

The Snoqualmie Falls.

Longitudinal Section Showing Shaft with Penstock, the Underground Power House and the Tailrace to the River Below the Falls, Depth of Fall, 270 Feet.

Interior View of the Subterranean Power House. Excavated Out of the Solid Rock.

SCIENTIFIC AMERICAN ESTABLISHED 1845

MUNN \& CO.
Editors and Proprietors

No. 361 Broadway, New York

terms tu substribers

 the stientifel a merican publications.

NEW YORK, SATURDAY, AUGUST $30,1902$.

The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. if the photographs are
 will receive special att

express trains of the future

That the express train of the near future will not necessarily be hauled by electric locomotives is evidently the belief of the German Society of Mechanical Engineers, who have offered a series of prizes for the best-designed high-speed express train capable of carrying 100 passengers and their baggage, with every modern convenience of travel, at an average speed of 75 miles an hour for a continuous run of three hours' duration. There is no question that this competition was prompted by the disappointing results of the experiments in high-speed electrical traction, 'carried out last year on the stretch of military railway between Berlin and Zossen. It will be remembered that the failure of these trials, or rather their somewhat sudden termination, was due, not to the inability of the electrical equipment to drive the train at the high speeds contemplated, but to the unexpected weakness displayed by the track and roadbed, which, under the heavy concentrated and rigid loads of the motor trucks, yielded so seriously as to produce dangerous oscillation of the car. The object of the express train competition is to provide a train suitable for greatly accelerated railway travel, whose steam locomotive shall be able to exert the necessary power without imposing greater strains than the comparatively light rack of the present state railways of Russia can endure. The Berlin-Zossen trials proved that the track of the state railways, as at present laid, is altogether too light for high-speed electric travel, and the German Society of Mechanical Engineers believe that it is possible to design a high-speed, steam locomotive train that would accomplish the desired result without damage to the track and roadbed. The trials demonstrated practically the fact, which might very well have been foreseen, that the steam locomotive with its high center of gravity and its spring-supported load, is far less severe upon a track than the electric locomotive with its low center of gravity, and its large proportion of non-spring-supported load. The effect of a low center of gravity is felt in rounding curves, and when the engine or cars begin to oscillate laterally from one rail to the other. With a high center of gravity the lateral blow against the rail is considerably cushioned and the lower the center of gravity, the more direct and hammer-like is the impact. This is a point that has been well understood by steam locomotive builders and engineers, and when the first of our American express engines with boilers placed above the drivers were introduced, it was found that, despite their great weight, they were actually easier on track, at least as regards lateral displacement, than the old type of locomotive with low boiler and low center of gravity. Of course, in the very nature of things, an electric locomotive carries its weights low, and hence at very high speed loads particular attention will have to be given to the lateral strength of the track and roadbed.
During the electrical experiments of last year an endeavor was made to gather data regarding the air resistance at varying rates of speed, and it was shown that the head-on pressure increased at a much more rapid ratio than the speed, though apparently not as fast as the square of the speed. As a result of the data so gathered, an endeavor is to be made to reduce air resistance by clothing the whole train from pilot of engine to the rear platform of the last car in sheet steel, with suitable sliding joints between the cars to give the necessary flexibility in rounding curves. This sheeting is to finish at the engine in a wedge-shaped front. Our readers will here be reminded of the experimental train designed by Adams and tested in some high-speed runs. The train in question made a good speed record, considering the moderate power of the engine that hauled it; and we think the probabilities are that if good results art secured with the proposed experimental train in Ger many not a little of its success will be due to this special feature of its construction. According to the

German technical publications, care will be taken in the construction of the locomotive to minimize the racking effect of the engine on the track, by carrying the weight upon a large number of wheels, twelve i! all being used. There will be a four-wheeled truck at the front, followed by a pair of coupled drivers and a four-wheeled trailing truck beneath the firebox. The engine will be a three-cylinder compound, with the cranks arranged so as to secure a perfectiv even turning movement.

LIGHT ON THE LIQUID FUEL QUESTION

In a paper recently read by Mr. Edwin L. Orde before the Institution of Mechanical Engineers, at Newcastle-on-Tyne, on the subject of liquid fuel, the author stated that close examination of the literature which has appeared on the subject, seems to show that. from some cause or another, many undoubted advantages which liquid fuel offers have either not been fully appreciated, or if appreciated, not pursued with sufficient determination to insure their realization in actual practice. In explanation it has been suggested that the reason why liquid fuel has a higher calorific value than solid fuel of the same chemical composition is, that some of the heat has been rendered latent in passing it from the solid to the liquid form; but the author points out on the other hand that experiments fail to show the existence of this latent heat, quoting as an authority Dr. Paul, who holds that the best results that can be obtained from liquid that the best results that can be obtained from liquid
fuel are an evaporation of 16 pounds of water at 212 fuel are an evaporation of 16 pounds of water at 212
deg. F., which is about 50 per cent more than any good coal will give in an efficient boiler. The most important point made in the paper was the explanation as to why liquid fuel does not give evaporative results in actual practice corresponding to those obtained in laboratory tests. Mr. Orde attributes the difference to the fact that crude oil exclusively is used in woiler furnaces, and that this oil contains a great amount of water. Ten per cent is the proportion quoted in the paper, although, as a matter of fact, many oils contain a higher percentage than this. The presence of this water destroys the conditions necessary for perfect combustion. Its first effect is to reduce the temperature of the flames and increase their length, thus moving the point of highest combustion further into the furnace, with the result, first, that a large portion of the heating surface of the furnace is rendered useless; secondly, that the temperature of the combustion chamber may be raised to a higher point than is good for its material; and thirdly, that the last stage of combustion takes place in the smokebox and uptake. The existence of a low furnace temperature is suggested, furthermore, by the fact that in cases where no smoke was being formed and the air supply was not more than 20 per cent above the amount that was chemically necessary for the combustion of the fuel, the evaporative work of the boiler was poor.
In commenting editorially upon Mr. Orde's paper The Engineer states that it has authentic evidence of oil being shipped from oil wells which contained as high as 40 per cent of water, this large amount having been added, not fraudulently, but having flowed naturally into the wells, which are usually driven through water-bearing strata. As crude oil is nearly as heavy as water. and only separates from the latter after a long rest in the tanks, it follows that on shipboard, where the bunkers are in constant that on shipboard, where the bunkers are in constant
motion, separation is impossible and the water is carried with the oil into the furnaces. In concluding his paper Mr. Orde quotes actual results obtained by successful installations of burning apparatus on the steamers of three different companies, which show the difference in consumption of liquid fuel as compared with coal. In the case of the four steamers quoted, there is an advantage in favor of liquid fuel of 27 per cent, 28.6 per cent, 35.5 per cent and 36 per of 27 per cent, 28.6 per cent, 35.5 per cent and 36 per
cent. The conclusion arrived at is that except in cent. The conclusion arrived at is that except in
the case of steamers which are engaged in carrying oil as cargo, or those which are employed in the oilproducing region, liquid fuel cannot show sufficient pecuniary advantage over coal to render its entire adoption advisable.

THE RECENT "BELLEISLF" EXPERIMENTS

 In a characteristic discussirn of the recent "Belleisle" experiments, Mr. F. ". Jane, the well-knownauthor of "All the World's Fighting Ships," sums up the experiments as havin! two main objects: First, to ascertain the effect of ،yddite on a conning tower, and, second, to ascertain the effect of shells on torpedo nets. After a careful analysis of the results, he points out the main essons that are to be learned and presents his own suggestions as to how far they should modify future battleship design. The whole article as given in The Engineer will be found in full in the current is sue of the Supplement, and it will be sufficient to $\{$ ive here a brief review of Mr . Jane's analysis of thi, interesting trial. It is pointed out that in the first case the experiment was invalid
because the conning tower of the "Belleisle" was not of a modern pattern, being entered from below in stead of, as is now the practice, from the rear. At tention is drawn to the fact that the gas from the exploding lyddite shells was only able to act upon the top of the tower, whereas in the modern type of conning tower, which has a doorway through the rear wall with a curved screen to partially cover it, the blast of an exploding shell would be able, if the latter aine from a wide arc on either beam, to enter be ween the screen and tower and find its way, with deadly impact, throughout the whole of the interior of the tower. In the "Belleisle" tower the gas could only enter through the peep-hole slot at the top, and hence there would be something of an air-cushion effect before the pressure reached the floor of the conning tower, on which, before the firing, a live rat had been placed to test the effect upon a living being. As we take it, Mr. Jane's argument is that though the modern conning tower with open rear entranc and so-called protecting screens may keep out shells, it will not prevent destruction of the inmates by the shock of the shell gases. He suggests the con struction of a double-deck conning tower, to accom modate a steersman in the upper compartment, and a reserve steersman below. He would place the commander of the ship on the roof of the turret, this roof to be extended to form a wide, circular plat form, around which platform would be hung a wall of splinter nets, the idea of this arrangement being that the splinter nets would catch the lighter flying fragments, but would not present sufficient resistance to burst the storm of explosive shells, to which the captain nimself would offer but a small target. He suggests that the best position for the captain in the heat of action would be prone upon this upper roof with his mouth above the speaking tubes, etc., which would lead down into the conning tower below. The suggestion that the captain should fight his ship pracically in the open is warranted by the fact that in the Spanish-American war the commanders of our vessels preferred, like Admiral Dewey, to carry on the action from the bridge, where they could obtain a clear view, rather than be cooped up within the re stricted outlook of the conning tower.
Early in the action the bridge of the "Belleisle" was struck and completely wrecked, the mass of vreckage being swept away and carried oyerboard From this it is argued that it would be folly to sup port the conning tower or fighting position on a bridge The tower should carry its full diameter well down into the body of the vessel, and have its base thoroughly protected by the side armor. There can be ro question as to the necessity, as above pointed out, for giving most thorough protection both to the steersman and the reserve steersman; for should the former be killed or disabled at a critical moment in battle it is easily conceivable that the delay in sending for a "replace-man" might have most serious consequences, and, possibly, be fatal to the ship. By building the conning tower in two stories, and having the "replace man" in the story below, the risk of the ship running wild is reduced to a minimum.
The awful destruction wrought by the lyddite shells and the dense clouds of dust and fragments produced by the explosion indicate that there are two other most important accessories that demand attention; the first, the important matter of placing the rangefinder, and the second, signaling. Ordinarily the range-finder is carried on the bridge, but the short work made of this structure on the "Belleisle" show that some other position must be found, and the writer suggests that the range-finder tripod should be carried on a light grating, upon which the operator would lie prone and communicate the ranges by a transmitter. As to signaling, the "Belleisle" experiment confirms the experience gained at the battle of the Yalu, where the signal halyards were entirely swept away; for the bombardment gave little promise of the survival of even the light masts. There are two methods of signaling suggested, one a small captive balloon carrying flags which may be hoisted and cut away and sacrificed when done with, and the other suggestion is the use of colored shell for simple signals.
When the writer comes to the question of the effect of high-explosive shell fire on the personnel of the ship, we think that he is dealing with what, after all, is the most vulnerable point of attack in the modern warship. We are satisfied that in a battle carried out at moderate ranges between ships whose crews are fairly proficient marksmen the fight will be determined by the decimation of the crews, rather than by the destruction of the ships. Unquestionably many will be placed hors de combat by mere concussion, whether by the impact of shells on the outside of the turrets and casemates, or by the atmospheric shock and asphyxiation due to the bursting of highexplosive shells within the inclosed spaces of the ships. It is true, as Mr. Jane points out, that the actual effects of gun fire on the personnel is a mat ter of conjecture, and unless volunteers can be found who will place themselves within such a vessel as the
"Belleisle" when she is under fire, and secure the enormously valuable data which can only be obtained in this way, we shall remain in comparative ignor ance of the actual destructibility of modern gun fire At the same time it is probable that public sentiment would array itself strongly against the proposal to risk the sacrifice of human life in such an experiment.

GEORGE M. HOPKINS

It is with most profound sorrow that we record the decease on the 17th inst. at Cheshire, Mass., of Mr. George M. Hopkins, so long identified with the Scientific American as Associate Editor
It was while enjoying a vacation trolley outing with his wife in this beautiful locality among the Berkshire Mountains that Mr. Hcpkins became suddenly ill on the 15th, and despite the best medical treatment, never recovered. His sudden demise will be a great shock to his intimate associates in the Scientific American.

Mr. George M. Hopkins was born in Oakfield, Genesee county, New York, November 21, 1842, and while a lad went with his father and family to Albion, Orleans county, New York, where he received the usual public school education. He early displayed a liking for mechanics, having a natural ability to discover the reason of things in a mechanical way as they were studied. His father encouraged him to pursue matters to his liking by having him obtain practical informa tion in the workshops at Albion.

On May 10, 1864, he was married to Helen M. Mills, daughter of Dr. A. B. Mills, of Albion, N. Y. Later in 1866, we find he was granted his first patent for an apparatus for turning leaves of music, after which followed some forty-three other patents; among them in 1871, was an electro-magnetic sewing machine, and from 1880 to 1885 he was granted two patents for tele graph relays, five patents on telephone transmitters and two patents on telephone receivers. His telephone transmitter patents were acquired by the People's Tele phone Company at that time and their utility was well demonstrated. He was also interested in gas engine construction and secured several patents in that line, showing that his activity as an inventor never failed him in whatever branch he applied his mind.

