

The "Flora" Well in the Texas Oil Field on Fire.

The San Jacinto "Gusher."

SCIENTIFIC AMERICAN

 MUNN \& CO., $\quad-\quad$ Editors and Proprietors Published Weekly atNo. 361 Broadway, New York

TERMS TO SUBSCRIBERS

NEW YORK, SATURDAY, JANUARY $10,1903$.

 at regular space rates.

RAILROAD ACCIDENTS HERE AND ABROAD.
The truly horrible head-on collision that occurred a few days since in Canada, in which twenty-eight people lost their lives, serves as a shocking reminder that in the matter of safety of railroad travel we have a great deal to learn on this side of the water. Nor is it to the point to argue that because a railroad passenger has to travel so many million miles before his single chance of being killed comes round, railroad travel is as safe as it can be made. The true test of travel is as safe as it can be made. The true test of
perfection of our railroad safety appliances is to compare our accident statistics with those of some other systems-to take the highest standard of attainment, and endeavor to live up to that. During the past year on all the railroads of the United States, 167 persons were killed in railroad accidents (collisions, derailments, boiler explosions, etc.) and 3,586 passengers were injured. During the same period on British roads not a single passenger was killed and only 476 were injured in railroad accidents. If it be argued that we have nearly 200,000 miles of track in this country as against 22,000 in Great Britain, it must be answered that the liability to railroad accidents increases with the density of traffic. That is to say, the risks of collision, etc., are greater the greater the number of trains that pass over a given stretch of line in a given time. Now, here again statistics prove that the density of traffic over English roads is far greater than that over our own, so that when we have taken this into consideration, we find that the difference in safety of travel is even more marked than the mere statement of the relative total number of persons killed and injured would suggest.
Our railroads have done much of late years in the way of introducing the block signal system, and yet, as was stated recently in our Transportation number, out of nearly 200,000 miles of track, not more than 25,000 miles or about one-eighth is so equipped. Two of the most prolific causes of accident are the use of single track for trains traveling in opposite directions (it was on single track that the recent collision occurred) and that most unreliable system of safeguarding a stopping train by sending back a rear flagman. The first condition we can only hope to remove gradually as the increase in density of traffic warrants the laying of double track; but it is obvious to the most unobservant passenger upon our railroads that, half the time, rear-flag safeguarding is worth very little in protection against rear collisions. Too frequently when the stop occurs the brakeman is engaged at his duties forward in the car and there is a loss of time before he can find his lantern or pick up his flag, reach the rear of his car, drop off, and proceed a reasonable distance down the track. The chance of his being unable to catch his train, if he proceeds back too far, is a natural inducement to the flagman to limit the distance between himself and the rear of his train, a tendency which very effectually defeats the object for which rear flagging was instituted.
One reason of the remarkable immunity from accidents in Great Britain is the fact that the matter of safety appliances is regulated by the Board of Trade under the able presidency of Colonel York, who has made a life-study of his task; and because of the absolute powers conferred upon him, the risk of injury has been reduced to a minimum, and, as the result shows, the risk of death was last year absolutely eliminated. If American railroad men are asked to explain the difference in results between the two countries, they point to the fact that in Great Britain signalmen, and railroad employes generally, remain in the service of the company and at one particular class of work for many consecutive years of service, and, consequently , attain remarkable skill and accuracy. Traffic conditions in Great Britain, moreover, are less variable, whereas in this country the volume of traffic varies greatly with the season of the year, and during the rush attendant on the moving of western crops, for instance; it is necessary to take on a large number of temporary employes whose services are discontinued temporary employes whose services are discontinued
when the rush season is over. Moreover, there is to
yuestion that the sanctity of human life is held very much more sacred abroad than here. We are, or seem to be, willing, for the sake of lower cost and larger profits, to take those risks of life and limb whose results are seen in the long list of injuries and fatalities that are a conspicuous feature of our annual railroad statistics.

PROPOSED INCREASE OF OUR NAVY

It was inevitable that the present international complications over the Venezuelan affair should very forcibly direct the attention of the people of the United States to the question of the present strength and States to the question of the present strength and
needed increase of the navy. It was just seven years needed increase of the navy. It was just seven years
ago that the affairs of this South American republic involved us in a very definite announcement of the Monroe doctrine, and contemporaneously with that incident it was brought home to the people of the United States that to maintain the position so definitely stated, it would be necessary for us to possess an adequate naval force. Even stronger argument than this was afforded by the Spanish war, which bequeathed to this country some widely-scattered foreign possessions, and country some widely-scattered foreign possessions, and
rendered us vulnerable to foreign attack, where, berendered us vulnerable to foreign attack, where, be-
fore the incident, we might, by virtue of our isolation, have considered ourselves practically secure. It has been the invariable experience in the history of this country that naval appropriations can only be secured, or secured in adequate degree, under the menace of such international complications as are too obvious to be overlooked.
In view of the fact that the present Congress will probably deal with a liberal hand in granting naval appropriations, it becomes increasingly necessary to make sure that the ships authorized are of the type that is most pressingly required. While keeping a watchful eye upon the trend of design among foreign navies, and incorporating the best elements of these designs, we should, above all things, have an eye to our particular necessities-to the nature of the duties which will be required of our ships in view of the altered international conditions brought about by the two Venezuelan incidents and by the Spanish war.
When we commenced the construction of our new navy, we held no possessions not included within our Atlantic, Gulf and Pacific seaboards, and hence our first battleships of the "Oregon" type were very properly designed as "coast-defense" vessels. They were of moderate size, and coal-carrying capacity and speed were sacrificed to extremely heavy armor and armament. We had no designs on the sea cọast or foreign possessions of other nations; and we wished to possess a
naval force that should suffice for duties of a naval force that should suffice for duties of a
purely police or protective character. To-day, however, we find ourselves in close commercial and military touch with the whole world. Porto Rico to the east, Honolulu and the Philippines to the west of us, lie exposed, by virtue of their insular position, to the lie exposed, by virtue of their insular position, to the
attack of any future enemy. Should it be our misattack of any future enemy. Should it be our mis
fortune to be involved in another naval war, our battleships and cruisers can no longer elect to lie within easy reach of coaling stations, drydocks or repair yards. They must be prepared to steam far and fast, and arrive at a distant field of conflict with a reserve of fuel in their bunkers, and with a large enough ammunition supply to enable them to fight a successful engagement without having to steam back to some friendly port to replenish coal bunkers and ammunition rooms. At the same time it is desirable that our ships, when they meet the enemy, should be able to steam at a uniform speed, maneuver with equal facility, and present, ship for ship, an overwhelming superiority both for attack and defense.
Fortunately, in our latest battleships and cruisers of the "Connecticut" and "Tennessee" type, we have vessels which amply fulfill these conditions. Ship for
ship they are probably more powerful than those of ship they are probably more powerful than those of
any other fleet. They carry an unusually large supply of ammunition and coal, and their speed, while not so high as that of some of the latest foreign ships, is, we think, ample for carrying out the naval policy outlined above.
When we come then to the question of the immediate needs of the future, we think that Congress cannot do better than authorize a certain number of battleships and cruisers of the exact type of these, our latest designs. To insure this desirable uniformity, or
in other words, to insure that we shall possess at least in other words. to insure that we shall possess at least one homogeneous fleet of battleships and another of cruisers, every vessel in each fleet being identical with the others, it would be well for Congress to follow the admirable German method and authorize an extensive shipbuilding programme to cover a certain number of years. A total number of ships, say a dozen battleships and eighteen or twenty cruisers, should be authorized at once, with the understanding that a certain proportion of these, say two battleships and three cruisers, are to be laid down each year, and the money necessary for th
. Only by such a method can we insure, first, that our
navy shall grow by regular increments, and not by spasmodic effort; and secondly, that the ships as they are completed, shall form homogeneous fleets with the material advantages which are to be secured by such homogeneity.

TRAFFIC CONGESTION IN MANHATTAN.

In the public agitation over the congested condition of street-car and elevated-railway travel in the city of New York, it is difficult to secure a dispassionate expression of opinion from those who have suffered from the present intolerable condition of things. As between the traveling public on the one hand and the transportation companies on the other, it should be remembered that there is something to be said on both sides. That the present crowding is dangerous, distressing and productive of an enormous loss of valuable time; that it is irritating to the men and positively humiliating to the women passengers, no one who has witnessed the crowding during the recent holiday season in Manhattan and Brooklyn can for a moment deny. At the same time it is but just to the two transportation companies concerned, namely, the Metropolitan Street Railway Company and the Manhattan Elevated Company, to remember that the trouble has arisen just at the very time when both corporations were spending vast sums of money either in the enlargement or the reconstruction of their systems. The Metropolitan Street Railway Company has been steadily engaged for four or five years past in abolishing horse cars and equipping its lines with electrical traction. The Manhattan Elevated Company is in the midst of installing electrical traction on all its lines, and had this equipment been completed before the advent of the holiday season and the winter storms, the company would have been able to handle the crowds that flock to its lines with reasonable dispatch and comfort. Add to these facts that the travel in New York city is increasing by leaps and bounds, and we think that even the most aggrieved patrons of the roads must admit that there is something to be said on the side of the Manhattan companies in extenuation of the present congestion.
At the same time the companies must remember that the traveling public of New York that is now clamoring so loudly for redress is, and for years has been, known as the most patient and long-suffering in the world. Visitors from the metropolitan cities of Europe have time and again expressed their astonish ment at the uncomplaining way in which the New York traveler endures the inconveniences of travel in the city. This being so, it may be taken for granted that when the public does give voice to its grievances with a unanimity and earnestness such as characterize the present agitation, it does so because it has very good reason to believe that the conditions are much worse than they need be. Now, while it cannot be denied that the transportation companies are doing a great deal to accommodate the growing traffic, we are also satisfied that they could, in some respects, do a great deal more.
In the first place, the demand of the citizens that a larger number of cars or trains be run between the rush hours of travel is a perfectly reasonable one. If there were a more frequent schedule during the late morning and early afternoon hours, there is no question that many of the traveling public would delay their entrance to the city, or hasten their exit, who now prefer to avail themselves of the more frequent service of the rush hours. There is absolutely no excuse for crowded cars between the rush hours. The policy of the companies has been apparently to reduce the number and frequency of trains or cars between the rush hours to a point at which these cars shall be filled not merely with seated, but with standing passengers. For this they should be called sharply to account. The public is fully justified in its complaint before the Railroad Commissioners against the too great reduction in the train service which takes place during this part of the day.
It is claimed by the management of the two roads that the frequency of cars in rush hours is governed by the number of cars that can pass certain intersecting points, or junction points on their systems in a given time. One of these points is at the intersection of the Broadway and Sixth Avenue surface lines at Thirty-fourth Street. In a conference between the Metropolitan Street Railway Company and the chairman of the Merchant Association's Committee on Franchise and Transportation, the committee made the very sensible suggestion that to avoid this intersection of traffic, north-bound Broadway cars should be turned into Sixth Avenue and north-bound Sixth Avenue cars into Broadway at Thirty-fourth Street. It is probable that at other points of intersection on both elevated and surface lines, re-arrangements of travel having a similar object in view, could be made. Another reform by which the frequency of trains and cars could be considerably increased would be by sandwiching in more short-distance trains among those which run the full length of the city. It is true, some sandwiching
is done at present; but there could be more of it done, especially on the Sixth Avenue lines as far as Fifty-eighth Street, and on the Third Avenue line, say as far as Forty-second Street. To give an example, few years ago, a car starting from Fifty-eighth Street for the downtown journey, arrived at Forty-second Street with ample capacity for taking on the Forty second Street passengers; while to-day these cars are almost as crowded as those that have come down from Harlem. Yet the interval between cars at Forty-sec ond Street is amply sufficient to allow of doubling the number of trains that are started from Fifty-eighth Street even in the rush hours. This is but one in stance, which doubtless could be duplicated at othe points on the elevated system. Considerable relie would follow the construction of a third track on th Third Avenue Elevated and the running of express trains on the Second Avenue line
The management of the Metropolitan Street railways have complained, and with very good reason, that a prolific cause of the crowding of the cars on the main thoroughfares is the interference of trucking with the running of cars. Nobody can deny that this is to-day a most serious obstruction on such a thoroughfare as Broadway. To prove the point it is merely necessary to imagine Broadway cleared of all trucks, and it is easy to see that instead of crawling along at an average speed, below Fourteenth Street, of say three miles an hour, the cars would readily make from nine to twelve miles an hour, and the increased speed would mean, of course, an increased number of cars passing a given point in a given time It is not an uncommon sight to see a truckman leisure ly driving his team on the car tracks with four or five cars held up behind him, and holding to these tracks until he reaches some particular street down which he wishes to turn. The Merchant Associations hav requested that there should be proper police regulation of trucking and traffic on all car line streets. We do not know what the limits of authority of the police are at present, but if they can be extended, they should be to the very limit. Truckmen, cabmen and other drivers should be liable to penalty if they monop olize the street car tracks longer than is absolutely necessary for passing around a stationary or slower moving vehicle in front. Moreover, as far as is consistent with the necessities of merchants living on Broadway, trucking should be restricted by law to the adjacent streets on either side. While we do not for a moment suppose that restrictions of this kind will entirely solve the difficulty, they will unquestionably assist in easing the congestion. Indeed, as regards the whole question affecting Manhattan in general, it may be said that relief is to be sought rather in a multi tude of minor changes than in any panic legislation, which might be liable to defeat the very object at which it is aimed. Meanwhile we repeat the warning which was published in these columns a week or two since to the effect that unless immediate steps are taken for the construction of other Subway lines, north and south of Manhattan, we shall be confronted within three or four years with a congestion compared with which the present troubles will be mild indeed. In conclusion it must be admitted that in view of the present deadlock, the question of the construction of additional express elevated structures on the extreme eastern and western avenues of the city demands serious attention.

THE GERMAN-AMERICAN WAR GAME.

