

the "Minnesota," just launched at new london ; Largest vessel ever builit in america.-[See page 298.]
Lengtn, 630 feet. Breadtn, 73 feet 6 inches. Nolded Depth, 56 feet. Displacement. on 33 feet draught, 33.000 tons. Speed, 14 knots.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845MUNN \& CO.
Editors and Proprietors
Published Weekly at
No. 361 Broadway, New York
 the scientific american publications.

ATURDAY, APRIL $18,1903$.
 NEW YORK, SATURDAY, APRIL 18, 1903

The editor is al ways glad to receive for examination illuctrated
articles on subjects or timely interest. if the photographs art
 will recelve special 2 ,
at reyular space rate

PROTECT THE THIRD RAIL

The New York public is beginning to realize the risks of severe injury and even of death which atten the present arrangement of the third rail on the Brooklyn and New York Elevated Railways. Already there have been several accidents, some of them fatal; and al though we have no doubt that in the majority of case these accidents have been due to carelessness or disobedience of warnings and instructions, the fact re mains that the third rail, as at present arranged on these railroads, is a source of very real danger. How great and far-reaching is this danger, was suggested only the other day, when a fuse blew out on one of the Ninth Avenue trains in Manhattan, and practically the whole train load of people got out and walked down the tracks to the nearest station. It may be said that they should have kept their seats; but in these days, when time is so valuable and business calls are pressing, it is a fact that the public, rather than sit still under these circumstances, will get out, take chances and walk. Now, had any of these passenger stepped on the third rail and one of the track rails simultaneously, or slipped and fallen across them, the result might have been fatal. As at present ar ranged, the third rail is unprotected from above, and short-circuiting by a careless person may easily happen.
Is it possible for the company to protect these rails without interfering with the operation of the trains? It certainly is; and the best proof of this is the fact that the third-rail, high-speed electric railroad re cently opened between Wilkesbarre and Hazleton, Pa., has a hooded rail, which not only safeguards the pub lic, but is free from the difficulties due to sleet and ice in the winter, which recently so greatly disorgan ized the elevated railroads in this city. The enginee who designed this system is the electrical expert fo the elevated railways; and we have no doubt that this change could be carried out on the elevated systems if the public authoritatively demanded it.

THE LODGE-MUIRHEAD RECEIVER

The prominence of Prof. Lodge in theoretical discussions of the Hertzian waves, lends special interest to the new Lodge-Muirhead system of wireless tele graphy, which we describe on another page. A vita part of all systems of wireless telegraphy is the cohere or its equivalent receiving device. The Lodge-Muir head system provides a receiver which, while not dif fering in fundamental principles from certain previously known types of receivers, at the same time embodies a number of important features which should greatly increase its efficiency. The principle of using thin film of oil as an insulating medium between the mercury electrode and that of the rotating disk brings on mind Branly's idea of contacts separated by a thin film of oxide. In the Lodge-Muirhead system, however, the idea of rotating one of these electrodes is a good one, for it permits better adjustment and at the same time serves to automatically re-establish the imperfect contact. The normal resistance of a coherer em loying metal filings is not a reliable quantity. With the cohered particles being constantly jarred apart, the air gaps between them are liable to vary greatly in size, number, and position. Similar variations will be noted in receivers based on the principle of an insulat ing film, the thickness of the film at different points, though varying by an immeasurably small amount being sufficient to appreciably affect the telephone of the relay circuit. By employing a revolving disk for ne of the electrodes, a moving film of oil is carried on the disle and through the mercury. Though this film may vary in thickness to just as great an extent as between stationary electrodes, the resultant of all these variations will be an average resistance that is approximately constant. The high efficiency of the Lodge-Muirhead coherer is proved by the fact that a sufficiently powerful current may be used in the local circuit to operate a siphon recorder, thereby affording a visible record of the message
fatal gun agcident in the navy.
The recent terrible gun accident on board the battle ship "Iowa," in which three men were killed and several injured, is the second fatal gun disaster that has occurred in the navy within the past few months. It was only recently that there was an explosion of the charge of an 8 -inch gun on the "Massachusetts," which caused the death of eight of the gun crew. In that case the charge exploded when the breech was open and the disaster is not chargeable to any fault in the construction of the gun. In the present case it is evident that the 12 -inch shell exploded just before it left the gun, and the terrific energy of the bursting of the 850 -pound projectile completely smashed the chase of the gun outside the turret, driving some of the fragments down through the forecastle deck and killing and wounding the crew who were at mess on the gun deck below. So powerful was the explosion that thre of the broken sections of the gun passed also through the main deck and gun deck, and only fetched up on the steel protective deck below. It is probable that the explosion was due to the fact that the fuse plug in the base of the shell, being a little too slack, al lowed the flame of the explosion to pass through. This was found to be the cause of the premature explosion of shells on our battleships which took place two or three years ago. It is evident that some better method of inserting the fuse plug must be found, one that will be absolutely flame-proof when the gun is fired.

the so-called dangers of wireless telegraphy

The more or less popular mistrust and fear of wire less telegraphy is spreading, it seems, even to the technical papers. Our esteemed ..contemporary, the Electrical Review, recently published a sensational ar ticle on the dangers of wireless telegraphy, and furthe indorsed this article by favorable editorial comment. The absurdity of the whole matter is apparent when one stops to consider that the electric surgings set up in the receiving antenna by the Hertzian waves, though of very hign voltage, are, on the other hand, of such an infinitesimal quantity that the most delicate of in struments is required to detect them. The writer of the article referred to, argues that "a great disturbance must be made at the center of an imaginary sphere in space, in order that even the small electro motive forces necessary for signaling may be developed in an electrically-tuned conductor, forming a tangent to the sphere, of infinitesimal length compared to the sphere's radius;" and that this disturbance must b so great that "the electric radiation of power to work a coherer across the 3,000 miles of the Atlantic would be sufficient to develop visible sparks across an air gap in a receiving system located within three miles, or one one-thousandth of the distance, even though they be not in tune with each other. Then he goes on to say that a telegraph or telephone circuit within on this three-mile radius, particularly if the wires were run vertically to the top of a modern skyscraper would similarly respond to these oscillations; and it the circuit contained a spark gap, such as that o an open-spaced lightning arrester. "a narrow break in some open translating device, or a loose joint in the wiring," we would have "an opportunity for a fire whose origin would certainly be of the mysterious class whose cause it is the fashion to assign to de fective electric wires. At any rate, there would be a possibility of grounding the circuit and rendering it noperative.
The whole discussion illustrates the recklessness with which some writers launch forth on an elaborate argu ment not based on facts or figures. The writer in question evidently overlooked the quantity of current set up at a transatlantic or even a local receiving sta tion, overlooked the power generated at a Marconi receiving station, and above all overlooked the laws governing the radiation of Hertzian waves. According to his argument, Hertzian waves radiate in all directions, filling an imaginary sphere. Their energy would, therefore, vary inversely as the square of the distance, or, in other words, the energy at a dis tance of three miles would be one million times that at a distance of three thousand miles. As a matter fact, Hertzian waves as set up by an oscillato travel out in a plane at right angles to the antenna, so that, roughly, their intensity is inversely propor tional to the actual distance, and the efficiency at th three-mile station would be only one thousand times greater than that at the three-thousand-mile station His deductions lead to the supposition that Mr. Mar coni's "powerful thunder stations," as he calls them, must generate a quantity of electricity equivalent to that of lightning in order to cause visible sparking at distance of three miles. Now, as a matter of fact only 7 kilowatts were used in transmitting Presiden Roosevelt's message to King Edward across the At lantic. Furthermore, we are informed that Mr. Mar coni's experiments are constantly leading toward reduction rather than an increase of power. The writer of the article certainly overestimates the quan ity of current generated in the receiving antenna, for even within the three-mile limit, the quantity is im-
measurably small. Even at the sending station the current must be reduced to an infinitely small fraction of an ampere in order to obtain the best results. In fact, we have held a piece of paper in a spark which was capable of affecting a coherer 50 miles distant The paper was punctured, but not ignited, because, though the heat was very intense, the quantity generated in the spark was very small. What dangers of fire could ever arise from such cold sparks as these, tc say nothing of the minute sparks set up in surrounding air gaps, which represent so small a fraction of the energy in the transmitting spark? As for the dangers of grounding a circuit by means of open-space lightning arresters, we can safely say that no spark of sufficient length to accomptish such a result can be generated within a short distance of the most power ful transmitter in use, even with the circuits perfectly in tune with the sending antenna.

WASTE OF CITY WATER EUPPLY.

The Commissioner of the Departnent of Water Supply, Gas, and Electricity, has giver out some figures of the results obtained in his investigation of the question of the waste of water in this city. By dividing the city into districts, and by means of meters, supplemented by investigation, it. has been possible to determine the amount of water eerved to each district daily, and also to determine what use i.' made of it. One method of calculating the waste is to examine the flow of water in the sewers during the sarly morning, when the consumption is lowest. A mumber of men are then sent through the buildings in the particular district under consideration, to measur the amount of water that is running to waste from laky faucets, and similar fixtures. These measurements however, do not include water that is running to waste from overflowing tanks, nor does it take account of waste that occurs when the water is allowed to run on cold nights to prevent freezing; nor does it include underground leaks and leaks in the mains. As a reult of this investigation, the conclusion is reached fron the work already accomplished that $32,000,000$ gallons, to 12 per cent of the Croton water, is running to waste evury day from leaky fixtures, this percentage representicy merely the waste in buildings from defective plumb ing, which is a constant waste, and continues steadily throughout the dry weather, when the supply is scanty It is estimated that this amount of water, if it were metered, would bring to the city $\$ 1,500,000$ a year, and evidently it would be well worth while to recover the value of this water for its own sake, to say nothing of its value considered as forming a part of an al ready inadequate supply for the city, and the possibility that unless the source of supply be multiplied we may have to face a water famine before many years have gone by. Commissioner Monroe is of the opinion that the most effective remedy for water waste is the extension of the meter system. His bill before the Legislature provides that all buildings shal be metered where steam is used for power purposes and also all buildings that are over five stories in height. As the city will pay for the meters, the in stallation will not be hard upon the consumers, while the expense to the city will be light compared to the saving due to the prevention of water waste. Every one who has the interests of the city at heart, and is disposed to look at this subeject from a broad-minded standpoint, will agree that it is of vital importance to the city of New York that water waste should be pre vented, and everything possible done, whether by metering or some other method, to conserve its al ready inadequate supply.

ANNUAL REPORT OF THE UNITED STATES STEEL

 trust.What is probably the most complete and circum stantial report ever issued by any great American cor poration is the annual report of the United State Steel Trust, which has just been made public. The magnitude of the operations of this concern is shown by the following figures, which are taken from the report. The value of the properties owned and operated by the several companies that make up the trus is $\$ 1,325,000,000$. Other assets, among which are included cash to the extent of $\$ 50,000,000$, bring up the total assets to the sum of $\$ 1,547,000,000$. It may be mentioned that the single item of $\$ 50,000,000$ cash is equal to the amount voted by Congress at the out break of the Spanish war. The liabilities consist of $\$ 508,000,000$ of common, and $\$ 510,000,000$ of preferred capital stock. To this is to be added $\$ 361,000,000$ of bonded and debenture debt, $\$ 50,000,000$ of current lia bilities, $\$ 25,000,000$ sinking and reserve funds, and $\$ 78,000,000$ undivided surplus of the United States Steel Corporation and subsidiary companies, which with other items, brings up the total liabilities to $\$ 1,547,000,000$.
The volume of busiress done by all the companies during the year. includtog les between the companies and the gross receiptronsmandion and miscel laneous properties, reachedre total sum of $\$ 561,000$
000. The manufacturing and operating expenses amounted to $\$ 411,000,000$, leaving a balance of $\$ 149$,000,000 . Other expenses, interest charges, etc., brought the net earnings for the year to $\$ 133,000,000$. During the past year this corporation mined 16,000 , 000 tons of ore and 709,000 tons of coal, besides man ufacturing $9,522,000$ tons of coke. The iron produced by the blast furnaces aggregated $7,976,000$ tons. The production of Bessemer ingots was $6,759,000$ tons, and of open hearth ingots $2,985,000$ tons. Under the head of rolled and other finished products for sale, we find that the corporation turned out $1,921,000$ tons of steel rails, $1,255,000$ tons of merchant steel, shapes, etc. and $1,123,000$ tons of wire and products of wire. Other manufactures, such as blooms, plates, tubes, sheet etc., brought up the total output of finished products to $8,197,000$ tons for the year. The present activity of the corporation is shown by the fact that the un filled orders on the books at the close of 1902 amounted to $5,347,000$ tons of manufactured products.

The average number of employes of the corporation during the entire year was 168,127 , to whom the aggre gate amount paid during the year in wages was $\$ 120$, 528,343 . Of this total number of employes, 125,326 are employed in the various manufacturing properties. Finally, it is of interest to know that the total number of stockholders in the year 1902 was 58,629 , which does not include the subscribers for preferred stock nor 27,379 employes who availed themselves of an offer made them during last December.

THE ACCESSION OF GERMANY TO THE INTER

 NATIONAL CONVENTION.The German Ambassador at Bern has notified the Swiss Federal Council that the German Empire will join the International Convention for the Protection of Industrial Property of March 20, 1883, as modified by the Act of the Conference at Brussels of December 14, 1900. The accession of the German Empire to the International Convention is to take effect on Ma 1, 1903.

The citizens of the United States and of the other signatories to the International Convention will there fore shortly be able to take advantage in Germany of the provisions of the treaty, the most important of which is that section which enables an inventor to file his German patent application during the year following the filing of his patent application in the United States, and to secure the United States date of filing as his date of priority in Germany, irrespect ive of the issue of the United States patent. As under the present law it is necessary to file a German patent application before the invention is disclosed in public print in any country, the amended provisions of the patent law will be availed of by many United States inventors, who, under the old practice, were debarred from protecting their inven tions in Germany, because of the publication of thei inventions, either on the issue of the United States patent or in connection with the introduction of the inventions.

