures have been published by experimentalists which would double this power for the weight. The machines which have actually flown have to some extent confirmed these figures, notably those of Mr. F. H. Wenham and Sir Hiram Maxim. There would be no escape from this conclusion but for the experiments of Mr. Marey. He found that the muscles of birds are not more powerful than those of terrestrial animals per square inch of section. This shows at once that there must be a mistake in the calculations, and that fiying requires a minimum rather than a maximum of power
Recently some doubts have been thrown upon some of the statements in regard to the speed of birds on the wing. The figures which have been given in regard to birds found in the Western States were obtained under conditions which insured great accuracy. The observations were made by government engineers making current determinations during surveys of western rivers. While watching their fioats pass over measured distances along the "slues" or straight stretches lined with towering forests, they were pro vided with stop-watches and signals from station to station. As the ducks invariably follow the stream, in their flight from point to point, the observations were made with great ease and accuracy. This was done in the intervals of the current observations, and much valuable data obtained which would have otherwise been beyond our reach.
No animal, whatever its weight, a bird only ex cepted, can make any such speed as 90 ito 100 miles per hour. Among the birds there is a lơng list of those whose speeds are from 80 miles an hour upward, their weights all being under 15 pounds. Parenthetically t may be remarked that naturalists will give dimen sions of birds to an eighth of an inch, carefully spread ing their wings and arranging the feathers, but it never occurs to them to give weights. The eagle may weigh 5 or 50 pounds, so far as the records show. Hunt ers rarely speak of the weight of birds, though the weight of game is often estimated and the weight of fish given to the nearest ounce.
The facts just given, when taken together, show pretty conclusively that the power necessary for ani mal fight is extremely small rather than very great. It also seems to be proved that to fly successfully the speed must be high.

In looking over the history of the art of flying, ope is struck at once by the great number of persons who have accomplished flights of anywhere from one quarter of a mile to a mile by means of apparatus not
connected with a balloon. In a word, if we take the history as we find it, we learn of a great number of methods by which fiight can be accomplished. What we need to know in this art is not so much how to fiy, as how to alight with ease and safety. Experimenter after experimenter has found that after he had succeeded in fiying, the cost of the repairs due to the accidents of alighting have put an end to his experiments. In other words, what we want to know is not so much how to go up as how to steer and how to come down safely.
Inventors are troubling themselves greatly in regard to balance and power. Lilienthal came to his death because he placed the weight too near the wing surface. Had his machines been arranged so as to bring his body six or eight feet lower, his wings would never have been upset in the air. The bird finds it easy to balance itself with its body, which is but a few inches beloc the line of the wing, but in the most complex air currents it is often in a condition which would wreck any structure not animate in every part.
It is strange how mistaken ideas of strength relative to weight, among engineers as well as laymen, prevail., Pine is stronger than steel, weight for weight, both in tensile and transverse strength. The bamboo probably exceeds in stiffness anything of the same weight that could be made in metal. The calculations show these facts, and Prof. Thurston's experiments, which have been more than once alluded to in the pages of the Supplement, have demonstrated it beyond a doubt. The weak points of wood structures are in the joints. With proper attention paid to this feature, the structure of wood and wire becomes lighter per foot of surface than can be produced with metal.

HARLEM RIVER TUNNEL OF THE RAPID TRANSIT SUBWAY.

We present on the front page of this issue an illustration of a difficult piece of engineering work which has particular interest for two reasons: First, that it serves to carry the tracks of the new Rapid Transit Subway beneath the Harlem River; and second, that this tunneling has been carried out upon an entirely new system, and through about the most difficult ma terial in which a tunnel could be built. The plans for the Subway called for a two-track tunnel at this point, and they left the character and method of construction of the tunnel open to the judgment of the contractor, the final decision as to whether the plan would be adopted being, of course, left to the Rapid Transit engineers. The work has been done by Messrs. Mc Mullen, and McBean, upon a plan devised by Mr McBean, to whom we are indebted for courtesies in the preparation of the present article.
It was desirable, of course, in this tunnel, as in all tunnels passing below rivers, to keep the grade as near to the surface of the river bottom as possible so as to avoid the use of heavy grades in the tunnel approaches. In the present case, however, the mud was so thin, weighing only about 80 pounds to the square foot and being of an almost liquid consistency, that the system of tunneling by means of a shield was practically out of the question. To have adopted it would have been to encounter the risks and accidents due to blowouts, which have made the present New York and New. Jersey tunnel such a hazardous undertaking, and have rendered it impossible for the contractors to keep the tunnel in perfect line and level. The method used in the present case was to drive two lines of sheet piling parallel with the line of the tunnel, and wide enough to inclose the same; construct a strong roof of timber across from wall to wall of piling; and then, by means of pneumatic pressure and air locks, exclude the water and excavate the soft mud from within the tunnel caisson and build the tunnel structure, which is constructed, part of it of con crete and part of it of cast iron, within the working chamber thus provided. The construction of the caisson involved the driving of piling throughout the full length of the tunnel, and the piling, when cut off before commencing the construction of the tunnel proper, served to give a perfectly unyielding foundation upon which the completed work could rest, thus preventing the possibility of any future settlement.
In carrying out the work, the first step was to dredge out a channel to within about 6 feet of the sub-grade of the tunnel. Piling was then driven for two lines of working platform, one on each side of the tunnel. Next the supporting piles for the roof of the caisson were driven, each bent containing four piles, and the bents being spaced 8 feet from center to center. The duty of these piles was to support temporarily the timber roof; to assist in putting the transverse braces that held the side walls in line in place; and as we have said above, to give additional bearing to the finished tunnel. To preserve the two side walls of sheet piling accurately in alignment, a pair of continuous longitudinal trusses was used for each wall, the two trusses in each pair being spaoed 12 inches apart, or the width of the sheet piling wall. To maintain the side trusses with their wall of piling at the proper distance apart, and preserve both walls in true line, a series of
transverse trusses was constructed, which extended from wall to wall and reached almost to a contact with the longitudinal side trusses. Now, it can be seen that with the combination of these longitudinal and transverse trusses with the rigid line of piling, it was possible by the judicious use of wedges at the ends of the transverse trusses to keep the side trusses, and therefore the wall of piling, very accurately in line. The grade of the tunnel was also accurately determined by moving the cut-off circular saw upon a track supported on the working platforms, and giving this track the exact pitch or grade required for the tunnel. Then by moving the saw forward and maintaining always the same reach of the saw shaft, the cut-off of the piles necessarily presented the required grade for the finished tunnel.

The remarkable accuracy of the sheet piling and the tightness of the whole work is due very largely to the use of a compound pile which was designed especially for the work. This consists of three 12×12 sticks bolted together and driven as one pile, each three-fold pile being tongued and grooved to the next pile. The work was also greatly facilitated by the use of pilot piles, which were built of steel channels and plates and measured 12×12 inches in cross section. These were driven with the aid of the jet, and served to open the way for the wood piling. Moreover, by their use it was possible to detect the location and contour of bowlders, and when sucih bowlders were struck, it was only necessary to withdraw the pilot pile, blast out the obstruction, and drive the wooden pile.

The timber roof was built up, as shown in our drawing, of three transverse layers of 12×12 timber and two intermediate layers of 2 -inch plank. The whole roof was well bolted and calked, so as to make it watertight. It was built in sections, varying from 40 to 130 feet in length, floated into place between the working platforms, and sunk until it rested upon the top of the sheet piling. The joint between the roof and the sheet

CROBS BECTION, SHOWING TUNNEL COMPLETED within tee caisbon.
piling was closed by T -irons, and a very satisfactory air-tight joint was secured. About five feet of mud was then dumped upon the roof, to keep it down in place with a firm bearing.
It was necessary to maintain the Harlem River channel navigation during the prosecution of the work, and consequently, only half of the river was closed at one time. This involved the inclosing of the work by two air-tight coffer dams. In the portion of the work shown in our illustration, one bulkhead was placed at the city bulkhead line, and the other near the center of the river, the total length of the working timber thus formed being about 216 feet. Near the center of the roof of the caisson was built up a rectangular timber caisson with the usual air lock, and in this were placed the pumps for taking out the soft material of excavation. Cylindrical iron material shafts were also built in, as shown in our engraving, these being, of course, provided with the usual air locks. A pressure of 10 pounds to the square inch of air was sufficient for operation; but it can be seen that this method of tunneling would be available for any practicable depth at which it was desired to carry on excavation. The leakage o : a air from under the roof during the work has been very small, and it should be mentioned that a remarkable degree of accuracy was reached, considering the difficult and unprecedented method employed.
After the water had been lowered in the working chamber, the work of throwing out the mud and other material proceeded without any difficulties whatever, and when the excavation had been carried down to the desired level, the concreting of the floor was begun and carried up around the head of the piles. These were then cut off, and spikes were driven into them, so as to give them a good grip upon the concrete
foundation. After several feet of concreting had been laid, the cast-iron lining was put in place, the concrete carried up around it, and the tunnel completed. There now remained nothing more to do but cut oui, the upper length of the sheet piling, remove the working platforms, and leave the river unobstructed for navigation.
It is claimed by Mr. McBean that the present system would be perfectly applicable to the North River tunnel; and that because of the fact that it would be possible to open the work at several points at once, the tunnel could be constructed more rapidly than by the shield method.

Reorganization Succeeds Organization.

Judging from the number of reorganization plans that have made their appearance within the last few months, the period of organization appears to have given way to the period of reorganization, in so far as it applies to industrial companies. Among the concerns that are going through plans of reorganization are the United States Shipbuilding Company, United States Leather Company, American Bicycle Company, American Ice Company and American Grass Twine Com pany. Other concerns are considering the question of reorganization, the plans of practically all of which provide for a radical scaling down of capitalization.
Commenting upon this situation, the Bankers' Monthly remarks that promoters admit the period of mushroom corporations is practically over. They say that any attempt to float a company with an overabundance of water in its stock would meet with dis mal failure. Four years ago it was an easy matter for consolidations to sell their stock. The public, with enormous profits in view, was willing and eager to buy it, but the heavy shrinkage in values that the majority of the securities of new consolidations have experienced has resulted in a decided change in the attitude of the people. Most of the recent consolidations have been carried through by means of an ex change of the stocks of the constituent properties for that of the consolidated corporation. No new stock to speak of has been offered to the public for subscription.
If there were any lingering doubt of this change in the attitude of financial interests toward new enter prises, the recent low record prices established by the stocks of some very reputable companies would bring conviction. The troubles of the underwriting syndicate of the International Mercantile Marine Company is a case in point. Here is a company including such thoroughly established concerns as the White Star Line, the American Line, the Red Star Line and several other important shipping companies.
It does not appear that the capitalization of this consolidation is excessive, although every man has his own opinion as to that. The only cause for apprehension on this point is the failure of the company to furnish the public with any sort of information on which an estimate of the worth of the securities may be intelligently made. Brokers admit that to buy the shipping securities is much like the business of school boys when they trade pocket knives, "sight unseen."
And this, it should be remembered, is a consolidation of going concerns, owning property of immense, though uncertain, value. Its creation was the work of the very highest order of financial and legal talent, not to call it genius, which America has to offer. In other times new enterprises backed by the same interests have been received by the public with open arms and have poured millions into the coffers of their sponsors. And the public has not always known any more about these earlier projects than it does now about this one.
To ste the public in a violently contrasting mood, it is only necessary to go back a year, to the International Power episode. That a company in the hands of speculators, •pure and simple, with a very limited foundation of demonstrated earning power, should have been able to put its stock to 200 with ease looks now like a verdict of insanity against a whole community. It is with reason that the question is asked in Wall Street, Where are the lambs? Not half a dozen are to be found in a day's search, which fact alone is pretty good proof that they have developed into comparatively intelligent mutton.

One Hundred and Thirty miles an Hour.

Amid the intense excitement of a vast crowd, con sisting largely of experts, the Siemens electric train on October 23 achieved the record speed of 207 kilometers, or about $1293 / 4$ miles per hour, beating the record of the last previous trial by six kilometers. After the recent trial on the experimental Marien felde-Zossen line, near Berlin, when a speed of 125 miles an hour was attained, the engineers declared that this would be exceeded, and that a speed of even 140 miles an hour was practicable. The tests have been going on for several weeks, and are being watch ed with great interest by the Emperor William. The Reichstag has devoted the sum of 280,000 marks to ward the cost.

BALTIMORE'S BYBTEM OF GARBAGE DIBPOBAL.

 by day allen willey.The question of disposing of the garbage which accumulates in large cities has been the subject of much study and, as is well known, a number of systems have been placed in operation, including not only sewage farms but crematories, also reduction plants. The latter plan appears to be especia'lly favored, since by it most of the by-products of value can be secured from the refuse material. A plant has been recently constructed at Baltimore which in the opinion of sanitary engineers is the most complete of its kind which has yet been designed for this purpose. It has been in operation a sufficient length of time to demonstrate its capacity to dispose of all of the garbage collected in the city at present, while it is adequate to serve the needs of a larger community.
ers. Of these there are twenty-eight, of a capacity of ten tons each, or 560 tons for the entire plant in twenty-four hours. This process is naturally one of the most important of the series. The garbage which is taken in at the tops of the digesters as received from the endless conveyor is treated to a steam pressure of 100 pounds, the steam being forced through pipes entering the bottom of the digesters. A temperature of 300 degrees is maintained until the sterilization is completed, when the digesters are freed from their contents by opening valves in the bottom, allowing the material to pass by force of gravity into reservoirs which connect with the several presses.

