

Displacement, 11,800 tons. Speed, 19 knots. Coal Capaelty, 2,000 tons. Armor : Belt and sides, 7 inches ; gun positions, 10 inches. Battery : Four 10 -inch ; fourteen 7.5 inch ; fouiteen 3 -inch.
Torpedo Tubes, sabmergea, $\mathbf{0}$. Complement, 800

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.
 Editors and Proprietors

Published Weekly at

No. 361 Broadway. New York

 Nialiin reverve special int
at regular space rates.

AN 18-000-TON BATTLESHIP

Despite the storm of criticism with which it has been assailed, the large-displacement battleship con tinues to grow both in size and in favor. Proof of thi is to je found in the huge 18,000 -ton ships which ar to form the most important feature of the new build ing programme of the British navy. In 1882, six bat tleships were included in the British naval onstruc tion estimates, each of 10,600 tons. In 1892, the dis placement had risen to 14,150 tons, which was the size of the "Royal Sovereign" class. Then followed the "Majestic" class of 14,000 tons; the "Formidable" class of 15,000 tons, and the "King Edward" class of 16,350 tons; while to-day the designs for 18,000 -ton battleships will soon be in the builders' hands. The policy of building battleships of large size is favored in our own navy, the "Connecticut" and "Louisiana having a displacement of 16,000 tons.

In other respects than that of size, there is a ten dency on the part of American and British designer to reach a common type, with certain clearly-marke characteristics. This is particularly noticeable in a comparison of the new 18,000 -ton ships with our own 16,000 -ton vessels; for it must be confessed that in these last ships the British designers have shown a desire to follow our lead in the make-up and disposition of the armament, as will be seen from the follow ing description:

The main armament of the new ships will consis of four 12 -inch guns, located in two barbette turrets forward and aft, and eight 9.2 -inch guns, mounted in four barbette turrets, one at each corner of a central citadel, within which will be carried ten 6 -inch rapill fire guns. This armament will be more powerful than that of the "King Edward" class by four 9.2 -inch guns As compared with the "Connecticut," it will be seen that the armament will be about the same in power; for while the eight 9.2 -inch guns constitute a much more powerful battery than the eight 8 -inch guns of the "Connecticut," this preponderance is largely offset by the fact that the "Connecticut" carries twelve 7 -inch guns as against the ten 6 -inch guns of the British vessel. The 8 -inch gun is very popular with the officers of our navy, and it is amply sufficient for the attack of armor covering the secondary batteries of the latest foreign vessels. On the other hand, the 9.2 -inch is a much more powerful piece: it throws a 380 -pound projectile with a mu\%rle velocity of 2.900 feet per second, and a nuz\%le energy of 22,160 foottons. Our new naval 8 -ilich piece of 45 calibers throws a 250 -pound shell with a velocity of 2,800 feet per second, and an energy at the mu\%\%le of 13,602 foot-tons. The lower power of our piece would be compensated for somewhat by the greater rapidity with which it can be handled; on the other hand, the 9.2 -inch gun can pierce any waterline armor afloat at ordinary fighting range. The total muzzle energy of a single round from the main batteries would be 409,552 foot-tons for the "Connecticut" and 417,680 tons for the 18,000 -ton ships.

It is chiefly to the increase of its defensive qualities that the extra 2,000 tons displacement of the British ship has been devoted, the protection being of quite an exceptional nature. In addition to the protection of 9 inches of Krupp steel from stem to stern at the waterline, this 9 -inch armor covers the whole side of the vessel to the upper deck, giving the equivalent of waterline protection to the whole of the 6 -inch bat tery, the bases of the 9.2 -inch and 12 -inch gun barbettes, and to the ammunition hoists and the bases of the smokestacks. The whole of the personnel will therefore fight the ship from behind not less than 9 inches of Krupp steel. The speed of these huge ves sels is to be 19 knots, and they will each cost $\$ 7,000,00$ to build and equip.

THE NEW COKE INDUSTRY

In the past quarter of a century coke has become one of the most important factors in our iron and steel manufacturing interests, and its value for othe purposes where a smokeless fire is required has ap
preciably inerrased with its extembed use. As a :tatis tical factor it was of little more importanee than chat coal prior to 1880 : but in 1901 nearly $20.000,000$ tons of colk were produced in this country. The present demand is even greater, and the production and con smmption for the carrent statistical year will probably exceed anything heretofore noted in our industrial his tory.

The coke furnaces of the country have an estimated caparity of production for the current year of $25,000,000$ tons, and if this sells at the average rate of $\$ 2.50$ per ton, as it did in 1902, the total output will represent $\$(62,500,000$. But coke, like coal, has increased rapidly in value in the past few months, and to-day it is hard to get it at $\$ 3$ and $\$ 4$ per ton for furnace coke, and $\$ 5$ to $\$ 12$ for foundry coke. These abnormal prices however, are not likely to continue long. The chie difficulty in the coke industry has been the shortage of railroad cars to move the material to the furnaces for manufacturing, and then delivering the finished product to the consumers. So greatly handicapped have the coke furnaces been in this respect, that nearly half a million tons of coke are held up in the yards for lack of transportation facilities.
Poor transportation facilities affect the coke makers more than almost any other class of manufacturers, for besides requiring cars to carry the finished product to the consumer, the raw materials must be brought to the furnaces over the same lines of traffic. The haul ing of coke to the iron and steel mills must necessarily determine to a large extent the cost of smelting. This has in the past year been out of all proportion to the actial conditions which prevail in normal times.
The future requirements of coke can be partly meas ured by the unparalleled development of our iron and steel trade. It takes on an average about one ton of coke to make each ton of pig iron. In the last statistical year-that of 1901-the total pig-iron product of the country was $15,878,354$ long tons. Not all of this, however, was smelted with coke. Some of it was made with anthracite coal, charcoal, bituminous coal, and charcoal and coke mixtures. But the excess of coke produced over pig iron represents to a large extent the actual demand for coke in other lines of work. The conditions of the iron and steel industries in this country at the beginning of the year were never so promising, with the exception of the high cost of coal and coke. While the maximum capacity of the pigiron plants of the country for 1902 was about 350,000 tons per week, that of 1903 will be much greater, owing to the completion of some twenty-five new blast fur naces, with an estimated capacity of $2,500,000$ tons of pig iron a year

The demand for coke by the blast furnaces for the current year will consequently be much in excess of that of any other year, and to meet this consumption coke makers have made extraordinary additions to their plants. ['p to the first of 1901 there were 64,000 coke ovens in this country, with a trifle over 5,000 in the course of construction. During 1902 about 15,000 new bee-hive coke ovens were built, and several thousand more planned for 1903. These new ovens averaged 600 tons each per annum, which would increase the output of coke some $9,000,000$ tons.
The by-product coke ovens have in the past few years become important factors in the situation. These ovens are !eculiarly arranged and built to use coals that are not suitable for the bee-hive oven. They have been designed recently so that they can coke coals which were formerly considered of no value for this purpose. In 1901 there were 1,165 of these by-product coke ovens, with a total capacity of nearly $1,180,000$ tons; but in 1903 there will be some 3,500 of the byproduct ovens in operation. This will enable the makers to nearly double their output. The by-product coke output is immeasurably smaller in this country than in any of the coke-making countries of Europe, the per centage being about 5 per cent here against 40 per cent in Germany, and 20 per cent in England. This is due to the fact that the quality of the coals found in this country is relatively higher than in Europe, and the need of such ovens has not been so urgent here It is also due largely to the fact that the question of economy in fuel has always been studied more carefully in Europe than in the United States.
Coke has found entirely new fields of use in the electrical field in recent years. In the many electrochem ical industries established by the harnessing of Nia gara, coke is employed for building the electrical fur naces, and for fusing with the different materials in the furnaces. In the manufacture of carborundum coke forms an important part of the mixture, and it is also used for packing the walls of the furnace. The very highest grade of coke is demanded for these electrochemical industries, and some coke ovens make a spe cialty of supplying products just for them. These in dustries include the manufacture of such commercial articles as caustic soda, sodium, aluminium, artificial graphite, zinc, and manganese. The demand for the finest coke for these practically new industries is increasing so rapidly that a number of coke ovens have been established near the scene of manufacturing.

The development of the gas engine in the past year has its bearing on the colie industry. The modern blast furnace gas engine is a marvel of modern invention and ingenuity. It takes the gas from the furnaces and utilizes it for generating power for different pur poses. This gas used in the modern gas engine performs nearly or quite double the work obtained from it when used for steam heating purposes. In time the gas engine in utilizing the blast furnace gases will make the profits of pig iron production more than doubly profitable. Indeed, it is believed by some that the blast furnaces may in time be erected primarily as great gas generators, and only secondarily for making pig iron.

PROPOSED REPAIRS TO THE EAST RIVER BRIDGE CABLES.

The report of the Board of Engineers appointed last November to decide what repairs should be made to the cables of the Williamsburg Bridge, which were damaged by fire, has found that the annealing of the wires by the heat of the fire left one of the cables, known as cable A, 2.5 per cent weaker than it was before the fire, while cable B was weakened by 6.5 per cent of its original strength. They suggest a method of repairs or reinforcement which will restore cable A, so that it will be only one-quarter of 1 per cent weaker than it was before the fire, while cable B will only lose 2 per cent of its origina strength.
Each cable contains thirty-seven strands, and eacin strand is made up of 208 wires, making a total of 7,696 wires in each cable. The specifications called for an ultimate strength of 200,000 pounds or more to the square inch, but this strength actually ran much higher, being from 8 to 10 per cent greater than the specifications called for, the ultimate strengtl being from 216,000 to 220,000 pounds to the square inch. The result of the heating of the wires was to anneal and also to lengthen them, the heated wires, after the fire was over, being more or less bowed out fiom their proper position and not lying parallel with the mass of the cable. The annealing resulting from the fire reduced the strength so greatly, that, in extreme (ases, the strength amounted to only 80,000 pounds to the square inch, which was about the ultimate strength at which the wires are drawn in the mill. The heat annealed the wire more or less completely for a depth of four layers. Thus specimens cut from the outer layers showed that, while the uninjured wire had a strength of 223,800 pounds to the square inch, the most injured portions of the burnt wires showed a breaking strength of only 89,900 pounds to the square inch. The reduction of strength decreased in the second, third, and fourth layers, where it fell from 234,000 pounds to the square inch to 210,500 pounds to the square inch, which, by the way, is 10,500 pounds per square inch greater than the specifications called for. A count made of the injured wires shows that 500 have been affected in cable B and 200 in cable A. The injured wires on the top of the cables where they pass over the saddles will be cut out and replaced by new wires, which will be spliced by sleeve nuts to the uninjured ends
As the injury has taken place at the bend of the cables over the saddles, where the strength should be the greatest, it has been decided, after the wires have been spliced, to add 25 additional wires to cable A, and 200 additional wires to cable B. As the ends of these wires cannot connect with any of the wires in the cables, these being spliced to their own new sections that will be put in, it has been decided to attach these additional wires to the cables by friction. A series of steel bands will be clamped around the cables, at varying distances from the saddle, to the adjoining suspenders on either side, and a certain number of additional wires will be attached to each clamp. There will be three bands on each side of the saddle on cable A and eleven on cable B. Thus twenty wires will run to the outermost band furthest from the saddle and adjoining the first suspender; then twenty wires will be attached to the next band; twenty to the next, etc. On cable B the first band will cover 200 wires, none of which will be fastened to it ; the second band will cover 180 wires, twenty of which will be fastened to it, etc. Furthermore, it has been recommended that fireproof flooring be used throughout the whole length of the bridge. It is gratifying to learn that the injury to the cables of this magnificent structure is such that it can be entirely repaired, the bridge as repaired being indead, because of the high quality of the steel, stronger in its cables than was called for by the contract.

A HARVARD GRANT FROM THF CARNEGIE INSTITUTION.

A grant has recently been made by the Carnegie Institution, for the study of the collection of photographs at the Harvard College Observatory. For many years, 1 wo photographic doublets of similar form have been in constant use, photographing the sky night after night. The aperture of each is eight inches, and the
focal length about four feet. The first of these photo graphs was obtained with the Bache telescope in 1885 and since 1889 this instrument has been mounted in Peru, first near Chosica and later at the Arequipa Sta tion of this Observatory, and employed mainly in the study of the southern stars. The 8 -inch Draper telestudy of the southern stars. The 8 -inch Draper tele-
scope has, in the same way, been mounted in Cambridge, and used on the northern stars since 1889 About 30,000 eight by ten-inch photographs, each covering a region ten degrees square, have been obtained with each of these telescopes. Photographic charts have been made with these instruments, covering the entire sky on from one hundred to two hundred nights, and showing all stars brighter than about the twelftn magnitude, besides many that are fainter. During the last four years, this work has been supplemented by taking photographs with two anastigmat lenses having clear apertures of about one inch. Each photograph covers a region 30 degrees square, and in general shows stars of the eleventh magnitude and brighter. The number of times the entire sky is covered has thus been greatly increased. The amount of material thus collected has required a special building for its accommodation, and the means of the Observatory have so far permitted but a small part of the astronomical facts contained on the photographs to be gathered. The Henry Draper Memorial has enabled the most important results to be derived from the numerous photographs of the spectra of the stars, and the past history of many of the objects discovered here to be studied. When any object of interest is discovered, the photographs permit its brightness and position to be determined on one hundred or more nights, during the last twelve years, and many important facts not recorded at any other observatory are thus determined. By the aid of the grant mentioned above, a corps of assistants will be organized, whose duty will be the study of the photographs as regards any objects of special interest.

THE STEAM TURBINE.

The steani turbine, although old in principle, is com paratively young in its application to commercial power generators. Since Watt's development of the reciprocating engine, all inventive energy has been employed to perfect a form of power generator which is wrong in principle. If Watt had achieved as great success with a primitive form of rotary engine or steam turbine as he did with the reciprocating engine, it is safe to say that to-day we should have a highly perfected form of steam turbine, and the reciprocating engine would have been looked upon as one of the many queer inventions of the past.