How thoroughly the various navies of the world study, and keep in touch with, the naval situation in other countries than their own, is shown in the latest events of the German-American conflict, which is now being played under the rules of the naval war game by officers of the British navy. In the last meeting, as described in the current issue of the Supplement, a most important feature of the naval situation was that the American fleet in European waters was on its way by the Suez Canal route, to the protection of the Phil ippines, with a more powerful German fleet bound hotfqot for the same destination. In view of the superior power of the German fleet, the admirals representing the American navy wished to dispatch the powerful North Atlantic squadron to join the European squadron in the Philippines, so as to present a combined force superior to that which Germany could gather. The um pires of the game, however, disallowed the move, and insisted upon the North Atlantic squadron being main tained off the Atlantic coast for the defense of the At lantic coast cities. When the admirals of the American fleet protested, urging that it would be good strategy to make the move, the umpires replied that the force of American public opinion, particularly in the seaport cities, in favor of retaining the North Atlantic squadron for their defense would be so powerful that the Atlantic fleet would be kept in home waters, at least until the monitors could be suitably placed for their defense. Evidently the umpires had studied the conditions that existed during the Spanish-American war when our Atlantic cities were clamoring so loudly for protection, that the old iron monitors of civil war
times were resuscitated and distributed for seacoast defense. The umpires decided that at least three weeks must elapse from the opening of the war before the North Atlantic fleet should be allowed to sail for the Philippines. The necessity for maintaining it on the home station was found in the existence of a German home squadron composed of the "Brandenburg" coas defense battleships, and some powerful battleships of the "Kaiser Wilhelm" type.

PROF. IRA REMSEN, PRESIDENT OF THE AMERICAN

 ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.For the first time since the civil war, the American Association for the Advancement of Science has held a winter meeting. This meeting was the fifty-second meeting of the Association and was held in Washington. The retiring President, Professor Asaph Hall, famous for his discovery of the moons of Mars, at that gathering yielded the chair to one who has been honored by the Association in consideration of his researches in the domain of chemistry.
Ira Remsen was born in New York city on February 10, 1846. He studied for a time at the College of the City of New York, and then entered the medical department of Columbia University, where he was graduated in 1867. He then went to Germany and entered the University of Munich, where he devoted his attention chiefly to the study of chemistry, and a year later passed to the laboratory in Gottingen, where, in 1870 he recsived the degree of Ph.D. On the invitation of Professor Rudolph Fittig he went to Tübingen, and for two years continued as assistant in the chemical labor atory of that university.
He returned to the United States in 1872, and was promptly called to the chair of chemistry and physic

ratlemen

in Williams College, remaining there four years. On the organization of the Johns Hopkins University in 1876, he was invited to the chair of chemistry of the new university, and has since continued in that place. He organized the chemical department, and since, with facilities that are not excelled in the United States, has directed the many chemical researches that have ema nated from the Johns Hopkins laboratory.
Notwithstanding the very great amount of executive work that has devolved upon him, he has nevertheless still found time to do much original work himself which may be summarized as follows:

1. Oxidation of Aromatic Substitution Products.This investigation showed that the position of an ox idizable group in an aromatic substitution product has much to do with the effect of oxidizing agents upon it When such a group is in the ortho position with refer ence to some negative group that is not oxidizable, it is not materially changed by the action of acid oxidizing agents;. while the same group in the meta or para posi tion is easily changed by such agents. This protective influence of negative groups in the ortho position was tested in a large number of cases, and although a few apparent exceptions were brought to light, the influence was clearly established. Later work by Victor Meyer showed a similar effect in the case of esterification, and still later work in the laboratory of the Johns Hopkins University showed that a similar protective influence is exerted in the action of hydrolyzing agents on acid amides.
2. The Sulphinides.-These bodies form a new class of compounds with interesting chemical and physical
properties. 'The best known member of the class is the substance that is popularly known as saccharin. This has come into extensive use on account of its intensely sweet taste. Some members of the class are extremely bitter. Others are both bitter and sweet. The chem ical properties of the substances have also been shown to be of considerable interest.
3. Double Halides.-These were for many years re garded as molecular compounds. The investigations on this subject have made it clear that they are analogous to oxygen salts, and that in them two halogen atoms acting together play the same part as an oxygen atom in the oxygen salts. This relationship is now recognized by all who have occupied themselves with investigations in this field, and by chemists generally.
4. Decomposition of Diazo Compounds by Alcohol.This series of investigations led to conclusions at vari ance with those that had been previously held. The alcohols have been shown to act in much the same way as water in most decompositions of diazo compounds, the normal product being in each case a phenol ether, though in some cases, which are exceptional, hydrogen is substituted for the diazo group. This was formerly supposed to be the normal reaction in such cases.
His scientific attainments have frequently led to his services being sought for as an expert in cases of un usual importance. In 1881, he was invited by the city council of Boston to look into a particular condition of the city water, which was unfit for use, owing to a disagreeable taste and odor. Dr. Remsen showed that the trouble was due to a large quantity of fresh-water sponge in one of the artificial lakes from which the water was drawn. He was also intrusted w_{1} th special researches by the National Board of Health, including "An Investigation of the Organic Matter in the Air" and "On the Contamination of Air in Ruoms Heated by Hot-Air Furnaces or by Cast-Iron Stoves."

The exceptional ability shown by him in the care of the department under his supervision led to his being appointed vice-president of the university, and frequent ly, during the absence of Dr. Gilman, he served as acting president. In June, 1901, he was chosen to the presidency of the Johns Hopkins University, in succes sion to Dr. Gilman, which place he still holds.
Dr. Remsen founded the American Chemical Journal in 1879, and has edited that periodical ever since. He has also found time to prepare a valuable series of text' books. These began with his translation of Fit tig's "Organic Chemistry" (Philadelphia, 1873), which was followed by "The Principles of Theoretical Chemistry" (1877); "Introduction to the Study of the Com pounds of Carbon, or Organic Chemistry" (1885); "Introduction to the Study of Cinemistry" (1886) ; "The Elements of Chemistry" (1887); "A Laboratory Man ual" (1889) ; and "Chemical Experiments" (1895). Of nearly all of these several editions have appeared, and translations into German and Italian have been made of them.

The degree of LL.D. was conferred upon him by Columbia in 1893, and by Princeton in 1896, and since 1882 he has been a member of the National Academy of Sciences, of which organization he is now foreign secretary. He is also a foreign member of the Chem ical Society of London, and an honorary member of the Pharmaceutical Society of Great Britain. A year ago the American Chemical Society, recognizing him as a worthy successor to Draper, Lawrence Smith, Genth Chandler, and other distinguished chemists, chose him as their president, and this year he will deliver a retiring address before that body.

His connection with the American Association began with his election at the Portland meeting in 1873. Two years later he was made a fellow, and in 1879 he presided over the chemical section at the Saratoga meet ing, presenting on that occasion, as his retiring address, a strong appeal for the study of organic chemistry, in which he contended that in the educational institutions in this country the pursuit of that branch of chemistry had been sadly neglected. Since then he has been a frequent attendant at the meetings, and his interest in science was recognized at the Pittsburg meeting by his elevation to the presidency of the largest of the Ameri can scientific organizations.

Further Marconi Transatlantic Messages.

On December 28 Marconi published the text of some messages sent across the Atlantic between Table Head and Pollhu. The messages were addressed to the Queen of Italy, Sir John Lane, Heniker Heaton, and the Italian Minister of Marine. They were all New Year's greetings.

The first allotment of grants by the Carnegie Insti tution, which has been endowed by a gift of $\$ 10,000,000$ from Andrew Carnegie, has been made to Prof. Atwater to enable him to continue his investigations with the Wesleyan calorimeter. The trustees of the Carnegie Institution have also made awards to Yale University. The departments of the university which are to be benefited are those of paleontorogy and psychology. The work of Prof. Marsh in the former and of Prof. Scrip ture in the latter has undoubtedly done much for Yale.

THE LEBAUDY DIRIGIBLE AIRSHIP.

Since the period of the first trials of the dirigible balloon constructed by MM. Julliot and Surcouf for the Lebaudy brothers, the inventors have been continuously carrying on their experiments with their airship, which is now complete and provided with its vertical rudder. The favorable predictions that it was possible to make from the first ascents have now been realized. Proceeding as in the past, the cord was first actuated in order to test the steering apparatus. Then a free ascent was made, but with the guide rope trailing upon the ground and capable of being easily seized by men who followed the balloon afoot.
The start has been made every time from the cemented trench in front of the shed. In this trench a suitable guideway enables the car to start smoothly and without shocks that might harm it or strain its external pieces. The trench thus greatly facilitates both the starting and landing maneuvers.
Sure of the proper working of the gasoline motor, propellers, and rudders, it was now possible for MM Julliot and Surcouf to trust themselves to the air with the balloon absolutely free. In an ascent that followed, the guide rope was pulled into the car, but was so ar ranged that it could be instantly thrown to the ground. Upon this occasion, MM. Julliot and Surcouf took along but one assistant, and compensated for the weight of the one left behind by means of ballast. The fog, in fact, was quite dense, and the aeronauts were afraid that its condensation upon the exterior of the balloon might load the latter and render the use of ballast necessary. Such fear, however, proved groundless, and the airship returned to its starting point fully inflated. It had not even been necessary to force air into the small compensating balloon of 7,000 cubic feet capacity, which is housed in the interior of the balloon proper for the purpose of remedying the reduction in volume due to leakages of hydrogen.
MM. Julliot and Surcouf were then desirous of noting, while on terra firma, the behavior of their balloon. So M. Juchmes, accompanied by two assistants, took charge of it, and, with great dexterity, caused it to make a trip in the form of the figure 8 , which constituted a new experi ment. MM. Lebaudy, Julliott, and Surcouf watched this evolution and express ed themselves as delighted with the maneuver and with the manner in which their balloon had behaved The airship then landed again triumphantly and entered its shed. This may be said to have been the end of the preparatory experi ments, and MM. Julliot and Surcouf have announced their readiness to attempt the journey from Moisson to Mantes and back on the first fine day that occurs.Translated for the Scien tific American from L'Illustration.

Utilization of Iron and Steel Slags.
The utilization of iron and steel slags is discussed in "Mineral Resources of the United States, 1901," by Mr. Edwin C. Eckel, of the United States Geological United States Geological Survey. Mr. Eckel say that although the greate portion of the slag annually produced by iron and stee works is not available, a great deal of slag is used in the manufacture of ce ment and of slag brick, as a fertilizer, and in the form a fertilizer, and in the form of mineral wool; also, to less extent in the manufac ture of paint stock, alum and glass, and a considerable quantity is disposed of less profitably as road material, railroad ballast, and in land reclamation.

The most important of these uses of slag is in the manufacture of structural materials, especially in the manufacture of hydraulic cements. Slag cement is produced by pulverizing, without calcination, a mix-

The Lebaudy Airship Maneuvering Freely Over the Plain of Moisson.

The Start of the Airship from the Trench in Front of Its Sned.
tHE LEBAUDY DIRIGIBLE AIRSHIP.
intimately mixed with powdered limestone, and the mixture then calcined and reground. Two plants are engaged in the manufacture of Portland cement from slag and limestone in the United States. In England, blast-furnace slag has been somewhat largely employed as an adulterant of Portland cement.
Slag run into molds on issuing from the furnace furnishes blocks which have been used for paving, notably in Philadelphia. These slag blocks are very durable, but objectionable because of their slipperiness, which, in English practice, has been overcome by the form of the mold used.
The manufacture of slag brick can hardly be considered as being more than a specialized phase of the manufacture of slag cement. On issuing from the brick machine, the bricks are placed on racks to dry, which takes from six to ten days, at the end of which time the bricks are ready for use. Slag bricks are light in color; they weigh less than clay bricks of equal size, require less mortar in laying up, and are equal to clay bricks in crushing strength.
The highly phosphatic slags produced by basic Bessemer converters are valuable fertilizers, and in Germany, especially, large quantities are annually sold under the name of Thomas silicate. These phosphate slags are more efficient as fertilizers than the mineral phosphates. The slight development of the basic Bessemer steel industry in the United States necessarily renders the use of these phosphatic slags of less commercial importance than in Europe. During 1901 about 1,000 tons of phosphate slags produced in the United States were sold as fertilizer. This American material has been tested by the American Agricultural Experiment Station, which reports that slag phosphate gave a greater total yield than did any of the other insoluble phosphates. The slags produced the other insoluble phosphates. The slags produced
in steel plants using the open-hearth process are less in steel plants using the open-hearth process are less
valuable as fertilizers than those produced by basic Bessemer converters, as they contain less phosphoric acid and more silica and lime than the basic Bessemer slags. Over half the material marketed as "mineral wool" or "silicate cotton" is derived from slag, the remainder being manufactured from natural rocks of several different types.

Tea Growing in the United states.

The United States Department of Agriculture has been carrying on the work of introducing tea culture in the United States. Experiments conducted at Pinehurst, Summerville, S. C., in co-operation with Dr. Charles U. Shepard have yielded interesting results. Dr. Shepard now has at his place about 100 acres in tea gardens. His factory is well equipped for carrying on the work on a commercial scale and for accurate scientific experiments. The yield of tea in Dr. Shepard's gardens last year was 4,500 pounds. For 1902, there were about 9000 pounds of marketable ,000 pounds of marketable tea. Some of the gardens
have proven very prolific and profitable, while others have given very slight yields of tea of pure quality. A tea farm is soon to be established in Texas if suitable land can be secured. Whether or not tea growing in this country can be made a commercial success will depend in a large measure upon the most rigid attention to the details of field and factory work.

According to a French contemporary, a good, simple test for the poles of an electrical apparatus is a slip of ferro-prussiate paper moistened and held on.the pole. The negative pole makes a white mark on the paper, which, by the way, is the same as that used for making copies of engineering designs, where the lines appear on a blue ground. Old blue diagrams of this kind cut into slips will serve as test papers.

DESTRUCTION OF STEAMSHIP "PROGRESSO."

by enos brown.

