SCIENTIFIC AMERICAN
 ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors

NEW YORK, SATURDAY, MAY 2, 1903.

The editor is always glad 10 rece, ive for examination inlustrated
artucles on subjects oi timely interest. it the photographs are
 treyular speciat at
the subway contractor and the suffering PUBLIC
The contractors of the New York Subway are rapidly losing the public good-will which they had unques tionably secured by the expedition with which they carried out the work of excavating and building the new tunnel. They are losing it because of the inexcusable indifference to the convenience of the public which they have shown, and are showing to-day, by making no attempt to clean up the streets as soon as they are through with their work.
We are not sure that the engineers of the Rapid Transit Subway are not also somewhat to blame for this discomfort; for in order to protect the public there was a special clause inserted in the first general contract, and specifications of the Subway covering this very point-a clause which, as we know to our cost, is "more honored in the breach than in the observance." It was stipulated in the first contract that any given stretch of the cut-andcover work was to be open for only a limited period of time, sufficient presumably for putting in the steel work and concrete; and it is expressly directed that "at his own expense, and as directed from time to time by the Engineer, the Contractor is to clear the work, streets, and all public places occupied by it from all refuse and rubbish, and leave them in a neat condition." Now, when we consider that some stretches of the work, such for instance as that through 42d Street, will have been "open" and en cumbered for between two and three years, it is evident either that the contractor has been willfully obstreperous, or that the engineers have not fully exercised the authority conferred upon them under the contract. We are inclined to think that the fault lies with the contractor more than with anyone else for in spite of the storm of public indignation which has found its expression of late through the press, and despite the fact that the Chief Engineer of the Commission has recently called special attention to the shocking condition of the streets; there are scores of blocks along the route of the line which, although the Subway beneath them has been completed for many months, are to-day in a disgraceful state of dis repair and disorder
Nothing could be more admirable than the patience with which the merchants and property owners, to say nothing of the pedestrians of New York city, have endured the enormous inconvenience arising from the construction of the Subway; and they have certainly cieserved something better than the total disregard of their interests and convenience which has been shown during the progress of this great work. We commend this subject to the special and immediate attention of Messrs. Parsons and McDonald, respectively the Chief Engineer of the Rapid Transit Commission and the Chief Contractor for the Subway.

FAILURE OF THE " IOWA'S" 12 -INCH GUN.

When the deplorable accident to one of the 12 -inch guns of the "Iowa" occurred, it was generally credited to the bursting of a shell in the bore of the gun. Al though the official report of the Board of Investigation has not yet been made, there is now a general belief that the failure of the gun was not due to a defective shell, but either to the inherent weakness of the gun itself, or to abnormal pressures set up in the chase of the gun by the smokeless powder employed. The gun was one of the pieces with which the "Iowa" was originally supplied, and as this vessel went into commission in the summer of 1897, it has seen nearly six years of service. During this time the gun has had to do duty in the regular courses of target practice each year, and it also endured the severe test of the Spanish war, during which the "Iowa" was engaged in the bombardment of San Juan, the blockade at Santiago, and the naval battle which ended in the destruc tion of Cervera's fleet. In all these years the 12 -inch
gun that failed has been fired between two hundred and three hundred times; and if there were anything in the theory that the life of a modern built-up gun of large caliber is restricted to between one hundred and fifty and two hundred rounds, there might be some ruth in the suggestion that the strength of the gun was exhausted. For our part we do not believe that chere is anything in the suggestion, provided, of course, that during its six years of service the gun has not been subjected to powder pressures exceeding the limit which it was designed to stand.
Now, it is just here, in connection with the question of powder pressures, that the probable cause of the explosion will be found; for although the most modern smokeless powder is stable and reliable in its results, some of the earlier powders, especially if they have been for any considerable time in storage, are liable to a more rapid combustion with consequent higher pressures than they were intended to give. The "lowa's" 12 -inch gun was designed for the old brown jowder, which was relatively quick-burning, and did not give such high pressures during the latter part oi the travel of the projectile down the bore as the later smokeless powders. Hence it was not necessary to give so much tangential strength to the chase of the suil as would be the custom in designing a modern, high-velocity gun using slow-burning smokeless powder. Hence the smokeless powder employed would be somewhat more trying for the gun than the brown powder, and if there were any sudden combustion of the remaining unburnt powder shortly before the shell left the gun, the chase might readily have proved unequal to the extra duty put upon it.

TESTS OF OIL FUEL ON LOCOMOTIVES

At the time that the preliminary report of the elaborate tests of oil fuel now being carried out by the Naval Department was made last year, we gave a brief account of the findings reached at that time. During the intervening months a series of tests has been carried out to ascertain the value of oil fuel for use on locomotives, the trials being made on the Florida East Coast and the Boston \& Maine Railroads. Particular value attaches to the results, from the fact that the work of the locomotive was tested when it was hauling its regular load, and the results represented, not merely a single trip, but the work of a whole month. On the first-named railroad, on level track the engine consumed $6 \% / 4$ gallons of oil per mile run, the oil weighing 7.55 pounds per gallon. The same engine in doing the same work burned 2,000 pounds of Tennessee coal for every 19.6 miles that was covered; the result showing that under those particular conditions 132.3 gallons of oil did the work of one ton of coal. When the same locomotive was tested on freight service, where the speed was lower and the loads greater, the consumption was 10.6 gallons per mile on oil, and 2,000 pounds of coal per each 13 miles, thus giving a ratio of 131.8 gallons of oil to 2.000 pounds of coal. The test on the Boston \& Maine Railroad was made on a helper used in assisting trains in the Hoosac tunnel. The work was done by the engine on an upgrade of 42 feet per mile, the engine returning without any load. On this test the oil weighed 7.75 pounds per gallon, and 11.45 gallons were used per mile. When burning coal, this engine ran 12.25 miles for every 2,240 pounds used, thus showing a ratio of 140.26 gallons of oil to 1 ton of coal. An important fact developed in these tests was that the engine could be urged to a greater capacity with oil fuel than with coal, and that this could be done with a smokeless fire. It is considered that there is no reason why equal results should not be obtained in marine service.

ENGLISH REPORT ON THE AMERICAN RAILWAYS

The Board of Trade, London, recently authorized Col. Yorke, its Chief Inspecting Officer of Railways, to visit the United States and make an extended tour over our railroad systems. The report of his investigations has recently been published in pamphlet form, and taken altogether it may be regarded as one of the most fair-minded and valuable documents of its kind that has ever appeared.

It is pointed out under the head of steam railways, that there is a fundamental difference between English and American track in the fact that in England the bullhead rail, laid on cast-iron chairs, is in almost universal use, whereas in the United States the T-rail is almost exclusively used, the latter being laid either directly on the ties or upon tie-plates, and the rail secured by ordinary rail spikes. The weight of the rails on first-class track is about the same in both countries, varying from 80 to 100 pounds in the United States, and from 85 to 103 pounds in England. Although American roads use from 14 to 16 ties to a 30 foot rail, as against only 12 ties to the same length of rail in England, the larger dimensions of the English ties give a slightly larger total bearing surface, there being 85.3 square feet of such surface with 16 ties on American track, and 90 square feet for the 12 ties used on an English rail. The bearing surface of the rails
on the ties is 768 square inches in American practice, as against 1,260 square inches bearing surface of the cast-iron chairs in English practice. Attention is drawn to the fact, however, that on the best eastern roads in America, the ties are of hard wood, which has better wearing qualities than the Baltic timber ties used in Great Britain. The report speaks favorably of the American practice of breaking joints when laying the track, that is to say, bringing the joint in one rail opposite the center of the adjoining rail. In discussing the advisability of abolishing the chairs and using hard-wood ties, Col. Yorke considers that the extra cost of the ties would be greater than any saving gained by discontinuing the use of the chairs.
Perhaps the most interesting portion of the report is that which deals with the question of signaling. This was found to be in a more or less experimental condition, no uniform practice having as yet been adopted throughout the country. The remarks on this subject are particularly timely just now, because of the attention that has been directed to our signaling system by the many and fatal collisions that have occurred, either through faulty signaling, or through disregard of correct signals. Moreover, as the Board of Trade has oversight of all matters relating to the safety of the traveling public, and has the authority to investigate and report on all railway accidents, the opinion of its expert necessarily will carry very great weight. His severest criticism is of the fast-and-loose method by which the interpretation of block signals is in many cases left to the judgment of the engineer; by which more than one train is frequently allowed to be in the same block section at the same time; and by which trains are permitted, under special conditions, to run against the traffic, that is to say, a down rain is permitted to run on an up line, and vice versa. On the question of automatic signaling, the report considers that it does not necessarily produce greater safety of operation, that it is after all merely a laborsaving device, and that while it gets rid of errors due to the human element, it opens the way for other errors due to inaccurate operation or breakdown of the mechanism, which may be equally disastrous. It is pointed out that since the chief object of such a system is to increase the density of the traffic by enabling trains to be run under shorter headway, this very density must of itself increase the chances of accident. We must confess that we can hardly see the force of this argument. It is evidently desirable cihat as many trains as are consistent with safety should be run over any given stretch of track. Automatic signaling increases the number, and if the apparatus be proiperly made and carefully maintained, this increased tiaffic can be worked with the same immunity from disaster as a less frequent traffic under a non-automatic system. The fault is not in the automatic system, but in the human element that operates and takes care of it. The system being good in itself, the oovious thing to do is to teach signalmen and maintenance-of-way engineers to exercise redoubled care and vigilance in keeping the automatic plant at all times in first-class condition. Automatic signaling has come to stay. With increased experience in its use, and with a more rigid observance of the first principles which underlie its successful operation, our railrcads will learn to operate their trains without incurring the frightful loss of life that has occurred during the past few months.

ELECTRIFICATION OF THE LONDON "UNDERGROUND" RAILWAY.

By permission of Mr. James R. Chapman, general manager and chief engineer of the "Underground Electric Railway Company of London, Ltd.," the writer was enabled a few days ago to inspect the two new electric trains for the District Railway which have just arrived at the carsheds at South Harrow, and to make a trip in one of these over the new electrified line between Ealing and South Harrow, which will shortly be cpen for public service.
Each of the new trains is made up of seven cars, three of which are motor cars and four trailer cars. They are to be regarded at present as experimental only, and on their working will depend the nature of the cars, not only for the electrified Metropolitan Dis trict Railway, but also for the three tube railways controlled by the Underground Electric Railway Company via the Baker Street and Waterloo, Charing Cross, Euston and Hampstead, and Great Northern, Brompton, and Piccadilly Circus lines.
In a few weeks' time electric trains will be running on the new line which the Metropolitan District Railway Company has constructed from Ealing to South Harrow, a distance of six miles. This line has been finished for more than eighteen months, but it has not as yet been opened for traffic. It has been chosen as the first section to be operated by electricity, and a temporary power station has been installed at Alperton which supplies current to the rails at 550 volts direct. The new Ealing-South Harrow Railway, which con-
sists of six miles of double track, is completely in the open. During the past few months the work of electrifying this portion has been steadily pushed forward, and the Brush Electrical Engineering Company have just delivered the two "sample" trains referred to. The system which has been adopted may be described as the "third-rail multiple unit."

As a matter of fact, two new conductor rails, one the positive and the other the negative conductor, have been laid; there are therefore four rails in all. This system differs from that found on the Central London Railway, where only one conductor rail is laid, and also from the British Thomson-Houston system to be adopted on the North-Eastern Railway, where the third-rail will be used on the positive side of the circuit. All the existing track rails will be bonded for the entire current.
It is quite true that on the Ealing-South Harrow line the track rails are bonded also, but this is done for the purpose of carrying the small currents necessary for working the electric signaling system to be employed. The conductor rails weigh 100 pounds per yard and are very soft and of high conducting power, their electrical resistance being only from six and onehalf to seven times that of pure copper, whereas the resistance of the ordinary steel rail is about twelve times that of copper.

These conductors have been supplied by the Rheinische Works, Germany, and another German firm has since obtained the contract for 3,000 tons more of these conductor rails.
The two sample trains are very similar to those employed on the Boston Elevated Railway. Each train will be made up of seven cars, of which three will be "motor cars" and four "trailers." One of the motorcars will be at the front, another at the rear, and the third at the center. The total length of the train will be 352 feet, and the seating capacity, 330 ; each motorcar will seat 38 , and each trailer 52 persons. Each car is 12 feet 4 inches high, 8 feet 4 inches wide, and 50 feet long. The two end motor-coaches have a luggage compartment as well as longitudinal seats; the other coaches have part longitudinal and part transverse seating, except the middle motor-car, which has only longitudinal seats. Each train, therefore, contains three different types of cars. The Brush Company are also supplying the bogie trucks, which are of two types, motor-trucks and trailer trucks; they are made entirely of cast steel. Each motor-car will be fitted with two motors mounted on one of the four-wheel trucks, the truck at the other end of the car being free; the motors are each of 175 horse power and will be geared by single-reduction gear to the two axles of the truck. This will give 350 horse power per motor car, or 1,050 horse power per train. The driving wheels of the motor cars are 36 inches in diameter, while the carry ing wheels, as well as those of the trailers, are 30 inches in diameter. One train is to be fitted with elec trical apparatus manufactured by the British Thomson Houston Company, and the other with apparatus made by the British Westinghouse Electric and Manufac turing Company. Each firm will apply its own particular system of train control.

The framework of the cars is of the best English oak and ash. The paneling is of whitewood run in two courses, the inside being horizontal and outside ver tical. The exterior woodwork will be entirely in wainscot oak, with natural wood finish. The seats will be of rattan on spring frames. There will be no upholstering in the interiors of the cars; all the wood has been treated to render it uninflammable, so that there is but little danger of cars catching fire.

A motorman's cab is provided at each end of the train, and at either end of the center motor-car is a similar cab, which is capable of being folded up when not in use. It is practically settled that there will be no distinction of class on the Electrified Underground, and a uniform fare of probably $21 / 2 \mathrm{~d}$. will be instituted for any distance. The rumor that as a concession to British custom some cars will be labeled "reserved," and that for these an extra fare will be charged, is generally believed to be incorrect.

The motors will be capable of very high powers of acceleration. A speed of twenty miles an hour will be attained in less than half a minute, and midway between stations as high a speed as sixty miles an hour will probably be reached. The stop at each station will not be more than 20 seconds.
Until the great new power house in Lots Road, Chelsea, is ready to supply the current, the temporary power house at Alperton will be relied upon for the short Ealing-South Harrow section. The Underground Electric Railway Company have purchased the plant which was used for the experiments on the Earl's Court-Kensington High Street section, and have installed it at Alperton.
The Lots Road generating station has been commenced, and it is expected that the steel framework will be erected in June next. It will be the largest electric traction station in the world, and it will be first to employ steam turbines exclusively instead of reciprocating engines for driving the dynamos; tho
steam turbines to be installed will be the largest ever built. There will be ten turbines, each of 7,500 horse power, giving 75,000 horse power in all. The overload capacity of these machines will, however, allow them to work continuously at 11,000 horse power each, or in all 110,000 horse power, the largest power of any one station in the world. They are to be supplied by the British Westinghouse Company, and will be of the Parsons type with Westinghouse modifications. The Parsons type with Westinghouse modifications. The
speed will be 1,000 revolutions per minute and mounted speed will be 1,000 revolutions per minute and mounted
on the same shafts will be ten three-phase generators on the same shafts will be ten three-phase generators
of 5,500 kilowatts each. The current will be supplied at a voltage of 11,000 , the highest pressure yet employed for traction purposes in this country. Substations will be erected, among other places, at the Mansion House and South Kensington, where the alternating current will be converted into continuous current and transmitted to the rail at 600 volts.

the heavens in may.

Though the winter constellations have ere now disappeared from our view, and the duller skies of spring taken their place, there is yet much of interest for the star-gazer, even apart from the presence of two of the brightest planets in the evening sky.
We may well choose as one point of departure, for this month's survey of the heavens, the constellation of the Great Bear, more familiarly known as the Great Dipper, which is nearly overhead at nine in the evening. Prolonging the curve of the dipper-handle southward for rather more than its own length, we come upon Arcturus, the brightest star of Bootes, which includes also most of the stars we have passed on our way. Below Bootes, and to the right, lies Virgo, marked by one bright star, Spica, and, for the present, by the brighter presence of Mars.
Farther to the right, and a little higher up, is Leo. It requires but little imagination to see the head and mane of a couchant lion in the curve of the "sickle," while Regulus marks his fore-paws, and the triangle of stars some distance to the left forms his hindquarters.
Cancer, which comes next along the ecliptic, is distinguished only by the little nebulous group of the Præsepe-a star cluster whose components can be seen with any field-glass. Gemini is still lower in the west, and is the last zodiacal constellation in sight Rather lower than the twin stars, Castor and Pollux, and more to the southward, is Procyon, while Capella, with the rest of Auriga, is low in the northwest.
The long irregular line of stars below Leo and Virgo forms the constellation Hydra Its head is marked by a littie group below Cancer, while its tail extends far beyond Spica. The little group of brightest stars beyond Spica. The little group of brightest stars
below and to the left of the latter is known as Corvus, the Raven, who appears to be perched on Hydra's back. From the extreme southern portions of the United States, south of latitude 27 deg., the Southern Cross is visible at this season, directly below Corvus, its brightest star, at the foot of the Cross, almost touching the horizon.