So great has been the inventive genius of the age, that to-day we have a very efficient reciprocating engine, as efficient, perhaps, as this kind of engine will permit of; but who, with any idea of mechanical simplicity, can go into the engine room of any modern steamer without wondering at the ingenious complexity represented there?
'To be sure, any machine should be designed for the use intended, and in this way the reciprocating engine is especially adapted for use on certain machines using power exerted in a straight line. The great majority of machines, however, require circular motion, and here the reciprocating engine is handicapped. It may be said, then, that the chief aim in power generation is to develop it along the line of circular motion. For this purpose, leaving other considerations aside, the steam turbine is eminently fitted.
The advantages of the steam turbine over the reciprocating engine are, in general, as follows:

1. The effort of the steam is applied directly without any intervening mechanisms for conversion of motion. This avoids their attendant friction, their costly fitting, and probable lost motion.
2. There being no reciprocating parts, there is no inertia to overcome at the beginning of the stroke, with the necessary consumption of energy required to accelerate them
3. The absence of reciprocating parts makes it pos sible to run the shaft at vastly higher speeds than are attainable in a reciprocating engine.
4. The turbine engine becomes very compact from the absence of converting mechanism, and it consequently occupies very little roomi.
5. The engine has no dead center, but will start from rest in any position.
6. The engine has either no valve gearing, or that which it has is of the simplest character.
7. The simplicity of the engine and absence of expensive mechanism make it cheap to build and, therefore, it should be cheap to buy.
8. Very little skill is required to run the engine, and fewer engines are needed, and there is a consequent saving in the cost of handling.
9. The absence of reciprocating rods and dead-centers results in a construction in which the pressure of condensed steam in the engine does no harm. Water does not stop the engine from turning, it cannot en
danger the engine casing. The engine can be started even if under water, by simply opening the valve which admits pressure to the turbine blades; it will start with solid water as in the case of the water turbine.
10. Its incased construction and the above peculiarity adapt it for outdoor service and places exposed to low temperatures. Weather does it practically no harm, and its protection from outside injury makes it particularly serviceable in mining and stone quarry ing.
11. The turbine is easily controlled; it is stopped by simply turning off the steam by means of an ordinary valve, and started again by turning on the valve.

The above advantages apply to its use in general but for the propulsion of ships it has especial advantages:

1. The absence of vibrations, which are so troublesome in reciprocating engines. The study of vibrations in a reciprocating engine has called forth miany valuable and scientific papers by engineers who have valuable and scientific papers by engineers who have
made this subject a special study. The necessity of the balancing of engines in ships need not be commented upon, for who has not suffered from it, even on the largest and best designed of our present-day passenger steamers. The continual shaking which the hulls and fittings of ships are subjected to is one great cause of their frequent need of repairs, some, it is true, of minor consequence, but the loss of time incurred in making these seemingly minor repairs results in an appreciable decrease in the vessel's earning capacity And, when balanced at one speed, it does not follow that the same condition will follow at other speeds; in fact, it generally does not follow. With the turbine engine, all this loss of time and inconvenience is avoided.
2. The use of the turbine engine effects a great saving in weight of machinery. The question of weights on a ship is a very important one, and where a saving can be made in the propulsive machinery, a consequent gain can be effected in cargo or passenger accommodation, in the case of a merchant vessel, or, in the case of a warship, a gain in guns, armior or coal. The weight of machinery per I. H. P. in the case of the "Turbinia" is 21.3 pounds, while in the best designed modern vessels the average weight per I. H. P. is about 150 pounds. These figures show what advantages the turbine has in this connection. Where the weight problem is so vital, as in the case of a battleship, the use of turbines would mean a great gain in offensive or defensive qualities.
3. The perfect balancing of the turbine engine does a way with increased weight in construction of engine bedding and hull fittings, which are necessary to with stand continual vibrations and strains.
4. The increase in stability gained by the use of the turbine is greatly due to the low position of the center of gravity of the engine. This is a very important feature in the turbine, as it enables vessels to carry heavy weights on the upper decks without endangering the stability of the vessel. In the case of a warship this would allow heavy guns and armor to occupy a position of greater elevation than is admissible now; and, in the case of a merchant ship, would enable her to go to sea in a light condition in greater safety. The turbine situated well down in the ship's body would be protected from injury in action without the necessity of armor decks, beyond protection from falling projectiles.
5. The lives of the engine-room crew are not endangered by intricate, fast-moving parts. It is not necessary to call to mind the marine disasters that have been caused by the breaking of a shaft and the consequent racing of the engines, resulting in completely wrecking the engine room and not infrequently injuring the hull seriously. From all this the turbine is free.
6. A much smaller engine-room force is required. This results in a great saving in running expenses, and, in the case of a warship, would enable more men to be carried to man the guns.
7. Last, but not least, of all, the turbine requires very little lubrication, resulting in a great saving of lubricating oil, which in a large vessel is no small item.
The best-known turbines to-day are the ParsonsWestinghouse, the DeLaval, and the Dow. All these different classes of turbines are designed to derive the maximum effect of the kinetic energy of steam under expansion, and this requires that the turbine shaft re volve at a very high speed. This makes the turbine specially adaptable for electric generators, and its use in this connection is becoming general.

For marine propulsion, a high speed of revolution of the propellers is not desirable beyond a certain limit, at which cavitation results. Thus, in some cases, it is necessary to reduce the speed by gearing down. The propellers of the "Turbinia," at a speed of $341 / 2$ knots per hour, made 2,000 revolutions per minute. From the limited experience with high-speed propellers, it has been found that under certain conditions
the ship does not answer to her helm in the usual way; but this difficulty can be overconie by putting the rudder forward of the propellers.
The question oi efficiency is one to be considered. Comparing it with a compound or triple expansion condenṣing engine, the steam turbine over the widest range of loads is, for general purposes, the most de sirable. This the steam turbine has done, as proven by trials, in which the efficiency from full load to half load varied but 8 per cent; this is a far better perform ance than any attained by reciprocating engines. With the improvemients in design that are sure to be made, the turbine's efficiency will be demonstrated even to the most skeptical engineers.
The great problem in steam turbine design is to devise a perfectly reversible one. This is done in marine turbines at present by having a separate turbine on the same shaft-the reversing turbine running idly in a vacuum when the ahead turbine is working, and vice versa.

There is nothing that can stay the improvement and popularity of a machine or process which saves mioney; thus we can see for the steam turbine a great future, both in commercial power generation, and marine propulsion. The reciprocating engine, although very highly developed and universally used, has a dangerous rival in the simple turbine, and there is nothing that appeals to the American mechanic more than simplicity.

SCIENCE NOTES.

Profs. Haga and Wind, of Holland, in 1899 announced that the X-rays were subject to diffraction. They have recently repeated their experiments and have again proved the existence of diffraction phe nomena, and conclude that there is no longer a doubt that the X-rays are, like light waves, perturbations of the equilibrium of the ether. They have sought to evaluate the wave-lengths of the X-radiations, and conclude that these radiations have wave-lengths of the same order of magnitude as light waves.
Most people are aware of the power of egg shells to resist external pressure on the ends, but not many would credit the results of tests recently made, which appear to be genuine. Eight ordinary hen's eggs were submitted to pressure applied externally all over the surface of the shell, and the breaking pressures varied between 400 pounds and 675 pounds per square inch. With the stresses applied internally to twelve eggs, these gave way at pressures varying between 32 pounds and 65 pounds per square inch. The pressure required to crush the eggs varied between 40 pounds and 75 pounds. The average thickness of the shells was 13-1000 inch.

The recommendations of the Advisory Board of the Carnegie Institution are of exceptional interest. Prof S. P. Langley tells of the wide discrepancy of results obtained in an effort to determine the solar constant the unit of heat exerted by the sun's rays on a given surface in a given time. He gives as the probable cause of the divergence, the absorptive qualities of different layers of atmosphere which absorb heat from the sun's rays. He also suggests a possible periodic variation in the power of the sun. In view of the important effect of the heat imparted by the sun's rays on all life, Prof. Langley advocates the establishment of two laboratories close to the equator, at the greatest possible difference of altitude and yet within sight of each other, so that, under like atmospheric and other conditions, simultaneous observations could be taken, and the variation produced by difference of altitude accurately recorded. Dr. D. S. Jordan advo cates the sending of an expedition to study ichthyology in the Pacific Ocean and to make a marine bio logical survey similar to that being conducted by the United States Fish Commission in American waters. Prof. C. K. Gilbert, of Washington, proposes a deep boring in plutonic rock for the purpose of ascertaining the temperature gradients in the earth's crust. He recommiends that a mass of great age be selected, one which has not for many periods been subjected to change, and that a boring be made with some instrument similar to the diamond drill, so that the core produced could be made the subject of special investigation. With such a boring completed to a great depth, temperature observations could be taken at numerous levels, which would contribute largely to geological knowledge, and might prove of great value in the study of seismic disturbance. Dr. Ladd, of Yale, recommends a certain line of work in his special department of psychology and philosophy. Of most importance he considers a bureau of information, a sort of psychological clearing house for the interchange of not only definite results, but of attempted investigations, partial results, etc., with a view to keeping all psychologists posted as to what is being done. Dr. C. O. Whitman, of the University of Chicago, recommends a biological farm for the study of heredity, variation, and evolution.

THE OZONE WATERWORRS AT WIESBADEN AND PADERBORN.
The city of Wiesbaden has for years been drawing its supply of drinking water from the Taunus springs, which yield excellent water. But the continued growth of the town has forced the municipal authorities to provide for some means of supply beyond the limited
drive a direct and an alternating current dynamo each which in their turn furnish the power for the motors of the pumps and the current for the ozonizers, this current being transformed up to the requisite 8,000 volts by six step-up transformers (see figure). The building containing the plant is divided into three rooms: 1, the engine room; 2, the room for the ozon

twenty-four ozonizers arranged in four rows, one above the other, of which every eight are connected to one of the six transformers. Such a series of eight ozonizers furnishes the quantity of ozonized air required for one sterilizing tower. The ozonizers are of the Siemens type; the one pole consists of the cooling water of the glass tube, and is earthed, while the other pole, connected to the transformers, is placed in an inaccessible position and therefore causes no danger to the attendant. The ozonizing tubes are inclosed in a cast-iron case consisting of three parts: a completely closed central portion, into which are firmly screwed the eight ozone tubes; an upper part, functioning as reservoir and distributer of the air; and a lower part forming the ozone-collecting chamber. In the upper chamber, removed from all possible touch of the attendant, are fixed the terminals from the transformers. On the floor of the lower compartment are placed the high potential cylinders with their insulating glass rods, and in addition an automatic device to prevent a short circuit through any leakage of the cooling water. This consists simply of a strip of filter paper stretched across a metal spring. If the filter paper gets moist it tears, the spring opens out and automatically places the particular ozonizer out of work.
The cover, bottom, and front wall of cast-iron case are made of thick plate glass, so that the blue shim-
the ozonizers at the wiesbaden plant.
source of the Taunus springs, and with this end in view the surface water from wells sunk in the plane of the Rhine has been subjected to a special purification, which turns it from a water of inferior value, fit only for general economical purposes, into an excellent drinking water. The method of purification is a novel one, which has never before been applied on a technical scale. Instead of the water being filtered, as usual, it is treated with ozonized air prepared in ozonizers of the Siemens pattern. The whole plant has been put up by Siemens \& Halske, of Berlin. Its maximum output is 66,000 gallons per hour, but normally only 33,000 gallons are consumed, so that there is a surplus of 100 per cent available.
izers and trans formers; and 3 , the room for th sterilizing tower In the engine room are placed two 60 horse pow er Wolf's en gines, two direct gines, to direc and two alterna ing current dyna mos, two centrifugal pumps, an two fans to. sup

the high potential transformers.

Every part. of the installation is duplicated, so that it can be worked in two absolutely independent halves, and moreover, if any particular part becomes unfit, the connections are so arranged that it can always be replaced by the corresponding duplicate part.

The equipment is as follows: A pair of engines
ply the air current for the ozonizers. The portion ply the air current for the ozonizers. The portion
of the building containing the ozonizers is two stories of the building containing the ozonizers is two stories
high. On the ground floor it accommodates fortyeight ozonizers placed in two groups separated by a gangway (see figure). Each of these groups forms part of one of the two independent plants. It has

THE STERILIZING TOWERS
mer of the silent charge, a certain sign of the proper working of the apparatus, can be watched by the man in charge of the room, which is kept dark. Owing to the careful protection of the high potential terminal, the apparatus can be fearlessly and safely handled by the workmen. The air supply is fed by means of a main pipe running along the row of ozonizers and sending branches to them severally.

The brickwork sterilized towers are divided into four sections, and are placed in two rows, of which one forms the reserve plant. These towers receive from a common feed pipe the unpurified water above. They are about thirteen feet high, and are filled to a height of some six feet with coarse gravel. The water trickles in a fine stream down this gravel, meeting a slow current of ozonized air ascending under a slight excess of pressure. The feed pipe is provided with a conical valve which automatically stops the supply of water, if at any time any part of the ozonizers is out of order. The quantity of water passing down through each tower is 11,000 gallons per hour, and the volume of air passing up in the same time is 21,000 gallons. At the bottom of each tower there is a collecting tank for the sterilized water, from which the latter is pumped to the iigh-level reservoir.

Due provisions are made against accidents interfer-
ing with the working of any particular portion of the ozonizing plant. The disturbances which are liable to occur are two:

1. The current in the electrical apparatus may fail.
2. The current of air through the plant may fail

In either case an automatic device leads to the clos ing of the valve through which water is admitted to the sterilizing towers, and at the same time a bell informs the attendant of the mishap. In this way the supply of unsterilized water to the consumers is ef fectually prevented by means of apparatus which i of the simplest construction and easily controlled.
Each half of the plant, yielding a supply of 33,000 gallons, expends 50 horse power, of which 27 go to the ozonizers and about 22 to the pumping plant, the remainder being used up for the air blast, for feeding the boiler, etc.