THE REINTERMENT OF JAMES SMITHSON IN AMERICA

 Not so long ago the Italian government decided to remove all the bodies in the little cemetery of Genoa That decision would not, in itself, very greatly affect the United States, were it not for the fact that in the cemetery in question the remains of James Smithson were interred in 1829. When the Smithsonian Institution was notified of the contemplated abolition of the cemetery, its Board of Regents decided to have the body removed to another cemetery in Genoa. Dr. Alexander Graham Bell asked the board to reconsider its action, and announced that he was ready to defray the expense of bringing the remains to this country The proposition was favorably received.It would be most fitting that the body of Smithson should find a last resting place in the country which he so greatly benefited. Foreigner though he was Smithson gave his entire fortune of over $\$ 500,000$ "to the United States of America, to found at Washington, under the name of the Smithsonian Institution, an establishment for the increase and diffusion of knowledge among men." The gift is all the more remark able, coming, as it did, from a man who had never seen this country and who was utterly unknown to us It is pleasing to note that the faith which he had in the young republic has been justified in the benefits which the Institution that bears his name has con ferred upon Americans. Perhaps more than any other public institution of the country, the Smithsonian In stitution has stimulated scientific research among Americans.

A REGULAR TRANSATLANTIC MARCONI SERVICE

At the time of his last visit to New York, Marconi informed a representative of the Scientific American that in the course of a few months a regular transatlantic wireless telegra .hic service would be estab lished. The promise then made has now been ful filled. In its issue of March 30 , the London•Times
headed its foreign news with two New York dispatche of about two hundred words each, which were received "by Marconigraph." A leader in the Times states that the message marked the establishment for the first time of the regular transmission of news by the Mar coni system on a contract basis. After pointing ou that messages can be sent from the United States to England at a cost but little in excess of the cable rate from England to France, the Times comments upon the slowness of Englishmen to appreciate at its true worth the meaning of Marconi's work. It says:
"They may rely upon it that considerable interest are going to be seriously affected by the new developments, and they would do well to cultivate whateve scientific and economic imagination they may possess.
"In the same way those who are responsible for national interests ought to very carefully watch and anticipate the bearing upon various strategical prob lems of the agency that more than ever before annihilates space and time."
The Times, it is said, will have for the present a monopoly of this system of carrying news, as the num ber of words that can be sent is rather limited.

NEW AMERICAN AUTOMOBILE SPEED RECORDS.

That the Ormond-Daytona beach is an ideal racing course, as one would expect from a glance at the illustrations of it in our recent Automobile and Yachting number, was proved by the breaking of several American speed records in the trials held there the last of March. A new kilometer record of $324-5$ sec onds was made by Winton in his "Bullet" racer This was 2 seconds better than the time made by Fred Walsh on Fournier's Mors racer at the Staten Island speed trials last May. Winton also came within 2-5 of a second of equaling Fournier's mile on the Coney Island boulevard, by making this distance in $521-5$ seconds. This is the fastest mile ever run by an American machine driven by an American. The present world's record figures for the mile and kilo meter are 46 and 28 seconds respectively. Mr. Win ton also reduced his 10 -mile track record of 10 min utes, 50 seconds to $10: 261-5$. This included mak ing a turn at the end of the 5 -mile stretch. According to the stop watch of the gentleman who rode with him, Winton made the first 5 miles in 4:46 1-5.
The former American mile and kilometer records for cars under 1,000 pounds, made by L. C. Thompson on a Renault machine, were badly beaten by H. T Thomas on a special 825 -pound Oldsmobile racer. These records of $1: 353 / 4$ and 59 seconds were reduced to 1:06 1-5 and 42 seconds respectively. The motor bicycle records of C. H. Metz on an Orient of 1:10 2-5 and $433-5$ seconds for the mile and kilometer were beaten by Oscar Hedstrom on an Indian motor bicycle, the new times being 1:03 1-5 and 39 seconds.

RUBBER VINE IN HONDURAS.

Recently Señor Don Floriano Davadi, governor of the Department of Conyagua, Honduras, intormed the American consul at Tegucigalpa that some time previous he discovered in the Pijo Mountains a vine growing in an uncultivated state, varying in diameter from 4 inches to 2 feet, which on cutting produces a sap the nature of which is rubber. These vines grow to 100 feet in length, and they are said to belong to the African family of rubber vines. In Honduras, no one seems to know the name of the vine or the botanical family to which it belongs. The discoverer regards it as superior in quality to the Para rubber of commerce, and asserts that his con victions are borne out by the analyses made by American and European chemists.

The vine thrives at great altitudes as well as in the lower valley levels. Such luxuriance of growth has this plant attained that it is quite capable of being cut in commercial quantities. It may be quickly propagated in the rich soil of the Department by means of seedlings, and the growth being so much faster than that of rubber trees, Señor Davadi thinks the quantity of gum obtained would be large. The trees require six years' attention before sapping can begin.

It has been proposed to form a company for the exploitation of rubber in the Yoro district, but though the names of several prominent men have been con nected with the enterprise, nothing has, as yet, been done to begin operations.

REPORT OF THE BERLIN-ZOSSEN TRIALS

Chief Engineer Reichel has at last published his report giving the results of experiments made with high-speed electrical trains on the military road between Berlin and Zossen. At a speed of 100 miles an hour the electromotive force was 15,000 volts. Mechanical power equal to 2,500 horse power was used in starting the trains, which, when at full speed, required only 700 horse power. Mr. Reichel, in his report, gives it as his opinion that a speed of 125 miles can be at tained, provided the required amount of electric energy can be supplied, as when at full speed from 1,400 to

1,500 horse power is required. For freight transportation also, electric power gave good results. A train of 200 tons gross weight was easily moved, even over grades of 1.2 per cent, at a speed of $321 / 2$ miles an hour. Through the possibility of supplying the motor car directly with a current of 10,000 and more volts, the weight of the motor cars and that of the transformers could be reduced from 92 to 78 tons.

science notes.

Prof. Spring (Chem. Zeit.) has examined the commonly accepted theory advanced by Hagenbach, that the blue color of the sky is due to the refraction of light caused by solid or liquid particles floating in the air. In laboratory experiments the author neve succeeded in obtaining the blue color, the reflected rays of light always showing either red, yellow or violet. Purification in no case removed the blue tint from the air. After exhausting all physical means in an attempt to reproduce the blue color, the author concluded that the blue of the sky depends upon chemical conditions. The color deepens instead of cadtes as the observer rises above the earth. These conclu sions are supported by the fact that liquid air is also blue.
M. J. Thoulet has investigated the constitution of the ocean bed, and finds that the more deeply it is penetrated, the less the proportion of slime and the less calcareous matter. On the other hand, the proportion of sand grains and pure clays increases with the depth. No regularity obtains in the distribution of the noncalcareous mineral grains. This normal distribution appears to be more pronounced the deeper the ocean bed itself lies below the water surface, but, in any case, the variations due to ocean depth are small. Even in the deepest water the constitution of the bed shows traces of the conditions prevailing near the surface of the ocean above the bed. The latter remark is of importance, as the author points out, when we consider that a complete analysis-chemical, mechanical, and mineralogical-applied to ancient geological strata is competent to shed a flood of light upon the ancient conditions that prevailed at the surfaces of oceans that have long since disappeared, leaving no trace other than their effect on the ancient ocean beds.
C. Delezenne finds that the venom, both fresh and dried, of the cobra, the adder, and the puff adder, all contain a peculiar ferment, a kinase, which, although itself without proteolytical action on albumin, is able to impart to pancreatic juice a very powerful diges tive action on that substance. This ferment is entirely destroyed by heating the venom to 100 deg. C. for fifteen minutes. The poison of the puff adder is the most active in this respect, 0.5 to 1 mgm . of the venom being sufficient to enable 1 c.c. of pancreatic juice to digest 50 cgm . of albumin in ten or twelve hours. Cobra poison was found to be slightly less active in this respect, while that of the viper had a marked lower proteolytic action, five or ten times more being requisite to produce the same effect. The kinase appears to resemble in its properties the ferments secreted by certain micro-organisms, and to possess the same action as the enterokinase of the intestinal juice. The part played by this substance in serpent venom is being investigated.

Metallic construction appears to have had a very low power of resistance during the volcanic eruption at St. Pierre. Not only was it incapable of with standing the weight of the burning matter, says the American Architect, but some chemical action is likely to have taken place which transformed the particles. M. Amedée Knight, a senator of Martinique, was on the island at the time of the disaster and he has been able to furnish details about the destruction which were not observed by others. He describes the effects shortly as corresponding with those which might be expected if some colossal Nasmyth's hammer had been employed in operation on the town. Most things have been reduced to a fine powder. One of the cases mentioned is the market of St. Pierre. After the cyclone of 1891 the authorities decided to reconstruct it in the most solid man ner. Cast-iron was adopted. It is now impossible to find the slightest trace of a construction which had an area of 2,000 meters square.

A new and interesting departure in the shape of ships' hulls has been designed by Constructor Kretschmer, of the German Naval Department. He has been led to make this innovation in the desire to increas the efficiency of a vessel, without at the same time an abnormal augmentation of the coal consumption. Prof Kretschmer, instead of designing the hull somewhat after the form of a fish, has taken as his model an aquatic bird, which, like the ship, makes its way along the surface of the water. In his design the ship's hull has the shape of a tetrahedron or double wedge. By this means it is anticipated that the efficiency of ves sels will be increased by fifty per cent. Another grea advantage is that such vessels will have no wash.

THE PEDRAIL--A NEW TYPE OF ROAD LOCOMOTIVE. by herbert c. fyfe, london.
The ideal conditions for a rolling wheel are a hard mooth wheel rolling on a hard, smooth track, and inventors have employed their ingenuity in devising vehicles which would lay down rails as they went along, thus providing a movable track. No system of putting down temporary rails by the machine itself and picking them up again has ever been a practical success; but quite recently there has been invented a machine which does the reverse of this. In the "Pedrail" system-the invention of Mr. Bramah Joseph Diplock-wheels are placed upon the ground and fixed rails, attached to the carriage, glide over them.
This new type of wheel has been applied to a traction engine with excellent results.
The accompanying diagram reveals the principle of the "pedrail." A disk is keyed to the driving axle, on which disk sixteen sliding spokes are mounted. The extremity of each spoke carries a foot pivoted by a ball-and-socket joint in order that it may have a
from the top of the disk, strikes the guide and gradually forces the sliding spoke outward, thereby enabling the foot to turn on its ankle joint by its own weight as it comes down and to drop with its full surface on the road. The roller then passes under the rail in the manner illustrated.
In an ordinary railway a rail is laid down, and wheels are run over it. In the Pedrail, wheels or rollers (mounted on feet shod with rưbber) are laid down, and the rail is run over them. The principle is the same, only the railway is inverted. It is, in brief, a combination of an inverted endless railway with a walking or trotting machine
After witnessing trials of the Pedrail, Prof. HeleShaw said that Mr. Diplock had secured a means which makes it possible to draw a load not merely over roads, but over agricultural land, fields, and plains, and even to climb mountains; "in a word, not only has he, in my belief, a tractive agency which makes his vehicle able to traverse the worst possible roads without the slightest difficulty, or to pass over ordinary roads in any weather without doing the
-inch planks, and passed over large stones withou crushing them and thus distorting the road surface.
The life of an ordinary traction engine is commercially about four or five years, whereas some Englisn railway locomotives have been in use for thirty or forty years. Mr. Diplock believes that with such an arrangement of springs as he has devised, the life of a road engine would assimilate itself more nearly to that of the railway locomotive. This, of course, would be a very important gain as regards working expenses.
The whole of the working parts of the Pedrail, with the exception of the projecting square steel spokes and the rollers, are dust and dirt proof, and are lubricated automatically from one central supply chamber, which holds a surplus supply of oil. The square spokes work in and out upon reciprocating ball bearings, and have a special provision in renewable dust-proof plates round them.

A Marconi Plant for Internalional Use A Marconi station is to be located at the pier of

MODEL SHOWING THE PEDRAIL ASCENDING A STAIRWAY.

Position of the parts in overcoming obstacles.
Position of the parte on a level road. THE PRINCIPLE OF THE PEDRAIL'S OPERATION

A PEDRAIL TRACTION ENGINE SURMOUNTING AN OBSTACLE.
limited free movement to suit the surface of the road. On one side of each spoke, and projecting beyond the disk, is a small wheel or roller. Each spoke is provided with a spring on the other side of the disk, by which spring the spoke can be drawn inward. The springs radiate from the center and are not shown in the diagram. On the axle box a rail is mounted, which is pivoted to a flat plate or guide, forming part of the axle box. The pivot of the rail has free vertical movement in a slot formed in the plate. The engine is supported by the rail through the medium of two springs abutting against the top lever pivoted to the top of the axle box. Two inner guides are provided to lead the wheel or roller under the rail. All the levers and springs on the axle box lie flat against the disk, from which it follows that the rollers projecting from the disk are arranged around the guide and the rail. The disk and the pieces attached to it (spokes, rollers, and plate) revolve. The axle box with its attached parts (dependent lever, guides, rail, and springs) does not revolve. Hence a roller, starting

DIPLOCK TRACTION ENGINE FITTED WITH PEDRAILS. ALL FOUR WHEELS ARE DRIVERS.
slightest injury to them, but he has solved the problem of a self-propelled vehicle and traction engine which is absolutely independent of roads at all."
Chief among the merits of the Pedrail is the reduction of the wear and tear of the road surface. Heavy vehicles with ordinary wheels do endless damage to the highway, but the Pedrail, in that it tends to beat down the projections without increasing the depressions in the road surface, actually tends to improve the road. The fitting of rubber tires on heavy vehicles is a costly process. The rubber soles for the Pedrail are not made of pure rubber, the buffer action necessitating an admixture of other material to harden it. The cost of soling an entire Pedrail would not exceed $\$ 25$.
Furthermore, the Pedrail gives the maximum of road adhesion and the minimum of road resistance A vehicle fitted with pedrails can travel over the worst roads, can be used where no roads exist, can climb stiff viaducts, and can surmount with ease obstacles in its path. In trials the Pedrail walked over
the American Line at the foot of Fulton Street, North River, New York city, so that vessels held outside of the harbor during fog may communicate with the city at once. The use of the new station will not be re stricted to the vessels of the International Marine Company. Any steamer equipped with the Marconi apparatus will have equal privileges. The station will be for the use of the general public.