A line of three second-magnitude stars in the southeast, followed by a brighter red one, shows that Scorpio is reappearing. The large and formless group of Ophiuchus and Serpens lies to the left and above. Farther on in this direction is Hercules, with the pretty cir clet of the Northern Crown between it and Arcturus and with Lyra below in the northeast.
The Little Bear is on the right of the pole-east of it by ordinary reckoning, but south in the astron omical sense; for "south" in astronomical parlance always means away from the pole-star, or, more accurately, from the invisible pole which lies near it Between the Great and Little Bears, separating them completely, is the long line of Draco.

By far the most interesting piece of astronomical news at the present writing is the discovery of a new star in Gemini, just announced by Prof. Turner, of $\mathrm{Ox}-$ ford.

The new object is faint-only of the eighth magni-tude-and it seems improbable that it will become visible to the naked eye. With the telescope-as seen by the writer at Cambridge, England, March 28 -it is conspicuous by reason of its strong orange color, which is strikingly like that of Nova Persei just after its maximum-and its peculiar spectrum, which, like that of other novæ, is full of bright lines, some of which are probably due to hydrogen.
the planets.
Mercury is evening star throughout May, and is visible under remarkably favorable circumstances. On the 10 th he is at his greatest elongation, $211 / 2$ degs. east of the sun, and as he is also very far north, he does not set until the unusually late hour of $8: 30 \mathrm{P} . \mathrm{m}$. He is in Taurus, north of Aldebaran, at about one-quarter the distance of Capella, and moves rapidly eastward. As he is about as bright as Capella, he should be easy to see, at least during the first half of the month. After the 20 th he approaches the sun and rapidly becomes invisible.

Venus is likewise evening star, and is exceedingly conspicuous in the west. She moves eastward through Taurus and Gemini during the month, and increases in brightness and remains in sight till nearly 10 o'clock each evening. The only difficulty about seeing her in broad daylight is that it is hard to find out just where to look for her. On the 29th she is in conjunction with the moon, but she is so far from the latter- $71 / 2$ degs. north of her-that the conjunction will not be much help in finding the planet.
Mars is conspicuous in the evening sky. He is in Virgo, about two-fifths of the way from Spica toward Regulus, and is still very bright, though he loses half his light during the month, as he recedes from us. His apparent motion among the stars is westward until the 10 th, when he begins to retrace his path.
Jupiter is in Aquarius, and Saturn in Capricornus. The latter rises at midnight in the middle of the month, and the former about $2 \mathrm{~A} . \mathrm{m}$.
Uranus is in Ophiuchus, and is approaching his opposition, which occurs next month. Neptune is in Gemini, and is getting too near the sun to be observed.

THE MOON.

First quarter occurs at 2 A. m. on the 4 th, full moon at 8 A . m. on the 11 th, last quarter at $10 \mathrm{~A} . \mathrm{m}$. on the 19 th, and new moon at 5 p . м. on the 26 th . The moon is nearest us on the 28th, and farthest away on the 16 th. She is in conjunction with Neptune on the 1 st, Mars on the 7th, Uranus on the 14th, Saturn on the 18th, Jupiter on the 21st, Mercury on the 27th, Neptune on the 28th, and Venus on the 29th. None of these conjunctions is at all close.
London, England.

SCIENCE NOTES

In the course of a lecture at the Conference of Musicians in Dublin, Ireland, some interesting particulars and some astonishing statistics were given relatively to the amount of work accomplished by the brain and reerves in piano playing. A pianist in view of the present state of piano-forte playing has to cultivate the eye to see about. 1,500 signs in one minute, the fingers to make about 2,000 movements, and the brain to receive and understand separately the 1,500 signs while it issues 2,000 orders. In playing Weber's "Moto perpetuo," a pianist has to read 4,541 notes in a little under four minutes. This is about 19 per second; but the eye can receive only about ten consecutive impressions per second, so that it is evident that in very rapid music a player does not see every note singly, but in groups, probably a bar or more at one vision. In Chopin's "Etude in E Minor" (in the secord set) the speed of reading is still greater, since it is necessary to read 3,950 signs in two minutes and a half, which is equivalent to about 26 notes per second.

The manufacture of pure artificial camphor upon a commercial basis has been discovered by Mr. E. Callenberg, of Germany, technically known as chlorhydrate of terebinth. This substance possesses many peculiar properties, which will render it of great value for many commercial purposes, the most important of which is that it is soluble in nitro-glycerine; and as it reduces the maximum temperature of this dangerous substance during explosion, it is considered that it will do much to render considerably more safe the manufacture of high explosives such as nitro-glycerine. Not only does it reduce the temperature of explosion, but it lowers the freezing point of the substance to a very marked extent as well. Pure nitro-glycerine freezes at +8 deg. Centigrade, but when a 3 to 5 per cent solution of the chlorhydrate of terebinth is added, the freezing point drops from -10 deg: to -15 deg. Cent. Furthermore, guncotton and many other soluble explosives can be easily dissolved at a cold temperature in a solution of chlorhydrate of terebinth and nitro-glycerine, the resulting substance being a highly improved quality of gelatine-dynamite.
It has been reported to the Academy of Sciences by Henri Dufour that a comparison of the solar observations made with the Crova actinometer during the first three months of the present year with the results of preceding years, shows a distinct falling off in the sun's radiation in the lower layers of atmosphere. The suggestion' that the solar radiation is perceptibly absorbed by the volcanic dust now diffused through much of the earth's atmosphere is to say the least plausible. But so far as international reports of the season indicate, the earth's loss of solar heat has not recently been traceable in the meteorological observations. March was, on the contrary, marked by abnormally high temperatures in portions of Europe and America, and few records for excessively intense cold have been reported this year. If the dust from the volcanoes of tropical America has now been spread through the upper at mosphere within the middle latitudes of America and Europe, it will be conducive in some slight degree to the formation of rain clouds in unusual quantities for several months. But the precipitation of summer will mainly depend on much more influential causes.

THE STANLEY AIRSHIP

One of the competing aerostats for the airship prize offered by the St. Louis Louisiana Purchase Exposition will be the Stanley airship. Although not the largest vessel of its kind ever built, the airship will, never theless, be noteworthy for its size.

The contrivance will have a total length of 228 feet and will consist of a cylinder 116 feet long, tapering at either end in a cone 56 feet long. The diameter of cylinder is likewise 56 fect. The entire machine will weigh 13,000 pounds, but the lifting capacity of the hydrogen gas with which it will be filled will be 21 , 000 pounds. Accommodations for thirty passengers with their baggage have been provided Besides passengers Benlow pangers allowance has als been made for mai matter weighing 1,000 pounds and 1,000 pounds of bal last. The inventor hopes to attain rather fabulous speeds. His best time he thinks wil time he thinks will be 130 miles an hour; his worst he places at 70 miles an hour. These speeds are to be obtained with propellers 10 feet in diameter moving at the rate of 800 revolutions per minute. Besides rudders, side planes are to be used for the purpose of keeping the ship in proper longitudinal trim.

The novel features of the airship, according to its inventor, are the manner of propulsion, control over elevation, ability to descend at will, and adjustable propeller blades
The airship is divided longitudinally into two parts by a partition running the ful length of the ship 12 feet above the keel. The lower of the two parts thus formed will con tain the motive power, machinery, passengers, and freight. The upper part is to be divided into six compartments to contain the hydro gen gas. Each compartment will be provided with an inner skin of silk to prevent leakage of the gas.

The propellers are placed at the apex of each cone. A rudder beneath each cone will guide the ship horizontally; while a series of side planes or side rudders will control the verticai movement. Top propellers are provided for the purpose of controlling the ship in rising and for the purpose of forcing it down when a landing is to be made.

It is said that a model has been built which works satisfactorily. The information which we are able to give is meager, but it is all that can at present be obtained. It remains to be seen whether the inven
tor's claims will be fulffled when the airship is com pleted. J. M. B.

POWERFUL ENGLISH ENGINE FOR SUBURBAN TRAFFIC

The locomotive that is herewith illustrated is cer tainly the most striking departure that has been tainly the most striking departure that has been
made from standard English locomotive practice for many a decade. It was designed by Mr. James Hol den, Chief Mechanical Engineer of the Great Eastern

THE FRAME OF THE STANLEY AIRSHIP

Railway, to handle the extremely heavy travel on the suburban lines of the Great Eastern Railway, England. This traffic centers at Liverpool Street and Fenchurch Street stations, London, and the annual travel over the suburban lines served from these stations amount to $111,000,000$ people. Although the Great Eastern Railway has a good record for the number and punc tuality of its trains, it has been endeavoring for some time past to accelerate its local service: but on account

SECTIONAL VIEW OF STANLEY AIRSHIP

S, shell ; G, gas bags ; E, end propellers; T, top propellers; \boldsymbol{M}. engines; \boldsymbol{N}, shafting from engines to propellers; H, main hall; ' J, inchined p
R, rudders ; B. iower bridge $: V$, steering gear.
of the great number of stations on each of the suburban lines, this has been a matter of much difficulty. Thus, on the line running to Enfield there are sixteen stations in a distance of 10 miles, and the inability to make rapid starts with the long and heavy suburban trains has prevented the trains from maintaining a high average speed. The steady increase of the past few years in the number of passengers and in the weight of the trains showed that to cope with the
situation some special typu of locomotive was neces sary, and Mr. Holden broke away from all precedęt by designing and building a locomotive which is not only by far the most powerful in Great Britain, but as a matter of fact, has a greater hauling power than the biggest passenger locomotive built in this country not even excepting the great engine recently turned out by the Baldwin Company for the Chicago \& Alton Railway. A fair test of the power of a locomo tive is its tractive effort; this in the case of the Baldwin engines is 31 , 600 pounds, and for the Great Eastern Railway "Dec a p o d ," 36,507 pounds. The best acceleration th at has hitherto been possible on this suburban service is the attaining of a speed of 20 miles an hour in 30 sec onds from the start with a train of fif teen cars weighing 225 long tons. Some years ago the cars were widened, with the result that each train had an in creased carrying capacity of nearly 21 per cent. The new "Decapod" is expected to pull a 50 per cent heavier load and attain a speed of 30 miles an hour in 30 seconds from starting, with a train carrying 1,200 people, making a saving of about 10 minutes on the $101 / 2$-mile journey and thereby al lowing of a more frequent service of trains. The engine is carried on ten wheels, all of which are coup led, the whole weight therefore being available for adhesion. The practical absence of any smokestack is due to the fact that the loading gage in England is between 1 and 2 feet lower than that in this country, and consequently, as the center of the boiler is lifted, the top of the boiler encroaches on the smokestack until, as in the present case, the latter is entirely sunk within the smokebox. The boiler is 5 feet, 3 inches in internal, diameter, and the barrel measures 15 feet, $107 / 8$ inches in length be tween the two tube plates. The firebox shel measures 7 feet, $91 / 2$ inches in width by 6 feet, $91 / 2$ inches in length on the outside. The inside firebox, which is of $5 / 8$-inch copper plate is 6 feet long by 7 feet wide on the inside. It is stay ed by bronze stays 1 inch in diameter. There are 395 steel tubes with a total heating surface of $2,878.3$ square feet, and there are 131.7 square feet in the firebox making a total for the whole boiler of 3,010 square feet, or about double that of the average English locomotive of the present day, and about three times as great as that of the English passenger locomotive of fifteen years ago. The working pressure is 200

pounds to the square inch and the steam is expanded in three high-pressure cylinders, two being outside the frames and one between the frames on the center line of the engine. Each cylinder is $181 / 2$ inches in diameter by 24 inches stroke. To avoid having to incline the middle cylinder, a divided connecting rod is used, the leading axle passing through the connecting rod and being slightly bent to enable it to clear. The ten driving wheels, all coupled, are 4 feet 6 inches in diameter, and the rigid wheel-base, which is equally divided, measures 19 feet 8 inches. The length of the engine over all is 37 feet 9 inches, and its total weight is $871 / 2$ tons.
This new departure in locomotive practice will be watched with great interest by engineers on both sides of the water. Mr. Holden claims that the fight between steam and electricity as the motive power for suburban traction is not by any means decided, as yet, in favor of electricity. Although we do not agree with him in this, we have no doubt that this engine will show marked power and economy as compared with the lighter engines hauling smaller trains, which it is intended to displace.

ORE FINDING BY ELECTRICITY.

by herbert c. fyfe, london.
The writer has recently been afforded an opportunity of witnessing the new Draft-Williams method of electrical ore finding in operation on actual mineral lodes at the Telacre Mine, Prestatyn, North Wales.
The inventors, Mr. Leo Draft and Mr. Alfred Williams, claim to be able to detect the presence of certain mineral ores invisible to the eye, and during the course of the last few months to have located, traced, and mapped out metalliferous deposits of various natures which were quite invisible to the prospector and undiscoverable by mining engineering.

In many cases mine prospectors have made borings and opened up lodes solely on the strength of the inventors' predictions, and have discovered new and unsuspected sources of mineral ores, which are now being worked at a profit.

It is claimed that by the Draft-Williams method not only can deposits be located, but that the extent and depth of the lode can be determined with an accuracy that is quite impossible with any existing system of prospecting.
Before giving an account of what the system has already accomplished, mention must be made of the instruments employed.

There are two stations, the transmitting and the receiving. At the former there is a battery of 12 volts, giving 4 amperes and 50 watts; a special form of break works in methylated spirits, and is driven by a motor, whicn is supplied with current by a. special local battery and a primary condenser. The current is next led through the primary by an inductor, a special form of induction coil having a large core and very heavy winding on the secondary circuit. The current now passes through a secondary condenser to adjustable series and parallel spark gaps. The electric waves generated by this arrangement are taken to earth by means of two iron spikes driven two to three inches into the ground. At the Telacre Mine there were two circuits, one vertical, the other horizontal. In the former case the wire was former case the wire was
taken down the mine taken down the mine
shaft close at hand and along the tunnel as far as the fore-breast, a distance of 200 yards; and in the other it was placed some

ore prospecting by means of electricity.
plore; the lines of force travel outward and onward until they reach the iron spikes in the receiving set. When this occurs, the observer can by means of the resonators detect their presence by hearing the noise of the break, or by the sparking across the gaps.

Now, in a normal condition, i. e., if the ground be of a homogeneous character, the prospector should hear the noises loudest when exactly opposite the center of the base line of the transmitting station.
The existence, however, of a vein or reef containing metal has the tendency of throwing the waves out of normal course, by reason of the fact that it has a different conductivity from the material by which it is surrounded. The prospector must therefore make his earth connections in different places, and shift his position until he can detect the presence of the waves. When directly over the lode, the noise in the resonators will be loudest.
Condenser-discharges from lodes manifest them-

detecting the earth currents sent out by the transmitter.
selves as overtones in the receivers, and at certain spots or nodal points the noise will cease altogether, owing to the influence of the waves
The condenser discharges can be heard over some lodes when the distance from the inductor is so great that the noise of the break or of the spark gap cannot be heard; thus they form a great assistance to prospecting, helping to determine, not only the position and depth of a mineral deposit, but also, to a great extent, its nature and characteristics.