He early made the acquaintance of Thomas A. Edi son, in whose laboratory he worked, and the friendship continued throughout the epoch of the telephone and electric light development, and to the present time

On May 10, 1876, he became connected with the Scientific American, beginning his work as an at torney in the Patent Department; it was soon noticed that he evinced a fondness for experimenting in mat ters connected with physics, especially in a mor simple and direct way than was customary. He was encouraged in this work and from time to time the re sults were published in the Scientific American. The experiments were so simple and clear that any boy could understand them. The value of the published experiments was that they were based on actual manu facture of the apparatus and trial before publication It is needless to add that these many different publica tions formed the nucleus of Mr. Hopkins' popular book "Experimental Science," which has been of such as sistance to many thousands of students of physics.

Some months ago Mr. Hopkins undertook a thorough revision of the book, with a view to bringing it up to date, that many of the remarkable discoveries of th last few years might be included.

It is a great gratification to feel that this work was entirely completed, and that the proofs had been tho oughly revised and read by Mr. Hopkins before h started on his vacation several weeks ago. The popu larity of the work is shown by the fact that the twenty third edition has just been published. Our illustration is from a recent photograph and is regarded as an ex cellent likeness of Mr. Hopkins
Of late years he gave particular attention to literary work, editing the special department of "Notes and Queries," and contributing to our columns a series of scientific articles which were marked by the clearnes and brevity by which his work is easily recognized Mr. Hopkins possessed in a marked degree the literary qualifications of a scientific writer. To his simplicity and clearness of style, no doubt, was largely due the great popularity of his writings, which attracted and held the interest of the widely diversified classes of readers who were interested in the subjects he dis cussed and subscribed for his published works. It is certain, moreover, that his directness and purity of style were one expression of the character of the man himself; for our late associate was possessed of ster ling traits that won for him the invariable respect and admiration of all those with whom he had business relations.
His disposition was most kindly, amiable and at tractive. He was ever ready to render assistance and freely impart such knowledge as he possessed
Mr. Hopkins occupied his leisure hours with the practice of photography as a stepping stone for the study of art. He enjoyed painting small pictures as a pastime, using his photographs as a guide. He was
fond of broad effects. On anothe. page we give his method of producing them

He was a member of a number of societies. His residence was in Brooklyn, New York, where, we are informed, he left a most remarkable collection of scientific apparatus, which exceeds in interest the equipment of many institutions of learning

He leaves a wife and one son, Mr. Albert A. Hopkins, who was formerly with the Sciextific Anierican for several years and is author of "Magic" and "The Scientific American Cyclopedia of Receipts, Notes and Queries." One brother, Mr. I. N. Hopkins, also survives him.

Mr. George M. Hopkins was greatly beloved in the church he attended in Brooklyn and was held in high esteem by all who knew him. We shall miss him and we know our numerous readers will, but we believe the work of his life, "Experimental Science," will live and the memory of his name will endure with it as one who knew how to teach science with rare simplicity.

THE LAYING OF A PACIFIC CABLE.

The President has consented to authorize the Pacific Commercial Cable Company to lay a cable across the Pacific to the Philippines, thus ending the fight which has been waged for fifteen years by rival firms. The Mackay-Bennett Company will probably soon begin work. The route to be followed extends from San Francisco to Guam and thence to Manila. The estimated time of laying the cable is fourteen inonths from the beginning of the work. Heretofore all messages have been sent to the Philippines over an English line from Hong Kong. The owners of this line have a franchise monopoly granted by the Chinese government. Under the favored nation clause of the

GEORGE M. HOPKINS

treaty between the United States and China the Amer ican government has the right to claim a similar franchise for an American cable company. It is ex pected that advantage will be taken of this treaty rela tion, for by getting a terminal in China the cable company will obtain 700 miles of new cable lines. The Pacific cable will then connect with the Atlantic cable lines in China so that messages can be sent to all part of the world by American cables.

ElECTRIFIED HOUSES

An instance of non-familiarity with simple scien tific facts is illustrated by an article that goes the rounds of the press once or twice annually, namely the story of the electrified house. The article usually states that some one has discovered that everything he touches in his house, the radiators, picture frames, banquet lamps, etc., give him an electric shock. Hence, he fears there is some connection betwee the arc-light wires and the water pipes near his resi dence. The electric light inspector is, therefore, summoned, and reports that the wires of his com pany are intact and that e electricity must com from some the the of the people consultec phenomenon is unconsci, simplest and oldest of shuffing of his shoes ov the potential of his body which discharge at every or get electric discharges from lock of a hand-bag which h walking on a stone pavement But, dismissing newspaper astonishing, in view of the cold, dry countries electricit
does not dawn on an he discoverer of th erforming one of the atic experiments, the dry carpet raising eral thousand volts, y. One may even ckles to the bras be carrying while cold, dry weather it is somewhat ways in which in nintentionally de-
veloped and manifested by sparking, that the first knowledge concerning this phenomenon did not come to the ancients in this way rather than by the attraction of light substances by amber. The explanation of this, however, may be that the scientists of bygone days did not reside in cold, dry countries. Cassier's Magazine.

SCIENCE NOTES

The radiations of radium have proved to be of rare value in medicine. It is found that a metallic screen interposed between the eye and a vial containing radium in no way prevents the healthy eye from seeing it. If the retina of a blind person be heaithy, it will be effected by radium rays even though the cornea be opaque to light rays. Consequently the radiations from radium can be used to discover whether or not the retina of a blind person is healthy
The expedition dispatched last summer to Gambia, on the West Coast of Africa, by the Liverpool School of Tropical Medicine has discovered another malariaspreading animal, the parasite trypanosoma. This parasite resembles a minute worm, and is very similar to the blood parasite which is the cause of the devastating disease prevalent among cattle, horses, etc., and in Africa, India and other tropical countries known as the tsetse fly disease, nagana and surra. In the case of animals it has been proved that these diseases are communicated through the agency of certain biting insects, such as the tsetse fly. The expedition discovered the trypanosoma parasite in the blood of a native child. Since the return of the expedition a special study of the question has been made at the laboratories of the Liverpool school and it has now been resolved to dispatch a further new expedition to the West Coast to investigate the conditions in which the disease occurs in both Europeans and natives and its distribution, and also to ascertain how it is conveyed from man to man; whether by biting insects or by other means.
The fitting out of the Scottish South Pole Expedition, which is to be carried out under the auspices of the Scottish National Antarctic Expedition, is rapidly approaching completion. The expedition is to be under the command of Mr. W. S. Bruce. The Norwegian whaling vessel "Hecla," renamed the "Scotia," purchased to carry the party, is now being reconstructed on the Clyde, at Troon, under the superintendence of Mr. G. L. Watson, the weli-known yacht designer. The "Scotia" is a bark-rigged auxiliary screw steamer of about 400 tons register. New deck houses are being built, a larger one aft and a smaller one forward divided into a laboratory and cook's galley. A second laboratory and a dark-room are being fitted between decks. The ship is being specially fitted to carry on oceanographical research, both physical and biological. Two drums, each containing 6,000 fathoms of cable, for trawling in the deepest parts of the Southern and Antarctic oceans, are being taken. The expedition intends to follow the track of Weddell, and to explore the Ross deep, working eastward from the Falkland Islands.
The Zoological Garden of London has lately re ceived a young animal known as the Panda. This animal, a small mammifer of the Procyonidæ family, constitutes a unique species in the genus Aelurus (A. fulgus), and comes from the Himalayas, where it is found at altitudes varying from 6,000 to 11,000 feet. It is also found in the mountains to the north of the Assam as far as the Yuman region. Its ordinary name is "red cat-bear," the name being due to its appearance and its plantigrade walk, also to the reddish color of the fur. The Aelurus genus exists in the fossil state, and one species, that of the A. Anglicus, is found in England in the pliocene layers. The Panda is not often seen in Europe. The first specimen which arrived at London was sent in 1869, but its two companions died en route. The survivor did not live longer than seven months. It was made the subject of careful observations by zoologists, especially by Sir William Flower and Mr. A. E. Bart lett. It is interesting to note that the Panda now in London often uses his forepaws like arms and hands. Mr. Hodgson, who observed the species in the East Indies, never saw the Panda act in this way and use his anterior members to seize objects. A second Panda was sent to London in 1876. The habits of the animal are nocturnal, and during the day he sleeps almost constantly. He seeks his nourishment in the evening or very early morning, living upon herbs, buds, roots, and will also eat eggs and insects. The character of the animal is rather mild; the large claws with which his fingers are provided are used not for attack or defense, but mainly to climb trees in which he passes a good part of his time, except in the periods when he seeks his food, this being gener ally obtained on the ground. He is not timid, but does not like to be touched. When a person extends his hand toward him, he sits down, and agitates his arms as if to strike, but his anger is short lived and he allows himself to be observed without much inquietude.

A MAMMOTH COMBINED HARVESTER.

Our Western States with their thousands of acres of farms are continually astonishing the world with the enormous proportions of their agricultural machinery. Just now our attention is called to a combined harvester, which we illustrate herewith, and which is claimed to be the largest in the world. This harvester has a very wide reach, having a cutting-bar 35 feet long. The entire process of harvesting and thresh-

FRONT VIEW of the combined hapvester.
not exceeding 50 cents per acre for cutting, threshing, recleaning and sacking the grain.

A Large Western Cotton Mill.
 by day allen willey.

The erection of a cotton mill in the vicinity of Kansas City, Mo., is of unusual interest not only on account of the remarkable size of the proposed plant but from the fact that it is to be located in a new site for the textile industry and marks the beginning of what may be an important industrial development in the Southwest. The mills will contain an equipment of 12,000 looms and 500 . 000 spindles-being by far the largest plant of the kind in the world. The Amoskeag Manufacturing Company of New Eng land is at present the most extensive, being greater in dimensions than any of the factorie in the Lancashire district of Great Britain, but the Western company will ex ceed the Amoskeag by 200,000 spindles and 2,000 looms. The equipment will be installed for man
ing is accomplished in the machine. The stalks are cut and conveyed by a suitable means to the thresh ing mechanism. Here by the use of a system of cylinder, separator and recleaner, the grain is separated out, cleaned, and fed into sacks, as shown in one of our illustrations; the straw at the same time is conducted to the straw box at the rear of the machine The threshing cylinder is 28 inches in diameter and the separator has a width of 54 inches. An automatic governor on the fans governs the blast so that at any speed at which the harvester may be traveling, the wind is automatically regulated and prevents clogging of the shoe and the carrying of grain over into the straw-a difficulty which often occurs in harvesters which are regulated by hand, because this part of the operation is very often forgotten or neglected.
The harvester is entirely steam-driven and is con nected by suitable coupling to a 50 horse power traction engine by which it is propelled. The usual method of operating such machines is by means of gearing and universal joint connection with the traction en gine. This machine is, however, entirely independent of the traction engine for its motive power, being provided with an auxiliary engine of $81 / 2$-inch bore and vided with an auxiliary engine of $81 / 2$-inch bore and
7 -inch stroke, which is located on the frame of the harvester. This engine is driven by steam, conducted through a flexible tube from the boiler of the traction engine. It furnishes all the necessary power for oper ating the mechanism and fills a deficiency which will be readily appreciated by those who are acquainted with the requirements of such a machine. Heretofore these parts were dependent upon the travel of the traction engine for their operation. Now a steady, uni form motion is assured at all times, no matter what the condition of the grain may be, or at what speed the traction engine may be traveling.
The traction engine is designed to burn either coal, wood, oil or straw. When straw is used as fuel, an endless carrier is provided for conveying the material from the straw-box to the fuel-box of the engine. It is interesting to note that in California, where this ma chine is in use, oil has proved to be the most economi cal fuel, the consumption per day being coal, 1 ton at $\$ 8.50$ per ton; wood, 2 cords at $\$ 4.50$ per cord; oil, 330 gallons, at 70 cents per barrel. The capacity of this machine is from 1,000 to 1,500 sacks, or from 70 to 100 acres harvested in a day. This too, at a cost

a MAMMOTH COMBINED HARVESTER-THE THRESHING MECHANIS.M.
ufacturing plain sheetings ranging in size from $21 / 2$-yard drills to print cloths as well as 4 and 5 -yard sheetings. The yarns produced will run from Nos. 8 to 20 for the drills and 30 to 50 for the larger goods. A further idea of the capacity of the plant can be gained when it is stated that its estimated annual output when running to its full capacity will be $75,000,000$ pounds of finished goods and its consumption of cotton 170,000 bales.
The mechanical features connected with the building of the Western factory are also of unusual in terest. Its electrical equipment will be very elaborate in character and contain the latest devices for the economical driving of the weaving and spinning rooms by motors. No water power is to be secured at the site, as at many points in the Pred mont section of the South and in New England, so that the necessary current will be generated by steam power, the engines being direct connected to large dynamos or belted to them. From the generators the current will be distributed to the battery or series of motors each operating its individual set of looms or spindles. The plan followed in general will be similar to that utilized in equipping the Olympia Cotton Mill, of Columbia, S. C., where the machinery is driven entirely by electricity. The motors serving the spin ning frames are to be of 150 horse power each operated at a current ranging from 575 to 580 volts, and are of the three-phase pattern. Each motor will serve 10,000 spindles, so that the total number alone in this department will be 50 . Motors of the same size will be installed in the weave rooms on an average of one to 750 looms, representing five looms per horse power. The motors will be attached to the ceiling and connected with the apparatus by as short circuits of wiring as possible with the view of economizing power to the greatest possible extent. By this system it is calculated that a saving ranging from 15 to 20 per cent in power will be effected, com pared with a plant operated by steam direct, for it will be noted that one section of the fac tory can be operat ed by its own motor entirely in others, allowing others allowing any part of the equipment to be run during a duil
season or while repairs are being made to the other portions, yet without waste of power or needless wear and tear of equipment. It is hardly necessary to say that the textile industry as yet is comparatively unknown west of the Mississippi River. In fact it has scarcely obtained a foothold even in Texas, which in recent years has produced over one-third of the American cotton crop. A few statistics will empha size this fact. Out of about 425 mills now in opera tion in all the Southern States, but 15 are running in Texas, Louisiana, Arkansas and Missouri, com bined with two or three in Indian and Oklahoma Territories. All combined represent but 140,000 spindles out of the $4,375,000$ in the South. As will be noted, the Kansas City plant when entirely completed will contain over one-tenth of the total number of spindles at present installed in the South. It is un necessary to say that raw material is abundant, as the last few years have demonstrated that Indian and Oklahoma Territories, as well as Arkansas, are as favorably situated for raising middling cotton of a good grade as the territory in Georgia and the Carolinas. They have equal advantages, not only in clim ate, but in quality of soil. Already the two Territories mentioned plant 700,000 acres annually in the staple, while the average acreage of Texas is nearly $8,000,000$.