The next step in the process is the automatic separation of the solid from the liquids. This is done by a comparatively new device and consists of a powerful roller press, a late invention of the patentee. The
catch basins. The basins are so arranged that the grease gradua'lly accumulates at the top, where it is secured by pumping. Of this residue about 3 per cent represents grease which, with that obtained directly from the presses, is sold to be manufactured into soap and other compounds.
The solid matter when dry assumes a granulated form and is almost odorless. It might be added that feature of the plant is its sanitary condition, and comparatively little odor is noted in its interior.
The mechanical outfit comprises a battery of six horizontal return tubular boilers of 200 horse power capacity each, constructed for a working pressure of 125 pounds steam. The boilers are so arranged that each can be used or its use discontinued without in any sense affecting the others. They are supplied by duplex high-duty pumps with modern heating device. The

Automaic Conveyer for Unloading Garbage.

Detalls of the Press.

BALTIMORE'S BYBTEM OF GARBAGE DISPOALL.

While similar in some respects to the installations in Philadelphia and Boston, the Baltimore plant embraces a number of new features. The system em. ployed is widely known among engineers.

A notable feature is the comparatively small amount of space required. The site of the works is located on the harbor in the southern part of the city, so that the material can be brought to the place both by vehicles and scows especially constructed for the purpose. Tank wagons are used which regularly collect the garbage throughout the city. As fast as filled they are hauled to the plant and their contents dumped upon specially constructed scows, which are in turn emptied automatically by an endless conveyor operated by steam power. The first step in the reduction process proper is the thorough sterilization by steam of all the material in hermetically sealed chambers commonly called digest-
material passes through a series of massive rolls, by which all liquids are pressed out automatically and the refractory substances reduced to such form that they can readily be handled as a base for commercial fertilizers. Similar machines are in use in plants previously built, but these later machines are much larger, each having a capacity of ten tons per hour, and requiring practically no attention from the operatives.
Tests which have been made at the works show that of the material passing through the presses about one-fifth is secured in the form of tankage containing 37 per cent moisture. The balance consists of a little over 1 per cent of nitrogen, about 1.57 per cent of phosphoric acid, 0.11 per cent of potash, and 7.91 per cent of grease, while about $31 / 2$ per cent is an equivalent of bone phosphate of lime. The liquid residue passes from the presses through conduits into a series of 14
presses are driven by 50 -horsepower horizontal engines, and the various systems of conveyors by vertical en gines, all of modern high-duty type. The conveyors are of steel construction throughout and are practically indestructible, and all parts subject to wear throughout the plant are readily interchangeable.
The company has begun the construction of a fertilizer plant in connection with its garbage works. This will probably be completed within the next year, and as fast as the "raw material" is turned out in the reduction process it will be transferred automatically to the other works. It is expected to treat from 15,000 to 20,000 tons of the tankage from the presses yearly by the acidulation method and thus form a fertilizer basis. The company which installed and owns the reduction machinery, and collects the garbage from the city, is building the fertilizer Works as well.

THE TORPEDO-BOAT DESTROYER "PERRY."
We present illustrations of the "Perry," one of the three destroyers built at San Francisco at the Union Iron Works. Two other boats, named the "Paul Jones" and "Preble," sisters to the "Perry," were built at the same yard. The three vessels are named after well-known commodores of our early navy, and they are in dimensions and workmanship identical in every respect.

The "Perry" has a length on the water line of 245 feet, an extreme breadth of 23 feet $71 / 4$ inches, and mean draft of 7 feet $21 / 2$ inches. The displacement is 480 tons, and the speed 28.3 knots; gross tonnage 508.93 and net tonnage 83.14 tons. The normal coal supply is 25 tons; maximum draft when ready for sea, 7 feet $63 / 4$ inches.

The armament consists of two long 18 -inch. Whitehead torpedo tubes, two 3 -inch rapid-fire, and five 6pounder rapid-fire guns. A complement of four officers and 69 men is required when in commission. All the wood used in construction is fireproofed. The cost without armament was $\$ 281,000$. The engines of ..these tor-pedo-boat destroyers are in every respect identical. They are of the vertical, in-verted-cylinder, direct-acting, triple-expansion type, with four cylinders, $201 / 2,32$, 38 , and 38 inches respectively, with stroke of 22 inches, and running 327 revolutions at 250 pounds pressure at an at 250 pounds pressure at an 8,000 . The cylinders are placed as follows, beginning forward: For the starboard engines, second low-pressure, intermediate, high, and first low-pressure, and for the port engine, first low-pressure, high, intermediate, and second low-pressure. Cranks are at 90 degrees, the high and first low-pressure being opposite, as are also the intermediate and pressure. The second pair is at right angles with the first pair.
The two condensers are of c o mposition andsheet brass with cooling surfaces of 3,470 faces of 3,470 quare fet The circulating pumps are of
centrif ugal type.
Each boat is provided with four water-tube boilers con structed for a pressure of 300 pounds. They ,are placed in pairs forward and aft in watertight compartments The boilers aft are each pro vided with 80.5
square feet of grate surface, those forward having but 73.5 square feet. The four aggregate 308 square feet of grate surface. The total heating surface is 17,768 square feet.

According to the Anglo-Indian Review, it having been calculated that the energy stored up in one gramme of radium is sufficient to raise 500 tons weight a mile high, an ounce would, therefore, suffice to drive a 56 -horsepower motor car at the rate of thirty miles an hour around the world. The calculator evidently confused intrinsic energy with capacity for transforming energy.

THE TORPEDO-BOAT DESTROYER "PERRY."
Length, 245 feet. Beam, $23 \frac{16}{}$ feet. Draft, 7 feet $2 \not / 8$ inches. Displacement, 480 tons. Speed, 28.3 knots. Guns: two 2-ṇch ; five 6-pounders. Torpedo tubean 2. Complement, 78.
mixed with it, and even from illuminating gas, by cooling the mixture by means of liquid air. The remarkable improvements which M. Georges Claude has brought about in the production of liquid air on a large scale lead to the hope that this process may be applied to purify the hydrogen which is produced in the modern forms of generator. This will be of great value as cencerns the question of balloons and air ships. M. Claude has designed an apparatus for puri fying hydrogen on a large scale by the use of liquid air and the Aerostatic Service is now considering the question. Before going into the construction of the apparatus it seemed useful to determine, by experl-
occurs a form with white or pink ray, which has been narred Chrysanthemum morifolium. Another series of plants obtained in North China and Japan has been considered to show merely a variation of the second form, and this view is accepted by Dr. Henry, who points out the possibility of finding intermediate varieties in the unexplored districts in the interior of China.-Gard. Chron

The Louisiana cotton growers are taking energetic steps to prevent the Mexican boll weevil from entering the State. No cotton seed from the affected district of Texas will be admitted into Louisiana.

THE LONG-DISTANGE RECORD RUN OF AN AMERICAN ELECTRIC AUTOMOBILE.
The electric tonneau automobile shown herewith arrived in New York about noon on the 20th instant, after having made the journey of 244 miles by road from Boston in five days with five necessary re-chargings of the battery en route

This is the first attempt that has ever been made in America to tour in an electric automobile, and great credit is due the Messrs. Babcock, father and son, of the Buffalo Electric Carriage Company, for demonstrating the entire practicability of touring in this, the pleasantest riding type of all automobiles.
Under the best conditions, the touring car illustrated is capable of making 75 miles on a charge; but, largely on account of rain and muddy roads, this mileage was reduced on the trip to an average of 47 . The machine is fitted with forty 200 ampere-hour Helios-Upton lead storage battery cells of the pasted-plate type and weighing 31 pounds per cell. The battery is arranged in six crates placed in front and under the seats. Its total weight is 1,400 pounds, and that of the car, 3,640 . The control. ler furnishes six speeds forward, the highest being 25 miles an hour, and the third, or regular running speed, $121 / 2$ miles an hour. Gilmore motors are used.
The trip from Boston to New York was made easily in five days, the tourists taking their time about it and thoroughly enjoying themselves, as they had no repairing or troubles of a mechanical nature to disturb them. A charging plug and rheostat were carried on the vehicle, and no difficulty was experienced in obtaining charging stations. Partial charges were put into the battery during stops for lunch at noon, and, altogether, the battery was charged ten times more or less completely throughout the journey of 244 miles. The cost for recharging was $\$ 15$, or between four and five times the cost of gasoline for propelling a four-passenger gasoline car the same distance. Roughly speaking, therefore, this is the extra cost of safe, sure, and luxurious travel in an electric touring car.

Mr. George H. Peters, of the Naval Observatory at Washington, D. C., has made probably the most elaborate investigation of the recently observed spots on the sun of which the daily press had so much to say. At first individual spots were seen forming a group; soon they diminished in number, the smaller spots consolidating with others. Altogether, the group was composed of about nine spots, and eventưally condensed into two principal groups somewhat separated. On October 12 the total length of the disturbed region was 172,000 miles, with a width of about 59,000 miles, the aggregate length of the principal spots being abput 123,000 miles. Such was the vast extent of the spots that they could easily be seen with the naked eye through a smoked glass.
Hardly a year passes but the intense whitccess of the solar image, when viewed through the telescope, is darkened here and there by spots. Usually they
are little more than specks. Sometimes, as in the present instance, they attain vast proportions.

The first systematic observation of this constantly recurring phenomenon was made by Schwabe, a German observer, who, however, was not a professional astronomer. With characteristic German patience he began in 1825 to note the spots that could be seen each day. Year by year he continued his work. By 1833 the spots had almost ceased to appear. Although
vestigation, as Prof. Langley pointed out, is that the price of wheat is affected by too many things quite apart from the operations of nature, such as wars aud legislation, corners of the market, and the like.
Viewed with a powerful telescope. a sun-spot appears as an enormous ragged hole in what may be considered the sun's crust, followed by a number somewhat smaller in size. Clearly, the spot is a cavity and not a protuberance. Slopes are visible. The spot seems like a saucer of irregular outline; but where there should be a bottom there is nothing but the blackness of an immeasurable chasm. Considering the sizes of spots such as those which Mr. Peters observed, it is apparent that this little earth of ours might be dropped into one of them as a pea into a thimble, without even grazing the sides.
Although there may be little, if any, connection between terrestrial agricultural conditions and the appearance of sun-spots, still it cannot be denied that the appearance of the spots is attended with other disturbances upon the earth. To-day the connection between the earth's magnetic condition and sunspots is almost incontestable. Authorities have traced a kind of coincidence between the solar changes and our cyclones, storms, droughts, and fioods. But the absence of sufficiently old records prevents us from establishing more than the fact that the magnetic conditions of the earth are disturbed. Mr. Peters noted a considerable disturbance of the magnetic needle during the recently observed

SUN SPOTS.

sun-spots photographed at the naval observatory, washington, d. c., on october 12, 1903.

omers. From Schwabe's observations it was found omers. From Schwabe's observations it was found
that the average period from one minimum to another is about 11.1 years, and that from one; minimum to the next maximum is less than from that on to the next minimum again, or in other words, the spot quantity decreases through a little over seven years, and increases through less than four. No one knows just why this should be so. There is little substantial proof that the maximum and minimum periods coincide with other celestial phenomena.
It has been repeatedly stated that the appearance and disappearance of the sun spots have a marked infiuence upon the weather, and that it is possible by their means to predict good or bad years for farmers. Prof. S. P. Langley, who is probably the foremost American authority on solar physics, took the trouble to find out whether or not there was any marked infiuence upon agricultural conditions. Comparing the number of sun spots in certain years with the price of grain in the English market, for the corresponding years, he showed that there certainly was some coincidence. But no astronomer, least of all Prof. Langley, lished. spots. It is to his courtesy that we are indebted for the two striking photographs which are herewith pub-

American Eridges on the Uganda Railroad.
One of the most distinguishing features of the recently completed Uganda Railroad are the several viaducts and bridges constructed by the American Bridge Company, of Philadelphia. These viaducts are located upon that section of the railroad climbing the great Mau range. At this point the track has a rise and descent of 2,000 feet in $11 \xi \frac{1}{2}$ miles between Nakuru and Kibigiri. This section was one of the most diffcult to construct, necessitating abnormally heavy earthworks. Throughout this $1131 / 2$ miles there are twenty-seven viaducts-nine on the ascent from Na kuru and eighteen on the descent to Kibigiri. The first bridge in the ascent is between stations Njoro and Elburgon. The summit of the climb is at mile 490 , and the longest and most important bridge is one measuring 760 feet in length between abutments. It consists of thirteen spans, each of 40 feet, and twelve spans of 20 feet. The second import ant bridge is at the $4761 / 2$ milepost, which measures 639 feet from end to end, and comprises eleven spans of 40 feet and two spans of 20 feet. This bridge crosses a river at an altitude of 8,100 feet. On the descent the first of the eighteen bridges is located 8 miles from the summit of the es carpment, while the last is at the milepost 541. Near the station of Fort Ternan is built the most important of the various bridges in the whole $1131 / 2$ miles at an altitude of 5,200 feet
was quite satisfied with such evidence. As he himself said, we might safely undertake, with study enough, to find a curve depending solely on certain planetary configurations, which wou'ld represent with quite striking agreement for a time, the rise and fall of any given railroad stock, the relative numbers of Democratic and Republican congressmen from year to year, or anything else with which the heavenly bodies have as little to do. The trouble with such an in-

This bridge is 881 feet long between abutments, and is built in twenty-nine spans of 40 feet and 20 feet respectively. The next in point of importance, and which is the highest situated, is 560 feet in length, built in nineteen spans. At the milepost 522 is another viaduct, measuring 579 feet in length, consisting of ten 40 -foot spans and nine 20 -foot spans. The total cost of these twenty-seven bridges, inciuding construction and erection, was approximately $\$ 550,000$.