The area to be energized by the electric waves may be as small as 300 square feet and as large as 30 square miles, and the terminals may be placed hundreds of yards apart.
It is interesting to note that so far back as the year 1830 Fox made some experiments with a galvanometer with a view of attempting to determine the continuation of ore bodies. This méthod has since been tried on many occasions, but in nearly every case unsuccessfully. Recent variations of this consisted in connecting a current to earth and to watch the swinging of the galvanometer's needle or some equivalent. The idea was that the presence of a mineral lode would decrease the local resistance of the earth, thereby al lowing more current to flow through the galvanometer, which would thus indicate the presence of the lode.
Mr. Alfred Williams in formed the writer that he had measured over a hundred lodes in Alaska, British Colodes in Alaska, British Co-
lumbia, the United States, Wales, and Cumberland, and had been unable to detect the slightest variation in resistance on the surface.
More delicate instruments than the old galvanometer have been employed in the measure ment of earth resistance, and mining engineers and prospectors know only too well the numerous instruments and processes that have been brought before their notice.
With the exception of the dip needle, which is used in prospecting for magnetic ores, no instruments are used by the modern prospector, who trusts to his geological knowledge, his past experience, his maps, and his knowledge of the country
Prospecting is, of course, a very inexact science, and the mining world,.it need hardly be stated, would welcome with open arms a system of ore finding which could be depended upon and which would do some thing toward lessening the yearly loss entailed in making borings which prove unsuccessful, and in opening up lodes which turn out to be not sufficiently promising to encourage the mine proprietors to continue their working.

In ${ }^{\circ} 1899$ the inventors commenced experimenting with electrical methods of ore finding, and in 1899 Mr. Williams, in place of a galvanometer or poten tiometer, used his body by passing quickly pulsated induced currents from a dry cell and a small coil in series with the earth. By this method the slight est increased intensity in the current flowing by vir tue of the decreased re sistance of the earth was instantly noticed.
He, however, soon abandoned this method as use less, for reasons character istic of all earth measure ments.
Messrs. Draft and Will iams made their first practical experiment with their present system in Seattle, Wash., and San Francisco, Cal. These met with success, and the next trials were made in the southeastern Alaskan archipelago. Coming to England, they h a ve achieved considerable suc cess in prospecting for
lead and zinc ores in Wales and for nemalite in Cumberland. The following is an instance of successful prospecting with this method.
The lead and zinc mines at Cwmstwth, Devil's Bridge, Cardiganshire, Wales, owned by Mr. H. Gam man, have been worked for the past 1,700 years, and a good-paying lode was found to cease suddenly in one direction. After costly and numerous attempts to dis cover this lode beyond this fault, the attempt was abandoned.
Mr. Williams, being called in, placed the two elec trodes at a considerable distance from the broken lode on unmined ground, and in such a position that a per pendicular through the center of the line joining the two electrodes would coincide with the run of the lode as worked out.
The current streams from the one electrode to the other would thus, under normal conditions of homogeneity, pass at right angles through the extension of the lode if it existed beyond the fault.
Exploring with the resonators, Mr. Williams found on the hillside that the line of normal current flow was in several places rotated through a very considerable angle. After careful mapping out of the results ob tained, the direction of the lode was finally predicted.
A tunnel was at once commenced by Mr. Gamman's instructions, with the result that a good lode of lead and blend was discovered after a drivage of less than three fathoms. Mr. Gamman told Mr. Williams that in proof of his belief in his modus operandi, he had ordered a third drivage to be started, to reach the rich ore detected by the instruments at a lower level.

Transmitting Apparatus.

DIAGRAM OF THE DRAFT-WILLIAMS SYSTEM OF ORE PROSPECTING.
"Had your instruments," writes Mr. Gamman, "been discovered years ago, it is my opinion that tens of thousands of pounds would have been saved in these mines alone."
It will, of course, be necessary to train mining engineers and prospectors in the use of the instruments and in the detection of the presence of the waves. The whole outfit is, however, simple and easy to work with. Its development during the next few years will be watched with interest by all interested in mining operations.
[While this method of finding ore enables the prospector to detect and locate a body which is a good conductor of electricity, it, on the other hand, offers him no guarantee that this conductor is valuable ore; for any metal substance, such as iron piping or a piece of wire, or better still a stratum of moist earth or a subterranean stream, would affect the detecting instrument and indicate a vein of ore. Nevertheless, though thïs be so, the Draft-Williams system should be of valuable assistance to the prospector, because it reduces greatly his chances of failure by assuring bim of the location of some good conducting medium, which can be further investigated by boring or some other test.-Ed.]

It is announced in Berlin that Count Zeppelin's air ship shed on Lake Constance, together with his apparatus, will be sold at auction. The count is a poor man. He sank over one million marks in the enterprise.
In Sweden books are placed in third-class railway cars for the free use of passengers. A similar plan is about to be adopted in Denmark.

ALEXANDER GRAHAM BELL.

The World's Fair held in Philadelphia in 1876 had for its principal object the celebration of the one hun dredth anniversary of our national independence, but of greater importance was the demonstration of the wonderful mechanical genius of our people, that has since given to the United States the industrial su premacy of the world. An event of that exhibition that is now historical is characteristic. Men of science had come from various countries to examine and study the numerous inventions that were to be seen. A demonstration of the transmission of sound by electricity was announced, and a special wire connecting widely separated parts of the grounds was installed. There were those who were incredulous of the possibility of sending the human voice, over so great a distance, and they did not hesitate to express that opinion, but the youthful physicist with a boldness begotten of kncwledge insisted that the instrument would do what he claimed for it, and it did. Distinct and clear came the tones of the voice at the other end of the line, forcing conviction upon those who were doubtful, and a new invention-the telephone-was given to humanity.
A few words will suffice to give an outline of the inventor's career. Alexander Graham Bell was born in Edinburgh, Scotland, in 1847, and in 1872 settled in Boston, where he was called to the chair of Vocal Physiology in Boston University, and there introduced the system of visible speech invented by his father. the venerable Alexander Melville Bell. The success of the telephone brought him fame and ample means, and having married the daughter of the late Gardiner G. Hubbard, he settled in Washington, residing there during the winter months, and spending the summers at his country place at Cape Breton.
While he is a man of leisure, as the phrase goes, Mr. Bell finds much to occupy his attention, and he has but iittle spare time. During the season that he spends in Washington, which is frequently interrupted, however, by trips to Florida or California, and to Europe as is shown by the many interesting objects that he has gathered from various parts of the world, with which his house on Connecticut Avenue is filled, he neverthe less finds much to do with several institutions in which he is interested, for he makes the pursuit of knowledge his principal pleasure.
It will be remembered that for his invention of the telephone, the French Academy bestowed upon him its valuable Volta Prize of 50,000 francs, and with this sum, together with important additions, he founded in 1883 the Volta Bureau. A building was erected in Georgetown in which a library is installed and facilities are afforded for the study of problems by the solution of which the condition of deaf mutes may be improved. He frequently visits this Bureau, and exer cises toward it almost a paternal interest.
Another institution in which Mr. Bell takes great interest is the Smithsonian Institution. He has followed most closely the experiments made by Secretary Langley in aerodynamics, and in 1891 presented him with the sum of $\$ 5,000$ for the further prosecution of his investigations. Mr. Bell was an eye-witness of the successful ascensions of Dr. Langley's aerodrome in 1896, and communicated a description of those flights to the French Academy of Sciences. Mr. Bell was appointed in 1898 to the vacancy on the Board of Regents caused by the death of Mr. Gardiner G. Hubbard, and he also succeeded to Mr. Hubbard's place on the Execu tive Committee. He has recently advocated with much earnestness the bringing of Smithson's remains from Genoa to Washington, offering most generously to defray the expenses, provided the Regents will care for them on their arrival in this country.

Mr. Bell devotes considerable attention to the National Geographic Society, of which he is president, and the erection of the new building, a memorial to the late Mr. Hubbard, its former president, now rapidly approaching completion, is carefully watched by him Whenever questions concerning the policy of the So ciety come up for consideration, or indeed other important matters pertaining to the development of geographic science, he gathers the Board of Managers around him at hris home, and the subject is then thoroughly discussed. Two topics of more than common importance are now receiving much careful considera tion. The first of these has to do with the Geographic Congress which is to assemble in Washington a year hence, and for which plans are now being matured and the other is the selection of a suitable representa tive to accompany the Ziegler Expedition to the North Pole.
As a host Mr. Bell is most delightful. For several years his Wednesday evenings have been noteworthy, for to his home are invited men who know things, and who have something to say that is worth listening to Distinguished visitors to the capital are invited to meet the men of science whose regular duties make them part of the official life of Washington; and Simon Newcomb, most eminent of American astronomers S. P. Langley, the distinguished Secretary of the Smith
sonian Institution, Carroll D. Wright, first among political economists and statisticians, Harvey W. Wiley the genial chief of the chemical division of the Department of Agriculture, Willis L. Moore, the able head of the Weather Bureau, O. H. Tittman, of the Coast Survey, and the many younger men whose names need not be mentioned here, for they fill the pages of the most recent scientific journals, announce their lat est discoveries, which are pleasantly discussed and commented on. It should be mentioned that as president of the National Geographic Society he frequently entertains distinguished explorers and traveiers. The splendid reception that was tendered to Nansen a few years since was an event that will be long remembered, and this winter De Windt was made the guest of honor at a reception given by Mr. Bell after his recent lecture "From New York to London by Rail via Bering Strait." It is by such means that he finds his greatest enjoyment.
At his summer home in Cape Breton Mr. Bell finds it possible to devote even more time than ever to his hobbies, and these, as I have tried to show, form his chief enjoyment. His kite experiments, concerning which so much has been written without authority, have occupied much of his time; and it may be said that at one of his Wednesday evenings during the past winter he was prevailed upon to describe these experiments, the results of which will shortly be prepar ed for publication; it may be now said that after many triais with various forms of kites it became apparent that certain forms possessed greater force than others, and showed a power quite capable of carrying several hundred pounds. Another interesting investigation which he has carried on at his summer home has been the improving of the breed of sheep on his farm. He found curiously enough that the amount of food given to the animals seemed to have a direct relation to the sex of their young. His results of this in vestigation were presented before the National Academy of Sciences at the spring meeting in 1901, and referred to in the Scientific American for April 27 of that year.
Naturally Mr. Bell has received many honors. The French government, ever quick to recognize science has conferred upon him the decoration of the Legion of Honor in one of the higher classes. The Society of Arts in London in 1902 gave him its Albert medal, which is awarded only to those who by their writings, researches, inventions, or investigations have aone something that will forever be of lasting benefit to humanity. Eads and Edison are the only Ainericans who have previously received this medal. In 1883 he was chosen a member of the National Academy of Sciences in our country.
Universities at home and abroad have conferred honorary doctcrates upon him. The National Deaf Mute College of Washington and the University of Würzburg, Bavaria, have given him the degree of Ph. D. The exceedingly ingenious electrical device, by means of which the exact location of the bullet in President Gar field's body was detected, was invented by him and gained for him the honorary conferment of the degree of M. D. from the University of Heidelberg at the time of the celebration of its fifth centenary. Amherst (1901), Harvard (1896), and St. Andrews (1902) have conferred upon him the degree of LL. D., and that from Harvard was in special recognition of his method of improving the condition of deaf mutes.

prof. bell's kite experiments.

The final paper read before the last meeting of the Academy of Sciences was "On the Tetrahedral Principle in Kite Structure," by Alexander Graham bell. At the outset he said that in the old Hargrave box kite, and all subsequent kites and flying machines of the same order, there were two important defects, which he described as follows: The box kite is braced in a horizontal and vertical direction, but not otherwise, so that cross supports have to be introduced in the frame, which increase the weight with out adding to the flying power, and at the same time operate as an obstacle to the wind. The chief defect of the box kite, of which Dr. Langley's aerodrome is an elaboration, is that the weight increases with the cube as rapidly as the lifting power does with the square, so that the larger the kite, the less it will lift in proportion. In view of these facts, he had been led, he said, to construct a kite, the frame of which would present the form of a triangle no matter from what side one viewed it. In other words, the frame was a perfect tetrahedron; and in experimenting with the same, he found, as he had expected, that it was self-braced in every direction, and moreover, that the lifting power increased at a greater ratio than the increase in weight. He was, furthermore, sur prised at the facility with which such a kite could be managed. By combining a great number of these kite terahedrons he had recently built up an immense kite, with which he successfully lifted not only a man, but a weight of 200 pounds, showing the vast improvement of this over all previous machines of the same order.

Coxitequrandente.

European Fire Engines.

In your article on European Fire Engines, published n the Scientific American for January 17, 1903, certain mis-statements are made in a note, which we feel called upon to correct. The system of supplying the hose with water directly from the hydrant by means of a snort connecting hose under the pressure in mains has long been known and applied in German cities where street hydrants have been installed. In village communities, where there is no system of supply pipes, but where the head of the water is considerable, iron pipes are driven into lloe soil, by which pipes the subsoil water is directly fed to the hose.
Every hand pump and likewise our own motor driven fire engine is provided with a device, whereby it is possible, without uncoupling the section-hose, to draw water from without or from the tank on the en gine. This device is merely a three-way valve, the ap plication of which in this connection seems to have escaped the notice of the author of your article.
The provision of a water-tank on the engine is advantageous for the reason that it renders it unnecessary to carry a separate water receptacle. A water receptacle in a fire engine is never unnecessary, since in some cases it may be very serviceable, for example, if a water pipe should burst.
It is true that in Vienna water casks of 1,000 liters capacity are used; but if the city had the water-supply system referred to in the article, it would be unnecessary to employ these casks.
Freiburg i. B., April 8, 1903.
Grether \& Co.
[Our correspondents acknowledge that the incorporation in their machine of a water-tank obviates the necessity of carrying one along. Why is one at all necessary if the engine is directly connected with the hydrant by the three-way valve? It is said that such a tank is "never superfluous." Why not? If a hydrant break, water can be taken from another. Of what use is a tank on the truck unless there be other trucks with tanks at hand to keep it filled? Clearly, the tank must be used for something; and if the hydrant be used, the need of a tank is not very apparent. What the conditions may be in Vienna now, we do not know; but we were careful to state in the footnote to the article criticised that the conditions described prevailed in Vienna several years ago. And that statement was made on the strength of actual observation -Ed.]

The Duodecimal System Again.
 To the Editor of the Scientific American:

Referring to the article of N. Y. Hubbard, on page 299 of Scientific American of April 18, allow me to se.y: All of Mr. Hubbard's objections to duodecimals fade away, provided the arithmetic is brought to that change along with all tables. Duodecimals would then have all the advantages claimed for decimals, and many that decimals never can have.
Try to teach a child fractions by means of a decimal numeral frame, and see how poorly you will succeed compared to the same effort with the aid of a duodecimal frame. Seek to pack a hundred different articles each by tens in boxes, and see how great a proportion of them will be utterly unmanageable, and then see how readily they will nearly all conform to the necessity of the situation by packing in dozens. When you have them in boxes, try your hand at pack ing the boxes by tens in cases, and see how soon your troubles begin, and how difficult they will be to get rid of. But try packing them in dozens, and see how readily you will solve the problem in almost every case.
The great superiority of duodecimals in the practical, everyday affairs of trade, commerce, and ordinary business is so great, that no laws in any manufacturing or commercial country can be made that can compel the use of decimals to the displacing of dozens and grosses.
James Watt, Thomas Jefferson, John Quincy Adams, Abbe Gabriel Mouton, and N. Y. Hubbard may have spoken favorably of decimals, but it would have been impossible for either of them to show that eight, nine, twelve, or sixteen was in any way inferior to ten as a base number for the practical affairs of life, while as a matter of fact either one is superior, and twelve is almost infinitely superior to ten. You can divide ten by two and five without a remainer, and that is the limit; but you can divide twelve by two, three, four, and six.
We believe every reader of the Scientific Amprican would be interested in the editorial opinion of the paper as to whether, in the practical business affairs of the world, twelve would or would not be superior to ten as a base number, and given a system of num bers based thereon, whether duodecimals would not be superior to any system that can be devised from the use of decimals.

Niagara Jalls, N. Y., April 17, 1903.

It has been definitely decided that the Gordon-Bennett race will be held on July 2. The race will be followed by a fortnight devoted to tours, hill-climbing contests, motor-boat races, etc., in Ireland. It is expected that many English and American motorists will attend and participate in these events.
As a result of the so-called eliminating trials for contestants to represent America in the Gordon-Bennett Cup race, it has been decided to send, in addi tion to Alexander Winton, Louis P. Mooers with his Peerless racer, and Percy Owen with his Winton. The latter succeeded in covering 5 miles in 5 minutes, 25 seconds, but Mooers' machine was not in very ood shape and did not make any startling bursts of speed. H. S. Harkness was present at the trials, but the new racer he is having specially built was not ready. He will probably go to Ireland as a substitute, however, after running his racer in the Paris-Madrid race the last of May.
In the Nice-La Turbie hill-climbing contest on April 1, which was brought to an abrupt end by the fatal accident to Count Zborowski, one of the first three contestants who preceded him and were also mounted on Mercedes machines, came within one-fifth of a second of equaling Gabriel's record of 15 minutes, 45 seconds, made last year, while another, Hieronymus tiy name, made 1 minute, $181-5$ seconds better time than Gabriel, and established a new record of 14 ininutes, $264-5$ seconds.