The mammoth Brady union stockyard at Atlanta, Ga. which is said to be as large as anything of its kind in the country and the only one in the South, has just been finished at a cost of $\$ 500,000$. It covers thirty acres and has accommodations for five thousand head of cattle and two hundred men. The auction mart is said to be the largest in the world, being 60 by 400 feet. A pretentious hotel has been erected on the grounds, which is encircled by a half mile track. It is hence possible for prospective buyers to South the porch and watch the prospective buyeis to South the porch and watch the
movements of animals in which they may be interested.

THE LODGE-MOIRHEAD SYSTEM OF WIRELESS TELEGRAPHY. by h. C. FYFE, London.
Through the courtesy of Sir Oliver Lodge and Dr. Alexander Muirhead I was enabled the other day to inspect the working of the Elmer's End to Downe wire

Diagram of the Receiving Station

Sir Oliver Lodge.
less telegraph installation in Kent. For some year past experiments have been carried out quietly in a shed at Elmer's End, adjoining the works of Messrs. Muirhead \& Co., and also in another shed situated at Downe, some eight miles away.
Between these two stations signals have been ex changed for a considerable period, but it was only quite recently that the inventors were sufficiently satisfied with their system to bring it before the notice of the cable companies. After a searching series of trials, the experts of the Eastern Extension Australasia and China Telegraph Company reported favorably on the new method, and as a result Lodge Muirhead wireless telegraph installations have been sent out on the two new cable ships "Restorer" and "Patrol," belonging to the above-mentioned company, which have recently been dispatched to lay the new cable ordered by the Dutch government for use be tween Balikpapae, in Borneo, and Metado in the Celebes

This, it may be noted, is the first commercial ap plication of the new system which we propose now to describe.

The Lodge-Muirhead receiver consists of a small fine-edged steel disk which is kept rotating by clock work on a globule of mercury, from which it is separated by a thin film of oil. The construction of the receiver may be better understood by reference to the detail views, in which the disk is designated by the letter a. The mercury, b, is contained in a cup, d. Electrical connection is made therewith through bind ing screw, h, and the platinum wire, c. A copper brush which bears on the shaft, j, communicates current to the disk, a. A small cushion of felt, k, held in a spring support, f. serves to keep the edge of the disk

clean. The disk is coupled to a clock mechanism by the ebonite clutch, g. The film of oil which covers the mercury acts as an insulator and prevents the passing of the current in the local circuit. The ef-

Vertical Section Showing Coherer Details.

Diagram of the Sending Station.

Dr. Mulrhead Adjusting the Lellicate Coherer.

The Automatic Iransmitter with Perforator.

THE LODGE-MUIRHEAD SYSTEM OF WIRELESS TELEGRAPEY.
fect of the oscillations sent out from the transmitting station is to break down the film of oil which covers the mercury and to establish contact between the disk and the mercury, thus completing the circuit of the receiving instrument. No tapper is required, as the coherer automatically decoheres, and no relay is needed, as the current is quite strong enough to work the Muirhead siphon recorder; the clockwork draws the slip on which the signals are pivoted, as well as driving the disk.

The plan of the receiving station can be seen in one of our diagrams. The vertical wire used at the Elmer's End station is 80 feet high, and on it is hung a light wire cage or capacity; an increase in the size of the capacity is necessary when larger distances require to be bridged for wireless communication. The cage is made up of four copper wires strung on to wooden loops with a copper ball above One end of the wire is led through a capacity and in ductance, and is connected up to the shed itself instead of being earthed. The other is led through the secondary coil of the transformer to the coherer.

The current passing through the coherer is led through an adjustable capacity to the Muirhead siphon recorder. The remaining apparatus at the receiving station comprises a local battery, and a potentiometer to regulate the potential of the coherer. The employment of a transformer in the receiving circuit was one of Sir Oliver Lodge's earliest improvements and one which is made use of by Marconi in all his long distance work.

The apparatus employed in the transmitting set consists of a local battery of 10 volts, a sending key and an interrupter for the local circuit. The sending battery may have a voltage of from 14 to 20 . A novel feature is the use of a "buzzer," viz., a couple of telegraphic sounders acting reciprocally, which operate a mercury make and break for the 10 -inch spark coil. To one of the sounders is attached an aluminium needle dipping into the mercury. This forms a uni form and easily adjurtable interrupter for the in duction coil, allows the operator to have perfect control of the sparking frequency, and also does away with the possibility of his receiving shocks, which are liable to occur when the primary of the induc tion coil is directly broken by the key. After passing through the coil the current is led to two small brass rods between the ends of which sparking takes place.

Sir Oliver Lodge, F. R.S., the principal of Birmingham University, has been experimenting with Hertzian waves for a great many years past. On February 24, 1899, he delivered a lecture on coherers at the Royal Institution. A coherer was defined as an instrument which responds to electric waves somewhat in the same manner as a microphone responds to sound waves. Many different forms of coherer were shown, but no mention was made of the steel disk rotating on mercury, as this had not been discovered at the time. On June 1, 1894, Dr. Lodge delivered a lecture at the Royal Institution on "The Work of Hertz," and showed for the first time in England that electric Hertzian waves could be detected by means of suitable receivers through walls and closed doors, when set up by a transmitting or exciting apparatus some hundreds of yards away. In 1897 Mr. Marconi arrived in Eng land with his system, and though Sir Oliver Lodge has kept his results secret until now, he has been working on the subject ever. since his lecture in 189. His first trials were over distances of 40 yards, and now the Lodge-Muirhead system has been operated perfectly at distances of 60 miles. The system was temporarily installed between Holyhead, in the Isle of Anglesea, and Howth, in Ireland.
"God save the King" was the message that passed hundreds of times between the transmitting and re ceiving stations.
It may be noted that the Cunard liners using the Marconi apparatus often intercepted the signals. The inventors are now working on the question of tuning or syntonization, and they have succeeded in tuning the oscillations passing between two stations so that only the properly tuned receiver shall respond to its own special transmitter.
They are of opinion that their devices, which I am not at present at liberty to make public, will neutralize the interference from any station not less than 10 miles distant, and will also prevent their signals from being read by any other station the same distance away.
The 8 -mile Elmer's End to Downe circuit is a very difficult one, owing to the intervening hills, and it would correspond to a sea circuit of quite 60 miles.
During a voyage of the Liverpool steamship "Vedamore" across the Atlantic, signals were exchanged between the ships and the shore over considerable distances, and the system was also tried with success between Washington and Baltimore, a distance of 45 miles. The actual distance which can be covered is of course mainly a question of electric power

The fact that the cable companies, which have
never one of them adopted the Marconi system, have approved the Lodge-Muirhead system and are installing it on their cable ships is a splendid testimonial for the new method.

The telegraphic experts have not been satisfied with the filing-tube coherer used by Mr. Marconi. A every Marconi station it is customary to have on hand some thirty or forty of these tubes, as they have a mysterious habit of getting out of order, and it is impossible often to get them to receive signals at all. Possibly the continuous tapping has something to do with the lack of reliability of the filingtube coherer; we have seen that in the Lodge-Muir head receiver no tapping action is necessary.
Sir Oliver Lodge and Dr. Muirhead believe that they have got a system which will work regularly and without a hitch in all weathers; the coherer em ployed is regular and simple in action and quite easy to adjust, for it can be taken to pieces in a few sec onds and any defects can be easily removed.

It may be mentioned that the disk coherer prefers long and slow oscillations to the sharp discharges which other coherers require, and the former are more convenient to work, especially in long-distance transmission. It is so sensitive that a long stroke or dash of the Morse code reveals the actual rate of sparking by the slight quivering of the line. The record on the tape is strong and clear and quite equal to the best submarine cable working.
Among other new features in the Lodge-Muirhead system, mention should be made of an automatic de vice for short-circuiting the coherer when the verti cal wire is switched on to the transmitter, which obviates the necessity of burying it in a sealed metal case. Another new feature is the application of an ordinary automatic signaling machine to the sender so that the message can be delivered perfectly spaced from a perforated tape, as in the British post-office machines.

THE NEW AMERICAN-BUILT LINER "MINNESOTA." The first to take the water of the two mammoth freight and passenger steamships that have been build ing for several years at the New London yards, is the "Minnesota," of which we present a very striking picture on the front page of this issue. Measured on the basis of maximum displacement at extreme load draft, she is the third largest steamship in the world being exceeded only by the "Celtic" and "Cedric" of the White Star Line. This vessel, which has just been launched, and her sister ship, which is still upon the ways, have been built by' the Eastern Shipbuilding Company, which was organized for the purpose of constructing them. It is a curious and certainly unprecedented fact that this company took the contract for two of the largest vessels in the world before it was in the possession of either a plant, or even of the ground on which to build them. After carefully considering all available sites, the present location, opposite New London, Conn., was chosen.

The dimensions of the new vessel are: Length over all, 630 feet; breadth, 73 feet 6 inches; molded depth from keel to upper deck, 56 feet. On a draft of 33 feet the displacement is 33,000 tons, and on a maximum draft of $361 / 2$ feet, to which the vessel can be loaded whenever the depth of our harbors will admit of it, the displacement will be 37,000 tons. As compared with the "Cedric," the new ship is 70 feet less in length and 18 inches less in beam, but the molded depth is greater by the height of one deck, the plating being carried up, throughout the whole length of the ship, to the upper deck, which extends without a break from stem to stern.. Although the dimensions of the "Minnesota" are less than those of the "Cedric," the fact that she approaches within about 1,000 tons of that vessel in displacement, is to be attributed to the much greater fullness of the New London boat, her bow and stern being considerably bluffer.

The space occupied by machinery is the smallest practicable, so that space for cargo may be as large as possible. In order that cargo may be readily stow ed, the ordinary type of hold pillar has been dispensed with, and large box-shaped columns are fitted, support ing heavy girders which run longitudinally under the transverse beams which carry the decks. These columns are widely spaced, and in some cases only one is fitted in a hold, whereas by the older method ten pillars would be required. A longitudinal bulkhead is fitted the whole length of the ship; this divides each hold into two separate compartments, and therefore the hatches are fitted in pairs, one to each hold. Some of the hatches are so large that bulky freight, such as a locomotive or freight car, or large marine or land boilers, can be lowered right down into the hold. Every hatch can be loaded or discharged simultaneously if desired.

The cargo-handling plant on this vessel is very complete, and designed so as to cut down the number of men to a minimum. Two winches and two booms ar fitted to handle cargo at each hatch. The booms 34 in number, are built of steel. Two heavy booms are
fitted to lift weights of from 30 to 50 tons. The winches for cargo handling are 34 in number, all electrically operated. One hold in the ship is devoted to carrying frozen meat, and is completely insulated; its capacity being about 2,500 tons. The insulation is so arranged that ordinary cargo can be carried on return trip.
The arrangement of coal bunkers is a novel feature on this ship, and, like the construction of the center longitudinal bulkhead and girders, is a departure which, as far as we know, the Eastern Shipbuilding Company have been the first to make in an ocean ves sel. The bunkers are located above the boilers; the ends of the bunkers are inclined in such a manner that the bulk of the coal will gravitate through chutes and be deposited on the firing platform. The capacity of the permanent bunker is over 4,000 tons, and a reserve bunker is fitted contiguous to the boiler room, having a capacity for about 2,000 tons of coal.
The "Minnesota" has 16 Niclausse water-tube boilers, having a working pressure of 260 pounds per square inch. They will supply steam to two main engines of the triple-expansion type, which are arranged side by side, working separate shafts. The propeller wheels are 20 feet in diameter, and revolve 78 times per minute. The horse power of the engines will be about 10,000 , and they will drive the ship at a speed of about 14 knots per hour.
The imposing appearance of the "Minnesota" is well shown by our engraving, which is supposed to be taken from the deck of a harbor tug, when the ship is entering an eastern port. In order to emphasize the great height of the vessel above the water, she is supposed to be running light, and even in this condition there is nearly 20 feet of the hull submerged. To realize the great size of the ship, we herewith recapitulate the various decks, platforms, etc., from the keel to the topmost bridge. First there is the outer bottom of the ship; 6 feet above that is the inner bottom or floor; then within the molded or plated structure of the vessel are the orlop, lower, between, main, and upper decks. All of these decks are of steel plating, and the whole structure of the ship from the bottom to the upper deck is 56 feet in height, the upper deck running, as we have said, in an unbroken sweep the whole 630 feet length of the vessel. Above the upper deck are the promenade deck, the upper promenade deck, and the boat deck, this last being about 80 feet above the keel, while 8 feet above this, or 88 feet above the keel, is the captain's bridge. Now, since the ves sel at her lightest draft draws 17 feet of water, the captain's bridge, when the vessel is running light, will be over 70 feet above the water, and the passengers on the topmost upper deck will be between 60 and 70 feet above the water. From this elevated platform, they will be able to look down upon the crests of the heaviest seas that are ever known in the Pacific, and the broad beam and great mass of the vessel will cause her movement to be slow and regular, so that none but the most sensitive passengers should ever be troubled with seasickness. The "Minnesota" and her sister ship will be engaged in the Pacific trade, running from the home port, Seattle, by way of Hono lulu to Yokohama. The distance from Seattle to Hono lulu, the first stopping point, is about 2,300 miles, and from Honolulu to Yokohama 3,500 miles.

Several interesting experiments have been carried out by the Austrian army to obtain reliable data relative to the possibility of disabling a balloon when floating in the air, by either rifie or gun fire. For the purpose of the experiments a balloon was anchored at the height of about 7,000 feet, and the gunners, kept in ignorance of the range, were then commanded to dis able the balloon. The difficulty of hitting the balloon when in midair can be realized from the fact that the gunners fired twenty-two shots before the approximate range was found, and that it was not till the sixtyfourth round that the balloon was hit, and then only slightly. The small tear in the gas bag, however, was sufficient to cause the balloon to descend slowly.

First Land Wireless Newspaper.