The cost of the plant figures out to one and one third cents per 1,000 gallons of sterilized water, of which about one-third of a cent falls to the coal consumed in effecting the ozonization. (The price of one ton of coal yielding 7.7 times its weight of steam being reckoned at $\$ 5$.) To this must be added about two thirds of a cent in payment of interest and for keeping in repair. But it must be remarked that the Wiesba den plant is not typical, as there were no pre-e xisting and pumpin has to be done which does no properly form part of the work of an oz onizing plant Prof. Pros kauer and Dr Schüder, of the Koch Institut for Infectious Diseases at Berlin, have carefully inves tigated the ef ficiency of th ozone steriliz ing process with results which ar highly satisfac tory. Th e worked with water which was grossly in fected with vir ulent bacill (of the choler and typhus kind). Their result only con firmed the conclusion pre viously arrived at in the pre at in the pre
liminary ex periments Martini kenfelde by the same investigators, namely, that ozone, in the concentra-
tion in which it issues from the Siemens apparatus, tion in which it issues from the Siemens apparatus,
will destroy all pathogenic bacteria and nearly all harmless microbes, excepting just a few highly resistant and innocent forms, provided a suitable gravel filling is used in the sterilizing towers.
A month after the opening of the Wiesbaden water works, there was also inaugurated a similar plant, on a smaller scale, however, at Paderborn. The sterilizing apparatus of this is a precise copy of that at Wiesbaden, the only difference being that the water delivered from the sterilizing towers is allowed to flow down in a series of cascades, so as to work out the last traces of ozone.
The Paderborn waterworks have to supply 13,000 to 15,000 gallons of sterilized water daily. The plant has nine ozonizers of the Siemens type (of which hree are for reserve) and two sterilizing towers with four sections each. The power for the electric plant is supplied from a gas engine. The former consists of direct and alternating current dynamos, two blowers and three transformers, and has arrangements preventing the supply of unsterilized water similar to those at Wiesbaden. The cost of power is a little higher at Paderborn, but on the other hand there is less ozone used per gallon of water, so that the total expenses are much the same as at Wiesbaden.
The establishment of the plants at Wiesbaden and

THE QUADRJPLE-EXPANSION ENGINES OF THE "LIBERTAD."
to facilitate rapid loading. Thus, the 10 -inch guns will flre a 500 -pound shell with a muzzle velocity of $2,85 ¢$ feet per second and a muzzle energy of 28,160 foot-tons. At the muzzle these guns will be capable of penetrating 31 inches of steel armor. The 7.5 -inch gun of the broadside battery is a 50 -caliber piece, which fires a 200 -pound shell with a muzzle velocity of 3,018 feet per second, and a muzzle energy of 12,638 foot-tons. This piece, which can fire eight rounds per minute and has, therefore, about equal rapidity of fire with the 6 -inch piece, can penetrate at the muzzle nearly the same thickness of steel plate as the 10 inch gun, or 29.4 inches. The adoption of such a heavy gun for the secondary battery is in accordance with the best modern practice, which recognizes that the 6 -inch piece is not sufficiently powerful to penetrate the modern Krupp armor with which the secondary batteries of modern warships are protected. This 7.5 -inch gun, however, is capable of effecting penetration at ordinary battle ranges, and therefore marks a great advance on the secondary batteries carried by most existing warships and cruisers.
While the defensive features of the "Libertad" are, perhaps, not quite equal to her tremendous powers of offense, they are fully up to the average of the latest ships. She carries a practically complete belt at the
water line which has a maximum inches amid ships and is a ssoci ated with athwart ship screen bulkheads 10 inches in thickness. This belt is 8 feet in depth. Side armor of the same thick ness extends to the upper deck over the whole side of the ship lying be tween the two main bar bettes, and by its association w ith trans verse bulk heads of 6 inch armor, it forms a com plete armored central citadel The upper deck is formed of 1 -inch stee plating, while the protective deck, which is $11 / 2$ inches in thickness with in the citade and 3 inches in thickness at the ends out side the cita del, extends complete ly from stem ly from stem

European-built Chilian vessels, probably because they have come chiefly from the Armstrong yards, are all remarkable for their powerful offensive qualities, the armament of these vessels being, in proportion to their displacement, more powerful than that of any ships in the world; unless indeed we make an exception in the case of the United States navy
The "Libertad" is 436 feet long and 71 feet broad, and her mean draft is 24 feet $71 / 2$ inches. Her motive power consists of Yarrow boilers of the large-tube type, and twin-screw, triple-expansion engines of 12,500 horse power, and her estimated sea speed is 19 knots an hour. The normal coal capacity is 800 tons, but the full bunker capacity is 2,000 tons. The vessel will carry a complement of 700 officers and men.
The armament consists of four 10 -inch breech-loading rifles with quick-action breech mechanism; four teen 7.5 -inch rapid-fire guns, fourteen 3 -inch rapidfirers; four 6-pounders; four Maxims, and three sub merged torpedo tubes; and from this heavy batter: it is estimated that with all the guns firing at theil maximum speed, this vessel could deliver in one min ute $131 / 2$ tons of metal whose combined energy would amount to $1,700,000$ foot-tons. In explanation of this great total, it is sufficient to mention that the guns re all of the modern, long-caliber, high-velocity type with the latest pattern of breech mechanism designed
level of the top of the waterline belt. The barbettes for the 10 -inch guns are 10 inches in thickness in the front where they project beyond the central citadel armor and 8 inches in the rear. The 7.5 -inch guns are carried, four of them in casemates on the upper deck at the four corners of the central citadel, and the other ten are within the citadel on the gun deck, flve n either side. This battery of ten guns is furthe reted by 1 inch screens of steel plating placed rotected by 1 -inch screes of steel plating place ransversely between eacn pair of guns. These tw battleships will be conside ably the most powerfu war vessels in the Chilian fleet, which possesses som of the most notable armored cruisers in existence.
Not the least remarkable feature about the "Liber tad" is the great speed at which she has been built. The first keel plate was laid March 13, 1902, and the launch took piace on January 6, 1903, the vessel being therefore, completed in the remarkably short space of ten months. We commend this record to the consider ation of our private shipbuilding firms, who are large ly responsible for the backward condition of our navy The contract for the construction of the "Missouri" (which is a vessel only 400 tons larger than the "Lib ertad") was signed December 30, 1898. Last Decem ber, after the expiration of four years, the vessel was no less than twenty months behind contract, and she is not yet completed.

Automobile Netrs.
Now that automobiles have shown their capabilities on the road for transporting suburban sight-seeing parties, as shown by the Paris-Versailles touring buses oand the New York-Tarrytown Mobile wagonettes that were run daily last summer, automobile cars are soon to be introduced on French-and English railway lines for fast speeding over long distances and for taking care of suburban traffic respectively. In France, the Serpollet steam motor and flash boiler is to be used to pronel single cars rapidly over long distances, while in England the Napier gasoline motor, of a type similar to that on the car that won the Gordon-Bennett race last year, is to be used on individual cars over a 30 -mile stretch of track. The service required in this section is not frequent enough to warrant the installation of an electric equipment, so gasoline motor cars are to be used, and these will reduce the running time over steam trains by about 20 per cent, owing to their being more easily and quickly accelerated. From present indications, it looks as if the automobile is destined to revolutionize not only road traffic, but traffic on rails as well.
One great improvement that the French manufacturers have made on their machines this year is the method of lubricating the motor. Instead of depending on splash lubrication alone for oiling every part of the engine, positive oil feeds are led to each of the crankshaft bearings, and the crankshaft is pierced with suitable passages to conduct oil to the cranks themselves, so that the connecting rod boxes also receive plenty of oil. In the Renault motor, the oil that is splashed up by the cranks is caught in small cups at the top of the crankcase, which feed the major bearings by gravity. Centrifugal force is depended upon to send this oil afterward through small holes to the cranks themselves. The new de Dion-Bouton double-cylinder motor has a small pump driven by a worm gear, that raises the oil to the top of the crankcase, whence it flows to the bearings by gravity. A sufficient bath of oil is kept in the crankcase all the time, to splash up and lubricate the pistons. The better oiling arrangements of the motor conduce to longer life and more efficient service, and they should be introduced as far as possible on American gasoline cars.
The legislatures of many of the different States are at present considering bills regulating the speed and operation of automobiles. Connecticut, which has had the most sensible law imposing a speed limit of fifteen miles an hour in the country and twelve miles in cities and towns, is threatened through the efforts to distinguish themselves of some of her would-be farmer legislators; Massachusetts is considering a bill requiring that all operators of autos shall be registered, and prohibiting the licensing of any car capable of traveling faster than twenty miles an hour; while it remains for Maine to try to bring anti-autoists back to their senses by considering a bill providing a speed limit of eight and twenty miles an hour in towns and country, respectively. In every instance, the automobile clubs are fighting the adverse legislation and attempting to forestall it with bills giving equal rights to autoists and the drivers of horses.

Four hundred dollars damages were awarded an automobilist of New Haven, Conn., recently because of injuries received by being thrown from his machine, which ran into a hole in the pavement between the trolley tracks $48 \times 7 \times 4$ inches deep. The judge held that the city was primarily responsible for the condition of the pavement, but that it can exact settlement from the trolley company, as the latter, under the law, is responsible for the pavement between its tracks. This is one of the few cases where the autoist has come out victorious.

Another interesting decision has just been made by a judge in Bridgeport, Conn., which, while not affecting automobiles directly, throws some light on the right of way of trolley cars on country roads. A hack was being driven with two wheels in the track at 12:40 A. M. one dark, stormy night last winter. A car came along behind it and ran into it, throwing it down a small bank and turning it upside down. Neither the occupants nor the driver were seriously injured, but the driver was awarded $\$ 500$ damages on the ground that the company was to blame in not providing a sufficiently powerful headlight for the motorman to see an object on the track in time to stop the car. The motorman testified that the gong was the car. The motorman testified that the gong was
rung just before he saw the hack. In handing down his decision, Judge Wheeler said: "The company has no exclusive or paramount right to the use of the roadway between the tracks. It must operate its cars in the knowledge that the public has a right to use its tracks as a part of the highway. The traveler must recognize that the car cannot proceed save fupon the track, and hence he must turn off from the track, when he knows the car is approaching, within reasonable time to allow it to pass. When a traveler enters upon a car track in advance of an approaching car,
he must, in the exercise of reasonable care, do what he can to avoid accident, and ordinarily, if he turn upon the tracks so closely in advance of a car that an accident is inevitable or probable, such conduct will of itself be negligent. The traveler already upon the track is not obliged to keep looking around to see if a car be approaching. Such a duty on his part would be incensistent with his right to the reasonable use to that part of the highway. When the traveler hears an approaching car, it is his duty to turn out. When he ought to hear it, not to turn out would be an im portant consideration in measuring his own freedom from negligence." Under the conditions given, 鲑 ever, that the driver did not hear it was no fault of his, and the company was to blame for not taking proper precautions toward the avoidance of accident.

THE SPONTANEOUS BENDING OF MARBLE.

One of our correspondents has sent us a photograph, which we have herewith reproduced, of a bent marble slab in Rock Creek Cemetery, Washington, D. C. 'The picture brings out a curious phenomenon which may be quite commonly observed in old graveyards. The slab in question has been in position over half a century, judging from the inscription, and during this time has sagged over three inches at the center. Its length is 70 inches, width 35 inches, and it has a thickness of 2 inches. The peculiar phenomenon is onot to be confused with that of a slight concavity formed at the center of a slab placed in horizontal position and exposed for a long period to the weather. .Such a concavity is caused by a slow solution of the marble in water caught on its surface, whereas in the present instance the thickness at the center of the stone does not vary materially from that at the sides, but a marked curvature is shown on both surfaces. In seeking for an explanation of this curvature, one is at first tempted to consider marble as a fluid, such as sealing wax or pitch, but possessed of much greater viscosity. Pitch in cold temperature is brittle and has all the appearance of a solid, but a heavier substance placed on the surface will, in time, sink to the bottom, and a lighter substance will very slowly float from the bottom of the pitch to the top. However, in the present instance, this explanation is not satisfactory.

For an authoritative opinion on the subject, we have submitted the question to the Director of the United States Geological Survey, and have been referred by.

MARBLE SLAB BENT BY ITS OWN WEIGHT.

him to Vol. X. of the Tenth Census Reports, which contains some notes compiled by Alexis A. Julien, on similar occurrences in Europe, where the matter has been studied by some prominent geologists. One of the instances given is that of a slab in the marble veneer of the facade at St. Mark's, Venice, which at its lower end bulges $23 / 4$ inches from the backing. The slab faces westward, and was found to become very warm in the afternoon sun, while its rear surface was kept cool by the backing. Another striking example may be found in the Alhambra in Granada, Spain. One of the two doorways that have been christened "La Mezquita" comprises three slabs of marble, one resting as a lintel on the other two, which are placed upright. A subsidence of the wall on the right side has exerted an enormous thrust upon one of the uprights, and the marble instead of breaking has simply bent outward about three inches. In the quarries near Rutland, Vt., the bending of thin slabs of marble supported only at the ends has frequently been observed. Fleurean de Bellevue discovered a dolomite possessed of this property, which he attributed to "a state of desiccation which has lessened the adherence of the molecules of the stone." De Bellevue seemingly confirmed this by experiments, which showed that inflexible varieties of marble, when heated, became flexible. However, owing to the exceedingly small quantity of water present in marble, this explanation is not satisfactory. A better solution of the problem has been furnished us by Geikie, who says that "irregular and closely contiguous grains of calcite which make up a white marble are united by no cement, and have apparently a feeble coherence." Prof. Julien's opinion is that "their contiguous crystallization has left them in a state of tension, on account of which the least force applied through pressure from without, or of the unsupported weight of the stone, or from external expansion by heat or frost, produces a separation of the interstitial nlanes in the minute rifts. Such a condition permits the play of the grains upon each other and consider-
able motion, as illustrated in the commonly observed sharp foldings of strata of granular limestones without fractures or faults. In such cases also I have observed that the mutual attrition of the grains has been sometimes sufficient to convert their angular, often rhomboidal, original contours into circular outlines, the interstices between the rounded grains being evidently filled up by much smaller fragments and rubbedofi particles."

Dr. Bedell's Double Electric Transmission.
In the current Supplement we publish a discussion by Dr. Frederick Bedell, of Cornell University, on the joint transmission of direct and alternating currents simultaneously over the same set of wires. The "common conductor system," of which he is the inventor, requires two pairs of wires, each pair constituting a complete circuit for direct current. By coupling the forplete circuit for direct current. By coupling the for-
warding wire of one circuit to the return wire of the warding wire of one circuit to the return wire of the
other, the two will serve as a path for an alternating other, the two will serve as a path for an alternating
current, while the remaining two wires may be coupled current, while the remaining two wires may be coupled
for another alternating current. The course of each alternating current will be first along the forwarding wire and then along a return wire, according to the alternating directions of its flow, the circuit being completed through the ground. Thus the currents will not interfere with each other and the fluctuations of an alternating current will not be felt in the direct current circuits sharing the same wires.