At the annual speed trials held at Nice on April 7, Leon Serpollet on his steam racer covered a kilometer from a flying start in 291-5 seconds. This was 3-5 of a second better time than he made last year, and, it being the third time he has won the Rothschild cup accoraing to the rules he is now the owner of it. No less than eight contestants broke the mile record from a standing start of 1 minute, 9 seconds, until then held by Augieres. The best time made in this event weld by Augieres. The best time made in this event
was Mr . Alfred Harmsworth in a 60 horse nower Mercedes car. This was 1 minute, 3.72 seconds
Two other interesting events that occurred during the Nice automobile week were the brake and con sumption tests. The former test consisted in running the cars down a hill in a minimum and a maximum time, and having them make four stops during the descent. A maximum distance of 65 feet was allowed in which to make a stop. The best showing was made by three Rochet-Schneider cars, which made stops in 19.68, 39.37, and 55.77 feet respectively, the times taken in descending the hill being 19 and 20 minutes. In a test made running down hill back ward, stops were made in $6.06,8.43$, and 10.49 feet.
Each contestant in the fuel consumption test was allowed 100 grammes (3.53 ounces) of gasoline per 50 kilogrammes (110.23 pounds) of gross weight of his machine. A 6 horse power Renault voiturette and two 6 horse power de Dion "Populaire" machines made the best records. The fuel consumed, distances covered, and times were as follows:

Cars	Gasoline Consumed	Distance Traversed	Time
6 h. p. Renault Voiturette.......... $\{$	$\begin{gathered} 1890 \mathrm{~kg} . \\ 4.166 \mathrm{ibs} . \\ .666 \mathrm{gas} . \end{gathered}$	33.\%n2 kms 20.028 miles	h. 1 27
6 h. p. de Dion Bouton 'Populaire " $\{$	$\left.\begin{array}{\|c\|} 1.880 \mathrm{kgs} \\ 2.380 \mathrm{bs} . \\ .380 \mathrm{gale} . \end{array} \right\rvert\,$	31.483 kms . 19.550 miles	$\begin{array}{llll}\text { h. } & \mathrm{m} . & \text { s. } \\ 1 & 33 & 39\end{array}$
6 h. p. de Dion-Bouton 'Populaire ",	$\left\lvert\, \begin{gathered} 1.066 \mathrm{kge} . \\ 3.350 \mathrm{lbs} . \\ .566 \mathrm{gals} . \end{gathered}\right.$	$\begin{aligned} & 31.050 \mathrm{kms} \\ & 19.282 \mathrm{miles} \end{aligned}$	h. 1 3

The Automobile Club of America will hold a cominercial vehicle test on May 20 and 21. There are six classifications of vehicles according to the load carried, the loads ranging from 750 to 20,000 pounds. According to the rules, a vehicle may carry 300 pounds more or less than specified in the class in which it is placed, provided the dead load carried, exclusive ot driver and observer, be at least 50 per cent of the weight of the venicle. Electric vehicles will be al lowed one stop for charging, but the current used will count against them. Stops made by gasoline or steam trucks or delivery wagons for fuel or water will also be penalized. A 40 mile route around the city will be covered each day, the first day without stops and the second with a certain number according to the size and weight of the vehicle. An accurate account of fuel consumption will be kept, so that the cost per ton-mile with the different kinds of power can be figured. The contest will doubtless throw some light on the cheapness of automobile transportation when wear and tear and depreciation of machinery and batteries are left unconsidered.
The Bailey automobile bill., which was passed by the New York State Legislature on April 22, has some peculiar clauses in which its originator evidently attempted to make automobiling impossible. One of them is to the effect that no automobile shall pass a
person walking, or driving a horse on the highway, at arcäter speed than 8 miles an hour. As most horse are capable of slightly exceeding this speed for some distance if urged, an automobilist overtaking a horse drawn vehicle may be compelled to take its dust for several miles before it will come within the limit a which he is allowed to pass. Another clause forbids a faster speed than 10 miles an hour when passing a school house on week days or a church on Sunday The only feature of the bill that is to be commended is the clause making it impossible for the authorities of any city or town to pass an ordinance compelling a siower speed than 8 miles an hour in the built-up part of the city, 15 miles an hour where the houses are 100 feet apart, and 20 miles an hour in all other places.

Engincering Notes.

Some interesting and valuable particulars regarding turbine air compressors have been announced in a lecture by the Hon. C. L. Parsons, the inventor of the steam marine turbine. The Parsons Company is now making a specialty of this apparatus, and some very remarkable results in contrast with air compressing plants have been attained. In one case a compressor driven by an electric motor, supplying air at a pressure of 2 pounds per square inch, delivered 3,500 cubic feet per minute, and the efficiency of the plant as measured by the ratio of air horse power to electric horse power was 61 per cent. With the Roots blower, which was previously used, the efficiency measured was only 41 per cent. In another similar plant in work at a foun dry near Leeds, 11,300 cubic feet of free air is supplied per minute at 3 pounds pressure. In this instance the air turbine is driven by a steam turbine running at 5,200 revolutions per minute, and the air horse power is 61 per cent of that theoretically obtainable from the steam used.

Dr. Robert H. Thurston, of Cornell University, $\varepsilon=y s$ that two controlling tendencies mark the improvement in the efficiency for commercial purposes of every product of the engineer's labor; their resultant varies as the one or the other is in the ascendant. These are increasing costs with increasing efficiencies, and ad vancing expenditures with diminishing gain. As the outgo for increments of efficiency and economy continues, the gain by increased efficiency is partly, or whol ly, or more than wholly, compensated by the simultaneous increment of cost. With the crude apparatus of the earlier stages of uneconomical and incomplete industrial systems, there usually exist great opportunities for improvement by refinement of the apparatus and by systematizing the industry at, often necessarily, in creased cost in the form of invested capital. Later, the possibility of further improvement lessens, and the costs to secure any given gain increase, until it ultimately becomes a fact that more must be paid for a given gain than it is worth, and the net outgo on the improved apparatus or system becomes, interest and sinking fund included, more than that on a less perfected machine or system. What may be called a "golden mean" is thus always found at that stage at which the cost of additional economies will exceed the necessary cost of securing them and where the result of securing them is loss rather than gain. The resultant of the two tendencies takes a direction which thus tends toward the unprofitable, and a limit may thus always be expected to be found, beyond which further refinement is financially undesirable.-Cassier's Magazine.
Of late years the size of gas engines has much increased. Many makers are now building machines of 2,500 horse power, and are ready to double this efficiency. The development of large gas engines is closely connected with the evolution of the fuel-gas processes, and it is noteworthy that the first gas engines in England above 400 horse power were operated with producer gas, while many of the large gas engines in Europe have been built for use with blast furnace gas. In August, 1902, two English firms had under construction over fifty gas engines varying in size from 200 to 1,000 horse nower. A classified list of engines made or making shows 327 such with an aggregate horse power of 182,000 , or about 560 horse power per machine. The last volume of the United States census reports 18,500 combustion engines in the country, with a total capacity of 165,000 horse power, or only about 9 horse power on the average. This state of things is not likely to last long. One American firm has already sold ever 40,000 horse power of large engines, most of them of 2,000 and several of 1.000 horse power. Another has recently built two 4.000 horse power gas compressors and a number of 1.000 horse power gas engines. The gas engines of the larger sizes are extensively used for generating eiectric light and power, but there is a decided tendency to employ the smaller sizes direct as motors. Cheap fuel gas processes will bring the gas engine to replace the electric motor for very many purposes, and we may look for development along these lines in the near future.

EXPERIMENTS IN FOOD PRESERVATIVES CONDUCTED bY THE DEPARTMENT OF AGRICULTURE. by our washington correspondent.
That the public is entitled to an exact knowledge of the things that it purchases, is becoming more and more a recognized fact, and especially so in regard to food. The addition of an ingredient to a standard food product may or may not have a deleterious effect, depending, for instance, among other things, on the constitution of the individual, and experts have frequently testified, both in published volumes and before courts, to opposite opinions. It was in consequence of this condition of atairs that by Act of Congress, approved on June 3, 1902, funds were provided "to enable the Secretary of Agriculture to investigate the character of proposed food preservatives and coloring matters, to determine their relation to digestion and to health, and to establish the principles which should govern their use." This work was naturally assigned to the Bureau of Chemistry, in the Department of Agriculture, and is now being actively carried on under the direction of its chief, Dr. Harvey W. Wiley.
Early in December of last year a kitchen and dining room were fitted up in the basement of the building occupied by the Bureau of Chemistry, after which application was made to the Civil Service Commission for a cook, and an expert was obtained, whose skill and knowledge were certified to by several of the bon vivants of Washington. The selection of young men on whom to experiment was not so easy, for the all-powerful Civil Service Commission was for once impotent, and in consequence volunteers were called for. In time Dr. Wiley succeeded in obtaining a dozen or more young men, chiefly from his own Bureau, who were willing for the cause of science to submit themselves to the experiments.
In order to secure the desired results, it became necessary to determine a series of facts concerning the subjects. Accordingly they were at the outset critically examined by a physician from the Bureau of

FIg. 1.-Prof. Wiley at Table With His Guests.
the temperature taken before and after dinner. The number of heart beats and the respiration are deter mined twice daily, the blood corpuscles are counted, and the amount of hemoglobin in the blood measured. Of course it is understood that the subjects were pledged to eat only the food given to them by Dr. Wiley, and to refrain from the use of stimu lants, although tobacco is allowed during the experi ments in the regular manner in which it had been used.
The selection of the first substance to be experimented with was considered, and borax was chosen,
concerning which it is generally admitted that it is a most excellent preservative, especially for meats and dairy products. A small quantity of borax will act as a preservative just as well as a large quantity of salt. Therefore admitting, for the sake of argument, that borax taken in certain quantities does derange the physiological functions, it is probable that it does not do so to such an extent as does the larger quantity of salt which must be used as its substitute. In the case of meats, if preservatives are really injurious, the injury is a necessary evil, unless the meats are preserved solely by the canning process. In some instances, such as with hams and breakfast bacon, this method would practically destroy the qualities of those meats which are most desired.
The young men having reached a nor mal condition, that is, possessing a constant weight, and the proper amount of food for each having been determined, they were divided into two sets of six each, and the experiment began. One set was fed with pure foc d only, and the other set with food to which borax, in increasing amounts, was added, and the effects on metabolism noted. These experiments continued for about four weeks, when the young men changed. That is to say, those who had been eat ing the food to which borax was added were now fed only on pure food. There was also a special set, consisting of two young men, who were fed continuously on food containing borax. It is under stood, of course, that the object of the investigation is to ascertain the changes that occur in the subject in consequence of the use of the special preservative employed, which in this instance was borax. There fore, the exact quantity of focd required normally by the individual being known, he is given exactly that amount, with the addition of varying proportions of borax. The food is carefully analyzed, so that it may be known exactly how much of each ingredient is given to him, and all that is excreted, both solid and liquid, is carefully weighed and analyzed. By striking a balance, the precise amount assimilated is deter

Fig. 2.-Dr. Bigelow Examining the Cooked Food in the Hygientc Kitchen

Fig. 4.-Drs. Wirey and Bigelow Examining the Capsules in Which the Preservative is Admiuistered.

Fig. 5. - The Apparatus Used tor the Determination of

City Hall Loop Station; Concrete Roof, Tile-faced.

Manhattan Valley Viaduct, Showing Skewbacks for Arch.

Masonry of North Approach to Manhattan Valley Viaduct.

Entrance to Subway from Viaduct Looking South.

Showing Method of Supporting Columbus Statue During and After Building Subway

Interior Tile Decoration of Station.

View Looking Up One of the Express Tracks at Columbus Circle Station.

Stairway, Platform, and Vault-lighting of the Columbus Circle Station.
E RAPID TRANSIT SUBWAY.
mined, and the changes in weight or metabolism show the results of the value of the food on the individual. It may be added that the services of some twenty chem ists and assistants are required for the various an alyses that are essential in this investigation

A few words about the food may be of interest. The meals are simple, but the best food obtainable is pro vided, including fruits and vegetables of the season For breakfast, which is served at 8 o'clock, a cereal, meat with mashed potatoes, bread and butter, and coffee and milk, are furnished. At 12, a luncheon is pro vided, consisting of soup, bread and butter, fruit and milk. The dinner is more elaborate, and occurs at $5: 30$ in the afternoon, and a typical meal is the following: Roast beef, mashed potatoes, string beans, bread and butter, milk and sugar, with boiled rice as a dessert and coffee. In order that the proportion of meat may be constant in its value, and so that a fair sample may be secured for analysis, it is ground up before it is served. The bread is specially prepared on a constant formula. Condiments, such as salt, pepper and certain spices, are permitted, but the quantity taken by each individual is determined.
Unfortunately, at the beginning of the investigation there was a disposition on the part of some of the newspapers to treat the experiments in a spirit of levity, and stories were told of how, for instance, the coffee of one of the subjects was sweetened with a quinine pill, and the occurrence of slight digestive disorders was magnified into cases of serious poisoning. But these, it is almost unnecessary to say, were due to the desire of the reporter to make "copy." But in consequence of these stories Secretary Wilson, of the Department of Agriculture, than whom no one is more able and progressive, wisely issued an order that no further information should be given to the public This regulation has also the additional merit of preventing the publication of undigested periodical returns.

It is generally assumed that the experiments with borax will be continued until June, when a further selection from substances, such as benzoic acid. for maldehyde, salicylic acid, sodium benzoate, and sulphurous acid, will probably be made. It is expected that several years will elapse before the entire series of experiments will be completed.
As to the ultimate value of the result to be obtained, it may be said that the information will be of service in shaping intelligent legislation, regulating commerce in food products, securing the removal of unnecessary and unjust restrictions, and making effective those that are necessary and just. It will serve as a basis for international agreement in regard to the composition of preserved foods. At present different nations have widely different laws to protect and regulate the importation and exportation of food products. The ex periments will serve also as a basis for rational advice on the part of hygienists and physicians in regard to the foods that should be or should not be used by persons in ordinary kealth, and they will be especially valuable in the treatment of invalids. The investigavaluable in the treatment of invalids. The investiga-
tion will produce results which will tend to conserve tion will produce results which will tend to conserve
the public health and guard the invalid and the weak person from injurious substances.
The illustrations show the various phases of the work.
In Fig. 1 will be seen the arrangement of the two tables, with Dr. Wiiey at the head of the table to the right. Fig. 2 represents Dr. Bigelow examining the cooked food in the hygienic kitchen. Fig. 3 represents the method of conducting the chemical test with the an alyses of foods and excretions. Drs. Wiley and Bige low are inspecting the dishes in the drying oven to see if they are ready for weighing. Fig. 4 shows Drs. Wiley and Bigelow examining the capsules in which the preservative is administered. The nitrogen balance is the most important of the factors determined in controlling metabolism; Fig. 5 shows the apparatus used for the final determination of the nitrogen in the foods and excreta. Dr. Bigelow and Mr. Trescott, the nitrogen expert of the Bureau of Chemistry, are conducting the determination.

CONDITION OF THE WORK ON THE SUBWAY.

In agreement with a practice which we have followed each year since the opening of work on the Rapid Transit Subway, a representative of the Scientific American recently made his annual inspection of the work from the Bronx to City Hall Park. The result was on the whole encouraging, and seems to bear out the statement of the contractor that he will have trains running as far north as 145th Street by the close of the present year. At the same time, it is evident that if this promise is to be fulfilled, the finishing up of those portions of the line that are at present in the most backward state will have to be rushed through with much greater expedition than has been shown during the past year in finishing up some other portions of the work, which twelve months ago were in a very advanced condition. Even if the Subway is completed and the steel laid ready for the trains, there is still the important question to be considered of the
erection of the power house and the installation of suf ficient plant to operate this portion of the line. For tunately, the strike on the power house, which threat ened to delay the whole Subway, has been amicably settled, and construction is being pushed along at full speed.
Although the prospect of an early completion of the Subway tunnel and tracks is good, and the contractors and engineers are to be congratulated on the fact that they are from six to nine months ahead of the contract. so far as the actual running of trains is concerned, it is impossible to shut one's eyes to the fact that so far as the most important question of restoring the street surfaces along the route of the Subway to their proper uses is concerned, the contractors have been grossly negligent, and have shown an indifference to the rights of the public which cannot be too strongly censured.