A NEW TYPE OF HOLLOW GRATE-BAR.

We show in the accompanying illustration a new type of hollow grate-bar through which a current of air is passed to accelerate combustion of the fuel. The grate-bar is formed in two parts, as shown in the small detail view. The lower or body section has

A NEW TYPE OF HOLLOW GRA TE-BAR.

the shape of a trough, deepening toward the center, and provided with extensions at the ends for resting on the furnace setting. It is also provided with trans-versely-disposed bracing ribs having openings at their lower sides to permit ashes to pass down to the lower or central portion of the grate-bar, where such ashes may be withdrawn through an opening there provided. The upper section of the grate-bar is rounded so as to lie above the level of the rest of the grate. This section is formed with a number of orifices covered by shields which prevent entry of the ashes. The two sections are held together by tie-bolts, the center one of which serves also to hold in place a cover on the opening above mentioned. The grate-bar is used in connection with a bridge wall which is formed with a draft tunnel. Pipes from this tunnel admit air into the grate-bars and thus supply oxygen to the fuel through the shielded orifices. Two of these orifices in each grate-bar open toward the bridge wall and the shields also extend in this direction. This causes the draft to pass over the top of the bridge wall and to mingle with the products of combustion at that point, so as to bring about a very effective combustion of the fuel. The grate-bar being formed in two sections, may be readily repaired, since the greatest heat will be on the top section, and if this should become injured it may be removed and a new section applied to the old body, thus bringing about a great saving, as will be apparent. A patent for this invention has been granted to Mr. Theodore J. Pritchard, of Sunshine, La.

ODDITIES IN INVENTION.

Incandescent-Lamp Support.-A very convenient in-candescent-lamp support has recently been invented, by

INCANDESCENT-LAMP SOPPORT.

which the lamp globe may be adjusted to any desired angle. The lamp shade is provided at the base with a slot in which a slide is secured. On one end of this slide an ear is formed, to which a connecting rod is pivoted. On its opposite end the connecting rod is pivoted to a clamping block, which binds upon the connecting cord of the electric lamp. By raising or lowering this block the lamp may be swung to any angle in the vertical plane. By moving the slide to various positions along the slot in the base of the lampshade, the shade may be adjusted to throw its shadow in any desired direction.

ClEANER FOR Windows.-We show herewith an improved window cleaner of the "fountain" type, which has just been patented by a Colorado inventor. An important feature of the invention lies in the provision of independent washing and drying surfaces. From our view of the cleaner shown in section, it will be observed that a pipe passes down into the reservoir at the center and is provided at the top with a nozzle adapted to spray water onto the washing strip of ab-

WINDOW CLEANER AND DRIER.
sorbent material projecting along one side of the cylinder. The drying strip occupies a similar position on the opposite side, while at the bottom of the cylinder there is an extension into which a bushing is threaded. The bushing is provided with a valve and a compressible bulb. In use the bushing is first removed and the reservoir partly filled with the washing fluid. The bushing is then replaced and air is pumped into the reservoir by operating the bulb. On opening the valve of the spraying nozzle, the fluid will be sprayed out by air pressure onto the washing strip. The window may now be cleaned and then dried by rubbing thoroughly with the drying strip.
Fire Extinguisher.-A recent invention provides a means for extinguishing fires, which smothers the fire not only by shutting off the supply of oxygen to the flame as in apparatus heretofore used, but also by absorbing the oxygen, which would otherwise be available, with the products of decomposition of hyposulphite of soda. A receptacle containing the crystals of hyposulphite of soda is connected up with the watersupply pipe as shown in our illustration. In use the water is turned on, and in passing through the receptacle dissolves a portion of the hyposulphite of soda. This, upon coming into contact with the flames, is decomposed in such manner as to liberate sodium sulphite and sulphur. The latter then unites with oxygen to form sulphur dioxide and ultimately, with more oxygen, to form sulphuric acid. The sodium sulphite also unites with oxygen to form sulphate. A large amount of oxygen is thus taken up, which smothers the fire. Since the decomposition of the hyposulphite of soda takes place only when it is heated, it is evi-

NEW TYPE OF FIRE EXTINGUIGHER.
dent that any of the solution which might be spilled on delicate fabrics or other destructible materials which were not afire, would be perfectly harmless, being a neutral solution as regards alkalies and acids.

Trolley-Pole Guide.-It is so common an occurrence for a trolley-car to "slip its trolley," that the very phrase has become a stock slang expression. The trying delays, particularly at night. occasioned by the efforts of the conductor to guide the trolley back onto the wire have been experienced by us all. We illustrate herewith a Yankee invention calculated to expedite
the operation of inding the trolley-wire. The usual cord pull, instead of being fastened to the trolley-pole, is secured at its upper end to a cross-piece connecting the shorter arms of two levers hinged on the pivot-pin of the trolley. The longer arms of these levers are flared out so as to form guides for easily finding the trolley-wire. Normally, the flared arms lie parallel with the trolley-wire, being so held by coil-springs on the trolley-pole to avoid striking the overhead crossstays during propulsion of the car. When, however, the trolley has slipped from its wire, the cord is pulled, raising the flared arms to the position shown in dotted lines, and thus affording a ready means for guiding the trolley back on to the wire.

TROLLEY-POLE GUIDE.

Tire-Inflating Device for Vehicles.-An automobilist will find it very convenient in case of an emergency to have in connection with the wheels of his machine a simple device for inflating his pneumatic tires while the vehicle is in motion. Provision for tires while the vehicle is in motion. Provision for
such an emergency is afforded by the arrangement shown herewith. On the inner end of each hub of the vehicle is an annular casing or cup, which is closed

TIRE-INFLATING DEVICE.
by a stationary head forming an air chamber. A ring is screwed into the annular casing, and serves to hold the head firmly in place, while an interposed packing ring serves to effect an air-tight closure of the chamber. From the casing•a tube leads down to the inlet valve of the pneumatic tire. An air-compressing device is connected by pipes to each hub-chamber of the vehicle, entering the same through openings in the respective stationary heads. A two-way valve, such as that shown, is provided whereby the operator of a vehicle may, whenever desired, direct the air from the compressor whenever desired, direct the air from the compressor
into the tire, or, in case it is not desired furiher to into the tire, or, in case it is not desired furiher to
inflate the tires, may set the valve to permit escape of the air from the compressor into the atmosphere.

Brlef Notes Concerning Patents.
Among the recent deaths announced is that of Thomas Jay Hudson, who for a number of years was principal examiner in the United States Patent Office. Dr. Hudson was also the author of several books of a psychological nature. He died at Detroit, where he hat resided.
In some new freight engines constructed for the Central Hudson Railroad Company, there are independent braking systems for the train and engine. With this new arrangement, when it is desired to bring a train to a stop, the engineer will set his engine brake slightly, so as to take up the slack of the train, and it is said that this will prevent the possibility of the train parting, which is an annoyance and a source of danger of no small consideration.
The Rev. Ernest d'Aquilla, pastor of the Italian Roman Catholic church of Our Lady of Mount Carmel in Newark, N. J., has received a patent upon a
life-saving gas burner on which he has been experi menting for two years. It is designed to cut off the flow of gas automatically when the flame is blown out or accidentally extinguished. The flow of gas is cut off by the contraction of a curved strip of meta'l acting upon a valve.
Hugh Mann, brother of D. D. Mann, vice-president of the Canadian Northern Railway, was accidentally kill ed while superintending the operation of his track laying machine just beyond Erwood, N. W. T. The massive machine got out of order, and, while endeavor ing to set it right, he lost his footing and was crushed. Mr. Mann was taken to the station at Erwood, where he died. For years he had been perfecting this mechanism, which was his invention. Several times he had narrow escapes from death.
Ezra T. Gilliland, a well-known inventor who for many years was a co-worker with Thomas A. Edison, and who was responsible for many of the features of the Bell telephone, died on May 13 at his home at Pelham Manor, N. Y. He was 56 years of age, and at one time was a director of the Bell Company. Up to the time of his death he was an active worker in the electrical field, and maintained a very complete laboratory in the upper part of his handsome home where he had seven skilled men employed on electrical work.
The Northern Pacific Railroad Company has been looking into the matter of fuel briquettes, and some tests have been made with a fuel of this character invented by Dr. R. J. Schrimper, of St. Paul, Minn. Ac cording to Dr. Schrimper's formula, soft-coal refuse largely enters into the composition of these cubes. It is said that they can be made at a cost of $\$ 1.25$ per ton. The trial resulted in demonstrating the fact that the use of the briquettes showed an economy of forty per cent. It is said that one ton of the latter will go per cent. It is said that one ton of the latter will go
further than a ton of soft coal by about between twenfurther than a ton of soft
Edward Atkinson, of Boston, Mass., the anti-imperialist and sociologist, has recently turned his mind in a more practical direction, and has been for some time giving his attention to the manufacture of fuel from mud. He has recently made a quantity of briquettes, the base of which is said to be mud, which Mr. Atkinson claims is as good as Irish peat. Samples of the fuel were burned and gave a very desirable fiame, strong and clear, and calorimetric tests made by Prof. Norton, of Harvard, showed it developed about two-thirds as much heat as its weight in coal. Mr. Atkinson says that he will continue his experiments in the direction of making a machine for the pressing of the mud into the desired shape.
Irving M. Scott, the vice-president of the Union Iron Works, of San Francisco, Cal., who died recently in his 65th year, started in a very humble way, and finally worked himself to a position of unusual prominence, the shipbuilding feats of his company having been the means of making his name a familiar one in industrial circles all over the world. He found employment when a very young man in a machine shop in Baltimore, Md., receiving three dollars per week, but at the age of twenty-two he was not only an expert machinist, but a fine draftsman. He was sent to the Pacific coast at this time in charge of a steam engine, and while there accepted a position in the Union Works, which were then the property of Peter Donohue. It was not a great while before he was the Donohue. It was not a great while before he was the
principal member of the firm. It was with great rifficulty that he secured for his company the contract for the construction of the protected cbuiser "Charleston," and this work was so successfully carried out that other contracts were readily obtained. His name was among those presented at the convention which nominated Roosevelt for the Vice-Presidency.
By the use of a pneumatic device as a substitute for the spring on the arm of a trolley car, it has been found that the trolley wheel is held in much closer contact with the wire, and that a greater efficiency is secured and a higher speed accordingly maintained. The device is the invention of C. V. Greenamyer, the mechanical engineer of the Pacific Electric Company, and has been in successful use on that line, where high speeds are the rule. It is said that the wheel is in close contact with the wire constantly, thereby saving much power which is ordinarily lost thereby saving much power which is ordinarily lost
through the formation of arcs in the circuit by imperfect contact. In this manner much of the energy which is intended to be utilized in the form of power is lost in light and heat. Another feature of the device is that when, occasiona'lly, the trolley wheel does slip from the wire, as is often unavoidable, this pneumatic pressure is at once released, and the pole falls almost to the roof of the car, leaving no dossibility of damaging the overhead work of the line. When the conductor has again secured control of the pole by grasping the cord which hangs from it, the power is thrown into action by the turning of a lever in is thrown into action by the the motorman's ead of the car.
the

The Brislin-Carnegie Infringement Suit on Ap-peal.-Some time ago we digested in these columns the decision in the suit of Brislin vs. Carnegie for infringement of letters patent 345,953 , granted to Brislin and Vinnac, for "A Feeding Mechanism for Rolling Mills," and infringement of letters patent 352,748, issued to Hanley and Richey for "A Feed Table for Rolling Mills." It will be remembered that the Circuit Court of the United States for the that the Circuit Court of the United States for the
Western District of Pennsylvania held that the first Western District of Pennsylvania held that the first
claim of the first patent had been infringed, and that the second patent had not been infringed. The case has now come up on appeal. The decision of the Circuit Court is reversed, a result that means much for the steel industry of this country.
In the process of rolling iron it is necessary to elevate the iron so that it will pass through between the upper and middle rolls when a three-high mill is used. In the case of a two-high mill it is necessary to pass the iron over the top of the upper mill in the process of rolling. When moving the iron from one groove to the other, and from one set of rolls to another, the iron must be moved sidewise bodily. In heavy rolling, the labor of elevating the heated iron and of moving the labor of elevating the heated iron and of the process of rolling is arduous, and the difficulty of this manipulation causes much loss of time as well as of heat. Consequently, it is more difficult to roll the iron; indeed, the stiffening of the iron as it cools, which is occasioned largely by this loss of time, often results in the breaking of the mechanism connected therewith. It was the purpose of the Brislin invention not only to effect the vertical lifting of the iron, but also to move it laterally in the process of rolling. Broadly speaking, the invention consists in a lifting mechanism and laterally-moving mechanism combined with rolls of a rolling mill for the vertical lifting and lateral movements of the heated iron in the operation of rolling it. The first claim of the patent, which alone was in contention on appeal, reads as follows:
" 1 . The combination, in a rolling mill, of rolls, a carriage, a roller frame therefor for feeding to the rolls and pivoted at its outer end means for laterally shifting said carriage and roller frame, and devices for inclining said roller frame on its pivot, so as to vary the feed of the latter to the rolls, substantially as set forth."
The history of the prior art was carefully considered by the Circuit Court, and likewise by the Circuit Court of Appeals. Both conceded that hand feeding to the rolls was at one time general, and that various devices for lifting billets and bars, by hooks attached to pulleys for heavy work, were in use before mechanical rolling was practised. The court, however, did not find that the invention of the patent in suit made the first advance from manual rolling to complete mechanical rolling. "It no doubt made an advance in mechanical rolling, which is quite a different thing from an advance to mechanical rolling." The French patent to Sauvage, May 27, 1858, which had been cited as an anticipation by defendants in the prior suit, and which had been rejected as such by the Circuit Court, was carefully considered on appeal. It was considered by the Circuit Court that the device of Sauvage's patent, so far as a single stand of high rolls is concerned, presents all the advantages of complete mechanical rolling. All that it lacked were means of laterally shifting the table. The suggestion of the moving of such a table on a carriage or truck laterally, so as to bring it successively in front of stands of rolls placed side by side, did not, to the Circuit Court of Appeals, seem to involve patentable invention. Indeed, it distinctly stated that the mounting of such a table upon the truck moved upon rails in front of the rollers would violate a patent monopoly were it granted. "The traveling crane comes within its functional principle."