As it is expected to provide the plant described with furnaces for burning oil or for solid fuel, ad vantage will be taken of the extensive deposits of petroleum in Texas, which can be shipped to it by rail in tank cars. Coal can be obtained from the McAlester mines in Indian Territory and in this way the question of fuel supply is disposed of. It is expected to secure a fair grade of labor from Kansas City, as well as the farming population in the vicinity, which will be trained by experts from New England and South Carolina. As to the market for the product, the company expects to sell mostly in the West and on the Pacific coast, but will make a grade of goods suitable for the Chinese and Japanese demand. As is well known, the market in the Orient has taken a very large quantity of the goods from the Carolinas,

rear view-showing the great reach.

Georgia and Alabama mills within the last few years, and this trade will be catered to.

The Mystery of a Spider's Spinning. How does a spider spin a thread from one bush to another at a height from the ground and then draw it so tight? asks a correspondent in the New Century. Everyone who has ever walked through a country lane early in the morning has felt the strained threads upon the face, and often these threads are many yards long, but the way in which it is done remains a mystery. He does not fly across, drawing the thread after him, for he has no wings. Neither does he descend to the ground and then climb the opposite bush, for this would lead to immediate and hopeless entanglement of the gossamer filament. How then does he do it?
M. Favier, a French scientist, has discovered that a thread, one yard long, will support by its own buoyancy in the air the weight of a young spider. It would thus be in the power of a juvenile to spin a thread of that length and trust to air currents to carry it across and attach it to an opposite bush so that he himself could then pass over and draw it tight. But many of these threads, to judge from their strength and consistency, are not the work of young spiders, and, as every observer knows, they are often many yards long and drawn so tightly that the face is instantly aware of their presence when breaking them.
The work is nearly always done in the night time, so that observation is difficult.
If the spider had any human nature in his make-up -and many of his habits would lead us to suppose that he has-he would be gratified at the perplexity which he causes and would advertise his performances as zealously as do less gifted human gymnasts and even some popular preachers.

SOME MODIFICATIONS OF THE NORMAL PHOTOGRAPH.

Y GEORGE M. HOPKIN

The amateur photographer begins with an ordinary camera, becomes dissatisfied and procures a better one, and frequently proceeds in the same manner until he is satisfied that ne has secured the best instrument that can be obtained. It cuts the photographic image from the center to the edge of the plate with fidelity, and he derives great satisfaction in possessing as good a lens as can be made. But before very long he learns that a picture photographically perfect lacks a great deal in true artistic feeling and quality, and he begins to remedy the defects of the perfect lens by throwing the plate out of focus, or by using a larger stop, or both, and thus secures to some extent the broad effect that he has learned to admire.

In addition to following out these suggestions he may produce artistic effects in other ways which recommend themselves to the experimenter in photography. One of the simplest methods of obtaining a soft ethereal effect consists in interposing between the lens and the plate a piece of ground giass, glass coated with ground glass substitute, or ground glass celluloid, placed at different distances from the plate, according to the effect desired. A very good scheme is to withdraw the slide from the plateholder and replace it by a slide of translucent ground glass celluloid, like that shown in one oif the illustrations, taking care to exclude the entrance of light by changing the slides under the focusing cloth, the exposure being made through the ground glass celluloid. The resulting picture, whether portrait or landscape, is soft in outline, and is possessed of mellow lights and shades. The finer details of the photographic image are omitted, and the much-desired breadth is secured. If broader effects are desired a square of finelyground glass can be placed in the camera within or inside of the reversible back. Of course, the farther the glass or celluloid is removed from the sensitive plate the more details are omitted from the negative. If it is desired to show more of the detail than is possible with a translucent slide of the kind described a thin sheet of crystal glass of the size of the plate may be coated with ground glass substitute and placed in the holder along with the plate, with either the film or coated side out, according to the effect desired. The ground glass celluloid when placed either side out in contact with the sensitive film produces a desirable effect. If it is difficult to get ground glass celluloid a piece of fine, thin tracing paper may be secured by its corners to a thin piece of glass (an old negative glass, thoroughly cleaned will answer). The effect will be quite broad if the glass side is placed next the sensitive ilm, and the negative will be very soft if the tissue paper is placed next the sensitive film. These interposed films absorb more or less of the light, and necessitate an increased exposure, but the increas is very slight and can be determined only by experiment in each case. A lantern slide produced from a negative of this kind, if well colored, appears on the screen more like a painting than a photograph.
Another peculiar effect is secured by placing over the sensitive plate a thickness of fine, thin muslin stretched over a frame of common tin, or thin brass
plate, the frame being placed in the holder along with the plate. The muslin should be wet when mounted and secured to the frame by stratena or some other adhesive cement. Broader effects may be produced by removing the muslin screen to the reversible back.

Lantern slides printed from ordinary negatives through fine ground glass, or ground glass substitute, lend themselves beautifully to coloring, as they are broader and more like paintings than other colored slides.

A painter who dislikes to copy an ordinary photo-

TRANSLUCENT SLIDE.

PHOTOGRAPH TAKEN WITH TRANSLUCENT SLIDE.
graph, on account of the difficulty of omitting detail, will find a copy of a good photograph taken through ground glass or tracing paper much more agreeable to follow than the photo with its many details. Halftones may also be copied in this way.

This may seem to the ultra-photographer, who takes the greatest interest in sharpness, depth and multitudinous detail, as a retrograde movement, tending toward the degradation of photography, but the true artist will find use for photographic pictures with reduced detail.

THE CORONATION NAVAL REVIEW

As far as the numbers and strength of the British ships were concerned, the postponement of the coronation naval review detracted nothing from the splendor of the naval pageant of August 16; although the necessity for the withdrawal of most of the foreign warships caused the event to lose some of its inter-
national character. The only foreign ships that were present at the review were the Japanese armored cruiser "Asama," of 9,700 tons displacement, and the 4,180 -ton protected cruiser "Takasago," with the Italian armored cruiser "Carl Alberto," of 6,500 tons, and the 4,100 -ton Portuguese cruiser "Dom Carlos I." Outside of these four vessels the great fleet of 103 ships was marshalled from the British navy, without withdrawing a single vessel from the Mediterranean or any foreign station or from the reserve fleet. The ships were those of the Channel squadron, the Home or Defense fleet, and the Cruiser squadron, the last named being the latter-day representative of the famous Flying Squadron which was organized when Emperor William sent his famous message at the time of the Jamestown raid. Of the 107 vessels present, 4 were foreign ships, 20 were battleships, 24 were cruisers and the balance was made up of torpedo-boat destroyers, torpedo boats and other miscellaneous craft. The fleet was anchored in five long lines which covered some 25 square miles of the sea, the line of visiting yachts being drawn up in position at the southeastern end. The battleships line included such vessels as the "Prince George," "Hannibal," "Jupiter"
and "Majestic," with the "Trafalgar," "Nile,"
"Royal Sovereign," and other vessels of from 12,000 to 14,900 tons displacement. The most modern and formidable of the cruisers was the armored vessel "Sutlej," of 14,000 tons and 23 knots speed. She was followed by the "Narcissus," "Galatea," "Niobe," "Crescent" (late flagship of the North Atlantic squadron) and the "Endymion." A onegun signal from the battleship "Royal Sovereign" at 2 o'clock announced the departure of the King in the new yacht "Victoria and Albert" from Cowes. The crews of the fleet at once manned shipped and simultaneously from over 100 vessels there thundered forth a salute of twenty-one guns, the firing being taken up by the shore batteries and the crash of artillery lasting for at least a quarter of an hour. The royal yacht then passed up and down the lines, and at 4 o'clock, at the finish of the review, as she came to her moorings escorted by a flotilia of torpedo-boat destroyers, another royal salute was fired. At night every vessel in the fleet at a given signal burst into a blaze of electric lights, the scheme of illumination consisting of a row of incandescent lights at the water line and at the upper deck, the outlining of the masts and funnels by similar lines of light. This was followed by an elaborate colored searchlight display by every vessel of the fleet, which formed the closing teature of the day's festivities.
In tie accounts of the review cabled over to this country there has been a great deal of misleading criticism, which would lead the public to infer that the quality and efficiency of the British navy is in the inverse ratio of its numbers. As a matter of fact, the vessels engaged in the review were not by any means the most modern and formidable in the British navy, the battleships, for instance, and most of the cruisers havin ${ }_{2}$ r been designed nearly a decade and a half ago. Hence, it is entirely misleading to compare the vessels present at the review with foreign vesels which have only just been turned out from the builders' yards. These battleships are of the same date as our "Oregon" and "Massachusetts." The

British Battleships Proceedıng
nead in Column of Line Ahead,
$\sqrt{\text { REVIEW }}$
latest vessels of the British navy were, as has been mentioned above, doing duty on the Mediterranean and foreign stations, from which they could not be spared, even for such an important occasion as the coronation of the King.

ELECTRICAL RESONANCE AND ITS RELATION TO

SYNTONIC WIRELESS TELEGRAPHY-II
by a. frederick collins.

Continued from page 120 .)

Having developed the theory that light and electric or Hertzian waves are electromagnetic and that both originated from the same cause and are propagated by the same medium, the next step toward the new art of wireless telegraphy was when Branly observed

FIG. 4.

that electric waves acted on metal filings very much like light waves on selenium, i. e., lowered its re sistency; these filings were placed in a glass tube for convenience in operating, and to its evolution is largely due the practicability of the wireless telegraph. Branly's radio-conductor, as he named the tube, entirely supplanted the wire-ring detector of Hertz, owing to its wonderful sensibility to the electric waves. Lodge renamed this electric eye a coherer, which has almost entirely supplanted its original appellation of radio-conductor. The coherer with battery and telephone receiver shown diagramatically in Fig. 4 is the fundamental receiving apparatus required for wireless telegraphy.
wireless telegraphy.
The apparatus employed in wireless telegraphy consists of the Ruhmkorff coil and oscillator, as in the Hertzian experiments, but with the addition of a long vertical wire or antenna, suspended from a mast, it lower terminal connected with one arm of the oscil lator; a second wire leading from the opposite oscillator arm to a sheet of metal in the earth. Fig. 5, A shows the arrangement. The receiving device con sists of the coherer with a vertical wire leading from one of its conductor plugs to a mast as in the trans mitter; the opposite coherer conductor plug is con nected with an earthed plate of metal. In series with the coherer are a battery and relay, and in an auxil lary circuit are placed the tapping device to decoher the filings in the tube and a Morse register for recording the messages on tape. The receiver is illustrated in Fig. 5, B. Now when the waves are emitted by the transmitter, A, at a distance from the receiver, B, they are propagated through the electro-magnetic medium or ether, and every impinging wire on the vertical wire attached to the coherer, B, decreases its resistance from thousands of ohms to a few tens or even less; the resistance of the circuit, including the coherer, battery and relay is now reduced sufficiently to offer little opposition to the current from the battery, the relay armature is drawn into contact and actuates the circuit controlling the register.
resonance.
With this brief description of the modus operandi for wireless telegraphy it will be interesting to ascertain the laws governing the electrical resonance effects between the transmitter and receiver and the appara-

tus necessary to transmit waves to "any one or more of a number of different instruments in various locali ties." This is accomplished by prolonging a series of rapid electric oscillations of a particular frequency on the transmitter and having the receiving circuit so balanced in its coefficients of inductance, capacity and resistance as to respond to that frequency or some multiple or sub-multiple of it. This is clearly shown in the case of Lodge's syntonic jars. Fig. 6, A, is a Leyden jar, 1, having a spark-gap, 2, and a circuit formed of a rectangular conductor, 3 . At $B 1$, is a
second Leyden jar of equal capacity to A1, a sparkgap, 2, of microscopic size and a circuit, 3, made variable by the sliding wire, 4. If the jar, $A 1$, is now charged and then discharged through the gap, 2, oscillations will be set up in the circuit, $A 3$, of definite frequency and if the inductance capacity and resistance of both circuits, $A 3$ and $B 3$, are equal, then oscillations having the same periodicity will occur in $B 3$ The scale upon which these experiments are made may be greatly extended; the Ruhmkorff coil and Hertz oscillator may be substituted for the Leyden jar at $A 1$, and a coherer for the micrometer spark-gap of $B 2$ But in substituting these essential factors two great difficulties are encountered; first, an open circuit, i. e. Hertz oscillator, emits waves with such energy that only two or three swings of the high frequency curren take place before it is damper out or the current FIG. 6.

dissipated, as shown in the diagram, Fig. 7, A. Waves emitted by this system are propagated to great distances, but the oscillations producing them are not sufficiently prolonged to create oscillations of similar frequency in the receiving circuit. In the closed cir cuit oscillator of the Lodge syntonic jar type the oscil lations are quite persistent and in consequence the emitted waves are very feeble; this precludes its use for commercial wireless telegraphy. Such a closed circuit oscillator will set up in a receiver in tune with it oscillations of remarkable persistency, depicted graphically in Fig. 7, B. The second difficulty in changing from the experimental apparatus to that required in practice is the tremendous additional capacity loaded on the oscillator and coherer circuits by connecting one arm of either to the earth.