The total length of the Subway, including the deeplevel tunnels and e'evated structure, is about 20 miles of which about 11 miles have involved the opening up of the streets; about $31 / 2$ miles is deep tunnel work that has been carried on without any considerable obstruction of the surface; and about $51 / 2$ miles consists of elevated structure. Dealing first with that portion of the Subway that has been built by the cut-and-cover method, in which it must have seemed to the citizens of New York that there was a great deal of cut and very little cover, it may be said that the greater part of it is to be found in Manhattan, between City Hall Park and 145th Street, and on the easterly branch of the road from 104th Street to the Harlem River. As this is the section of the road for which there is the most pressing demand, and because the cut-and-cover system involves the most complete disorganization of city traffic, che public is doubly desir ous of seeing it cleaned up, and the street surface re stored to its original condition. At the present writ ing, out of 10.8 miles of the Subway constructed by this method, 6.35 miles have been completed, that is to say, the tunnel has been excavated, the steel framework erected, the concrete roof and brick or terra cotta sidewalls built, the excavation filled in, and the street surface paved or asphalted as the case may be.
There are $11 / 2$ miles of the Subway on which the steel work has been erected and the concreting is now going on. The excavation over this portion of the line is, of course, still open and the streets encumbered, but the work is in such an advanced stage that another month or six weeks should see it completed and the street surface restored
There are other portions of the Subway, aggregating altogether 1.35 miles in length, where the steel struc ture is only partially completed; but in this case the work of concreting is following close upon the heels of the steel work. Then there are various stretches of the work, making a total of 1.6 miles, on which the work of excavating is still in progress, and as the excavation is mainly in rock, it must necessarily proceed rather slowly. In this case also the work of putting in steel and concreting is following closely upon the excavation.
Of the deep-level tunnels that are being excavated entirely through rock, there are three principal sec tions. The first of these is the notorious double tun nel, with two tracks in each, extending from 34th Street to 42d Street; notorious because of the unfor tunate accidents due to the faulty quality of the rock, which resulted in the collapse of several houses on Park Avenue. This important stretch of tunnel work is completed. The next section of deep tunnel is tha which runs under Washington Heights between 145th Street and the station at 160 th Street; and here the heading has been cut through and the men are now on bench work, that is to say, they are blasting out the lower half of the tunnel, and some of the concret ing has been completed. Between 161st Street and 181st Street the heading has been driven, the bench is being excavated, and some concreting is completed The most backward portion of the tunnel is from 181st Street to 196th Street, where the heading has not yet been driven through, and the work will not be com pleted for twelve months or more
The first portion of the line to be opened will be that from City Hall Park to the great underground storage yards at 145th Street, and on this part of the work there is a stretch of elevated viaduct which arries the tracks across the Manhattan Valley. The viaduct consists of a single-arched span over 125th Street measuring 172 feet between the skewbacks and trestle approach on either side of it. This approach, of which we present some views, is practically all completed, there being a gap of only about 400 feet to be closed, and of this 172 feet will be taken up by the arched bridge. The connection between the tunnel and the trestle at either end will consist of an open cut and a masonry embankment. The embankment will be faced with stone and brick, and finished with a massive stone parapet of pleasing design, the character of which can be seen from the accompanying illustration. Un the rest of the elevated structure, namely, the
stretch from 196th Street to Kingsbridge and that which extends from about Third Avenue in the Bronx to Bronx Park, but little work has been accomplished, that which has been done consisting mainly of the foundations for the piers
The east side branch of the Subway diverges from the main line at 104th Street and Broadway. It includes a tunnel beneath the northwest corner of Central Park, which is practically completed, and can easily be made ready for the passage of trains by the end of the year. The Subway below Lenox Avenue is completed; but the work below the Harlem River and the approaches thereto is still in a backward condition, and there is no possibility of its being ready as early as the main line to 145th Street. Most of the tunnel in the Bronx from the Harlem to Third Avenue is being excavated by the open process, and is in a very incomplete condition, the streets below which it runs being, for much of the distance, in a practically impassable condition.
The question of the opening of the main line at the end of the year is a question of the completion of the work at certain points, where it has been delayed either by legal obstructions or the backwardness of contractors, but chiefiy by the former cause. The first break occurs between Worth and CanalStreets, where for some blocks only the easterly half of the tunnel has been completed and the westerly half still remains to be done. The next serious break is at Astor Place, where the work has been held up for a year and a half by the obstruction offered by Wanamaker's store; and if there is any delay in the opening of the line, it looks as though it will be chargeable to this obstruction more than to any other. The building is now being torn down, and the work of constructing a station at this point is being rushed as fast as men can be crowded upon it. The stations at 14th Street, 18th Street, and 23d Street are nearing completion, but the station at 42 d Street is still in a very backward condition, quite a large section of the rock excavation opposite the Grand Central Station being still uncompleted. At 42d Street and Broadway also there is an enormous amount of work to be done. Excavation is being carried down at this point for considerable dis tance below the Subway tracks which here pass through the site which will be occupied by the new Times building. If trains are to be running at the end of the year around this curve, there will have to be some extraordinarily rapid work done both in excavation and steel work.
We present illustrations of two of the most important Subway stations on the whole line, namely, the loop station situated below City Hall Park and just in front of City Hall, and what is known as the Columbus Circle Station at 60 th Street. They are representative of two different types of construction, the City Hall Park station being formed of arched concrete construction, while the roof of the Circle station is carried on steel columns and girders with concrete roofing turned in between the girders. In both cases it will be seen that the stations are well lighted by overhead sidewalk vault lights, assisted by a liberal use of incandescent electric lights. The finish of the walls will be in glazed tiling, the colors being chiefly white, green, and Venetian red. The names of the stations will be shown in large glazed tile letters set in the panels of the wall, and they will be clearly distinguishable by the passengers. The loop tunnel will contain a single track, and the station platform, and the whole station indeed, is on a curve of somewhat sharp radius. The Circle station being on the main line will contain four tracks. One of our views. of this station shows the platform and one of the stairways, and the other is taken looking up one of the tracks where the line runs on a tangent. An interesting feature of the Circle station is the fact that the structure cuts in underneath the Columbus statue, which is over 75 feet in height and weighs about 724 tons. During excavation a pair of heavy steel girders was placed beneath the corner of the heavy base of the statue and carried on two temporary timber bents. The steel work was then built in place and concreted up, the temporary girders and bents were removed, and the surface re stored to its original condition. To prevent sliding in of the old foundation, a new foundation of rubble was carried down at the side of the Subway excavation and left permanently in place when the Subway was competed.

Lord Rayleigh for some time past has been carrying out experiments relative to the surface tension of liquids. This tension is at the maximum in pure water, but by the application of the smallest drop of oil or grease, the tension is reduced considerably. This fact may be easily demonstrated by dropping a small piece of camphor intc pure water, and it will rotate very rapidly. But apply a drop of oil to the water, and the rotatory motion ceases immediately. According to Lord Rayleigh, a film of oil on water may be so thin that its thickness is no more than one twenty-five-mil lionth of an inch-which is computed to be in all probability the size of a molecule of the oil.

MOTORS FOR THE NEW YORK CITY SUBWAY
The Interborough Rapid Transit Company, mor popularly known as the New York Subway, will oper ate two classes of train service. The first will con sist of five-car local trains, composed of three motor cars and two trailers, making an average speed of ap proximately 16 miles per hour. The second will be eight-car express trains, comprising five motor cars and three trailers, making an average speed of 25 miles or more per hour. The same motors and gearing will be used for both classes of service. The motors, which are to be supplied by the Westinghouse Electric and Manufacturing Company, were designed especially for this purpose, and were made to fit the particular conditions and requirements involved. One of these require ments, and perhaps the most difficult, made necessary the designing of a motor of large capacity to fit into a limited space. As a result, the present motors are probably of smaller size for their output than any built heretofore.
The nominal capacity of the motor is 300 ampere at 570 volts, or 200 horse-power, for one hour. With this current and voltage, a tractive effort of 4,150 pounds is developed at the periphery of a 33 -inch wheel, at a speed of 19 miles per hour. Although de signed for an average voltage of 570 , the motor will operate satisfactorily with voltages up to 625 . It will carry loads up to 500 amperes without injurious spark ing.
The motor has a field frame of cast steel, divided into halves on the line of the centers of armature and axle, and completely surrounding the axle. There are thus no separate axle bearing caps, and the number of pieces is consequently reduced to the least number possible for an easily accessible motor. The top half of the field can be readily lifted off, and access gained to the interior for inspection and repairs.
The four pole-pieces are made of laminated steel punchings held between heavy end plates and secured by rivets. The field coils are made of copper strap wound on edge. The insulation between turns consists of asbestos and mica, heid in place by shellac and baked at a high temperature under heavy pressure, so that the coil and insulation make a solid mass. The completed coil is sealed in a curved metal case, from which it is insulated by molded mica made like the V-rings of a commutator. This construction gives a coil which is absolutely fireproof moisture which is absolutely fireproof, moist proof, and practically indestructible
The armature is 20 inches in diameter and weighs 1,930 pounds. It is of the slotted drum type, and is composed or sheet-steel punchings assembled on a cast-iron spider. The commutator is also carried on the same spider, and the shaft may thus be removed and replaced, should this ever become necessary, without disturbing the armature winding or its connection to the commutator. The winding itself is of the two-circuit type, and is of ventilated construction. There are 53 slots and 159 coils, i. e., three coils per slot. Each coil consists of a single turn of copper strap. The coils are held in the slots by wedges of special unshrinkable material, which will withstand a high degree of heat without injury. This is a valuable feature, and gives a construction which is stronger and safer than the use of bands. It also greatly facilitates the removal and replacing of the armature coils. The armature insulation consists essentially of mica, which extends between turns at all points. The mica is protected by a sufficient amount of fibrous material to insure against deterioration due to mechanical vibration. This fibrous material is treated with a moisture and oil proof compound, forming an insulation capable of withstanding very high temperature without injury. The commutator is composed of 159 rolled and harddrawn copper bars, held in place by two steel V-shape rings, one of which serves as an oil guard to thoroughly protect the mica from oil or grease. A low voltage between the commutator bars is secured, decreasing the liability of flashing from any cause. The bars are insulated from each other by sheets of mica of a hardness that insures its wearing at the same rate as copper. The mica separating the bars from the rings is 1-16 inch thick, and the mica ring also separates the bars from the commutator spider. The wearing surface of the commutator is 16% inches in diameter and $9 \pi / 8$ inches long. The bars are of a depth which allows a reduction in diameter of 2 inches.
The brush holders consist of two cast-brass arms, each carrying three carbon brushes $5 / 1$-inch by 3 inches in section. The brushes slide over finished surfaces, and each is pressed on the commutator by a spring

MOTORS FOR NEW YORK SUBWAY. UPPER HALF FIELDS REMOVED.

NEW YORK SUBWAY MOTORS MOUNTED ON TRUCK.
instructive article on the great viaduct at Fort Dodge, Iowa. Several excellent illustrations accompany the article. Our Consul-General at Berlin gives a very valuable account of lignite, peat, and coal-dust fuel in Germany. Another technological article on a somewhat allied subject treats of the value of rational methods in coke production. Emile Guarini continues his lucid exposition of the development of the Marconi system of wireless telegraphy. Prof. W. Smart discusses industrial trusts. A readable description of Japanese lacquer and of its preparation and application is presented by Randolph I. Geare. Among the many things taught by the Correspondence Schools at Scranton is the method of instructing railroad men in the use of the air-brake. An article on the instruction given is published, together with some helpful pictures. Prof. A. W. Bickerton, whose letters on Star Explosions published in the Scientific Ameitian are doubtless remembered by our readers, outlines an original theory of cosmic evolution. Prof. John H. Poynting, well known to physicists the world over, tells of some recent studies in gravitation.

A Proposed Alliance of Astronomers.
In a pamphlet entitled "The Endowment of Astrono mical Research," Prof. Pickering, of the Harvard As tronomical Observatory, proposes a combination of the world's observatories on a trust basis. He believes that by such a combination it will be possible to utilize ex isting astronomical stations to the utmost capacity. Prof. Pickering shows that the astronomical indus try is by no means as unimportant as one might sup-
pose. The observatories of the world represent an investment of more than ten million dollars. Their expenditures, moreover, are large. The money spent varies from a few thousands to $\$ 85,000$ per year.
The great observatories have so far shown a singular incapacity for concentrated effort. In 1891 fifty observatories agreed to watch the opposition of the planet Eros. But so far as is known, only two or three of them have made the reductions needful to give value to their observations. Sometimes it has happened that a great observatory has not been adequately equipped with a telescope; sometimes a great telescope stood ready for use, but no astronomer was at hand to use it; sometimes the collected observations of a famous astronomer have lain unpublished for years for want of a few hundred dollars.
Prof. Pickering has suggested the appointment of an advisory board of leading astronomers of the United States, who would meet at regular intervals for the purpose of considering how resources may be expended in order to receive the maximum scientific return. Details of organization are also outlined.

the latest atlantic liner, "kaiser
 WILHELM II."

If we consider her gieat size, unprecedented power, and the exceptional beauty of the boat, both within and without, it must be admitted that there was never a great transatlantic liner slipped into the port of New York at the close of her maiden voyage so modestly, or made fast at her dock so quietly as the new "Kaiser Wilhelm II." Ships that are notable are put afloat in these days in such rapid succession, that it takes a very big or a very fast boat to be entitled to special notice. Of the recent great liners there have been the "Oceanic," 705 feet over all, the longest ship afloat since the "Great Eastern;" the "Deutschland," with her average Sandy Hook-Plymouth speed of 23.5 knots an hour, the fastest of the great liners; the "Celtic" and "Cedric," each 700 feet long and 75 feet beam, and over $3 \overline{3}, 000$ tons maximum displacement, dimensions which entitle them to be called the widest and largest ships afloat. Then a couple of weeks ago we chronicled the launch of the "Minnesota," which, with her molded depth of 56 feet, is the deepest ship in the world, her displacement being somewhat less than that of the "Cedric" and "Celtic."
The "Kaiser Wilhelm II.," the latest of these big liners, 706.5 feet in length over all, is remarkable as being the longest ship in the world, and also the ship having the greatest horse power, the contract requirement being that she should indicate 40,000 horse power, which is 7,000 more than the stipulated horse power of the "Deutschland." The complete dimensions of the new boat are, length 706 feet, 6 inches; beam, 72 feet; molded depth, 52 feet, 6 inches; load draft, 29 feet; and displacement, about 26,000 tons. The double bottom, which extends the full length of the ship, is divided into twenty-six compartments, while the hull itself is divided into nineteen watertight compartments. There are seven decks, known respectively as the orlop, lower, main, upper, lower promenade deck, upper promenade deck, and awning or boat deck. The vessel thus carries one more deck than is common in large passenger ships of her type, her predecessors having only one instead of two promenade decks; and by the way, these two decks are truly magnificent in their clear, unobstructed sweep from the bridge to within a short distance of the taffrail. To those passengers who spend most of their time on deck, and much of it in a steamer chair, the doubling of the promenade deck accommodation will be a positive boon. In her general appearance the new ship shows the characteristic features of the German boats that have come from the Stettin yard. She has the same pronounced sheer and perceptible lift of the sheer line toward the stern, and she car ries the usual four funn ls, although there is an in novation in the fact that she has three masts, placed somewhat the same as in the "Oceanic." As a result of the great height of the upper works of the "Kaiser Wilhelm," she does not look to be as long as she actually is. The best impression of her size is gained when standing on the captain's bridge or on the sec ond bridge astern at a height of between 60 and 70 feet above the water, and letting the eye range up and down the full 706 feet length of the vessel.
The passenger accommodation includes 290 first-class cabins ancl 107 second-class, and one of the "show" features of the ship is her two imperial suites, each of which includes a dining-room. drawing-room. bedroom, and bathroom, all most daintily and tastefully
decorated. There are also eight suites that include sitting-room, bedroom, and bathroom, and also eight state cabins with bathroom adjoining. The most spacious room in the ship is the first-class saloon, a magnificent room, 69 feet broad and 108 feet long, which provides sitting accommodations for 554 passengers. The second-class saloon accommodates 190 passengers. Special features are a children's saloon, a typewriting room, and a safe deposit department. The four kitchens, the largest of which is about 55 feet by 30 , can cater to about 800 firstclass passengers, 400 sec-ond-class, and 1,100 thirdclass. The crew alone amounts to a complement of 600 individuals, and of these the engine-room staff requires 237 .
The chief interest of this remarkable boat centers in the engine room, which is arranged on a principle entirely novel in transatlantic travel, although it has been adopted in some warships. The engine room is made up of four separate compartments, with a complete engine in each. There are two propeller shafts, and two engines are arranged in tandem on each,

THE LATEST ATLANTIC LINER, "KAISER WILHELM II."
Length, $706 \frac{1}{2}$ feet. Beam, 72 feet. Depth, $52 \frac{1}{3}$ feet. Horee power, 40,000 . Speed (expected), $231 / 3 \mathrm{k}$ nots.
feet long and weighs 253 tons, the weight of the crank shaft alone being 108 tons 15 hundredweight. To condense the huge volumes of steam that are delivered hour by hour, to the condensers requires $461 / 2$ miles of condenser tubes. The vessel has nineteen boilers, twelve of which are double ended and weigh when empty, 114 tons apiece. The total heating surface of these boilers is over $21 / 2$ acres. The coal bunkers have a maximum capacity of 5,239 long tons of coal, and the coal consumption is ex pected to be about 650 tons per day. On the run over the ship was not pushed, as the engines and plant were entirely new; but nevertheless, she averaged 22.1 knots an hour, and there was no trouble what ever with the engines; the pumps, etc., working to perfection and the bear ings remaining cool.