The destruction of the steamship "Progresso" at San Francisco on the morning of December 3, with a lamentable loss of life, was a catastrophe that has excited much comment, particularly in the West, where a general movement for the installation of oil in place of coal for fuel was in process of accomplishment. The "Progresso" was an iron steamship of about 3,000 tons capacity, and had been employed as a collier and government transport Six months ago she was with-

PROF. FORBES AND HIS RANGE FINDER BEHIND COVER.
drawn from traffic and taken to the ship yards of the Fulton Iron Works, San Francisco, to be converted into an oil-burning and oil-carrying steamer. She was to be employed in conveying oil in bulk from Texas to north ern Atlantic ports. New boilers and engines had been installed. Storage and supply tanks had been provided and in a few days the repairs would have been completed and the steamer turned over to her owners. En gines and boilers were inclosed in a compartment with iron coffer dams or bulkheads provided with water backing. Every customary pro tection had been employed to make the "Progresso" safe in any contingency. Steam had been raised to test the new machin ery. The system of ventilation was thought to be per fect. The storage tanks were empty, as it was intended to carry the steamer to her destination with water ballast. The only oil aboard was about 400 barrels that had been pumped into the supply tank but a few hours be fore. This oil is said to have come from the wells of Fresno and Fullerton districts. Its spe cific gravity was 24 deg. California oils vary in specific gravity from 18 deg . to 30 deg . From 18 deg . to 24 deg . is regarded as a fair average

The weather on the day of the explosion, and while the oil was in the tank, was noticeably cold for the latitude, and the oil, consequently, extremely sluggish in flowing. Two or more qualities of oil were mixed in order to overcome the low gravity of the heavier, though the seller refuses to admit this, and claims that the oil supplied was such as the buyer ordered to be delivered. The tank containing the oil was uncovered at the time the catastrophe occurred. Some sixty mechanics and men were employed about the steamer, mostly in the hold, where the light was dim and the temptation to employ artificial illumination was great. Early in the morn ing, a violent explosion took place, tearing out the sides of the vessel and completely wrecking the interior. A conflagration followed, blocking all egress from the hold and suffocating a dozen men, who were unabie to make their escape. The destruction is so complete that any attempt to raise the steamer will be abandoned As she lies, her value will only be realized as scrap iron, and the only method of removal will be by the

The wreck of the "Progresso" amidships. The men in the boat are grappling for boilers.

The "Progresso," with her back broken, sinking under the weight of the water thrown into her. THE BURNING AND THE WRECK OF THE "PROGRESSO."

HE NEW BRITISH ONE-MAN FOLDING RANGE

 FINDER.use of dynamite. The responsibility for the catastrophe will probably never be located. It seems to be the confirmed opinion of experts that an unfortunate workman struck a light, for some purpose, which, communicating with the volatile gas arising from the oil contained in the uncovered tank, caused it to explode. The company supplying the oil deny their responsibility, inasmuch as the oil was the same as that burned on many steam ers, and heretofore without accident of any kind. The contractors, whose men were employed in making the repairs, assume no responsibility whatever. They are heavy losers by the calamity. A great deal of litiga tion over the affair is in prospect, and a long investiga tion by government inspectors is in progress.
Although public confidence in the safety of fuel oil on steamships has received a rude shock, expert opinion is inclined to the belief that the disaster was the result of carelessness in breaking the rules which govern the safe use of liquid fuel.

Prof. Hell's Aerial Experiments.
Rumor has been rife for a long time that Prof. Alexander Graham Bell, of telephone fame, is the inventor of a flying-machine. In the interviews which he has given to representatives of the daily press, Prof. Bell has been extremely reticent. He states, however, that he has not invented a flying-machine, but that he has been engaged in experiments in kite-flying which he believes will have some bearing on the invention of an operative aeroplane. It is understood that Prof. Beli and Prof. S. P. Langley have collaborated to a certain extent in carrying out these experiments.

The tangible result of Prof. Bell's experiments to the present time has been the construction of a kite capable of carrying up into the air a weight equivalent to that of a man and an engine, and of such construction that it is capable of being used as the body of a ship.

respondent

During the past few weeks the writer had, owing to the kindness of Prof. George Forbes, F.R.S., M.I.C.E., exceptional opportunities for witnessing the working of a new one-man folding range finder, of which Prof.

TAKING A RANGE BEHIND A BUSH.

Forbes is the inventor. Although no official statement has been made on the subject, we have the best authority for stating that the new instrument will very shortly be adopted by the British War Office as the new service range finder for use both with infantry and artillery. It is a curious fact that although the trekometer, which is the present British service range finder, is served out to the British troops in the field, neither this nor any other range finder is ever used by the infantry or cavalry in the field. Even if the trekometer be ever used with artillery, British officers seldom rely upon it because the time taken is excessive, the exposure of the men is objectionable, and the errors introduced by two men dependent upon each other are fatal.
Prof. Forbes in the early part of this year went out to South Africa at his own initiative and at his own expense to test his new range finder, which was the result of work on which he had been engaged, intermittently, for the past few years. After a series of practical trials with his new instrument at the front, the reports were sent to Lord Kitch ener, who had taken a great in terest in the invention. The Commander-in-Chief's reply was as follows: "Reports sent in on your range finder seem most exhaustive, and I do not think anything further is necessary

I will submit them to the War Office in due course Regret that I cannot make a personal inspection of the instrument."
The following description of the range finder has been taken from a lec ture delivered by the in ventor before the Royal United Service Institu tion:
The range finder consists of two parts, the base and the binocular. The base, which is a tube of rectangular cross-section, consists of two half base hinged together; each hal base is one yard long. On the left half base at the hinge there is a vertical slot facing the range-taker to receive the tongue of the binocular. On the two halves of the hinge facing the range-taker are the middle openings, closed and opened by the middle shutters, which expose to view the glass faces of the middle prisms which are
mounted in the tubular base. At the outer end of the base are two cylindrical shutters, which may be rotated to expose the glass faces of the two outer prisms mounted in the tubular base. The outer prisms face the target, and the middle prisms face the rangetaker. The binocular consists of two telescopes which are connected by a hinge, so that they may be adjusted to varying angles. with each other. Between the eye caps is a horizontal rod on which is a graduated scale called the "distance-of-eyes scale." On looking through either telescope at the sky, a balloon is seen with the tail-rope hanging down. The bottom of the tail-rope is at the middle of the field of view. There are really two balloons seen as one by the two eyes. Each eye cap can be revolved to focus the telescope to suit the eye, and this adjustment may be read on focal scales on each eye cap from +10 to -10 divisions. Adjustment of the left eye cap provides for raising or lowering one balloon relatively to the other. On the right side of the binocular there is a drum head carrying a dial with a flat, spiral distance-scale, registering the number of hundred yards from 500 yards upward. This scale is read by a pointer which moves along the spiral radially, to read successive revolutions. On the left side of the dial is a graduated circle, divided into a hundred parts with a fixed pointer.
Fig. 1 shows the shape of the prisms and the path of the two beams of light from the target entering the two outer prisms, suffering a double reflection at each prism, passing along the tubular base, thence through prism, passing along the tubular base, thence through
the middle prisms and entering the binocular parallel the middle prisms and entering the binocular parallel
to their original direction. The two beams of light to their original direction. The two beams of light
pass through the object glasses $G G^{\prime}$ of the binocular, pass through the object glasses $G G^{\prime}$ of the binocular,
and form two images of the target at I and I^{\prime} on the line of the beam of light passing through the center of the object glass. In Fig. 2, if T be the target, $A A^{\prime}$ the base, then $I I^{\prime}$ are the images of the target. By swinging the telescope at the right so that the light travels along $G i$, which is parallel to $G^{\prime} I^{\prime}$ then the two

images at I^{\prime} and i would be seen as one. We measure the distance $I i$, by the drum-head which works a micrometer screw.

Now $A T=\frac{G I}{I i} \times A A^{\prime}$
or distance of target $=\frac{G I}{I i} \times$ length of base $=$
$\frac{G I}{I i} \times 2$ yards.
In the binocular used $\frac{G I}{I i}=$
810
number of revolutions of drumhead
So for any distance of target D we have to mark that So for any distance of target D we have to mark that
distance on the spiral scale when it and the micrometer screw have turned through a
number of revolutions $=\frac{810}{D} \times 2$ yards $=\frac{1,620}{D}$ yards.
For 1,000 yards it is 1.620 revolutions; for 2,000 yards it is 0.810 revolution, and so on. In this way the
graduations for different distances have been calculated.

In order that the range finder may be properly used, it is necessary that every man in the army should have his optical constants determined once a year and given to him on a card for reference. These may read as follows: $L-1$

$\begin{array}{ll}R & 0 \\ D & 66\end{array}$

 D $\quad 66$in this man's case be at -1 , the right focal scale at 0 , and the distance-of-eye scale at 66 divisions. To take a range the binocular is directed toward the target, and the man is virtually seeing the target by means of eyes placed at the two ends of the base six feet apart. He can then judge relative distances of objects. In looking at the balloon he lays the tail rope of the balloon just above the target and not on any account on it. He notes that he sees both R and L on the balloon, else he is using only one eye and cannot work. Then by
twisting the milled head one way or the other, he brings the balloon near to him or moves it away from him. He should begin with the balloon nearer than the target (by setting the distance scale to 500 yards) and watch the balloon going away as he turns the milled head, always keeping the tail rope above, and never on, the target. He stops turning when the balloon is over the target, and then he reads the difference on the scale in hundreds of yards.

New Chemical Compound.

The aluminate of magnesium is a new product which M. Emile Dufour has succeeded in obtaining. An account of the method used has been presented to the Académie des Sciences. In an electric furnace, using a powerful arc of 1,000 amperes and 60 volts, is heated a mixture of 100 parts of alumina and 230 of oxide of manganese, the heat lasting for 3 minutes. In this way is obtained a porous mass of a brownish-black color, with a metallic reflection. When broken it presents an irregular surface which is of a fine light green color and shows a number of geodes of a brown color lined with brilliant crystals of the octahedral system. To separate the compound the material is broken and treated with hydrochloric acid; gases are given off and the liquid takes a brown tint, which changes gradually to a light yellow. A crystalline deposit is thus obtained which is still further purified and analyzed; its composition corresponds to the formula $\mathrm{Al}_{2} \mathrm{O}_{4} \mathrm{Mn}$. The aluminate of magnesium has the form of small transparent crystals of a light yellow color, having the appearance of octahedra, but somewhat modified on the angles. Their density at 20 deg . C. is 4.12. This body is harder than quartz, and its powder is of a light yellow color. It is quite stable under ordinary conditions, but oxidizes easily when heated in air. At a red heat it gradually changes color to a dark brown, becoming somewhat lighter upon cooling. In oxygen this oxidation, which was before only superficial, is more rapid and takes place below a red heat. Fluorine attacks it with incandescence at a red heat, but it is not acted upon by bromine, iodine or sulphur. It is insoluble in hydrochloric acid, but is easily attacked by nitric and hydrofluoric acids, and especially by sulphuric acid. Oxidizing agents, such as chlorate and nitrate of potash in fusion, and also the alkaline oxides or carbonates, decompose it easily.

Test of a Steel Road.

The new steel trackway on Murray Street, between Broadway and Church Streets, New York city, was recently tested with a two-horse ashcart with a hop per body of sheet iron, the whole weighing 3,700 pounds. Instead of a dynamometer a short ice balance was used. It was found that the cart was started on the steel by a pull of 320 pounds. The wheels were somewhat too wide for the track, so that it was difficult to keep them from binding on one side or the other against the flanges of the steel plates. It was while they were thus bound that a pull of 320 pounds was required to start the cart. Later it was found that only 200 pounds was required. After it had gath ered way, the cart was kept moving by an average pull of 100 pounds.

The Current Supplement

The current Supplement, No. 1410, is distinguished by the usual variety of articles on engineering, electrical and mechanical subjects. The opening of the Assouan Dam is commemorated fittingly by a discussion of its engineering features and by illustrations of its more prominent portions. The English correspondent of the Scientific American continues his discus sion of water-tube boilers. The present installment deals with the British Stirling boiler. Sir W. H. Bailey discourses in a scholarly way on the mechanical inventors of Lancashire, England. "Irrigation" is the title of a copiously illustrated article on a matter which, to the western portion of the United States in particular, has been of immeasurable importance. The article describes painstakingly the best methods of irrigation which have been followed in this country. Mr. F. T. Jane continues his interesting fictitious naval battles.

One of the latest long-distance and high-speed electric railways is that from Seattle to Tacoma, which has recently been completed and put into operation. The power is furnished from the Snoqualmie Falls plant, which is thirty-one miles from Seattle. The line is about thirty-four miles long, and the current is transmitted outside of the cities at 27,500 volts; and at substations distributed along the line, this alternat ing current drives motors direct-connected to directcurrent generators, which will supply the third rail with current at 600 volts. The third rail weighs about one hundred pounds to the yard. It is expected to maintain an hourly service between the two cities. The trains will consist of two cars, as a rule. The motor consists of a combination baggage and passen ger car about 42 feet long equipped with motors with an aggregated capacity of 500 horse power, and it is expected to make a speed of a mile a minute.

(fintresprondente

To the Editor of the Scientific American:
The article on aerodromes by S. D. Mott, in the Scientific American Supplement, No. 1399, while containing some very ingenious ideas incorporated in the machine therein described, makes the following statements, which I believe are ill-founded, viz.: "In conclusion, it must be acknowledged that this conception eliminates from the problem of manflight the confusing devices usually considered indispensable for maneuvering a so-called airship; . . . or, as it has been more scientifically stated by a practical, conservative engineer, one of the faculty of Columbia University, 'The plan of controlling the direction of the lifting components of your machine by shifting the center of gravity is sound.'