The Death of James Glaisher.

With the death of James Glaisher there has passed away an old aeronaut. Forty years ago his exploits kept him much in the public eye. In 1862 he made a series of famous balloon trips. Ascending with Mr Coxwell in a balloon of 95,000 cubic feet capacity, he reached a height of 26,177 feet. On September 5, in an ascent at Wolverhampton, he and his companion were nearly frozen to death. After registering observations up to a height of 36,000 feet Mr . Glaisher became unconscious. Mr. Coxwell contrived to pull the valve string with his teeth, thereby causing the balloon to descend.

The Industrial Exhibition at osaka in 1903.
Osaka, one of the three imperial cities of Japan, is the center of great activity at this time, preparing for the Fifth National Industrial Exhibition, to be held there from March 1 to July 31 of this year. The exhibition, which is situated at Imamiya in the southern part of Osaka, will surpass in magnitude and beauty all preceding ones, and will bring before the public eye a fuller, more general representation of Japanese arts, manufactures, and resources in their latest development than has ever been seen before. The exhibit will be under the direct management of the Imperial Commission which is presided over by His Imperial Highness, Prince Kan-in. There will be special buildings for classified groups of the exhibits, and important among them are those of forestry, fine arts, agriculture, fisheries, manufactures, education, zoology, foreign samples, transportation, greenhouse, cold storage, aquarium, and machinery. There will also be bazars, restaurants, tea-houses, and the Ceremonial Hall within the grounds. Visitors to the exhibition will be fortunate in witnessing the two great religious festivals which will be celebrated at that time. The festival of Tennoiji will gather over ten thousand priests to Osaka from all over Japan to parade through the streets in their ceremonial robes of rich brocades and brilliant colors. To those who attend the exhibition will be granted special privileges and free access to many places usually closed to all visitors, both foreign and Japanese.

University.
Carne grants o Haculty to assist original researches. They are as follows:

To Dr. Harmon N. Morse, Professor of Analytical Chemistry, $\$ 1,500$ for an assistant in his researches upon the new method he has evolved for measurement of osmotic pressures.

To Prof. R. W. Wood, $\$ 1,000$ to maintain a research assistant in his work. He has appointed Thomas Sidney Elston of the University of California to the position.

Dr. H. C. Jones, in new physical chemistry as it is studied in America, gets $\$ 1,000$ for an assistant in his researches. Frederi \approx k Hutton Getman, of Stamford, Conn., receives the appointment. His doctoral dis sertation deals with an important problem in physical chemistry.
Dr. J. J. Abel, Professor of Physiological Chemistry, $\$ 1,000$, for the purchase of apparatus necessary to his researches in that subject. He is a leader in this branch of science in America.

Dr. J. B. Whitehead, in the physical department, has received a liberal grant to carry forward a research in received a liberal grant to carry forward a research in
the theory of a magnetic field developed by Maxwell, the English scientist.

foxtedpuandente.

Some Suggestions in Civil Engimeering
 To the Editor of the Scientific Anerican:

The engineering projects outlined below may embody some patentable features, but the writer has decided to offer them to the public for what they are worth.
The first is a new method of constructing tunnels under deep harbors or straits, so as to avoid the heavy grades, and also reduce the cost; the second provides a means of retaining the high-water level in harbors, subjected to the action of heavy tides, and with large rivers flowing into them, as in the case of the harbor of this city (St. John, N. B.) ; the third is a more extended application of the latter scheme, so as to render rivers, with elevated banks, navigable without the aid of canals, where rapids and shallows must be passed; and the fourth shows how to use glaciers, passed; and the fourth shows how to use glaciers,
easily accessible, like the Great Glacier on the C. P. Railway, for cold storage purposes. The last is very simple, and need not be described at length, as it would only be necessary to dig a tunnel into the glacier, and storage chambers on either side of it, with a branch track running into the tunnel, to convey the goods. British Columbia salmon and other products could be stored for any length of time, for convenient shipment to eastern markets. Other glaciers could, of course, also be used-possibly one could be found on the Labrador or Greenland shores, not far from trade routes.
The tunnel project involves the construction of a submarine embankment, preferably of clay mixed with rock ballast, to within about 30 feet of the surface of the water, which would allow a sufficient depth for shipping, and afterward excavating the tunnel through the embankment. The material removed for the approaches to the tunnel could be used for the embankment, the width or height of which could be increased, if necessary, by using the material excavated from its interior. In building railway embankments, it is found, that such material will force its way through enormous depths of boggy deposits, and it therefore seems probable that this could also be done in building these tunnel embankments, where a heavy layer of silt is encountered, as on the bottom of the harbor of New York.
The avoidarce of blasting operations would greatly reduce the cost of construction, the moderate character of which is shown by the fact that thousands of acres of real estate have been built out into the harbors of San Francisco and Boston. The work would be of precisely the same nature, where the embankments are built above the surface of the water for a short distance from either shore, and the material for the central portion could be distributed by self-dumping scows. These shore sections of the embankment would afford valuable wharfage, and cheapen the cost of the approaches. At the Strait of Canso, N. S., where the water is very deep, and one of the shores considerably elevated, the comparison as to cost, with the usual methods of tunnel construction, would be most favorable. On the elevated shore of the strait, the grade could be greatly modified, as well as the cost of construction, by extending the embankment for a considerable distance above the surface of the water. Either a bridge or an ordinary tunnel at this point is considered a serious engineering problem.
Similar engineering skill would be required in carrying out the proposed plan for the harbor of this city. Bay of Fundy tides are well known for their unusual height, and have a range in this harbor of about 30 feet, leaving the smaller shipping stranded at the docks, when the tide is out, and greatly aggravating the difficulty of providing the larger shipping, to which such methods are dangerous, with adequate wharfage. The entrance channel to the harbor is very narrow, with a small rocky island and breakwater on one side, and about three miles of shallow rock flats on the other, which also extend over a large area of the harbor, and render it worthless to shipping except at high tides.
Beginning at the opposite shore and working out toward the entrance channel, an embankment of clay and rock ballast, say 50 or 100 yards wide, could be constructed at a moderate cost, and when completed would only leave an outlet at the entrance channel equal in capacity to the volume of the river water entering the harbor, which would then maintain the high water level. A lock would be required near the outlet to accommodate ships entering the harbor at low tide, but of course the outlet could be used at all other times. Some engineering difficulties might be encountered during the course of construction, but they could doubtless all be overcome. By providing drawbridges at the lock and outlet, traffic across the embankment could be accommodated, but such equipment would be of more value at a point farther up the harbor, where a ferry service to Carlton is established, across a narrow arm (the river channel) of the harbor, which could be crossed in the same way, by a bridge and embankment, through which only a channel (not grad-
uated) would be necessary. The embankment at the entrance of the harbor could, of course, be abandoned, entrance of the harbor could, of course, be abandoned,
and the whole equipment located here, but the capacity of the harbor would be greatly reduced, and shipping still exposed to the dangers of the long narrow entrance channel. This plan of harbor improvement, unlike some others proposed, would not complicate the sewage problem, on interference with the passage of silt and rubbish, brought down by the river.
Embankments of this description could be built out from the shores of rivers obstructed by shoals and rapids, where the banks have sufficient elevation to retain the water, making them into a succession of elongated lakes, which could be entered, in both directions, by means of locks and graduated outlets, as previously described. Provision would have to be made for floods. but this could be done by paving portions of the embankmenis with stone or brick, over which the water would flow at the proper elevation. The cost would would flow at the proper elevation. The cost would
surely be far less than would be necessitated by a surely be far less than would be necessitated by a
system of canals. An embankment subjected to somesystem of canals. An embankment subjected to some-
what similar conditions has long been in use at Holywhat similar conditions has long been in use at Holy-
head, Wales, over which the Chester and Holyhead railway passes. It is three-fourths of a mile in length, with a gap at the center through which the tide rushes with great violence.
One of the best opportunities for putting this project into successful operation is afforded by the St. Lawrence and Ottawa rivers, and a small tributary of the latter, almost completing the connection with Lake Nipissing and thence to Georgian Bay by the French River. Only about twenty-five miles of canal would have to be excavated, and if no greater obstructions stand in the way, the opening of this route to large vessels would prove an inestimable boon to Canadian and Western commerce. W. F. Cleveland.
Royal Hotel, St. John, N. B., Canada.

Oll Well fires in Texas.

To the Editor of the Scientific American:
We note with pleasure the extensive space you have devoted in your issue of January 10 to the Southwestern oil fields and to the fires which have occurred in these fields in the last six or seven months. It is hard for people in the East to realize the entire significance of this great oil belt, extending across Texas and Louisiana, which has been tapped in the last two years at a half-dozen places. We believe the Texas and Louisiana oil fields are worthy of more attention by the Eastern papers in the way of legitimate treatment, such as you have given the subject in your recent issue.
We regret, however, that your correspondent has misstated the facts in several particulars, and we take the liberty of suggesting that you make a correction of these mistakes, if this is consistent with your editorial policy.
To begin with: The statement that one of the largest wells in the Jennings region caught fire and blazed for several weeks, is incorrect. This well was ignited from an oil tank which was set on fire by a stroke of lightning, July 15, and burned continuously until July 21 -about six days. It was extinguished in one half minute by the use of steam and water. The well in question is the property of Heywood Brothers, and after the fire it was put into service and has yielded more than 30,000 barrels of oil a month, producing a net revenue exceeding $\$ 7,600$ a month.
Regarding the Spindle Top fire, your correspondent states that one of the fires destroyed property covering ten acres of the Hogg-Swayne tract and raged for two weeks. He states that this fire occurred in September, and that at one time fifty wells were on fire and that twenty workmen lost their lives before they had time to escape. He probably refers to the first fire on Spindle Top Hill, which occurred in September, and was confined to the Keith-Ward subdivision and a portion of the Higgins tract. Only one well burned continuously in this fire, although ten or twelve were ignited at intervals, but were extinguished without difficulty. This fire lasted three days. There was no loss of life in this fire. In October a fire occurred in the Hogg-Swayne tract, destroying about fifty derricks, and in this fire one workman was burned so badly that he died. In this case the fire lasted only eight hours.
The statement made by your correspondent that water has proved ineffective in extinguishing the Southwestern oil fires is also incorrect. In the Beaumont fires, water was relied upon, as it was at Jennings, and combined with steam, it had the desired effect. It must be remembered that when a stream of water is turned upon a red-hot pipe or tank, it is immediately converted into steam, and this has the same effect as if steam wera sprayed upon the fire from pipes.
We trust that you will make these corrections, because we believe they are essential facts and deserve to be properly stated. Considerable prejudice has
the fires, and sensational newspapers have seized upon every possible excuse for printing glaring accounts of the few fires that have occurred. We believe that the loss of life and property through fires has been remarkably small.

Holland S. Reavis.

Jennings, La., January 13, 1903.

Natural Growth of Mushrooms in a Circle.

To the Editor of the Scievtific American:
In Scientific American of January 3 an article accounting for mushrooms growing in the form of a ring on account of the exhaustion of the organic matter is misleading and incorrect.
Mushrooms do not come from seed or spores directly. The spores produce mycelium under favorable conditions; and this miycelium will produce mushrooms if the conditions are favorable. Otherwise mycelium will reproduce mycelium, and if conditions remain unfavor able during the first two generations, then there are seldom, if ever, any mushrooms produced until the sixth or seventh generation, when some mushrooms may develop, otherwise the ring and time are extended to about ten or eleven generations. If Prof. F. S. Lamar will take some soil that was inside the ring, or soil upon which mushrooms have grown the previous sea son, and will plant some first generation mycelium, making the conditions favorable, he will find that it will produce mushrooms and prove his theory wrong Mushrooms are not particular about the kind of soil they grow in, organic matter sufficient is produced an nually, but they are very dependent upon suitable moisture and temperature. Mycelium is more dependent upon the kind of organic matter and less upon mois ture and temperature. Fairy rings of fungous growth can be produced by design by controlling the conditions, and thus prove the correctness of my theory.
A. B. Leckenby

Eastern Oregon Experiment Station, Union, Oregon, January 28, 1903.

A Tidal Wave in the Pacific.

On February 9 the Low Islands in the South Sea suffered much damage from a tidal wave. Of the hundreds of islands to be found in the Pacific, many of them located in lagoons surrounded by coral reefs, the Low Islands are perhaps the most exposed. The islands take their name from the peculiar classifica tion of the inhabitants of the South Sea. Islands are divided into high and low. Thus it comes that the Paumotu Islands are often named on the maps the Low Islands. Like many of the South Sea islands, the Paumotu or Low Islands are of coral formation, rising not more than 20 or 30 feet above the level of the sea, and therefore particularly exposed to tidal waves. The High Islands, on the other hand, are of volcanic origin, and sometimes project their heads to a height of 8,000 feet. In the Hawaiian group still higher elevations are attained. The Paumotu Islands have an area of about 400,000 square miles, which is about half as large again as the State of Texas Fortunately, in view of the recent disaster, their population is small. Had the calamity occurred in the High Islands, which are more thickly populated, the fatalities would perhaps have been appalling.

A Scarlet Fever serum.

The announcement was made at Berlin, February 2, that a scarlet fever serum had been discovered which seemed full of medical promise. Experiments were said to have been conducted by Dr. Aronson, which were quite successful. The result of these experiments was announced by no less a person than Prof. Baginsky, the head of Emperor and Empress Frederick Children's Hospital of Berlin. He is, therefore, in a measure responsible for the announcement of the thera peutic value of the Aronson serum.

The Current Supplement.

The curront Supplement, Ne. 1416, opens with a most elaborately illustrated article on "Electric Trac tion at Cape Town." Henry R. Lordly discusses exhaustively the subject of anti-friction bearings, illustrating his text by many telling diagrams. Two articles on calculating machines, one on a mechanical cashier, and the other on an automatic adder, subtractor, divider, and multiplier, should be read with interest. The English correspondent of the Scientific Americian begins his account of the Water Supply of London. C. F. Saylor presents in an interesting article the progress of the beet-sugar industry in the United States. "The Universe as an Organ ism" is the title of a semi-philosophical paper which contains much food for reflection. Prof. Bedell, who recently announced a method of using one wire fcr transmitting alternating and direct currents, dis cusses the subject in a popular paper.