A section of the submar ine cable between Cienfuegos and Santiago, in the Caribbean Sea, has recent ly been raised, with some very interesting results The cable was manufactur ed in 1873, and laid off Cienfuegos, Cuba, in 1881 Some few months ago a inch. Now the engines of the "Deutschland" have question arose as to the durability of cables covered with always indicated much more than contract power, the greatest average for the whole trip being 37,500 or 4,500 more than the contract. The contract calls for 40,000 horse power in the "Kaiser Wilhelm," and probably toward the close of the season she will be averaging over 45,000 horse power for the eastward passage and her average speed will probably be between 23.75 and 24 knots an hour.
The following particulars of the motive power will be of interest: There are two propellers, each 22 feet 10 inches in diametcr. The driving shaft is 230

India rubber, as in this case, and it was decided to raise the Cienfuegos cable and subject it to tests. The line was picked up in 1,350 fathoms of water in April last, and received at the works of Messrs. Hoopers, at Millwall, in June. The tests of the core showed that after twenty years' submersion it was still in perfect electrical condition. An examination of a foot speci men proved that the insulation was in good mechanical condition, and that the copper conductor had not suffered from the attacks of any sulphur in the rubber.
inders, one 73.6 first intermediate, one 103.9 second in termediate, and two low-pressure cylinders 106.3 inches in diameter, the common stroke being 72.8 inches. On each shaft of the "Kaiser Wilhelm II. there are two 37.5 -inch high-pressure cylinders, two 50 -inch first intermediates, two 75 -inch second inter mediates, and two 112.2 low-pressure cylinders, their common stroke being 70.8 inches. The steam pressure in both cases is the same, 213 pounds to the square
the "Deutschland." The engine on each shaft of the "Deutschland" consists of two 36.6 high-pressure cyl- a stuffing-box arrangement being used on the crankshaft where it passes through the transverse watertight bulkhead separating each pair of engines. The engine in each compartment is a complete quadrupleexpansion, four-cylinder unit, and its contract indicated horse power, as given out by the company, is 10,000 , although it will undoubtedly prove to be nearer 11,500 when the engines have sweetened out and found themselves. This is shown by a comparison between the engines of the "Kaiser Wilhelm" and those of

view in ladies' parlor, showing costly wall tapestries

SKYLIGHT AND GALLERIES OVER THE DINING SALOON.
recently patented inventions. Agricultural Implements
cultivator.-A. A. Thogersen, brook ings, S. D. The disks of this cultivator may be
so adjusted relative to the main frame or to so adjusted relative to the main frame or to
the rows of plants that the soil may be thrown toward or away from the plants, when needed. The ground-wheels and the bars, or beams supporting them may be shifted laterally to permit the passage of large plants or bushes.

Electrical Devices.

electrical smelting apparatus. R. L. Barshafr, Charleroi, I'enn. This me-
chanism is adapted for smelting minerals by chanism is adapted for smelting minerals by
the use of the electric arc, the minerals being the use of the electric arc, the minerals being
suitably fluxed and prepared in the form of paste, which is then formed into bars, so that tact an arc is formed and the mineral is thereby smelted.
Voltameter for tile haternohysis OF Water.-I'. Garlit and R. lompili, 11
via Vesta, Tivoli, Italy. The inventors in this case make a new and radical improvement in their voltameters of a former patent, for elec-
trolysis of water : and it consists, chiefly, in a modified form of the metallic diaphragm used tion eliminates certain inconveniences by an improved construction of diaphram which will permit the use of larger electrodes without increasing the internal resistance.
Electric controllerr.-C. T. J. OpperManv, 2 Wynyatt Street, London, England. This invention relates to a controller-switch for
electrically-driven vehicles, and has for its ob-electrically-driven vehicles, and has for its obing comparatively few contact-pieces, four difning, to be oltained without the use of a separ ate reversing-switch.

Engineering Tmprovements.

DEVICE FOR REMOVING MIPRITIES FROM BOILER FEED-WATER.-G. T. Conkling and C. C. Mitchell, Plainfield, N. J. The
purpose of this invention is to construct a filter purpose of this invention is to construct a filter
which comprises a suitable hollow body having a removable cap and inlets and outlets in the
body-section, together with straining cloths carried by supports of perforated metal, which supports and cloths are fitted in grooves in the inlet is formed to deliver the incoming material o filtering members, the outlet placed to take the filtered liquid from the body. The invention provides a ilacking, to be used when
great body of filtering material is required. convertilife ENGINE FOR DERRICKS ANI) CABLEWAYS.-A. Lambeit, Newark, N.
I. In practice the endless traversing rope of calleway is given a derrick-engines, the drums are cylindrical, the ropes being wound up or allowed to unwind,
as desired. Again, the Lambert cableway system enables a drum of large diameter to be used or the haul-rope to obtain high speed for the arriage, while a drum in a corresponding posi-
tion in a derrick must le of small dianeter tion in a derrick must le of small diameter to
oltain power. The invention provides means derrick-engine and vice versa.
SLIDE VALVE GEAR FOR STEAM EN aNLS.--S. S. Yor vimesband, Granville Ter-
ace, Darlington, England. Two patents have been granted to Mr. Younghusland for slidevalve gears for steam engines. lis inventions
relate to slide-valve reversing and expansion gear of the kind wherein motion is transmitted from the expansion and reversing link to the slide-valve through an intermediate lever,
which is pivoted to the die-block of the link and connected by its shorter arm or arms to the valve rod, while its other and longer arm is pivoted to an arm or arms on the weigh-shaft,
the expansion and reversing link vilbrating as a whole about a fixed axis, to which it is connect-
ed ly a pair of swing carrier-links, and the re. ersal of the engine being effected by moving the die-block along the slot of the link. This
type of valve-gears gives a fixed amount of lead with all degrees of linking up, a quick portopening for the admission of steam, a quick and a much larger steamport opening and more sudden cut-off than usual for all degrees of
linking up, thus enabling the engine to be allinking up, thus enab
ways readily started.

Heating and Lighting Apparatus.

Heater.-O. Jahelika, New York, N. Y The object in view in this improvement is to high and practically constant degree of heat with a small amount of fuel consumed, and further, to provide means whereby obnoxious gases rising from a fresh supply of coal are prevent-
cod from entering the room in which the heater id from e
is placed.
GAS-BURNER AND REGULATOR FOR Same.--A. A. Pratt, New York, N. Y. The present invention of Mr. Pratt relates to in-
candescent gas-burners as described in a former candescent gas-burners as described in a former
patent of his. The object is to provide a new patent of his. The object is to provide a new
and improved gas-burner and regulator arranged to allow minute regulation of the amount of burner to insure a proper mixture and burning of the gas and air for producing a very bright light without waste of gas and irrespective
the prevailing pressure of the gas-supply.

Gas-bracket.-D. Cavanagi, New York, user is permitted to burn the gas with a flame ranging from the maximum to the minimum power without turning the key ordinarily employed for turning the gas on or off, the bracket
being very simple and durable in construction being very simple and durable in construction
and easily manipulated to obtain a flame of and easily manipu
the desired power.
heater.-M. Barman, Brooklyn, N. Y This apparatus is of that order of heater par-
ticularly adapted for boiling water for laundry ticularly adapted for boiling water for laundry
use; and the aim is to provide a heater comprising a fire-box and boiler so arranged that the box will occupy a comparatively small space of the boiler-bottom, thus increasing the ar
of water directly acted upon by the heat.

FEEID-WATER HEATER FOR BOILERS. . G. Taylon, Farmington, Wash. This heater for boilers is so constructed that it is utilized as the sides and grate of a furnace excent where a rocker-grate is required, when the de-
vice is used as the sides of the furnace only, and the sides are connected at a point beneath the rocker-grate. There is a double series of boiler, and the outside pipe giving free circulation of water from and to the boiler, whereby the heater is exposed to great heat, thus heat-
ing the feed-water to a high degree by what ing the feed-water to a high
would otherwise be waste heat.

Mechanical Devices

ball-bearing.-E. J. Fari, Boston, Mass The object in view in this ${ }^{\circ}$ invention is to provide an improved ball-bearing which is simple prevent the balls from rubbing one against the other, to reduce the friction to a minimum, and o allow of convenient and quick adjustment of the parts to compensate for wear.
SAW-FILER.-D. L. Kelchner, Brooklyn, New York. This invention relates to improvements in machines for filing saws, the purpose
being to provide a machine of this character nd by means of which a saw may be quickly and uniformly filed. The file is connected with the carrier or rotary part by means of screws.
Therefore when a file lecomes worn out it is

pown replaced by a new one

POWER-TRANSMITTING MECIIANISM.seder, Globe, Arizona Ter. The mechanism struction of duplex screw gear or shaft and a raveler co-operatively connected therewith for reciprocal motion: and the invention provides a mechanism simple, economical, and stable in verting the motion is automatic and positive apparatus for watiring coke-OVENS.-D. B. Stacre, Scottdale, Penn. Com aparatus introduced through the oven-door into the oven, so as to lie over the bed of coke, and so constructed that it will automatically urn over the coke thoroughly for sprinkling. The sprinkler may be manually turned, The arrangement of the sprinkling pipe is such that does not spray the oven walls, since the sud dees not spray the oven walls, since the su
CARD-CONTROLLING ATTACIIMENT FOR Tver, Brooklyn, $\mathbf{N} \mathbf{V}$. This attachment an interchangeable line-spacer that sets the machine to print upon lines any desired disapidly feeding postal-cards, index and other ards, envelopes, etc., in position on the platen, ver the platen and deposited in a receptacle The attachment will not require the machine supply-receptacle and fed to guide devices supply-receptacle and fed to guide devices,
since by action of the machine, the cards may ee printed and conducted to and deposited wherever desired.
TYPE-WRITER.-J. Alexander, New York,
Y. The invention relate; particularly to N. Y. The invention relates particularly to
mprovements in carriage mechanism for type writing machines. It comprises adjustable means for preventing upward movements of the carriage during operation; novel means for
causing the step-ly-step movements of the carriage: novel means for causing vertical movements of the roll-carrying frame: and
means for stopping the carriage and locking the several finger levers at the end of the line. TYPE-WRITER-BAR MOVEMENT. alexander, New York. This invention relates
particularly to improvements in the construcion of the type-carrying bars and the mechan ism for operating the bars, the object being on simplify the construction of the parts, and to on arrange them that they may be readily ad This application is a division of an application for a patent formerly filed by Mr. Alexander. MECIIANICAL POWER.-S. HAYES, Macon, provision of a simple device employing a series of rolling weights for actuating pumping devery small engine or like power will operate the device. The heavy weights serve by gravity as a means for increasing the power, as upon once
starting its momentum will aid in carrying the
METHOD OF EMPTYING BEATING-EN
METHOD OF EMPTYING BEATING-EN- A. Jones, Pittsfield, Mass. A new and improved method of emptying from beating-
engines the finished pulp in a thorough, quick
and economical manner without requiring manu
ally-wielded rakes for moving the pulp to the ally-wielded rakes for moving the pulp to the invention. The method consists in subjecting the pulp in the vat of the beating-engine to th action of a forceful undercurrent to set the pulp in motion and direct it to the discharge
CIIEISE-CUTTHER ANI SLICE DISCHARG
ER.-II. Rose, Shreveport, La. This ma-ER.-II. Rose, Shreveport, La. This ma-
chine is supported on a rotatable table, which chine is supported on a rotatable table, which
is divided into sections. A knife mounted above may be depressed to sever sections from the may be depressed to sever sections from the termine accurately the size of slice necessary for a desired weight of cheese. The severed
slice may be slid into a receptacle by tilting the section of table on which it is resting.

Railway Improvements.

SWITCII-OPERATING MECILANISM.-J. M $W_{\text {Ilblir, Colorado Springs, Col. The invention }}$ ing mechanism and especially in the class such mechanism described in Mr. Wilbur's for mer application for patent, in 1902. The pres-
ent invention relates particularly to the means ent invention relates particularly to the means
for supporting and operating the mechanism constituting the switching devices.
BRILLLF RODS FOR RAILROAD-RAILS.R. Johnson, El l'aso, Texas. The present
vention provides a device for temporarily bridling or bracing the rails laid down by a
brovides a demporarily track-laying machine, until they can be prop-
erly secured by the spikers. The bridle-rod will erly secured by the spikers. The bridle-rod will
also be found useful for preventing lateral displacement of rails on curves or switches. The construction permits rapid attachment or
removal of the device, so that it is particularly adapted for laying a temporary side-track around a wreck, etc. The bridle-rod consists of a stationary rod and two gage-bars mounted to slide thereon. The base flanges of the two rails to be bridled are securely held between
the ends of the stationary rod and the movale gage bars which are held in position by spring catches.

Vehicles and Their Accessories.
PROPLLLLER-WILELL FOR VEHICLES.H. O. IIAnann, Bergedorf, Germany. This is a traction-wheel adapted to engage the ground
for propelling vehicles and like service. It is movil moviles, for propelling them over ice, although
it should be understood that Mr. Hamann's in vention is not limited to this use, but is also applicable for the purpose of propelling other ehicles and for analogous purposes.
wheel.-W. H. Lasswele, San Angelo, Tex as. In this wheel the frame is rigid, it being mposed in part of hollow radial spokes, which are permanenty connected with the central aned to move radially. The hub is connected with the felly by spiral or coil springs and device in the form of turn-buckles, these parts being
arranged in the hollow spokes and annulus, and rranged in th
trace-detaciler. - J. D. Blakeman Smith's Grove, Ky. This detacher is adapted or use on singletrees, and is an improvement that class of trace-detachers represented by nd the present invention consists in certain novel constructions and combination of parts ment, and in case he should run away, damage to the vehicle and injury to occupants will be

Miscellaneous.