The only daily newspaper in the world publishing "sure-enough" dispatches transmitted by wireless telegraph had its birth on March 25, at Avalon, Santa Catalina Island. The event is important in the his tory of journalism and marks the beginning of an epoch in the dissemination of news in isolated places The name of the infant journal is The Wireless, appro priately so called on account of the method by which it receives the news of the busy world. The unique sheet begins its career in the shape of a three-column folio, the exact size of the pages being 11 by 8 inches In this convenient form is crowded, in addition to the local news of Avalon, an epitome of the local and gen eral news appearing simultaneously in The Los Angeles Times, thus giving the residents of the island and visitors to its lovely shores a comprehensive synopsis of all the principal news of the world, hours before the arrival of the steamer from the mainland with the Los Angeles morning paper.

Coxiceaphadente.

Wanted-An Ink That will Not Fade

To the Editor of the Scientific American:
If some one will invent a permanent typewriter ink he will do the business world a great service and probably a good business stroke for himself. Aniline ink is apt to fade if exposed to light. A lot of typewritten matter was stored in a slightly damp vault for six months. On removal the paper and gall-ink signatures were in best of condition, but all trace of typewriting had disappeared. A letter book was wet with water (not chemicals) in extinguishing a fire. The signatures were all that remained of the hundred pages of correspondence.
Milwaukee, Wis., February 4, 1903.

Dust-Is it Dangerous?

To the Editor of the Scientific American:
When the maid chases the dust round the room with a feather duster, she might as well be throwing chips to the wind so far as any good can come from it. Our brooms are nearly as bad, for all the fine dust-the kind that does harm-goes up into the air and escapes the dust-pan, to come down again after quiet is restored. Carpet sweepers are a slight im provement, but they do not sweep clean; some carpets require the strength of a good man with a broom to get the dirt out of them. If this is true, there is a great field for the inventor to produce a sweeper that will be sanitary; it must swallow all the dust.
It is quite important to know what dust consists of to be able to judge as to how healthy it is, and for this purpose many analyses have been made, leaving out factory, grain thrashing machine, and country road dust. We will take ten liters of air for a basis; in the Boston City Hospital the number of living bacteria was found to be nearly 450 , and of molds 225 . In a model New York hospital, where everything is supposed to be clean, and all the attendants are thoroughly drilled to fully understand what the word clean means, 12 living germs settled on the disk, and after sweeping 226. In a New York tenement house carpeted living room, 75 living bacteria settled on the disk in an exposure of five minutes; after sweeping 2,700 , and mold settled on a plate or disk three and three-quarters inches in diameter.
Using the same basis for outdoor analyses, in ten liters of air in Central Park, N. Y., 500 were found; in downtown streets, 965 , and where the street sweepers were at work 5,810 living germs were found in the small space of three and three-quarters of an inch in a five minutes' exposure. Certainly not very healthy air to breathe.
Just how unhealthy and bad such air is will be left for the reader to guess at. One-half a liter of air (about 30 cubic inches) is what a man takes in every time he breathes, and if of weak lungs, he takes less, but always enough of the dust-laden air that may contain one or more tubercle bacilli, which may pass the many guards nature provides to prevent it, anil settle in his lungs. Consumption follows. Nearly onefourth of all deaths are from consumption, prineipally distributed by dust. Diphtheria, smallpox, yellow fever, Asiatic cholera, typhoid fever, scarlatina; measles, pneumonia, erysipelas, blood poisoning, etc., are among the diseases often disseminated by invisible dust particles.
The expectoration of a consumptive may contain millions of germs. Falling on the sidewalk of a city, it is soon tracked over a large area and gradually mixed with the dust; the same on the street, especially on asphalt pavements, where each wheel, acts as a millstone, grinding everything into the finest powder, to be raised by passing vehicles into the air and sent into thousands of healthy lungs.
These conditions are reversed when it rains; the disease germs are washed into the sewers, and rarely, if ever, get a chance to enter into the air again as dust; then why not imitate rain, and sprinkle the streets? There exists even among well-read people a notion that sprinkling of the streets is unhealthy. A clean street thoroughly sprinkled cannot be unhealthy, and a dirty street is certainly less dangerous to health in a state of mud than if the mud was converted into dust, to be carried into our systems, our houses, and our clothing.
City streets should be kept scrupulously clean by band labor, preferable to machines, and thoroughly sprinkled from four to ten times a day, according to the amount of travel and the condition of the atmosphere. No street used for general traffic can be kept perfectly clean, that is an impossibility; then do the next best thing. A street cleaned once or twice a week cannot be very clean. A man with suitable tools, according to the pavement, shourd be given as much territory as he can cover from five to ten time:; a day, removing the droppings at once before they are ground into dust. A sprinkling wagon should keep it damp enough to keep the dust from rising;
the wagon should also have a hose attachment, so that a man or boy can wash the dust from the sidewalis at least three times a day. Asphalt pavements require more sprinkling than other pavements, but it is not necessary that they be constantly wet, for the reason that after sprinkling, the dust and dirt form a paste that will not again rise in dust, even if the pavement looks perfectly dry, until the wheels have again pulverized it into powder. Horses do not slip on wet pavements when they are clean; the dirt makes them slippery. The first few drops of fine rain or dew sometimes cause trouble, but the heavier the rain or sprinkling (from cart), the better on asphalt. If asphalt pavements contain the proper ingredients to effectually shed water, no injury can come from any amount of rain or sprinkling, in fact the more the better; if, however, any water is absorbed, as is shown by a spot that does not dry at once when the rain stops, such spots soon become holes, especialiy in fall, when frost gets at them.
Municipal corporations should furnish all the water free, from a sanitary point of view, to anyone who is willing to hold a hose or employ a cart to sprinkle walks or streets. Whenever a village grows out of barbarity into civilization, they close their wells, build waterworks, and employ sprinkling wagonsdrink pure water and stop eating dust.
Country air may contain only 200 particles of dust per cubic centimeter, while that of large cities may run up to 150,000 , and in tenement houses as high as $1,000,000$. These particles consist of sand, soot, cotton fiber, pollen, fine hair, pulverized excreta of animals, parts of seeds, bacteria, molds, etc. Most of these of course are perfectly harmless, except when they are too numerous and irritate the respiratory organs or contain the live germs of contagious dis eases.
Our modes of ventilation, so far as dust is con cerned, are as crude as our way of chasing the dust from one place to another with dusters, instead of catching it with damp cloths and damp brooms. The only pure air is so far above us as to be practically out of reach, but some day there will be a trust organized to supply dwellings with pure air, as we now imagine we enjoy pure water.
C. D. Zimmerman.

Buffalo, N. Y.
Does Water Extinguish or Feed a Fire? To the Editor of the Scientific American:
It seems to me about time that the practice of using water in trying to extinguish fire in buildings should cease. Why use an element that assists combustion, in trying to destroy combustion? In theory, water destroys fire very well, in practice it does not, owing of course to the impossibility or reaching the flame, thus feeding the same and adding to the danger What a magnificent chance for inventors to bring out something practical to destroy fire, and also a way to apply same, so it could be used by anyone, and not require an expert.
F. N. Davis
[The proposition of our esteemed correspondent is interesting, and if feasible should lead to valuable results. We are not able, however, to assent to some of the positions of his letter. We are aware that there is a popular impression that water thrown upon fire assists the conflagration under certain conditions. We, however, are also aware that chemists do not consider this to be a fact. Water cannot feed a fiame unless it is separated into its constituent gases, oxygen and hydrogen. Water is the most destructive o fire of any liquid which can be commanded in sufficient quantities for such a use, since it contains all the oxygen it can hold. The question, then, resolves itself into this: Can water discharged upon a fire be separated into gases so as to feed the flame? The probabilities are decidedly against this. Water is every day separated into its constituent gases in all our cities in the making of water gas, as it is called, so that the problem of accomplishing this is well understood. For the beginning of dissociation a temerature of 2200 deg. F is required. The dissocia tion is complete at 4,500 deg. F. It is very safe to say that these temperatures are not possible in the open air. The blast furnace will give a temperature of 3,300 deg. F. In a confined space, as in a water gas plant, anthracite coal under a blast of air will pass the temperature required for dissociation; but with nothing to prevent the escape of the steam there is no reason to suppose that it can be made hot enough to dissociate it, and so there is no reason to believe that any open-air conflagration was ever fed by playing water upon it.
The only substance besides water to be used for putting out a fire is carbon dioxide, a gas most efficient for this purpose. It is the basis of all chemical fire extinguishers. The difficulty in its use is to place it where alone it can be of service, at the very base of the flame. The strong ascending currents of hot air divert the stream of carbonic acid gas, and it does not easily accomplish its object.-Ed.]

Suggestions Regarding the Metric System
To the Editor of the Scientific American:
The objection to the metric system of measurement for common use, is that its subdivisions are odd and do not give the even or binary divisions of quarters, eighths, sixteenths, etc. The division of the centi meter into ten equal millimeters is for many pur poses entirely unsuitable.

It is precisely similar to our subsidiary coins. In strict adherence to the decimal system, the next denomination below the dollar is the dime; but if we had no intermediate coins, we should find the decimal system. of currency very inconvenient for practical purposes. The half and quarter dollar coins are very necessary; and although they are entirely foreign to the decimal system, their use detracts nothing whatever from it.

The metric system possesses all the advantages of our decimal system of currency; but in order to make it available for general use, it should be modified in the same way; that is, to divide the centimeter into halves, quarters, eighths, etc., same as we now divide the inch. The $1-32$ centimeter is a little smaller than our 1-64 inch. This subdivision of the centimeter will correspond with the halves, quarters, etc., of the decimeter, and also of the meter.

For some uses, the millimeter divisions are necessary, and rules should be made with the binary divisions of the centimeter on one side or edge, and the millimeter on the other. Rules three and six decimeters long would be nearly the same length as our one and two foot rules respectively.
This slight modification would make the metric scale as convenient and acceptable as our foot rule while retaining all the advantages of the metric sys tem.

Galveston, Tex., March 19, 1903.

The Duodecimal System.

To the Editor of the Scientific American
Regarding the suggested "duodecimalization" of our arithmetic and weights and measures proposed by Mr. Reeves, I wish to state that few practical men have ever been guilty of proposing to substitute a duodecimal system of weights and measures without a similar change in our arithmetic. The inconvenience in calculation would be very great, and no compensating advantages would be felt unless our arithmetic were changed. To abandon our decimal system of arithmetic would be as impracticable as to adopt Volapuk. Our decimal arithmetic is like our language, a universal inheritance of the race; and the metric wystem is the further extension of the decimal plan already applied to our arithmetic and our coinage. The metric system is evolutionary; a duodecimal sys tem would be revolutionary.
James Watt, the inventor of the steam engine, proposed the decimal division of the pound; Thomas Jefferson suggested a decimal system of weights and measures; John Quincy Adams favored the decimal base. Abbe Gabriel Mouton (in 1670) first proposed a universal decimal system. Note that all the proposals of the great practical metrologists have been for the decimal system. The unanimity of this point resulted in the establishment of the metric system, conforming to our arithmetic and our coinage. This system involves neither the introduction of strange numerical symbols nor the readjustment of our arithmetic as would a duodecimal system. The adoption of a duo decimal system would multiply the inconvenience of learning weights and measures, whereas the metric system would simplify it, because no special arithmetic is required, and our computations are cut short about fifty per cent, and our arithmetics could be reduced to two-thirds their present size by omitting the present sets of tables.
When we have a duodecimal arithmetic, it will be time to talk of changing our coinage, and our arith metic, and our weights and measures to that system. The present movement for the adoption of a metric system would result in a maximum gain with a minimum of inconvenience. The simplicity of a single ratio in all commercial calculations, accounts, meas ures, and numbers is so obvious as to appeal to every one who thinks. Lord Kelvin states that instead of involving confrasion during the transition, the reverse happened in his own establishment; that the adoption of the decimal system was a convenience from the very first.
Our country has been very slow in accepting the metric system, largely through ignorance of the metric system, but partly because of the inconvenience of making the change. Surely it would be folly to expect theat we would accept a reform which is a hundredfold more sweeping, and the results of which are doubtful. Why not accept first a reform the practical value of which has been tested in all civilized countries, and proven beyond doubt by the forty nations who have already adopted the metric system?

January 21, 1903.
N. Y. Hubbard.

THE MOST POWERFUL EXPRESS PASSENGER LOCOMOTIVE.
The Scientific American has duly illustrated and described, from time to time, the most powerful passenger locomotive as each engine, which was qualified to bear this title, has made its appearance. At present the largest and most powerful express engine in existence is the one shown in the accompanying illustration, which has just been built by the Baldwin Loco motive Works for the Chicago \& Alton Railway. This and a sister engine have been built especially for the heavy passenger excursion trains which will be run in connec tion with the St. Louis Exposition.
With a view to de termining the best type of engine for this particular service, the Chicago \& Alton Railway borrowed and tested some of the most powerful passenger engines in the United States. They found that big as some of these were they were still were, equal to the heavy exactions of the proposed service, and accordingly a design of an engine heavier and more powerful than
any of its kind in existence was drawn up. Hence it will be seen that the raison d'etre of these en ormous engines, so far from being any foolish desire to build the biggest engines in the world, is to be found in the extraordinary exigencies of the traftic which the road will have to handle when the Exposition opens.

The duty of these engines will be to haul trains made up of twelve passenger cars, and weighing about 600 tons exclusive of passengers and baggage. Such a train will accommodate 760 people, whose aggregate weight would not be less than 57 tons, and estimating their baggage at 15 tons, the total weight of the train behind the engine will be 675 tons. Such a train will have to be hauled $1101 / 2$ miles in two and one-half hours, making two stops and three slowdowns for railway crossings. This will reduce the actual run ning time to two hours and twenty-four minutes, and necessitate an average running speed of 46 miles per hour.