A patent granted to Alleyne in Great Britain on April 4, 1861, describes a rolling mill of several stands of two-high rolls, combined with both laterally-moving mechanism and vertically-moving or lifting mechanism, the lifting mechanism differing from that of the patent in suit only in that the table is raised bodily and horizontally, instead of the free end next the rollers only being raised on the fulcrum of the pivoted farther end.
The next development of the art of complete mechanical rolling is illustrated by the feed roller tables of the Fritz and Wellman types, which are practically the alleged infringing devices. In the Fritz apparatus the feed rollers are positively driven by a shafting and operating gear, and their rotation is reversible. Fritz also devised a turning and lifting mechanism, by which the piece to be rolled could be turned upon the moving table, so as to be rolled both sidewise and edgewise. "So far as there was necessity for only one stand of rolls, complete mechanical rolling could be
accomplished by the Fritz device. The roller table, to be sure, was lifted vertically and horizontally, but the function of such movable table and the positivelydriven rollers was the same as that of the pivoted table and rollers of the patent in suit." The tables of the Fritz invention were raised and lowered by hy draulic cylinders. There was no lateral movement of these tables, which being of the width of the rolls were sufficient to serve the several passes of the single stand of rolls.
Wellman followed the general prior teaching of the art. He employed a table pivotally supported at its outer end on a stationary foundation. This construc tion, of course, leaves the inner end free to be raised or lowered simultaneously by hydraulic cylinders placed on one side of the rolls. The Wellman tables do not travel laterally, for the simple reason that there is no necessity to transfer the rolled product from one stand to another.
The most pertinent reference cited in anticipation of the Brislin patent is that granted to Saylor, June 30, 1885. In the device of that patent may be found feed tables equipped with positively-driven feed rollers, which are raised and lowered vertically and horizontally. These tables are mounted upon carriages run upon tracks parallel to the axis of the rolls, and are operated on both sides of the rolls. The Court below took the position that the combination described in the first claim of the patent in suit, inasmuch as it provides for the lateral movement of a feed roller table pivoted at its outer end, involves such an invention as to entitle it to the monopoly of the patent. The Circuit Court of Appeals held that this decision The Circuit Court of Appeals held that this decision
is too sweeping, that Brislin cannot claim all lateral movement of a feed roller table capable of vertical lifting, because more than one previous patent has described a device for accomplishing this result.

What Constitutes Public Prior Use of a Design.The case of Young vs. the Clipper Manufacturing Company (121 Fed. Rep. 560) admirably exemplifies what constitutes public use of a design. The suit in question depended upon the alleged infringement of a design patent granted to R. McIntosh, assignor to the plaintiff "for a clip or fastener" of resilient wire to hold together sheets of paper, documents, and other articles by slipping over and clamping their edges. The defense set up that the design was in public use for more than two years before the application, which was filed June 24, 1897.
The inventor made some of the clips in May, 1895, and gave one to a printer, who had an engraving company prepare an engraving of the clip for letterheads. The qualities of the clip were set forth both on the letterhead and on envelops. Some of the clips were placed upon the edges of letters and tags sent by the inventor in correspondence concerning them, before June 24, 1895.
The court held that since a design is patentable for its appearance, exhibition constitutes a public use within the meaning of the statute and the patent was therefore declared void.

The Effect of an Invalid Patent on a Contract to Pay Royalties.-The case of the Willcox \& Gibbs Sewing Machine Company vs. Sherborne (123 Fed. Rep., 875) brings out an interesting state of facts which probably occurs not infrequently. In an action to recover royalties from a licensee under a patent, the defendant pleaded as a defense that the contract had terminated because the patent was invalid. The Court held that a judgment for plaintiff is conclusive between the parties on this issue, and cannot be raised by defendant and again litigated in a second action to recover royalties subsequently accruing. A decree dismissing a bill for infringement of a patent, filed by a licensee thereunder, where the defenses pleaded were the invalidity of the patent and non-infringement, and the decree is not based specifically on either, will not be construed as an adjudication of the invalidity of the patent, which will be conclusive to relieve the complainant from liability for further royalties under the license contract.

The owner of a patent, in selling the patented article, may reserve to himself, as an ungranted part of his monopoly, the right to fix the price at which it may be sold by jobbers, or dealers purchasing from them; and a dealer who buys with knowledge of such reservation is bound thereby, and may be treated as an infringer if he sells in violation thereof.

Prior adjudications sustaining a patent, but which were entered by consent as the result of settlements between the parties, and in which the questions of the validity and scope of the patent were not considered by the court, are not sufficient as the basis for the granting of a preliminary injunction in a subsequent suit against another alleged infringer.

RECENTLY PATENTED inventions.

Apparatus for Special Purposes. MEANS FOR UTILIZING OIL OR GAS IN Tucson, ariz. The objects in this invention ucson, Ariz. The objects in this invention around and to the flame at that part of the burner in a combustion-chamber; to provide for the circulation of the air-blast around the shell of the chamber, to protect the shel against heat in the furnace; to provide means
for regulating the inflow of air and the liquid or regulating the inflow of air and the liquid produced.
LOADING OR UNLOADING apparatus. -J. A. Pastureau, Laplace. La. To render nventor has mounted it upon a suitable wheeled truck. The apparatus comprises a wheeled truck. The apparatus comprises a
frame-work as well as hoisting mechanism of special embodiment, combined with a trackway whereby a load may be elevated from one point and transferred to another, where it may be deposited. The apparatus is capable of withstanding considerable strai
and readily manipulated.

Electrical Devices.
COMBINED TELEPHONE TRANSMITTER AND RECEIVER.-C. Yeack, Akron, Ohio to produce a combination instrument which may be used as a transmitter or as a receiver and also in other relations more or less analo
gous. When used either as a transmitter or gous. When used either as a transmitter or
receiver, the currents produced in the windings receiver, the currents produced in the windings
should be in phase with each other, and the windings should be of proper direction to at tain this end rather than
WIRE-SUSPENDING DEVICE.-H. E. Stevens, Windber, and B. Gellatly, Pittsburg, Pa. This improvement relates to means for feeder wires. The aim is to devise a sus-
pending means which shall obviate many former pending means which shall obviate many former
difficulties, such means being so constructed and placed in the roof of the mine or build ing that it is very difficult for the same to may be readily placed, and on deciding to aickly removed from the roof and used in a new passage-way.

Engineering rmprovement Marine vessel--C. H. Lee, SouthampThe broad featuren outside inven hull, of the fuel-pipe which conveys liquid fuel from a storage-tank to the engine, in connection with devices by which an upstanding
branch of the pipe is surrounded by a standbranch of the pipe is surrounded by a standpipe open to the water and serving to dis
charge leaking fuel into the water without any possibility of the fuel escaping into the vesel's interior.
ROTARY ENGINE.-L. VAN D. Sutton, West Newton, Pa. In this engine two cylin-
ders are used, which have the form of hollow dings, and the pistons are in the form of rings, and the pistons are in the form of
curved cylindrical bodies. Motion of first one piston and then the other is communicated construction, comprising a disk mounted on the shaft and baving flanges which alternately engage the pistons by projecting through slots
in the lower halves of the cylinders. The feedin the lower halves of the cylinders. The feedvalves are operated by means of cams on the
shaft and the abutment-heads are operated by
ccentrics
furnace.-G. C. Cannon, New York, N. Y. This furnace is adapted for burning gaseous with boilers of steam automobile vehicles. In operation the gas-tubes will thoroughly distribute the gaseous fuel, and as the vehicle
gathers way the scoop will increase the draft gathers way the scoop will increase the draft
through the tubes, thus increasing the inten sity of the combustion at the upper surface of the top plate. The boiler is located above the BOILER-FEEDER.-M. Castelnau, 8 Rue
Richepanse, Paris, France. To avoid many Richepanse, Paris, France. To avoid many nconveniences very prejudicial to instantan-
eous-vaporization boilers in preventing them from becoming general, the inventor has de vised to feed the same by means of compressed air or gas, winich is inclosed with the feed-water in a closed receptacle and which yleldingly forces the water into the boiler through a pipe.
He can use either an air-pump, or a water pump, or preferably a double pump, which orces simultaneously the water and air unde pressure into the reservoir.

Machlnes and Mechanical Devices.

 pump-rod lifter.-T. H. Tregellas Iuka, Kan. In the present case the invention s an improvement in devices for lifting or puning pump-rods; and it consists in certain whereby the rods may be readily lifted, devices being supplied for securing such lifting actionFLESHING and SHAVING MACHINE. E. Schroeder, New York, N. Y. The objec of this invention is to provide a new and im-
proved machine for quickly and accurately removing the surplus flesh from the under or
flesh side of raw furs or skins and for paring
or shaving the under or flesh side of dressed
furs or skins to reduce them to a desired uni orm thickness.
COIN VENDING-MACHINE.-C. R. SMith, Montpelier, Vt. This apparatus is operated by the weight of a coin and is adapted to dever goods of values which differ according to the position of a distributer wheel which is
concealed from the view of the customer. This introduces an element of chance which adds greatly to the interest which the machine would attract. However, goods of onebeing or ano blanks.
GAGING AND COUNTING ATTACHMENT FOR WOODWOREING-MACHINES.-H. O. Fry, Cosmopolis, Wash. Mr. Fry's invention has particular application to a mechanism
adapted to be used in conjunction with sawingmachines for cutting off different lengths of ock used in the manufacture of boxes, blinds, forniture and the like. Primarily the inven which may be applied to any sawing-machine ana shall gage each and every piece of stock cut to the exact length desired and at the same time will keep an accurate account of the number of pieces so cut. The machine is a
money and a labor saving contrivance and is entirely automatic.
WINDMILL-T. W. Lowe, Stockton, Cal. In this case the inventor seeks to produce a
construction wherein the wings normally presonstruction wherein the wings normally present a large area to the pressure of the wind, iveness from the larger to the smaller ends djust themselves ${ }^{\text {or }}$. the pressure of the wind on the vanes will permit the wind to pass with freedom throug the wheel. The windmill belongs to structures of the
of Mr. Lowe's
SPRING-MOTOR.-E. L. Garvey, Asheville, N . C. In this case the invention is in the na-
ture of an improvement in spring-motors for rnishing ans, the operation of churns, etc. The motor may be stopped at any time by simply pressSAFETY S. Fulwider, Diamond, Indiana. Primarily the invention in the present instance provides the car or cage of the elevator with means which, should the cable supporting the
car be accidentally severed or broken, will engage with the standards or vertical supports of the walls of the well and will check the d
of the car to the bottom of such well.
TOOL-HOLDER FOR LATHES OR PL ers.-J. Brandstetter, Salem, Ohio. The urpose of the improvement is the provision that may be employed for the support of a cutting-tool used on a lathe, planer, shaper, or slotting-machine and enable the proper adjustment of the cutting-tool for height and
also adapt the bolder to afford resilience or render the support rigid, as the work may render
quire.
wA
.
washing-machine.-L. E. Pollard Denison, Texas. This invention utilizes a vessel or boiler having corner spray-tubes formed val plate, the latter having its lower edge aval plate, the latter having its lower edge
bent outwardly forming a ledge, located above the lower end of the rear angular plate. Adapted to rest upon the ledges at the lower end of the oval plates is a false perforated boiler bottom, a packing is flxed to the edges of the false
bottom, flanges are formed on the lower side of bottom, flanges are formed on the lower slde of
the bottom, and means are adapted for secur the bottom, and mea
ing the spray-tubes.
of Interest to Farmers
harrow.-H. Hailey, Great Wymondley, Herts, England. In this patent the invention refers to harrows, and the more particular
object is to produce a device which is flexible elatively to the rround and provided with elatively to the ground and provided with
bush-teeth of different lengths and with ad-buss-teeth of diferent lengths and with ad-
justments for governing the relative positions of different parts of the framework of the machine.
GRAIN-STORAGE TANK.--G. H. Warren and S. Fontain, Minneapolis, Minn. In this patent the invention refers to improvements in
the construction of grain-storage tanks, silos, the construction of grain-storage tanks, silos,
and the like. In this connection the inventors bave particularly in view a storage-tank which will be flreproof and the parts of which are of the contents being ruined or damaged by dampness will be obviated.