FIG.7.

The capacity of the earth is so great that practically all oscillators and coherer circuits are tuned or syn tonized, and by inserting other values of capacities and inductances in the form of inductance coils and condensers, the value of the earthed systems is but little changed.
syntonization
To systems employing pure resonance effects in which both transmitting and receiving circuits are tuned by inductance and capacity, the name syntonic has been given. By clever arrangement of the devices the objectionable features of the closed oscillator are partially eliminated and its good features partly re tained, in other words, a compromise has been effected.
The three principal syntonic systems are the SlabyFIG.8,

Arco, the Braun and the Marconi. The Slaby-Arco syntonic wireless telegraph is shown in diagram, Fig. $8, A, B$. It is assumed by the inventors that electric oscillations in the vertical wire, 1 , are like the me chanical vibrations of a flexible steel bar with the greatest amplitude at $a, a^{\prime} . A . B$. with the ether as the connecting medium. The coherer then should be at tached to the highest point of the wire, a^{\prime}. The ter minal of the vertical wire or antenna forming contact with the earth is, accordirg to Dr. Slaby's theory, the nodal point of the electric waves. At this point a sec
ond wire, 2 , having inductance and capacity equal to the wire, 1 , is connected in, with the opposite terminal attached to the coherer, 3 , thus the amplitude of the wave is again the greatest, and the maximum effect obtained without attaching the coherer to the upper terminal of the vertical wire. The transmitter is ar ranged similarly in its relation to the antenna. An adjustable condenser, 2 , and inductance coil, 3 , per mit the periodicity of oscillation to be changed to a

FIG.9,

value suitable for the receiver. The coil, 4 , serves to regulate the harmonies between the vertical wire emitting them and the oscillator system producing them. One terminal of the oscillator system, 5 , leads to earth, which forms, virtually, a loop or closed circuit as in the Lodge syntonic jar. This system was exhibited by Dr. A. Slaby and Count d'Arco before the German Emperor in 1899 when two messages were sent and received simultaneously from different stations without interfering.

In the Marconi syntonic wireless telegraph system the feeble radiation of the closed circuit has been obviated by a widely different method from that of Slaby. Marconi has worked along the lines laid down by Lodge, producing the emitter shown in Fig. 9, A It consists essentially of two concentric copper cylinders, one within the other, but separated by an insulating film of air. The inner cylinder, 1, is connected with the earth and one terminal of the spark-gap, 3. The outer cylinder, 2, is connected to the opposite terminal of the spark-gap, the whole representing a huge Leyden jar, the current surging to and fro, equalizing the difference of potential. The receiver is shown at B, Fig. 9. The system is arranged like that of the transmitter. One of the greatest improvements in commercial apparatus is that of the transformer coil shown, 1, 2. The coherer, instead of being placed in the electric wave system direct, is arranged in a separate circuit. The free periods of the oscillations set up are not affected by the high resistance of the coherer, and the oscillations may be stepped up or stepped down, as in the case with commercial alter nating current transformers. This arrangement was tested between Biot and Calvi, near Nice, by Marconi, who has since fully described the equipment in a paper before the Society of Arts.

Another syntonic wireless system is that of Dr. F. Braiun and has been described in the Scientific American Supplement. Fig. $10, A$ and B. shows the arrangement of the transmitter and the receiver. J is the secondary of the induction coil, S the spark-gap, c, c condensers, and L the inductance primary, the whole forming a closed circuit, the oscillations being very persistent; M is the secondary of the transformer, and with the conductors $\frac{\lambda}{4}$ an open oscillator system is produced. This arrangement has all the advantages of the closed and open oscillators combined. The re-

FIG. 10.

ceiver, B, consists of the vertical wire, a, condensers, c, c, and the inductance coil, L, forming the closed circuit and the secondary, M, and conductors, $\frac{\lambda}{4}$ included in one of them is the coherer and receiving apparatus. The conductors marked a, a, A and B, are the antenna and all others marked $\frac{\lambda}{4}$ are of equal length, but are coiled up loosely. This system is now in use in Germany and has given satisfaction over distances of 40 miles.

This represents the state of the art wherein the simultaneous transmission of wireless messages in the same field of force without interference is accom plished at the present time. The whole future of wireless telegraphy depends on the great problem ot electrical resonance in its relation to the requirements of practice, rather than on the distance over which the waves may be propagated. Wireless telegraphy is new art with possibilities practically unlimited when a simple, practical and sure method is attained for syntonizing the instruments. The laws of high-frequency, high-potential currents are well understood, as are those of electrical resonance, but the function of the earth being imperfectly understood has blocked the way very materially to the application of these prin ciples.

The evolution of wireless telegraphy has been rapid and in less time than was required to perfect the tele phone a system of wireless transmission of intelligence should be in operation fulfilling all the requirements of commercial usage

THE SNOQUALMIE FALLS POWER PLANT.

 by enos brown.The electrical power transmission plant at Snoqualmie Falls, State of Washington, if not the greatest in the amount of power produced in the far West, is in many respects, the most remarkable. The natural ad vantages at this point for a power plant of this kind are not excelled anywhere, and though the obstacles presented offered but little difficulty, from an engineer ing point of view, the skill with which every material feature of the undertaking has been subordinated in order to secure intended results, has been so master!y, as to make this famous plant one absolutely unique in the annals of like undertakings. Art has here sup plemented natural forces and the result has yet to be surpassed.

Niagara is greater in many respects; less in the attitude of the fall, but presenting no problem of eco nomical administration of the water flow; but at Snoqualmie severe questions of water storage, seasonal variations in the flow, floods and drought, had to be confronted. A combination of almost every feature embraced in transmission of electrical energy is demonstrated in this wonderful plant

The Snoqualmie River rises in the Cascade Mountains and drains a comparatively smail area, but the rainfall, from 90 to 150 inches an nually, assures a volume to the stream entirely disproportioned to the extent of the watershed. Moreover, the sources of the river are amid snows, accumulated during the winter months and yielding constant reinforcements during the season of droughts. Floods pouring 10,000 cubic feet of water a second occur every season, the flow diminishing to one-tenth that amount in the month of September; but the regulation of the flow offers no difficulties. Lakes abound in the upper courses of the river with narrow outlets which, if dammed, would hold the superabundant floods and permit an ultimate and regular volume in the stream, and afford, at al times, 200,000 available horse power. At present 30 , 000 horse power is produced. The greater power may be had whenever the rapidly extending manufacturing interests of the country demand it.

Thirty-one miles from Seattle, the Snoqualmie de scends in one leap over a basaltic rock barrier 270 fee high. Less than four years ago the scene at this point was one of wild grandeur, and forest solitude. To day, a transformation is presented. The banks have been restrained and terraced. The great pines have disappeared. Dwellings and apartments of archi tectural symmetry decorate the landscape, and a busy community has grown up beside the cataract.
The Snoqualmie Light and Power Company was or ganized in 1898, and soon after surveys of the river and watershed were undertaken, and plans for their development adopted.
A dam of concrete was constructed just beyond the crest of the falls, for the purpose of raising the low water elevation of the river to a minimum depth of 8 feet. The dam is 218 feet long between piers, and varies in height from 3 to 10 feet, with a level crest 8 feet wide, sloping up and down stream, with base varying from 16 to 35 feet in breadth. The dam is strengthened by steel rails fastened into the rock bottom and projecting upward into the concrete. It is calculated, if the demand for power required it, that the present dam could be increased to a height of 50 feet, and a lake formed 15 miles in length and of an average depth of 25 feet, increasing the available power to 200,000
About 100 feet above the dam, a shaft is sunk, 10×27 feet in dimensions, descending 270 feet to the level of the river below the falls. A tunnes, 12 feet wide and 24 feet high, is driven from the face of the ledge below the falls, to intersect the shaft. The tunnel is 650 feet long with a fall of 2 feet in that distance. At the foot of the shaft, and extending over the tunnel,
is a chamber 200 feet in lensth, 40 feet wide, and 30 feet high, excavated in the solid rock. This chamber is unique in power transmission plants, housing, as it does, water-wheels and electric generators, 270 feet underground. The tunnel underneath forms the tailrace. The floor of the chamber is of concrete, the walls are of rock, and are whitewashed. Hundreds of incandescent lamps illuminate this great artificially constructed cave. As more water-wheels and gener ators are required, this chamber will be continued to an additional length of 200 feet.

The main shaft has three compartments; an ele vator in the center, with a chamber for the grea cables, and a penstock on each side. The steel bulkhead composing the central shaft extends from the surface to the chamber below, and is built of stee plates strengthened by horizontal bars on the out side. The penstock is a steel pipe $71 / 2$ feet in diameter, passing through a concrete roof, which keeps the shaft watertight. The plates are in eight-foot courses, 1 inch in thickness at the lower half, and decreasing to $\pi / 4$ and $1 / 2$ inch. The joints are heavily riveted and calked. At a depth of 250 feet the penstock reaches the chamber and connects with a horizontal, cylindrical receiver, which rests on a rock bench at the side of the chamber, 12 feet above the floor for almost the entire length. The diameter of the receiver varies from 10 feet for half its length, to 8 feet for the balance. It is built of 1 -inch plates. The weight of the penstock and receiver is 225 tons, and the weight of the water column in the penstock is 340 tons.

Water is taken direct from the river into the in take, a massive chamber of concrete with walls 25 feet high, and 6 feet thick. To keep out floating ob structions the front of the intake is protected by a grating of 12×1.2 timbers with a 12 -inch space between each. The headbay is further nrotected by a screen of flat, steel bars for keeping out small debris. In the chamber are installed four wheel units, each develop

FRONT VIEW AND CROSS-SECTION OF RECEIVER AND WATER WHEELS OF THE SNOQUALMIE POWER PLANT
generator. The vessels are of the tangential type The receiver has four supply openings controlled by individual double-screen gate valves, of 48 inches in side diameter, weighing 23,000 pounds each. This re ceiver is horizontal, and the openings are on its side and open toward the cavity. Bolted direct to the gate valve is an elbow casting that directs the water downward into the distributing receiver. This elbow is 48 inches inside diameter, and is bolted directly to the flanged opening of the distributing receiver. The water flowing into the receiver is discharged from the six openings along the bottom, into the six multiple nozzles that direct and regulate the water that is ap plied to the wheels. The six wheels are divided into two groups of three, each being in a separate housing, with a bearing between. Regulating lips are used on the nozzles, which throw a perfect and unbroken stream and are controlled by a governor. The wheels are 45 inches in diameter, with thirteen buckets each The weight of each unit is about 100,000 pounds, ex clusive of the weight of water in the receiver house The foundations were required to be of a massive and substantial character. The tailrace is beneath the foundations, so that the water drops into it from the wheels and flows out into the river below the falls.
The generators are of the revolving armature type and deliver a 3 -phase current; each weighs 100,000 pounds and stands 14 feet high. The armature wind ing consists of 266 bars with one bar to each slot and is closed-circuit winding. The speed is 300 revolution per minute.
There are provided two separate 125 -volt exciters, each of 75 kilowatts, drivon a 100 horse powe wheel mounted on steel hi
From the feed panels of nium cables are provided f current up the elevator sha transformer house is firepr dimensions.

The character of the transmission line is, gen ous, though in places, flat
tion is made of the line's condition. The right of way is cleared for a distance of 300 feet on each side of the line. The transmission lines are of aluminium. The conductivity of this metal is 60 per cent that of copper, and consequently the cables are 66 per cent greater in cross section than copper cables of the same capacity. Even at the increased size the saving in weight by the use of aluminium is nearly 50 per cent. The cost also is less.
The terminal station at Seattle is located in the business district and is a building of large dimensions and of considerable architectural pretension.