The most powerful locomotive used in the prelimin ary test was a Prairie type engine, with six-coupled wheels, $201 / 2$ x 28 -inch cylinders, 80 -inch drivers, 33,043 square feet of heating surface, and 34,990 pounds tractive power. From the results obtained it was decided that to do the work an engine fifteen per cent more powerful than this was needed, and accordingly the present mammoth lomotives were built The cylinders are 22 inches in di ameter by 28 inches stroke; the driving wheels are 80 inches in diameter, and the working steam pressure is 220 pounds to the square inch. The engine is carried on twelve wheels, a forward truck, six connected driving wheels, and a trailer beneath the firebox. The total weight on the driving wheels is 141,700 pounds. On the front truck the weigh is 36,300 pounds, and on the trailing wheels 41,500 pounds, the total weight of engine being 219,500 pounds, and the total weight of the engine and tender is about 374,000 pounds. The tender, which has a capacity of 8,400 gallons of water and 9 tons of coal, is the largest yet built by the Baldwin Company. The boiler is of the straight type and 70 inches in diameter, with 328 $21 / 4$-inch tubes 20 feet in length. The firebox is 9 feet long by 6 feet wide, 6 feet deep at the front, and 5 feet, 4 inches deep at the back. There are 202 square feet of heating surface in the firebox, 3,848 square feet in the tubes, and 28 square feet in the firebrick tubes, making a total of 4,078 square feet of heating surface, or 500 square feet more than the New York Central express engines possess. The grate area is 54 square feet A remarkable feature, which in itself is illustrative of the great size of these engines, is the smokebox, which is no less than 8 feet, 5 inches in length. The tractive effort is 31,600 pounds; that is, if the tender drawbar were attached to a dynamometer, it would register over 15 tons.

an electric fire engine.
These are the principal parts of the equipment, but there are some other necessary devices including a general interrupter, two circuit breakers, a reversing commutator and other accessories. The apparatus com plete is arranged on a two-wheeled, one-horse cart
The hose is carried on a separate cart coupled to the electric fire engine, and the reel carries 660 feet of hose. The reels upon which the conducting wires are wound carry approximately 660 feet of rubber-insulated wire, so that connection may be effected without difficulty, and it is obvious that water can be projected
to a distanee of 1,320 feet from the point at which electrical connection is made.
The total weight of the complete apparatus is 2,288 pounds, including that of the two firemen seated on the engine, against 9,760 pounds of a standard La France steam fire engine, such as is called for by the specitications of the Borough of Manhattan (New York city); of course an allowance must be made for the differ ence in horse power between the Rouen electric fire engine and the Manhattan steam engine, since the former is only eight horse power and the latter is twenty-two horse power, but the ratio of in crease in weight per horse power is very mall in the electric fire engine.
The dimensions of he one under consid ration are as follows: length, 3 feet, $31 / 2$ inches; width, 1 foot 8 inches; height, 1 foot, 3 inches. Com pared with these fig ures, the dimensions of a steam fire engine eem abnormally large viz.: the boiler is 64 inches in height, and 30 inches in diameter With water under ordinary pressure from a hydrant, a stream was forced to a height
others the following advantages. fcur minutes after reaching a fire it is ready to oper ate; (b) it is extremely light and therefore good time may be made; (c) no coal or fire or water is required for raising steam; (d) there is an absence of noise, cinders, heat, smoke, etc; (e) there is no boiler to clean and no danger from explosion; (f) it is less expensive in its initial cost than the steam fire engine and is cheaper to maintain; and (g) it requires practically no attention when in operation
The first electric fire engine constructed at Rouen is shown in the accompanying engraving and consists of an eight horse power electric motor coupled direct to a pump, both of which are on the same plane; the motor makes about 2,000 revolutions per minute and is wound for a 525 -vol.t direct current.

When the electric fire engine is in action, the current is tapped by means of a movable bamboo perch, one end of which is fastened to the truck carrying the equipment and the opposite end is simply poised on one of the overhead trolley wires, or at night con tact may be made with the electric lighting cables.
The feed wire is rolled on a reel above the motor as shown; the circuit is completed by a similarly arranged wire wound on an adjacent reel; the free end of this wire terminates in a block of cast-iron placed on one of the rails of the street railway tracks.

The Latest About the Edison Battery.
The long delay in the appearance upon the market of the widely heralded Edison storage battery has given many persons an impression that in the development of the invention Mr. Edison ran up against some "snags." What the difficulties met with have been has so far remained dark, but some recent utterances of the inventor and a number of recently issued patents throw some light on this subject.

In the first place, the nominal capacity has been re duced from that given in the first description of the new cell by Dr. Kennelly before the American Institute of Electrical Engineers about two years ago, and with the present rating the Edison battery is hardly equal to the best lead batteries as regards specific capacity As the amount of energy which a certain quantity of the active material is capable of storing is invariable, it must be inferred that it was found expedient to reduce the proportion of active material to the total weight of the cell. This inference is confirmed by one of the patents referred to, in which it is stated tha the oxidizable element of the cell swells considerably during the proceiss of charging, resulting in the bulging out of the walls of the sheet steel pockets which retain the active material. This necessitated a greater space between adjacent plates, which space had to be filled with electrolyte, thus adding to the weight. Pos sibly the same action necessitated heavier retaining walls. The present invention aims to overcome this difficulty, but it evidently accomplishes the object only in part, for, although it may not be necessary to space the plates as widely with concave pocket walls as with straight walls, the concave walled pockets will hold less active material, which would seem to reduce the capacity.

The subject of the other patent is a new admixture of conducting material for the active material. Originally fine flake graphite was used for this purpose. It is now proposed to mix the finely divided iron with mercury and copper, which is claimed to have the same effect on the conductivity of the active material as the graphite, and in addition keeps up the voltage toward the end of the discharge.-The Horseless Age.

New Statistics of the Weight of the Human Brain.

Prof. Marchand, of Marburg, publishes the statis tics of the largest number of brain weights so far collected. His analysis includes 1,169 cases. The avarage weight of the brain at the birth of a male child, according to Prof. Marchand, is 360 grammes; of that of a female child 353 grammes. He concludes that the lesser weight of a woman's brain is not alone dependent on her smaller stature, for a comparison of both sexes of the same height shows that the male brain is invariably heavier. In a growing child, until it reaches a height of 70 centimeters, the brain weight increases proportionately with the body length, regardless of age or sex. After this the male brain begins to outstrip the female. The maximum weight is attained about the twentieth year, at which age that of the male averages about 1,400 grammes. The grammes. The female maximum is usually reached
about the seventeenth year, when the average is 1,275 grammes.

A new graving dock is to be built at Belfast, Ireland, ai a cost of $\$ 1$,500,000 . It will be 750 feet long, 96 feet long, 96 feet wide at the enfeet wide at the bottom. The depth will be 32 feet from the blocks to ordinary highwater level, and some 4 feet 6 inches will be allowed for the blocks.

The Writer. The Musician.
THE AUTOMATONS OF TAQUET-DROZ EXHIBITE The Draughtsman
THE AUTOMATONS OF JAQUET-DROZ EXHIBITED AT THE COURT OF LOUIS XV.-From an old lithograph
"Writer,'’ built by Jaquet-Droz the elder. The engrav ing presents a view of the same when the automaton is opened at the back. It is actuated by two movements, an upper one and a lower one. The latter con stitutes, as it were, the thinking el.ement, inasmuch as it makes the desired letters and all the necessary preparations, whereupon the upper movement execute the letters proper. Both movements are connected in such a manner that they never operate simulta neously but that one arrests the other if it is to act itself.

The barrel, B, of the upper movement is connected with the fusee, C, by means of a chain, in such a way that, during the winding, the chain unwinds from the former onto the fusee, thus tightening the spring in the drum and causing the movement to start. The motion of the barrel, B, is transmitted by means of the gear wheel, E, mounted upon the axle, b, of the letter cylinder, A. At G. is the regulator, a fly, which is governed by special stops. From this fly a stop extends downward to the fly of the lower movement in such a manner that when the upper one is free, the lower one is arrested, and vice versa.
We will next consider the mechanism of the lower movement. On the arbor, I, is mounted the letter disk M, consisting of three annular plates connected to each other. Of these plates only the exterior one is visible. The one situated next to this is toothed, while the third one has recesses for the inclined planes. The movement of the disks is simultaneous. The pitch of the inclined planes governs the height to which the driving cam, P, is lifted for each letter, and is, therefore, different in each case.

The cam, P, is attached to the lever, P^{\prime}. At the end of P^{\prime} is the arm, R, to which a double chain is made fast. This chain is led over the pulley, l, and around the arbor, I, in such a way that it and a similar chain, coming from the other side, cause the loose arbor, I, to revolve according as the lever, P^{\prime}, with its cam P is lifted by means of the inclined planes. From this it follows that I must make a small or large portion of a whole revolution with each letter. The regulation of these revolutions is accomplished by the teeth, T, around the edge of disk, M, each pair of which cor responds to a letter or punctuation mark.
Let us now turn to the upper movement. This causes, when the lower one stops, a complete revolution of the wheel, E. With this wheel are connected the three rods, a, b, c, so that b turns on its axis when E revolves On b are mounted 120 eccentric disks, which are main tained in their position by the rods a and c, in such a manner that the whole eccentric column may be moved up and down on the rods, a, b, c, but at the same time follows the revolution of the rod b, on its axis. Each of these disks is specially shaped for a letter corresponding to it. The three levers, H, K, L, bear upon these disks and transmit the motion obtained from them to the right arm and hand. Their motion is a four-fold one: (1) horizontal, moving forward and backward; (2) horizontal, moving right and left; (3) oblique and also arched resulting from a combination of the first two; and (4) vertical mo tion. The shapes of the eccentrics have been determin ed by laborious trials. From the above it will be seen that three disks are ne cessary to trace one let ter. During ter. During one revolu tion the three
levers work levers work
simultaneously or interrupted ly as the eccen trics direc them. The eccentrics are because of their connec tion with the crank, througn the inclined planes, and be cause of thei perfect adjustment, lifted so accurately in line with the three lever that the latter
set in jewels, give as a result the desired char acter.
The writing android can write any sentence, but the proper changes must first be made in the disk M, which requires about two hours' work. The actual penning of the sentence of about 40 letters, no matter what text, is accomplished by the android in three or four minutes.
The "Writer" dips the pen in the ink, squirts out the superfluous ink, moves its head and eyes, distin guishes between the down strokes and hair strokes in the letters, and forms them nicely rounded.
The mechanism of the "Draughtsman" is constructed on the same plan, but naturally he draws only certain things, When exhibited before Louis XV., of France, he drew the King's portrait, adorned with a laurel wreath, a gallantry which so impressed the King that he decorated Droz with an order. Shown at the British Court, the "Draughtsman" astonished the royal audience by sketching the portraits of George III., and his wife, Charlotte, on the same piece of paper. He also draws a small dog, under which he writes the words "Mon Toutou," and a picture of Cupid seated in a triumphal carriage drawn by a but terfly. All these objects the little android sketches with the ease of a live person. Now and then, when his drawing has advanced somewhat, he holds the pencil. aside, inspects his work at a distance, moving his head and eyes, blows the graphite dust from the paper, and then resumes his work, doing the shading etc., perfectly.

With the "Pianist" we also find the eccentric sys tem. The android, apparently a young girl, twelve or thirteen years of age, is seated at the "Clavinos"-a spinet-like instrument-and plays entirely by the pres sure of the fingers, which is essential; hence it is not in itself a music box. It, too, plays only certain pieces. The mechanism in this android also regulates the movements of the body, such as a graceful bow, motion of the head and eyes, heaving of the chest in breath ing, etc.

The "Draughtsman" and the "Musician" were con structed by Jaquet-Droz, the younger.
The history of the three androids is an interesting one. Accompanied by an English impresario, Jaquet Droz, the younger, also showed the androids in Spain The Spanish King evinced great interest in them, and received the artist with marked attention. But the populace, bigoted and superstitious, did not take kindly to the androids. Jaquet-Droz was thrown in the Inquisition dungeon, and although he was soon set free, his British manager, who had caused all the treuble by representing the matter in a supernatural light, claimed the automatons as his property. JaquetDroz returned to Switzerland, thoroughly disgusted A French nobleman bought the androids, but could not make them work, and for many years they stood in the castle of Mattignon, near Bayonne, because the owner had died on a voyage to America, and no one knew of them. After changing hands various times they came into the possession of the family of the present owner, where they have remained for the last one hundred years. They are in as good condition as they were when created by their makers one hundred and fifty years ago.
Despite the high development of the mechanical arts, these androids have not been equaled up to the present time. They are unique, and art experts have estimated their value at 150,000 marks $(\$ 38,000)$.

APPARATUS FOR DISCHARGING BILGE

WATER FROM SHIPS.

The accompanying engravings show a simple apparatus whereby the foul water which collects in the bilge of a ship may be easily and effectually discharged. The apparatus is the invention of Mr. Joseph R. Jobin, care of L. E. Meyer, 302 Chestnut Street, St. Louis, Mo. As illustrated, the water is discharged through a chamber formed by a casing let into the bottom of the hull of the vessel. This casing is provided with a spout or discharge tube projecting rearwardly and lying flush with the face of the hull. The upper wall of the casing is provided with an opening communicating with the hold of the vessel, but is normally closed by a valve W. A steam pipe S enters the chamber at a point to the rear of this valve. A jet tube is coupled to the end of the steam pipe, and projects into the discharge pipe.
To discharge the bilge water from the vessel, steam is flrst admitted to the jet tube, and then the valve W is opened. The steam in escaping from the jet tube creates a vacuum in the discharge pipe and chamber. This causes the water in the hold to be sucked out into the chamber, and pass out with the steam through the discharge pipe. If it be desired to scuttle the ship, this can be easily done by opening the bilgewater valve without admitting steam to the cham-
ber. Water will then quickly flow into the vessel The simplicity of the whole apparatus is readily ap parent. It requires no attention, since it comprises no moving parts to get out of order. It will be noted that the valve W has a very strong construction whereby it may be firmly seated to prevent leakage.

Nova Geminorum Before Its Discovery.

On March 27, 1903, a cable message was: received from Prof. Kreutz, of Kiel, stating that an object which was probably a new star, but was possibly a variable, had been discovered by Prof. Turner. Also, that on March 16 it was of the magnitude 8.0 , while on February 16, it had not been seen (presumably on a photograph). Its apparent place was \cdot R. A. 6 h .37 m . 48 s ., Dec. +30 deg. 3 min . The grant from the Car-

Sketch of Cupid Drawn by a Butterfly.

King George III. and Queen Charlotte, as Sketched by the Draughtsman in Their Presence in 1774.