An examination of the drawings leads me to believe that although if the aeroplanes were rigidly fixed to the body of the machine, including the circular ways of the operator's seat, the center of gravity of the machine might be shifted, still, according to the construction of this machine, this is not the case. It seems to me that the only effect of moving around on the circular ways would be to turn the whole body of the machine around the axis of the areoplanes, and that the operator would remain at the vertically lowest position, on the principle of a mouse in a wheel; or to give a comparison more nearly representing the conditions, it would be like a swimmer trying to climb up the side of an empty barrel in the water; the barrel would turn, and the swimmer sink to the lowest position and remain there
Now, as the aeroplanes in this machine must necessarily have almost frictionless bearings, it seems to me that although you may pull the circular ways around, you cannot alter your relative position toward the line of flight, or raise it above the lowest vertical position.
Furthermore, I believe that unless a rudder of some kind is fixed to the machine, the machine would be absolutely unmanageable, being turned in every direction by the wind, like a windmill or weathervane.
I would suggest to Mr. Mott that he might construct a much simpler machine on the same lines by the use of the marine turbine of Col. J. J. Astor, described in the Scientific American of November 8, 1902, instead of the motive power he describes.
F. McC., Mining Engineer.

Mexico, December 10, 1902.

Effect of Electricity on Plant Life,

To the Editor of the Scientific American :
It has long been a matter of speculation with me just why a rain will help plants so much more than any form of artificial watering. The popular theory is that when water is applied to vegetation by the latter method, the heat of the sun causes a kind of steam to form, which scorches it. This is obviously incorrect. My own conclusion, which I reached some time ago, and which may, for ali I know, be the accepted scientific explanation, is that rain stimulates the plants on which it falls because it is charged with electricity, and that the mere wetting of a plant has little effect on it.
A few weeks ago I was reading, in your journal, I believe, of an experiment that confirms my view, and incidentally suggests an idea, which, if carried into execution, might prove of immense value. It appears that some experimenter passed a current through some pots in which plants were growing, with the effect that they showed a decided gain in size and fertility over those similarly situated, but not so treated. The difference, if I remember aright, was forty per cent.
Now, why would it not do to apply water electrically charged to the vegetation, and thus simulate, as nearly as could be, nature's method? The water could be placed in a vessel from which the electricity could not escape, an insulated barrel, for instance, or a pail bottomed with rubber or glass. After the water was charged, it could be applied with the aid of an or dinary rubber hose, with a non-conducting nozzle; and that would be all that was necessary.
Now, I am not an electrician, and have not the means of trying this experiment myself, but if some experimenter would follow my suggestion, I believe discoveries of great practical value might be made.

Sydney C. Haley.
Eustis, Fla., December 18, 1902.
Within the past few months, the Rogers Locomotive Works at Paterson, N. J., have been enlarged by the addition of two large tracts of land. On one of these a new erecting shop is being built, and the other piece will be used for yard purposes principally, although some new buildings will be erected thereon. An imposing building for the construction of tenders will soon be under way, and extensions are being made to the boiler and hammer shops,

Our Foreign Commerce

The figures of the foreign commerce of the United States during the eleven months ending with Novem ber, which have just been completed by the Treasury Bureau of Statistics, indicate a phenomenal activity among the manufacturers of the country and exporta tions quite as large as could be expected in view o the crop shortage of last year. The value of manu facturers' materials imported into the United States during the eleven months ending with November this year is $\$ 407,603,599$, against $\$ 353,417,288$ in the corre sponding months of last year, and forms $461 / 2$ per cent of the total imports, against 44 per cent of the total imports in the corresponding months of last year Manufactures exported during the eleven months of 1902 amount to $\$ 377,635,961$, against $\$ 362,392,181$ in the corresponding months of last year, and form 31.8 per cent of the total, against 27.8 per cent of the tota exports in the same months of 1901 . The total im ports are $\$ 75,000,000$ in excess of those for the corres ponding months of last year, and of this increase of $\$ 75,000,000, \$ 54,000,000$ was in the class "manufacturers' materials" and the remainder manufactures and luxuries, articles of food and animals showing a reduc tion of $\$ 10,000,000$, as compared with the importations during the corresponding months of last year
Nearly all of the great articles required for use in manufacturing, with the single exception of india rub ber, show a marked increase in importations. Impor tations of raw silk, for example, amount to $\$ 40,905,393$ in the eleven months of this year, against $\$ 35,411,000$ in the corresponding period of 1901; hides and skins, $\$ 53,022,521$, against $\$ 50,877,797$ in the eleven months of last year; tin for use in manufacturing tin plate $\$ 19,532,807$, against $\$ 17,415,302$ in the corresponding months of last year. India rubber importations show a slight falling off, the total for eleven months being $\$ 22,568,786$ this year, against $\$ 25,929,985$ in the same months of last year
The most striking increase in importations is in manufactures of iron and steel, which amount, for the eleven months, to $\$ 36,766,961$ in value, against $\$ 18$, 267,677 in the corresponding months of last year, the value of the importations having thus more than doubled this year as compared with last year. Practically every item in the list of iron and steel manufac tures shows a marked increase. The export figures of iron and steel manufactures show a reduction, the total exports for the eleven months being $\$ 90,136,024$ this year, against $\$ 94,091,967$ in the same months of las ear and $\$ 119,604,848$ in eleven months of 1900
The total exportation of the eleven months falls $\$ 116,000,000$ below that of the corresponding period of 1901. This reduction occurs in agricultural products of which the exportations during the eleven months of this year fall $\$ 130,000,000$ below those of last year, in dicating that in the other great classes, especially man ufactures, there is an increase. This reduction of $\$ 130,000,000$ in agricultural exports is due in part to the increased home demand, in part to the loss of a part of the corn crop of last year, corn exportation having fallen from $\$ 49,501,374$ in eleven months of 1901 to $\$ 6,745,151$ in the corresponding months of this year. There is also a considerable reduction in the value of wheat exported, due to the fact that last year's exportations were exceptionally large.

Governmental Aid in Improving Our Highways.

The system in vogue in some States, of appropriating sums of money for road improvement in towns and villages, provided the taxpayers of these places pay onehalf or other proportionate amount of the expense involved, has been found to operate so well that the bill recently introduced in the House of Representatives by Mr. Brownlow, for the purpose of establishing a National Bureau of Road Construction, appears to be the logical outcome of it. This bill provides for a new Bureau of Public Roads in the Department of Agriculture, whose object shall be "to instruct, assist, and cooperate in the building and improvement of the public roads, at the discretion and under the direction of the Director of said Bureau, in such States, counties, parishes, townships, and districts in the United States as shall be determined upon by said Director. The general policy of such Bureau shall be to bring about, so far as may be, a uniform system of taxation for road purposes and a uniform method of road construction, repair, and maintenance throughout the United States, and to co-operate with any State or political subdivision thereof in the actual construction of permanent highways."
The new Bureau is to be under the general supervision of the Secretary of Agriculture, and is to have a Director and suitable corps of clerks, civil engineers, field and road experts, a chemist and assistant i charge of the road material laboratory, a petrographer, and such other officers, agents, and servants as may be required for carrying out the provisions of the Act.

The bill provides an appropriation of $\$ 75,000$ for sala. ries and general expenses of the Bureau, and for the purpose of enabling the Director "to make inquiries
in regard to systems of road building and management throughout the United States; to make investigations and experiments in regard to the best methods of road making and the best kinds of road-making materials; to co-operate in the building of object-lesson roads in the several States; to employ local and special agents, clerks, assistants and other labor required in conducting experiments and collecting, digesting, reporting, and illustrating the results of such experiments; to inves tigate the chemical and physical character of road materials; to purchase necessary apparatus, materials, supplies, office and laboratory fixtures; to pay freight and express charges and traveling and other necessary expenses; to prepare, publish, and distribute bulletins and reports on the subject of road improvement; to en able him to instruct and assist in the building and improving of the public roads and highways in such States, parishes, counties, townships, and districts in the United States as shall determine to follow the plans and methods directed and determined upon by the Director of said Bureau; and to enable him to assist agricultural colleges and experiment stations in disse
"Any
"Any State or political subdivision thereof, through its proper officers having jurisdiction of the public roads, may apply to the Director of the Bureau for co operation in the actual construction of a permanent improvement of any public highway within the State by presenting an application accompanied by a prop erly certified resolution stating that the public interest demands the improvement of the highway de scribed therein, but such description shall not include any portion of a highway within the boundaries of any city or incorporated village The Director of said Bureau, upon receipt o any such application, shall investigate and de termine whether the highway or section thereo sought to be improved is of sufficient public importance to come within the purposes of this Act, taking into account the use, location, and value of such highwa or section thereof for the purposes of common traffic and travel, and for the rural free delivery of mail by the United States Government, and after such investi gation shall certify his approval or disapproval of such application. If he shall disapprove such application, he shall certify his reasons therefor to the public off cer or officers making the application; but if he shal approve such application, he shall cause the highway or section thereof therein described to be mapped both in outline and profile. He shall indicate how much of said highway or section thereof may be im proved by deviation from the existing lines wheneve it shall be deemed of advantage to obtain a shorter or more direct road without lessening its usefulness, or wherever such deviation is of advantage by reason o lessened gradients. He shall also cause plans and speci fications of such highway or section thereof to be made or telford, macadam, or gravel roadway, or other suit able construction, taking into consideration climate soil, and material to be had in the vicinity thereof and the extent and nature of the traffic likely to be upon the highway, specifying in his judgment the kind of oad a wise economy demands. The improved or per manent roadway of all highways so improved shall not be less than eight nor more than twenty-four feet in width, unless for special reasons it is required that it shall be of greater width. He shall, if requested by the pplication, include provisions for steel-plate or othe flat-rail construction in double track
Upon the completion of the maps, plans, and specifi cations, an estimate is to be made of the cost of con struction and submitted to the officials from whom the pplication for assistance proceeded. These official must then file a second application, confirming the first before the Director is authorized to advertise for bids in the vicinity of the work. In case the line of the roa is to be changed and a new right of way has to be obtained, the applicants must secure this.
In regard to the expense of the construction, the Federal government bears one-half of this. The other half may be divided between the applicants, the county, and the State, if so desired, or may be borne by eithe alone. An appropriation of $\$ 20,000,000$ is asked for to cover the cost of construction, with the provision that o State shall receive a greater proportion of the tota amount appropriated than its population bears to the population of the United States

The results of governmen supervision in road construction will in time be far-reaching and of vast im portance. A scientific study of materials and methods of road building, aided by experience which will soo be had as to the most suitable construction for varying conditions of soil and traffic, will enable the government to build roads that will last indefinitely, if properly maintained. The only weak point in the present bill seems to be, that no provision is made for such maintenance and keeping in repair of roads thus constructed. This, however, can be easily added, and doubtless will be before the bill is passed. With its passage, the construction of a splendid transcontinen
tal highway will become a possibility which, let us hope, will be realized in the near future.
ociological Aspect of the irrigation Proble
In a paper read before the American Association for the Advancement of Science, Mr. Guy E. Mitchell stated that the reclamation of arid America through government construction of irrigation works will furnish for years to come an effective outlet for the industrious surplus population of our great cities. The ir rigation sections of the West present almost ideal rural conditions. The tendency is, where water is used for farming, to subdivide land into small individual holdings, which gives to a community a prosperity and stability not found in larger farming districts, nor in cities. This is not a new idea. But while this is being done, the people of the entire United States will become so educated in irrigation matters and irrigation methods that there will be a gradual spreading eastward of the irrigation idea. This will eventually result in the subdivision of great numbers of large eastern and southern farms and plantations which are now farmed without thought of artificial water supply, into smaller irrigated farms. Never a season goes by, even in the best watered districts of the rain belt, that there is not some period of plant growth where the judicious application of water would very greatly increase the yield, and in some years double and treble it. It takes only a year of ex cessive drought among ef.stern farmers to get them talking about irrigation, but little comes of it for the reason that they are entirely unfamiliar with irrigation methods and have no idea how to go about the practice of supplementing the natural water supply The irrigation, then, of the one hundred million acre of western plains and valleys, while it will create in numerable small rural homes of five, ten, twenty or thirty acres each, will serve further to encourage subdivision of larger areas in the East and South and tend to make the small farm and home a general rule throughout the entire country

Under wise administration, arid America has a glorious future. With her countless small farms and rural homes, communities where people live in the open air, till the soil with their hands and yet enjoy the privileges and advantages of the city, she wil prove the sheet anchor of the republic in any time of national peril; while from her will radiate eastward the same idea of the division of the large into smal farms, and the utilization of the stream and the pond in making certain and increasing an oftentimes unre liable crop.

The contract for replacing the great telescope tha was destroyed by fire recently at the Yerkes Observa tcry at Williams Bay, Wis., will probably be given to Prof. Join Brashear. Six months will be required to complete the worl

It is very doubtful whether the splendid work carried on at Ben Nevis will be continued. Want of fund threatened an interruption in the observations some years ago. Then Mr. Mackay Bernard, of Dunsinnan came to the rescue. Since 1883 the Ben Nevis Observa tory and the Low-Level Observatory at Fort William connected with it, have altogether cost $£ 24,000$, some of the observers giving their services for the cause $£ 17,000$ were received by subscription. The Meteoro ogical Council has allowed $£ 100$ yearly for the Be Nevis Observatory, and, since 1890, £250 for the For William station. The direc rs were officially inform ed this summer that the latter sum would be stopped
The Department of Vertebrate Paleontology of the American Museum of Natural History has come int possession of three specimens of rare interest. The firs is the complete skeleton of a small dinosaur, which has been named "the bird catcher," by reason of its apparen ability to run fast and its long, slender, grasping fore limbs. The second specimen is the great Portheus mo tussus, secured by Charles H. Sternberg in Kansas in 1900. The fish is 16 feet long, and is one of the most triking specimens of a fossil to be found in any of the world's museums. The third exhibit is a superb pai f tusks of the great Elephas imperator, found last yea in Texas. The tusks are $131 / 2$ feet in length and about 2 feet in circumference.
Floyd J. Metzger makes a preliminary announcement on a new method of separating thorium from cerium lanthanum and didymium. He finds that from a 40 per cent alcoholic solution, thorium is precipitated quanti tatively on the addition of fumaric acid, while no change is produced by that reagent in cold solutions of cerium, lanthanum or didymium. When thorium is precipitated in this way in the presence of the above mentioned elements, traces of these are carried down with the thorium, but may be removed by a single reprecipitation. A number of other weak organic acids are being investigated in the same way, and several of these show interesting results.-Journ. Amer. Chem. Soc.