HOW THE BOARD IS WIRED F0R

RECORDINO TELEGRAPH FOR AMATEURS.
 y the late george m. hopkins.

If the question of utility controls one in making and trying a piece of appa ratus, it is useless o expect to realize anything in the way of profit from the re cording telegraph illustrated and de scribed; but a few interested amateur an co-operate and in with a wire and ansmitter for each secure a pract都 workings of some of the large telegraph ystems and of som
of the applications of electricity, which could not be secured in any other way. The expens would be slight, when there is a joining of amateurs for one purpose
It is assumed that an ordinary sounder is available for the central office recorder, and that every subscriber will furnish a trans mitter, a wire to communicate with the cen tral office recorder, and battery sufficient to operate one branch of the central office sys tem.

In making the central office recorder, a common sounder is pressed into service. It is provided with a stylus-holder which is clamped to the free end of the armature lever. The stylus is a piece of steel wire $1-16$ inch in diameter and 1 inch long, with a rounded and hardened point. It is clamped in place by set screw.
Under the free end of the armature lever is journaled an arbor, carrying a wooden roller having a V-shaped peripheral groove at the center, exactly under the stylus; so that when a paper strip passes over the roller, the stylus an make a slight depression in the paper when the sounder magnet is actuated.
The principal features of this telegraph are a simple transmitter for giving fixed calls, like a call box, and the mechanism for carrying the paper tape over the grooved spool and under the stylus. The roll of tape as pur chased from the dealer is carried on a wooden reel, supported by a standard at the rear of the sounder. Between two standards in front of the sounder are journaled wo rollers, $a b$. The roller a s flanged and provided on it periphery with three or fou ubber bands to give it fic tional contact with the paper ape. The lower roller b is overed with a piece of rubber tube and the shaft of this oller carries a small gover or c, for regulating the speed of the tape. The tape extend ver the roller b, thenc ownward under the flange oller d, then upward to fastener. The roller d is pro vided with a weight which actuates the mechanism
It will thus be seen that th paper tape is carried throug the machine by the action the weighted roller a, and its motion is regulated by th overnor c. The governor onsists of a slotted hub inks $g g$, pivoted in the slot of the hub, a slotted sliding block h, placed loosely on the shaft of the roller b, weighte arms $i i$ pivoted in slots in the block h, and pivotally connect ed to the outer ends of the inks $g g$, and a light spring, ending to draw the weighte arms $i i$ toward each other The block h is provided with a leather washer l, which pro duces necessary frictional con tact with the standard, whe he wh out by centrifugal action. The ape reel is provided with slight spring for checking its

THE RECEIVING INSTRUMENT OF THE HOPKINS RECORDING TELEGRAPH.
motion when the paper feed stops. In the side of the block which carries the stylus is inserted a small stud, in which is clamped a wire m, having its free end near the side of the roller a, flattened and turned up at right an gles. The flattened end of this wire m lies in the path o a small pin projecting from the roller a, so that when ever the armature lever is drawn down by the mag net, the pin is released, and the roller a is allowed to turn, but when no current passes the magnet, the armature lever rises and brings the flattened end of the wire m into the path of the small pin, and stops the movement of the roller a, and consequently arrests the progress of the paper, until the pin is released by another action of the armature lever. Binding post placed at the rear of the sounder are connected with the magnet electricaily in the usual way. To transmit a signal over a line connected with this instrument, it is not necessary to understand the telegraph alphabet nor to know anything in regard to telegraphy. The signals are pre-arranged, so that the operation of sending is purely mechanical.
The signal board here represented in detail, was invented and patented years ago by William Hadden but the patent has long expired. This simple de vice consists of a board, a few inches wide, and per-

DIAGRAM OF THE HOPKINS RECEIVER.

view of the transmitting apparatus.
haps twice the length, depending on the num ber and length of the messages sent. The board here shown is $41 / 2$ inches wide, 7 inches long, and $3 / 4$ inch thick, with as many longitudinal grooves formed in it, as there are signals to be given. The signal board must be of very hard wood, and the dots and dashes of the signals are formed by sewing No. 30 plain copper wire through holes extending through the board, from the grooves in front to the grooves in the rear. As the signal transmitter is at present constructed, the copper wire sewed through the first set of holes represents the letters of the Morse alphabet from A to F, with a dash between each letter. The sewing in the second groove represents the letters from G to J. The sewing in the third groove represents the letters from K to M, and so on. All of the wires forming these letters are connected together at the top of the board, by a wire on the back, which is in electrical connection with the binding post seen to the right in our view of the signal apparatus. The binding post. at the opposite edge of the board is connected on the back of the board with a third binding post, at the lower end of the board. The third binding post is connected by a flexible cord with a wire, having a flattened end, and provided with a wooden handle. Sending a signal con sists simply in drawing the flattened end of the wire with a uniform speed down one of the grooves. The first two binding posts, being connected with the binding posts of the recording instrument and with a battery, when a signal is sent, the recorder is released automatically, and the detent is constantly withdrawn from the pin in the roller, so long as the signal is being sent, and the message is thus recorded. When the signaling stops, the recorder is stopped by the action of the detent. Several transmitters may be connected with the record er , and one wire in each case may be dispensed with, by grounding the other at each end.
The recorder will run long enough to record a long signal or several short ones with one raising of the weight carried by the paper tape.

The motive power used in the manufacturing establish ments of the United States in 1900, according to the census report, aggregated $11,300,081$ as compared with $5,954,655$ in $1890,3,410,837$ in 1880 , and $2,346,142$ in 1870 . During the census year steam power rep resented 77.4 per cent, water wheels 15.33 per cent, hors power 1.3 per sent and other forms of mesanical power one-fffth of one per cent. New York leads the States in the use of water power, having 368,456 horse power derived from that source.

venomous snares.-II

by randolph i. geare
The American species of Elapids known to be poisonous are the Harlequin Snake, or Bead Snake (Elaps fulvus), and the Sonoran Coral Snake (Elaps euryxan thus).

The Harlequin Snake is found in Virginia, Georgia, Florida, Alabama, North and South Carolina, and Mis sissippi, and north along the Mississippi, Missouri, and Ohio Rivers. In southern Texas, too, it occurs in many localities. This snake is said to be very gentle and mild in disposition. Its favorite haunt is supposed to be underground in sweet potato fields, where it is frequently unearthed by laborers in harvesting. Its food consists chiefly of other snakes and various kinds of reptiles. One specimen found had swallowed another snake as long as itself; while, in addition, it had a garter snake about half digested. The Harlequin Snake is described as having a ground color of red with numerous black rings and intermediate spaces of yellow. The tail is alternately black and yellow.

A rather curious variety of rattlesnake is the Crotalus cerastes, which, as its name indicates, is distinguished by a horn over each eye. Horned rattlesnakes are most venomous.
A rattlesnake which goes by the Indian name of Massasauga is one of the small but very venomous rattlesnakes which inhabit the prairies in the western United States and territories. The most prominent of these rattlers is the Crotalaphorus tergeminus (Sistrurus catenatus): One of the characteristics of the Massasauga is the top of the head, which is covered with regular plates just as in harmless serpents, and not with scales as in most rattlesnakes. The pit between the eyes and the nose, however, is present as in all Crotalidx. The Massasauga snakes are of dark, blotched coloration, and are rarely more than one or two feet long. Sometimes they are called sidewipers and sideliners from their habit of wriggling sidewise. A few words on the structure of a rattlesnake's rattle may not be without interest. Briefly described, the rattle consists of a number of hollow, horny rings, somewhat like quill in substance, and interlocked with one another, while they are so elastic as to permit of a considerable amount of motion between them. These rings are not indicative of age, as has been supposed, since in some years several appear, while in others only one ring may be developed. Though there is a great variety of color in rattlesnakes, this feature can in most cases be used as a means of determining the species, other distinctive characteristics being found in the arrangement of the shields covering the fore part of the head.

The dread which even the bare thought of receiving a charge of the deadly venom inspires, is fortunat 1 ly somewhat diminished by the well-known fact that this snake always "rattles" before striking. There has been a great deal written as to the reasons which been a great deal written as to the reasons which
cause them to "sound the alarm." The old theory was that the "rattling" was intended to warn the prey of their approach. This, however, seems alto-

the west indian fer de-lance.
common belief is that the rattle is sounded as a means of bringing to its assistance other snakes of its own kind. Prof. Samuel Aughey, in an article on the "Rattle of the Rattlesnake," confirms this belief. He says he once saw a number of hogs attacking a rattlesnake. The snake at once commenced rattling, and three other snakes almost immediately came to the rescue, but the hogs were victorious, and all the snakes were killed. Some authorities, who have made careful observations, believe that the true function of the rattle is to bring the sexes together for mating, while still others affirm that its principal use is to frighten and paralyze the victim into submission, thus acting as a kind of "charm." There is yet one more theory to account for the use of the rattle, namely, to ward off disturbers that cannot serve as food, and thus prevent a useless expenditure of venom!-surely fixing this snake as a strict economist, if true.
These theories may all be partly correct. The phenomenon may perhaps be most easily explained by ac cepting and applying Herbert Spencer's suggestion regarding the wagging of a dog's tail, i. e., that it is an escape of nervous force which is restrained from any other mode of expression at the moment.

No species of rattlesnake occurs in any of the West Indian islands proper. Several species are found in the United States, as pointed out, and indeed there are but fiw localities here where this snake is not

HORNED RATTLESNAKE (CROTALUS CERASTES).
present, or rather where it was not found before it was exterminated. Still, the area inhabited by more than one species of Crotalus is comparatively limited.
It may not be out of place to tell here something of the Fer-de-Lance, the deadly snake of Martinique, which is said to have been all but exterminated by the recent volcanic eruptions. This serpent may be regarded as a yellow viper of the family Crotalide, designated zoologically by the term Craspedocephalus (or Bothrops) lanceolatus. The Fer-de-Lance is rom 5 to 7 feet long, and is said to be capable of making considerable springs when in pursuit of prey or of some object by which it has been irritated. Its bite is fatal, the only antidote seeming to be, as in the case of bites of other venomous snakes, whisky or other ardent spirits. The serpent infests sugar plantations in the West Indies, and is dreaded alike by man and beast. The tail ends in a horny spine which scrapes harshly against objects, but does not rat tle. How deadly is the Fer-deLance may be gathered from the description of a writer in Harper's Magazine: "If by some rare chance you encounter in the island [of Martinique] a person who has lost an arm or a leg, you can be almost certain you are looking at a victim of the Fer-de-Lance-the serpent whose venom putrefies living tis sue."
(To be continued.)

Protecting the Sponges.

The use of the "skafander" has been abolished by Samos, Crete, Cyprus, Tunis, and Egypt. Now Turkey and Greece have followed suit. The skafander is a device by which a diver can remain under water for about an hour. He is thus enabled to comb the bottom of the sea with a thor oughness that has almost exterminated sponges in many parts. The employment is its own punishment; for the diver usually dies of palsy of the lower extremities. The law now steps in to assist nature in protecting the sponges. In addition to the skafander, the natives resort to harpooning, primitive diving appàratus, and dredging.

The frequency with which old pipes made of clay wood, and metal have been found in England, Ireland, Germany, Switzerland and France, has led archæologists to the belief that the ancients may have smoked. The belief receives some color from passages in an cient authors. Herodotus remarks that the inhabitants of the Aroxes Islands, supposed to be the modern Volga, "were wont to throw piles of fruit on a fire and then to inhale the vapor, with the result that they became as drunk as ever the Greeks became after drinking wine, and the more fruit they threw on the fire the more drunk they became." Pomponius Mela talks in a similar strain of certain Thracian tribes. Pliny as serts that the vapor of plants was used to cure dis eases, and says that in some instances it was even in haled through a tube.

HARLEQUIN SNAKE.

NEW YORK'S STEEL ROADWAY.
The laying of a track of broad, flat, steel rails on Murray Street, between Broadway, and Church Street, which was accomplished the middle of last December, was the second step in the opening of a new era of transportation in this country. The flrst step was the introduction of automobiles; the second is the building of good roads for them-roads that shall be suitable for horse-drawn vehicles as well.
The steel road, strange as it may seem, was flrst tried in unprogressive Spain, where a section of it two miles long has undergone the abuses of the heaviest kind of wagon traffic for over ten years, and yet has stood the test well. At the end of seven years, the average cost per year of maintaining the sides and center of the roadway was found to be but $\$ 380$, as against $\$ 5,470$ per annum paid to maintain the flint stone paving or surfacing previously used The wear of the rails themselves was but 0.1 mm ., or 0.003 inch a year.

Gen. Roy Stone was the first to see the possibilities of this form of road and to advocate its use in this country, which he did most urgently a year ago, in an address before the Automobile Club of America. Presi dent Charles M. Schwab, of the United States Steel Corporation, had some rails rolled after Gen. Stone's designs, and presented them to the Automobile Club, in order that it might lay and test them. It was thought that Murray Street offered the severest testing ground, on account of the heavy trucking through that thoroughfare. Consequently, that was the street chosen in which to make the first test. The rails hava been in use two months now, and teamsters driving through Murray Street have learned the advantage in using them. Our illustration gives a good idea ot the appearance of the street at present.

A glance at the cross-sectional cut will show the reader how the roadbed is prepared for laying the rails. Two 18×18-inch trenches are dug and filled with $1 \frac{1}{2}$-inch broken stone laid over a layer of old paving stones, and top-dressed with 3 inches of fine gravel. The rails are laid on this and fastened to gether at their ends with fish plates on the sides and bottom, while $3 / 4$-inch tie rods at intervals keep them parallel and properly spaced. In building a country road, the earth is graded up to the rail on each side and filled in slightly higher in the center, so as to give the general contour shown in the cross-section.

The rails used in Murray Street are 40 feet long and 1 foot wide, with flanges 3 inches wide on the under side and $3 / 3$ inch wide on the top. The rail is $3 / 8$-inch thick near the flanges, and a trifle thicker in the center. The slight flange on each side of the top of the rail tends to keep a wagon wheel from running off with any slight side-pull, while it can nevertheless easily surmount the flange when the driver wishes to run on or off the track. The rails are laid with the alternate joints on opposite sides, similar to those of a railroad track. The distance from center to center is 5 feet, 6 inches. The weight of the rails is 25 pounds to the foot, or 132 tons per mile, and the estimated cost of a mile of track, including laying, is $\$ 4,000$. Gen. Stone believes, however, that on country roads lighter and narrower rails weigh ing but 100 tons per mile can be used, and, with steel at $\$ 18$ per ton; as it is in times of depression, this figure can be cut in half. When once built, a road of this type will last a generation if the earthen part of it is kept in repair at slight expense.