DRAWINGS MADE BY THE JAQUET-DROZ ARTIST

 android.negie Institution permitted an examination to be made of the early photographs of the Henry Draper Memor ial, and furnished the history of this object from its first appearance to the present time. An excellent photograph of the region, taken 1903, March 1d. 15 h $3 \mathrm{~m} ., \mathrm{G} . \mathrm{M} . \mathrm{T}$., showed stars of the magnitude 11.9 , but no trace of the Nova was visible. A similar result was found from sixty-seven plates, the first taken March 3, 1890, the last on February 28, 1903, although nearly all of these plates showed stars fainter than the twelfth magnitude. One or more of these photo graphs were taken on each intermediate year. It did
of the Nova. The image is on the very edge of the plate, and accordingly was compared with fifteen other stars at about the same distance from the center of the plate. The Nova was compared twice with each star by each observer. The value of the grade was much larger than usual, and equaled 0.21 and 0.33 for the two observers. The mean result for all was magnitude 5.08 , with an average deviation, for the separate stars, of ± 0.26.

The evening of March 27 was cloudy and also the early part of March 28. One plate, however, taken on the latter date gave the magnitude, 8.34. Several photographs were taken on March 29, 31, and April 1 , and gave the mean magnitudes, 8.24, 8.24, and 8.25. It is probable that the fainter stars are really fainter than these magnitudes indicate, but the latter will serve to determine the relative changes in the Nova as it grows fainter, and thus render the results of different observers comparable. All the magnitudes can later be reduced to an absolute scale. They also serve to compare the faintest stars shown on early plates. Thus, the photograph taken March 1, 1903, shows star t , and also stars at least a tenth of a magnitude fainter. Star u does not appear. Hence this plate shows stars of the magnitude 11.9 and brighter.

A plate taken March 25 is of interest since it was taken with an objective prism, and accordingly shows the spectra of the Nova and of the adjacent stars. Six bright lines are shown in the spectrum of the Nova, whose designations. assumed wave-lengths, and intensities, calling the intensity of the line $H \gamma, 10$, are as follows: $H \zeta, 3889.1 ; H \varepsilon .3970,3 ; H \delta, 4102,8 ; H y$, $4341 ; 10-, 4643,11 ; H \beta, 4862,9 . \quad$ From this it appears that the spectrum resembles that of Nova Sagittarii on April 19, 1898. No dark lines are visible, but this is perhaps owing to the small dispersion.
The same lines, and having nearly the same intensities, appeared on similar photographs taken on March 29, 31, and April 1. They also showed the additional nebula line, 5003 , which has the intensity 2 or 3 , and is certainly brighter than $H \zeta$. This line does not appear on the plate taken March 25, and indicates the first step in the change into a gaseous nebula. Three additional bright lines were detected in the later photographs, whose estimated wave lengths are about 4176, 4240, and 4462.
In the other new stars the appearance of line 5003 was followed by the diminution in intensity of the line $H \beta$, and the appearance and rapid increase in the nebula line, near $H \zeta$, which finally became the strongest line in the spectrum.
A most important question in connection with the appearance of new stars is, whether such objects can come and go without detection by astronomers. Since the Henry Draper Memorial was established, nine new stars have been discovered. Six of them, Nova Persei No. 1, Nova Normae, Nova Carinae No. 2, Nova Centauri, Nova Sagittarii, and Nova Aquilae, were found in the regular examination of the Draper Memorial photographs, and probably all of them would otherwise have escaped detection. Two, Nova Aurigae and Nova Persei No. 2, were bright, and were found visually by Dr. Anderson. The first of these might have escaped detection here, although numerous early charts were obtained which showed that it was visible to the naked eye during seven weeks before its discovery. The spectrum of Turner's Nova is so conspicuous on the plate taken on March 25 , that when this plate was developed and examined it would doubtless have been found on it here, but for the prompt discovery and announcement by Prof. Turner.

Edward C. Pickering.
Harvard College Observatory.
The steady development of the coastwise passenger trade of the United States is shown by the steady growth of the various fleets that run between the leading ports of the country. This is particularly noticeable in the Southern trade and that to the West Indies. During the present month a new American-built passenger steamer the "Monroe" will take her place on the daily service of the Old Dominion Line between New York and Norfolk. She is a steel ship 366 feet in length and 46 feet in beam. She is driven by triple-expansion engines of 4,500 horse power at a speed of 16 knots per hour, and has accommodations for 150 first-class and 76 sec ond-class passengers.

France is no longer the only source for the supply of absinthe. In some sections of Wisconsin the liqueur is distilled not only for American consumption, but also for export to Europe.

The Braun system of wireless telegraphy has been anccessfully tested in holding communication between stations and moving trains.

New German High-Speed Traing.
It has been decided to increase the speed of the trains of the Prussian State Railroads running between Hamburg, Hanover, and Berlin. This.decision is the outcome of the experiments with the high-speed electric locomotives upon the Berlin-Zossen military rail rad. The new high-speed trains are to be propelle by steam, as the Berlin-Zossen experiments proved that heavy electrical trains exercised a great wear and tea upon the rails. All the leading locomotive builder were invited by the State to submit designs and speci fications for hign-speed steam locomotives. Of th competitive designs submitted, five have been selected and the firms who prepared these respective project have again been requested to study further the prob lem, and to submit fresh designs for steam locomo tives capable of attaining a speed of 100 miles per hour with a light load, and 90 miles an hour in ordin ary traffic. The five locomotives to be built for th purpose will be submitted to exacting and exhaustive tests to ascertain precisely to what extent they coin cide with the State's requirements in the direction of high speed. The construction of these new engine will mark an important development in railroad transit in Germany. Simultaneously the electric firms ar endeavoring to overcome the objections, and to elimin ate the inherent defects, which characterized the electri locomotives in the Berlin-Zossen tests, so that ver keen competition is now rife between the steam and electric locomotive builders, and some interesting comparative data relative to the two systems of train propulsion will soon be available.

The high-speed steam railway competition, which was inaugurated about a year ago by the German So ciety of Mechanical Engineers, has resulted in no prizes being awarded; only five of the plans submitted being given honorable mention. It is now under con sideration to submit a closed competition between the five more successful engineers under specifications of a more practical nature. In last year's competi tion it was specified that the steam locomotives wer to be designed to be powerful enough, and to be capa ble, with the cars, of withstanding the high speed of 90 miles per hour, a train speed which has been thor oughly demonstrated both here and abroad to be fa beyond the limits of possibility imposed by the track and road-bed conditions of the best railway lines.

It is announced that Stanley Spencer will possibly enter for the St. Louis airship contest

A CENTURY PLANT IN BLOOM.

The "century plant" was so named because of the popular idea that it blooms only once in a hundred years. It need hardly be said that this idea (like most popular ones) is erroneous. In the genial clim ate of California the plant blooms in from fifteen to twenty years, but in colder climates from forty to fifty years may be necessary to bring it to maturity The botanical name of the plant is Agave Americana variegata, and was given to it because of its splendid appearance. The agave is a native of Northern Mexico, where it is named the maguey and furnishe pulque, the national drink of Mexico. In Golden

A FLOWERING CENTURY PLANT.

Gate Park, San Francisco, the sandy soil is specially favorable to the agave, of which there are about twenty species in various stages of existence. When the plant begins to bloom, it throws up a single stalk, from which the tassel-like flowers sprout forth on either side. The great flower-stalk draws all the sap and vigor from the broad leaves of the plant, which, after it has reached its perfection, droops and dies. But at the base of the fleshy, glossy, dark-green leaves are found little suckers, each with a root, which, when planted, at once begins to grow. Though a century plant in flower is not a very uncommon sight in California, it is sufficiently so to attract con siderable attention; while to most Europeans it is a very rare and wonderful occurrence. The accompanying photograph was taken by Charles Weidner, of San Francisco, and was sent by Mr. Arthur Inkersley, of the same city

The Current Supplement.

In the current Supplement, No. 1424, will be found the usual number of articles on widely different scien tific and industrial topics. The London correspondent of the Scientific American concludes his instructive account of the use of motors in agriculture. The description of the Jaquet-Droz automatons, to be found in this issue, is supplemented by a sketch of the two Jaquet-Droz and an account of the wonderful per formance of their androids. A method of refining gold by electrolysis and the use of the accumulators of electric vehicles for lighting houses, are electrical subjects that should prove of interest. Mr. Cyril Davenport dwells on the history of finger rings. Mr . Carl Hering discusses the "Latest and Best Value of the Mechanical Equivalent of Heat." The "Evolution of the Pianoforte," is traced by Mr. Randolph I Geare in an article, very elaborately illustrated by photographs of old instruments. Alfred Russel Wal lace's striking theory of man's place in the universe is criticised by E. Walter Maunder. The results of a naval inquiry as to which is the most powerful armor clad afloat are given in an analytical article

Another competitor for the $\$ 100,000$ prize offered in the aerial tournament at the World's Fair, St. Louis has been announced. Bradford McGregor, of Coving ton, Ky., a designer and mechanical expert, has built a model of an airship which he says will be a success. He claims he will travel through the air from Coving ton to St. Louis to show that his plan of aerial navi gation is correct
recently patented inventions. Electrical Device
electric display-Sign.-F. M. Sheriday and E. Behrexdt, New York, N. Y. The sign, arranged to display, by the use of electric incandescent lamps, any letter, word, sen tence, ornament, or other matter appearing
either stationary or movable and to allow the ther stationary or movable and to allow the ner and without disarranging the lamps.

Engineering Improvements. AIR COMPRESSOR.-B. GASTAL, Pelotas, Brazil. The compressor comprises two cylinders
so arranged that the fall and rise of water so arranged that the fall and rise of water
which occurs alternately in each serves to admit air into the cylinders and then to ex pel the charge into a pressure tank. The flow
of water into and out of the cylinders is effectof water into and out of the cylinders is effected by float valves.
MOTOR.-C. B. Cox, New York, N. Y. The invention relates to a motor adapted to be actuated by vapor produced from a highly volatile liquid such as ether. The generation ng the chamber in which the ether is con ained and by hot water pipes passing there through.

Mechanical Devices
churn.-F. Swallow, Miami, Indian Ter. The mechanism invented by Mr. Swallow relates to an improvement in churns, and its obperforms the churning process by impartin wave-like motion to the cream, whereby this material is rapidly churned and converted into utter with a small expenditure of power.
punching machine.-W . h. Parker, is to provide a. The idea in this invention testing physical strength, and the result is new and improved device arranged to correctly show, by means of an indicator, the force of the blow delivered by the operator on the apparatus.
MACHINE FOR FLANGING CAN-bODIES. - h. L. Guenther, Chinoòk, Wash. The improvement provided by this invention relates to can-making machines, and more particularly to a type of special machines employed for orming flanges on the end of cylindrical bodies
of cans used for packing foods. Mr. Guenof cans used for packing foods. Mr. Guen-
ther has succeeded in providing a mechanism reliable and effective in operation and arranged
to successively flange the top and bottom ends to successively flange the top and bottom ends
of cylindrical, oval, square, or other shaped

Dodies and to automatically remove the co
pletely-flanged can-bodies from the machine. clumad can-bodies frow the manh. CLUTCII-MECHANISM.-G. A. ENSIGN, this invention a clutch mechanism of improved design which is adapted to be readily thrown gear by the operator whenever desired, and gear after one revolution is made by the main or driving shaft.
COLOR-PRINTING MACHINE. -G Schneider, Berlin, Germany. In perfecting this mechanism the designer provides a machine for printing oil-cloth, wall paper, and like fabrics, arranged to permit convenient and quick insertion or removal of the printing or pattern rollers, minute adjustment of the cess to the supplies for cleaning, repairing ate thus facilitating all work before, during and after the printing operation
Derrick.-C. J. Reise, Mineral, Ill. One
object of the present invention is to furnish means to impart traveling motion to the platform in a manner to make it turn a complete revolution in one direction or the other. Anther is to simplify the platform-operating mechanism and increase its durability by reduc ing the number of guide-sheaves and substi
tuting a driving-chain for the cable, the re tuced a driving-chain for the cable, the re
number of sheaves being arranged to utilize the service of the chain.
drawing-Frame.-L. J. Wrigley, Lawence, Mass. Simple means are provided here in lieu of the usual weights, springs, or levers frow holding down the rolls in machines for drawing fiber, and there is provision for automatically releasing the pressure should sliver lap around drawing-rolls or other obstructions ccur in the fiber. The frame may also be used peeders, spinning-frames, and all machines for drawing textile slivers by means of rolls, providing for the maximum pressure to be exerted by roll pressure from below upward against bearing blocks.
PACKING DEVICE FOR DRILL-RODS OR the like.-B. Selfridge, Butte, Mont. In obtaining this improvement the piston-rods of ock-drills are provided with more efficient secially applicable to rock-drillers such as the Rand or the Ingersoll-Sargeant machines, in which the pistons, the piston-rod, and the drillchuck are integral.
BACK-SEAM TRIMMER, C. B. CORWIN,
 particularly to a trimmer for severing the
seam of a backstay. The invention may be
used in connection with the shoe-lining trimmer covered by a former patent of Mr. Corwin, and when so used the same frat
gearing and knife may be employed.

Technological Improvements. PROCESS OF PRODUCING STEEL.-P Eyermann, Benrath, near Dusseldorf, Gerconsists in heating the liquid pig-iron in a consists in heating the liquid pig-iron in a blast-furnace gas, directing an air-blast upon the metal for effecting a preliminary refining, the material and burning the same in the fur nace.