OPENING OF THE FIRST SECTION OF THE PACIFIC CABLE.
A Pacific cable, which was, for many years, the dream of the late John W. Mackay, at length is nearing accomplishment, the opening of the first section from San Francisco to \cdot Honolulu having occurred on New Year's day. The cable, when completed, will reach from San Francisco to Manila, in the Philippine Islands, a distance of 6,912 miles. A branch to Hong Kong, China, is contemplated later. The second section is to extend from Honolulu to the Midway Islands, the third from the latter point to Guam, and the fourth from Guam to Manila. Cable for the last three sections will soon be laid in order, now that the first has been completed. The total cost of the cable will exceed $\$ 12,0<0,000$.

Beyond the extreme depth met with in places, the
bed of the sea along the route of the cable presents no extraordinary difficulties to laying the cable, or to its subsequent maintenance. The most hazardous portion is that between San Francisco and Honolulu, where depressions of 5,160 and 5,269 fathoms have been encountered. This part of the route is extremely irregular in profile, and is marked by mountains of immense elevation and by valleys of great depth. A level plain, with an average depth of 2,700 fathoms, extends all the way from Honolulu to the Midway Islands; the bottom being of soft mud and extremely favorable for cable laying. Toward Guam, an average of 3,200 fathoms is found. Favorable conditions are maintained throughout the entire distance. The last section is similar in its profile to section 1 , though the depth averages less, being from 1,400 to 2,700 fathoms. The sea bed in this section is extremely irregular in
outline, with many reefs and depressions. From the central office in San Francisco to the ocean beach, a distance of 37,000 feet, the shore end of the cable is laid in an underground iron conduit $31 / 2$ inches in diameter. Four independent wires, perfectly insulated, are inclosed in the iron conduit. The landing station at the shore is a plain, substantial structure, and contains, besides rooms for the operators, testing rooms for the necessary instruments. The sea cable itself is built around a core formed of copper wire insulated by gutta percha covering, around which layers of jute yarn are wound. This, in turn, is sheathed in small cables, each formed of several strands of steel wires. An outer covering of jute yarn, the whole saturated with a bituminous compound, binds together the conducting and protecting wires in one solid mass, thus forming the complete cable.

Stern of Cable Ship, Showng Big Sheaves over which the Cable is Paid Out.

Coil of $61 / 2$ Miles of Cable on the Deck of the Steamer "Newsboy."

Landing of the Paciftc Cable.

Landing Station of Pacific Cable, on Ocean Beach, San Francisco.

Mr. Clarence \mathbf{H}. Mackay.
Mayor of San Francisco. Notables at the Landing of the Pacific Cable.

The Cable Ship "Silvertown" Loaded with the San Francisco-Honolulu Cable

The first section of this new cable was opened late in the evening of January 1, when the splicing of the deep sea portion to the shore end on the island of Honolulu was accomplished. The cable steamer "Silvertown," after successfully laying the 2,400 -odd miles of cable in the depths of the Pacific Ocean, was obliged to stand by for several days and wait for a sufficiently calm sea in which to lay the Honolulu shore end, before the final splicing could be made. The laying of the shore end on the island was much more difficult because of the na ture of the bottom, on which are many coral reefs; and if a calm sea was necessary tc accomplish this successfully on the sandy San Francisco shore, it was imperative on the Hawaiian coast. As the shore ends of a cable are the most difficult portions to lay, the method of procedure being much the same, however, in every case, a brief account of the opening of this great enter prise by the laying and christening of the San Francisco end of the new cable, will be of interest.
-An attempt was made on Friday, December 12, to bring the cable ashore, but this was frustrated by the strong currents and heavy surf breaking on the beach.
On Saturday, December 13, a piece of the cable, the total length of which is 2,413 miles, was cut off and coiled up on the deck oi a light draught steamer, the "Newsboy." This piece used for the connection was $61 / 2$ miles long. As the "Silvertown" could not approach any nearer shore on ac count of her heavy draught-28 feet-it was necessary to em ploy a smaller steam for laying the first ix ile of ix miles of cable. Soon after o'clock on Sunday morning, December 14, the "Newsboy" steamed out of San Francisco Harbor; and a little after 7 the anchor was dropped about half ropped half mile to the south of Cliff House and about one-third of a mile from the ocean beach, to the west of the city of San Francisco. The morning was bright full of sunshine, and full of sunshin and the surf rolle in lazily in three

A Lake of Oill

A Fire in the Spindle Top District.

The Great Higgins Reservoir in the Beaumont District.
already in position. Meanwhile the steamer "News boy" was making her way out to the cableship "Silvertown," paying out the $61 / 2$ miles as she went. When all was paid out, the end was at tached to an anchor buoy and dropped overboard till the "Silvertown" should be ready to pick it up and begin the work of splicing it to the main cable. It was past 6 o'clock in the evening before this work was finished and the "Silvertown" had started on her voyage to the Hawaiian Islands. At 8:55 P. M. a message from Mr. Benest to Mr. Mackay announced that all was well. During the whole trip the cable was tested, night and day, in a cable hut built on the sand dunes about wo blocks distant from the spot where the cable was landed.

GII. TIRES IN THE SOUTHWEST

by day allen whley
Since the discovery of oil in large quantities in the Southwest several of the prin cipal districts have suffered great damage by fire, conflagrations being started by carelessness of employes of the oil companies as well as others, which have spread over an extensive territory and have proved very destructive to not only derricks but the pumping plants and reservoirs. Sev eral fires of unusual magnitude have occurred in the Spin dle Top district, while a few months ago one of the larg est wells in the Jen nings, La., region caught fire, the flames only being extinguished afte several weeks had elapsed from the time thefire started.
Th e conditions especially in the Beaumont district re such that th utmost precaution must be taken, ow ing to the highly inflammable charac ter of the plants, also to the fast that much of the soil is literally saturated with oil. At presen it is estimated tha about 220 wells are being operated at Spindle Top, but fully three times as many derricks have many derick have f them some gether that the ond

Fighting the Jennings Oil Fire.

Boilers Used at the Jennings Fire, Showing Connections with the Pipe Lines. how oil fires are extinguished.
ines, breaking gently. A boat of the United States Life-Saving Service rowed out through the breakers, carrying a light line, one end of which was given to the "Newsboy." This line was bent to a heavier line, io which the cable was attached. At 9:15 A. M., the €nd of the cable, with a balloon buoy attached to it,

Gage, the Governor of the State, his daughter, and others reached the beach, and the end of the cable was dragged out of the ocean on to the sand, and Miss Gage then christened the cable, dedicating it to the memory of Mr. John W. Mackay. The end which had just been brought ashore was then spliced to the end
of one framework almost touches another. The area of Spindle Top is comparatively small, and for two years oil has been secured through a natural flow and by pumping. When the gushers were first brought in, it will be remembered that so much enthusiasm was manifested over the great yield that some were allowed
to discharge their contents into the air merely in order to allow people to witness the spectacular display, which attracted crowds from the vicinity and adver tised the region throughout the country. It would be impossible to estimate the immense quantity of oil which was wasted in this way, for no effort whatever was made to force the supply into tanks or even earthen reservoirs. It spread over the surface of the ground, filling the natural depressions in the prairie and even covering the beds of streams in the vicinity. It was stated that some of the great wells, like the Lucas gusher, flowed fully 50,000 barrels in 24 hours, but as there was no means of gaging the flow, these statistics are merely guesswork. There is no doubt, however, as to the enormous quantity which was wasted, probably aggregating over a million barrels.

After the flow had been controlled and the work of providing storage for the fluid was under way, months elapsed before sufficient reservoir capacity was afforded to provide for the yield, while the pipe lines to the seacoast were not finished until nearly a year after the discovery of the Spindle Top field. Not only were large tanks of sheet metal constructed, but reservoirs dug in the prairie and surrounded with merely earthen em bankments to keep the oil from escaping. While some of these were served by pipe lines, a very large quan tity of the oil was conveyed to them through narrow trenches dug in the prairie, ranging from a foot to four and five feet in width and from two to six feet in depth. They were not completely filled with oil, but such a proportion of the overflow from the wells was diverted to them that the quantity conveyed in these ditches a times was far more than that carried by the pipe lines. One of the earth reservoirs, known as the "Higgins," covered several acres in extent, and in fact was a lake of oil, in some places being nearly twenty feet in depth, while tanks were built ranging from 1,000 barrels upward.
Such has been the abundant yield of the fluid that gross carelessness has prevailed, especially in the Spindle Top district, in husbanding the supply. Much of the oil has escaped through leaks in the trenches; the pipes have frequently burst, discharging their contents over a large area, while many of the tanks have been so hastily constructed that they were not tight. In short, the oil has saturated everything, and merely the flame of a match thrown upon the ground has been sufficient, in several instances, to start disastrous fires. The first great fire in the Texas field is said by people in the vicinity to have been caused by a man going into a settling tank with a lighted lantern, the door by which the wick was ignited being carelessly left open. The flames coming in contact with vapor in the tank caused an explosion which immediately set fire to the interior. Another explosion threw burning oil against several derricks, which ignited, according to the statements of spectators, as if composed of tinder. Sparks were carried to a 4,000 -barrel reservoir, 'which, in a few hours, was reduced to a mass of twisted metal This fire practically destroyed property covering ten arres of the most valuable territory, and raged for two weeks. The greatest fire in the history of the Texas field was undoubtedly that in what is known as the Hogg-Swayne tract, which occurred in September last At one time fifty wells were ablaze, and over one hundred derricks were destroyed, while twenty workmen employed in the vicinity lost their lives before they had time to escape.
The great damage done by the first oil fires in the Southwest was in a measure due to the ignorance of the best means of fighting them. At first water was tried, but it merely made matters worse by spreading the burning liquid, having no effect whatever in extinguishing it. Then earth was used to confine the flames to a certain district. The "Ten acre fire," as it is still called, was finally confined in this manner, several hundred men throwing up a bank of earth about the burning area which kept it from spreading to other portions, and finally the fire became exhausted for want of material on which to feed, when the embers were smothered by shoveling earth upon them. Soon after the drilling of the first gushers at Spindle Top, fire broke out during an exhibition near one of the small derricks. Fortunately it was extinguished by the spectators, who realized the great danger, and not only threw earth upon it but in some instances stamped it out with coats and blankets.
In recent attempts at fire fighting in Texas and Louisiana, however, steam has been used to good effect, and it appears to be the only effective means of extinguishing oil flames, as the earth is useless except after the fire has died down sufficiently to allow the shovelers to approach closely to the burning area. It was first tried near Beaumont by John Ennis of that city, the steam being applied through an iron pipe hastily laid and connected with the boiler of a portable engine removed to a safe distance from the fire. After the Jennings fire had raged for over two weeks Mr. Ennis was sent for to plan some means of extinguishing it, for, on account of the quantity of oil in the burning wells, it threatened to continue indefinitely. The near-
est towns were searched for boilers which could be brought to the location, and twelve were secured in all, ranging from 20 to 30 horse power. They were set up in a semi-circle and a group of three or four connected to lines of iron pipes, which were laid to points as near the burning area as the men could venture in safety. Then fires were lighted in the furnaces and a full head of steam generated, which was turned upon the flames in jets. One group of boilers was con tinually held in reserve, so that its jet could be used when it was necessary to suspend operations in another group. In this way steam was continually applied to the fire for several days until the flames were so reduced in volume that they could be smothered with earth. Since then steam has been used in a number of instances, but in the Jennings fire the horse power of the combined boilers was far greater than in any other case.

ARE THE SENSES OF THE LOWER/ANIMALS SUPERIOR TO OJRS?

It will at once be recognized that as we can possess no other knowledge of external things than that

Head of Bat (Mormopos blainvill) ehowing peculiar sense organs.

Upper figure.-G:asshopper, whose ear is in his foreleg. Middle figure.Ear of grasshopper, \&howing thigh and part of the tibia containing the
ear. Lower figure.- Tibia of ant, showing an organ of hearing analoear. Lower figure.-Tibia of ant, showing an organ of hearing analo-
gous to that of the grase hopper, but formed to hear sounds inaudible gous to that of the
to the human ear.

Male and Female Mason Bee, marked with a drop oi white paint fo ideutification.
founded upon the reports which our five senses elect to bring us, our information must necessarily be bounded by their limitations.
But, although we cannot have any true or adequate conception of sense discernments belonging to regions beyond the powers and jurisdiction of our own percep.
tive faculties, we know that such regions exist, and it is demonstrable that they are, in certain cases, to a greater or lesser extent, accessible to many of the lower animals
It is not easy perhaps to appreciate, in any just degree, the imperfectness of the few faculties we possess of perceiving external things, until a comparison is made between them and the perceptive capacities developed in other animals.
A multitude of living creatures, far below us in the scale of animated existence, might justly consider our senses, as contrasted with those they themselves possess, the veriest rudiments of such powers; an osprey, for example, which from the height of more than a hundred feet discerns beneath the wind-roughened water fishes no larger than the palm of a man's hand, and accurately measures with its eyes the distance its quarry swims beneath the surface; a barn owl, which chases and captures in the dark, bats whose irregular flight your eyes can hardly follow in the early twilight, would doubtless, could it compare our power of vision with its own, appraise it at so low a rate it might be scarcely worthy of the name; a bat, whose wonderfully constructed microphonic ears, nerve-netted wings, and strange foliated face organs, enable it, without coming in contact with the objects shrouded in utter darkness, to perceive and avoid them in its flight, must necessarily, could it know the extent of our powers of hearing and of our tactile sense, consider them extremely deficient; or a dog, which can unerringly select by its sense of smell any one particular duck out of a hundred, were he able to contrast the olfactory capacities of men with those of dogs, might have reason to pronounce the former almost entirely lacking.