Comparative tractive tests have demonstrated that the power required to haul a wagon on a steel roadway is less than one-fourth that needed on the ordinary stone road. According to the report of a Pittsburg, Pa., engineer, Mr. F. Melberger, who made some tests with a 1,350 -pound wagon on a steel road, the average drawbar pull per ton was but 3.23 pounds, as against 41 pounds per ton on macadam and from 75 to 102 pounds per ton on hard earth roads, as demonstrated by previous experiments made in Atlanta, Ga., under similar con ditions. This means that 12 times as much power is required on macadam as on steel, and from 23 to 31 times as much on dirt roads. Experiments also show that the tractive force required on steel is considerably less than on asphalt.
These tigures, coupled with those secured by the government as to the cost per ton-mile for haulage on country roads, viz., 25 cents, as against 8 cents per ton-mile in Europe, only go to show how wasteful our present roads are. Of the $\$ 90,000,000$ expended annually for road transportation of farm products,
etc., fully two-thirds is chargeable to poor roads With such facts as these before it, it is to be hoped that Congress will have the wisdom to pass the Brownlow bill appropriating $\$ 50,000,000$ for assisting in building good roads, which, according to the provisions of the bill, may be built with steel rails if desired.

a Curious case of regelation.

Mr. Howard, of Hillsboro, Ohio, sends us a photograph of a lump of ice whose genesis is somewhat puzzling. His account of the affair is as follows:
"During a cold spell several evenings ago, I left one

A CURIOUS ICE FORMATION

night a graniteware cup full of hydrant water on the floor of a wooden outhouse. There was nothing in the room to disturb it. In the morning the water was frozen, and I was greatly surprised to see a spur two inches long projecting from the block of ice on one side. The cup is about four inches across."

Perhaps some of our readers may be able to point out some explanation; meanwhile the following the ory has been suggested: The cause of this phenomenon may be somewhat as follows: The water was rapidly cooled, and a layer of ice formed at first on the surface. Then, owing probably to an unusually rapid

cross-section of steel roadway.

APPEARANCE OF STEEL ROADWAY IN MURRAY STREET, NEW YORK be formed.
well known, so that after a while there would be con tained within the cavity of the block of ice a quantity of water at a temperature below 32 deg. F., that is to say, below the normal freezing point. A further fall of the temperature caused the formation of some more ice, and, consequently, a further increase in the pressure within the block, until at last this pressure became sufficient to burst the ice, and the water was squirted out in a jet. At the same time the pressure was relieved, and thus the freezing point of the water rose to its normal value, so that the water of the jet, being some degrees below this point, immediately froze as it stood.

A somewhat similar occurrence is described in La Nature as having been observed about the middle of December last. D. Crispo, director of the government laboratories at Antwerp, writes that some of the speci mens of water in his laboratory froze in the bottles containing them, and one of the bottles presented a most curious appearance, the ice protruding from its neck in a long, smooth worm, capped by the cork, which was forced out. Mr. Crispo thinks that in this case the ice was gradually squeezed out by the in creasing pressure in the bottle, behaving like a viscid liquid in consequence of fusion under pressure and subsequent regelation. He does not think it likely that the water was squirted out suddenly. But it must be noted that the case recorded by our correspondent offers something different from this. The ice in the bottle might be squeezed through the unyielding glass nozzle, but if we suppose that the spur on the block of ice of our illustration was gradually forced through a hole in the block we are faced by the difficulty that here the aperture itself, having edges of ice and not of hard glass, would itself be melted by the pressure and would widen out, so that no spur could

We should be interested to hear the views of some of our readers on this matter.

THE ORANGE IN NORTHERN CALIFORNIA.

by enos brown.
Planting of the first orange tree in the Sacramento Valley was coincident, almost, with its permanent oc cupation by Americans. Very few of the early miners dreamed of more than a temporary settlement in the land of gold. They had but one purpose-the sudden acquisition of wealth and a return to their distan homes to enjoy it. To most persons the character and resources of the new country were not even conjectured. Geographical science, fifty-four years ago, probably knew less about California than is now universaliy known about the interior of Africa. A few years' residence by the new settlers, however, was sufficient to demonstrate the transcendent charm of the climate and the exuberant fertility of the soil, and to convince them of the wonderful agricultural resources. of the new land.
Cultivation of the orange as a commercial proposition in these northerly regions was one of the results of the se questration of placer mining under the anti-debris law-the golden fruit to sup ply resources that had hitherto been drawn from golden sands. Progress has been rapid. In 1893, but four cars were shipped from the Sacramento Valley. In 1896, shipments had increased to 81 cars but, in 1901, the total cars shipped out numbered 2,341, a number which fair ly entitles northern California to more than a respectable position in the orange fruit trade.
The city of Oroville, Butte County, may be fairly regarded as the center of orange cultivation in the Sacramento Valley. It is 450 miles north of Los Angeles, and in about the latitude of Philadelphia. Soil and climatic condi tions are especiailly favorable here, and the orange tree reaches its fullest pro portions and the fruit its most perfect flavor. The mean annual temperature here, as in all the orange growing coun ties of the valley, averages but four tenths of a degree below that of Los Angeles. So mild is the climate that frost never damages the orange groves
fall in the temperature and to the fact that the granite basin is a better conductor of heat than the ice and water, a crust of ice formed lining the granite cup, and inclosing, together with the ice on the free sur face, a quantity of unfrozen water in the cavity so formed. Any further freezing of water contained in this cavity must now create a pressure there, since the ice formed occupies more space than the water. But as the pressure increases the freezing point falls, as is
of the locality, neither do pests, which southern orange growers have ceaselessly to combat ever prove a serious menace. The orange growers of the Sacramento Valley boast that their fruit ripens two months earlier than in southern California, which lies 7 degrees farther south. By the time the northern orange crop is gathered, shipped, and sold, the south ern orchardist is beginning to pick his fruit.
Throughout the Sacramento and San Joaquin val leys plantations of orange trees are located on the
bluffs or foothills, in preference to valleys, which are more liable to be reached by frost. The soil preferred is that of a deep, gravelly, ferruginous, and porous nature. Though thousands of young trees are planted yearly, additional to those in full bearing, the limit of
protection from the sun's heat. September and October are the budding months. From the time of planting the first seedlings the land is cultivated without much cessation. February, March and April are the months when the ground is plowed and cross-plowed. Afterward it

ERECTING TENTS OVER ORANGE TREES BY MACHINERY.

acreage is very far from being reached in California. There is no danger from an oversupply of fruit. The market seems to be boundless.
The methods pursued by the orange cultivators of Butte County are such as any one, even though not experienced in the business, can easily acquire. There are no secrets about it. The first requirement is in land selection, about which there need be no difficulty, the only choice being the distance from the shipping point; the nearer the land to this, the more expensive it is naturally. Irrigation is an absolute necessity, owing to the scant summer rains. Water is piped to the lands under a common ditch.
Preparing lands for orange cultivation involves repeated plowings and harrowings both ways, in order to pulverize the soil and extirpate vegetation. The ground should be leveled and hollows filled up. With a gentle slope, a regular flow of irrigating water is assured. Land is plowed to a depth of 7 inches. Fertilizing with stable manure and nitrates is customary. Orange growing exhausts the soil in time, and it is necessary to restore its diminished strength.
Trees are planted 25 feet apart or 70 to the acre. Year old seedlings are procured from the nurseries. In three years these seedlings attain a strong growth, the trunk measuring in diameter about $21 / 2$ inches. The trees, now ready to bud, are pruned. This is done by cutting off all upper branches, leaving nothing but the forked stump, which is from 3 to 4 feet high. Two incisions like the letter T are made in the bark, into which the new bud is inserted. A in the bark, into which the new bud is inserted. A
string tied around the cut keeps the opening closed and the new bud soon begins to show signs of growth. About two buds are inserted in each trunk, all superfluous growth is checked, and every atom of nourishment is directed toward the development of the new grafts. During budding the stumps are covered with sacking to prevent too rapid evaporation and to afford
is harrowed each way to within three feet of the trunks. Under the trees the soil is cultivated by gangs of men. February and March is the time for
enient places. Ditches are run between the rows and three feet distant from the trees, three ditches between each row. Water is supplied at least once each month and for twenty-four hours at a time. After each irri gation a harrow is run over the ground and the tem porary ditches leveled. May, June, July, August, September, and October are devoted to cultivation and gen eral oversight. In November the fruit begins to mature and all else is dropped in order to gather the crop. The gathering season is in full operation by the middle of the month, when the labor of every man, woman and child is utilized for picking, packing and shipping the ripe fruit. This essential matter being concluded, the season is over and the orchardist is permitted a rest.
Three years after budding or six from planting the seedlings the trees begin to bear. The first crop is 280 oranges, the second averages 420, increasing in number each successive year, provided that cultivation and care is never neglected.
In scientifically conducted plantations the soil is kept absolutely free of extraneous vegetation, every atom of nourishment being required by the tree. The orange tree is a rapid grower and yields prolifically when properly attended to. Neglect is promptly indi cated by shrinking and discolored foliage and diminu tive fruit. In health it displays every evidence of thrift. When properly cultivated, the orange is one of the most beautiful of trees
Co-operation among neighboring orchardists provides for handling and shipping the ripe fruit. Uniformity of grade and other advantages are thus secured. A central packing house receives from the orchards. The highest grade is 80 to the box, diminishing to 96,112 , 126, 140, 150, 176 and 200 to a package. Packing and papering is done by ordinary help, requiring no espe cial skill. The grader is a simple contrivance with a large hopper into which fruit of all sizes is dumped, the sizes being separated in passing down the incline,

SETTING UP TENTS BY HAND TO PROTECT THE ORANGE TREES
pruning. All low and superfluous growth is then cut down. Water is generally conducted to the groves in pipes placed below the surface with openings at con-

generating poisonous gas to kill scale insects.
each passing into its proper opening. The oranges cultivated are the Washington navel and Tangarines. The amount of help required in the orchard varies with the seasons. In picking time the number of hands is greatly increased, as it is during the season of pruning. Ordinarily one man to thirty-five acres is the rule.
The cost of starting an orange orchard in the Oroville district, land at from $\$ 40$ to $\$ 75$ an acre, has been estimated as follows: Plowing, harrowing both ways, $\$ 60$ an acre; digging holes to set out trees, $\$ 40$; seedlings (80 to one acre), $\$ 48$; cooler for irrigating, $\$ 5$; labor, per acre, $\$ 5$; or a total of $\$ 108$, exclusive of the cost of the land. Second year the expense per acre is estimated at $\$ 25.50$; third year $\$ 20.50$, and fourth year $\$ 23.80$, fifth year $\$ 26.50$, or a total for five years of $\$ 204.30$. Ordinary cost of clearing land is about $\$ 15$ an acre. Orange lands in full bearing are now selling at $\$ 1,000$ an acre. In the sixth year after planting, an income is to be expected from the orchard, which will increase year after year in proportion to the skill and care displayed in cultivation.

The new Morningside exchange of the New York Telephone Company represents an investment of $\$ 300$,000 and has a capacity for 72,000 wires. It is located on 124th Street near Seventh Avenue, and has just been opened for use. The switchboard alone cost $\$ 125,000$. It is equipped with a newly patented device, by means of which any of the subscribers on a party line may be called up without ringing the bells of the others.

RECENTLY PATENTED INVENTIONS.
Agricultural Implements.
Cultivator.-G. K. Spitzenberg, Fors thaus Linzmühle, near Pfaffendorf, Branden for forestry cultivation, but may be used als in agriculture and horticulture. The soil to b reated is loosened and mixed to the require depth, by means of rotarily-moving knives o blades, without reversing the layers of soil This is done in such manner that (in forest soil) the vegetable soil will be most plentifu on top and no sharply-defined line will exist is then brought to bear on the loosened soil hich is finally covered with loosened sol granulated layer
BAND-CUTTER AND FEEDER.-J. H Lorence and J. E. Misver, Wichita, Kan n the operation of this machine the stra arrying the grain is fed to the endless carrie and is carried upward to the band-knives which cut the bands. Thence it passes to on of the retarders near to the upper right-han nd of the carrier, this retarder having consid rable speed, after which it passes over thi y slow speed, and thence to the wheat-whee 1 , he straw being operated upon by the rotary knife. The straw-gate prevents the straw from passing through, so that the knife acts direct-
ly upon the straw; otherwise the device works y upon the straw; otherwise the device works
as any other similar feeder.

Dentistry.

manufacture of dental crowns. E. V. Wililams, Argyle, Wis. Iractically em ew and useful improvements in the manufac ure of dental crowns, wherely a seamles crown is produced conforming in every detail
as nearly as possible to.the original tooth.

ARTIFICIAL TOOTH.-W. F. Wheele spencer, Mass. Mr. Wheeler furnishes in his dental invention new and useful improvement in artificial teeth whereby their cost is greatly lessened, and at the same time a very stron and durable attaching stud is provided. The tud can be made or less expensive meta are not made of the same expensive materia it is evident that the tooth can be very cheaply manufactured.

Electrical Devices.

ELECTROHYDRAULIC VALVE.-C. Evberg and J. Erickson, St. Joseph, Mich. This electricity for opening and closing a valve for a hydraulic conduit or analogous structure By aid of the mechanism of this device, an operative may open and close any hydraulic sure of a firger. If desired, the wires ma he run any length, and the operative be able to actuate the valve from such distance.

Engine Improvements.

Marlosive-ENGINe.-J. Willoughby Brooklyn, N. Y. In its preferred form this en-
ine embedies a double crank-shaft to which ne embcdies a double crank-shaft to which
re connected the rods of four pistons, work ing, respectively, in four cylinders, and giving our impulses to the shaft during every revolu
tion. By air compressing means the products combustion are swept out of the cylinders mmediateiy before fueling, which operation is working in time wit he movement of the cam-shaft.
APPARATUS FOR TESTING PRESSUREagice -A. G. Nood, New York, N. Y. The onnection with the gage to be tested without isturling the gage's position or connection to ccurately test the gage, and in case of suc age being located on locomotive, for in whether the engine be dead or under steam. ACTOMATIC CYLINIDER-COCK.-E. L ones, Memphis, Tenn. When water of con steam-cylinders it will form a resisting medium that is only slightly compressible and requently causes cylinder-heads to be force of by the reciprocating action of the pisto within the cylinder. Mr. Jones's device will utomatically drain off the water of conden-
sation which may collect in a steam-cylinder The contrivance may to drain off any water of condensation whe the engine is not running

Hardware.