FURNACE-GRATE.-C. P. Roberts and G P. Roneriss, Toledo, Ohio. In accomplishing
these improvements relating to steam-boiler these improvements relating to steam-boiler
furnaces, the inventors are enalled to provide a grate of hollow bars through which atmospheric air may pass and become heated
with the products of combustion
toy gun.-malinda c. Anthony, Oakland, Cal. By means of certain improvements in toyas to first discharge a target and then to dis charge a projectile, thus not only providing amusement but offering a simple and harmless means for acquiring skill in marksmanship. Stereotype-A. L. Andprson, Grundy Center, Iowa. This improvement relates to devices for locking stereotype plates and the base
together in such manner as to lock the plate to together in such manner as to lock the plate to ine base securely when the foot-slug is placed at the top of the column or at the sides of the column and avoiding accidents by neglect in placing these strips in place to prevent the plate from slipping and damaging the press or other machinery.
FASTENING FOR bASKETS, ETC.-A. A. Benedict, Riverton Township, Mich. Several objectionable features in fastenings, particularly for fruit-baskets, are overcome in this invenbasket is formed with a slot and the nail the eing driven throurh the parts is then returnhent, and its point is extended upward and passed into this slot which locks the point securely and prevents it from projecting out to
tear the clothing or cut the skin of handlers of baskets.
Oil-TANk attachment.-C. Moller and
M. Salisbury, Pensacola, Florida. In this at-
guarding against explosions in tanks contain
ing volatile hydrocarbons and like substances ing volatile hydrocarbons and like substances
As is well known, such explosions are due t vapors in the tank, these vapors being continuapors in the tank, these vapors being continu
ally given off from the oils. The invention in volves an improved means for disposing of these
bOOKKEEI'ING.-J. C. MacNamara, New York, $\mathrm{N} . \mathrm{Y}$. The design in this process of keep-
ng accounts by single or double entry, is to provide, first, internal proofs of the accuracy of the records without taking off trial balances and, second, a means for oltaining results mor double entry Serves as a check on accounts kept in detail by single entry and provides means for obtaining a balance-sheet and profit and loss statement in very quick and accurate way
Game apraratus.-II. J. Frysinger,
Jatimore, Md. This improvement belongs espe Baltimore, Md. This improvement belongs espe-
citlly to that class of game apparatus illusrated in a former patent of Mr. Frysinger's ball," and the present invention relates to the ball," and the present invention relates to the
means for securing the canvas or netting to the end posts which support either of these matedraft device--T. V. Elliott, Columbia, Penn. Mr. Elliott's invention is an improved
draft device for furnace-stacks. By use of the construction a strong upward draft is regulated by proper of the rurnace which is and where desired a valve may be provided to throttle or control the discharge of steam
through the steam pipe leading from the dome of the boiler to the stack.
ball-catcher.-S. A. Cohen, New York ball The aim in this invention is to furnish ble the user to conveniently and quickly pick up a ping-pong ball from the floor, from under the ball may, and other places under which of the game. The device is easily handled, and arranged to allow picking up the ball withot: stooping down.
Water-COOLER.-Z. F. Bowman, Washington, D. C. The inventor claims an improve-
ment in coolers particularly designed for use in connection with railway cars, the object being to produce a cooler so arranged as to use cir thus reducing the of ice as the cooling medium, water in passenger. coaches or the like.
STAIR STRUCTLRE.-N. Bois, New York, . Y. In this improvement in the construction way having , the object is to provide a stairformed of a continuous strip of sheet metal at tached to sheet-metal string-pieces, thus no only making a fireproof stair, but materially and placing.
Kiln.-H. Stehmann, Whitecliffs, Ark. This invention relates to cement-kilns, lime-kilns, The intention of the present invention is to provide a new and improved kiln arranged for continuous operation to produce l'ortland cement, lime, and the
like of very high quality like of very high quality and at a low cost.
BANJO.-W. B. Farmpr, New York, N. Y. BaNJO.-W. B. Farmar, New York, N. Y.
This musical invention relates to banjos and like instruments in which strings extend over a stretched membrane. The object in view is
to provide a new and improved banjo or similar musical instrument arranged to produce an exceedingly fine melodious tone when the instrument is played.
HEN'S NEST.-W. J. Dillard, Santa Rosa,
Cal. When eggs have been laid, this improvement will eggs have been laid, this improvene of a series of pockets in the receptacle below, thus obviating the danger of being damaged through remaining in the nest. When the egg passes through the passage between the nest and receptacle, it operates certain me chanism to revolve the receptacle, thus present-
ing an empty pocket beneath the chute. The receptacle is prevented from revolving until the egg is safely placed in its pocket. The nest
is made so that all chaff, dust, straw or dirt will pass through.
Bifurcated garment. - E. Arpin, Springfield, Mass. The object in view in this
improvement is t. chafing at the crotch is prevented, thus increasing the comfort of the wearer of men's undergarments, chiefly in warm weather. The $1 \mathrm{~m}-$
provement tends to separate the organs from provement tends to separate the organs from
contact with the thighs, and it not only insures contact with the thighs, and it not only insures
comfort, but reduces perspiration, and thereby conduces to cleanliness.
FIRE-LADDER.-J. C ScuAle Hastings-upon-Hudson, N. Y. One object of the
inventor is the provision of a metallic non-destructible ladder arranged to provide for the circulation of water through it, so as to stiffen the device by the water-pressure and to keep it cool. Another is to equip the ladder with
means for distributing water toward a door window, or other place, so as to quench the lames and ena
work of rescue.
solidering iron-C. R. Gutner, Croton Falls, N. Y. The purpose of the invention is to the form of an electric coil, will have an aluminium core, to make the body light, and to provide means wherely the sealing tip is detach-
ably connected to the core of the coil. This
the soldering tips cheaply replaced. The core
for the coil is so constructed that acid from the for the coil is so constructed that acid from the
sealing tip cannot reach it to scale off the metal seaing tip cannot reach it to scale of the metal
and short-circuit the wire wound adjacent to ane core. A mica insulatio
theen the layers of the coil.
twe
WATER COOLER OR HEATER-J. H. Rose, Shreveport, La. The inventor claims in
this, device an improvement in apparatus for cooling and heating water and the like, and the invention relates particularly to coolers
and heaters in which the heating or cooling and heaters in which the heating or coollng
medium is placed within an air-tight can and the can immersed in the liquid to be heated o cooled.
Shutter-worker.-J. h. Rose, Shreve port, La. Mr. Rose in this case makes an improvement in that class of shutter-workers
which are adapted to be operated from the inside of a building. The apparatus is very eas-
ily operated for opening or closing the shutter and it consists of few parts, which are not liable to get out of order. It may be easily applied
to window-frames and shutters by boring through the window-sill and then applying the several parts.
PACKiNg-Box.-J. h. Rose, Shreveport La. The purpose of this invention is to com
plete an improvement in the covers and coverfastenings of packing or shipping boxes. The
covers are preferably constructed of sheet metal for the sake of economy in manufacture and of space in the box and also reduction of
weight, and the invention relates in particuWeight, and the invention relates in particu-
lar to the construction of the cover proper, lar to the construction of the
whereby the fastening is formed.
bottle closure.-c. w. Scott and h Hughes, Saratoga, Wyo., and C. E. Shipley, having an interior chamber with outlet at the bottom. A ball-valve operates in the chambe and normally closes this outlet ; but when the Jottle is tipped the valve opens, permitting the contents of the bottle to flow into the cham-
ber, whence they pass out of the bottle through a discharge passage in the plug.
suspenders.--M. Gluckauf, New York N. Y. In these shoulder straps the web is in one piece. A specially constructed back-piece
holds the web so that a strap will be in position coer each shoulder. When the strap or
web passes over the plate the suspenders will web passes over the plate the suspenders will
be flat and comfortable. Means are provided which serve the dual purpose of a buckle for the web when used as a belt, and for connect-
ing the front suspendel-ends with the webs. ing the front suspendel-ends with the wets.
These means are concealed in the button loops through which the ends pass and have play a belt.

SILK-HOLDER.-S. V. Luallen, Alva, provement is to provide means especially adapt-
ed to be attached to tooth-brushes and by ed to be attached to tooth-brushes and by
which silk or the like may be held taut, so as to be useful in cleaning the teeth. The inven tion comprises means ing part and a bow for holding a
Shade-holder.-C. J. Kusche, Oshkosh, Wis. Comprised in this invention is a certain
specially-formed gripper for engaging a lamp. The gripper carries an adjustable arm, which in turn supports a frame or holder for the
shade. This shade may consist of a cardboard or material of any degree of opacity. It may the construction provided, the shade may be made to occupy exactly the position desired.
PERPETUAL CALENDAR.-W. M. Finch, bination of parts, Mr. W. M. Finch is to provide a simple formation of a perpetual calen-
dar which can be easily read and operated and dar which can be easily read and operated and
which can be adapted to a pen holder, a pencil ren can be adapted to a pen holder, a pench, other cylindrical
CANVAS-STRETCHER.--W. J. Dorgan Chicago, Ill. The object in view in this invention is to provide a canvas-stretcher perfectly
true, not liable to get out of shape, requiring no truing up before or after mounting the canvas thereon, and maintaining the canvas after he painting is finished, in the proper shape thus requiring no remounting previous to securing the p

BOTTLE.-H. De Rocco, Buenos Aires, Argentina. In this construction of a bottle
certain novel valve devices render refilling impracticable after the orginal contents have been extracted. A sectional plug is employed in
which a tortuous passage is formed, this passage constituting the outlet for the liquid. In such passage are placed valves which open outward, so that the liquid may be withdrawn, but which will seat to prevent any introducbut which winl seat io pren in place by a cap
tion. This plug is held
fastened by cement in the extreme mouth of fastened by
the bottle.
SCENIC APPARATUS.-F. W. Thompson, New York, N. Y. In this invention the underying aim is to provide a device comprising a rocking platform having wings to represent an arranged as to gradually ascending and descending through the air.
Note.-Copies of any of these patents will be Please state munn \& Co. for ten cents each. Please state the name of the patel:
the invention. and date of this paper.

Business and Personal Wuants. ng the information. Inevery case itis neeres sary to give the number or the inquiry.

Marine Iron Works. Chicago. Catalogue free.

 Autos.-Duryea Pówer Co., Reading, Pa.Inquiry No. 408.5 - For makers of nose and m
protectors to kep out dust.
For mining engines. J. S. Mundy, Newark, N. J.
Inquiry No. 4086.
Or explosive eiginines.

"C. s." Metal Polish. Indianapolis. Samples free. Inquiry No. 4088.-For makers of metal grille
or fly screens. Coin-operated machines. Willard, 284 Clarkson St
Brooklyn. Inguiry No. 4089.
ng lime from limestone.

Inquiry No. 4090-For makers of traction en Handle $\&$ Spoke Mchy. Ober Mfg. Co., 10 Bell S
Hen Inquiry No. $\mathbf{4 0 9 1}$. - For
bines for makiny paper tubes.
Mechanics' T 'ools and materials. Net price catalogue Inqui
Sawmill marchinery and outfits manufactured by the In Mfg. Co.. Box 1b, Montpelier, Vt.
Inquiry No. $\mathbf{4 0 9 3}$.- For a large gasoline stove for
heating a one borse power boiler.
Let me sell your patent. I have buyers waiting Inquiry No. 4"94.-For make
metal tubes for holdug polish. etc.
Gear Cutting of every description accurately done.
The Garvin Machine Co.., 149 Varick, cor. Spring Sts., N.Y Inquiry No. 409.5. - For a rotary fan run by clock Patent for Sale.-The smoothest cork extractor

Inquiry No. 4096.-For parties engaged in diffi-
cult chilled casting work. A merican Institute of Inventors Co., Inc'd., Buffalo Inquiry fo. 4097.-For makers of machinery for WANTED AT ONCE.-Circulars and pamphlets of gold
mining and retining machinery. 1 . H. Daloz, 38 Pleasmining and retning machinery. 1. H. Daloz, 38 Pleas-
ant Street, Dorchester, Mass. Inquiry No. 4098.-For makers of self-cleaning Manufacturers of patent articles, dies. stamping,
tools. Iight machinery. Quadrigi Manufacturing Com-
Inquiry No. 40999-For advertising novelties
suitable to advertise medicines. Crude oil burners for heating and cooking. Simple,
efficient and cleap. Fully guaranteed. c. F. Jenkins Inquiry No. 4190.-For makers of gas fixtures,
chaudelier hangings, etc. The largest manufacturer in the world of merry-goounds, shooting galleries and hand organs. Fo
nd terms write to C . W. Parker, Abilene, Kan.
Inquiry No. 4101.-For machinery for cutting
Experienced mechanical draughtsman wanted. Permanent employment assured to rapid and
draughtsman. Mili Work. Box 773, New York.
Iuquiry No. 4102 . For makers of table tennis
supplies, sucn as balls, rackets, etc. The celebrated "Hornsby-Akroyd" Pateut Safety oil Engine is built by the De La Vergne Refrigerating Mi
chine Company. Foot of East listh Street, New York. Inquiry No. 4103.
make a special bottle.
The best book for electricians and beginners in elec. tricity is "Experimental Science," by Geo. M. Hopkins.
By mail. $\$ 5$. Munn \& Co., publishers. 361 Broadway v. Inquiry No. 4104.-For a machine for ripping
stitches in seams and liems of buks.
Contract manufacturers of hardware specialties, machinery stampings. dies. tools. etc. Exceilent mar.
keting connections. Edmonds-Metzel Mfg. Co., $78-$ - 78 keting connections. Ed.
w. Lake Street, Chicago.
Inquiry No. 41 0.5.-For full information of motor
cars., wapons and busses, as to size, capacity, weight.
power, speed, cost, etc. Wanted-Revolutionary Documents, Autograph Let-
ers, Journals. Prints. Washington Portraits, Lerly American Illustrated Magazines, Early Patents signed by Presidents of the United States. Valentine's
Manuals of the early 40 's. Correspondence solicited. Address C. A. M., Box 7T;, New York.
Inquirv
ing machines.
4106.-For makers of benzine-clean-
NOTICE TO TUNNEL CONTRACTORS.
Seated proposils marked "Bid for Tail Race Tunnel",
will be received by the undersigned until noon, May 11 , will be received by the undersigned until noon, May 11,
1003 , for the construction of a tail race tunnel for the Toronto and Niagara Puwer Co.. of Toronto, Ont: Irio.
Plans and specitications for this work are on fle, and can be peen after March 30. 1903, at the company's offices
at Home Life Building, 'Toronto, Ontario. and Niagara at Home Life Building, 'Turonto, Ontario. and Niagara
Falls. Ontario, or office of F. S. Pearson, No. 29 BroadPalls. Ontario, or offce of F. Se . Pearson, No. 29 Broad-
way, New York, Room 220. The rixht is reserved to
reject any or all proposals. Frederic Nicholls, Vice. President and General Manager, Home Life Building, Inquiry No. 41 N\%. - For a bicycle, getting puwer
from a dynamo driven by the sprocket wheel. Send for new and complete catalogue of Scientiftc
and other Books for sale by Munn \& Co., 361 Broadway, New York. Free on anplication.
Inquiry No. 41118. For
Inquiry No. 4108. - For makers of celluloid.
Inquiry No. 4109 .-For manufacturers
Inquiry No. 4110.-For manufacturers of tents.
paper buckets, pails, also of dealers in compresed comper paper in
sheet.

hints to correspondents.

ames and Address must accompany all letters or
no antention will be paid thereto. This is for
our information and not for publication. eferences to former articles or answers should give
date of paper and page or number of question. quiries not answered in reasonable time should be
repeated; correspondents will bea. in mind that
some answers require not a litte research, and
though we endeavor to reply to resl though we endeavor to reply to all either by
letter or in this department, each must take
his turn.

ecial Written Information on matters of personal
rather than g eneral interest camuot be expected
without remuneration.
Scientific American Supplements referred to may
had at the oftice. Price 10 cents atch
Books referred
price. Minerals sent for exami
marked or labeled.
(8964) F. R. asks: I have a smal! battery motor- which runs perfectly on one
or a number of dry cells, or a sulphuric acid battery, and I put four gravity cells on, so it would be on closed circuit, and it would not
move it. What is the trouble? A. We do not ravity why your motor wry cell will run it fou fault would naturally be sought in the gravity battery. 2. Can you give me a formula for making a good battery that would drive this
motor for three or four hours or on closed cirmotor for three or four hours or on closed cir-
cuit, other than bluestone? A. For a good battery to drive a motor see Supplencin, No. 792, in which plans and drawings are given for
such a battery. 3. How long will a Mesco dry lattery last closed A.
not last long on closed circuit.
(8965) H. P. D. asks: Could you, or any of your readers, please explain the fol-
lowing results, obtained with an electric light with a broken filament, and an induction coil giving one-fourth-inch sparks? When the cur-
rent was too weak to produce any light in ent was too weak to produce any light in
he globe, the approach of a strong horseshoe magnet caused a light in the tube, varying in intensity with the position and strength of the magnetic field. When only one terminal was
connected to the coil, a faint light was produced. On touching the globe with my hand, he light greatly increased, and the place
touched was surrounded by a bright spot, dark band, and then a brighter band. A slight spark could be obtained from my finger to the glass if the other hand touched the other rerminal of the coil. A. The experiments you
describe are due to the fact that an electric light bulb is a vacuum tube, either a Geissler or a Crookes tube, according to the perfectness field of a electro-magnetic coil, the tube fills with light, as you have observed. All lamps will not act in this manner. In the early days of the use of X-rays, some lamps were found
which could be used for taking photographs by -rays. These had a very high vacuum.
(8966) W. D. A. says: Can you give me any information concerning
telescope? A. A water telescope consists of
a tube of wood or of metal, closed at one end water-tight by a plate of glass. Plate or good is placed in the water, open end down, and by looking through the glass top of the box, one can see very distinctly to quite a depth; hence
the name, water telescope. The apparent opacity of water is largely due to the ripples upon its surface, which break up the waves
of light and prevent their accurate transmis of light and prevent their accurate transmis
sion from below. The surface of within the box is smooth and the glass top is smooth; for both reasons the light comes up through the box to the eye undisturbed. Such a box to be held over the side of a boat may be three or four feet long and six inches square
in section, so that both eyes can look into it at nce with ease.
(8967) F. I. G. says: Do heat rays other than those from the sun pass througin
glass: It is admitted that the heat from the glass? It is admitted that the heat from the sun does pass through glass, but "A" contends
that the rays of heat from an oil lamp or an open wood fire will not pass through glass. do not wish to know if glass conducts or rad ates heat, but whether glass is transparent to 1ays of all wave lengths may pass through glass, but not equally. The longer wave lengths are cut off by glass much more than are the
shorter wave lengths. Heat from any luminous source passes easily through glass. The contennot pass through glass is not well taken. He cannot say that he never felt heat which had passed through a lamp chimney, or that a thermometer would not rise if held near the glass chimney of an oil lamp. A window pane in
the same way cannot cut off all the heat of a wood fire.
F. I. G. writes further: Your kind favor of the 13th is at hand and the answer is as I
supposed. "A," however, is not satisfied. He