Miscellaneous.

KEEPER-RING FOR BETTONS.-A. H. BryAnt, East Hartford, Conn. The improve-
ment refers to means for detachably holding shanked buttons upon garments, and has for shapely, very convenient to aper-ring which move, and that may be manufactured readily at low cost. The device is formed from a horseshoe.-A. G. Jennings, New York, N. Y. This shoe is particularly adapted for
use when the surface over which the horse is o travel is slippery or where heavy loads are faces of uncertain footing. The shoe to that
below the tread of the shoe, as usage, or conditions may require, which points may be round lunt or sharpened at their lower ends.
HAND-MEASURE FOR GLOVES.-J. Summersiy and J. Grieve, Dodge City, Kan
The present invention refers to improvement The present invention refers to improvement plication to an article of this type for meas uring the hand to determine the size of the accurate in its much more convenient than the ordinary spring-tape now in use. It may be readily adjusted to fit any size of hand.
CORSET.-E. Savoye, 35 Rue du Caire Paris, France. The invention made by Mr.
Savoye refers to improvements in corsets; and it consists, essentially, in a new way of cut ting out the component parts of a corset for the purpose of obtaining by the mere design of the parts a more stylish appearance, more
suppleness, and greater comfortableness than beretofore. The parts may be provided with beretofore. The parts may
gussets, plaits, and the like
BELT-BUCKLE.-L. SANDers, New York, vide a construction of belt-buckle comprising a frame or a body of skeleton construction and a central-cross-bar offset from the rear of the frame, upon which the tongue is mounted in such manner that its inner end will have a cam action upon the end of the belt
passed beneath the bar and over teeth on a passed beneath the bar and over teeth on a second rearwardiy-offset bar
to the tongue-carrying bar.
fire-escape.-J. R. Proutr, Chicago, IIl. One of the principal objects of this inventio is the provision of effective means for facili-
tating the escape of persons from burnin tructures without liability to injury and also
stron to provide means whereby firemen and others may ascend to any desired height of the structure for the purpose of directing streams of
water upon the flames to extinguish them.
ebble, 67 at
lantic Road, Briston, England. Mr. Prebble's invention relates to an improvement in con nection with awnings for shops and other business premises ; and it consists in the com distended in front of the window by means of hinged arms in the usual manner, of what may be termed a "fascia" or "name-plate, to maintain a vertical position in all positions of the awning, so
hat.-R. Plato, patent the invention has reference to summe or outing hats made of canvas or like fabric material, and its object is to provide a hat arranged to allow free circulation of air
through the crown to keep the wearer's head cool and to greatly strengthen and reinforc shape.
NOZZLE.-W. C. Oberwalder, New York, princi The object of the present invention is shutting off the flow of water through the nozzle, and this the inventor effects by provid ing an interior bead located inward of the
mouth of the nozzle and arranged to be enmouth of the nozzle and arranged to be en-
gaged by the conical divider-block when the gaged by the conical divider-block when the
block is drawn inward, thus closing the nozzle and attaining the end desired. It is an im provement on a nozzle disclosed
DEVICE FOR OPERATING THE VENTI LATING-DOORS OF TOBACCO-BARNS.-W invention is to provide a simple and easily manipulated means whereby to simultaneously open and close a vertical tier of ventilating doors, particularly such doors as are used in the construction of tobacco-barns, and to pro
vide means for holding the doors in a fully BELT Partially-open position.
BELT-PULLEY.-G. A. Ensign, Defiance Ohio. The inventor claims as his object the provision of a belt-pulley arranged to preven ler in a central position on the belt-surface to furnish a ready escape for the air between the belt and the peripheral face of the pulles to insure proper contact between the bultey, pulley, and to increase the adbesion between
the contacting surfaces to produce a more posive transmission of the power.
desk and seat.-a. C. Henderson, New to an improvement in desks and seats particu larly adapted for use in school-rooms; and bi object is to provide a desk and seat so con nected and arranged that they may be simul taneously adjusted to desired beights and to
illuminated map.-T. Ikemori, New York, N. Y. This map is for use in a classMeans are provided to make the back of th map appear plain, the outlines of countries ap pearing at the front; but the subdivisions, their names, and other detail will remain hid den until an electric or other light is move over the back, whereupon the concealed matte will be visible from the front, thus enabling a teacher to make plain any routes, and lo
tions of cities, mountains or rivers, etc.
SUPPLY-VALVE.-W. T. Nichols. Hemp
stead, N. Y. In this instance the object is io
provide a supply-valve, more especially designed
or use in overbead tanks for water-closets by being abnormally held to its seat by the pressure-supply and to automatically open against the pressure-supply by the action of a loat or similar device on the water falling be-PANEL-WORK OR WAINSCO tank
PANEL-WORK OR WAINSCOTING.-D. P. Miller, Cumberland, Md. One of the prinpal objects in this case is to provide means hereby the diferent elements or parts con-panel-work or wainscoting for ceilings, partiions, walls, and the like may be united toether in their intended positions practically without the use of nails, screws, or their

TOY FOR EXPANDING THE LUNGS.-O. Henrichsen, New York, N. Y. This toy affords amusement as a trick device, and is a
ung developer. The construction includes a blowpipe, a guide rising from the pipe, a vesuide to a position of rest above the pipe, and second vessel the frame of the toy which is to be raised by ir introduced through the pipe and made to ogage with a bail carried by the first vessel
or any support located at a point above the pipe.
OVEN-VENTILATOR.-J. F. Ferry, LeadMr. Ferry's invention relates to
mprovements in ventilators for anges, or the like, the object being to provide ventilator so arranged as to automatically pen upon the opening of an oven-door and may be in the ove of smoke and the that may be
PROCESS OF TREATING CYANID SOLUIONS. - W. H. Davis, Boulder, Col. In this patent the invention has reference to the exa dilute solution of potassium cyanid. The object is to provide a continuous process for reating cyanid solutions either during or subequent to their contact with the ore, whereby the double salts in the solution are dissociated ation regeneration of the cyanid in the sothe purification of the solution.
LINE-HOLDER.-W. J. D•TY, Clifton, Kan. The object of this improvement in line-holders nd shingling devices is to provide a novel of the line may be held in position to mark a line across a roof or other object which it may be desired to mark and then be released and will fly back automatically to position to ho
DEVICE FOR HOLDING FLEXIBLE SEN ITIVE SHEETS.-R. Beckmann, Charlottenburg, Germany. The purpose in this case is to provide a device to permit the use of fiexible
sensitive paper sheets, films, and the like in a camera in place of the ordinary dry-plates and allow the photographer to manipulate the evice and the sheet carried by it during the rocess of filling the camera, exposing, de-位, fixing, washing, and drying to form of the finished photograph and replacing it by another sensitive sheet
FOLDING BEDSTEAD.-M. Benz, Nashille, Tenn. The principal object of this imrovement is to provide a folding bedstead torage and one which occupies but small sace orage and one which occuples small space aratively light in weight and composed of few parts. The contrirance may be readily manipulated with suall exertion of the operator, and may be carried into and out
position for use without noise or friction.
FURNACE-DOOR-OPERATING DEVICE.L. I. Newton, Fort Dodge, Iowa. In this case igned for operating locomotive fire-box doors, hough adapted to be used in connection with ny ordinary furnace, whereby the fireman may pen and close the door with his foot and thus urnace, and thereby facilitate the coaling process in addition to opening and closing the
hOT-WATER HEATING SYSTEM.-A. B. ECK, Copenhagen, Denmark. This hot-water eating system is worked by steam. and the relates especially to low-pressure ar attaining this by only changing the load on the pressure-regulator that controls the ressure of the steam. The hot-water system ers, one for low and the other for high ure on the water.
WATCH-PROTECTING FOB-CHAIN. - D. umma, New York, N. Y. This device may be men and may be employed to protect such aricles as keys, scissors, and the like as well as articles to be worn for ornamentation. If a person should seize a watch or other object the chains, the watch protector cannot be removed from the clothing, for the reason that he teeth cannot be disengaged. The invenovered by letters patent granted to Mr . covered
apparatus for treating skin diseases, etc.-J. Kjeldosen, Copenhagen, Denmark. The special feature in this invention
consists in using electric-arc lamps provided
with electrodes which wholly consist of metals
who ye illuminating-vapors form a linear specwho ie illuminating-vapors form a linear spec-
trum of wholly or about wholly chemical rays which are specially adapted for the treatment of skin diseases, for telegraphic and photographic purposes, etc. To prevent the melting of these electrodes, they may be cooled in the usual way. Means are provided to permit the pass-
age of the ultra-violet rays. The rays pass age of the ultra-violet rays. The rays pass
through the windows or lenses of the casing to the object to be treated.
SAFETY-BUCKLE.-A. Englerth and h. III. The improvement hese inventors resides in a buckle adapted for of connecting a stirrup-strap thereto in a way to retain the strap on the saddle under normal conditions of use, but when the rider is
thrown the pull of the strap in an abnormal direction operates to open the buckle and automatically release the stirrup and strap.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the nams of the patentee, title of Please state the nams of the patent
the invention. and date of this paper.

Business and Persomal CUants.
 numbered in consecutive order. If you manu
facture these goods write us at once and we will
end you the name and addres of the party desir
ingtheunformation. indeery case itis neces
sary to give the number of the inquiry. ngt theinformation. in every case it is neces.
sary to give the number of the inquiry.
MUNN \& CO.

Marine Iron Works. Chicago. Catalogue free. | Metal and glass polish for sale. Valentine \boldsymbol{G}. Shef |
| :--- |
| 54 Lawrence Street, New York City. | Autos.-Duryea Power Co., Reading, Pa.

"C. S." Metal Polish. Indianapolis. Samples free.
Inquiry No. 4780.
straight wrencies.
Inquiry No. 47:.91. - For a small machine to carry
in kit of tools for cutting key seats in shafting. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.
Chagrin Falls, 0.

Mechanics' Tools and materials. Net price catalogue
.

Sawmill machinery and outifts manufactured by the

American inventions negotiated in Europe, F
Hamburzer, Equitable Building, Berlin, Germany. Inquiry No.
and novelties.
Let me sell your patent. I have buyers waiting.
Charles A. Scott, Granite Building, Rochester, N. Y.

Inventions developed and perfected. Designing and
machine work. Garvin Machine Co., 149 Varick, cor
machine work. Garvin Machine Co., 149 Varick, cor
Spring Sts., N.Y.
Inguiry No. 4g28.- For dealers in miniature elec-
 The largest manufacturer in the world of mer
rounds. shooting galleries and hand organs. For

Empire Brass Works, 106 E. 129th Street, New York
N. Y., have exceptional facilities formanufacuring any article requiring machine shop and plating room.
Inguivy No. 4730 . For makers of well drilling
machinery that wiil drill from 1,00 to 3,000 feet in al machinery that
The celebrated "Hornsbg-Akrogd" Patent Safety Oil
 Inguiry No. 4731.-For manufacturers of malle-
ableiron castings. Contract manufacturers of hardware specialties, ma-
chinery, stampings, dies, tools, ett. Excellent market ag connections. Edmonds-Metzel mig. Co., Chicako.
Inquir Yo. 4732.-For makers of roating ma,
chinery engraviug machinery for metalengraving and chinery, engraviug machinery for metal
small motor-driven grinding michines.
Manufacturers of patent articles, dies, metal stamp ing, screw machine work, bardware specialties, machin-
ery and toois. Quarriza Manufacturing Company, 18
South Canal Street, ("icago.
Inquiry No. 4,
ting machinery. , \mathbf{j}.-For makers of the Sain knit
LiF Send for new and complete catalogue of Scientift
and other Books for sale by Mun \& Co., 361 Broadway and other Books for sale by Munn
New York. Free on application.
New York. Free an appicacen
Inquiry No. 4734.-For manufacturers of good,
creap fountain pens.
Inquiry No. 4735.-For manufacturers of house
hold noveities.
Inquiry No. 4736 .-For makers of smoking pipes.
Inaniry No. 4737.-For umirella, makers who

longsury No. 4740.-For makers of hot air bal
ocmentury No. 4741.-For machinery for makina