The street railroads of Seattle, many manufactories, beside public and private lighting, are supplied by the Snoqualmie Company. Tacoma, a city of 40,000 inhabitants, which is supplied from the falls, is also provided with a large and fully equipped substation.
The next move will be to connect with the city of Everett with its population of $\cdot 10,000$ and extensive lumbering establishments. This work is now in hand.

More News of the Galileo Ferraris Award.
The commission for the Galileo Ferraris award, which was instituted in 1898, composed of representatives of the Executive Committee of the Association of the General Italian Exposition, in Turin, 1898, of the Chamber of Commerce and Arts, of the Royal Academy of Sciences and of the Royal Italian Industrial Museum of Turin, has decided to reopen an international competition for the conferring of this premium on the occasion of the inauguration, which will take place in the second half of September next, of the monument to be erected in Turin to this illustrious scientist.
The premium consists of 15,000 lire and interest from 1899 up to the date of the assignment, and will be conferred upon the author of any invention from which results a notable progress in the industrial applications of electricity.

Competitors can present papers, projects and drawings, as well as machines, apparatus or constructions relating to their inventions.
The jury nominated by the association above named will have most ample powers to execute practical experiments with the inventions presenied.
Competitors must present their requests and deliver their works, machines, apparatus or anything else connected with their inventions, not later than the 18 th day of September, 1902, at the office of the secretary of the association, which office is located at the administrative committee headquarters of the First International Exposition of Modern Decorative Art, 1902, in the palace of the Chamber of Commerce and Arts of Turin, via Ospedale, No. 28.

The "Cedric" Launched
The new steamship "Cedric," built by Messrs. Harland \& Wolff for the White Star Line, was launched at Belfast on August 21. She is a vessel of 21,000 tons gross. Her length is 700 feet and she is 75 feet beam.

Tunnel Signals for the New York Central

The New York Central Railroad has tested the experimental installment of the Miller visible engine signal and direct-circuit on all its trains running through the Park Avenue tunnel. The test is said to have been very successful, the engine signals working perfectly and duplicating the block signals. There are two sets of signals in the cab of the engine, one in the front and the other in the rear, to be used when the engine moves back. When the track is clear a white light is displayed, but as soon as danger threatens, the red light in the lower bulb glows red, no matter what the indications of a block-signal may be.

The Current Supplement.

The current Supplement is replete with articles that cover almost every field of science. The naval architect will read with interest the description of the building of the battleship "Nebraska," and Mr. Fred T. Jane's shrewd criticism of the "Belleisle" experiment and his study of an ideal conning tower. Engineers will doubtless appreciate the discussions of experiments on railway and road bridges and a description of the largest hydro-electric plant in Europe. Of no slight importance is a copiously illustrated account of the Meray-Rozar electrotypographic machine, as well as a report on the international exhibition of alcohol motors. Other articles of interest are Mr. Henry's paper on Chinese drugs and medicinal plants, and an account of physiological effects of diminished air pressure. "Psychological Apparatus" is the title of an interesting essay. Mr. Mason's monograph on the harpoon is concluded. That the Trade Notes and Selected Formulæ also find their place in the current Supplement goes without saying.

REMARKABLE ENGINEERING FEATS IN RAILROAD WORK.

The modern plan of reaching high mountains, typi fied by the Rigi, the road up Vesuvius, the Mauch Chunk, Pike's Peak and Mt. Lowe roads, has been put into operation with much success at Mt. Tamalpais, north of San Francisco. This mountain forms one of the sentinels of the Golden Gate, rising directly out of. a thickly wooded country which one hundred years ago boasted some of the finest and larg est redwoods in the entire range. Mt Tamalpais has long been famous as the only lofty mountain in the immediate vicinity of San Francisco. Reached by a hard trail, but fully repaying the climb, the view is grand and impressive; the ocean stretching away on one side, the Golden Gate at its feet, and to the west the summits of tall mountain piercing the sky

The approach to the mountain is from the bay, in the vicinity of which are many attractive places, as Sausolito, San Rafael and the little bays which have be come noted for the houseboat fleet of San Francisco. The foothills of the range are extremely steep and cut by many cañons -a peculiarity of Californa mountains each hog-back, or divide, having numer ous lateral cañons, all of which are deep but well wooded. No little ingenuity was necessary in solving the engineer ing problem to make a possible ascent but in the accompanying illustration 1 will be seen that the work was accom plished by a remarkable series of long reaches and gradual ascents up the side of the largest eanons, and finally by succession of loops known popularly as the bow-knot. Coming up out of the cañon which it has crossed, at the head the road sweeps to the west, turns to the east, making another end to the bow, then quickly turns backward and downward to rise and complete a second bow, during which it proceeds on a regular grade to the summit, from which the travele looks directly down upon the winding and circuitous track which has solved
an exceedingly difficult problem in mountain climbing
Among the interesting, indeed striking, engineering feats of the West, is the bridge of the Atlantic and Pacific Railroad crossing Canon Diablo, which has ong been noted in the engineering world. The photograph here given shows the train in the act of spanning the bridge, completely filling it, and from the middle car the view down into this re markable gorge is awe-inspiring, the cañon being a miniature Grand Cañon. The bridge is carried on ten piers
The Cañon itself is extremely interesting, appear ng on a vast mesa without apparent cause, worn out by the rushing water of ages, the remarkable strata telling that at one time the ocean swept over the locality. Not far from the Cañon Diablo one of the largest meteors known fell some time in the past and among the natives there is a legend that it struck the earth at the head of the cañon and ploughed out the vast fisure as it is seen to-day. Unfortunately scientific investigation does not bear out the fact, and the meteor story merely stands as a picturesque eature to be repeated to the isiting tenderfoot Hundred of specimens, or fragments of this gigantic meteor, have been picked up from time to time.
Another interesting bridge is that which crosses the Rio Grande in Texas, constructed by the engineers of the Southern Pacific Company be ing remarkable for its expanse and height, and adding to the attractions of the road Not far from the Rio Grande the writer observed from the train a valley which might well have been named the father of dust spouts. The valley appeared to be about three miles in width, rising gently to the north for several miles and entailing a heavy grade, so that the train was some time in passing. At least ten lofty dust spouts were seen-majestic pillars as large as water spouts sailing down the valley from the north, finally being dissipated or destroyed by some counter current, others continually forming

VIEW LOOKING DOWN THE MOUNT TAMALPAIS RAILROAD, SAN FRANCISCO
pounds), and the owners of the well realized very little above that figure for their production. Further more, they were compelled to pay heavy damages to neighboring property owners and to owners of property in the village, more than a mile away, as part of the time the well was flowing there was a high wind blowing, which carried the oil over the village, and, it is said, the owners of the well must pay for repainting about all the houses in the village. One-fourth to one-half a kopeck per pood does not go far toward damages of this sort I must add that this was not the first time the village mentioned was damaged by a flowing well, as some years ago a well was struck in the Bibi-Eibat field which acted in the same manner, the wind carrying a spray of oil to the outskirts of Baku, about two and a half miles, and deluging the village which lies between Bibi Eibat and Baku. The newspapers stated at the time that the owner of the well had to pay damages amounting to $\$ 50,000$, as he had to pay for repainting the entire village, including a fine Russian church."

As the big wells recently struck in Texas have attracted so much attention, the consul gives particulars as to the depth and finishings of the great Rus sian gushers. The Bibi-Eibat well is 1,813 feet deep, and is finished with a 14 -inch pipe. The Romani well is 1,841 feet deep, and is finished with a $11 \frac{1}{4}$. inch pipe. The following comparison made by the consul of the cost of produc tion in the Russian oil fields, as compared with the cost in the United States, is also interesting
"The increased depth of drilling not only increases the first cost of the wells, but adds steadily and materially to the cost of raising the oil by pumping, because pumping at Baku is not done as in the United States-by means of rods and working barrel-but the oil is baled out with what is known in the United States as the bailer; but at Baku this instrument is, of course, much larger than is commonly used in the United States, as its diameter is as large as
interest throughout the country, that a brief descrip tion of the greatest oil well will not be out of place The well in question was opened last year in the Bibi Eibat fields in Russia. According to the United States consul at Batum, this well, during the first two or three days after it was struck surpassed all records. As many as 180,000 barrels of oil have been taken from it during a day. It continued flowing until it produced over $2,000,000$ barrels, when it stopped. An other big well was struck in the Romani district, which produced nearly $1,000,000$ barrels in December and was still flowing about 25,000 barrels a day up to January 31, the date of the consul's latest informa tion. Such a strike in the United States would mean millions to the fortunate owner of the well. But it says

CANON DIABLO VIADUCT ON THE ATLANTIC AND PACIFIC RAILROAD. ill run easily inside the pipe in the well, while it length is generally between thirty and forty feet Of course, the deeper the well the longer, and, conse quently, the fewer the runs of the bailer. Then cleaning out, deepening, and repairing wells is a big expense. The wells are generally long lived, but re quire as much more expense to keep them in order than American wells, as they cost more originally They cannot be pumped as steadily, and, consequently, there are fewer pumping days in the year."
The consul says that while the experiment of raising oil by means of compressed air is still an experiment some of the foreign companies are equipping their wells in part with air compressors, which, he under stands, are manufactured in the United States

A Swedish invention which ought to have a good future is a system of oiling piston rods, cylinders, slide rods, and slide guides on loco motives, which has been in vented by T. F. Malmros, of Gothenburg, locomotive engi neer on the State railroads Formerly cylinders and slide guides have, at best, received necessary lubrication from the central steam-lubricating ap paratus, but piston rods and slide rods with packings have been lubricated by means o old-fashioned oil cups, with wick feed, which method, for many reasons, has proved un satisfactory-- especially when metal packings are used Mr Malmros, by introducing inter mixed oil and steam, coming from the central steam-lubri cating apparatus, through gland bushings expressly con structed for this purpose, has effected a good and economical lubrication of packings and
"I think it is sufficientl interesting to mention that it is generally believed that the owners of the big well which produced moie than $2,000,000$ barrels in a little more than thirty 'lays lost money by it. Without explanation, this seems impossible. The fact is that the well is on government territory, leased at a fixed royalty of 5 kope: s (2.5 cents) per pood (36.112
ods, as well as of the cylinders and slide guides. Th ystem has for five years been tested on one of the express engines of the State railroads-used for the fastest train in Sweden, with a speed considerably ex ceeding 37 miles per hour-and with good results. The State railroads have applied the new lubricating system to a number of the old and new locomotives

THE UNITED STATES NAVAL OBSERVATORY AT WASHINGTON.
 by frederick moore.

The United States Naval Observatory is the young est among the great astronomical institutions of the nation, but it has developed in a remarkably brief time into one fit to rank with Greenwich and Poulkowa. We hear less of it, however, than we do of many of the private institutions in this country, for its object is not the further discovery of the unknown, but the development and application of the known. Of course, the former is the more brilliant object, but it would undoubtedly incuŕ an expense to the government greater than the value of the discoveries. When a disvalue of the discoveries. When a dis-
covery is made, if it is of any importcovery is made, if it is of any import-
ance, it has to be followed up and elaborated upon before it can be made useful to mankind. Here comes the hard work which the world does not see and here the great majority of astronomers fail.
Unfortunately the class who can see and feel the consequence of the astronomer's labor is extremely small, and it is but little realized that a second of error in a ship's chronometer at the equator means a variation of $162-3$ miles east or west of the mariner's calculation of his position.

Recently great changes have occurred in the scientific staff of the institution by the retirement of the older professors, notably Doctors Newcomb and Hall, and the succession to their responsibilities of a younger staff, comprising Profs. Skinner, See, Updegraff, Eichelberger, Littell, and Prof. Harshman, Director of the Nautical Almanac.

It is remarkable that although in scientific achievement this country has led the way since its incipiency, it eked out the first sixty years of its existence, and attained some mighty marine achievements, practically without so indispensable an institution as a naval observatory. We depended on Greenwich, Poulkowa and Paris, and on college observatories here almost entirely until 1842 .
Few visitors to Washington in the early days of the past century did not have pointed out to them from the north door of the Senate wing of the Capitol the site of the old "Washington

WHERE THE GREAT EQUATORIAL IS HOUSED.

SCIENTIFIC LIBRARY OF THE NAVAL ACADEMY.
tending wooden structure 16 feet square, erected at the expense of a lieutenant in the navy, and equipped with a 5 -foot Troughton Transit. This was our Naval Observatory in embryo. The transit was one of the instruments made for the Coast Survey under the direction and supervision of Mr. Hassler, its first superintendent, during his long detention in England throughout the war of 1812. Under an act in 1807 the institution was established, but the appointment of the superintendent did not take effect until 1811. While on a visit to London to secure instruments, then so slowly constructed, he was detained. The survey was arrested by Congress soon after his return and the instruments he had procured and the "fixed observatory" remained in statu quo. In 1832 the Coast Survey was revived, but an observatory was peremptorily forbidden by law. The transit was loaned, then, to Lieut. Wilkes for his "observatory."
Lieut. Wilkes’ observations were made only for obtaining clock errors needed for the determining of true time and the rating of naval chronometers then under his charge. The testing of all chronometers and other naval instruments used by our ships was at once found wise and useful, and the secretary of the navy took it upon himself to establish this little observa tory under the name of "A Depot for Charts and Instruments," by placing an officer in charge and permitting him to have his own little observatory and do his own work. "The depot" was al Wilkes or any of his successors dared to call it until 1842, when the present institution was established.
In 1838 a new call was made upon the depot which changed the whole current of its future. An exploring expedition was about to sail for the south seas. It would be of prime importance, in determining the longitude of places visited by the expedition, that corresponding observations be taken at home to compare with those of the party, on its return. Secretary Paulding gave the observations to Lieut. Gilliss, Wilkes' successor, and Prof. Bond of Cambridge. An achromatic telescope was added to his equipment by the Navy Department and for four years Lieut. Gilliss worked diligently and accurate ly, bringing forth the plaudits of the

PART OF THE GREAT EQUATORIAL.