He also states that you do not dare publish the Your friend "A" is eertainly wery pooly ormed upon the literature of this subject, if o differed from the text books and commonly received opinion of scientific men that we dared not print it in our columns. A very
small portion of the hundreds of letters received small portion of the hundreds of letters received
and answered each week can be printed. The Scientific American would be filled with let published which seem to have general interest. However, for the satisfaction of "A" we publish both inquiries. He will find in Ganot's Physics, 15th edition, price $\$ 5$, page 425 , the
power of heat to pass through bodies "differs power of heat to pass through bodies "differs sources. Rock salt is here stated to transmit all kinds of heat with equal facility, and is the only substance which does so. Fluor spar
transmits 78 per cent of the rays from a lamp, but only 33 of those from a blackened sur ace at the boiling point of water. A piece of plate glass one-tenth of an inch thick, and perfectly transparent to light, is opaque to all radiation from boiling water, transmits only 6 per cent of the heat of copper at 850 deg.
Fahr. and 39 per cent of that from an oil amp without a chimney." These results were
attained by Melloni, who died in 1854 have never been disproved nor doubted by scientific men. With higher degrees of temperature than can be given by a lamp, Tyndall carrled the subject much farther. These researches
may be found in his book "Heat as a Mode of may be found in his book "Heat as a Mode of
Motion," price $\$ 2.50$. The general subject is "diathermancy." We have many times lighted match by heat rays which had passed through iodine dissolved in carbon bisulphide, none of which were made hot by the heat rays. They were brought to a focus by the lenses and the
heat without light was able to set the match heat without light was able to set the match on fire. This beautiful experiment we owe. to
prof. Tyndall. It is not true that these heat ays were absorbed by the lenses and radiated on their farther side
(8968) E. G
(8968). E. G. A. gives the following recipe for removing indelible ink stains: If the
base of the ink is nitrate of silver, which is generally the case, the following is certain and easy. Paint the ink stains with tincture ot iodine, and after a minute or two wash out the stain, iodine and all, with stronger ammonia
or a strong solution of hyposulphite of soda The iodine simply creates iodide of silver, which is easily soluble in either of the above solu-
ions. It works especially tions. It works especially
silver stains upon the flesh.
(8969) H. D. H. writes: 1. Please inorm me how to make a liquid glue suitable "glace" finish. The directions say: "Brush the backs with a very thin solution of pure white glue." I would like to know how to prepare such a solution that would remain liquid. A. The mountants for photographs which do not affect the gloss of the front are usually made of gelatine or of white glue. They do not remain fluid, but are placed in a
dish of warm water and melted before
use use. The warm glue is applied rapidly
with a brush, and the print must be in its place before the glue sets. 2 . Is Sirius, the
great dog star, variable? I notice this winter it does not appear nearly so large and bright as it did last year. A. Sirius is not a
variable star in the sense that one can with the eye tell that it is dimmer this year than it was last. It has a dark companion. The
system revolves once in 52 years. This com. panion was first seen by the late Alvan Clark r., since which time it has not been classed as a dark star, though it gives less than one
ten-thousandth as much light as is given by Sirius.
$(8970$
(ra wea E. A. W. asks: Is there any the trains on either rail of a double track, if If so, on which rail? due north and south : north or south on a single track, would there and why? A. On a railroad on the other, north and south, the car wheels bear against the east rail when running north and against the west rail when running south on a single-track railway. On a double-track road
the wheel thrust is constantly on the outer the wheel thrust is constantly on the outer rails of the double track. This effect is greatest
at very high speed, and at 50 to 60 degrees very high speed, and at 50 to 60 degrees to nothing at the equator. This is caused by the differential velocity of the earth's surface which a train meets and which bears the track against the wheels on the west side when run-
ning south; on the contrary, when running ning south; on the contrary, when running
north, the train is running toward a decreasing velocity of the earth's surface, and is borne gainst the east rail.
(8971) C. M. E. asks: 1. How can I make a good, strong baking powder that will 80 parts in tins. A. For baking powder, mix 0 parts dry bicarbonate of soda and 180 parts
of cream of tartar. To the mixture add about 20 per cent to 25 per cent of starch; the object of the starch is solely to prevent caking and strong liquid bluing? A. For liquid bluing a. Dissolve indigo sulphate in cold water and filter. b. Dissolve Prussian blue by digesting with one-eighth its weight of oxalic acid in water solution. c. Dissolve $11 / 2$ parts of indigc
carmine in 15 parts of water ;- add $3 / 4$ part carmine in 15 parts of water; add $3 / 4$ part gum

BACKUS
GAS \& GASOLINE ENGINE
Simple, Economical, Durable.
Suitable for all kinds of work. backus water motor, cheapest power known Write for circular and prices. backus water motor co., Newark, n.J...U.S.A.

 LEEDS MARINE EQUIPMENT CO

Na	AEOLICRAFT Model Yacht
	The Latest Sientificic Toy
\$2.50	Send for descriptive booklet No. 9, free. FRANKLIN MODEL SHOP,

HERCULES FLOATS Cheap Floats to Use.
 hercules float woriks,

D D D D D D D D D D D D

6 H. P. AUTOMOBILE MOTOR 185.00 Pleree Enite
Raeline.
Wine

Co

(urtain operating mechanism, B. Leoin

INDUCTION
COILS for experithers Catalogue Free.
 THE AMERICAN
THERMO-CALL THERMO

BRARY, HANDBOOK ON ENGINEERING. Third edition, enlarged adid revises, , fone copies. now
 1060 Walinwright Blag.,

WELL
DRILLING Machines
Over 7 sizes and styles. for drilling eitber deep or
shallow wels in in any kind of soil or rock Mounted
 WLLLIAMS BROS., Ithaca, FOR LIGHT AND MEDIUM WORK - B. F. BARNES

You Should Know More

SEN
SEND FOR OUR BEAUTIFUL NEW ILLUSTRATED CATALOG

GUNSMITHS TOOL MAKERS, EXPERIWORK, ETC.
From 9 .in tolin

YOU ARE EASY

WIRELESS TELEGRAPHY.- SCIEN-

Palmer Complete 17-ft. Launch, $\$ 195$ marine engines. boat frames Catalog Free

Dry neimel Undectivear

Since the introduction of the Dr. Deimel Linen Underwear there are more comfortable people in the world than ever before.

Booklet teling all about them
and the
garments may at leading deal ers everywhere the deimel linen-mesh co.,

491 Brigadway, New York.

*New Type 2-Cycle Motor

 CUSHMAN MoTOL
 Valuable to bicyclists, un eneorted lad
bomes, etc ${ }^{\text {bild }}$ Alalers, or by mail, 50 c. PARKER, STEARNS \& SUTTON, 226 South St., NewYork
 The MEDART BOAT BUILDING MATERIALS
 FRED MEDART, 3545 DeKalb St., St. Louis, Mo.

SPLITDORİ SPARK COILS

Scientific American Building Monthly
NEW VOLUME NOW READY VOL. 34-JULY to DECEMBER, 1902 A Monthly Magazine of Domestic Architecture
Sumptuously Illustrated
$\begin{array}{cc}275 \text { Illustrations } & \text { Six Covers in Tint } 146 \text { Pages } \\ \text { Bound in Boards } \\ \text { Price. } \$ 2.00 \text { prepaid by mail }\end{array}$ The Thirty-fourth Volume of the SCIENTIFIC
AMERICAN BUCILDINGMONTHLY more than maintains
the hilh standard established by this valuable Maga zine. IIs s. Tander with Archititect "- contributions by
the leading architects of the day; its editorial discus.
 TALKS WITH ARCHITECTS

 EDITORIAL ARTICLES
"Cheap Houses." "Walls and W all Treatment.,"
"TheArsandte Hous., "The Country House."
How the Architect Helps the Home." "Ho the Householde
EPARTMENTS
"The Garden.", "The Household." "Sanitation."

 The SCIENIFLC AMERICA BOLDING MONTHLY rate price, together with a cover beatifuilly printe taken expressly for the Magazina a ad are printed with
every advantage of the pringer's art.
acompany most of the illustrations present a complet
 iems ot gardens and ornamental ladjuncts to the house No appense is is sared to make this Magazine the leading
periodical or its slass and of the utmost practical value
to it s readers. MUNN \& CO., 361 B'way, New York City

 Mixing and bleaching engine, A. Rommene
Motors, controlling induction, H. P. Davis.
Mowng machine E. E. Fisk..........
Multiple rate meter, Thomson \& Cox.
Music box indicating device G. A. BrachMultiple
Music box
hausen

Po

$\stackrel{\mathrm{Pr}}{\mathrm{Pr}}$

Railway switch, C . F . F . $\begin{aligned} & \text { Granger..... }\end{aligned}$

frames for, P. Grant ©ition, ecrushing,
Railwas, mechanism for cutting,
and dislodging ice or sleet on the third

Do YOU Want A Better Position?

Fill Out and Send in the Coupon NOW!
International Correspondence Schools
Box 942, Scranton, P
Please send me your bokket, "roor stories of Suc
cess, and explain how t can quality for the
position before whici 1 have marked x

Mechanical Eng.	Textle Desisger
Mechanical Drafts.	Textie-M
Electrician	Chemist
Telephone Eng.	Orrament. Design.
Marine Engineer	- Bavigator
Civin Engineer	Stenotrapher
${ }^{\text {Suryeyor }}$ Mining Engineer	${ }_{\text {Teacher }}^{\text {To }}$ Speak Fr
- Sanitary Engineer	-

Name
St. \& No
\qquad
EVOLUTION OF THE AMERICAN L(

Valuable Books!

All the World's Fighting Ships By FRED T. JANE
Usea as a text-bnck in European naries. The onl 344 Pages. Over 3,000 Illustrations. Oblong Quarto. Cllot Price $\mathbf{\$ 5 . 0 0}$, post free

ModernMachine Shop Tools

 An entirely new and fully illustrated work, treating
the subject of MModern Machine Shop Thols in a
concise and comprehensive manner.
 reader complete information pertaining to machine
stop tools and methods in a single volume at a mode
rate rate price.
The work is ingically arranged; the various hand and
macenine tools beenngrouped int classes, and descrip
tion of each is given in proportion to their relative
 SECOND- tacture.
THIRD-Numeration, proper manipulation and car examples of work performed.

DIES

THEIR CONSTRUCTION AND USE For the Modern Working of Sheet Metals.
by Joseph v. woodworth
Octavo. Cloth. Very Fully Illustrated. Price $\mathbf{\$ 3 . 0 0}$ Postpaid

HARDENING,

TEMPERING, ANNEALING FORGING OF STEEL By JOSEPH V. WOODWORTH Author of "DIES, Their Construction and Use."
Octavo. 280 pages. 220 Illustrations. Bound in Cloth

 GAS, GASOLINE AND OIL ENGINES
by Gardiner d. hiscox, m. e.
365 Pages. Large Octave. Ilustrated with 270 Handsome Price \$2.50
The only American book on an interesting subject.
Fuil onfeneral
motuve

Horseless Vehicles, Automobiles and Motor Cycles
Operated by Steam, Hydro-Carbon,
and Pneumatic Motors
By GARDNER D. HISCOX, M. E. Svo. 316Mustrations. Co

MUNN \& CO., Publishers, 361 broadway, New York

G. CRAMER DRY PLATE CO.

$$
\begin{aligned}
& \text { Offices in ST. LOUIS, MO. } \\
& \text { Now York: } 32 \text { East 10th Street }
\end{aligned}
$$

chamer

$$
\begin{aligned}
& \text { Chicago: : } 1211 \text { Masonic Temple } \\
& \text { San Francisco: } 819 \text { Market Street }
\end{aligned}
$$

Three New and Splendid Indastrial Books. SUST READY:

 pages. Avo. Price.

 of Der Bury-School. of Painting for the Imitation

 to The above book will be sent by Express, freight paid
of The Elaborate circulars, showing full tables of contents any part of the worla who will send his adidress. 810 Walnut St., Philadelphia, Pa., U. S. A.

ELECTRICAL ENGINEERING

 TAUGHT BY MAIL. We TRICAL ENGINEER

LEARN PROOFREADING.

$\%$"CENT per CENT"

ELECTRIC LAUNCH MOTOR - THE

BIG WAGES vouin

THE
 FOUR-TRACK NEWS

fin illustrated magazine Published Monthly by
George h. Daniels,
General Passenger Agent
NEW YORK CENTRAL \& HUDSON RIVER R. R.

Trade Magks Copyrights de.

Scientific Fmerican.

 MUNN \& Co, ${ }^{361}$ Broasway. New York

 TRADE MARKS.

 Cooler,
"Rainier,"
for ber, Henciolson Lithographing

THE HARRINGTON AND KING PERFORATING CO.
 N9 223 NORTH UNION ST CHICAGO, LLL. U.S.A.

All Weights for All Wants. SPECIAL WEIGHTS FOR SPRING.
 LLUSTRATED CATALOGUE FREE dr. JaEger s. w. s. Co.'s own stores.
 BOSTON: $230-232$ Boylston Street.

I Print My Own Cards
 for catalog, presses, type, paper, etc., t
factory, The Press Co., Meriden, Conn EVENING STAR ELECTRIC FLASH LIGHTS We make a full line of Electrical Novelties and
Dry Butteries. Also General Selling Agents for Dry Butteries. Also General Selling Agents for
Will ams Spark Coils. Send tor Catalog and Prices. ELECTRIC CONTRACT CO.
202-204 Centre St., N. Y. ELECTRO MOTOR, SIMPLE, HOW TO

BEAUTTIFUL HOMES.
The NICKEEL PLATVEROAD in selling special round
trip Homeseekers tickets on frs and thrd Tuesday
each month to points all throurh the West, good simi

 The American School of Correspond
offers instruction by mail in the
following.courses in ENGINEERING
The instruction being under the super-
vision of members of the faculty of Armour Institute of Technology. Electrical, Mechanical, Civil, Locomotive,
Stationary, Marine and Sanitary Engi-
neering: Architecture, Navigation, Reneering; Architecture, Navigation, Re-
frigeration, Mechanical and Perspective Drawing, Sheet Metal Work, Ielegraphy and Telephony, Textile Manufacturing

American School of Correspondence Armour Institute of Technology CHICAGO, ILL.

MATCM MACMINERY We manufacture every thing pertaining to the busi-
ness. ${ }^{\text {The }} \mathbf{V}$ ery Latest
anaceses.
manager or teach any purchaser the business.

" THHIS BEATS NEW JERSEY."
 Mathematicians Wanted The profession of actuaryship offers a splendid fild
for those possessing mathematical abbilty, as sositions
command $\$ 4,000$ a year and over. Our course is prepared
by by leading actuaries and is under their supervision.
Address
HOME CORRESPONDENCE SCHOOL $\frac{416 \text { Walnut St., Philadelphia, Pa. }}{\text { WIPING TOWELS FOR MAGHINERY }}$ Best quadity, lowest prices, cheaper, more effectiv
and safer than cotton waster
George s. Brown, 312 Warren St., Boston, Mass.

INVENTIONS DEVELOPED. Special macionnery, electrical and chemical ap-
paratus made short notice Good accmmo-
dations for inve FREE Wawaturew Sy y y d x y y

 MODDE
SAVE HALF YOUR CIGAR MONEY AND GET A BETTER SMOKE