NIT-LOCK.-W. Noble, West Union, w. Va The inventor adapts this improvement for gen tion of the bolts and also upon square or hexa gonal nuts with but slight change. that will not materially add to cost of production. the
nuts leeing held at any desired point on the nuts being held at any desired point on the
bolt thread against displacement. but capable oot thread against displacemen
SPIKE-PELLER.--T. G. Brown. Gillespi ville, Ohio. Certain details of this tool pro
vide increased usefulness over those fore made and at the same time afford maxi mum strength to withstand rough uage Ad usting means are provided loy which the pivot ed jaw may be set as desired to insure proper
gripping action. The puller will effectively gripping action. The puller will effectively
grip hard and smooth spikes and spikes of vary grip hard
ing sizes.

GALLEy.-P. J. Cooney, Philadelphia, Pa ments in this invention are direct articularly to the production of a galley hav ng an efficient lockup so arranged as to avoid
istortion of certain delicate parts of the galley. The quoin, screw, and all parts of th device are non-detachable, so that the user VITRIEIABLE PHOTOGRAPHIC DECORA VITRIFIABLE PHOTOGRAPHIC DECORA in this invention are new and useful improve ments in vitrifiable photographic decoration or producing photographs especially designed or decorative effects on china, glass, earthen, and stone wares, enameled metals, or other hotograph yielding to vitrifiable decoration, the inished article in a desired color and without gelatin carrier.
COOLER--F. Guttenberi, Brooklyn, N. Y This is a portable device arranged to keep th
liquid cold without danger of becoming contaminated by ice or other cooling medium, the construction allowing quick removal of an empty receptacle or the ready insertion of one
filled with plain water, or liquid, to be cooled. obstetrical sheet.-Sarah FalleYer, New York, N. Y. Incorporated in this sheet is a pad of two or more, preferably six, sections or members placed one upon the other quickly and easily removed, exposing a lower and clean section. The several sections are so constructed that they will be comfortable to lie upon and of an absorbent nature with protective covering, which will pr
soiling another or the bedding.
RIDING-STIRRUP.-W. G. Mlibify, Yank on, S. D. A rider wearing an ordinary boo shoe, or any footwear, can use this device with haped that it , as the movabl hoad convex surface minimizes the friction the foot. The stirrup resists the strain or ends to of a falling horse, and the shie of the stirrup which will not give way and break when fallen on. The shield has a free swinging play in an upward and rearward direction; but is so disposed that the upward movement is limited or arrested by the co-
operation of the stirrups in order peration of the stirups in order that the and to cause it to drop by gravity back to its normal operative position.
SUSPENDERS.-I. Wechslefr, Brooklyn, N.
This invention bears particularly on improvements in the back rings for suspenders,
the purpose being to provide a back ring so advantageously arranged that the suspenders may be turned in it and held in position to pas
over the wearers shoulders or turned and held in position to serve as a belt.
DISPLAY-CABINET FOR RIBBONS.-N Lafov, Earlington, Ky. Mr. Lafon has prothe riblons while in wrapped-up condition, and he has aimed to provide a cabinet with features that adapt it for convenient service to expose the end portions of riblon bolts for inspection while in the cabinet and to suffer desired. CHAPLET AND SIIRINE OF THE HOLY RoSary.-T. Sault, New Haven, Conn. The purpose of the inventor is to here provide a new and improved chaplet and shrine of the
holy rosary designed for devotional purpose and arranged to enable a person to successively display pictures of a religious character one designated devotional exercise
SLED ATTACIDIENT.-
West Fitchburg, Mass. To pre. C. Whitney, sluing or moving sidewise and at the same time to avoid complicating or increasing the cost thereof, the invention provides a gripper-plate
of such novel form and arrangement that when of such novel form and arrangement that when
the sled moves straight ahead the plate lies in the sled moves straight ahead the plate lies in
inactive position, but as soon as the sled begins its sidewise movement the gripper-plate the surface on which the sled is running, thus preventing sluing. The attachment is mainly ntended for use in logging and other sleds carrying heavy loads, although it is applicalle o sleds of all sorts.
LANTERN-FRAME FOR LAMP-CHIMNEYS. -E. F. Weidis. New Orleans, La. This in vention is a lantern-frame, consisting of a
base, wires rising from the base to a height to extend above a lamp-chimney, and a spring cossed arms, a coil interval with the arm and forming a finger-hold, and a ring embracing the arms at the point of crossing. The frame in connection with a crimp-top chimney and a RTLER.-T. Ramsay. Invercargill. South land, New Zealand. Mr. Ramsay's improve ments relate to rulers used in ruling and
measuring paper and for analogous purposes The invention belongs more particularly hat type of rulers in which there are sons accustomed to use rulers it will be readil apparent t
many uses.
Note.-Copies of any of these patents will be urnished by Munn is Co. for ten cents each. the invention, and date of this paper.

Business and Personal ZUants.

Marine Iron Worka.
Inquiry No. 3805.-For a machine
Sruit nino cubes about $\%$ or an inch in ine.
Inquiry No. 38.6. . For manufacturers of inc
" Mota Polis Indianupolis. Samples tree Inquiry No. 380\%- For a machine eror embroider.
ing mongrams, etc., on Coin-oper
Brooklyn.
Inquiry No. 3808.-For makers of elastic and
Dies, stampings, specialties. L. B. Baker Mfg. Co

Blowers and Exeter, N. H.

Inquiry No. 3810.-For makers of small hardwood
Handle \& spoke Mchy. ober Mfg. Co., 10 Bell
Inguiry No. 3811.-For manufacturers of papier
Sawmill machinery and outhts man
Lane Mfg. Co., Box 13 , Montpelier, Vt .

Inquiry No. 3813.-Fior parties who furnibh mate-
rial for fitink up an open hearth acid and crucible steel
For Machine Tools of every description and for Ex perimental Work call upon Garvin's, 149 Varick, cor
Spring Stre Inquiry No . 3814. $\mathbf{3}$ - For frms dealing in materials
used in photogravure. L.et me sell your patent. 1 bave buyers waiting.
Charles A. Scott. Granite Building. hochester, N. Y .
 SAW MiLLs.- With variable friction feed. Send for
Catalowue B. Geo. S . Comstock. Mechanicsbur, Pa Inquiry No 3816. -For manufacturer of small

For SALE,-Brick factory 22,00 feet space, power 184 Dearborn Street, Chicapo
Inquiry No. 381. 1 .-F.For manufacturer of fancy
silk cord and narrow tape.
Hand machines for markump and for cutting ovals and
circles in all kinds of sheet material. Price reasonable.

Manufacturers' Trade mediums a specialty. Lowest
ferences. Correspondence solicited.
In quiry No. 38\%0.-For manufacturer of solar
Manuracturers of patent articles, dies, stamping Looss. . light machinery. Quadrigit Ma.
pany, 18 South Canal Street, Cbicako.
II quiry No. 28:21.-For firms making compressed
Crude oil burners for heating and cooking. Simple, efficient and cheap. Fully guaranteed.
Co., 1103 Harvard Street, Washington, D. C
Inquiry No. 382\%.-For makers of stenciling ma-
Patent for Sale or royalty.-Waterproof, malBrengel, 123 North Street, Jersey City, N. J.
Inquiry, No. 3423.-For makers of envelope-mak-
ing machinery.
The largest manufacturer in the world of merry-ko cunds, shooting kalleries and hand organs. For prices
Inquiry No. 38.
ery for muking - Fooden manafacturer of machin-
The celebrated "Hornsoy-Akroyd' Patent Safety oil Engine is built by the De la Vergne Refrigerating MaInquiry No. 3825.-For makers of coal conveyors
or elevators.
Water Power for Sale.-Reliable 1,500 horse
power located in State of New York. Owner would power located in State of New York. Owner would
equip lond rent power. Davidson, Box iñ, New York. Inquiry
machines. Wanted.-One of the "Simple Electric Moturs" described in the Scientitc American Supplement, A pril The older the better. Address Motor, P. O. Box $7 \pi 3$,

Wanted-Kevolutionary Documents, Autograph Let
ters, Journals. Prints, Washington Portraits, Early American llustrated Magazines, Early Patents signed by Presidents of the United States. Valentine's
Manuals of the early 40 's. Correspondence solicited. Address C. A. M., Box $\mathbf{7 T 5}$, New York.
 Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co.. 361 Broadwic New York. Free on application.

Inquiry No. 3830. Fro mannfarturer of balloo
and silk for same. nssodealers in rub ber tubing.
Innuiry No. 3831.-Fior address of parties that
Ingulr No. 3\&32.-For tuakers of small bicycle
pumps. etc.
Inquiry
and steel piers.
Is $\mathbf{3 8 3 3}$. - For address of builders of iron
and steel piers.
Ingury
metal no.
novelties. 3834.-For manufacturers of funcy

spoidio sumien ition Information oum materes of personal

(8843) A. C. A. writes: Is it possible to use watchcase telephone receivers as sible to use a telephone receiver which contains a magnet and a coil as a transmitter for not used even for short distances, because the microphone is much more sensitive as a transmitter. This is used in some form in almost
(8844) A. L. asks: Can any other metal be used in the elements of the Vdison storage battery provided one is a superoxide? If not, why so?
Could not the same metal be used in both elements provided again that one is a peroxide: Could not an oxide be used instead of a peroxide? A. No other metals can be used in the Edison storage battery than he has used, elso it is no longer an Edison battery. There are
metals which can be used for storage cells. It metals which can be used for storage cells. It
is, however, most probable that the most effi is, however, most probable that the most effi-
cient have now been tested, and that none so cient have now been tested, and that none so
good as these will be found. This will not however discourage inventors from still searching and trying to discover other forms. If a plates. Treadwell's "Storage Battery" treats the subject quite fully
(8845) W. S. O. asks: About how many ampere turns will it require to economically saturate a solid soft-wrought iron or steel core, $41 /$ inches by 10 inches long, to be used
as a field core for alternating generator of the induction type! A. About 750 ampere turns will be required to bring a bar of iron $41 / 4$ tical saturamete and 10 inches long to prac
(8846) E. F. asks for the dimensions of a spark coil, size and amount of wire, also how long the core should be. Is there any
insulation between primary and secondary winding? A. Jump spark coils are made in all sizes according to their use. Norrie's "Induction Coils," which we can send you for $\$ 1$, gives full details for lengths of spark up to 12 inches. The details of construction are
quite too long for a letter. A coil giving an inch and one-half spark is described in our Supplemiley No. 160 and one giving a 6 -inch
spark in Slpplement No. $1,1 \geqslant 4$ These papers are ten cents each. Our Supplement, No. 1,402 has a valuable article upon the cores of of siata for the winding of a full series require in this article. Strong insulation is always used between primary and secondary in (
(8847) F. M. F. asks how the black lead is applied to wood in making electrotypes. to get good results, owing to trouble in coating same with the black lead. A. Stir the coating while warm; if it cools off apply this and is found to crack a small amount of Venice turpentine can be mixed with the wax
(8848) W. F. B. writes: Will a Fuller battery answer for an electro magnet the bichromate of potash? 1 am unable to get battery of that description with carbon in side and zinc outside: they are all made the reverse. Does the core of this magnet get sat-
urated, and refuse to hold the armature: A. urated, and refuse to hold the armature? A.
A Fuller bichromate battery will answer perA Fuller bichromate battery will answer per-
fectly for the electro-magnet in "Experimental Science." A bichromate battery with the car as any. It is the way they are usually made. Your idea of a magnet core is erroneous. The more strongly it is magnetized the more strongly it attracts, until a point of saturation is ard the attraction remains the same. If it does not attract at all, it is because there is (8849) W. H. V. T. asks how to wire clock to ring bells every houlb. A. A clock
can be wired to ring lells at equal Tnterrals, as of an hour. ly causing the minute and as of an hour: by causing the minute and
to close the circuit. This can be done outside the dial by a piece of watch sperno bent contact. It can be done on the ingide of the contact. It can be done on the inside of the
case by a pin on the wheel which
minute hand. These arrangements require
some ingenuity to make them work, and may alter the time-keeping qualities of the clock. The more complicated devices can be had from
manufacturers. These are more reliable and manufacturer
satisfactory.
(8850) G. S. J. writes: What current will you get off the secondary of an induction coil, if the primary is charged with a battery, the current run through a vibrating circuit hreaker, being alternating or interrupted: if
an alternating current is put in the primary of an alternating current is put in the primary
a transformer, will you get an alternating o direct from the secondary? A. The secondary current from an induction coil is direct, but interrupted when the spark terminals are far enough apart, so that the spark at the making of the vibrator is suppressed. When the spark terminals are near together, a spark is given at both the make and the break and the cur-
rent is alternating. If an alternating current rent is alternating. If an alternating current
is sent into the primary, no vibrator is used is sent into the primary, no vibrator is
and the secondary current is alternating.
(8851) E. W. wants the best recipe for a paint to protect iron pipes from salt years ago by an English chemist showed that red lead and raw linseed oil, or red lead and barytes with raw linseed oil, gave the best results.
INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending February 10, 1903,
ANDEACHBEARINGTHATDATE [See note at end of list about copies of these patents.] Abdominal supporter, D.
Adressing
and assorting
Gleason...........
machile, L.
 Amusement apparatus, T. Foiks.
Armature band J. J. Whood J. . Wi
Armature banding devec, JJ. J.
Armature, drum, H. A. Baicome.
 Auger, earth, A. L. Kitselmanl...
Augur, spoke, J. M. Brown.
Bag holder and filler, H. T. Wiey
 Balls, making shells for playing, F. H. Rich
ards
Bank andister, cyecic, o. R. Myens....
Barrel head, G. F. Mckever Barrel head, G. F. Mekiever
Barrel waher,
Basiul Basin, catch, L. Skaife............
Bath tub shower bath attachment,
Battery plates, preparing storage,
 Bed, moling hollow, A. . Johnston
Beli, Magneto, C. H.