ONE OF THE SMALLER TRANSITS.

European astronomers. He continued with his in significant equipment until finally an appropriation of $\$ 25,000$ was secured-still for a depot of charts and instruments. The observatory had been urged time and again, but for partisan reasons it was as often foribidden

The site chosen by President Tyler was fraught with historic interest. It embraced the whole of reservation No. 4, made by the old commissioners of Washıngton for a national university-a favorite idea of George Washington. It was the landing place of Braddock, and at a later day was known as Camp Hill, from its being occupied by the American forces the day before their advance upon the retreat from Blad ensburg. The square embraced a little over 19 acres and commanded a splendid view of Washington, Alexandria, Georgetown and Arlington.

Berlin, Paris, Greenwich and Vienna presented some 200 rare volumes of the highest standard as a nucleus for an astronomical library. This branch has grown from that to one numbering 22 , 000 volumes and pamphlets, and stands to-day second to Poulkawa only.

The institution grew rapidly, and in 1874 installed the largest teleacope then in existence, the famous 26 -inch equatorial. It was set in place just in time to oiserve the transit of Venus, which occurs but once in a lifetime and offers a valuable method oi determining the sun's parallax (the base time measurement of celestial distances). The transit is the astronomers' great event of the century and it befell Prof. Newcomis to be in charge of the greatest telescope

The site was soon discovered to be a bad location, because, be ing almost in the heart of the city there was con stantly some vibration, but it was not until 1884 that appropriation and other necessary bills could be got ten through Congress for the purchase of enough ground on Georgetown Heights to properly isolate the institution.

In 1893 the new home was ready for occupancy.
The dome that houses the great equatorial is wonderful piece of mechanism. It is so perfectly balanced that its great weight of six tons can be swung or raised and lowered like a see-saw by one man without much effort. The dome rolls around on a circular wall so as to present an opening toward any part of the heavens. The whole floor rise and falls by hydraulic power to suit the convenience of the observer.

The great equatorial is in the hands of Prof. T. J. J See, who is now at work measuring by daylight as well as by night the diameters of the principal planets and their satellites. The comparison of the daylight with the night work enables the observer to elimin ate the effects of irradiation, which heretofore has been studied very little by astronomers. The light planet against the light sky of day has no irradiation as it has at night. He is also, by a elaborate series of observations in summer and in winter, making a special study ot the screw of a new micrometer designed to elimi nate the effects u changes of temp erature upon the scale. The degree of accuracy obtain able in this work is about one part in twenty thousand. This will give the micrometer investigation the necessary degree of refinement for the measurement of the stellar parallax, upon which he is at work also, and which is the most delicat work ever undertaken by a practical astronomer
Beside the 26 -inch equatorial, the observatory is equipped with a 9 -inch transit circle, a 6 -inch transit circle, a 12 -inch equatorial, a prime vertical transit instrument, a 6 -inch a\%imuth and a 40 -foot photoheliograph. With this last, photographs are taken of the sun daily whenever the weather and other circum stances will permit. During last year one hundred and sixteen photographs were made of the sun. A very delicate plate with a special fine-grained lan tern-slide emulsion giving contrast and fine definition
has to be used, and the plates specially developerl The effort to bring the department of meridian ob servations for time to a state of the highest efficiency and up to the most modern standard of requirement has included not only a recent thorough overhauling of both meridian instruments, but also an examina tion and improvement in the clock system. In thi connection a vault was dug in the basement of the clock house, 8 feet square and 7 high. The construc tion of the vault is intended to be such that it will keep the temperature very nearly constant throughout the year. A 9 -inch orick wall incloses the wooden house of the dimensions stated, with an air space of one foot between, which contains hot-water pipes for heating. The whole is roofed over with boards inclos-

THE WRECK OF JENATZY'S CAR

ing a 6 -inch layer of asbestos wool. The vault con tains three brick piers for clocks and one smaller pie which may be used in mounting a pendulum apparatus for testing the minor irregularities of clock rates Triple doors are provided and means for slow venti lation. The location is on the summit of a hill, and drainage conditions are such that the basement in which the vault is situated is remarkably dry. There is little fear of damage from rust. In the early day of the observatory, in a similar experiment the clock built by Kessels, a most delicate instrument, and the most valuable of its kind in the country, was almost ruined.

An observation for time is taken about every other day. There are three standard clocks always in uss and two to which the Western Union wires are at tached for transmitting the noon signals. Every day except Sundays, these signals go out. An averase error of 0.13 seconds is recorded for the past year The Kessels clock will not stand being attached to the wires, and with the others it gives the time about as accurately as it can be given. The chronometer room is maintained at an even temperature and is treater

SCHNEIDER-CANET 9.45-INCH GUN ON NAVAL MOUNT.
Weight of Gum, 20.5 tons. Weight of Projectile, 330 pouncls. Initial Velocity, 2.:80 feet. Muzzle Energy, 17,748 tous. Theoretical Perforation of Iron t Muzzle
lmost as delicately as is the room for the great clocks.

A NEW SCHNEIDER-CANET NAVAL GUN

Our illustration shows a new 9.45 -inch gun for nava or coast defence purposes, which has recently bee brought out by the well-known French firm of Schneider \& Co. The weight of the gun itself with breech mechanism is 201% tons, while that of the car rage without the shield is $131 /$ tons. The projectile iage without the shis it initial velocity et per second. The diameter of the gun at the breech end is 36.22 inches. The breech is closed by a plastic obturator, o metallic plug, that can be locked in place or with drawn by three and a half turns of the operating
handle. Electric or percussion firing is employed as desired, with single control on the left of the guncarriage. This mechanism is easily accessible for the gunner, who is suitably protected against premature discharges.

The gun-carriage is of forged steel and carries two diametrically opposite recoil cylinders, as well as a compressed-air recuperator, which is independent of them and is placed on the lower side. The recoil cylinders are suitably arranged for putting the gun out of or in battery by means of a pump. This enables the gunner to continue firing in case of damage to the recuperator, whatever may be the angle of elevation.
Vertical aiming is facilitated by the interposition of live roller rings between the trunnions of the carriage and the trunnion bedplate of the frame. The elevating hand-wheel, which is placed conveniently for the gunner, drives a toothed sector fastened to the carriage, by means of an endless screw and pecial helicoidal wheel furnished with friction packing washers to avoid shocks when firing. Horicontal aiming is accomplished by the traversing of the whole carriage, which turns on a ball bearing traverse base ring. It is taversed by a hand wheel turned by the gunner. This wheel is connected with a binion that meshes with a circular rack fast ened by means of an irreversible mechanism of great efficiency This mechanism, while assuring the absolute irreversibility of the system, permits of one man revolving the movable weight o $40 \% / 4$ tons at a sufficiently rapid rate to follow an object moving at a speed of 34 knots and distan 1,640 feet.
Finally, this new 9.45 -inch gun n a naval carriage offers the same facility of manipulation as has heretofore been obtained with rapid-fire guns of smaller bore

THE ARDENNES CIRCUIT.

With the completion of the Circuit des Ardennes, Englishmen have again scored a signal victory. The winner of the race was Mr. Charles Jarrott, who finished some nine minutes ahead of his nearest competi tor, in a 70 horse power Panhard.
The race was run on a sort of huge track, measur ing 85.4 kilometers to the lap, with no great grades to speak of. There were no controls, no halts of any kind to check the contestants. The race may, there fore, be regarded simply as a test of powerfully en gined, high-geared cars under conditions offering the least resistance. For that reason the contest stands in sharp contrast to the hilly Paris-Vienna race
Eighty-five kilometers in the opinion of many is a rather short lap. Indeed, the many accidents which happened in the circuit amply bear out the criticism that have been made on this score. Pierre de Craw haze, toward the end of a third lap, collided with M Coppee. One wheel of de Crawhaze's car flew off, the other broke from the axle,
and the car was dragged along for two hundred yards. No one was hurt. On the sec ond lap one of Je natzy's front wheels whirled through the air while the car was traveling at about 65 miles an hour The vehicle was overturned, and the driver and his assistant crawled out from under the ruins, not serious ly injured. De Caters, on a Mors, was lost on the third lap in a clous of dust raised by Jarrott, jumped on a wall, and impaled his car. On the same lap Roland in a Gobron-Brillis ran off the road and out of the race. Charron collided with a carriage at a speed of 90 kilometers an hour, and reduced his own vehicle and the carriage to splinters and scrap iron.

The race itself offered not a little excitement. It was a nip and tuck struggle between Jarrott and Gabriel. They were never more than 6 minutes apart at any of the turning points. For a long time it was uncertain whether Jarrott or Gabriel would win. At the end of the first lap Gabriel had gained two minutes: at the second he had gained one minute. At the half Jarrott led by less than half a minute. When
the fourth lap began Jarrott led by a minute, and at the fifth iap Gabriel was one minute ahead. But when the sixth and last lap came, a chain accident put Ga briel out of the race, and Jarrott shot ahead. Zbrowski and Mr. Vanderbilt, both Americans, finished creditably. The times of the chief contestants for the total distance of 512.41 kilometers are as follows Jarrott, 5 h .53 m .39 s .; Gabriel, 6 h .2 m .45 s .; Vanderbilt, 6 h. $22 \mathrm{~m} .11 \mathrm{~s} . ;$ Rigolly, 6h. $52 \mathrm{~m} .16 \mathrm{~s} . ; ~ Z b r o w s k i$, 6 h .44 m .40 s .; Girardot, 6 h .55 m .55 s . After racing 512 kilometers Mr. Jarrott made a run of 100 kilome ters to Sedan to get a bed.

FORMATION OF THE DIAMOND BY THE ELECTRIC FURNACE.

Among the important discoveries made by M Moissan with the electric furnace, none is more strik ing than the artificial production of the diamond While the specimens he obtained were of almost micro scopic size, it is none the less true that crystallized carbon has been obtained, and it is the object of the present article to show some of the steps in the proces and the results which were finally reached. Before commencing the work M. Moissan made a series of researches upon the different forms of carbon, both those which occur in nature and the different varieties oi graphite formed by the electric furnace. From these studies he became convinced that if the diamon could be reproduced, the first crystals obtained would be of microscopic size.
It may be considered that the diamond of nature has been formed in the midst of a liquid or pasty mass, and the natural question is, what solvent has been used for the carbon. Mi. Moissan found that iron in fusion is the best solvent for carbon, and he was led to search for the crystallization of carbon in melte: iron under high pressure. A meteoric iron from the Diablo Cañon, Arizona, shows in the midst of the metallic mass two small transparent diamonds. Here nature seems to have been taken in the act. The iron containing the carbon must have been at first in the liquid state, and owing to a sudden cooling there oc curred a violent contraction of the mass, and the carbon passed from a density of 2.0 to that of 3.5 , givin the diamond. From these considerations M. Moissan was led to the experiments in which he succeeded in producing microscopic crystals of carbon which gave all the characteristics of the diamond.
To carry this out he utilized the pressure produced by the increase in volume of a mass of iron when pass ing from the liquid to the solid state. Solid iron, as is well known, has a less density than the melted metal; pig iron, for instance, floats on a bath of melted iron. Like water, iron increases in volume at the mo ment of solidifying. The iron is now to be saturated with carbon at a high temperature and then suddenl cooled at the surface. The interior, while still liquid is thus subjected to a high pressure. The iron must be saturated with carbon at a high temperature, and for this the electric furnace is used; the iron then dissolves a great quantity of carbon which it afterward abandons in the form of graphite or crystallized car bon. The electric furnace is of the type shown in the engravings. A block of chalk or quicklime, having a cover of the same material, contains a central cavity for the carbon crucible. The carbons are moved back and forth on their sliding supports and the arc is ormed just over the crucible. In the first experiment 15 ounces of soft Swedish iron were placed in the crucible and covered with sugar-charcoal. The crucible is then heated under the arc with a current of 350 amperes at 600 volts; the cover of the furnace is removed and the crucible taken out and plunged into cold water. When cold, the metallic mass is attacked by hydrochloric acid to dissolve all the iron, and there remain three kinds of carbon; graphite, a browncolored carbon (such as was observed in the Diablo Cañon specimen) and lastly a very small quantity of a denser carbon. All the carbon except the latter was dissolved out by a series of reactions, and the portions of very high density were separated by placing in bromoform. This liquid has a density as high as 2.9 , and only the heavy particles fell to the bottom, consisting of black and transparent diamonds. By using a still denser liquid, the iodide of methylene, which has a density of 3.4 , the black diamonds were made to float, and only the transparent crystals fell to the bottom. The former were first examin ed; under the microscope they have a gray-black appearance and their density is above 3 . Some of them have welldefined angles and approach the cubical form. They will easily scratch the polished surface of a ruby. It only re mained to burn them in oxygen, and this was done by placing them on a support inside a platinum tube through which a current of oxygen was passed: the tube was heated to $1,20, ~$ deg. C. by a blowpipe flame. The black diamonds
were found to burn easily in oxygen, giving car bonic acid gas and leaving a trace of residue. The transparent fragments were, of course, the most interesting. They had the characteristic brillian appearance and oily luster of the unpolished dia mond. Their surface showed a number of parallel striæ. Some of them were round and others appeared as broken fragments; others, again, were cubical or of irregular form. The density of al these specimens was about 3.5 (seeing that they sank in the iodide of methylene). They scratched the ruby very deeply and could be burned in oxygen with scarcely a trace of ash. The yield of crystallized carbon is very small by this method, and a long series of reactions must be made in order to obtain a minute