The careful study of the sense organs of the lower animals and of the functional power and character of such organs, which has now been carried on for a number of years, has arrived at results that are not only very interesting in tremselves, but which form extremely valuable and important data in the sciences of comparative physiology and psychology

There is a wonderful analogy between the way in which waves of sound affect the ear and the way waves of light affect the eye. A ray of sunlight shining through a prism, and separated into the succession of colors called the spectrum, is only visible in part to human vision. Below the red at one end, and above the violet at the other, as we all know, are rays which are in visible to us.
The lowest tones audible to us correspond to the red end of the spectrum. Like the waves of light which constitute the red rays, those which fall upon our ears as the deepest are the slowest, while notes answering to the rapid, luminous vibrations composing the violet rays, are the lightest and shrillest the ear can distinguish. The possibilities of human coior vision are limited to the seven rays of the spectrum and those of human hearing to sound waves of between thirty (the slowest the ear can distinguish) to fortyfive thousand to the second. Beyond these limits we are blind and deaf to sensations, of the existence of which, although our eyes and our ears are not of a nature to distinguish them, there can be no doubt.

A series of experiments was made, several years ago with light of different wave-lengths on ants, to dis cover, if possible, whether or not the limits of vision in these insects were the same as in ourselves. After a number of observations demonstrating the fact that ants are sensitive to the ultra-violet rays which lie beyond the range of our vision, the question arose how two media, identical in color to our eyes, but one of which transmitted and the other intercepted the ultra violet rays, would affect the ants. A solution of iodine in bisulphide of carbon, and also one of roseine, carmine and indigo, combined in such proportions as to produce the same shade of the same color as the former, were prepared. To human sight the two liquid solutions were identical; but, in point of fact, the ultra violet rays, shut out by the bisulphide mixture, passed freely through the other. Exactly equal quantities of these solutions in flat-sided glass bottles of the same size and shape were placed over a nest of the European black ant (Formica fusca). In no less than twenty observations the ants showed so decisively a power of discriminating between the two, and so decided a partiality for gathering under the bottle which shaded them from the ultra-violet rays, that no doubt remains that a radical difference between the tw, solutions was recognized and sensibly felt by them.

This series of experiments, taken in connection with many previously made and described, shows concirsively that the limits of vision in ants are not the same as in ourselves.

Now as every ray of homogeneous light is seen as a separate color, rays of light beyond the violet must re veal to ants a color differing from any we know, as these differ among themselves, a color of which we can form no conception.

Again, as the combination of all the colored rays
visible to us in the spectrum makes our white light it must necessarily vary from the white light seen by these insects, because it wants the supplementary colo which they are but we are not able to perceive; and as there are few objects in nature in which the blend ing of several colors does not occur, it is evident that by adding another to the three primitive color elements, red, blue and yellow, we must obtain radically different color effects than any we have ever seen, and that this must make objects look very different to ants from what they do to us.
Many insects, unable to produce sounds which we can distinguish, possess nevertheless sound producing apparatus, and elaborate organs of hearing analogous to those belonging to other and in general larger species, quite capable of makin themselves heard. It is certain that a number of species of animals hear sounds that we cannot hear.

Arthropods in general are indifferent to ordinary sounds. It is possible the compass of hearing possessed by some animals lies in the range of air vibrations above our own, that they can hear no sounds as low as the highest note that is audibl to us, as we can hear none as high as the lowest that is audible to them.
But it is without doubt the sense of smell, if indeed we may believe that all the phenomena credited to this sense properly belong to it, which attains its greatest development among insects. Professor N. S. Shaler, of Harvard University, as serts that a female gypsy moth (Ocneria dispar) will, by an odor so subtile as to be imperceptible to human olfactories, "attract males from the distance of about a mile away." Albrecht Bethe, the German entomologist, states that a male moth (species not stated) has been known to locate a female several miles distant. Prof. Jordan, president of the Leland Stanford, Jr., University, writes: "In the insectory a few years ago, a few females of the beau tiful Promethia moth (Callosamia promethia) -were in closed in a box which was kept inside of the insectory building. No males had been seen about the insectory nor in its immediate vicinity, although they had been sought for by collectors. A few hours after the begin ning of the captivity of the female moths, there were forty male Promethias fluttering about over the glass roof of the insectory. They could not see the females, yet had discovered their presence in the building
The sense of smell is most nearly allied to that of taste Hearing and seeing depend upon nerve responses to vibrations in the air and in the ether. In order to taste a substance, it has to be wholly or partially dissolved; in order to smell a substance, it must encounte the olfactory organs as a vapor, an emanation, a cloud of particles arising from odoriferous mat ter. An odorous substance can be readily in closed so that little, if any, odor escapes.
Now in the first instance adduced, a cloud of imperceptible odor arising from an odor-pro ducing organ, situated somewhere about the body of a little insect an inch long, spreads on every side for "about a mile" at least, and is dense enough at that distance to affect the sensory organs of the male moth.
In the second instance adduced, the cloud extends to the distance of several miles withou losing its virtue; and in the third, it not only penetrates through the box in which the female insect is kept inclosed, but also the glass roo of the insectory and extending outward to an unknown distance, mingled with, perhaps, as many as a million stronger odors, meets the male moths, which are able to differentiate it from all others, and to know the exact direction from which it comes.
Many animals can follow a scent trail lef by another upon the surface of the ground; but to follow unerringly to some distant point in space, from which it arises, an odor extending indefinably in every direction in the air, is a very different proposition.

ONE OF THE LARGEST TREES IN THE WORLD by walter l. beasley
The American Museum of Natural History has now on exhibition one of the largest sec tions of a tree ever brought from a forest. The fast passing away of the big trees, the majestic relics of the forest primeval and prehistoric imes, due to the ax of the commercial lumber man, is rapidly going on, and it will only be a question of time when all save those in government and State reservation groves will be cut down. Recently the government sent an expert forester and secured a magnificent cut from one of the giant Sequoias of the King's River area, Southern California. The tree stood over 300 feet in height, and measured 90 feet at the base. A section 20 feet above ground was obtained 4 feet thick and weighing 50 tons. The diameter of the block is a little over 18 feet, and its circumference measures 56 feet. The specimen is highly polished and
will be the main feature of the new wing of the For estry Hall. Prof. H. C. Bumpus, Curator of the de partment, has illustrated the life-history of the tree in a striking and unique manner, by placing tags marking every hundred years of growth, which is estimated from the cross-section concentric rings. In addition the great events and happenings in geology and other sciences are likewise recorded in these rings. The tree began to grow 550 A. D., and was 13 feet in diameter when Columbus reached our shores. Some of the trees in the same vicinity are said to be from five

railway tie and fastening.

to eight thousand years old. Forest experts hav estimated that a tree of this size contains 750,000 fee of lumber, which being cut into telegraph poles 8 and 9 at the base and 4 and 5 at the top, and 24 feet high would make one pole forty miles long, or enough to supply a telegraph line from Kansas City to Chicago.

RAILWAY TIE AND FASTENING

A new steel tie that may be readily formed by roll ing and then drop-forged into shape, is illustrated in the accompanying engraving. The tie is adapted to b used in connection with a very simple device, by means of which the rails may be quickly and securely fast ened. A patent for this invention has just been granted to Mr. G. W. Schellenbach, of Joplin, Mo The tie has the shape of an inverted trough, so that dirt or ballast may be packed underneath the same. On the top of the tie along opposite sides are ribs pro vided each with an opening to receive the fastening

section of one of the largest trees on record.
jaw portions having the outer sides of their bases inclined to engage with the inclined walls of the opening. These jaws have shoulder portions for engaging on the upper face of the rib. The outer sides of the jaws are made hook-shaped to engage the base flanges of the rails. Of course, only one jaw of a pair will be engaged with the rail, but it is preferred to make the two jaws of similar shape, so that should one become worn, the device may be turned and the other jaw engaged with the rail. After placing the fastening devices in the openings, wedges are forced in between
the jaws. The wedges are split at the thin ends so that they may be bent outward to prevent accidental disarrangement. It will be noticed that the act of driving in the wedge results not only in an expansion of the fastening device in its socket, but also in a downward pull of the jaws which serves to clamp the rail down on the tie. These fastening devices are illustrated as short pieces not much longer than the width of the rib on the tie. However, if desired, they may be made sufficiently long to engage in opposite open ings or opposite ribs. Obviously by this invention, a rail may be quickly fastened in place and very little packing will be required at the outer sides of the tie. To reduce noise a block of wood may be placed between the rail and the tie. The fast ening thus arranged combines great strength and elasticity and is practically indestructible. No spreading of the rails can occur. In Fig. 3 we show a modification of the fastening device consisting of two faws connected at the bottom by a cross-piece. The jaws are held and slightly spread by means of a wedge arranged between them and forced down by a bolt passing through the tie.

Odd Uses for Hawhide.

It was the great packing and killing houses of Chicago which helped to bring about the presen uses of rawhide, says the New York Sun.
Rawhide is a form of leather in which the cur ing process stops far short of destroying the life of the material. The result of this treatment is a product remarkable for toughness, durability tensile strength and pliancy. It is used for belt ing, rope, hydraulic packing, laces of various kinds pinion wheels, washers, harness, mauls and mallets flynets, trunks, saddles and artificial limbs

Rawhide rope is handsome and astonishingly strong besides having great power of resistance when exposed to the action of the weather. At a little distance it looks like very white and clean new hempen rope. I is delightfully supple, and once tied it holds for a life time. The cost of such rope puts it beyond the reach of most consumers, yet for some purposes it is the cheapest material that can be used.

It costs from 10 or 12 cents to more than $\$ 2.75$ a foot according to diameter and quality. The cheapest is about a quarter of an inch in diameter; the most expen sive, save that made to order in special sizes, is two and a quarter inches diameter. It is largely used fo the transmission of power, especially where the line of transmission is long and indirect. Only a close ex amination brings to light the points where strands are joined, and splicings are so made that they show no change in the diameter of the rope.
One of the most curious applications of rawhide is to the manufacture of pinion wheels for the trans mission of power. Such wheels are usually made of iron or steel, but the rawhide can be made sufficiently rigid, hard and tough to serve all the purposes of metal in such articles. The rawhide pinions are almost noiseless, and they require little lubrication. A somewhat similar use is in the gear of friction wheels.
Mallets and mauls of rawhide are used for a variety of purposes in manufacturing. The former are entirely of hide save the handle; the latter have a wooden or metallic base with a rawhide face. Hammers with rawhide faces are also made.
The old-fashioned rawhide whips, the "cow hide" of many a social and political row, are made in several forms, as are blacksnake whips of the same material, rawhide lashes, and min ers' whips. Rawhide lariats are also manufac tured, though there was a time when every plainsman made his own. They cost from 15 to 20 cents a foot, according to diameter and form of pleat. They are rarely seen east of the Mississippi save in the factories.

In order to determine the density of the earth President F. W. McNair, of the Michigan Col lege of Mines, and Major John F. Hayford, of the U. S. Coast and Geodetic Survey, will con duct experiments at the Tamarack mine, which is particularly well fitted for this purpose, since its shaft is one of the deepest in the world, penetrating to a depth of 4,550 feet in strata of uniform density. The density of the earth is largely a matter of scientific conjecture. It has been computed by formulæ based on New ton's laws of gravitation. It is true that Sir George Biddel Airy, the British Astronomer Royal, computed the earth's density from experiments which he carried on at a Welsh colliery, but the figures which he obtained varied so much from those based on the form ulæ that they have not been generally accepted.

The Rome-Paris telephone line was opened to the public in the beginning of December. The trials were most successful. The line is the longest in Europe, covering as it does 1,000 miles.

Recently patented inventions.
Agricultural Implements. fertilizer-distributer and plant ER.-J. B. Crowder, Talucah, Ala. The ob-
ject of the present invention is to provide a ject of the present invention is to provide a
device for distributing and depositing ferti!zer beneath cotton seed, or other seed in on and the same operation with planting and a
any suitable distance from two to five inche below the seed, so that the fertilizer will be
placed where it will do the most good and will placed where it will do the most good and will
not be depreciated by evaporation, or be blown away by the wind or be chopped away by the away
hoes.

Electrical Devices

ventilated magnet-coil-w. Spenin magnet coils itady, the object being to provide a coil having an inner helix, thoroughly ventilated to prevent heating, and the inner and outer helices separated by air spaces for the same purpose.
The greatest possible freedom of air circula The greatest possible freedom of air circulation is allowed, not only between the inner and outer helices, but likewise between adja-
cent convolutions of the inner helix. The inner coil terminates somewhat inward of the danger of grounding the inner helix by contact with the ends of the outer helix is avoided.

Engineering Improvements.

BOILER.-R. b. Hobson, Pueblo, Colo. The in which the tubes are arranged in such manner that the greatest possible number of tubes are exposed to the first contact of the products of combustion from the furnace, thus dividing the extreme boiler duty among as large a number of pipes as can be gotten in
juxtaposition with the furnace or firebox.
rotary engine.-f. e. Womer, fai aven. Wash. The present invenco provide by the construction is at the same time very simple and most efficient. The parts are so ar ranged as to require but a comparatively small
amount of motive agent. The engine may be amount of motive agent. The engine may be
made compound or triple expansion by simply made compound or triple expansion by simply
licreasing the number of engines connected one with the other.

Medical Apparatus.

dialimiagi meter and exerciser. J. E. Ruebsans, Washington, D. C. It is the
object of this invention to provide a simple apparatus for testing the strength of the diaphragm and also for use therapeutically in exercising it. The apparatus is so constructed that the force of expiration acts to propel a small carriage resting upon a horizontal and vertically-adjustable support. This carriage is weighted to any degree required to give the
desired gage or test of the strength of the diaphragm of the person using the apparatus
WOCND-CLOSING IEVICE.-G. J. VaN closing device is berein provided which permits the surgeon or other person to quickly close up a superficial flesh wound without the use of plasters or resorting to sewing with
needle and thread as heretofore generally prac needle and thread as heretofore generally practised. The device consists of a flexible U-
shaped clip with its ends projecting inwardly to form pins which engage the edges of the skin and firmly clamp them together.

Mechanical Devices.