 HINTS TO CORRESPONDENTS.
Names and Address must accompany all letters or
no attention will be paid thereto This is for
ocr information and not for publication our information and not for publication.
References to former articles or answers should give
date of paper and page or number of question. quiries not answered in reasonable time should be
repated; oorrespondents will bear in mind that
some answers require not a litte research, and,
though we eneave to reply to ell either by
letter ore in this department, each must take
his turn. Buyers wishing to purchase any article not adver-
tised in our columns will be furnished with
addresses of houses manufacturing or carrying
the same addresses of houses manufacturing or carrying
the same.
pechal Written Information on matters of personal
rather than general interest cannot be expected
without remuneration Scientific American Supplements referred to may be
had at the oftec. Price 10 cents each. Minerals sent for examination should be distinctly
marked or labeled. (9210) E. E. H. says: Can you give me any information in regard to vaporization
of alcolol and kerosene? Or can you tell of alcolnol and kerosene? Or can you tell
me of any book or publication in which I could get the information? A. In reply
your guestion regarding the vaporization alcohol and kerosene, we would say that you a
will find a very complete statement about
alcohol in the "Tables of the Properties of Saturated Steam and Other Vapors," by C. H.
Peabody; price $\$ 1.00$ postpaid. Kerosene is Peabody; price $\$ 1.00$ postpaid. Kerosene is
not a single chemical substance like alcohol, but is a mixture of a large number of different hydro-carbons which are vaporized at
different remperatures and which obey different laws. It is therefore impossible to give for it information similar to that contained
in the tables referred to above for alcohol (9211) L. A. I. says. Suppose you take a steel cylinder and completely fill it with a misture of air and gas under pressure, say,
40 pounds per square inch, similar to the mixture in a cylinder of an ordinary gasoline engine just before ignition. Now suppose the mixture is exploded by an electric spark
What would be the temperature and pressur immediately after the explosion and what
would be the pressure after the cylinder had would be the pressure after the cylinder had
cooled to the original temperature? Are indicator cards ever taken from cylinders of gasoline engines? How much is the average M. E.
P. generally found in gasoline engines P. generally found in. gasoline engines-that Replying to your inquiry we would say that Replying to your inquiry we would say that temperature in the cylinder of a gasoline en-
gine after ignition without knowing the amount of gasoline consumed. One pound of gasoline, when completely burned, will generate about 20,000 British thermal units, and each B. T. U. will heat each pound of the products of combustion, if there is no heat
lost by radiation, about four degrees. At atmospheric pressure, about thirteen cubic
feet of air weighs one pound feet of air weighs one pound. From this you
may be able to get some idea of the temperature which is possible when the gasoline is ture Our judgment is that the tempe from perhaps 1,500 or 1,600 deg. F., accord ing to the misture, to over 2,400 deg. The absolute temperature; after the temperature is lowered to the original temperature, the pressure would be slightly less than it was
before combustion took place, because the hydrogen which forms a part of the gasoline
wouid burn out some of the steam which would condense. The carbon, the other constituent of the gasoline, burns the CO which occupies the same space as the oxy. taken on gasoline engines, but the M. E. P varies very greatly. "Gas Engines," by D.
Clerk, price $\$ 2.00$, and "G as and Petrol eum Clerk, price $\$ 2.00$, and "Gas and Petrol eum
Engines," by William Robinson, price $\$ 5.50$, will give you a great deal of valuable informa
(9212) I. L. says: Thanking you for your answer to my previous questions, I beg
to submit some more to you. Does an eel have two hearts, and, if so, how many times
per minute does each beat? If not, is ther per minute does each beat? If not, is there
any living organism having two or more hearts any living organism having two or more hearts,
and, if so, what is the respective number of beats per second of each? Has lightning any
real width, and, if so, what is it? What is the apparent width? Does it have any shape, that is, the cross section of a stroke? What extreme one? Of a short one? What is the actual mechanical power in lightning? That is, if we transformed the high pressure of an
ordinary stroke of lightning down to a low pressure, raising, of course, the amperage as we decreased the voltage, grant that there is
no loss of current in transforming, would the current that we got have any power to decompose water or run a motor to any appreciable
extent? Is there such a thing as "ball lightning," and if so, what are the known produced artificially; and, if so, how? Is the cause of thunder known? If so, what is it?
If not, what is the most probable theory?

What about "the air rushing into the vacuum"
theory? What are the weak points in this theory? Has thunder been known to kill duck or chicisens in the shell? Does thunder curdle
or sour milk, and, if so, why? What is the argest number of people ever carried in on day by the B. R. T. railway system? On the day were they carried? Do you conside motorcycle? Do you consider it the best? Do you consider the automobile a reliect vacuum is a perfect non-conductor of lectricity, why can't an induction coil be in sulated by being "jacketed" in a vacuum tube? If silver is 100, what is the electrical con-
ducting power of glass when heated? I have an induction coil wound with Nos. 14 and 36 wire. What amperage and voltage should
give it? It is a large coil, and I think it was made from plans in one of your Supplements I would like to get it. It gives ordinarily $11 / 2$ nch spark. Is radium a metal? What is the actinium, and uranium? What is a good book treating of Geissler tubes and of fluorescence? A. Your questions about lightning have no
exact answers, as any can see. No two flashes are necessarily alike. The distance from the cloud to the earth, or rather the resistance be-
tween them, determines the intensity of the lash discharge, and so all the quantities you actual mechanical power of lightning. We in actual formise about it, surmise. It has powe enough to split trees, etc., which would re
quire many horse power. Ball lightning is ad mitted by most to be a reality. Little els is known about it. Thunder is the concussion of the air as it closes up after the discharge
has taken place. We do not know whether it has killed ducks or not. Milk is usually found sour the morning afier a thunder storm. We produce a perfect vacuum, it is not clea ow you would put an induction coil into
perfect vacuum. It is still more obscure how you could carry the wire into the vacuum to
bring out the discharge of the coil. The specific resistance of glass at 20 deg. C. given by Thompson as 91 followed by 18
ciphers, and at 200 deg. c. as 227 followed 1.492 ciphers. The resistance for silver is change annealed, and 1.620 bard. You can
chis to silver 100 in each case. You do not specify the kind of silver you bave in case in we leave the The coll fou the giving an inch and a half spark, is described in the Supplement, No. 160, which we furnish or 10 cents. As you desire to get the paper you will find all needed instruction and in coil. Radium is supposed to be a metal allied uranium. The radio-activity of variou degres ranges from small powers up to severa specifically treated in any separate book. Ans good book on electricity gives enough regard ing them. Try Thompson's "Elementary Les sons," which we send for $\$ 1.40$ by mail. We bave no information relating to eels. Answer
to this and your other questions can be given a fee of $\$ 10$.
(9213) L. S. asks: I have eight car on cylinder cells and use sal-ammoniac solu-
ion for lighting a few miniature lamps, but the lamps are cnly bright a few minutes What formula could I use in the carbon
cylinder cells so the lights should burn bright for about one-half hour at a time? A. We would advise that the sal-ammoniac battery is
not adapted to lighting an electric lamp. If used constantly it soon falls off in current soon destroy the battery. The Edison-Lalande cell, using about twice as many as of the (9214) G. A. V. B. says: Can you give me any information in regard to making brick lime? How will cost compare with burned sirable as common clay brick? How much sand and cement are required per 1,000 , and proportion of same? How are cementine houses con.
structed, and are they more costly than lumber houses? I understand there are a great many in California. What are the best proporWhat kind of cement is generally used fouses these different kinds of work-Portland Rosendale? A. In reply to your inquiry re garding the making of brick from cement and sand, or from cement, sand, and lime, we would say that, as a rule, the cost of such
brick will exceed the cost of burned clay brick For some purposes, however, such bricks have been successfully used, especially for pavepurposes, where the wear is not
heavy. For sidewalk pavements, if properly made, cement and sand brick are very durable and are preferable to common clay brick.
They should be made of the best Portland cement, clean, sharp sand, and finely broke The best proportion of these ingredients will vary somewhat with the character of the ce ment, sand, and stone. A good average proparts of sand, five parts of broken stone. If
Rosendale cement is used, the mixture should
be a trife richer in cement, and the bricks
will not be nearly so durable. They will, however, be less expensive. Cement houses are made by filling in the space between temporary planking, which is constructed so as to form
box, with concrete, the width of this box a box, with concrete, the width of this box
being equal to the desired thickness of the walls. After the concrete has set, the temporary woodwork is removed and placed higher
up, so that more concrete may be filled in. or three feet is added to the walls in this way at a time until they are carried to the desired height. Both Rosendale and Portland cements are used for this purpose, but Portland cement is much more durable and decidedly preferable. The proportion for the concrete for such houses is substantially the same as that given above for paving brick. The cost nary frame houses. They are, however, more substantial.
(9215) C. D. J. writes: I have read with some interest query 9036, A. W., June 6 ;
9086 , A. M. W., July 11, and 9184, S. R., September 26, regarding the purple coloration of glass. I suppose window glass is the only
kind referred to, because it is the only kind I have ever seen the discoloration, or coloration as you might call it, in. I am a windowglass worker, and have been for twenty years, efore, and faded or discolored glass has always een the bane of the window-glass industry. here is no known cause, and one known emedy-that of reannealing it. I can show vills, using wood fire to melt, and making the lass with sand, slaked lime, and potash made from ashes; one light of glass as clear as the day made, the other has the coloration. I can show you glass made in 1903 in Indiana, with atural gas; glass made with sand, carbonate of soda, sulphate of soda, and raw lime. One faded, the other not, and this has always been the way in high altitudes, in low, in hot nd cold. We have tried all kinds of exeriments to overcome this; different kinds of practically mix we cannot change much. That is We have dipped our glass in the different acids without any seeming difference; some wiii fade, and some will not. If the SCIENific american or any of its correspondents
could suggest something to overcome this, it ould be a great boon.
(9216) F. H. asks: 1. Kindly let me know the operation of a Crookes tube. My the anding is that the platinum terminal of the generator and the concave aluminium erminal to the negative side. If the current ravels as claimed from the positive to the to the platinum, which acts as a target? A. The platinum terminal is the anode of an athode the From the negats eroeds which bombard the anode and produce the rays. We do not see that this is connected with the direction in which a current flows through a onductor. The streaming is from the cathode. The current may be in the opposite direction. tirely conventional. We speak of it as from plus to minus. Who knows thiat it is so? It is as conventional as to shake hands with he right hand, or to call the north pole of a agnet plus. 2. Also the action of the ausi ray work to adjust the vacuum-how the vacuum is raised and lowered, as well as kept tationary; what connections are made to the auxiliary, when to raise and to lower the acuum. A. Tating the chemical in that is ary tube and driving some of it as a vapor into the larger tube. This is absorbed again, and the vacuum rises. Before the tube will work properly the vacuum must be lowered again. The connections are variously made
for different tubes. The maker furnishes the proper directions with his tube.
(9217) Mrs. W. C., who inquires for ames and addresses of bell founders, should ive us full address, as we only answer queries
(9218) F. M. W. says: Lawrence, Mich., is a town of 800 population, and has has been received of a cold process gasoline plant for gas lighting and beating. What do you think of its practicability and expense for bis size town? What would be an average rice for gas per 1,000 cubic feet in cities? As ompared with electricity, what do you think the expense would be? A. The gasoline and air
"vapor gas" is in general use in country houses and in villages. There is no objection to its use save the possibility of condensation
of the vapor in the pipes in very cold weather, wich is not serious with good management in laying out the pipe work. If the company is responsible, they may guarantee this. For
eating purposes, coal is the cheaper and beating purposes, coal is the cheaper and safer to manage. $\$ 1$ per 1,000 cubic feet, and n small towns from $\$ 1.50$ to $\$ 2$ per 1,000
 town. Electrical lighting will be very expen. on a small scale.
(9219) B. K. D. asks: 1. Will you
telephone line that is bracketeu to an electric to anything? The electric wires are tied in on glass insulators, and 10 feet down a telephone line (running at right angles to electric wires) is tied in on glass insulators. A. If
the current flowing in the electric light line is alternating, we should expect to hear buzzing sound in the telephones connected to
the same posts, even though the telephone wires are 10 feet away. Induction will act through greater distances than that. 2. Some one said that more or less current leaked across the glass. Is that so when the voltage is
2,200 ? 2,200 ? A. There is more or less leakage
across glass insulators with high voltages. In across glass insulators with high voltages. In
wet weather there is often considerable leak-
age.
(9220) P. G. W. asks: 1. Why is it that ice, with salt, freezes cream more quickly
than ice alone? A. The action of a freezing mixture of salt and ice is due to the fact that salt is dissolved very readily in water, and liquefies ice very rapidly. Now, ice cannot
melt without it gets heat melt without it gets heat from some other matter, any more than iron can. The freezer ice is taken from the cream, and the cream is frozen. That is the action of freezing ice cream. 2. Would a thermometer register lower in this combination than in ice alone? A The temperature of ice melting in the air is 32 deg. Fabr. With a mirture of salt and ice in the proportions of 2 of ice to 1 of salt, a temperature of 0 deg. Faht. can be pro-
duced. It was in this way, it is said, that the duced. It was in this way, it is said, th
zero of the Fahrenheit scale was fixed.
(9221) W. R. C. asks: Will a person standing on platform scales on an elevator
register more than his normal weight when register more than his normal weight when
elevator is ascending and less when elevator elevator is ascending and less when elevator
is descending? A. A person would register more than his weight in the case stated while speed in ascending. When the speed became speed in ascenaing. When the speed becam
uniform, the scales would register the correct weight. In descending, the scales would register less than the correct weight while it was
gaining speed, and show correct weight while gaining speed, and show correct wei
it was moving at a uniform speed.
(9222) C. A. P. asks: 1. Is there such a power as suction? A. In the ordinary use It may be explained that the effect is due to a secondary power; the elasticity of the air or other gas in the air pump, or the presence of the atmosphere in the suction water pump;
but still, the use of the term supposes some but still, the use of the term supposes some thing to which the term corresponds. To argue
that there is no force of suction is to play that there is no force of suction is to play
with words. 2. What causes an induction with words. 2. What causes an induction
motor to change its direction of rotation when any two of its terminals are reversed? Please any two of its terminals are reversed? Please subjects fully. A. It is only true of a threephase motor that it can be reversed by trans-
posing the supply connections to any two posing the supply connections to any two
terminals of the motor. In the case of a terminals of the motor. In the case of a
two-phase, four-wire motor, the connections of either one of the phases may be transposed, Lut not any two terminals. The reason is
that the direction of the rotation of the field that the direction of the rotation of the field
must be reversed to reverse the direction of rotation of the rotary part. Sheldon's "Alternatiag Current Machines," price, $\$ 2.50$, treats the induction motor very fully.
(9223) O. N. P. asks: Would you kindly answer me in your paper the following questions? 1. A and B being two points on can I establish a wireless telegraphic communication between A and B without intermediary stations? A. It is entirely possible to send by wireless telegraph to a distance of 180 sea miles. Mr. Marconi has sent messages from the sea to northern Europe across the British Isles, the North Sea, and then more land. 2. If intermediary stations are neces sary, how many? A. No Intermediate sta-
tions are necessary if the transmitting and receiving apparatus be sufficiently powerful and delicate. 3. What would be the electromotive force necessary at A and B to operate the wireless telegraph? A. We are not able to give a definite statement as to the electromotive force required. 4. What would be the height of the antennx? A. Poles of 100 to 250 feet have been used. It is now claimed poles unnecessary. Of that we have no definite knowledge.
(9224) E. A. J. asks: Will you kindly state in Notes and Queries just where the son Bay, is it one point? Or does it encircle the globe? If it encircles the globe, bow does the needle act when north of that circle? If one point, how does the needle act when east west, or north of that point? Does the North Star have any attractive influence on the magnetic needle? A. We do not know exact location of the north magnetic pole. was located very nearly in 1831 by Ross on the island of Boothia Felix. An expedition is making the effort to find it again. In two o the matter. The pole is a point. On all sides of it a magnetic needle will point toward it On it all directions are south. On the pole there is but one point of the compass. That
is south. Around it, it is north in any direcIs south. Around it, it is north in any direc
tion. The North Star does not affect the earth's magnetism.