MOISSAN DIAMOND-MAKING FURNACE.

quantity of the crystals a seconl method was em ployed, using a small cylinder of sort iron which is ployed, using a small cylinder of sort iron which is formed is nearly filled with sugar carbon, which i strongly compressed by the screw. A quantity of soft iron is melted in the crucible and the cylinder is quick ly plunged in the liquid bath. The crucible is then taken out and plunged into a bucket of water. In the meantime the cylinder has melted and the center of the mass is saturated with carbon. By the sudden cooling, a layer of solid iron is formed on the surface of the mass, and when this crust is at low redness the whole is taken out and cooled in the air. On breaking the mass a portion rich in carbon is found at the center in which are minute diamonds, both black and trans parent. One of the clear specimens measures nearly 0.02 inch and answers to all the tests for the diamond Another specimen was very pure and well crystallized It was found that by the water-cooling method the

diamonds made by the electric furnace.

mass is surrounded by a layer of water vapor, and the cooling takes place rather by radiation across the vapor than by conduction, and is thus not rapid enough. To cool the mass more quickly and give a more sudden compression a bath of melted metal, pre ferably lead, was employed, and the resulting diamonds were found to be of better quality. In this case the crucible containing the iron, melted and saturated with carbon at 3,000 deg. C., is quickly plunged to the bottom of a bath of melted lead. The mass, which was at first pasty, becomes liquid on cooling and sends to the surface of the lead bath a number of small lobules of iron, like shot. These globules contain the diamonds, which are separated as before. The strik ing point about this method is the brilliancy of the specimens which are obtained. One of the transparent diamonds whose diameter reached 0.02 inch, presented a triangular form with rounded angles. A curious fact is to be remarked in the case of this specimen

MOISSAN ELECTRIC FURNACE, OPEN AND UPTURNED.
after three months it split into several fragments, and a second specimen became almost reduced to powder This phenomenon is identical with that which occurs with some of the Cape diamonds, and it may be at tributed to the unstable equilibrium of the mass which has been formed at a high pressure. . Some of the specimens from the latter process are smooth and brilliant, while others have a shagreen surface; widely varying forms are obtained, from those which appear to be an assemblage of crystalline masses to specimens looking like a drop which has been suddenly solidified. The shagreen surface of the latter is identical with that of certain Brazil diamonds.

An interesting experiment was that of letting the melted iron fall through a hole in the bottom of the electric furnace in the form of globules or shot. One of the carbons is hollow, and through it an iron rod can be slid into the arc (Fig. 2). The melted globules drop into a vessel of mercury placed underneath the furnace. The spheres thus obtained gave black and transparent diamonds; the latter were small, but re markably regular in form. Some of them were octa hedra, measuring less than 1-1000 inch in their greatest length. One of the best methods is that of cooling the mass by direct contact with solid metal. A block of copper has a cylindrical hole bored in it in which fits a stopper of the same metal. The iron saturated with carbon is run into the block and the hole quickly corked; in this way the cooling is very rapid. When cold the copper and the outer iron are turned off in a lathe and the diamonds are found in the interior. This method gave a better yield and the specimens were fine and transparent.

Increased ise of Oil Fuel.

 by e. p. watson.The discovery of new sources for the supply of fuel oil has reawakened the possibility of using it in At lantic liners and other high speed vessels. The objec tions hitherto have been uncertainty as to the con tinuance of the present oil fields, the slight margin of saving in comparison with coal in many localities, and want of success in obtaining good results through inexperience in the management of oil fuel, but these disappear, in great part. with the apparently unlimited production of the Texas and other new oil wells, and new types or systems of burners which are an improve ment upon their predecessors. Many of the naval powers are now fitting out war vessels to use oil fuel, and others are experimenting with a view to its adop tion later on. The German Admiralty have used oil on their China station for auxiliary purposes for months in lieu of coal. The Hamburg-American Com pany has four ships using liquid fuel wholly, and the North German Lloyd two, while the Dutch mail and cargo boats in the Far East employ oil solely as fuel There are over thirty depots, or stations now where oil can be procured regularly by vessels, and more are being laid down as rapidly as possible.

Oil fit for fuel purposes has the following chemical composition: Carbon, 88 per cent; hydrogen, 10.75 per cent; oxygen, 1.25 per cent. The two other impurities present in the mass are water and sulphur. The action of water is obvious, while the sulphur if free, not in chemical combination, attacks both iron and steel and mechanical means to separate the water, if oil is used on ship-board, are necessary. Recent experiments show that two tons of oil are equivalent to three tons of coal. while by volume 36 cubic feet of oil are equal to sixty seven cubic feet of coal as ordinarily stowed in bunkers. This increases the radius of action of a war vessel 50 per cent upon the bunker weight allotted and nearly 90 per cent upon the bunker. space, without any alteration of the ship. It is also urged in favor of oil that it is easily supplied in mid ocean-from transports-while coal presents grea difficulties under the same conditions. In commercia work the gains predicted for oil vs. coal are surprising. In high-speed ships the weight and space occupied by the propelling machinery leave no room of any accoun for freight. The change from coal to oil would add nearly two thousand tons to the carrying capacity of a given ship, while, as oil fires never have to be cleaned. the speed would be constantly maintained With these and many other advantages in favor of liquid fuel it is not unreasonable to look for its general adoption in the near future, both on land and sea Many locomotives are now using it, and others are being built for oil service boih in this country and abroad.

Announcement is made that the United States War Department has ar ranged with Ehrhardt. of Düsseldorf, to re-arm the United States field artillery with Ehrhardt's new piece. The gun which the United States has acquired the right to use is said to be an improvement on the models supplied to Great Britain, of lighter weight and of longer range.

RECENTLY PATENTED INVENTIONS.

Agricultural Implements.

CaLf-WEANER. - Lewis H. Saunder Colby, Kans. In order to prevent a calf or colt from sucking, the inventor employs a device comprising an inner frame of flat cheek pieces, and an arched nose-yoke. The cheek
pieces are spread apart at their rear ends To the inner, arched frame an outer, arched barbed frame is pivoted, to the rear ends of which a jaw-strap is secured which passes around the lower jaw of the animal. Should the calf attempt to suck or push the barbs up or down, the outer frame will force the jaw strap against the lower jaw and hold th , shut
CORN-HUSKER.-Arthur W. Richards, Indianola, Iowa. The invention is a corn-
husker which is adapted to operate upon the ears of corn after they have been cut from the stalk. The novel features are to be found in two series of rollers provided with pointed
teeth. Both series extend in downwardly inclined parallel planes and are simultaneously rotated. The husks adhering to the corn ear are pierced by the teeth, shredded and stripped DERRICK.--Alvin Hodgson, South Ot
tumwa, Iowa. Mr. Hodgson ha devised tumwa, Iowa. Mr. Hodgson has devised a
simple derrick which will doubtless be found of considerable usefulness on a farm for
lifting and moving heavy weights, such as hay racks, wagon bodies, slaughtered animals, and the like. On a base comprising bottom rails, standards are erected, on which a table is sup-
ported. A post has a step bearing in the rails; and a plate secured to the post has bearing in an opening in the table. The beam is mounted to swing on the post; and
the winding-drum is carried by the post. drum and the end of the beam.

CUltivator.-Frank G. hoag, Battle Creek, Mich. The inventor has devised a sim ple, compact, and strong machine which em
bodies means for the removal and replace ment of a central toothed section; which also allows for the lateral adjustment of the
toothed side frames, so as to cultivate both sides of a row of growing corn; and whic allows the front portions of
be raised and to swing free.

Apparatus for Special Purposes.

STORAGE SYSTEM.-J. R. Rector, Lipan, Texas. In this invention Mr. Rector provides a house for storing perishable goods in whic
the goods will be kept cool without the n cessity of ice or other analogous means lowering the temperature, the temperature the house being kept at a sufficiently low de gree by a pecu
lating passages.

Engineering Improvements.
Marine-engine governor.-Martin F Volkmann, Santa Monica, Cal. Mr. Volk is intended to prevent dangerous racing should the shaft break the propeller be racing shoul lifted out of the water by the pitching of the vessel. The principle of the invention con sists in speeding the governor upon the rise of the propeller from the water.
engine-S'Cop.-Henry Jones, Watertown N. Y. This new engine-stop is arranged im mediately and automatically to stop the en gine in case of an accident. The arrangement
is such that the engine can be shut down or is such that the engine can be shut down or
started without interfering with the stop in any way. The stop comprises a cylinder to which a steam pipe leads. A piston recipro cates in the cylinder. Between the piston an The valve in the steam-pipe is opened from governor when its stem drops.
Valve-Lubricator.-Peter F. Laban, Altona-on-the-Elbe, Germany. The lubricating liquid is distributed by the movement or action seat and between the ports in the chest. The seat and between the ports in the chest. Th occupy an operative relation to the point of atter, notwithstanding the travel or them ment of the valve. The lubricant is dis tributed through the valve-chest by open or exposed ducts or channels, so that it can be taken up by the steam and
parts that require lubrication.

Mechanical Devices.

velocipede Driving-Gear.-Francis . Rich, Karangahake, Auckland, New Zea land. This changeable speed-gear for bicycles
comprises an ordinary friction-clutch freecomprises an ordinary friction-clutch free-
wheel sprocket, and a sprocket consisting of inner and outer members, normally loose relatively to each other. A driven mechanism can be shifted into operative engagement with
the free-wheel sprocket, or with the outer memthe free-wheel sprocket, or with the outer member. A rocking clutch connects or disconnects
the inner and outer members. A frictionroller on the rocking clutch is engaged by the shifting the clutch
PORTABLE REVOLVING THEATER. this portable Brevolving theater, there Kans. In bodied a central stationary stage and a circular revoluble auditorium. The audience is slowly
carried around the stage so as to obtain a full
view of all the proceedings. An improved cur-
tain is provided which can be easily and quickly operated.
Washing-machine.-Laura B. Parker, machine is of Street, Ogden, Utah. The bed is employed within an outer casing, upon which the convex "rubber" rocks. The present nvention is designed to supply this oscillating ubber with an elastic pressure in a mor imple manner than heretofore. To that end
spring attachment of peculiar construction spring attachment of peculiar construction applied to all washing-machines of the type mentioned.
GRIPPER FOR PLATEN PRINTING presses.-Arthur L. Anderson, Grundy enter, Iowa. Mr. Anderson has devised
imple gripper which will firmly hold th paper to be printed on where a narrow margin is desired. His device can be so adjusted that ts inner edge will be close to the desired outside line of the printing, thereby avoiding
the annoyance so often experienced when it is desired to print upon an article so as to leave a very narrow margin. Ordinarily the apper cannot be placed so as to hold the of the gage-pin's coming ontact with the gripper. That difficulty ow obviated.
MEANS FOR AUTOMATICALLY CLOSING WINGING DOORS.-Edward F. Huard pringfield, Mo. The invention is a closur for ice-houses or vaults. Its object is to pro
vide a self-closing door which guards th pening through which blocks of ice are in troduced to the house or vault, preventing an improper rise in the temperature, and the accumulation of fog in the air-space of the house.
High-ball archer.- William h. Pease Joliet, Ill. Mr. Pease has invented a simple and ingenious device for throwing a projectile
by the power of a rubber band or the like. the invention of a rubber band or the lises a body and an elastic perating devices for actuating the structure comprise a trigger-arm, a connection betwee the trigger-arm and the holding means, a triger working with the trigger-arm, and a spring actuating the parts normally to release the holding means.
Lifting-GATE.-Anderson Miller, Shelyville, Ind. Mr. Miller is the inventor of gate which embodies much that is new in it construction and operation. Mechanically con sidered, the gate consists of a post to which
a frame is hinged, free to move vertically. The frame comprises top, bottom and side members. A rod connects the top and bottom members and serves as a brace. Upon the rod is a lever. Angle-braces are secured to the top and bottom members at points adjacen to the ends of the rod, and engaging one of the side members at a point between the ends. cord engages the lever and post and par lever being depressed, the cord is pulled, thereby raising the gate.
snow-plow.-Peter w. Martin, Thumb Lake, Mich. The snow-plow can be quickly and easily adjusted to discharge snow at both sides, or to discharge snow at either side. The horses propeling the plow are placed a he back, so that they are not compelled to hey harnessed at the front
POTATO-CREAMER.-Frederick W. RUCK TUHL, and Adele Pohliann, Manhatta
New York city. This device is arranged to re duce boiled potatoes or the like to a creamy onsistency in the smallest possible amount
fime. The device is very simple and du able in construction, can be cheaply manu factured and easily manipulated.
GAGE AND BUTT-CUTTER FOR CIGARS -William Heffley, Jackson Township, Le means for gaging the length and clipping the butts of cigars as they are being manufactured this character which is of simple construction, compact form, and very convenient in operation, producing a portable implement that can be set to cut off the butts of cigars at a
desired length as a finishing operation in their manufacture.