Miscellaneous.

lace and cord fastener.-A. h. Smith, Tremont, La. The device may be or other article, and it holds the lace or cord by frictional engagement therewith, and obviates tying or knotting of the lace and allows the easy manipulation thereof in unfastening The advantages of this device are many, as it will enable people to make the fastening
of the lace more easily, quickly, and securely than any knot,' and will exclude all accidental untying or hard knotting.
photographic film.-W. h. Smalley, No. 213 Selhurst Road, London, England. In making continuous films, the object is to avoid the deterioration of sensitized film by reaction set up between salts contained in the film and me materials with which the film may be in contact. The design in this case is to prevent such chemical action between the film and the arresting substance with which the sensitized film usually remains in long contact when stored upon the roll-holder.
SAFE-W. P. McKenna, New York. T most distinguishing feature of this invention is the arrangement of the doors, which are mounted on balanced bearings and swing in the arc of a circle to cover or uncover the openings in the exterior wall of the safe. I
side is arranged a drum which is adapted contain the valuables and which is mounted to rotate around an axis coincident with that of the movement of the safe doors.
SIIINGLE-CARRIER-A
Bartleyt Paullina, Iowa. The object in this case is to provide a device for holding and carrying shinso as to hold a carpenters when shingling,
one by one by the workman when nailing them on and to hold them in such a way that they cannot be blown off by the wind. Means are provided for raising and lowering the carrier long the roof as the work progresses. INSECT-EXTERMINATOR.-H. H. Bortions in apparatus employing steam as objections in apparatus employing steam as the de-
stroying agent, Mr. Boring has devised and constructed an insect exterminator, using and water-tank of novel form, having within it a chimney designed to check and to a degree to hold back the products of combustion in its passage up through the tank, and thereby quickly heat and convert the water into steam. SCHOOL-DESK-R. G. Litsey, Haskell, Texas. This invention is an improvement in
school-desks, and is in the nature of an appli-school-desks, and is in the nature of an appliance by which they may be conveniently re-
moved whenever desired, as when it is needed to clean the room. The cleaning of the room is not only facilitated, but can also be done much more effectively than when the desks are fixed, thus reducing the cost of sweeping and securing better results. Through certain means the device may be adapted to any number of desks in a row.
SHAVING BRUSH AND SOAP HOLDER.A. Q. Walsh, New York, N. Y. Comprised in
this invention is a handle having at one end this invention is a handle having at one end certain peculiar means for carrying a stick
of shaving-soap and a shaving brush. Preferably these means are such as will permit the removal of the brush and soap, and the handle is hollow, so that the brush and soap may be stored therein, thus making the device convenient for travelers.
DESIGN
DESIGN FOR A GAME-CHIP.-S. A. Cohen, New York, N. Y. This ornamental
design relates to chips used in games of cards design relates to chips used in games of cards
and the like; and it embodies the representa tion of the profile of a human head, an urn, and scrolls, inclosed in a circular border. CRYPTOGRAPH.-L. H. Weston, Holbr Criptograph.-L. H. Weston, Holbrook,
Ore. In this machine messages or the like may be prepared in cipher for sending, or matter received in cipher may be translated into intelligent language. It provides means by which one or more impressions prepared for transmission or circulation may be taken or
sccured from the apparatus. Means are pros ceured from the apparatus. Means are pro-
vided to prevent unauthorized persons obtaining to prevent unauthorized persons obtain wise a knowledge of the key or the matter by mathenatical calculations.
Note.-Copies of any of these patents will be Please state the name of the ter cents each. Pease state the name of the patsntan and
the invention. and date of this paper.

Business and Personal WUants. Wili ind inquiries for certain classes of articles

 MUNN \& CO.

Marine Iron Works. Chicago. Catalogue free.
 Draftsman wanted.-Excellent opening. Eng
ing steel stirrups of original design.
Inquiry No.
Easoline motors. (041.-For makers of oil pumps fo Inquiry No. 4042.-For makers of wood-distilling "U. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 4043.-For manufacturers of fur-
naces. Coin-ope
Brooklyn.
Inquiry $\mathbf{N o . ~ 4 0 4 4 . - F o r ~ a ~} 5 \mathrm{~h}$. p. water turbine and
dynamos for same.
Blowers and exhausters. Exeter Machine Works,
Exeter, N. H.
Inquiry No. 4045.-For makers of acetylene gas
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Charrin Falls, \mathbf{O}.
Inquiry No. 4046.-For makers of egg cases. fill
ers and testers.
Mechanics' Tools and materials. Net
Geo. S. Comstock, Mechanicsburg, Pa.
Inquiry No. 4047. - For a cheap split basket wit
Sawmill machinery and outfits manufactured by the
Inquiry No. 4048.- For manufacturers of hard
flber, also for makers of automatic or lever chucks for
use on turret lathes. Patent for Sale. - A. L. \& o. Sovelius' Twine
Holder. Price Inquiry + o. 4049.-FFor a
rolling together pulp board.
Wanted--Machinists for light work. Steady em
ployment. W. W. Oliver Mf. Co Inquiry No. 4050.- For mqkers
iron fence for lawns and cemeteries.
Let me sell your patent. I have buyers waiting.
Charles A. Scott, Granite Building, Hochester, N. \mathbf{y}.
 Inventions developed and perfected. Designing and
machine work. Garvin Machine Co., 149 Varick, cor. Spring Sts., N. Y.
Inquiry No. $4052 .-$ For makers of boiler furnace
blowers for steam boilers. N. Y., U. S. A. Patents sold, placed on royalty and

Inquiry No. 4053.-For makers of knitting ma-
Manufacturers of patent articles, dies, stamping
tools, light machinery. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
Inquiry
horse shoes. Crude oil burners for heating and cooking. Simple,
efficient and cheap. Fully guaranteed. C. F. Jenkins efficient and cheap. Fully guaranteed.
Co., 1103 Harvard Street, Washington, D. C.
Inquiry No. 405.5.-Gor makers of folding doors The largest manufacturer in the world of merry-go-
rounds, shooting galleries and hand organs. For prices and terms write Inquirr No. 4056.-For makers of hand and
power-weaving fence machines for making woven wire
fence.
Money-making patent.-I will sell my patent on
hat fastener, which will sell rapidly when introduced. hat fastener, which will sell rapidly when introd
Geo. Schmitt, Monongahela Club, Pittsburg, Pa, Inquiry No. 4057.--For catalogues of agricultural
implements, novelties, special tools, etc., for export The celebrated "Hornsby-Akroyd" Patent Safety Oil
Engine is built by the De La Vergne Refrigerating Machine Company. Foot of East 138th Street, New Yort. Inquiry No. 40.58.-For a printing machine for
use in printing dies in caps, etc. The best book for electricians and beginners in elec. By mail, $\$ 5$. Munn \& Co., publishers, 361 Broadway, N.Y. Inquiry No. 4059. - For makers of white cork
panint for iroi castings, and information as to how to
apply same. For SALE.-3 h. p. marine gasoline engine. Patterns
or 3 h . p. and 6 h . p. and reversing propeller. Drawings for 3 h . p. and 6 h . p. and reversing propelier. Drawings
for reversing propeller. Drawings for 3 h . p. and 6 h . p. and drawings for 5 h. p. and 10 h. p.
Mr. John La Force

r. John La Force, 3 Ketchum St.,

Inquiry No. 4060 - For a steel hull 30 feet long,
lat bottom,
led by draw not over ten inchene loaded. propel-
Wanted-Revolutionary Documents, Autograph Let-
ters, Journals, Prints, Washington Portraits. Early American Illustruted Magazines, Early Patents signed
by Presidents of the United States. Valentine's
Manuals of the early 40 's. Correspondence solicited.

NOTICE TO TUNNEL CONTRACTORS.

\qquad 1903, for the construction of a tail race tunnel for the Toronto and Niagara Puwer Co., of Toronto, Ontario.
Plans and specitcations for this work are on fle can be seen after March 30, 1903, at the company's offices at Home Life Building, Toronto, Ontario, and Niagara Falls, Ontario, or offlce of F. S. Pearsnn, No. 29 Broadway, New York, Room 220. The right is reserved to
reject any or all proposals. Frederic Nicholls, Vice. President and General Manager, Home Life Building Toronto. Ontario.
or drawing wire from No block iron frame draw benct for drawing wire from No. 7 to No. 12 ; Riv
tion. Adress C. B., Box 7 Jh, New York.

Notes and Queries. and

HINTS TO CORRESPONDENTS
 References to former articles or answers should giv
date of paper and page or number of question.
Inquiries not answered in reasonable time should
reat
 some answers requirentso wa a ilttle research, and
though we endeavor to reply to all either by lotugh ore in this department, each must take
his turn.
Buyers wishing to purchase any article not adverers wishing to purchase any article not adver-
tised. in our columns will be furnished with
addresses of houses manufacturing or carrying the same.
Special Writen $\begin{aligned} & \text { Information on matters of personal } \\ & \text { rather than general interest cannot be expected }\end{aligned}$ Scientific American Supplements referred to may the had at the office. Price 10 eents each.
Books referred to promptly supplied on receipt of
price. Minerale. sent for examination should be distinctly
marked or labeled.
(8935) T. S. asks: In a dispute 1 er woods, i. e, those that have a specific ravity decidedly greater than water, will sink to the bottom of the ocean, even to its vould be copis. I contena that this 20 miles. I take my stand on the very slight ompressibility of water. A. Water is com for one atmosphere, or 15 pounds per square inch. Sea water is still less compressible, its coefficient being 44 millionths for one atmosphere. At the depth of one mile it will be but a one-hundredth part greater. Water does to the bottom of the ocean, even at its greator the bottom of the ocean, even at its greatsurface of the ocean will continue to sink till it rests upon the bottom. There is no level at which sunken ships and men float and
(8936) A. H. P. asks: The lower half of the wires in an upright piano have rusted, be given the wires to remove the rust and prevent further damage? Would a box of charcoal or lime set inside be of any service? A. Kerosene onl is one of the best articles to ofmove rust from iron or steel. If the wires
of your piano are wiped over occasionally with it, they will not rust. Charcoal would not be of any service to prevent rust, and lime
would be of little service.
(8937) O. D. asks: What composition is used to make the Welsbach gaslight mantles?
A. A fabric of cotton is woven of the desired form, and this is impregnated by repeated dipping in a solution of thorium and cerium nitrates. On ignition, the cotton burns away which give the intense luminosity. Other nitrates of the rare earths, as also of zirconium thorium-cerium mixture gives the best results A ratio of 99 per cent thoria and 1 per cent ceria has
luminosity
(8938) F. P. C. says: Please advise me which side of a 500 -volt railway generator
is connected to the rails. A. The negative side of a street railway generator is connected oo the rails, and the positive side to the noer's wiocket Sook," page 508, etc.
(8939) H. P. W. asks: If I run the exhaust pipe of a gasoline engine into a well
lined with brick, and run a pipe from top of well into open air, what would be the exhaust pressure at top of pipe out of well?
Well 4 feet in diameter, 8 feet deep; engine cylinder 11×18 inches; revolutions 200 per
minute; engine has 65 pounds minute; engine has 65 pounds compression.
Or, if we assume that the exhaust is relieved at 50 pounds pressure at exhaust port, what at end of pipe leading out of well? A. The back pressure of your exhaust pipe at its end, as you describe, will depend on the size of the pipe. It should be no more than three pounds per square inch if the pipe from the well is
one size larger than the engine exhaust pipe one size larger than the engine exhaust pipe.
(8940) I. L. G. asks: Is there any kind of a composition or solder to solder copper and cast iron together, or is there any way to prepare cast iron so that it can be united with copper? A. Cast iron and other ning the cast iron surface. This may be done on small work by a tinsmith's copper and pure tin. The cast-iron surface must be scraped with a file and rubbed with salammoniac. when the tin may be rubbed on the
surface with the hot copper.
(8941) C. P. L. asks for some formula for a fireproof cement suitable for setting earthenware tiles around a fireplace. Port-
land cement. and cement and mortar, will not stand the action of the fire. A. Fire
clay mixed with silicate of clay mixed good satisfaction: only as much should be made up at a time as can be used immediately, as it has a strong tendency to harden. A mixture of equal parts of powdered peroxide of manganese and zinc white, mixed with silicate of soda
good. Use Immediately.
 electric generator? And if a generator can be
run by a water motor? The address of a house that handles generators? A. One and a quarter actual horse power will run a one horse ther generator. Water power is proper,
the most economical wherever a vailable.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending April 7, 1903,
AND EACHBEARINGTHAT DATE. [See note at end of list about copies of these patents.]

 Amusement apparatus, C. R. Cond
Amusement deviee. H.SVm
Animal trap, A. Wh. Philips.
 Ball.
Bail
Bail
Band

 Beer, etc., apparatus for coolin
deller adjuster, F . J. Fiscce $\ldots \ldots$
Belt, conveyer, R. H. Martin Bicy
Bicy
Bicy
Bicy
Bind
Bind
Bind

,009

\qquad

 Lathes OR FINE, ACCURATE WORI SENECA FALLS MFG. CO
695 Water Strict Seneca Falls, N. Y.. U.S. A

TOOL S :O SUPPLIES aStIAN LATHE CO. C

WireCloth, WireLath, Electrically-Welded Wire Fabrics
and Perforated Metal of all

 sol curtises street, Fra. Tole marine
AUTOMOBILE MOTORS Troy, N. Y.
REVERSING STEAM TURBINE.-PARBOAT BUILDING ange of amateurs, at a s.s.2ll cost.
Yachts, Launches. Row Boats.
Send staup for catalos.

\mathfrak{l}

I

For Heavy Continuous Work

 Writefor Cat.
Grant Ferris Co

The MEDARTLk| Lock |
| :--- |
| $\begin{array}{l}\text { Lock } \\ \text { Leck } \\ \text { Leck } \\ \text { Leck }\end{array}$ | Howard Two and Four Cycle

$$
\begin{aligned}
& \text { Low } \\
& \text { Saq } \\
& \text { Said }
\end{aligned}
$$

 MATERIALS

YOU ARE EASY

EVENING STAR ELECTRIC FLASH LIGHTS

S
\qquad
\qquad

is made
$\begin{array}{r}\text { as a runabout } \\ \text { with seats fortwo, }\end{array}$
Whth at $\$ 750$. With deetachable tonneau that converts it into a handsome
and roomy touring car for and roomy touring car for
four, $\$ 850-$ ton n eau seats either facing forward or vis-a-vis, giving a comfortable support for the back. The body design of the Cadillac is a very pleasing effect for either city streets or country
roads, and the appointments roadurious. Our free illustrated booklet - N - gives address of agency nearest your home where the Cadillac may be seen and tried.
Cadillac Automobile Company Detroit, Mich.