A "Nine-Year-Old" Earning His College Course

I
WIS FRICKE is a nine-year-old Indiana boy who makes money each week by selling The paturday Evening Post. He recently wrote ere employing thousands of people. I went to the superintendent of the largest one and asked whether he ever let boys sell things there. He said, 'No.' I told him I was sorry, and asked him to take a copy
with my compliments. The next week I went and asked him how he liked it. He said,' Bully! I guess y you can leave it here each week.' Then I can let me go through the works at the noon hour?' He said, ' Well, I guess it is a good thing for the men - go ahead.' I got more than 50 regular customers. Then I went to the next place and by working the same plan got 40 more.
Post and said, in a sort of "chesty' looked at The Post and said, in a sort of 'chesty' way, 'I am not
sure that this is the highest form of literature.' I said: 'I am not, either, but I guess it's a heap better than anything published in this vicinity.' Another gentleman who was there laughed very loud, and both bought copies. The next week he introduced me to the head of one of the departments as ' Mr. Fricke, the personal representative of Benjamin
Franklin,' and told him to help me along, and I got Franklin,' and told him to help me along, and I got
another lot of customers. " I I lot of customers.
I sixteen, to get through the High School when I through this plan to go to college. I have already through this plan to go
got quite a lot saved up."
ANY BOY willing to do a few hours' work on Fridays and Saturdays can earn money by this plan. More than 6000 boys do so each week. Some make $\$ 15.00$ a week. You can start at once.
If you will try it write and we will send next week's supply of ten copies without charge, to be sold for five cents each, and everything necessary to start at once, including a booklet showing photographs and

THE CURTIS PUBLISHING COMPANY, 481 ARCH ST., PHILADELPHIA, PA.

NEW BOOKS, ETC.

ecent Researches on the Voice. by Prof. E. W. Scripture. Reprint from the
1903.
A Record of the Melody of the Lord's PrAYER. By Edward Wheeler Soripture. Reprinted from Die Neuern Sprachen.
Prof. Scripture has made a most interesting psychological study of the words of the Lord's Prayer by means of recording instruments. It will appeal to all of those who are interested in either acoustics or psychology.
E. W. Smith. Philadelphia: Philade'lphia Book Company. 1902. 18mo Pp. 79.
This little book of diagrams will prove very useful to the beginner in electricity, and will
be specially useful to locksmiths and others who have occasion to do small electrical reairs.
welve Plates on Projection Drawing. By Oswald Gueth, M. E. New York: Spon \& Chamberlain. 1903 . Small
quarto, 12 plates. Price 75 cents. quarto, 12 plates. Price 75 cents. The author is instructor in mechanical
rawing at Cooper Institute, New York, and is eminently qualified to deal with the probis eminently q.
lems procosed.
L'Air Liquide-Sa Production, Ses ProPrieties. Ses Applications. Par
Georges Claude. Georges Claude. Preface de M. d'Ar-
sonval. Paris: Vv. Ch. Dunod, Edisour. 1903 . 8vo. Pp. 125. Price 70 cents.
This interesting volume details some new and curious experiments with liquid air. It
is illustrated by engravings taken directly from the experiments.
How to Build a Launch From Plans. By Charles G. Davis. New York: Forest N. D 16 mo Pb 159 plates pany. N. D.
More than half the joys of boating are labor and skill. This book will help, the author hopes, to make the way a little smoother for the amateur than he found it when he tried to build his first boat. The instructions are common sense, and the plans and details are clear and concise. With the aid of this book we see no reason why any amateur should not ene to manch
he Resistance and Power of Steam-
ships. By W. H. Atherton, M.Sc.,
and A. L. Mellandy, M.Sc. Man
chester, lishing Company, Ltd. 1903. 16 mo Pp. 200, 64 illustrations. Price $\$ 2$. The topic is admirably discussed by the authors, and in addition to the subject of tub ject of the fouling of ships has also been dealt with very fully, because of its important in fuence on the actual resistance of sea-gong ships. The book describes the latest exper of the aprast, and value to but prove signers and shipbuilders.
The World's Commerce and American Industries. Graphically Illustrated Macfarlane, A.M. Philadelphia: The Philadelphia Commercial Museum 1903. 8vo. Pp. 112. Price 50 cents. The graphic method shows more clearly than the world's trade belongs to each of the prin cipal nations, and the relative importance from a manufacturing standpoint of the lead ng cities of the United States. It is a most
useful pamphlet, and is most admirably compiled.
Engineering Preliminaries for an Inter urban Electric Railway. By Ernes Gonzenbach. New York. McGraw
Publishing Company. $1903 . \quad 8 \mathrm{vo}$ Publishing Comp
Pp. 71. Price $\$ 1$.
The electrical engineer is often handicapped when he starts to lay out an electric railway be tolerated. The present volume is intended to show the way in which certain conditions were to be met in a certain case, together witb the reasons which led up to the recommendations and plans submitted. It is believed that by the aid of this book economies can be ef fected which will diminish the total investmen per mile of track, and also the operating ex penses per car mile. The author warns the electrical engineer not to put a young com-
pany under the financial burden of an ele vated equipment and country road income. Reading Architects' Drawings. Practi cal Suggestions for Young Mechanics pany. 1903. 16 mo . Pp. 28. Price

$$
\begin{aligned}
& .25 \text { cents. } \\
& \text { While it ma }
\end{aligned}
$$

While it may be argued that facility in proflcient in the pest acquired by becoming drafting, which offers the student an insight into the preparation and reading of drawings, there are, nevertheless, in the articles
reprinted in this little book, many valuable
hints and suggestions, which will serve to assist those who have not had the
of careful training in that direction
Home Mechanics for Amateurs. By Munn \& Co Hopkins. New York 326 engravings. Price $\$ 1.50$ post paid. This valuable work will prove postpaid This valuable work will prove of interest
to all who are desirous of obtaining a knowiedge of the mechanical art. It deals with the subject in a most comprehensive manner, and all readers of "Experimental Science" know that the late George M. Hopkins' treatment of subjects was most lucid, and the present volume is no exception to this rule. The book begins with an easily-constructed
wood lathe and instructions for using the same. Then and wow woodwing the Work Bench and Tools for Woodwork; Whittling; The Different Shapes of Saw Teeth and the Way They Cut; and Wood Carving. The Second Part of the volume deals with Household Ornaments, and describes how to make Home-made Grills and Gratings; Wall Ornaments; Pseudo-Ceramics; Stained Glass and Objects of Wire Cloth; A Japanese Portiere; Repoussé; Making of Bas-Reliefs; Ornamental Wire; Some Things in Burnished Brass; and the Forming of Plaster Objects. The Third Part deals with Metal Working, and begins with the Sawing of Metals. Then follow Soldering, Grinding, and Polishing; Silver Work; Instructions about Drills and Drilling. Then comes bints concerning Centering and Steadying; Chucking; Metal Turning; Chasing and Knuring; Rotary Cutters; An Easily-made Slide Rest; Index Plates; Gear Cutting;
Hints on Model Making and Metal The Fourth Part is devoted to the subject of Model Engines and Boilers. The Fifth Part considers the subject of Home-made Meteoroogical Instruments. The Sixth Part describes elescopes and Microscopes and How to Make nd Choose Them. The Seventh and last part is devoted exclusively to Electricity, and he subjects are Batteries; An Electric Chime; Electrical Cabinet; A Simple Electric Motor; nd a number of other easlly-constructed moion of an Electric Furnace and an Electric Printing Telegraph and the Telephone. The book is one which will commend itself to both old and young, and will make an admirable Christmas present.
Portland Cement Sidewalk Construction. Based Upon the Experience
of Many Successful Contractors. Compiled by B. D. Peery. Chicago: Cement and Engineering News. 16 mo . Pp. 27 . Price 50 cents.

Map of the Republic of Peru. With a Short Description of the Country,	
sources. Compiled, edited, and issued by Edouardo Higginson, Consul	
of Peru, Southampton, England.	
Electric Dis	
Laporte, Ind.: ${ }^{\text {Hy }}$ C. E.	
	Co. 1903. 18mo.
Nutzbarmachung des	
fuer	
Adolph Frank, Charlottenburg. V	
${ }_{\text {trag }}^{\text {trionalen Cohalten aus }}$ Congress fium angewandt	
	tonalen Congress 3 a ang 103
emie zu berlin	
Saikindusirie. Vortrag gehalten im	
fleisses am 4. Mai 1903. Von Dr.	
dolph Frank. Sonderabdruck aus	
Beförderung des Gewerbfleisses. Ber-	
lin: Druck von	

INDEX OF INVENTIOXS For which Letters Patent of the United States were Issued for the Week Ending October 20, 1903,
ANDEACHBEARINGTHATDATE
(Seenoteatend of list about copies of these patents.

 Barge, G., E. Titcomb.
Bark
Ball

 Boiler, Carnes \& Farley... ing, Donehower \& Chilison...............

Brick-drying fioor, H. W. C. Croft
Brick tile,
D.
Wherson
Bromin from brine, extracting, H. H. Dow
Brush attachment, J. F. Spence

 Can-making machine, A. . P. Wole. Wre..
Candelabrum X.

 Weather, stock,
Car brake, Brown M. C.
Car
coupling
Car door rastening, F. C. Anderson
Car heater, electric,. . M. Herr..
Car platform gate, F. Dix Her

 Carriage, cableway, J. G. Crowder
Carriage, child's, E. S. Tilinghast.
Cards, playing, J. W. Tavenner...

 Casting metals, A. M. Ackin $\ldots .$. Bol
Castings, making. metal, W.
Centrifugal machine, Pounger... Cbar. See Convertible chair.
Chair foot rest, C. F. Muny
Chatelaine pin, N. F. Valentine
Check or the like, bank, S. W.
 Chute, conveyer, G. F. Conner
Circuit controller, A. Lungen.
Clay articles, deivery table
 Clothes stick, H. Sarasin. ©aril
Clutch, magnetic,
Coating it

 }

MACHINES FOR ROLLINC SCREW

THREADS. Any size up to 1 BLAKE Send for Cataloonve.
BONS,

$$
{ }^{2}
$$

 BRODERICK ABASCOH ROPE CD.
ST LOUFS, MO.
.

Dueber-Hampden Solid
Gold Watch Cases
are not only handsomer and more dur-
able, but stronger and better than anyable, but stronger and better than any
alloy or combination of metals can be.
Dlamp Watches
are made in our factories, the most tomplete
watch factories in the world. We make the
entire watch, both movement and case, andentire watch, bot
guarantee them.Wh/h
6"The 400'" $\begin{gathered}\text { Smallest, , , } \text { Winties } \\ \text { Women's watch. }\end{gathered}$Dueber-Hampden Watch Works
 OUR ROTARY MEASURE

Valuable Books!

The Progress of Invention In the Nineteenth Century

EXPERIMENTAL SCIENCE.