PIVOT-GRINDING ATTACHMENT FOR Jewlelers' Lathes.-J. E. Jacson, Jackson, Tenn., and W. R. Jackson, Franklin, Ky.
This lathe attachment is used for grinding watch pivots to the desired size and shape. It is so constructed and applied to the lathe
that a horizontal grinder reciprocates in contact with the watch pivot which is secured to and revolves with the head stock. The work accommodate pivots of different sizes and the parts have an elastic or yleldag the pivot amalgamator-W. F. Bedell, Kaslo AMALGAM,ATOR.-W. F. Bedell, Kaslo,
an. The improved amalgamator provided by this invention has a simple and durable construction and is very effective in operation. It is so arranged as to utilize the head of ma terial and water to actuate the machine and to nsure proper action of the nercury on the so that all the valuable material in the charge is completely saved and ready disposal is had of the tailings.
GAS-METER.-J. R. Dupoy, 36 Rue Guerant, Paris, France. In this improved meter ments of spiral form extending from the center at which the gas to be measured is admitted toward the periphery where the gas is deliv bound laterally by partitions having a spirally ound laterally which form arcs of circles having for their center the point of oscillation of the bell. The arrangements of parts is such as to cause an oscillation of the bell whan the gas enters the compartment. which oscillation operates the re ording instrument
Note.-Copies of any of these patents will be
urnished by Munn \& Co. for ten cents each lease state the name of the patentee, title o the invention, and date of this paper

Business and Personal <uants.
MEAD THIS COLUMN CARAFEULLY.-You

Marine 1ron Works. Chicago. Catalogue free.
Inguiry No. $\mathbf{3 6 2 2}$. For makers 2 of tierces,
heads or barreis solding about makeris ons.
For mining engines. J. S. Mundy, Newark, N. J.

Innuiry
matic egg boilers.

"C. S." Metal Polish. Indiamapolis. Samples free.
Inquiry No. 3624.-For machinery for pressing
straw into blocks for fuel purposes. Coin-operated machines. Willard, 284 Clarkson St.
 Dies, stam
Racine, Wis.
Inguiry No. 3626f.-For makers of brass tubes. Sawmill machinery and outtits manufactured by the Lane Mfg. Co.. Box 13, Montpelier, vt.

Patented orticles pintily of Atialtic Foundry, Philipsburg; N. J.
Sion apury Noratus. 3628.-For makers of rope.transmis-
let me sell your patent. \mathbf{I} have buyers waiting.
Charles A. Scott, Granite Building, Rochester, N. \mathbf{Y}. Inguiry No. 3629. - For manufacturers of copper
and iron tanks. Inventions developed and perfected. Designing and
uacliine work. Garvin Machine Co.. 149 Varick, cor. Inuairy No. 3630.-Fo.
ume plates oil caskets. etc.
Manufacturers of patent articles, dies, stamping ools. light machinery. Quadriga Man
pany, 18 south Canal Sireet, cricago.
Iuquiris No. 363.1. For manu facturers of family The largest manuracturer in the world of merry-ko. and terms write to C. W. Parker, Abilene, Kan. Inequi
 hine Company. Foot of East 13 sth Street, New York. Inguiry No. $\mathbf{3 6} 33 .-$ For ma.
napkin
Inventors wishing to sell their patents or to have
hem manufactured on royalty will tind it to their interest to correspond with me.

Main and Dock Sts., St. Louis, Mo.
Inquit No. 3634.-For manufacturers of photo-
Repre:entatives Wantel. - For "Good Roads
Magazine." "Teller" and electrical periodicals. Powers Co., 150 Nassau Street, New York.
Inquiry No. 3635.
fat, endless coil spring. ermany, established 1888 , office, Frankfurt-on-Main, oftable special articles and novelties in the technica in the same line and the purchase of chemical and

Inquiry No. 3636
Luventors icles manufactured please take notice:-An old estab ished New England conceru, with large experience in
nanufacturing and marketing specialties of different kinds, desires to obtain control of patented inventions
of merit, and would either purchase same outright manufacture on royalty. All communications will be onsidered strictly coufdential, and we reserve the right to reject any or all inventions submitted.
Address P. O. Box No. 316,

WANTED.-To manufacture some simple tool or mahine, the work of which can be done chiefly on an Inquiry No. 363s.-For man ufacturers of carpet-
cleining devices, compressed air pre ferred. Inquiry No. 3639.-For dealers in hydraulic Inquiry No. 364 0 - For makers of water wheels
getting a great amount of power from low head of
water
Inquiry No. 3641.-For machinery for pressing
briquettes.
Inquiry No. 3642.-For manufacturers of short-
hand typewriters.
Inquiry No. 3643.-For the manufacturers of the
Inquiry No. 3644.-For makers of finished cast-
ingsto build a small model locomotive.
Inquiry No. 364.5. -For dealers in second-hand
Inquiry No. $\mathbf{3 6 4 6}$. - For manufacturers of glass
nk bottles.
Inquiry No. 3647.-For parties to make small
tean boilers for
engines $1-16$ to $1-2 \mathrm{~L} . \mathrm{p}$. from brass or
Inquiry No. 3648.-For machinery for buring 3
and 4 inch holes in logs to depth of 16 feet.
" Inquiry No. :3649.--For the manufacturers of the
Inquiry No. 3650.-For makers of the very light-
est eugines possible, of 2 or 3 h . p , such as for aerial
Inquity \mathbf{N} No. 3651 .-For wholesale dealers in un-
ground infusorial earth.
Inquiry No. 3652.-For machinery for filtering
newand oid cider.
Inquiry No. ${ }^{\text {3653.- }}$ making fish nets.
Inquiry No. 36.54. - For machines for making
ferrules used on wooden handles.
franuiry No. 36.5.5. - For parties to make small
casting.
casting.
Inquiry No. 36:56.-For makers of phosphorescent
paint orink.
Inquiry No. 365\%.-For non-breakable glass milk
Inquiry No. 365\%.-For non-breakable glass milk
bottles.
Inquiry No. 3658.-For manufacturers of laundry

hints to Correspondents.

same.
Written Information on matters of personal without remuneratio
Scientific American Supp Scientific American Supplements referred to may be
had at the olice. Price 10 cents each.
Books referred to prowptly supplied on receipt c.f price
$\begin{gathered}\text { Minerals } \\ \text { marked or labeled }\end{gathered}$
sor examination should be distinctly
(8780) W. R. asks: What the different gases are which, if introduced into an inclosed arc lamp, will turn the color red
green, yellow, blue, etc. A. Colored electric lights are ordinarily produced by coating the
globe with an aniline dye globe with an aniline dye, made in alcoholic
solution, and mixed with a little varnis solution, and mixed with a little varnish
We do not know any gas which could with stand the heat of the arc for any time and which could color the arc. Some color can be imparted to the arc by soaking the carbons in solutions of sodium chloride, stron
tium chloride, or lithium chloride, and dryin them thoroughly before using. The light the are itself is so intense that it is very difficult to
ored light.
red 18
(87
(8781) L. R. B. writes: Last evening our cook set a dish of raw steak in the pantry near- an open window; the steak was salted
lightly with fine salt. Near morning, while it was still dark, I chanced to look into the pantry and saw a faint silver glow near the window, and upon investigation found it to be the dish of steak giving off a soft silvery light; but when I lighted a match the meat looked uatural and all right. I then took the dish of meat to show to others of the household, and it continued to show its soft,
silvery light. The steak was cooked for bre fast in the morning, and we all ate of it and could find nothing wrong with it. (an you explain the chemical or scientific reason for it: A. The beefsteak of which you write had become phosphorescent. Incipient decay had set in, and at a certain stage phosphorescence is frequently seen, both in vegetable and ani-
mal substances. It had not in this case ad mal substances. It had not in this case ad-
vanced far enough to produce an odor of decay, and when the meat was cooked the bacteria were killed, and no harm resulted from eating the meat.
(8782) W. E. F. writes: Do you know of any cheap and safe process for breaking up very heavy castings, such as heavy cylinders with 8 to 12 inch thickness of metal:
Would be glad to have you advise me if there is any other process than dynamite or nitroglycerine? A. The dynamite or nitro-glycer-
ine for breaking large castings is entirely too ine for breaking large castings is entirely too
expensive and dangerous for expensive and dangerous for practical use.
The old large naval guns are broken by a heavy weight falling about 30 feet in most of the large foundries. This seems to be the cheapest method available.
(8783) E. M. B. asks how shellac and aniline black are mixed together, such as patinsoluble. The only way, therefore, to prepare such a mixture would be to dissolve the shellac in the usual manner for a shellac varnish, and then stir in thoroughly the very finely (8784) W. D. L. asks for a recipe for the petrifaction of wood. A. The term
petrifaction as applied to artificial treatment petrifaction as applied to artificial treatment
of wood is a misnomer. The natural process of petrifaction takes many centuries; the final completely mineral, mineral deposit, preserving however the form and structure of the primal wood. Artificial petrifaction consists in depositing some form mineral matter in the pores of the wood without removing any of the woody material tself; its object is to render the wood very Paragraphs 1, 3, 4 and 5 under article "Irre servation of Wood." in the " Scientific An eirican Cyclopedia of Receipts," are processes
of petrifaction. Besides the chemicals there in mentioned, wood is often treated with silicate of soda solution, followed by treatment (8785) M. W. asks: How large would an electro motor have to be to drive a tentions per minute and pumping as much revolu ward as possible! Also, how large would tricity. and how much would the motor and battery weigh! A. We can give only an approximate answer to your inquiry. That it
will refuire a five-kilowatt motor. weighing about 800 pounds. The storage battery of 1,600 pounds.

new boors, etc.

a Popular History of Astronomy During the Nineteenth Century. By
Agnes M. Clerke. Lorimon: Adam \& Agnes M. Clerke. Loriuon: Adam
Charles Black.
1902. Pp. xv, 489 Price $\$ 4$
The book which lies before us, and which has now passed to its fourth edition, is one
of the most scholarly works on astronomical history which has appeared in England. The author presents her information attractively and scientifically. The illustrations have been carefully selected and do much to elucidate the

In City Tents. By Christine Terhune Herrick. New York and London: G.
P. Putnam's Sons. 1902. 16mo. Pp. P. Putnam's Sons. 1902. 16mo. Pp. vii, 229. Price \$1.
The author has written an entertaining little book on the economy of a city house-
hold. She tells what. she has racy way that lends not a little interest to her

INDEX OF INVENTIONS

 For which Letters Patent of theUnited States were Issued or the Week Ending December 30, 1902,
AND EACHBEARING THAT DATE. [see note at end of list about copies of these patents.]

 716,967

plates or Wir Bray ubmatice ubmarine

717,101
717,432 716,911
717,386
 716,959
71,216
717,033
717,099

 717,491
717,336

 716,918
717,222

and Perforated Metal of an CLINTON WIRE CLOTH COMPANY, CLINTON, mASS.

SEBASTIAN-CLARK MACHINERY COMPANY
Tools, Dies and Novelties WE MAKE AUTOMOBILES TO ORDER.

ARTESIAN

 trated catalagn se. Ad for illus-
NEERING AND. SUPPLY

The Perfection of Pipe Threading

 Howard Two and Four Cycle marine
AUTOMOBILE MOTORS
Write for Cat Grant Ferris Co Troy, N. Y.
Queen Transits and Levels
 gineering
Cappolicauoon.
appation. THE QUEEN $\begin{aligned} & \text { ematical Cat } \\ & \text { ion on an a } \\ & \text { pilication. }\end{aligned}$ ENGINERS' AND DRAFTSMEN'S SUPPLIES.
QUEEN \& CO., ODtical and Gcientific Eifth Ave., New York 1010 Chestnut St., Philat GAS ENGINE \%icis IGNITERS 20,

11

 The ClIPPERCUP
 attacling papers together.
Best \& Cheapest. All Stationers. CLI PPER MFG. CO.,

JUST PUBLISHED HARDENING,
TEMPERING, ANNEALING

FORGING OF STEEL By JOSEPH V. WOODWORTH

$$
\text { PRICE, } \$ 2.50
$$

oncise manner all modern processes freat the in a clear

 pering processes are given.
The user to $\begin{aligned} & \text { Fhich } \\ & \text { the leading brands of stee may be } \\ & \text { adapted are concisely } \\ & \text { presented and their treatment }\end{aligned}$ adapte are concisely presented and their treatment
for working undor diferent conditions. explained also
the special methods for the hardening and tempering of

 ern tool-making.
Send for descriptive circular.

MUNN \& CO., 361 Broadway, New York

Turning a New Leaf

 Tim TEW INTERNATIONAL ENCYCIPREDIA
EDITORS

Daniel Coit Gilman, LL.D. President of Johns Hopkins University (i876202), President of Carnegie Institution.

New in Its Methods

We of today demand quick and direct answers to our questions. This is at tained in the NEW INTERNATIONAL by the alphabetical arrangement of subjects (in

New in Its Facts

tion. Discovery-are incorporated in the NEW thoroughly up-to-date. The populations and other statistics of cities and countries the theory of Electrolytic Dissociation, Wireless Governments. In Electricity, Power and other practical applications are fully treated.

Over 7ooo New Illustrations
 white and in colors, excelling any other English work.
The Only New Encyclopaedia Issued in the Last Ten Years 65,000 Titles, 100,000 Subjects.
SEND FOR SAMPLE PAGES-FREE
 ng a

Special Discount to Those Readers Subscribing Now
and our Little-at-a-Time Payment Plan
DODD, MEAD \& C0.
372 FIFTH AVENUE NEW YORK

G. CRAMER DRY PLATE CO. Offices in ST. LOUIS, MO.

$$
\text { Now York: } 32 \text { East 10th Street }
$$ Chicago: 1211 Masonic Temple San Francisco: 819 Market Street PUBLIC SALE OF

Woolen and Worsted Clills

$$
\begin{aligned}
& \text { With Machinery and Valuable Water Power, } \\
& \text { at TRENON, N.J., on Wednesday, January } \\
& \text { as, 1903, at 11, A. M. For inspection, descript. } \\
& \text { ive catalogee. mappor partitulars respecting } \\
& \text { the maner in which the property will be } \\
& \text { offered, apply to }
\end{aligned}
$$

Automobile Engine

Cbe Cypewriter Exchange
themas sis wew ran 124 La Salle St., Chicago
38 Bromfield St., bOSTON 817 Wyandoite St.,
KANSAS CITY, mo. KANSAS 9 St... 209 North 9th St.. SI. Lous, mo.
536 California St 536 California St.,
SAN FRANCISCO, CAL. to 508 ou Typewriters of all mee waill save se sou from for Catalogue RUBBER STAMP MAKING. - THIS article describes a simple method of making rubber
stamps with inexpensive apparatus. A thoruaghiy
sractical article writen by an amateur who has had ex.