 VOL. 34-JULY to DECEMBER, 1902 A Monthly Magazine of Domestic Architecture 275 Illustrations SIX Covers in Tint 146 Pages The Thiry-fourth Volumie of the scientipry

TALKS WITH ARCHITECTS

 EDITORIAL ARTICLES
 DEPARTMENTS

 to its readers. For sale by
MUNN \& CO., F61 Bale by
A Living from 5 Acres

Ghe Best Thing on Wheels Ghe OLDSMOBILE

Nothing to Watch but the Road Ahoad. OLDS MOTOR WORKS, DETRROIT, MICH.

Palmer Complete 17-ft. Launch, \$195 Catalor Free

Scientific American Building Monthly
 NEW VOLUME NOW READY

Valuable Books!
All the World's Fighting Ships
 Their construction, Operation and Manipu-
lation, Including Both Hand and lation, Including Both Hand and By W. H. VANDERVOORT, M. E. Large 800.576 Pages. 673 lllustration
An entirely new and fully illustrated work. treating
the subject of MTolern Machine Shop Tools in a
concise and compret concise and comprehensive manner. Special care has
been takent oelliminate all matter not strictly pertan-
ing tot subect, thus making it possible to pive the
reader complete information pertaining to mache eeader complete information pertaining to machine
shop tools and methods in a sinqle volume at a mode-
 tion of each is given in proportion to their relative mo
portance. T he illustration represent the very latest portance. The illustrations represent the very latest
tools and method, all of which are clearly describe.
Each tool is considered from the following points
FIRST-lts construction, with hints as to its manu-SECOND-Iacture. Ita
THIRD-Numerous examples of work performed. DIES
their construction and use For the Modern Working of Sheet Metals.
By JOSEPH V. WOODWORTH
Octavo. Cloth. Very Fully Illustrated. Price $\mathbf{\$ 3 . 0 0}$ Postpaid.
This book is a complete treatise on the subject
and the most comprebenive and exhaustive one in
existence. A book writien by a practical man for existence. A book written by a practical man for
practicil men, and one that no diemaler, machinist,
toolmaker or metal-working mechanic can, afford to be
withoute
without. press fixtures and devices from the simplest
Dioes, most intricate in modern use. are siown, and
the
 chanies will be abie to understand thorouchiy how to
design, construct and use them for the production of
use.
usdless variety of sheet-metal articles now in daily

HARDENING,
TEMPERING,
ANNEALING
FORGING OF STEEL
By IOSEPH V. WOODWORTH
Author of "DIES, Their Construction and Use."
Octavo. 280 pages. 200 Illustrations. Bound in Cloth. A new work from cover to cover. treating in a clear,
concise manner all modern processes for the Heating,

 metal cutting tools of ail description, as well as or all
implementsof steel, bothlarqe and mail. In this work
thesimplest and most satistactory hardening aud tem-
pering processes are given.

GAS, GASOLINE AND OIL ENGINES
By GARDNER D. HISCOX, M. E.
365 Pages. Large Octavo. Illustrated with, 270 Handsome Price $\$ 2.50$
The only American book on an interesting subject.

Horseless Vehicles, Automobiles and Motor Cycles
Operated by Steam, Hydro-Carbon, Electric
By GARDNER D
D. HISCOX, M. E.

Price $\$ 3.00$
A practical. Treatise for Ant Antomobilists, Manufac-
turers, Caitalisist , Inventors, Promoters and everyone interested in the development, care and ase oft the
Automomile. This ork ifmritten on broad basis, and
comprises in its scope a full description, with illustra
 the times, contributing to the pleasure and business
convenience of mankind
very full ind ill Very fully illustrated with various ty pes of H Horseless
Carriages, Automobies and Motor ycles, with many details of the same. It also contains a complete list adaresses as well as a list of patents sssued since 1866 on
the Automobile inountry. AA full
Hiluptrated circular
cce Frull descriptive circulars of above books witl be mailed
MUNN \& CO., Publishers, 361 Broadway, New York

> "Who has the right time ?"

The man who has

 ELGIN TIME every timeEvery Elgin Watch is fully guaranteed. All jewelers have Elgin Watches. 'Timemakers and Timekeepers," an illustrated history of the watch, sent free upon request to

How to Paint a House Cheap

And Have it Guaranteed to Look Better, Wear Longer and Cost Less Than the Best White Lead Paints.

Never Fades, Cracks, Chalks, Peels or Blisters and is Nof Affected by Gases, Fifty Sample Colors and Illustrated Booklet Prepaid to Any Adidress Absolutely Frees.

\section*{DDeinel
 2lndeloweal
 Because it has real merit this Pioneer Linen Underwear grows in popularity every year. It is so comfortable-so ance recommend it unqualifiedly

The Garments or Booklet telling about Them At Leading Dealers Everywhere THE DEIMEL LINEN MESH CO.

ELECTRICAL ENGINEERINE TAUGHT BY MALL.

CAN I BECOME AN ELEC TRICAL ENGINEER

LEARN PROOFREADING

A UNIVERSAL
POCKET MEASURE The only cractical all around measure
er made.
seasures curves of all kinds

 Highest endorsments. If not at you
dealers send to us direct.
CTECKENREITER MFG. ENGINEER'S LIBRARY An absolute Encyciopedia for Encineers or for Stea HANDBOOK ON ENGINEERING. Third edition, enlarged and revised, 5.000 copies, no
ready.
Sent anywhere on receipt ot

1060 WainwrSquabs Pay Hoar
 MONOPLEX INTERCOMMUNICATING TELEPHONE S4.00 each

A Handy Book To Have

 MATENTS
 Trontion is proiably patentable. Conmunica scicicifíic Fmerican.

\section*{

 $\stackrel{\sim}{n}$

 $\stackrel{\sim}{n}$}

designs

 \square

trade marks.

TELLS HS MONEY-MAKIIG SECRET
Several years ago a young man stood by a foul smelling oil tank stirring the crude oil as it passed
through the refining process. The first year earned jupt $\$ 300$. He was not disheartened. He forgot the present while planning for the future. He worked with unflinching purpose; he took advantage of evcry opportunity which presented it-
self. To-day nearly every gallon of oil consumed in this country is purcha
of which he is president.
What is the secret of John D. Rockefeller's success? What is the force which shaped lis destiny? According to his oft-repeated statement it is Per-
sonal Influence; the power to control and direct sonal Influence; the power to control and direc
the minds of others.
Personal Magnetism, the true secret of persona Personal Magnetism, the true secret of personal
influence, is the natural birthright of every man influence, is the natural birthright of every man
and woman. It is a science which can be studied, mastered and applied the same as any other
science. The man or woman who is ambitious, who wishes to advance in his or her vocation, who wishes to achieve success far above the average,
can develop this wonderful power and wield it with mighty force.
How to develop Personal Mrgnetism, how to control people in your everyday life without their pens of twenty eminent specialists issued by the American College of Sciences. The directors have decided to distribute a limited number of copies of the work free, to people who are really desirous of
achieving greater success in life. The Hon. James achieving greater success in life. The Hon.James R. Kenney, ex-Mayor of Reading, Pa., a noted
author and scientist, and an officer of the college, has agreed to personally superintend the distribution.
Mr.
Mr. Kenney says: "Tell me what kind of work which will put you on the road to success and happiness. It matters not how successful you are, I will guarantee to make you more successful. The private information I will send you has been the means of turning the tide of adversity and people who were ready to give up in despair.
You can develop Personal Magnetism in yourself
and use it in your daily work without the knowledge of your most intimate friends. If you have not met with that business or social success which you or memory; if you wish to possess that subtle mind power which dominates and controls men and of hypuotism, you should write for a copy of our elegantly illustrated book to-day. It is absolutely
free. It wiil prove a revelation to you. Address free. It wirl prove a revelation to you. Address
American College of Sciences, Dept. S H 16, 420
Walnut St., Plila
WANTFD

The Franklin Model Shop.

 send for circular 9.
PARSE WLL \& WED,
129-131 West 31st Street, New York

rémoh diamonds

ON EARTH. Our magnificent cata-
and explainig fully describing them order, mailed
to any addres apon request RÉMOH JEWENELRY COMPANY, INVENTORS
 F 1 Pint My Own Cards

WANTED
A proper person to sell the American patents coversuccessfully used by the foremost E E opean trms. Aders and references to
EMIL CAPITAINE CO.
\qquad MATCM MACMINERY. We manu facture everything pertaining to the busi118 Ashland Mlock, Chic ago, Ill., U.'s.

MANTED

A Man Accustomed to Handling Employees
Competent to take entire charge of a fishing reel manu-
factory by a responsible manu facturing concern. Tothe
right man we have a ibiberal salary to offer and a permanent position. Address FISHING REEL MANUFACTURER Box 973, New York
'THIS BEATS NEW JERSEY.
 FREE Wwave WM. T. COMSTOCK, Pub., 23 Warren St., New York. Buili Mathematicians Wanted
The profession of actuaryship offers a splendid feld
for those opossessing mathematical ability. as positions command $\$ 4,000$ a year and over. Our course is prepared
by leading actuaries and is under their supervision. HOME CORRESPONDENCE SCHOOL INVENTIONS

WALTER K. FREEMAN, M.E.

M A TCHH FACTORY.-DESCRTPTION
Of an English factory. ScIENTIFIC AMERICAN SUP
PLEMENT 1113 Price 10 cents. For sale by Munn \&

WAT WE DO HOW WE DO IT

 Model Machinery And Experimental Work.
W. H. CRA WFORD, 194 Broad way, New York City.

"When One Man Fuads Ten"

 Hook's Pneumatic Coating Machine

"STAY-THERE" PAINT

 WALTHAM MFG. CO.,- Waltham, Mass

AGOODIMYESTMENT

Also for Bromide Enlarzing, Copying, Photo-Engravin

为

NEW ENGLAND

 WATCHES6he
PADISHAH

\$2.OO EACM
We make all sty les and sizes of watches
解
NEW ENGLAIID WATCH CO.,

RIVETT
LATHE HIGHEST AWARD whereer exhibited,

Fanecil Watch Tool Company, bRIGhton.

Life Insurance Free from All Speculative Features.

> Travelers Insurance Company Hartford, Conn. s.c.dunham.

> Accident Insurance Oldest in Lhargest and Strongest Accident Company
in the World.

Eye Openers

 in Accident Insurance PoliciesJust placed on the market by
The
Travelers Insurance Company

They are something new, and theie is nothing now offered that can touch them in Liberality, in Increasfd Benefits, in Simplicity.
And the same old security grown larger, that makes THE TRAVELFRS' contracts the most widely popular among solid business and professional men, is behind them. Agents in every town write us for details

MR. BOOKKEEPER,

ervous and mental strain:
Write for Pamphlet.
ELT \& TARRANT MFG CO.
S2-SE ILLINOIS ST. emicaaa

- MIICROSCOPES

for every purpose. $\begin{aligned} & \text { Our instruments } \\ & \text { are found int al } \\ & \text { of the country. }\end{aligned}$ the best laboratories
Caialog free. Projection Apparatus

Che Cypewriter Exchange

124 La Salla St. NEW YORK 124 La Salle St., CHICAGO
38 Bromfield St., BOSTON 817 Wyandotte St., KANSAS CITY, mo
Korth 9th St.. 209 North 9th St..
ST. LOUIS SAN FRANCISCO, CAL We will save you from
makes. Send tor catalogu

GO RIGHT TO GARRIAGE HEADQUARTERS Write to-day for our illustrated catalogue (free) which describes our goods truthfully, explains our method and our guarantee and makes it safe, simple and easy for you to get carriages, harness and horse accessories direct from our factory at wholesale prices. THE COLUMBUS CARRIAGE and HARNESS COMPANY. Factory and General Office, Columbus, O. $\begin{gathered}\text { Write to } \\ \text { Western } \\ \text { neart office. }\end{gathered}$ \& Distributing House, St. Louis, Mo.

7\%Business established
1886\% factories located
Montreal

 teeing eartain sharesof of this stock wail
bring a premium, and for cuartered ac Checks if desired can be sent to the Mor chanke National Bank, New York City Merchants' Ex-
bave heen (liong whuiness tor about we
Federal Nation MAGNOLIA METAL

SPITDORF SPARK COILS
WELL ${ }^{\text {palluma }}$ Ahallow wells in any kind for drilling eithiner dees or on wheels or on sills. Withen soil or rock Moo norse ported
Strong, simple and durable. Any mechanic crs.
 WILLIAMS BROS., Ithaca, N. Y.

magNolia metal CO.'S preterered thock

Kerosene $\underset{\substack{\text { Hium, } \\ \text { Flame }}}{ }$ Oil Stove
Makes its own gas. No odor no smoke, no danger,
no wicks. Best in the world for cooking. Gives twice the heat at. less than half the cost of gas.
PRICE $\$ 3$. 75 , and upwards. Ehe KHOTAL BURNER CO., 197 Fulton Stroot, Now York

monriar, and State Your Power Needs.
CHARTER GAS ENGINE CO.. Box 148. STERLING. ILL.

If you wish to know the properties of any electrical
ins rume ents, materias or appartus the utily on an
invent nvention or the practicability of an idea, tests by us
new york laboratory, lamp testing bureal
8th Floor. No. 14 Jay Street, New York

helps the amateur make technically
perfect and artistic photographs. Explains all the little difficultiesthere are no big ones. Individual criticism is given to the work of each pupil. Tuition, free to all owners of Kodak and Brownie Cameras upon payment of one dollar fortext books.
THE KODAK WAY means picture taking without a dark-room
for any part of the work. Better results than the old way, too.

Correspondence
Sicool
circularsand Eastman Kodak Co.,

MORAN FLEXIBLE JOINT tor Steam, Air or Aiaquidsi
Mare in all sizes to stand any desired
pressure.

THE AMERICAN THE AMERICA THERMO
BUTTON
 ILL Learatitis
 Free Belting Test
"Royal Worcester" old-fashioned oaktanned belts known as the best-initial cost highest-operative cost lowest. Greatest belt power transmitters the world has ever known-50 years repuation back of them
Let us send you a sample belt to test, and to be returned free of expense to you if not entirely satisfactory.

GRATON \& KNIGHT MFG. CO. Oak Leather Belt Makers, Worcester, Mass.
TR