 Boiler furnace and flue, steam, E. Gearing
Bolster, H. T. Krakul
Bookease, revolving, D. A. B. Stodart.
 Bottle closure, E. N. Gill more
Bottle, non refliable, R. Koch
Bottle, non refilable, H. A. Daniels
Bottle, non refillable, Plummer $\&$ Da
 Brake shoe, raliway,' J. We Me
Brick machine,
Broom, R. Resubaum Brush, Moss \& Blanchard
Buckle, cotou bale tie. J.
Buckle shield D.

Calculating elevated, machine,
Camera, H. W. Locke

Car door, Sott \& Schoil
Car door, box, E.
Car

Banghman
Car,
Car fender,
f.

Car switch, automatic street, L. Devers....
Car with flush door, flat bottom, J. M. Han

Carbureter,
Card holder
Bushnell,
Cor
Jr.

Catching and delivering apparatus, or. ${ }_{\text {Patenall }}$

looth cutcure, cenachine whe, W. iv. price
Cloth folding machine misw. Form
Clutch friction, M: Camphin

Coated articles, apparatus foll removing sur
Cock, gas, W. E.L Hawkiils
Coin linaching machine. J.
machince. .J. Rice....
(Continued on page 142)
 Skookum Smith and Frisco Baldy is the title of the next story in the series that Mr. Wister is now writing for this magazine. Skookum and Frisco are friends of The Virginian, and are the heroes of some surprising adventures.

By WILL PAYNE

Tales of Blue Ridge: Six independent stories, which follow the rising fortunes of a printer's devil, and show how success and fame ere won in the early days of the West.

By EMERSON HOUGH

The Lawat Heart's Desire: Tellshow Justice first got a foothold in a little mining town and how her champion, Dan Anderson, secured the acquittal of his friend Curly, at whose door was laid the sudden death of a pig.

By GEORGE ADE

Tales of a Country Town: Only a humorist like George Ade could find a village boasting six characters with histories as plausible, and yet as absurdly funny, as those told in this series.

By F. Hopkinson Smith

A nother popular contributor to the magazine is Mr. F. Hopkinson Smith. His next tale, entitled A Point of Honor, is a clever, humorous story, which centres around a French duel over an absurd misunder standing.

THE SATURDAY

EUENING POST

Is a Superbly Illustrated Weekly Magazine.
Half a million copies sold every week. Everybody is reading it. The regular subscription price is $\$ 2.00$
a year. In clubs of 4 or more,
$\$ 1.25$ each. All newsdealers
have it at 5 cents the copy.
The Curtis Publishing C
Philadelphia, Pa .

720,324
720,47
720,294

7 720,058 720,154 720,240

IT WILL PAY YOU TO KNOW US.

ROTAKV ENGINES.-ARTICLES ON

 Drills.
 W. F. \& JOHN BARNES CO. 1999 Ruby St., - Rockford, Ill.

MORAN FLEXIBLE JOINT

MARINE
AUTOMOBILE MOTORS Write for Cat. roy, N. Y.

BARKER MOTORS I to 8 H. P., $\$ 80$ to $\$ 220$ Have more good points, fewer
parts and require less atten-
tion in operation the tion in operation than any
other.

Launchos, Valves, Spocialties. C. L. Barker, Norwalk, Ct.

WORKS LIKEA CHARM.

A Handy Book

To Have

720,0
720
7

\section*{| , 352 |
| :--- |
| , 485 |
| , 487 |
| , 403 |
| , 432 |
| , 332 |}

G. CRAMER DRY PLATE CO. ST. LOUIS, MO.

Now York: 32 East 10th Street Chicago: 1211 Masonic Temple San Francisco: 819 Market Stree Calcium.-All about the new AND CARBIDE OF

California the Golden

Orchards and Lands

 in the Famous
Maywood Colonies

I can sell you at reasonable prices Orchards in bearing which will pay a good dividend the first year. Orange Orchards, Olive chards. Peach, Prune and Almond Or lots, unimproved lands for planting. Write for booklet and detailed information to
C. F. FOSTER

Department Corning, Cal. Information Free!

The Sacramento Valley
is picturesque. healthful and productive. No snow or
ice, richest soil, abundant water, direct transporta-
tion everywhere, advantages of modern Sacramento City, local or Eastern markets and every inducement to setters and investors. Produces Everything grown
from New England to Florida. All products reach
highest perfection and mature early. Write for efficial illustrated booklets containing California information to
 THE 21/2 H.P. WERER JUNIOR PUMPER

SCREW THREADS.
Any size up to diameter,
long. Four sizes of machines. BLAKE \& JOHNSON,
${ }_{A}$ California

KNOCKABOUT LAUNCH $\$ 185.00$ complete. 17 feet long. 2 h . p. gas engine. Complete in every detail. A handsome and FRED MEDART Yachts and Launches 3545 DeKalb St., St. Louis, Mo. Send Stamp for Catalog

MATCH FACTORY.-DESCRTPTION of an English factory. SCII. STITIC AMERICAN SUP--
PLEMENT113 Brice
Co. and all newsdealers.

ARTESIAN
W3is, on and Gas Wells drilled
by contract to any depth from
to 3000 fen

 TI-BeamTrolleys
 WAREHOUSES, SHOPS, Bulletin No. 12 M ready.
PAWLING \& HARNISCHFEGER
\qquad
Patents, Trade Marks, COPYRIGMSE, etcic,

The Automobile that Solves the Problem Until the Cadillac was made, all automobile construction was more or less experimental. This developed from the experiences of all previous makers: the faults and weaknesses of the old methods have been awoided and a new ideal of motor travel developed that gives a perfect vehicle for
comfort, speed, absolute safety, comfort, speed, absolute safety, greatest durability, simplicity of
operation, wide radius of travel, operation, wide radius of travel,
and reliability under all condiand reliability under all condi-
tions of roads. You should not tions of roads. You should not
buy before examining this wonbuy before examining this won
derful new machine. Price f. o. b. at factory, \$750.
The new tonneau attachment, at an extra cost of $\$$ roo, gives practically two motor vehicles in one, with a seating capacity of two or four, as required-a very graceful effect in either use.
Write for illustrated booklet N. Cadillac automobile company. Detroit, Mich.

REVERSING STEAM TURBINE.-PAR-

A Universal Rotary
Pocket Measur

EVANS
VacuumCap

Trade Marks
Designs
Anvone sending a sketch and deserition may Aionsition is probably patentabie. Co mmunica.
 special notice, without charree, in the
Scientific FInClican.
 $\underset{\text { Branch office, evis Ft , Washington, D. c. }}{\text { MUN }}$

Valuable Books!

REVISED and ENIIARGED EDITION
The Scientific American
Cyclopedia:
15,000 Receipts. 734 Pages. Price, $\mathbf{8 5 . 0 0}$ in Cloth. $\mathbf{8 6 . 0 0}$ in Sheep. $\mathbf{\$ 6 . 5 0}$

 DIES
THEIR CONSTRUCTION AND USE
For the Modern Working of Sheet Metals.

A Complete Electrical Library.

JUST PUBLISHED

HARDENING,
TEMPERING,
ANNEALING
FORGING OF STEEL By JOSEPH V. WOODWORTH Author of "DIES, Their Construction and Use." PRICE, \$2.50 A new work from cover to cover, treating in a clear,
concise manner all modern rocesse for the Heating,
Annealing, Forging, Welding, Hardening and

ModernMachine Shop Tools

Their construction, Operation and Ma

By W. H. VANDERVOORT, M. E.
Large 8vo. 576 Pages. 673 Illustrations. Bound in Cloth.

 ing to tee subject, thus making it possible to pive the
reader complete nformation pertainig to mache
shot tools and methods in a single volume at a mode
rate price and The work is logically arranged; the vari ous hand and
machine toos being grouped nto classes, and descrip-
 portance. The illustrations represent the very latest
tools and method, all of which are clearly described.
Each tool is considered from the following
EIRST is Full descriptive circules of wors performed.

MUNN \& CO, Publishers, 361 BROADWAY NEW YORK.

WATERLESS IKNOX

RECORD FOR 1902

(9) ${ }^{\mathbf{2} 200,000}$
 7\% FIRST LIEN PREFERRED STOCK
 Magnolia Metal Co.

 Subject to Prior Sale

 Subject to Prior Sale}Preferred as to Assets. Cumulative as to Dividends. Dividends payable semi-annually, April ist and October rst.
Common Stock, \$1,000,000-Shares \$100 each. First Lien Preferred Stock, $\$ 200,000-$ Shares \$roo each. Full Paid and Non-Assessable.

Two Thousand Shares of Preferred Stock Offered at Par

FAC-simile ban of manolia netal
This stock is being issued for the purpose of increasing the working capital, and therehy enabling the company to extend its business and largely increase its profits. The business was established in 1866 and has steadily grown during the last sixteen
years, until now it has assumed very large proportions, and enjoys a large trade throughout North and South America; with offices and factories at New York; Chicago, Montreal, New Orleans and San Francisco; branch oifices at Boston, Philadelphia and Pittsburg; agencies at all principal distributing points; besides a large corps of traveling men. For a number of years the business was confined almost entirely to the manufacture and sale of Magnolia Anti-Friction Metal, a specialty well known to the mechanical world, and largely used by railroads, steamship lines, iron and steel mills, and manufac
turing concerns of all classes. During the past two years the company has added to its output other grades of babbitt metals, as well as white metals of every description, includ ing solders, type metals, casting metals. etc., etc., for which the demand is enormous. The Magnolia Metal Company owns valuable patents, and its trade-mark rights cove all of North and South America, and average net earnings of the business during the past five years have been largely in excess of the sum required to pay dividends on this

Full particulars, including Prospectus and Report of Chartered Accountant
on application. Address all communications and make chects payable to
Maginolia Metal Co., $\begin{aligned} & \text { Executive Offices, 5mi West } \\ & \text { I3th Street, New York City. }\end{aligned}$
Boston, Chicago, Pittsburgh, Buffalo, Philadelphla, Montreal, New Orleans, San Francisco.

NEW VOLUME NOW READY VOL. 34-JULY to DECEMBER, 1902 A Monthly Magazine of Domestic A
275 Illustrations $\quad \begin{gathered}\text { Six Covers in Tint } \\ \text { Bound In Boards } \\ \text { Price, } \$ 2.00\end{gathered} 146$ Pages Bound In Boards Price, $\mathbf{\$ 2 . 0 0}$ prepaid by mall The Thirty-fourth Volume of the Scerntiric
AMERICAN BDIDING MONTHLY more than manintains
the high standard established by this valuable Maga-
 teoture; and its many specialized Departments make it
themost useful and most valuable publication of its
tind. TALKS WITH ARCHITECTS

 EDITORIAL ARTICLES

 DEPARTMENTS

 For Sale by
MUNN a CO., 361 B'way, New York City

Le

LABELS

 "Witch
Gould
Witen
Witch

PRINTS.

"Men's Apparel,"
pold $\begin{array}{l}\text { \& Co., } \\ \text { "Purity Did It," }\end{array}$

for clothing, Cahn, Wam-
of printed copv. of the specifation and clrawing

THE HARRINGTON AND KING PERFORATINGCO. PERFORATED METALS

NO 226 NORTEF UNION ST CHICAGO, ILL. U.S.A.

THE SELF AND SEX SERIES

 4 BOOKS TO MEN. By Sylvanus Stall, D.D. Wht Young boy Ought to Know.
Whata Youg Man OUGHT TO KNow WHATA YOUNG MAN OUGHT TO KNOW.
WHATAYOUNG HUSBNDOUGHT TOKNOW.
WHATA MAN OF 45 OUGHT TO KNOW. 4 BOOKS TO WOMEN. By Mrs. Mary Wood-
Allen, M.D., and Mre. Emma Y. A. Drake, M.D.
 Whata Woman or 45 Ought ro K Now.
SI per copy, post free. Send for table of contents.
Vir Publishing Co. IT48 Real Estater rust
Building, Philadelphia

WATCLANTHE
Also for Bromide Enlaring, Copying, Photo-Engraving, WILLIAMS, BROWN \& EARLE, Dept. 6,

We Are Manufacturers of Complete Outfits

PROSPECTORS, EXPLORERS, CAMPERS, CANOEISTS, FISHERMEN and SPORTSMEN

ABERCROMBIE \& FITCH.
314-316 Broadway, Now York City.

Che Cypewriter Exchange
 124 La Salle St., CHICAGO 38 Bromfield St., BOSTON 8.17 Wyandotte St., KANSAS CITY
209 North 9th St..
 SAN FRANCISCO, CAL. We will save you from 10
makes. Send for Cataloove

 MathematiciansWanted The profersion of actuaryship offers a splendid field
for those possessing mathematical ability as positions
command 84000 a year and over. Our cours a is prepared by leading actuaries and is under their supervision.
Address HOME CORRESPONDENCE SCHOOL
416 Walnut St., Philadelphia, Pa. $\frac{416 \text { Walnut St., Philadelphia, Pa. }}{\text { SECTORLESS WIMSHURST MACHINE. }}$ This article gives directions for making. 4 illustra
tions BCENTITC AMERCAN
Price MODELS $\begin{aligned} & \text { \& EXPERIMENTAL WORK } \\ & \text { dealers. Send for new catalogue. }\end{aligned}$
 We Invite correspondence with Inventors having
Patents to sell or paoe int manufacturess on aroyalty
amer BLACK SMITHS ${ }^{-}$Eind bis four adires and
 Your Real Estate or Business orid amolchl

[^0]

[^0]: Hil Che ZJlorld's Fighting Sbips
 By FRED T. JANE, Author of the Naval War Game (Krieaspiol).

 ## 394 PAGES.
 OVER 3,000 ILLUSTRATIONS.

 OBLONG QUARTO. CLOTH. PRICE, \$5.00, POST FREE. CONTAINS:-A photograph of every warship in the world; also a sillouette and a gun and armor diab CONTAINS:-The lenth, beam, irpuuht, horse power, speed, eoal sppply, number and size of guns CONTAINS:-Tabios of the eize, welght, velocity, energy, penetration, etc.. of every gun of every navyCONTAINS:-A series of chapters by noted Admirals, Naval Constructors and other experte of varlous

 MUNN \& CO., Publishers, 361 Broadway, New York,