Ligut
Lial

Hewstan machine stripper, rota
$\begin{aligned} & \text { Permutation lock, D. Chirchiilat... } \\ & \text { Photographic developing apparatus }\end{aligned}$

Piperiain salt
Bishop, et
Pitman oomne et
Planter cond fe
Tipton

Life Insurance Free from All Speculative Features.

Travelers
 Insurance Company,

Hartford, Conn. S.D.DUNHAM,

President.

Accident Insurance

 Oldest, Largest, and Strongest Accident Company
How Pennies Count

Accident Insurance
About four cents a day, what you spend for news
papers, will procure you, if a preferred papers, will procure you, if a preferred risk, an
accident policy paying $\$ 3,000$ for accidental death or loss of both eyes or limbs; and proportionate amounts for loss of one eye or limb; $\$ 15$ a week fo
total disability; $\$ 6$ a week for partial disability an total disability; ; $\$ 6$ a week for partial disability; an
double the above amounts for injuries received in certain specified accidents, etc., et

Life Insurance

Fifteen and one-half cents a day will purchase a life insurance policy at age 35 for $\$ 2,500$.
Twelve cents a day will purchase a twenty-year endowment policy at age 32 , paying you $\$ 1,000$ cash
at the end of twenty years if living, and insuring

Life and Accident Combined Nineteen and one-half cents a day purchases $\$ 3,000$
accideut insurance and at age $35, \$ 2,500$ ordinary life

Who Says Insurance Costs a Good Deal?

WOLVERINE $\begin{aligned} & \text { MO } 30 \text { H. P. } \\ & \text { Grand Rapids. Mich }\end{aligned}$
Gre
KLIP-KLIP
 It is eass to be poisoned with
impure drinking water. Dis-
ease germs lurk in every drop. The Berkefeld Filter Which is made on true scientific princi-
ples and insures perfectly pure water.
Easy to clean and care for. One gallon of pure water in four minutes. ABSOLUTE RANGE PERFECTION Sold for Cash or on Monthy payments

STEEL BOLS ${ }^{6}$
积 OIL-SMELTER-SMINES OIL-SM MELTER--MINES
Dividend-Paying Mining, Oil and
Smolter Stocks, Listed and DOUGLAS, LACEY \& CO. Bankers \& Brokers, Fiscal Agents, Members N. Y. Consolidated Stock Exchang
66 BROADWAY \& 17 NEW ST.. NEW YORI

free on application:
ereee:

1902 EDITION

今II Che (J)orld's Fighting Sbips

By FRED T. JANE, Author of the Naval War Game (Kriegspiel)

394 PAGES.
OVER 3,000 ILLUSTRATIONS
OBLONG QUARTO. CLOTH. PRICE, \$5.00, POST FREE.
CONTAINS:-A photograph of every
CONTAINS:-The length, beam, draught, horse power. speed. coal supply, number and size of guns,
CONTAINS :-Tables of the size, weight, velocity, energy, penetration, etc., of every gun of every navy
in the world.
CONTAINS:-A series of chapters by noted Admirals, Naval Constructors and other experts of various
navies, on vital questions of the day in naval construction, tactics, and strategy.

MUNN \& CO., Publishers, 361 Broadway, New York.

 Printing press inking apparatus, changer

 Propalline mec
Protectity ress pean or dreages,

 Rack. See Display rack
Rack teeth,
machine ter for

Ralluary rail raià w... Bail.

Saffety cin . Barber.

Stacker, pneumatic, pneumatic, E. A. Alsted... St. A. A. A. Ating.
Stairs, means for repairing wood

Starting gate, \mathbf{P}. McGinnis.
Steam generator, \mathbf{R}. Oates.
Steam heating apparatus, A. P
Steam trap, expansion, \mathbf{C}. Fietcher
Steaming cabinet, G. J. Burns.id
Steel seat, pressed, W. S. Judd
Steel seat, pressed, w. S. Judd.........
Sterilizing aparatus, Pease \& Tucker.
Stirener, garment, H. Feder
Stone, apparatus for man facturing al.

tove, smoke consuming $\&$ Reackwell.....
h.

(Continued on page ss)

COLD GALVANIING $=\square+\square$
 NATERLESS KNOX

1903 Model now ready, with many new and desirable features. More Powerful dirch. Dooled Entine, Widerand More Comportabe,
Folding Front Seat easily carrying two adults. Price $\$ 1, \mathbf{2 0 0}$.

RECORD FOR 1902

Contesto of the fur cups in the New York-Boston Reliability
Cont recoras in all the other contest. Three
ded
 Send for Catalog and Testimonials.
Will Exhibit at the New York and Chicago Show KNOX AUTOMOBILE CO., Springfield, Mass. Western Agevcy, National Automobile \& Manu

	SPECIAL INSTALLMENT O
$\$ 100 \begin{aligned} & \text { in advance and \$1.00 a } \\ & \text { month for four months }\end{aligned}$ will obtain...	
	$\left.\begin{array}{l}\text { Judge, one year, or } \\ \text { Leslie's Weekly, one year, }\end{array}\right\}$and your choice of either the Caricature
THE JUDGE COMPANY, 110 Fifth Avenue, New York I accept your offer of The Memorial War Book or Caricature, and Judge or Leslie's Weekly for one year. Enclosed tind $\$ 1.00$ for flrst payment. $\$ 1.00$ to be remitted by me for iour months, \$5.co in cll. Indicate which book and which paper is desired by running your pen through the name of that not desired.	

NOW READY
Twenty-Third Edition
Revised and Greatly Enlarged.
Experimental Science

1,100 Pages. 900 Illustrations. Cloth Bound, Postpaid, $\$ 5.00$. Half Morocco, Postpaid, 7.00. Or Volumes Sold Separately: Cloth, $\$ 3.00$ per Volume.
 MUNN \& CO., Publishers, 361 Broadway, New York.

ELECTRICAL ENGINEERING TAUEHT BY MAIL.

"CANT Write for bec Fome inistrated Book

 TRICALCENGINEER ELEC
LEARN PROOFREADING.
 ENGINEER' LCEESSE
 Also send free or charge.
feo. A. ZELLER, Publisher GEO. A. ZELLER, PUBLISHER
Room 600 S. 18 Sourth St., St. Louis, Mo
THE BRIGHT WHITE LIGHT FOR
MAGIC AANTERNE

 Dept. G, \quad 918 Chestnut st.. EARiladelphia

Send For It To.Day

REMOH JEWELS

2

TYPEWRTTERSMALLES

 ENGINEER'S LIBRARY. An absolute Encyeciopedia for Enginers or for Stean HANDBOOK ON ENGINEERING.

 1060 Watnwright Bldg., St. Louls,", Mo., U. s. A. NWMM/ SO YEARSS'

Scientific American.

 MLHN \& CO. 361 R Roasman New York

Medicines and disinfoctants, erertain named,
Dr. A. C.
Daniels
Incorporated

 Polish, certain uaniod, G. P. Mcintyre.
Powders face, Te tlow Manufacturing C
 Shocs, leat the,

LABELS

Chameleon," for molasses, C. W. Goyer
Co.
Dr. Daniels, Gali-Cura, for a medicine, ...
A. Daniels, Incorporated.............
"Ehrenpress., for beer, Northwestern Litho
graphing Co

Chemical
Millers Lang Sy....,
Miller
Mondarin,, for whisk... Stitzei, Distiling C
"Old Thing Are Passed Away," for bluing
A.

\qquad

PRINTS.

"Game
for
Boards
Boards,
Game and equipments, Carrom-

 in print issued since 1863, will be furnisho from from
this oftece for 10 cents, provide the name an
number of the natent desired and the date
 Canadian patents mav now be ohtainod hy the in
ventors for any of the inventinn named in the for
gong list golng list. For terms and further particular
address Munn \& Co., 361 Broadwas, New York.
 The Saturday Evening Post will be doubled. It will be better and larger. We shall double its value and give you more of it for your money.

Until FEBRUARY 1st you can have it a whole year- 52 weeksFOR ONLY ONE DOLLAR

After Feb. Ist the price will be $\$ 2.00$ per year.
Has been regularly published for 174 years, and now has a paid circulation of more than 400,000 copies weekly. Save a dollar now by sending a doliar TO-DAY, for the oldest, strongest and best weekly magazine. Handsomelv printed and illustrated.

THE CURTIS PUBLISHING COMPANY PHILADELPHIA, PA

 INVENTIONS DEVELOPED. Special machinery, electrical and chemical ap
paraus made

 Are you interested in Patents Model or Experimental
WHAT WO WE DO-HOW WE DO IT
KNICRERBOMI De sent to you on request. DO IT
 SMALL SPRINGS OF EVERY DESGRIPTION
THE WALARO RND NHRE STEEOR BRASSN

 MATOH Factory Machinery. W. W. WIMLAM,

MATHEMATICIANS WANTED

 THE FRANKLIN DYNAMO

MODELS $\underset{\text { Inventions developed. special Machinery }}{\text { E }}$ EXPE E. V. BAILLARD, Fox BIdg., Franklin Square, New York.
 ELECTRIC LAUNCH MOTOR - THE

THIS BEATS NEW JERSEY

Orient Motor Car
 WALTHAM mFG. co.,- Waltham, Mass

Free

Test

'Royal Worcester" Belting.

We are so confident that this is ab solutely the best and most economical power belt to use that we will gladly send trial belt for testing on your own machinery. All you have to do is write us for it, and you are under no obligation to keep it unless it's absolutely satisfactory in every resrec
Write us to-day for belting facts. We have been making old-fashioned oak-tanned leather belting for 50 years, and want you to know how it wears It will be money in your pocket.
GRATON \& KNIGHT MFG. CO.
Oak Leather Belt Makers. Worcester, Mass.

Beauty and Utility
$=2=$ $=\mathrm{F}=\mathrm{z}$ Emes Wsastumene's sufif holues 5amem grip like a bullduct iloze on request.
ilustrated catalozue Sample pair of Cuff Holders
sent by mail on receipt of $\mathbf{2 0}$. Box s. $\begin{aligned} & \text { AMERICAN RiNG Co. } \\ & \text { Waterbury, conn. } \\ & \text { (}\end{aligned}$
AGENTTS WNANTEED
pagexaws vumay dexk
 HIGHEST AW ARD wherever exhibited. Faneusil Watch Tool Company, BRIGHTON. BOSTON, MASS., U. S.A.

WINTON
 grade construction and the embodiment
of eleveret ideas and eneral excel-
of ence of tererest ideas and gener
lence in automobile building,
It bas a new elastic spring suspension,
new boty desikn with high back seants
and luxurious deep spring u pholstery and luxurious deep spring upholstery
threep apsenger tonneau, ,ivilded front
seat, improve itnition and many other
superior features superior features.
Complete with full $\begin{aligned} & \text { frass side } \\ & \text { tools, horn, etc., the price is } \$ 2,50 \mathrm{lam} \text {, }\end{aligned}$, She Winton Motor Carriage Co. Berea Road, Cleveland Branches and Agencies
throughtout the country.

charter encine
 Stationaries. FOR ANY Portables. Pawing outs
Hoisters. Engines and Pumps.
Fits FU Li-G. Gasoline, Gas, Distimps.
nat for

Lead the world in diversity of style and sizes as well as quantity of pro-
duction. Our guarantee covers every watch for we make both the case and movement, and sell only a complete
watch. Our watches have a world-wide reputation, gained by results as accurate time-keepers. We sell in every

THE NEW ENGLAND WATCH CO: Factories: WATERBURY, CONN., U. S. A.

Chapped Hands

are the bane of the little tot's existence-and sometimes of older folks. Wintry winds raise havoc with tender skins.

FAIRBANK'S GLYCERINE TAR SOAP first cleanses the skin of all impurities, then heals, soothes and keeps it soft and velvety. It makes a rich creamy lather and has pronounced antiseptic quali-

Removes grease and dirt like magic, and lathers in hard or Don't fudge soft, hot or cold water. Each cake is wrapped and packed in separate carton.

Ask for FAIRBANK'S GLYCERINE TAR SOAP at your drug or grocery store. If you fail to find it, send us name and address for free sample. It has an odor
"Like a Breath from the Pines"
the n. K. fairbank Company, Dept. T, Chicago

ㄴ․․․․․․․․․․․

Coittericianais
 -MADE AT KEY WEST;

\{These Cigars are manufactured under the most favorable climatic conditions and from the mildest blends of Havana tobacco. If we had to pay the imported cigar tax our brands would cost double the money. Send for booklet and particulars. CORTEZ CIQAR COn, KEY WEST.

SPLITDORF STARK COILS PDEC SPECIAL OFFER No. 1.

 order of 20 Ibs. of our Now Crop Tea, 60c. a 1 lb ., or 20 lbb .

MAGIC LANTERNS
 4 8TEREOPTICON8 and VIEW8

 for illugtrating sermons. Many sizzes, all prices. Chancefor men with litte capital to make money. 280 page for men with lit.
catalogue free. McALLISTER. Mig. Optician. 49 Nassau Street. N. Y.是汤 GapDILRDIISTOK

Slow Work Becomes Fast Hard Work Becomes Easy ALL Work Becomes Pleasaint \quad when it is done on the

Remington Typewriter

In Twenty Years we have saved the world enough labor to build an Empire.

Wyckoff, Seamans \& Benedict 327 Broadway, New Yor

PALATABLE
WATER-STIIL Produce an abolutely
pure and aerated
ter for manufacturigg ter for manuracturing
ordrining urpose
Attachab
to any Attachaber
steam biler.
Made in all sizes, from
10 to 200 gallons distilled
 PALATABLE WATER-STILL Boston, Mass., U. S. A.