Miscellaneous Inventions.

BANJO ATTACHMENT.-H. M. Bronson Brandon, Vt. Mr. Bronson provides- an improved attachment for banjos and like instru-
ments which may be conveniently employed ments which may be conveniently employed
and will act to remove all harshness from the and will act to remove all harshness from the
tone, rendering the music produced soft and weet
CMBRELLA-Stick,-T. If. Smith, Lanswhich may be compactly folded and umbrella and conveniently brought into a position for use. The construction is simple and durable and is so arranged that the strength of the umbrella will not be lessened, also that the umbrella may be readily manipulated by any person of ordinary intelligence.
GEM-SETTING.-R. S. Bieber, Brooklyn, . Y. The usual method of setting stones o diamond shape is to fasten the stone by bend tion is designed to make a more secure setting for the gems by employing a band which enplace by the fingers of the setting.

RANGE - FINDER ATTACHMENT
FOR
GUNS.-A. P. Collins, Manilla, P. I.
Sergt. Collins finds from practical experience that it is difficult for the average soldier to gage
a distance of between 400 and 2,000 yards with sufficient accuracy to make his fire e fective. He has, therefore, devised a simple attachment for use in connection with ordinary mine the range of the object to be fired and the corresponding adjustment required be given to the elevating sight.
FOLDING BASKET. - T. J. Langston Johnston, S. C. Mr. Langston has invented which have a collapsible body portion and folding handle frame. The handles are pivoted directly to the body of the basket. The lower ends of the handles are connected with the bottom of the basket and are ex form legs

Nore.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please state the name of the paten
the invention, and date of this paper

Business and Personal WJants. READ THIS COLUMN CAREFULLY.-You numbered in consecutive order. If you manu
facture these goods write us at once and we wil
send you the name and address of the party desir
ng the unformation. In every case it is necese
sary to give the number of the inquiry.
MUNN \& CO.

Marine Iron works. Chicago. Catalogue free.
Inguiry No. 3066. - For manufacturers of ice-
Autos.-Duryea Power Co., Reading, Pa
Inquiry No. 306\%,-For manufacturers of office
speciutities, hoosenold
nor mall or mail order business.
Inguiry No. 3068.- $o r$ matis. Samples free.
water wheels. Alcott \& Co.. mt. Holly, N. J.
Inquiry No. 3069.-For dealers in dummies use
in ventriloquism.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St., Inquiry No. 3
Sa aneming machinery and outits manuf
Lane $\mathbf{M f}$. Co.. Box 13, Montpelier, Vt .
Inquiry No. $\mathbf{3 0 1 9 \%}$ 1.-For manufacturers of small Die work, experimental work and novelties manufa Inquiry No. 3072.-For manufacturers of pad
novelties.
Our specialty is cutting and forming metal parts
shape. Metal Stamping Co., Niagara Falls, N. Y.
 Gear Cutting of every description accurately done.
The Garvin Machine Co.. 149 Varick, cor. Spring Sts., N.Y. Inquiry No. $\mathbf{N 3 0 7 4}$. - For
n game markers or counters.
We design and build special and automatic machinery land, Ohio.
Inquiry No. 3095.-For manufacturers of car-
building machinery. IDEAS DEVELOPED.-Designing, draughting machine Hudson Street, New York.

Inquiry No. 3076.-F

Manufacturers of patent articles, dies, stamping多的. hight machinery. Quadriga Manufacturing Company,
Inquiry No. 307\%.-For manufacturers of absorb-
ent puip plates.
Patents developed and manufactured, dies, special
tools, metal stamping and screw machine work. Metal tools, metal stamping and screw machine work. Metal
Novelty works Co., 43-47 S. Canal St., Chicago. Inguiry
Inquiry No. 3078.-For manufacturers of tubs.
The celebrated "Hornsby-Akroyd" Patent Safety Oil The celebrated "Hornsby-A krogd" Patent Safety Oil
Engine is built by the De La vergne Refrigerating MaFoot of East 138th Street, New York. Inquiry No. 3079.-For manufacturers of cork
The best book for electricians and beginners in elec-
tricity is "Experimental Science," by Geo. M. Hopkins. tricity is "Experimental Science," by Geo. M. Hopkins.
By mail, $\$$ t. Munn \& Co., publishers. 361 Broadway, N. Y. Iuquiry No. 3080.-For wood-carving machinery. WANTED. - A bright, active young man as assistant of all tools. Must be a bustler and familiar with modern practice as to cutting speeds. etc. State salary and experience. H. F. W. Box 773, New York.

water motors.

foreman boller Maker Wanted.- First class man wanted for a modern shop building mariue and pairs. Applicants will please state age, experience, This is a good position for a good man. Address P. o.
Box, 2685 . Boston.
Inquiry No. 3082.-For machinery for making
nails and bolts. Send for new and complete catalogue of Scientiftc New York. Free on application.
Inquiry No. 3083.-For a spring motor suitable
aluminiuy. No. 3084.-For manufacturers of sheet
Iuquiry No. 308.5.-For rough castings for
gasoline engines, also dynamos and motors.
Inquiry No.
phone system
switchoren
for Inquiry No. 3087.-
H. Webb adding machine.
Inquiry No. 3088.-For manufacturers or dealers in glass cloth.
Innuiry No. 3089.-For the address of the Libby
Glass Works.

INDEX OF INVENTIONS
 For which Letters Patent of the United States were Issued for the Week Ending
 August 19, 1902,

AND EACH BEARINGTHAT DATE. [See note at end of list about copies of these patents.]

Acid and making same, methylene di-aceto
di-salicylic, S. S. Summers. L .
Acid ester of methyenem diguaiaco. and
making same, camphoric, S. L. Sum-
 707,278
707,309

 707,428
707,168
707,176
707,298

 ariil

${ }_{\substack{70 \\ 70,123 \\ 7024}}$

(Continued on page 148)

 Food, atatele, G bild Hughes.....
Fountions,
Ford

Fruit stemmer, J. A. Northe, Jr..........
Fuel isseang aparatus. W . G . Stones (re-

Firnaces, apparatus for increasing combus
tion in,
Furn.tur , McConel

Heating boiler, sectional, E. E. Haskins.:
Heal natiln matine
Heel nailing machines.

Lace machine, © Martin
Lacing hok, w. M. Dunh

Mail reefiving and. delivering mechanism

"AMERICA'S
SUMMER
RESORTS"
This is one of the most complete publications of its kind, and will assist those who are wondering where they will go to It contains a valuable map, in addition to much interesting information regar ing resorts on or reached by the
NEW YORK CENTRAL LINES

MAXIMUM POWER-MINIMUM COST.

TRUSCOTT MARINE MOTORS.

 Bill

 Jion H. Caswell, A.M. Eighth ed edition by Prof. Friedrich Kolbeck New York: D. Van Nostrand Com pany.
There probably has never been a better book prepared on the subject of blowpipe analysis
than C. F. Plattner's admirable manual. The present edition, which is the eighth American edition, should be welcomed by students for the reason that it has been thoroughly revised
after the latest German edition, thus bringing the book well up-to-date. The adoption of modern chemical notation and the omission of
superfluous or antiquated tests considerably improve the work. Spectroscopic methods which properly do not belong in a book of this charthe last German edition is due, was assistant to Dr. Richter, the unsurpassed master blowpipe analysis and editor of the early Plat
ner editions.

Ghe Best Thing on Wheels

Ohbe OLDSMOBILE
RUNS EVERYWHERE
Nothing to Watch but the Road Ahead
red catalog illustrates and describes it in detail

$W_{\text {hat }}^{?} D_{0} Y_{o u}{ }^{?}{ }_{W}{ }_{\text {ant }} T_{0} \stackrel{B}{B u y}^{?}$

Write We can tell you where to buy anything you want.

Novelties, Special Tools, Machinery, Equipments, New Patent LABOR SAVING DEVICES MUNN \& CO., Publishers of the SCIENTIFIC AMERICAN, 361 BROADWAY, NEW YORK.

RESTFUL SLEEP
"Perfection" Air Mattresses,

Style 61. Camp Mattress with Pillow attached.
Also showing Mattress deflated. Clean and Odorless, will not absorb moisture. MECHANICAL FABRIC CO., PROVIDENE

GROUND FLOOR

THE RAND GOLD MINING (0.

RAINBOW MOUNTAIN

SUST PUBLISMED
Practical Pointers
For Patentees
THE SALE OF PATENTS.

T

 $\substack{\text { thiser } \\ \text { patent } \\ \text { patent }}$

[^0]

 Mineralse sentit for examination shoulu be distinctly
marked or labeled
\qquad
\qquad
\qquad
\qquad

FREE SCHOLARSHIPS.

Withdrawn September 30th.
 Examination credits count toward Degree in resident technical school.
AMERICAN SCHOOL OF CORRESPONDENCE, BOSTON, MASS.

READY TMIS WEEK.

Twenty=Third Edition
Revised and Greatly Enlarged.
Experimental
Science
1,100 Pages. 900 Illustrations. Cloth Bound, Postpaid, $\$ 5.00$. Half Morocco, Postpaid, 7.00 . Or Volumes Sold Separately: Half Morocco, $\$ 4.00$ per Volume.
 E permentral science

 MUNN \& CO., Publishers, 361 Broadway, New York.

WINTON TOCRING CAR: The Winton Motor Carriag Co. Cleeveland. OUN.U.A.

\section*{This isa} BEARING | Mot ativivic indine |
| :---: |
| Every PART Rodin |

DIXON'S GRAPHIIIOLEO

An all around lubricant for Cylinders, Engine
Slides. Chains, Gears, Etc. of Automobiles. It is made of pore vaseline and Dixon, somo. 635
Graphite. It is equally useful for general use. Small Sample Free.
JOSEPH DIXON CRUCIBLE CO. Jersey City, N. J.

THE VICTOR Steam Pumps
 tanks or tires.
Capacity of Water Pump, 3 gallons per min
ute against 200 pounds boiler pressure. PRICE, \$30.00 EACH. These pumps have been adopted by the
Locomobil co., he hobile Cond other
leading manufacturers of steam anr ariages.
 end for Illustrated Circular.
NEW ENGLAND WAICHIS have a world-wide reputation
gainea by results as accurate
timekeepers
We timeseepers. We make all
sizes and styies. We wellonly
complete watches. Catalogs

THE NEW ENGLAND WATCH CO.
$37 \& \substack{39 \text { Maiden Lane } \\ \text { New York }}$ Claus spreckels Building, San Francisco.
Orient Motor Cycle.

Fitted with the New Orient 3 H. P. Motor. The Most Powerful Motor Bicycle in the World. WALTHAM MFG. CO., Waltham, Mor Particulars. Agents Wanted.

SAVAGE
Only Hammerless Repeating Rifle in the Wo
HIGHEST

TIDARALLEL CH•BESLY\&\&

The GROUT STEAM CARRIAGE purchaser who desires

THE MOST MODERN AUTO

CRUDE ASBESTOS DIRECT FROM MINES PREPARED
ASBESTOS FIBRE
R. H. MARTIN, $\begin{array}{rrr}\begin{array}{ll}\text { ASBESTOS } \\ \text { for Manufacturers use }\end{array} \\ & 220 \text { B'way, New York. }\end{array}$

Charter engine Joffl Any Place Stationaries, Portables, Sawing Outfits,
 CHARTER GAS ENGINE CO.. Box 148. STERLING IL

FIFTEEN MLLLION BARRELS OF CEMENT A YEAR NOW Ground in the Girifilim Mill

AN UNPARALLELED RECORD
OF AN UNPARALLELED MILL

Note.-In addition to the large number of Griffin Mills in use wherever Portland Cement is made, the following concerns are now installing additional ones

Associated Cement manufacturers of England. Lehigh Portiland Cement Co., : : : • Ormrod, Pa.	米	Texas Portland Cement Co., Dallas, Texas. Cayuga Lake Cement Co., Ithaca, N. Y.
Central Cement Co., ${ }^{\text {a }}$ Coplay	\%	newaygo portland Cempnt Co., . . Newaygo, Mich.
Glens Falls Portland Cement Co., Glens Falls,	,	Great Northern Portland Cement Co., ba
alpha Portland Cement co., Alpha,	*	midland Portland Cement Co., Bedford, Ind.
iola Portland Cement Co., Iola, Kansas.		bonneville Portland Cement Co., . . . Siegfried, Pa.

If the Griffin Mill wasn't the greatest cement grinder the world has ever known, these large works, would not now be placing additional mills. Full particulars cheerfully furnished.

BRADLEY PULVERIZER CO., BOSTON

Free Tuition in the Kodak Correspondence School of Photography to every owner of a Kodak or Brownie Camera who purchases a one dollar copy,
of "Picture Taking and Picture Making." EASTMAN KODAK CO.
 Rochester, N. Y

[^0]: MUNN \& CO
 Publishers, 361 Broadway, New Yor