 By GEORGE n. HOPKINS

 Horsesboe calk，H．Miller．
Hoos res．
Hose rack，J．F．Muldoon
Hose supporter，W．W．Michaei．
 Hydrocarbon burner，H．P．Roberts．
 Indicating device，W．R．Thompson．．．．．．．
Indicating system and time beater，w．Stan－ Ink，H．\＃．．Spoon

 Lamps，means ror the attachment of incan
descent．w ． c ．Trezoning Lampblack，making，R．A．
Lamp
socket，
electric

 Leg，artificial， \mathfrak{c} c．．．．．．．．．．．．．．

 Lock，C．E．Dugzan
Lock washer，w．．．Matienon
Locking derice
for wrenches，

 Loom，for weaving short wefts，W．．Whates Loom let ofr mechanism，W，Haynees．
Loom warp stop motion，Baker \＆Kip．

 Metals by the use of chortn，extracting

 Nectite belder，Phelan \＆Braund
Non－arethg clamp．F．Lage Frizze Non－arccing clamp，H．L．L．Fritze

Nut lock，J．OConnor

Onl burner，A．A．J．OMBrien
Oil burner，G：E．E．Whtte
 Orgale peumatic action and coupler，F Campkin
Ornamenting articies，device for，
\ldots $\underset{\substack{\text { oven，} \\ \text { baum } \\ \text { Oen }}}{ }$

Paper making Machines，watey
for，R．M．Scantan ．Mater
Paper roll support，W．A．Wheeler ．．．．．．．．
Paper welght，receptacle，
and pincushio

 Plumb，ruie and level，combination

Postal boxes，selfircle sising and changeabie

Pump，
Pump．
Pump，
Pump．
Pump，
Cump，
Cee

Railway rail joint，J．G．Micmichail
Rallway signel，electric．M．M．Broors

Fermidee operating mechanism，G．
Ralway switch operating mechanism，
Rastelle tie，metailic，A．．．．．．．Derr

741，960 | 741,627 |
| :--- |
| 741,626 | 741,626

741,292
741292
7 741,88
742,927
742,246
7 741,973
742,046
742,062
741834

7 | 741,834 |
| :--- |
| 74,119 |
| 71,684 | 742,033

742,099 \begin{tabular}{l}
741,735

741,734

\hline

741,994

741,632

\hline
\end{tabular} $\begin{array}{r}741,832 \\ 741,992 \\ 741969 \\ \hline\end{array}$

THE OFFER MADE EVERY FALL TO NEW SUBSCRIBERS INCLUDES AS A GIFT ALL THE REMAINING issues of the year from the time of subscription．these free issues，with the fifty－two NUMBERS OF THE NEW VOLUME，GIVE THE NEW SUBSCRIBER SEVEN HUNDRED LARGE PAGES OF THE best reading－instructive，amusing，helpful in the forming of character

NEW SUBSCRIPTION OFFER．

The New Subscriber who cuts out and sends this slip or the Free name of this Paper at once with $\$ 1.75$ will receive
 All the issues of The Companion for the remaining weeks of 1903. The Double Numbers for Thanksgiving．Christmas and New Year＇s． The Youth＇s Companion＂Springtime＂Calendar for 1904，litho－ graphed in twelve colors and gold．
the fifty－two issues of The Companion for 1904－a library of the best reading for every member of the family． Full Announcement and Sample Copies of the Paper Free．
THE YOUTH＇S COMPANION，201 COLUMBUS AVENUE，BOSTON，MASS．

By J．E．CONANT \＆CO．．Auctioneers OFFICE，LOWELL，MASS．
As mortgagees，we shall sell without limit or reserve，to the hichest

The Extensive Aqueduct and Rairroad Contractors＇Equipment

 of Shanahan，Woolfolk \＆CompanyIncluding McKiernan Air Compressors，Portable Engines，Stone Crushers Cubical Mixers，Screening Plants，Pumps，Steam and Gas Engines， Boilers，Drills，Horses，Mules，Wagons，Carts

\qquad

special prices to the trade

50 Years
Experience
PATENTE
Trade Marks
Copyrignts, Etc vention is proburr opiling free whet mer may

Scientificic American

MUNN \& CO. 361 Broadway. NewYork

 Sinning apinde, J. C. Edwards
Spooing machine thread guld Houghtn
Spraying ole ejecting apparatus, oil or iquid Spring. See veinicie spring.
Spring suructure, E. A.
Sprot
Spring wheel

 Store, G. G. Heortenin

Stove, hot blast, H. Lang
Stove
Stove lid
litter, J. F.

Stud member, J. J.
Sugar making,$~ W a i b i n a r n e ~$

 $\xrightarrow{\substack{4 \\ \text { To }}}$ $\stackrel{\substack{\text { To } \\ \text { To } \\ \text { To }}}{\substack{2}}$

 Trus, hernial, W. W. Surate
Tuus hook, A.
Tunnel bor,
Anderson

 Typer, A. R. Dodge mactine

 Vehicle, motor, A. A. W. Sanden
Vencole spring
end.

Are each equipped with a 7 actual horse power, single cylinder engine run ; wood artillery wheels and thre nch tires; two brakes, and a well finished body.

Our handsome illustrated catalog escribes the Ram brer in detail,
and gives positive proof of its un-
deniable superiority nail you a copy?
THOS. B. JEFFERY a CO Kenosha, Wis., U. S. A.

The World's Regulator
Nearly ten million Elgin watches act as one great pendulum in regulating the hours of business, travel
and pleasure the worldover. Every

ELGIN Watcto

is made of the finest materials by the most skilled hands.
"Elgin," engraved on the works
of the world's best watches.Send
for free booklet about watches.
ELGIN NATIONAL WATCH CO., Eligin. III.

[THe EXTREMES MEET IN

Both in coldest winter and hottest sum-
mer, the FRANKLIN air-cooled motor runs perfectily.
Great
Great strength in construction, though
weig ht of car only $\mathrm{x}, 100$ pounds power at least to.
In short races and long endurance tests win-
ning records established in open competition. On high gear, runs down to 6 and up to 30
miles an hour. Easy to drive as a small runabout-dependable on hills or heavy roads as a high horsepower touring car.
Having prove

 H.H.FRANKLIN MFG.CO.,Syracuse, N.Y.
gho Squabs Pay Boal

Che Cypewriter Exchange
136 Barclay St.. NEW YORK
124 La Salle St.. CHICAGO 124 La Salie St., CHICAGO
38 Bromfield St., BOSTON 817 Wyand oite St.
209 North
ST. LOUIS, MO. 636 California St.,

SAN FRANCISCO, CAL.

The OLDSMOBILE Goes

Price $\$ 650$.

ICan Sell Your
Real no matter where it is
or what it is worth. or what it is worth. Send description,stateprice
aud leamn nay wonderiuly
 ROTARY ENGINES.-ARTICLES ON

NewScientific Books

 ACETYLENEBy F. H. leeds and W. J. a. butterfield Illustrated 8 oo. cloth. 82.00 net

Water Supply
 By R. E. MIDDLETON

Elements of

 Electro-ChemistryBy DR. ROBERT LUPKE
astrated 8vo, cloth. $\mathbf{8 . 5 R}$ net
Electrical Practice in Collieries By D. burns
Mastrated 12 mo , cloth. 82.00 net

EMERY GRINDING

 MACHINERYBy H. B. HODGSON
By H. B. HODGSON
Illustrated 12mo, cloth. 82.00 net Sand for Free Doscriptive
of Scientific Publications
J. B. Lippincott Co., Philadelphia

LABEIS.

heaing, oils, W. H. Alexander ..
'El Friar,', for cigars, G. H. Crouss
'El Genio, for cigars, C. B. Henschel

Motud, Co. four, George OTban Miliing oo
"'Millard Fillmore," for cigars, S. Levyn

Pie Flour," for Gour, George Urban Milin
Co. ©uaiit,", for coree. B. Fischer \& Co
"Revelation," for cigars, C. B. Henschel Mfg
"Salome, ; for a medicine, E. s. Frank
"Schollian's No. 1," for clgars, Smith,

Brewing , Co.
for
leum Mfg, Co.
"The 'Winona' Scratcher," for stockings, Co
 kega Medical Co.

PRINTS

 "Friend Suits,", for men's winter apparel,
 A printed copy of the specifcation and drawing
of any patent in the foregoing list, or ang patent
in print lasued since 1863 wil be furnished from
this ontce for 10 cents, provided the name and

Canadian patents may now be obtained by the in-
ventors for

ELECTRIC SEWING MACHINE MO-

Aluminum speaidilies

What is s6TPD DPOPD
DAUS'

100 copies from Penswritten and 50 copies from Typewritten original

 FELIX F. DAUS DUPLICATOR CO.,
 WCDBSLS YRICAGO MODEL WORKS

SPECIAL MACHINERY Tools afd Dien Howel WHAT WE DO-HOW WE DO IT DRYING MACHINES, ${ }^{8}$ R Wrabrgit.

National Supply Co., 83 Broadway, N.Y.

INVENTORS WANTING

MANUFACTURERS

rite us, as we have every facility for the hes t cast, stamped, spun or turned metal work, in quantities.

AMERICAN LAMP \& BRASS CO., Trenton, N. J
 WM. T. COMSTOCK. Pub., 23 Warren St.. New York
mone mo greememara woin Electrical and Mechanical Instruments. Small Mach's
EDWARD KLEINSCHMIDT, 82 W. Broadway, New York DIEA, TOOLS. MODELS and Special Machin

Home Mechanics for Amateurs

By GEORGE M. HOPKINS

Author of "Experimental Science"
12mo, 367 pages, 320 illustrations
Price, $\$ 1.50$

THIS book deals with woodworking, household ornaments, metal working, lathe work, metal spinning, silver working. Making model engines, boilers and water motors. Making telescopes, microscopes and meteorological instruments, electrical chimes, cabinets, bells, night lights, dynamos and motors, electric light, an electrical furnace, telephone. It is a thoroughly practical book by the most noted amateur experimentor in America. Send for descriptive circular. THIS BOOK IS NOW READY FOR DELIVERY

MUNN \& COMPANY
Publishers "Scientific American"
361 Broadway, New York

Orient Buckboard

4 H. P. Speed 30 Miles per Hour The Cheapest Automobile in the World WALTHAM MFG. Catalngue

Diffraction	
Gratings	
Wallace's repiliene of Rowiand's grating, 14,438 lines to the trch, APFEL.MDRDOCH COMPANY Chemlists' Supplies 80 Lake Bt., Chleago, ill.	

PORTABLE HOIBTS AND GRANES
 are essential in shops and factories
to-daye Made of the best materials

throughnut is the | throughnut is the |
| :--- |
| Franklin Portable Crane and Hoist. |

 franklin portable hoist co., franklin, Pa., u.s.a. RUBBER STAMP MAKING. - THIS

sale by Munn $\&$ Co. and all newsdealers.

LADIES YIATCH GUV METAL
\qquad SILVER
GOLD FILLED CASES nail styles, Plain \& Decorated EnamelsinColors
oper Fice or Hunting, Plain or
Catalogues and Bons Phin or Engrave
All our manufactures are fully guaranteed For Sale by all Jewelers.

THE HE NEW ENGLAND WATCR C NEW YORK: CHICAGO $37 \& 39$ Maiden Lane $131-137$ Wabash Avenue
SAN FRANCISCO SAN FRANCISCO: Claus Spreckels Building

 LATHE HIGHEST AWARD Durargeon totinitico.Faneuil Watch Tool Company, BRIGHTON,

Waltham Watches

The busy man's friend.
"The Perfected American Watch," an illustrated book of interesting information about watches, will be sent free wpon request.

American Waltham Watch Company, Waltham, Mass.

Oquar New American Gun Theyoto
Toto guick buyera Theyototo buice by buers
at Burgain hrices. New York

fifteen mllion barrels of cement a year now Ground in the Griffin. Mill

AN UNPARALLELED RECORD
 OF AN UNPARALLELED MILL

Note.-In addition to the large number of Griffin Milis.s in use wherever Portland Cement is made, we are furnishing mills on new orders during the present year to the following Portland Cement Works, some of them to replace and tube mills already installed
associated Cement manufacturers of England.
Lehigh Portland Cement Co.
,

Central Cement Co.
Cayuga late Cement Cement C. National Portland Cement co,
Sandusky portland Cement Co.,

If the Griffin Mili, wasn't the greatest cement grinder the world has ever known, these large works would not
now be placing additional mills. Full particulars cheerfully furnished. now be placing additional mills. Full particulars cheerfully furnished.

BRADLEY PULVERIZER CO. BOSTON

Hieroglyphics are ancient. The world moves. Beup to date. For neat, clean, intelligible writing, the Lambert Typewriter is the best fo office and home use.
Standard in everything. $\begin{gathered}\text { Booklet Pree. } \\ \text { Price, } \$ 25.00 .\end{gathered}$ LAMBERT TYPEWRITER CO. 1274 Broadway, New York.

The Waterless Knox simplicity SIMPLICITY

CONYENIENCE
The success of our patent air cooling system has been thorough-
My deemonstrated in rears
Many detailis imporoved in 1503 car.
KNOX AUTOMOBILE CO. Main Office and Works, SPRINGFIELD, MASS.

 RECORDING INSTRUMENTS. Pressure Gauges, Vacuum Gauges. Volt

 lars and sisecimerl Chart.
The Bristor Company. Waterbury Conn SILVER MEDAL PARTS EXPOSITION.
 1)

 other makes. Write for Free circcilar. Send loc.
in stampe to cover the actual cost of mailing.
Not a cent is made by us on the strainer.

